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ABSTRACT 20 

Investigations comparing the behaviour and welfare of animals in different environments have led to 21 

mixed and often conflicting results. These could arise from genuine differences in welfare, poor 22 

validity of indicators, low statistical power, publication bias, or inappropriate statistical analysis.  Our 23 

aim was to investigate the effects of using four approaches for inferential analysis of datasets of 24 

varying size on model outcomes and potential conclusions.  We considered aggression in 864 growing 25 

pigs over six weeks as measured by ear and body injury score and relationships with: less and more 26 

enriched environments, pig's relative weight, and sex. Pigs were housed in groups of 18 in one of four 27 

pens, replicating the experiment 12 times. We applied four inferential models that either used a 28 

summary statistic approach, or else fully or partially accounted for complexities in study design. We 29 

tested models using both the full dataset (n = 864) and also using small sample sizes (n = 72).  30 

The most appropriate inferential model was a mixed effects, repeated measures model to compare ear 31 

and body score. Statistical models that did not account for the correlation between repeated measures 32 

and/or the random effects from replications and pens led to spurious associations between 33 

environmental factors and indicators of aggression, which were not supported by the initial 34 

exploratory analysis. For analyses on smaller datasets (n = 72), due to the effect size and number of 35 

independent factors, there was insufficient power to determine statistically significant associations. 36 

Based on the mixed effects, repeated measures models, higher body injury scores were associated 37 

with more enrichment (coef. est. = 0.09, p = 0.02); weight (coef. est. = 0.05, p < 0.001); pen location 38 

on the right side (coef. est. = 0.08, p = 0.03) and at the front of the experimental room (coef. est. = 39 

0.11,  p = 0.003). By comparison, lower ear injury scores were associated with more enrichment  40 

(coef. est. = -0.51, p = 0.005) and pen location at the front of the experimental room (coef. est. = -0.4, 41 

p = 0.02).  These observed differences support the hypothesis that injuries to the body and ears arise 42 

from different risk factors. Although calculation of the minimum required sample size prior to 43 

conducting an experiment and selection of the inferential analysis method will contribute to the 44 
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validity of the study results, conflict between the outcomes will require further investigation via 45 

different methods such as sensitivity and specificity analysis. 46 

 47 

Word count: 400 48 

 49 

Key Words: Study design, sample size, mixed effect models, pig, animal health, animal welfare. 50 
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1. INTRODUCTION 52 

The statistician George Box stated “all models are wrong, but some are useful” (Box and Draper, 53 

1987); which raises the question, how do we determine which statistical model, or in other 54 

terminology, inferential analysis method, is most appropriate? In recent years, a spotlight has been 55 

directed at the transparency of animal research methodology, with low rates of methodological 56 

reporting being associated with less scientific rigour and lower reproducibility (Vogt et al 2016, 57 

Ionnides et al 2009, Kilkenny et al 2009).  Articles pertaining to animal research have been criticised 58 

in the past for their design, statistical analysis and reporting (McCance, 1995; Kilkenny et al., 2009; 59 

Sargeant et al., 2010). The publication of a list of guidelines for animal research known as the 60 

ARRIVE guidelines (Kilkenny et al., 2010), has helped to improve the quality of animal research 61 

(Gulin et al., 2015). These guidelines highlight the importance of choosing the appropriate 62 

experimental assessments, sample sizes and statistical inferential analysis methods.  It is important to 63 

ensure the sample size is sufficient to test the study hypothesis, but also bearing in mind the ethical 64 

and financial implications of using an unnecessarily large sample size within an experiment. There is 65 

a plethora of techniques to produce sample size estimates, and the appropriate technique will depend 66 

on the inferential analysis used for a study. Sample size can often be quite difficult to calculate for 67 

more complex designs, though the importance of conducting these calculations accurately has been 68 

well communicated, particularly in clinical trials literature (Freiman  et al., 1978; Biau et al., 2008). 69 

Discussion in this area naturally leads into consideration of the methodology of the statistical analysis 70 

conducted on the collected data.  Many of the papers focussing on the quality of research using 71 

animals have primarily targeted experimental design, animal numbers, and reporting, but have not 72 

discussed the appropriate analysis of what can often be complex datasets. Precise replication of a 73 

published study is rarely performed, and typically different studies will use different experimental 74 

designs and statistical inferential techniques to address the question. Although this can make 75 

comparisons between published studies difficult, agreement in the overall conclusions under such 76 

circumstances can be considered strong evidence for the named association, though more subtle or 77 

complex relationships may potentially be missed. An identified significant treatment effect across 78 
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studies through use of meta-analysis, is typically considered to be robust evidence for an association, 79 

and also allows the magnitude of the effect size to be more precisely estimated than in single studies 80 

considered in isolation (Borenstein et al., 2009).  However meta-analysis also has limitations, for 81 

example when few studies have been published in an area, when they differ substantially, or when the 82 

inferential analysis used is inappropriate for the design.  83 

Within the field of animal welfare, many published results on a particular issue are mixed or 84 

conflicting, leading to somewhat mixed messages about what the most appropriate solution for an 85 

identified welfare hazard might be.  To some extent, it is possible that this is at least partly due to 86 

publication bias (e.g. Hopewell et al., 2009; Brown et al., 2017) and the drive for novelty rather than 87 

further support for a set of hypotheses in published research.  However, the lack of agreement 88 

between studies may be due to other factors – the differences may reflect genuine differences between 89 

the studies, arising for reasons as yet unmeasured or unaccounted for.  They may be due to the use of 90 

indicators that have not been thoroughly validated in all respects for the species in question (Cronbach 91 

& Meehl, 1955). Finally, the observed lack of agreement may be due to inappropriate statistical 92 

analysis, leading to masking of true effects, or the discovery of false positives. 93 

Even when two studies ask a very similar research question with largely similar methodology, mixed 94 

results can emerge.  A typical example of this can be found in studies that investigate causes, and 95 

consequently solutions, for aggression in pigs. For example, Beattie et al. (1996) investigated whether 96 

an enrichment object or floor space had more influence on pig behaviour. Their analysis showed that 97 

duration of harmful behaviour was significantly higher in less enriched pens, and measured pig 98 

aggressive behaviours had no significant association with space allowance.  By comparison, Turner et 99 

al. (2000) found that smaller space allowances were associated with more skin lesions and longer-100 

lasting aggressive events. These studies were similar in a number of respects, except that Turner et al. 101 

