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ABSTRACT Developing efficient on-the-edge Deep Learning (DL) applications is a challenging and non-
trivial task, as first different DL models need to be explored with different trade-offs between accuracy
and complexity, second, various optimization options, frameworks and libraries are available that need to
be explored, third, a wide range of edge devices are available with different computation and memory
constraints, providing trade-offs among inference time, energy consumption, efficiency (throughput/watt)
and value (throughput/dollar). To shed some light in this problem, a case study is delivered where seven
Image Classification (IC) and six Object Detection (OD) State-of-The-Art (SoTA) models are optimized,
evaluated and compared in terms of accuracy and inference time on five commercial off-the-shelf edge
devices; the models have been optimized by using the SoTA optimization frameworks (such as TensorFlow
Lite, OpenVINO, TensorRT, elQ) and by evaluating/comparing different optimization options, e.g., different
levels of quantization. To this end, an IC/OD face mask wearing detection architecture is developed as a use
case. The five edge devices are evaluated and compared too, in terms of inference time, value and efficiency.
‘We obtain insightful observations on the full end-to-end video pipeline implementation of IC and OD models
on edge devices, which optimization frameworks, libraries and options to use and how to select the right
device depending on the target metric (inference time, efficiency and value).

INDEX TERMS image classification, object detection, edge computing, computer vision, performance

evaluation

I. INTRODUCTION
LTHOUGH Deep Neural Networks (DNNs) are nowa-
days extensively used in a wide range of computer
vision applications and hardware platforms [[]], their deploy-
ment on resource limited edge devices is not a trivial process,
as they are normally both compute and memory intensive
[2]l. The training phase of the DL models is normally held on
powerful cloud/remote servers, but the inference phase may
be required to run on the edge to address latency and privacy
requirements. Running the inference part on an edge device
in an efficient way is of critical importance as the trained
model is normally run thousands, perhaps even millions, of
times [3].
Developing efficient on-the-edge IC and OD applications

is a challenging and non-trivial task as many different so-
Iutions must be explored and evaluated. First, a wide range
of IC/OD models are available, providing different trade-
offs between accuracy and complexity. We showcase that the
most lightweight model is not necessary the fastest as current
compilers and optimization frameworks fail to generate effi-
cient machine code for coprocessors and vector processing
units (INT8/INT16 SIMD instructions). Second, different
optimization frameworks (e.g., TensorFlow-TensorRT and
TensorRT), optimization options (e.g., quantization, multi-
threading) and libraries (e.g., NVIDIA Al inference libraries,
libraries for efficiently reading and processing images ),
are available, which need to be investigated. Third, a wide
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range of edge devices exist, with diverse hardware archi-
tectures, providing trade-offs among latency time, develop-
ment time, energy consumption, financial cost, efficiency
(throughput/watt) and value (throughput/dollar). Fourth, ex-
tra engineering effort might be required to optimize the DL
models when using vendor specific tools, e.g., TensorRT
supports specific type of layers only, requiring custom plug-
ins for any custom and/or non-supported layer.

In this paper, we optimize, evaluate and compare seven
IC and six OD on-the-edge SoTA models on five com-
mercial off-the-shelf hardware platforms, in terms of la-
tency and accuracy. Note that more models have been
investigated and tested here in order to find and select
the most suitable for the edge solution, i.e., fast mod-
els with adequate accuracy; 11 lightweight models and
2 complex models have been selected. The IC models
selected are MobileNetV1, MobileNetV2, four different
variants of MobileNetV3 and InceptionV3. The OD mod-
els selected are SSD-MobileNetV1, SSD-MobileNetV2,
SSD-InceptionV2, SSDLITE-MobileNetV2, SSDLITE-
MobileNetV3Large, and SSDLITE-MobileNetV3Small. We
have selected a wide range of different MobileNet models
because they are tailored for edge devices, and thus they
present the best solution in terms of latency, by only slightly
sacrificing accuracy. The hardware platforms used are the
following: Raspberry Pi 4 (RP4), Intel Neural Compute Stick
2 attached to Raspberry Pi 4 (NCS2), NVIDIA Jetson Nano
(JNANO), NVIDIA Jetson Xavier NX (JXAVIER), and i. MX
8M Plus (IMXSP).

The SoTA models were first fine-tuned in Tensorflow
framework, and then optimized by using the following SoTA
frameworks for each corresponding hardware platform:
TensorFlow Lite, Intel OpenVINO, TensorFlow-TensorRT,
NVIDIA TensorRT, and NXP elQ. All different possible
quantization levels are evaluated for each model and hard-
ware platform. We show that performance does not always
align with the quantization level (in this paper latency and
performance are used interchangeably). Furthermore, we
have enabled other optimizations too, where possible, e.g.,
multithreading. In Section IX, we provide insightful observa-
tions on which optimization options and frameworks to use
in each case.

Furthermore, we compare the diverse hardware platforms
in terms of inference time, efficiency, and value. We provide
important insight about which models, frameworks, and op-
timization options to use for each hardware platform as well
as which platform to use depending on the target metric. We
show that JXAVIER is best option in terms of inference time
and efficiency, while JNANO is the best option in terms of
value.