(2000) regularly adjusted pen sizes to maintain a consistent stocking density (weight per m2) 102 

throughout the experiment, whereas Beattie et al. (1996) maintained pen dimensions (hence stocking 103 

density would increase throughout the study). Consequently, the two studies are incomparable with 104 

conventional meta-analytic approaches. Variation in the indicators used could also potentially explain 105 



This is an accepted authors draft of a paper published in Applied Animal Behaviour Science 

Online publication complete: 6-SEP-2017 
DOI : https://doi.org/10.1016/j.applanim.2017.08.002 

 

6 

 

differences in model outcomes For example, different indicators of injuries in pigs result in 106 

differences in the final conclusion, even if the studies use otherwise similar experimental designs and 107 

methods for inferential analysis. In relation to the provision of straw for pigs, different indicators of 108 

aggression have lead to different conclusions; for example, Lahrmann et al. (2015) found reduced 109 

shoulder injuries for straw-housed pigs, whereas Morgan et al. (1998) found that straw-housed pigs 110 

performed more aggressive interactions and Statham et al. (2011) and Arey and Franklin (1995) have 111 

both reported no significant effect of the provision of straw on outbreaks of aggression. Aggression 112 

can, and indeed, has been described and measured using a wide variety of indicators.  Examples of 113 

indicators for aggression are: duration of fights and number of bites (Andersen et al. (2000); 114 

prevalence of giving/ receiving belly nosing, mounting, ear and tail biting, and biting the pen bars, 115 

chains or other pen details (Brunberg et al. (2011); the ratio of aggressive events to social interactions 116 

(Drickamer et al., 1999); skin lesions on different body areas (Desire et al., 2016). Frequently, there is 117 

little or no overlap between studies, or construct validation to demonstrate that all indicators recorded 118 

measure what they are proposed to measure (e.g. tail biting has been considered an indicator of 119 

aggression; however this has been reconsidered in more recent years, e.g. Taylor et al., 2010).  120 

Here we used a study investigating aggression in pigs to compare differences between two areas for 121 

the assessment of skin injuries (believed to be indicative of aggression in pigs), an ear score and a 122 

composite body score (Conte et al. 2012), and the effects of analysing the data via four inferential 123 

methods: (i) generalised linear models; (ii) repeated measures analysis; (iii) linear mixed effect 124 

models; and (iv) linear mixed effect models for repeated measures. We compare the significant 125 

associations between the two injury assessments and the covariates detected via the exploratory and 126 

four methods of inferential analysis. These four approaches were chosen because, to varying degrees, 127 

these models could account for some of the features of the data and model parameters could be 128 

directly interpreted. 129 

Methods (i)-(iii) were considered sub-optimal relative to (iv), as these models were unable to account 130 

for correlation in the repeated measures, and /or random effects from the hierarchical structure in the 131 

data (pens within replication). We hypothesised that not accounting for random effects from the pens 132 
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within replication and correlation between repeated measures will either result in additional spurious 133 

relationships and/or mask possible significant relationships between our injury assessments and the 134 

covariates. By ignoring random effects, we hypothesise there will be more statistically significant 135 

associations with environmental factors, and by ignoring the repeated measurements, we hypothesise 136 

the association between injury score and time covariate will be more complex. 137 

We investigated the effects of sample size within multilevel designs by analysing the data from 138 

different replications (n=18 pigs * 4 pens per replicate) as separate studies, and comparing the 139 

coefficient estimates from each of these analyses. A reduced sample size leads to a decrease in power, 140 

which means it is more difficult to identify the environmental factors associated with the injury 141 

scores. We hypothesize, that with a reduced sample size, there will be fewer statistically significant 142 

associations between injury scores and environmental factors.   143 

 144 

2. METHODS AND MATERIALS 145 

2.1 Animals and Housing 146 

The study was conducted at the Agri-Food and Biosciences Institute, Hillsborough, County Down, 147 

Northern Ireland. The study used commercial crossbreed PIC 337 (Large White x Landrace) pigs. 148 

Pigs received a commercial weaner diet ad libitum and water was always available, according to the 149 

standard practices on the farm.  150 

Each pig was weighed when they were four weeks and again at ten weeks old. The pigs’ sex and 151 

weights at 4 weeks of age were used by the stockman to balance the groups to achieve a similar 152 

average weight and 50:50 sex ratio in each group of 18 individuals. Groups were then allocated at 153 

random to one of four pens. The pigs remained in these pens for a period of approximately six weeks, 154 

and the study was replicated twelve times, which led to a sample size of 864. 155 



This is an accepted authors draft of a paper published in Applied Animal Behaviour Science 

Online publication complete: 6-SEP-2017 
DOI : https://doi.org/10.1016/j.applanim.2017.08.002 

 

8 

 

Pigs were assigned to one of four pens for the study that were contained within an experimental room 156 

situated in a long shed, which was divided into a series of similar rooms, with floor to ceiling solid 157 

walls between each room. Two types of pen environment were used within this study. Pens 1 and 3 158 

were classed as more enriched environments; these pens were 2.18 m × 5.16 m in dimension with 159 

deep straw bedding (replenished weekly). Pens 2 and 4 were classed as less enriched environments, 160 

these were 2.18 m × 3.42 m in dimension, and no straw was provided. Both pens had floors 161 

constructed from concrete and were partially slatted, however in the more enriched pens (1 and 3) the 162 

slats were covered with plywood to prevent straw falling into the slurry system. In all pens, suspended 163 

wooden blocks were provided as standard enrichment.  164 

Pens 1 and 2 were located on the left side of the experimental room and pens 3 and 4 were located on 165 

the right. The adjacent room on the right (next to pens 3 and 4) almost always contained weaner pigs, 166 

whereas the adjacent room on the left (next to pens 1 and 2) was frequently empty, or was 167 

occasionally used to house sows that could not enter farrowing crates.  The difference in directional 168 

noise from each adjacent room was balanced in the experimental design by having one pen of each 169 

treatment type on both sides of the room. Two of the four pens were located next to the front of the 170 

room (pen 2 and pen 3), and the other two pens were located at the back next to an internal corridor.  171 

The pigs were kept commercially, hence decisions relating to culling and health were made by the 172 

farm manager, as part of the standard on-farm procedures. Outbreaks of aggression leading to injury 173 

were observed only on video footage, analysed typically several weeks after recording took place.  174 

Animals that were observed to have high body scores were reported to farm staff, and monitored 175 

closely by farm staff and researchers for a period of 7 days after.  No animals were culled for the 176 

purposes of this study, though as noted in section 2.3, a small number of animals (n=9 out of 862 177 

pigs) died during the study period due to poor health or failure to thrive.   178 

2.2  Assessment of Injury 179 

An assessment of each individual’s injuries was completed at three time points after entering the pens: 180 

(1) On day 4; (2) Between days 8 – 17; (3) Between days 29 and 39. At each assessment each pig was 181 
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scored on the following body areas: left and right ear; snout; left and right shoulder; front and back 182 

legs; left and right flank; left and right hindquarter; and back; using a six point scaling system, as 183 

defined in figure 1 (Conte et al. 2012).  As part of the standard practice on the farm, 50% of the tail 184 

was docked within the first 24 hours after birth for every pig, this meant that tail score had limited 185 

value as an indicator for aggression. 186 

2.2.1 Indicators of Aggression 187 

Ear and body score were considered as indicators of aggression. At each assessment time point, the 188 

ear score was recorded as the higher observed injury score on either the left or right ear (possible 189 

score 0-5), and the body score was recorded as the sum score of the back, left and right shoulder, 190 

flank and hindquarters scores (possible score 0 – 25).  191 

Due to the method used to construct the body score, based on the Conte et al (2012) scale, the two 192 

elements of frequency of injury and severity are confounded, especially for lower values. In our 193 

dataset, body score ranged between zero and 25, suggesting body score could be analysed as a 194 

continuous variable. A histogram plot of the log transformed body score implied we could assume the 195 

data followed a Gaussian distribution. 196 

Each ear was scored on a scale between zero and five, with a score of zero signifying no injuries or 197 

damage, and a score of five indicating the presence of many deep red lesions. As very few pigs were 198 

identified with a score of 3 or more, categories 3 to 5 were combined, so that the ear score categories 199 

represented: 0 = no injuries; 1 = one small superficial lesion; 2 = more than one small, superficial 200 

lesion; or one red (ie deeper than score 1) superficial lesion; 3 = one or more deep lesions, or more 201 

than one red superficial lesions. Initial exploratory analysis suggested that the relationship between 202 

the housing conditions, sex and weight were similar for pigs with an ear score of 0 or 1. Therefore, 203 

these two groups were combined to simplify subsequent inferential analyses. 204 

 205 

  206 
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2.3 Statistical Analysis 207 

As injury assessments were made at three irregularly spaced points in time, the assessments for an 208 

individual pig could be correlated, but the strength of the correlation may differ because of the 209 

variable time differences. Replicating the study 12 times may cause significant random effects for 210 

each pen within replication. The differences could be caused by the combination of pigs within a pen, 211 

or even associated with unmeasured external influences (e.g. weather conditions, handler behaviour, 212 

noise).  Using weight at 4 and 10 weeks of age, we produced estimates of each individual's 213 

intermediate weights by fitting a linear model between the two time points. Although growth is 214 

usually statistically modelled by a curve, plots of the expected growth curves in Carr (1998) indicated 215 

that a linear estimate of pig weight would be an appropriate approximation over the short time scale 216 

used in this study. 217 

We calculated individual relative weights in each pen within replication, in line with previous 218 

research indicating that an individual’s relative size compared with its group mates is more important 219 

than its actual size (Nettle et al., 2013). Andersen et al. (2000) found no significant difference in 220 

number of bites between groups of pigs with low and high weight variability, which suggested 221 

removing pen differences would have no adverse effects. This is similar to comparing a pig's weight 222 

rank, but also accounts for variable weight differences between pigs. 223 

Missing data were due to human error in data entry, and death or culling of the individual pig during 224 

the course of the study, either due to poor health or failure to thrive. 225 

The plots and statistical analyses were produced using the statistical program R (Team, 2015) using 226 

the multgee (Touloumis, 2016), ordinal (Christensen, 2015), and lme4 (Bates et al., 2015) packages to 227 

produce the statistical models. 228 

2.3.2 Exploratory Analysis 229 

Before applying any statistical test or fitting a statistical model to data, it is important to perform 230 

appropriate exploratory analysis. Choosing the right method to explore the data will depend on the 231 
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question being addressed. As these data consisted of observations measured over time, we aimed to 232 

explore how body and ear score changed over time.  233 

We plotted each pig’s body score over time and fitted a Gaussian kernel smooth estimator to pigs 234 

within each category (i.e. by treatment enrichment level). A kernel estimator is a non-parametric 235 

method of fitting a line between two continuous variables. If there is uncertainty about the form of 236 

this relationship (i.e. linear, quadratic, etc.), visual inspection of plots of the data can provide insight 237 

into this.  An appropriate bandwidth is determined, with bigger bandwidths creating smoother lines. 238 

We selected a bandwidth of 15, as injury assessments took place every 14 days on average (more 239 

details of kernel estimators can be found in Wand and Jones (1994)). As we were treating ear score as 240 

an ordinal variable, we looked at the proportional change of pigs within each category, and used the 241 

same methods as outlined above for body score. 242 

2.3.3 Inferential Analysis 243 

The data from this experiment possessed a hierarchical structure, where we had repeated 244 

measurements for each pig, within a pen, within a replication. There are various methods that can be 245 

applied to this type of data, depending on the assumptions one makes. We compared the results of 246 

four methods of analysis on body and ear score, where each method considered different aspects of 247 

the study design: (i) ignored the study design; (ii) considered correlation in the repeated 248 

measurements; (iii) considered random effects from the hierarchical structure; (iv) considered the 249 

correlation structure and the random effects. Table 1 provides a comparison of the different inferential 250 

methods considered in this paper. Depending on the study design, it indicates which inferential 251 

method would be appropriate for different types of data. 252 

(i) Ignoring study design (without accounting for repeated measures or hierarchical structure)  253 