Our use case consists of an IC and OD face mask wearing
detection application. We have chosen this application as
COVID-19 still negatively impacts our lives and vision-
based Al technology can mitigate the problem with such
a use case with video analytics and monitoring. Note that
the performance of the entire image data path is evaluated,
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including the pre/post-processing steps and loading of the DL
model.

The experimental results show that MobileNetV3-Small
Minimalistic / MobileNetV3-Small models are the most ef-
ficient in terms of latency while MobileNetV3-Large/SSD-
InceptionV2 models in terms of accuracy, for IC/OD,
respectively. The optimization tools can provide up to
6.8x/16.4x/15.9x/56.4x/36.0x times faster inference on IC
models and up to 2x/9x/4x/9.3x/80.5x times faster inference
on OD models, for RP4/NCS2/JINANO/JXAVIER/IMXSP,
respectively. The contributions of this paper are as follows:

(1) Optimization, evaluation, and comparison of seven IC
and six OD on-the-edge SoTA models, in terms of
accuracy and latency, on five commercial off-the-shelf
edge devices.

(2) An evaluation of TensorFlow Lite, OpenVINO, Tensor-
Flow TensorRT, TensorRT and elQ optimization frame-
works and their main optimization options on five edge
devices.

(3) A comparison between Raspberry Pi 4, Intel Neural
Compute Stick 2, NVIDIA Jetson Nano, NVIDIA Jet-
son Xavier NX and NXP i.MX 8M Plus hardware
platforms in terms of inference time, value (FPS/price),
and efficiency (FPS/power) when running DL IC and
OD applications.

(4) A face mask detection machine learning architecture is
developed.

(5) Easily reproducible open-source benchmarking tem-
plates are delivered that only use publicly available
vision libraries.

(6) It is important to note that for the first time such a high
number of hardware platforms, frameworks, and IC/OD
models have been benchmarked and compared.

The remainder of this paper is organized as follows. Firstly
Section II reviews related work. In Section III, the proposed
face mask architecture is presented. In Sections IV, V and
VI, the DL models, optimization frameworks and edge de-
vices studied, are presented, respectively. In Sections VII
and VIII, the experimental setup and experimental results are
discussed, respectively. Section IX is dedicated to discussion,
and finally, Section X to conclusions and future work.

Il. RELATED WORK

Deploying efficiently Al applications on edge devices pose
various challenges like discussed in [4], specifically con-
straints around compute, memory and power consumption.
To tackle these, quantization [5]] and weight pruning [6] are
two popular techniques that normally trade a slight reduction
in accuracy with performance. In quantization, the neural
network weights and/or the feature maps are expressed by
using shorter data types, such as FP16, INT16 or INT8
instead of FP32 [[7]]; this leads to a lower memory footprint as
well as to a lower latency as the computation cost is reduced
and the SIMD instructions can be used to calculate more op-
erations per instruction. In weight pruning [[8], neurons with
small saliency (sensitivity) are removed, resulting in a sparse
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computational graph [5]; neurons with small saliency are
those whose removal minimally affects the model output/loss
function.

There are various deep convolution neural network models
that vary in terms of accuracy and number of parameters.
For deep learning IC applications, If the target edge device is
compute and memory limited, and frames per second (FPS)
is a more important metric than accuracy, then a lightweight
model is preferred, such as EfficientNet [9]], MobileNets,
SqueezeNet, ShuffleNet, PeleeNet, MnasNet and OFA [[10].
These models adopt various innovative techniques in order
to reduce number of parameters and operations per sec-
ond, while maintaining a satisfactory accuracy. In general
MobileNets proved to be tailored for edge devices with
limited computation and memory resources with improve-
ments across versions v2 and v3 seen only on ARM based
hardware as we confirmed in our work, while more complex
models such as InceptionV3 are more appropriate for appli-
cations needing high accuracy but require a dedicated Al co-
processor for reaching high FPS performance. As far as the
on-the-edge deep learning OD models are concerned, there
one-stage detectors (e.g., SSD [11], YOLO [12]) and two-
stage detectors (e.g., FPN [13]], Mask RCNN [14]], Faster
RCNN [15]]). Two-stage detectors focus on achieving high
localization and object recognition accuracy at the expense
of requiring high compute capabilties, while the one-stage
detectors focus on achieving high inference speeds with
lightweight architectures. In this case study, one-stage SSD
(single shot detection) type models were used. SSD tends to
be more resource efficient and outperforms other types (such
as RCNN, Fast RCNN, Faster RCNN), because the tasks
of object localization and classification are done in a single
forward pass of the network [|11].

To allow for the computation intensive DL models to effi-
ciently run on the edge, various hardware platforms (acceler-
ators) have been introduced such as NVIDIA Jetsons (CUDA
cores), Intel NCS2 (Vision Processing Unit), Google Edge
TPU (ASIC), and Neural Processing Unit (NPU) of i.MX
8M Plus. Accelerators offer various benefits such as energy
efficiency, ultra-low latency, and lower costs, that enable new
applications for building sensory systems in the real world
that were not possible previously [16]]. FPGAs are also
present and are an excellent choice for custom DL implemen-
tations because of their power efficiency, latency, through-
put, flexibility in interfaces and reconfigurability [17[]—[19].
This diverse and ever-growing complexity of modern on-
the-edge hardware architectures has introduced optimization
frameworks to keep pace with hardware advancements and
effectively use the dedicated resources. NVIDIA provides
TRT, Intel provides OpenVINO, while TFLITE is well op-
timized for ARM microcontrollers and microprocessors. The
disadvantage with using these type of accelerators, is that you
may be limited either in software or hardware in deploying
specific datatypes like FP16/INTS or specific layers.