To demonstrate the effects of ignoring the study design completely, i.e. not accounting for repeated 254 

measures of individuals and random effects, we fitted a generalised linear model (GLM) to body and 255 
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ear score. Specifically a log linear model (LLM) was fitted to body score and a cumulative logistic 256 

regression model (CLM) was fitted to ear score.  257 

 (ii) Repeated measures (without accounting for hierarchical structure)  258 

As we assumed body score is continuous, we performed a multivariate analysis of covariance 259 

(MANCOVA) with a Gaussian distribution. This methodology compares the means of all the different 260 

possible groups and determines whether a significant difference is present when accounting for a 261 

possible time-dependent correlation between the assessments. We accounted for the replications 262 

within this inferential analysis using an error structure for individuals within replications. 263 

MANCOVA assumes that the assessments measured are taken at equally spaced points in time, and 264 

the difference in time is the same for each individual. Only individuals with complete data are 265 

included. 266 

As ear score is an ordinal variable, we fitted a cumulative logistic regression model for repeated 267 

measures. To account for repeated measurements of the ear score, the parameters were estimated via 268 

generalized estimating equations (GEE), which allow for the presence of a possible time-dependent 269 

correlation between ear score assessments made at different times. However, a covariate for the 270 

replication was also included to account for the possible differences between replications. 271 

(iii) Hierarchical structure (without accounting for repeated measures) 272 

To remove the effect of the repeated measures we produced a summary variable for each pig. The 273 

summary variable for body score was simply the mean of the log transformed body score across each 274 

of the three repeated measures. The summary variable for ear score was slightly more complicated. 275 

Often categorical variables are summarised by their median or modal value. However, as the median 276 

and mode are not influenced by extreme values, it meant that severe injuries were missed. Therefore, 277 

we summed the ear score for each replication, then combined some of the categories according to the 278 

frequency and level of injury the category represented to bring the score in line with the original 279 

scoring system. The new ear score categories were 0 = less than 2 occurrences of superficial lesions, 280 
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or 1 occurrence of a deep lesion; 1 = 1 occurrence of a deep lesion and 1 occurrence of a superficial 281 

lesion or 3 occurrences of superficial lesion; 2 = more than 1 occurrence of a deep lesion. 282 

 To account for the random effects of pen within replication we fitted a mixed effects linear regression 283 

model (LME) to the mean log body score 284 

𝑦𝑖,𝑗 = 𝛼 + 𝑋𝑖,𝑗𝜷 + 𝑍𝑖,𝑗𝜹𝑖 , 285 

Equation 1 286 

and a cumulative logistic mixed effects regression model (CLME) to the re-categorized sum of ear 287 

score 288 

logit(Pr[𝑌𝑖,𝑗 < 𝑘]) = 𝛼𝑘 + 𝑋𝑖,𝑗𝜷 + 𝑍𝑖,𝑗𝜹𝑖, 289 

Equation 2 290 

where:𝑦𝑖,𝑗 is the mean log body score; 𝑌𝑖,𝑗 is the ear score category for k=0,1,2; 𝛼 is the intercept 291 

whereas 𝛼𝑘 is the intercept for the kth cumulative logit; 𝜷 is a vector of fixed effects coefficient 292 

estimates; 𝑋𝑖,𝑗are the fixed covariates design vector for the jth pig, in the ith replication 𝜹𝑖is a vector of 293 

the random effects for replication i; and 𝑍𝑖,𝑗 is a design vector of the random effects. 294 

An important difference between the GLM and a mixed effects model comes from the estimation of 295 

the variance. In a GLM only the variance of the individual pigs is required, whereas now an estimate 296 

for the variance for the individual pigs and the replications is required. 297 

(iv) Hierarchical data with repeated measures 298 

To account for both the hierarchical design and repeated measurements within this study, we fitted the 299 

log linear and cumulative logistic, mixed effects model as defined in eEquation 3Equation 4: 300 

log(𝑦𝑖,𝑗,𝑡) = 𝛼 + 𝑋𝑖,𝑗,𝑡𝜷 + 𝑍𝑖,𝑗,𝑡𝜹𝑖, 301 
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Equation 3 302 

logit(Pr[𝑌𝑖,𝑗,𝑡 < 𝑘]) = 𝛼𝑘 + 𝑋𝑖,𝑗,𝑡𝜷+ 𝑍𝑖,𝑗,𝑡𝜹𝑖. 303 

Equation 4 304 

These are very similar to Equation 1Equation 2, and in fact, the mathematical representation only 305 

requires the addition of a subscript t to denote the time element in the random effects model. See 306 

Twisk (2012) for more details on this type of analysis. 307 

Computationally, as we are treating body score as a continuous Gaussian distributed variable, 308 

estimation of the coefficients and the variance for the replications and individuals in Equation 3 can 309 

be accomplished via GEE. However, there is no software available currently which can produce a 310 

mixed effects cumulative logistic regression model with repeated measures where the correlation 311 

between each observation depends on the time difference between repeated measures.). We concluded 312 

that as we only had three repeated observations, estimation of the random effects was more important 313 

than using GEE to account for a time dependent correlation structure for ear score. However, a 314 

random effect term for each pig was included instead, as it assumes the correlation between 315 

observations is constant over time. 316 

Small Sample Sizes 317 

To investigate the effects of small sample sizes, a repeated measures model was fitted to the data of 318 

each replication. This led to 12 statistical models, one for each replication, which each consisted of 72 319 

pigs per model/replication (18 pigs assigned to 1 of 4 pens), with a maximum of three skin lesion 320 

assessments each, giving a total of number of observations of 216 per model. Each GLM consisted of 321 

the same covariates, which were equivalent to the covariates in the final hierarchical repeated 322 

measures model. 323 

 324 

  325 
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3. RESULTS 326 

For 862 individual pigs we had a measurement for at least one of the injury assessments. For body 327 

score there were two pigs with missing data for the first observation, seven pigs with missing data for 328 

the second observation and nine pigs with missing data for the third observation. For ear score there 329 

were three pigs with missing data for the first observation, seven pigs with missing data for the second 330 

observation and 10 pigs with missing data for the third observation.  331 

3.1 Body Score 332 

3.1.1 Exploratory Analysis 333 

The plots of the kernel smooth estimators in figure 2 a) – e) depict a cubic relationship with time. The 334 

kernel estimators of log body score are between 1 and 2 at the first examination (day 0), with a 335 

decline in log body score by the second examination (days 8-17), but by the third examination (days 336 

29-39) there is an increase. All covariate groups mirror this pattern. 337 

However, the slopes for each replication varied, as shown in figure 2 a), thus implying a random slope 338 

for replication over time was required. Figure 2 b) of the Gaussian kernel smooth estimators for each 339 

pen was used to determine whether different housing features were worth investigating. It is clear that 340 

pigs within pen 3 tended to have a higher body score than any of the other three pens, which all 341 

appeared to be quite similar. There was a difference between the intercept and a slight difference 342 

between the slopes for each pen.  343 

The plots in figure 2 c) to e) further identify differences between the pens. Comparing the score of the 344 

different environments in figure 2 c), the difference between the less and more enriched environments 345 

is only evident after approximately 14 days. This implies an interaction between time and 346 

environment. The plot in figure 2 d) shows that pigs in the pens to the front of the experimental room 347 

had a consistently higher body score than pigs in the pens located at the back. We also observed that 348 

pigs in pens on the right side of the room had a higher body score than those in pens on the left side of 349 

the room, as shown in figure 2 e).  350 
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The plot in figure 2 f) is a scatter plot of body score by standardised relative weight. The blue line is 351 

the kernel smooth estimator using a bandwidth of 0.75. Less than 3% of the standardised weight 352 

values were either > 2 or < -2, which meant there were insufficient values to produce a reliable 353 

estimate of the relationship between body score and relative weight. However, the plot suggested that 354 

for a relative weight between -2 and 2, the relationship was linear and as weight increased so did log 355 

body score. 356 

3.1.2 Inferential Analysis 357 

Table 2 contains all the summary statistics for the fixed effects (coefficient estimate, standard error, 358 

Student’s t-value and p-value) for the most appropriate model, (iv) LLME + GEE, and the p-values 359 

for all fixed effects for the three comparison methods, (i) LLM, (ii) MANCOVA and (iii) LLME. If a 360 

p-value was greater than 0.05 it was not included in the table. In all the statistical models the 361 

enrichment level, location of the pen (left/right side, front/back of the experimental room) was 362 

significantly associated with body score. Relative weight was a significant component in 3 out of the 363 

4 statistical models. 364 

The LLME + GEE model accounted for a random intercept and slopes over time for pens within 365 

replications, and a Gaussian correlation structure between observations for each pig. There was a 366 

significant cubic relationship with time, this can also be seen in figure 2 (a)-(e) of the kernel 367 

estimators. The significant relative weight coefficient implied that a unit increase in relative weight 368 

resulted in a 0.05 increase in log body score, which equates to a 5% increase in body score. On 369 

average, pigs on the right side of the room had a 0.094 higher log body score, i.e. their body score was 370 

9.9% higher than those on the left side of the room. Also pigs with more enrichment and those in pens 371 

located at the front of the experimental room had higher log body scores by 0.124 (13.2% increase in 372 

body score) and 0.09 (9.4% increase in body score), respectively. 373 

  374 
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3.1.3 Small Sample Sizes 375 

Figure 3 a) is a box plot of the coefficient estimate when using GEE to analyse each replication; when 376 

the random effect for replication was not included, with the fixed effect coefficient estimates under 377 

LLME + GEE model (table 2) included as a red cross. The box plot for relative weight was the only 378 

one where the whiskers of the plot did not include zero, implying this was the only covariate with a 379 

significant association with log body score for all but one replicate. This suggested that the coefficient 380 

estimate for relative weight should remain fairly consistent across replications. For pen location (left/ 381 

right, front/back of the experimental room), and more enriched pens, the coefficient estimates showed 382 

greater variance. 383 

The median coefficient estimates were: weight = 0.04; right side of experimental room = 0.1; location 384 

to the front = 0.14; and more enriched environment = 0.11.  Comparing these values with the 385 

coefficients estimates of the LLME + GEE model in table 2 we see that these values are quite similar, 386 

and encouraging as a form of sensitivity analysis.  Within one replication, there are 216 observations. 387 

If we were to perform a t-test on these 216 observations to detect the largest effect size of 0.14 in log 388 

body score, assuming the standard deviation was 0.6 (estimated from the entire dataset), then we 389 

would have ≈40% power to detect this difference. This does not account for the repeated measures, 390 

which would reduce the power further. 391 

3.2 Ear Score 392 

3.2.1 Exploratory Analysis 393 

From figure 4 there is evidence of a cubic relationship between ear score and time when comparing 394 

the proportion of pigs with an ear score of 0 with 1 and/or 2 (all plots on the left), where there is a 395 

decrease, plateau, then further decrease. However, the plots comparing the proportions observed in 0 396 

and/or 1 with 2 (plots on the right) appear to be exponentially decaying. 397 

The plots in figure 4 show the proportional change in the pigs observed within each ear score group 398 

with Gaussian kernel estimators to convey how the relationship between ear score changes over time 399 
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for different housing features. In figure 4 a) the variability in the shape of the relationship between ear 400 

score and time for the different replications indicate a different slope for each replication over time is 401 

required. However, in figure 4 b) the estimators for each pen have a similar shape, but different 402 

intercepts. There are clear differences in figures 4 c) and d) between environment and location next to 403 

the front or the back of the experimental room.  404 

3.2.2 Inferential Analysis 405 

Table 3 shows all the summary statistics for fixed effects (coefficient estimate, standard error, 406 

Student’s t-value and p-value) for the cumulative logistic mixed effects regression model with random 407 

effect for pigs, (iv) CLME +1, and significant p-values for fixed effects from the three comparator 408 

methods (i) CLM, (ii) GEE and (iii) CLME. Within each statistical model, ear score was shown to 409 

have a significant association with the level of enrichment and the front/back pen location.  410 