A large number of studies has been published evaluating
DL IC and/or OD models on edge devices. [20] investigates
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the on-the-edge inference of DNNs in terms of latency,
energy consumption, and temperature, on five different hard-
ware platforms; unlike the proposed method, this work does
not take advantage of the optimization frameworks we have
investigated. In [21] , an in-depth benchmark analysis of
three embedded platforms is performed for image vision
applications including MobileNet and InceptionV2; in [22]],
EDLAB is delivered, an end-to-end benchmark to evaluate
the overall performance of 3 image classification models and
1 object detections models across Intel NCS2, Edge TPU
and Jetson Xavier NX. In [23], a performance analysis
of edge TPU board is provided for object classification. In
[24]], NVIDIA Jetson Nano and Google Coral Dev Board are
evaluated. In [25]], a survey on DL object detection methods
is presented. In [26]], a survey of DL methods and software
tools for IC and OD is presented. None of the above pro-
vide this number of models, edge devices and optimization
options for end-to-end analysis. In [10], a review of SoTA
object detectors and lightweight classification architectures is
delivered, without exploring performance on edge hardware.

In [27]], the inference time of 14 IC DL models is evaluated
by using OpenVINO toolkit but using workstation utilised
Intel Xeon CPU and integrated Iris Pro GPU. In [28], a
framework to deploy DL-based applications in fog-cloud en-
vironments is presented. In [29], the performance and energy
consumption of three commercial devices is evaluated for DL
inferencing. [30]] implements and evaluates real time target
detection and tracking on Intel NCS2 and NVIDIA Jetson TX
/AGX viaadrone. [31] explores problems in computer vision
applications and presents OpenVINO toolkit as a solution for
bringing Al to the edge but does not apply it and explore it
on edge hardware. The TFLITE and TF-TRT optimization
frameworks are analysed in terms of throughput, latency and
power consumption in [32]]. In [33]], TensorFlow Lite Micro
is presented to address deployment of DL on MCUs. Lastly,
[34] compares edge deployment of lightweight models on
Google Coral, Intel NCS2 and NVIDIA Jetson Nano for a
specific use case, classification of waste.

Last, a group of studies has been published evaluating DL
face mask detection applications. In [35]—[37]], three face
mask detection architectures are developed and evaluated
solely on PCs. In [38]], one-stage and two-stage approaches
are presented for face mask detection, with only accuracy
being evaluated and not their performance for edge devices.
Finally, NVIDIA published a Github repo [39]] on how to
train, optimize and deploy a face mask detection applica-
tion on their Jetson hardware using their Transfer Learning
Toolkit (TLT) and DeepStream SDK, but it is not applicable
for other types of edge devices.

Compared to all the previously mentioned related work,
we have explored 7 image classification and 6 object detec-
tion models on x5 edge devices with a specific use case in
mind, far greater than any of the other literature. Addition-
ally, unlikely most of the related work, we have explored
the frameworks/compilers of each target hardware and how
the quantization/optimization affects the performance of the
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whole end-to-end pipeline, and not just the inference times
of the model. We have not only evaluated the latency of each
stage of the pipeline, but included other metrics such as effi-
ciency (FPS/Max Power) and value(FPS/Cost) that provide a
different perspective on what each type of technology has to
offer.

lll. FACE MASK DETECTION ARCHITECTURE

A generic software block diagram of the proposed face mask
detection architecture is shown in Fig. [T} two different meth-
ods are explored, an IC-based (Methodl) and an OD-based
(Method2). The process starts with reading locally stored
images and finishes with overlaying the results of the face
mask detections on the original frame. Table [I| shows the
inputs/outputs of the two methods. Note that the input data
needs to be in the same format that the DL model was trained
on way, along with the correct interpretation of the results.

Read Frame

(openCV, Pillow,
PyTurbo)

Hardware Board

FIGURE 1. Face Mask Detection Block Diagram

A. METHOD1 (IC)

In order to detect if there is a face mask or not present in
the current frame, we used image classification. The data
pipeline consists of reading frame, pre-processing the frame
into the right resolution and appropriate pixel normalisation
(based on the model and the data it was trained on) and
then the execution of the model. Lastly, a pre-processing step
overlays the label / confidence results onto the original image
at its original resolution.

B. METHOD2 (OD)

In order to detect all faces with and without face masks,
along with bounded boxes showcasing their location in the
current frame, we used object detection. This was similar
to Methodl, but the models are more complex and further
post-processing is required to overlay detection boxes onto
the original frame.