The CLME+1 model included random intercept and slope terms for pen within replication to account 411 

for the differences between replications over time, and a random intercept for each pig to account for 412 

the correlation between repeated measures. To discuss our findings, we use odds ratios (i.e. 413 

exponential transformation of the coefficients), so we can quantify the percentage increase or decrease 414 

in odds that will result in the increase or decrease in ear injury score.  In the CLME +1 model, pigs in 415 

more enriched pens had 40% lower odds (Confidence Interval, CI: 14%, 58%) of having a higher ear 416 

score compared to pigs in less enriched pens. Similarly, pigs in a pen located at the front of the room 417 

had 33% lower odds (CI: 5%, 53%) of having a higher ear score. 418 

3.2.3 Small sample sizes 419 

We fitted a CLME model to each replication with a random intercept for each individual. Figure 3 b) 420 

contains the box plot of the coefficient estimates from the ordinal logistic regression of ear score for 421 

each replication. The fixed effect coefficient estimates under CLME+1 (table 3) are included as a red 422 

cross in figure 3 b). There was a wide range of values for the coefficients from each replication 423 

(median coefficient estimate for more enriched environment = -0.55; front of experimental room = -424 
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0.21). Comparing the coefficient estimates for CLME and CLME+1, there was little difference 425 

between pen enrichment estimates (0.04), but a larger difference between pen location estimates 426 

(0.19). 427 

3.3 Inference method comparisons 428 

For both types of injury score, the key associations between the injury score and environmental 429 

factors were statistically significant across all four statistical models. Although, the magnitude of the 430 

relationship and the direction was not always the same between the most appropriate statistical model 431 

from approach (iv), and the other three statistical models, using methods (i) to (iii). The model via 432 

approach (iii) for both injury scores provided no insight into changes in injury over time, as this 433 

information was removed when summarising the injury scores. 434 

Table 2 details the level of association between body score and the environmental factors for each 435 

inferential method. Approach (i), the LLM, did not account for the repeated measure correlation or 436 

random effects, and there was an additional significant association between body score and tail injury. 437 

Whereas for approach (ii), the MANCOVA, which only accounted for repeated measurements, there 438 

was a significant association between body score and sex. Neither of these associations were evident 439 

in the exploratory analysis or in the most appropriate approach (iv). However, the association between 440 

body score and weight was not statistically significant in approach (iii), the LLME model, but the 441 

evidence from exploratory analysis and most appropriate model indicated there was a relationship 442 

between these two variables. 443 

In table 3 the statistical models from methods (i), CLM, and (ii), GEE, did not account for the random 444 

effects of pen within replication that led to high order degree polynomials with the day, 7 and 5 445 

respectively. There was no evidence in the exploratory analysis or the final most appropriate model 446 

(CLME + 1), that this type of association between ear score and time was valid. 447 

 448 

  449 
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4. DISCUSSION 450 

Comparing models where each incorporated different aspects of the study design demonstrated how 451 

important using the most appropriate inferential analysis is when producing valid results. By 452 

appropriately accounting for all sources of variation within the multilevel structure of the data (i.e. 453 

pens within replications) and considering the potential time-dependent correlation between 454 

observations, we increased the likelihood of identifying the true associations between the covariates 455 

and injury scores. We also found that there was a strong agreement between exploratory and 456 

inferential analysis, and associations seemed to be plausible.  457 

In the most appropriate model for the data (repeated measures, mixed model), the strong significant 458 

association of ear and body injury score with the non-linear time component is suggestive of a 459 

complex relationship between behaviour and time. This observation was only possible because of the 460 

repeated observations within pigs, and further validated by the replications of the study. Although the 461 

variation in the inter-assessment interval time increased the statistical difficulty of the analysis, it did 462 

mean that there was more information available about changes in injury score over a wider range of 463 

interval differences. Ear and body injury score were both associated with the enrichment level and 464 

front location of pen within the experimental room, although the direction of this association changed 465 

for both covariates between injury scores. More enriched pens (coef. est. = -0.51, p = 0.005) and pens 466 

at the front of the experimental room (coef. est. = -0.4, p = 0.02) were both associated with a 467 

reduction in ear score, whereas those in more enriched pens (coef. est. = 0.09, p = 0.02), and pens at 468 

the front of the experimental room (coef. est. = 0.11, p = 0.003) had a higher body score. Body score 469 

was also associated with weight and pen location on the right side of the experimental room, such that 470 

as weight increased so did body score (coef. est. = 0.05, p < 0.001), and those pigs in pens on the right 471 

side of the experimental room also had a higher body score (coef. est. = 0.08, p = 0.03).  472 

In this study, we investigated the impact of fitting statistical models that account for none, some and 473 

all of the known structural features of a multilevel dataset.  We also analysed the effect of small 474 

sample size upon the most appropriate model. Similar investigations comparing inferential analyses 475 
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have been conducted in human and non-human medical literature (Hu et al., 1998; Wang and 476 

Goonewardene, 2004), though this is the first example to the authors’ knowledge in animal welfare.  477 

In using an analytical approach that did not match the study design (approach (i): CLM), variance 478 

within the dataset that was associated with either the hierarchical structure or the correlational 479 

structure between repeated observations was not accounted for. This approach (CLM) led to 480 

predictions of a complicated relationship between ear injury score and time, with a 7-degree 481 

polynomial predicted to describe the relationship.  For body score, the CLM predicted a cubic (i.e. 3-482 

degree polynomial) relationship with time, just as was predicted by the most appropriate model 483 

(CLME+1).  The high degree polynomial relationships predicted here result from poor estimation of 484 

variance, due to the models attempting to explain variation in the data using only the covariates, 485 

without the underlying hierarchical structure accounted for.  486 

Including the correlation of the repeated measurements for approach (ii) via MANCOVA for body 487 

score and GEE for ear score did increase the p-values, but it did not account for the substantial 488 

variation caused by the random effects. Hence, there was an additional relationship between body 489 

score and sex, and the association between ear score and day was now a 5-degree polynomial. One 490 

substantial drawback back with MANCOVA is the strict format required of the data, i.e. equally 491 

spaced repeated measures with no missing values. Using GEE analysis is more flexible and the 492 

observations do not necessarily have to be equally spaced. However as the correlation coefficients 493 

between repeated measurements of ear score were all less than 0.3, and the differences between the 494 

estimators for replications and pens from the plots in figure 3 a) and b) appeared quite high, this 495 

suggested the random effects terms for replication and pen were more important than accounting for 496 

the correlation structure between repeated measurements. By replicating the study, we were able to 497 