TABLE 1. Inputs/Output of Method1 and Method2

Methodl: IC Input | Batch x Width x Height x Channel (1x224x224x3)

Output | Confidence % of each class (2)

Input | Batch x Width x Height x Channel (1x300x300x3)

Method2: OD Classes, Confidence %, box coordinates

Output [x1,x2,y1,y2], number of detections

The pre-processing phase consists of two main steps. First,
the input image is resized to the resolution that the model
has been trained on. For example, the input images must
be resized to 224x224 for Methodl and to 300x300 for
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Method2. Although all the images are resized to the same
resolution (for a specific architecture), the bigger the input
image is, the higher the model’s accuracy is, as the images are
resized by using interpolation. In the second step, the input
image is converted into the right colour format (e.g., RGB),
data type (e.g., BWHC) and applied with the corresponding
pixel normalisation which depends on the type of model and
that data it was trained on.

The aim of the post-processing step is to show the label
of the detected class for Methodl and add rectangles/labels
around the detections on top of the original image for
Method2. It is important to note that the execution time of
the post-processing step depends on the number of faces
identified (in this case study, we always assume just one
face).

Note that we have studied and evaluated all the video
pipeline stages in Fig. [T] and not just the execution time of
the model, by using three different input image resolutions,
13 DL models and various libraries/frameworks. This allows
for a better evaluation of the selected hardware platforms.
Furthermore, this application tackles a real life problem and
showcases various on-the-edge solutions, depending on the
technical requirements / performance needs.

IV. DEEP LEARNING MODELS
A. METHOD1 (IC)

Seven SoTA pre-trained models from TensorFlow 2 have
been used for Methodl (Table [2). Each model was pre-
loaded with weights based on ImageNet, a large dataset
consisting of 1.4M images and 1000 classes [40]]. The
base of each model was frozen, while fine-tunable Global-
AveragePooling2D, Dropout and a SoftMax activation were
added as the last layers to predict the two target classes. All
MobileNets were trained with alpha value set to 1; alpha
values control the width of the network, which proportionally
reduces or increases the number of filters of each layer.
This allows for further customizing the MobileNet models,
offering different trade-offs between latency and accuracy.
The models that we used for Method1 are shown hereafter:

o MI1: MobileNetV1 [41]. M1 was introduced by Google
in 2017 as a lightweight and efficient architecture for
generic embedded vision applications aimed for the
mobile industry. M1 uses depthwise separable convo-
lutions instead of standard convolutions which offers
imprvements in terms of latency and model size. Its
ImageNet accuracy is 70.6%.

e M2: MobileNetV2 [42]]. M2 is the successor of M1.
M2 achieves fewer arithmetical instructions and lower
memory size than M1. Its ImageNet accuracy is 72.0%.

e M3: MobileNetV3 Large [43]. M3 is the successor of
M2. M3 achieves fewer arithmetical instructions and
higher accuracy, than M2. The “large” variant is aimed
for high resource / high accuracy use cases, with Ima-
geNet accuracy of 75.6% [44].
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« M4: MobileNetV3 Large Minimalistic. M4 is the “min-
imalistic” version of M3, which has the same per-
layer dimensions characteristic as MobileNetV3 how-
ever, they don’t utilize any of the advanced blocks [45]],
with ImageNet accuracy of 72.3% [44].

o MS5: MobileNetV3 Small. M5 is the “small” variant of
MobileNetV3 that is aimed for low resource use cases,
with ImageNet accuracy of 68.1%. [44].

« M6: MobileNetV3 Small Minimalistic. M6 is the “min-
imalistic” version of M5, with ImageNet accuracy of
61.9% [44].

e M7: InceptionV3 [46]. InceptionV3 is a widely used
image recognition model that has been shown to attain
greater than 78.1% accuracy on the ImageNet dataset.
Compared to the MobileNets, it is of higher complexity
/ trainable parameters, which make it more accurate but
also computationally more demanding.

B. METHOD2 (OD)

For Method2, six SoTA pre-trained COCO models [47]]
have been used from TensorFlow 1 Detection Model Zoo
(Table [2). The last feature layers that generate bounding
boxes or locations of the target classes are based on the
Single Shot Detection (SSD) [11]] architecture. This single-
stage approach offers competitive accuracy and is faster than
methods such as the multi-stage R-CNN, Fast R-CNN and
Faster R-CNN [[15]], which are based on regional proposal
network and are computationally intense. This makes the
SSD type object detectors better suited for edge deployment.

The models we used for Method2 did not have their

architecture modified in any way and are shown hereafter:

e O1: SSD-MobileNetV1 [41]. O5 is an M1 variant for
object detection. Its mean COCO Average Precision
(mAP) is 21% [47].

e 02: SSD-MobileNetV2 [42]. O2 is an M2 variant for
object detection. O2 has a higher COCO mAP value
than O1 (22% [47]]), but also fewer parameters than O1.

e O3: SSD-InceptionV2 [46]. O3 is a more accurate
(COCO mAP 24% [47]) object detection model than
Ol1, 02 and 04-06, but with a larger memory size,
and higher computational complexity. We have used this
model to evaluate the performance of more complex
models on the edge devices.

o O4: SSDLITE-MobileNetV2 [42]]. O4 is an optimized
version of O2. All the regular convolutions of O2 have
been replaced by separable convolutions and there-
fore O4 achieves the lowest computational complexity
amongst O1-O4 with a COCO mAP of 22% [47].

o O5: SSDLITE-MobileNetV3 Large [43]. O5 is an M3
variant for object detection with COCO mAP of 22.6%
[47].

e O6: SSDLITE-MobileNetV3 Small [43]]. O6 is an M5
variant for object detection with COCO mAP of 15.4%
[47]. O6 is less accurate than OS5 but it uses a smaller
model size.