gain insight into differences between pens, which we had not considered for inclusion in our 498 

experimental design prior to conducting the study; in particular, this would have been beneficial for 499 

the location of the pens within the experimental room.  Although we accounted for differences in 500 

noise level with left/right side counter-balancing of the treatments, and accounted for potential 501 
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differences between pens at the front (near the door) versus at the back of the room with front/back 502 

counter-balancing of treatments, we did not rotate the pens, which would have allowed us to account 503 

for the additional locational differences detected in the data. Although we were unable to fully explain 504 

the reason for differences between pen locations within the experimental room, we were able to 505 

identify that pen location was a source of variation and we could therefore statistically remove any 506 

undue influence this was having on other covariates within the model. Differences observed between 507 

replications could be related to weather conditions, handlers and many other features not measured as 508 

part of this study. Despite being unable to quantify all variation between replications, we believe that 509 

replication on other farm sites would help to build up a more general picture across contexts. 510 

Summary measures of both body and ear score were used in approach (iii), which resulted in lost 511 

information about the nature of the relationships of body and ear score across time. Using this 512 

approach, we were unable to identify a significant association between body score and weight via the 513 

LLME model, but we detected a significant relationship between ear score and weight using the 514 

CLME, as compared to the final appropriate model.   515 

In the final approach (iv) for body score and ear score, there was evidence of a cubic relationship with 516 

time for both injury scores. However, the direction of the coefficient estimates for day, day2 and day3 517 

differed between body and ear injury scores. For body scores, the coefficients for time were positive 518 

for day and day2 and negative for day3, whereas for ear score they were negative for day and day3 and 519 

positive for day2. This result implies that the underlying behaviour indicated by proxy from these 520 

injury scores changed over time. For example, the initial decline in scores could be associated with 521 

pigs becoming acquainted with one another as a hierarchy within a pen was established within the 522 

first week (Barnett et al., 1994; Arey, 1999).  523 

In both the final ear score and body score statistical models there was a significant association with 524 

pen location (front/back of the room) and enrichment level (see section 3.2.2). Pigs in pens located at 525 

the front of the room had lower odds of having a higher ear score (table 3), but higher odds of a higher 526 

body score (table 2). Pigs in more enriched pens had lower ear scores (as described in section 3.2.2, 527 
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table 3).  This result supports previous findings that aggressive events are reduced in larger pen sizes 528 

(Fraser et al., 1991; Turner et al., 2000). Whereas the LME + GEE model for body score implies that 529 

more enriched pens resulted in higher body injury scores.   530 

Finding clear differences in the predictors for ear and body scores lends support to the hypothesis that 531 

they have different underlying causes.  Injuries to the ear are mainly received during aggressive 532 

interactions (McGlone, 1985).  Injuries to the body on the other hand, whilst accrued through 533 

aggression, can also be the result of increased activity and play (Munsterhjelm et al. 2009; Camerlink 534 

et al., 2013).  Unfortunately, as tails were docked at birth we were not able to use tail injury as another 535 

comparator, although research suggests that the majority of tail injuries reflect exploratory motivation 536 

rather than aggression (Taylor et al., 2010). Applying a similar study to undocked pigs may provide 537 

further detailed insight into aggression and the underlying motivating behaviours that lead to injuries. 538 

Statistical techniques used to determine the validity in medical screening tests, such as a receiver 539 

operator curve (ROC) analysis (Fawcett, 2006) or Bland-Altman test (Bland & Altman, 1986), may be 540 

used to compare indicators of aggression to determine if they are a measure of the same quantity. 541 

Whilst the final model selected is appropriate for the experimental design, it is not perfect.  There are 542 

currently no developed statistical methods available to analyse categorical outcome variables with a 543 

time dependent correlation structure between repeated measures within a hierarchical model (such as 544 

the random effects of replications within pens described within section 2.1).  As such, we could not 545 

account for both the correlational structure and hierarchy of the study design within current statistical 546 

methodology. One possible solution could be to develop a statistical model with a probit link rather 547 

than a logit link, as the probit link is associated with the Gaussian distribution, and it may be easier to 548 

define a time dependent correlation structure with this compared to the logit link. However, the 549 

interpretation of the probit link can be difficult as there are no direct interpretations of the coefficients, 550 

instead it is necessary to refer to the marginal effects of the regressors (see Liao (1994) for more 551 

details), and the estimation of the coefficients would be computationally intensive.   552 
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Differences between the results of the four inferential methods highlight the importance of initial 553 

exploratory analysis in determining whether resulting significant associations are realistic, particularly 554 

as all four methods used are technically appropriate, albeit with varying degrees of fit to the 555 

experimental design. Strong evidence of a relationship in the exploratory analysis should translate to a 556 

significant association observed within the inferential analysis. Although measures were taken into 557 

account for layout of the experimental room, it was not possible to completely account for the extent 558 

of this effect, and it was through exploratory analysis that we were provided with greater insight into 559 

the magnitude and nature of the effect.   560 

By analysing each replication separately, we were able to demonstrate how sample size affects the 561 

final coefficient estimates. The decrease in data resulted in insufficient power to detect significant 562 

associations, although the calculated medians of almost all the replications' coefficient estimates were 563 

consistent with our full final models. The results clearly demonstrate that analysis of small sample 564 

sizes may lead investigators to believe there was no association between the indicators for aggression 565 

and covariates, whereas it could be the study is under-powered to detect the effect size (i.e. the 566 

conclusion would be a type 2 error). As a simple demonstration, we performed a power calculation to 567 

detect a mean difference in body score of 0.18 and standard deviation of 0.6, based on summary 568 

statistics of enrichment level in the fifth week. The power calculation found that to detect such a 569 

difference with 80% power at the 5% level of significance, a sample size of 176 pigs (total 352) 570 

assigned to each enrichment level was required.   571 

This study demonstrates through examples, how the type of indicator measured, the sample size and 572 

choice of statistical analysis can affect model outputs and conclusions drawn. We also highlight the 573 

importance of using an appropriate indicator to reflect the behaviour under investigation. The correct 574 

inferential analysis is important for meaningful results, which are not only plausible, but also 575 

supported by the exploratory analysis. To ensure the quality of animal science reports it is vital that a 576 

study consists of an appropriate sample size, with statistical analysis appropriate for the study design. 577 