TABLE 2. IC and OD Models used

Model Parameters | Size | Version
MI | MobileNetV1 3.23M 13.2MB
M2 | MobileNetV2 2.26M 9.5MB
M3 | MobileNetV3 Large 4.23M 17.8MB
M4 | MobileNetV3 Large Minimalistic 2.6TM 11.3MB | TF2.5.0
MS | MobileNetV3 Small 1.53M 6.8MB
M6 | MobileNetV3 Small Minimalistic 1.03M 4.6MB
M7 | InceptionV3 21.81M | 88.IMB
O1 | SSD-MobiletNetV1 5.51M 22.7MB
02 | SSD-MobileNetV2 3.87TM 16.4MB
03 | SSD-InceptionV2 13.3M 54.0MB TF1.153
04 | SSDLITE-MobileNetV2 3.0IM 13.IMB o
OS5 | SSDLITE-MobileNetV3 Large 2.17TM 9.6MB
06 | SSDLITE-MobileNetV3 Small 0.93M 4.4MB

V. EDGE DEVICES

Methodl and Method2 have been trained on a powerful
desktop PC and evaluated on five commercial off-the-shelf
hardware platforms in terms of inference time, efficiency
and value. Although it is meaningless to run the face mask
detection application on a PC, it is used as a point of reference
to better evaluate the performance of the edge hardware
platforms. The hardware platforms are listed below from the
least powerful to the most powerful:

(A) Raspberry P14
The main computing element of Raspberry Pi 4 (RP4) is
a quad-core ARM Cortex-A72 64-bit CPU which sup-
ports NEON 128-bit wide vector instructions, running
at a maximum clock speed of 1.5GHz. The CPU is
connected to a 4GB LPDDR4 memory. RP4 costs about
$62 and its maximum power consumption is 9 Watts.
It included Raspbian 10.7 OS, TensorFlow 2.5.0 (cp37-
linux_armv71) and tflite-runtime 2.5.0.

(B) Intel Neural Compute Stick 2 attached to Raspberry
PI4
The Intel Neural Compute Stick 2 (NCS2) is a deep
learning inference development kit; NCS2 takes advan-
tage of Intel Movidius Myriad X Vision Processing Unit
(VPU)). The Myriad X includes 16 low power vector
processing units 128-bit wide (a.k.a. SHAVE), running
at 700MHz. NCS2 costs about $70 and its maximum
power consumption is 2 Watts. NCS2 is not a standalone
platform as it is a USB stick. NCS2 USB stick has been
used as an accelerator and it has been attached to a
Raspberry PI 4 via USB 3.0.

(C) NVIDIA Jetson Nano
Jetson Nano (JNANO) includes an embedded GPU with
128 CUDA cores, a quad-core ARM Cortex-A57 64-bit
CPU and 4GB LPDDR4. JNANO costs about $99 and
its maximum power consumption is 10 Watts. It runs
Ubuntu 18.04.5 LTS and uses Python 3.6.9, CUDA 10.2,
TensorRT 7.1.3.0 and Jetpack 4.5.1. Multiple power
modes are supported including trade-offs between the
number of CPU cores being used and their operational
frequency. We used the power mode MAXN (10 Watts)
where the 4 CPU cores run at 1.48GHz and the GPU at
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TABLE 3. Edge Devices Specifications

HW CPU Memory GPU Max Power Consumption Price
RP4 Cortex-A72 | 4GB LPDDR4 VideoCore VI 9w 75 USD
NCS2 N/A 500MB Internal N/A 2W 99 USD
JNANO | Cortex-A57 | 4GB LPDDR4 128-core NVIDIA Maxwell 10W 99 USD
IMX8P Cortex-A53 | 6GB LPDDR HiFi4 DSP + NPU 15W 449 USD
JXAVIER | Carmel v8.2 | 8GB LPDDR | 384-core NVIDIA Volta + 48 Tensor cores 20W 399 USD
PC 19-9900K 48GB DDR4 NVIDIA GTX1060 6GB 600W 2000 USD
921.6MHz. in a single instruction (a.k.a. SIMD).

(D) NXP i.MX 8M Plus
1.MX 8M Plus (IMXS8P) board has been released in
2021. It includes a quad core ARM Cortex-AS53 running
at 1.8GHz, an ARM Cortex M7, a HiFi4 DSP running
at 800Mhz, LPDDR4 and most importantly a Neu-
ral Processing Unit (NPU). The NPU includes several
hardware features such as 128-bit vector engines and
tensor processing cores. IMX8P costs about $449 and
its maximum power consumption is 15 Watts. The OS is
Yocto 5.10.52-1ts-5.10.y+gal 1753a89ec6, using Python
3.9.5 and tflite-runtime 2.5.0.

(E) NVIDIA Jetson Xavier NX
Jetson Xavier NX (JXAVIER) is more powerful than
JNANQO, as it includes more GPU cores, a more pow-
erful CPU, 8GB LPDDR4 and two low-power Deep
Learning Accelerators (DLAs). In particular, its GPU
includes 384 cores and 48 Tensor Cores, while its
CPU is a 64-bit 6-core NVIDIA Carmel ARMv8.2. The
DLA comprises of several IP-core models which are
configurable and achieve 4.5TOPS, each. Note that the
DLA has not been designed to provide better inference
time, but lower power consumption instead. JXAVIER
costs about $399 and its maximum power consumption
is 15 Watts (latest Jetpack 4.6 pushes this to 20Watts
maximum). It runs Ubuntu 18.04.5 LTS and uses Python
3.6.9, CUDA 10.2, TensorRT 7.1.3.0 and Jetpack 4.5.1.
Power mode 2 is used (15 Watts), where the 6 CPU cores
run at 1.42GHz and the GPU runs at 1.11GHz GPU.

(F) Intel i9-9900K CPU (PC)
The PC supports an 8-core Intel i9-9900K CPU, an
NVIDIA GTX1060 6GB GPU, 48GB DDR4-2666, 1TB
SSD hard drive and Ubuntu 18.04 LTS. We have also
used Python 3.6.13 and OpenCV-Python 4.5.3.56. The
PC costs about $2000 and its maximum power is 600
Watt.

a: NEON, SHAVE and IMX8P Vectorization Engines

To better understand how the DL models run on the hardware
platforms and better understand Section VIII, we provide a
brief explanation of vectorization, a key processor feature
that boosts performance. Modern processors support extra
hardware units to realize vector/Single Instruction Multiple
Data (SIMD) instructions; this feature allows for the process-
ing of multiple image pixels in our case, by using a single
instruction; a single CPU core executes multiple operations
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RP4 supports NEON 128-bit wide instructions, NCS2
supports SHAVE 128-bit wide instructions, while the PC
supports AVX 256-wide instructions. All processors support
a rich instruction set including 8-bit, 16-bit, 32-bit and 64-bit
operations, e.g., 128-bit instructions can process either 16 8-
bit values, or 8 16-bit values, or 4 32-bit values or 2 64-bit
values, in a single instruction, boosting performance. This is
the main reason that quantization improves performance.

However, nowadays compilers are not smart enough to
convert DL applications to efficient machine code that uses
the right vector instructions in an efficient way, and therefore
manually vectorized code versions or optimized libraries, are
needed. This is because first, data dependencies in the code
make the vectorization process less efficient and therefore
manual changes are needed to fully exploit the wide in-
structions, and second, different vector instructions include
different latency/throughput values. As a result, different im-
plementations of the same model give significant variations
in performance.

VI. OPTIMIZATION FRAMEWORKS

The hardware architectures of the edge devices are diverse

and heterogeneous, including more than one type of (co)-

processors, such as GPUs, SIMD units and DL accelerators.

As it was explained in Section V, to take advantage of

these powerful (co)-processors hardware specific optimiza-

tion frameworks are needed. The SoTA optimization frame-
works used (Table [) are the following:

(A) TensorFlow Lite (TFLITE) for RP4 and IMXS8P:
TensorFlow Lite [48] is TensorFlow’s lightweight so-
lution for mobile and embedded devices. For ARM
based hardware, TFLITE has integrated XNNPACK
[49] which takes advantage of ARM NEON vector pro-
cessing unit but also supports several HW accelerators.
It enables low-latency inference of on-device machine
learning models with a small binary size and fast per-
formance supporting hardware acceleration. TFLITE
supports quantization with FP16, DINTS8 and INTS data
formats and the latest version of TFLITE runtime engine
supports multi-threaded execution.

TFLITE tools were used to optimize M1-M7 and O1-
06 on RP4 and IMXS8P post-training. The new opti-
mized models are quantized from 32-bit Floating Point
(FP32) numbers to FP16, dynamic INT8 (DINT8) and
8-bit integers (INTS). This results to a smaller memory
footprint (less memory is required for the model) and to
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(B)

©)

D)

B

faster computations. 8-bit computations can be executed
faster than the 32-bit computations if the appropriate
vector instructions are used (see Section V above).

In FP16 quantization, Sbits are used for the exponent
and 10bits are used for the mantissa, while in FP32 8bits
are used for the exponent and 23bits for the mantissa.
The other two supported types of quantization are full 8-
bit quantization (INT8) and dynamic range 8-bit quanti-
zation (DINTS). In INT8, quantization is applied to both
the activations and to the tensor weights. In DINTS, the
weights are quantized post training to INTS, and the
activations are quantized dynamically at the inference
phase. Thus, DINT8 comes with an extra computation
overhead.

elQ (TFLITE) for IMXS8P: ¢lQ is a software devel-
opment environment with various tools that help with
the development of Al applications targeted for NXP
MCUs or CPUs [50]. It is incorporated with DeepView
ML Tool suite [51] that allows developers use graphical
interface to label datasets, train and deploy Al solutions
for NXP silicon. It includes a model optimizer utility,
inference engines, NN compilers, libraries and hardware
abstraction layers that support TensorFlow Lite, Glow,
Arm NN and Arm CMSIS-NN. eIQ has been used to
optimize and deploy M1-M7 and O1-O6 models to
FP16 and INT8 data types to be compared versus the
models derived from TFLITE tools.