These findings provide further support for the ARRIVE guidelines, but we feel that additional steps 578 
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may improve the quality of research by ensuring studies are designed based upon the inferential 579 

analysis best equipped to answer the research question. It may be valuable to consider following 580 

similar procedures as in medical trials with the formulation of a protocol and detailed documentation 581 

of any unexpected and additionally planned deviations, which may subsequently affect the inferential 582 

analysis.  This way, while best laid plans may still go awry in practice, there will be a clear plan to 583 

ensure that robust and appropriate analysis of the data can still be conducted. 584 
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FIGURE LEGENDS 704 

Figure 1: The six-point scaling system used to assess injuries to pig's body areas and outline of body 705 

areas for injury scoring; Ears, Snout, Shoulders, Legs, Back, Flanks, Hind quarters and Tail. 706 

Figure 2: Plots of the log transformed body score by day with a Gaussian kernel smooth estimator 707 

with a bandwidth of 15 for a) replication; b) pen; c) enrichment; d) location to the front or back of the 708 

experimental room; e) location on either side of the experimental room. The light grey area depicts the 709 

time period the second injury assessments were gathered, all points gathered after this period are the 710 

third injury assessments and all points before are the first; f) Plot of the pig's relative weight for each 711 

pen within replication by log body score with a Gaussian kernel smooth estimator with bandwidth of 712 

4. The grey area of the plot indicates the region where 95% of the data is located, and where the 713 

kernel estimator will be most reliable. 714 

Figure 3: a) Box plot of the fixed effect coefficient estimates for the log linear regression model for 715 

body score for each replication. The red crosses represent the fixed effect coefficient estimates for the 716 

LLME + GEE from table 2. b) Box plot of the fixed coefficient estimates from the ordinal logistic 717 

regression of ear score for each replication. The red crosses represent the fixed effect coefficient 718 

estimates for the CLME +1 in table 3.cross. 719 

Figure 4: Left plots: observed proportion with an ear score of 0 and 1/2. Right plots: observed 720 

proportion with an ear score of 0/1 and 2, with Gaussian kernel estimators with a bandwidth of 15 for 721 

a) replications; b) pens; c) enrichment; or d) location to the front or the back of the experimental 722 

room. The light grey area depicts the time period the second injury assessments were gathered, all 723 

injury assessments gathered after this period are the third injury assessments and all injury 724 

assessments before are the first. 725 
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Table 1 743 

Data 
Inferential Method 

MANCOVA GLM LME GEE LME + GEE 

Univariate  C O    

Multivariate C     

Repeated    C O  

Hierarchical   C O   

Repeated + Hierarchical     C 

Table 1: Types of data that can be analysed using different inference methods, where C represents 744 

continuous data and O represents ordinal data. MANCOVA=Multivariate Analysis of Covariance; 745 

GLM=Generalised linear model; LME=Linear mixed effects model; GEE=General Estimating 746 

Equation model. 747 
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Table 2 749 

 LLME + GEE LLME MANCOVA LLM 

 n n 

Pigs    862 862 855 862 

Body Score    2565 862 2550 2556 

 β SE          t       p p 

Day 5.87 2.47 2.38 0.0173   < 0.0001 

Day2 11.45 2.35 4.87 < 0.0001   < 0.0001 

Day3 -6.39 1.30 -4.93 < 0.0001   < 0.0001 

More Enriched 0.09 0.04 2.40 0.0224 0.0151 0.0003 0.0003 

Location: Right  0.08 0.04 2.26  0.0307 0.0109 0.0018 < 0.0001 

Sex      0.0041  

Weight 0.05 0.01 3.41  0.0007  0.0278 0.0013 

Location: Front 0.11 0.04 3.16 0.0034 0.0011 0.0003 < 0.0001 

Table 2: Summary statistics for inferential analysis of Body Score via the: log linear mixed effects 750 

model for repeated measures (LLME + GEE); linear mixed effects model of pig’s mean log body 751 

score (LME); multivariate analysis of covariance (MANCOVA) of log body score, and a log linear 752 

regression model (LLM). Where: n is the number of pigs/body score assessment; β is the parameter 753 

estimate; SE is the standard error; t is the Student’s t test statistic and p is the probability value 754 

associated with each covariate. Day is the day within the trial that observations were recorded; More 755 

Enriched refers to pens that had more enrichment (compared with Less Enriched); Location: Right 756 

refers to pens on the right side of the room (compared to pens on the left side of the room); Location: 757 

Front refers to pens at the front of the room (compared to pens at the back of the room). 758 
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Table 3 760 

 CLME + 1 CLME GEE CLM 

    n n 

Pigs    862 862 862 862 

Ear Score    2572 862 2572 2572 

 β SE            t       p p 

Day -51.68 5.75 -8.99 < 0.0001  < 0.0001 < 0.0001 

Day2 31.30 5.74 5.45 < 0.0001  < 0.0001 < 0.0001 

Day3 -13.56 6.51 -2.08 < 0.0369  0.0453 0.0003 

Day4      < 0.0001 < 0.0001 

Day5      0.0194 < 0.0001 

Day6       0.0255 

Day7       < 0.0001 

More Enriched -0.51 0.18 -2.79 0.0053 0.0131 < 0.0001 < 0.0001 

Weight     0.0302   

Location: Front -0.40 0.18 -2.25 0.0247 0.0328 < 0.0001 < 0.0001 

 761 
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Table 3: Summary statistics for inferential analysis of Ear Score via the: cumulative logistic mixed 763 

effects model with rep, pen and pig random effects (CLME + 1); cumulative logistic mixed effects 764 

model with rep and pen random effects for summary ear score (CLME); cumulative logistic 765 

regression model for repeated measures (GEE); the cumulative logistic regression model (CLM). 766 

Where: n is the number of pigs/ear score assessment; β is the parameter estimate; SE is the standard 767 

error; t is the Student’s t test statistic and p is the probability value associated with each covariate.  768 

Day is the day within the trial that observations were recorded; More Enriched refers to pens that 769 

had more enrichment (compared with Less Enriched); Location: Front refers to pens at the front of 770 

the room (compared to pens at the back of the room). 771 
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