OpenVINO for NCS2: OpenVINO [52] is an op-
timization framework that focuses on optimising and
inferencing DL models on Intel hardware platforms,
ranging from the edge to the cloud. OpenVINO can be
used to optimize pre-trained models derived from Ten-
sorFlow, PyTorch or other popular frameworks. Open-
VINO v2021.4 has been used to optimize M1-M7 and
01-06 for NCS2. FP16 quantization is used as that is
the only data type supported by NCS2.
TensorFlow-TensorRT (TF-TRT) for JXAVIER and
JNANO: TF-TRT [53] is an optimization framework
dedicated to GPUs. It is the integration of TensorFlow
framework with NVIDIA’s TensorRT. TF-TRT performs
several optimizations to the compatible Neural Network
(NN)) graphs such as eliminating layers with unused
outputs and fusing, where possible, convolution, bias,
and ReLU layers to form a single layer. The incompati-
ble graphs and unsupported layers do not take advantage
of TRT and are left in their original FP32 implemen-
tation. TF-TRT supports FP16 and INT8 quantization
(JXAVIER only). TF-TRT has been used to optimize
M1-M7 and O1-O6 on JNANO and JXAVIER with
FP16 quantization. Note that TF-TRT requires a signif-
icant amount of extra storage memory but the hardware
device might not have this amount of free memory. TF-
TRT has been used to optimize M1-M7 and O1-O6 on
JNANO and JXAVIER with FP16 quantization.
TensorRT (TRT) for JXAVIER and JNANO: Ten-
sorRT (TRT) is the NVIDIA software development kit

for delivering high performance deep learning inference
on GPUs [54] and does not require the TensorFlow
library. It is used to optimize already trained models and
run them efficiently on NVIDIA devices. TRT, has been
used to further optimize M1-M7 and O1-O6 on JNANO
and JXAVIER. It provides better latency times than TF-
TRT, as the entire CNN graph is optimized as a single
component (not layer by layer); this also results to non-
unoptimized remaining layers. Note that for the non-
supported layers, custom plugins are required, which
makes its usage less user friendly. It supports FP16,
INT16 and INTS8 quantization (JXAVIER only). TRT
has been used to further optimize M1-M7 and O1-06
on JNANO and JXAVIER. It supports FP16 and INTS8
quantization (JXAVIER only).

TABLE 4. Hardware/Framework used datatypes

HW TF TFLITE elQ | OpenVINO | TF-TRT | TRT
PC FP32 - - - N N
FP16,
RP4 FP32 DINTS, INT8 )
FP16, FP16,
IMX8P DINTS, INT8 | INT8 B
NCS2 - - - FP16 - -
JNANO | FP32 - FP16 | FP16
JXAVIER | FP32 FP16 EP16,
INTS

VIl. EXPERIMENTAL SETUP
A. EVALUATED DATASETS
Two different datasets have been used for IC and two for
the OD method. The datasets consist of images with people
wearing and not wearing a face mask. Note that the aim of
this research work is not to find the datasets that maximize
the models’ accuracy. The datasets being selected are open
source and they provide adequate accuracy (see Subsection

7.1).

The datasets used for the IC models are shown below:

o Datasetl: dl1

[55]. 1376 images have been used;

690/686 images with faces that use a mask and not,
respectively.

o Dataset2: d2

[56]. 4095 images have been used;

2165/1930 images have been used that use a mask and
not, respectively.

The datasets used for the OD models are shown below:

e Dataset3: d3

[57]. 853 images have been used;
3232/717 labels with faces that use mask or and not, re-
spectively. Labels with incorrectly wearing masks were
removed due to low count of instances.

Dataset4: d4. 1619 images have been used; 3232/2014
labels with faces that use mask or and not, respectively.
Dataset3 provided poor results for people without wear-
ing a mask and therefore FDDB [58|] was added to
improve its accuracy.
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B. METRICS
The metrics used in this paper are listed hereafter:

a: Latency

To accurately extract the execution time of the inference
part, the entire inference phase is run multiple times and the
average time is taken. The overall execution time was at least
one minute; this is because apart from this software process,
other processes (e.g., OS) use the hardware resources (e.g.,
CPU cores, cache memory) too, and they add ‘noise’ to our
experimental results; by running the target process for about
one minute, the ‘noise’ is minimized.

b: Value

The Value is given by the following formula FPS/price,
where FPS is the number of processed frames per second and
price is the financial cost of the hardware board in US dollars.

c: Efficiency

Efficiency is given by the following formula FPS/power,
where FPS is the number of processed frames per second and
power is the maximum power consumption of the board. In
our future work we are planning to measure power consump-
tion by using power meters.

VIIl. EXPERIMENTAL RESULTS

The experimental results section is partitioned in two subsec-
tions. In Subsection 7.1, the models’ accuracy is evaluated.
In Subsection 7.2, the inference time of all the face mask
detection application steps (Fig.1) are evaluated, for both
methods. Furthermore, in Subsection 7.2, the edge devices
are evaluated and compared in terms of inference time, value
and efficiency.

A. MODEL PRECISION - ACCURACY EVALUATION

In this subsection the accuracy of the IC and OD models is
evaluated, in Fig. 2] and Fig. [3] respectively. For both meth-
ods, the models were fine-tuned with the datasets mentioned
in Section VII.

a: IC Training Results

All the IC models had relatively similar training times which
were dependant on the size of the dataset and the model,
which on average was 2:13 minutes for Datasetl (1376 im-
ages) and 6:06 minutes for Dataset2 (4095 images). Dataset1
gave high results in terms of accuracy across all models,
but Dataset2 we can observe better how various models
behave with a much larger pool of images. MobileNets
showed improvement in accuracy from V1 to V2 to V3, with
expected drops of accuracy seen in the minimalistic versions
of MobileNetV3, but with a significant drop in M6. The most
complex model M7 (21.81M parameters) was not the most
accurate, which shows that the most complex model might
not be the most accurate for a specific use case. Overall, M2
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had the highest accuracy (99.78% with 2.26M parameters)
for Datasetl and M3 (96.38% with 4.23M parameters) for
Dataset2. Detailed training results with accuracy, precision,
fl-score and recall metrics can be found in Table [3] (Ap-
pendix).

Method1: Image Classification Models: Accuracy/Training Time Plot

1 X X x x % < x 00:07:12
0.98 00:06:29
0.9 X % X % 00:05:46
0.94 00:05:02

5 092 X 00:04:19

S o9 X 00:03:36

8

< 0.8 00:02:53

0.86 0——0——4'\0—0‘%‘

0.84 00:01:26

Training Time (hh:mm:ss)

00:02:10

0.82 00:00:43

0.8 00:00:00
M1 M2 M3 M4 M5 M6 M7

X Accuracy-dl x  Accuracy-d2  —@— Training Time-d1 Training Time-d2

FIGURE 2. Image Classification Models: Accuracy/Training Time Plot (20
epochs)

b: OD Training Results

The ID models had a much longer training time compared to
IC, which was expected as the models were more complex,
there could be more than one ground truth labels per image,
and more output variables to compute. Dataset3 training
times was on average 2:13 hours, while Dataset4 was 2:39
hours. Dataset3 had a low count of faces not wearing mask,
which resulted in low COCO mAP for that class. Dataset4
had the addition of FDDB dataset, which resulted in consid-
erable improvements across all models. All models across
Dataset3 had similar results, which was due to faces not
wearing a mask class bringing down the average. Better
representation of how models behaved can be seen in the
results from Dataset4; the most complex model was the most
accurate (O3 with 13.3M parameters), and the least complex
was the least accurate (O6 with 0.93M parameters). Overall,
the most accurate model in terms of mAP(IoU.50:.05:.95),
was 02 (34%)for Dataset3 and O3 (52%) for Dataset4.
Detailed training results across various IoU thresholds for
mAP and mAR can be found in Table [6|and [7] (Appendix).

0.60 03:21:36
02:52:48
02:24:00
01:55:12

01:26:24

Training Time (hh:mm:ss)

00:57:36

00:28:48

0.00 00:00:00
o1 02 03 04 05 06

Training Time-d4.

FIGURE 3. Image Classification Models: Accuracy/Training Time Plot (20
epochs)

The datasets used for training the models provided suffi-
cient results when tested with test data and/or a live video
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feed, hence no more focus was put into improving the ac-
curacy, as the focus of this work was intended for metrics
around the hardware platforms.

B. EVALUATION OF THE INFERENCE TIME AND EDGE
DEVICES

In this subsection, the inference time of all the application
steps (Fig. [?]) are evaluated on the six hardware platforms.
The overall runtime of the inference part is given by Eq. (2):

WT =5 x (RF + PreP + L) (1)

RT = LT+ WT + F x (RF + PrP + L + PoP) (2)

where, LT’ (Loading Time) is the time needed to load
the DL model and its parameters, 'F’ (Frames) is the total
number of frames being processed, 'RF’ (Read Frames) is the
time needed to decode and load the input image to the pro-
cessor’s memory, ‘L’ (Latency) is the execution time of the
DL model and ’PrP/PoP’ (Pre-Processing/Post-Processing)
is the time taken to apply a mandatory pre-processing/post-
processing step. Due to the first inference cycles of the model
are longer than usual due to requiring to initialise model and
weights, “‘WT> (Warmup Time) is run for 5 cycles in order
to remove that “noise” from the following benchmarking
steps. Three different input image sizes have been used, i.e.,
640x360 (R1), 1280x720 (R2), 1920x1080 (R3).
The process of loading the DL model (LoadingTime) is
applied just once, while the rest of the steps are applied for
each input image (frame). Note that the value and efficiency
metrics in this paper include the time needed to read and
pre/post-process the image.

1) Evaluation and optimization of the time needed to read
the input image

The ’ReadFrame’ time is the second most computationally
expensive routine in Eq. (Z) (the most expensive is running
the DL model). This process includes a significant propor-
tion of the overall execution time, especially for large input
images, and therefore it needs to be optimized. Note that this
process is executed by the CPUs of the edge devices and not
by the powerful coprocessors.
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mOpenCV2  mPillow PyTurboJPEG

FIGURE 4. Evaluation of different Python libraries that read the input image
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An evaluation of different Python libraries has been made
for three different image sizes (Fig.[d). Three different image
sizes are read multiple times and the average execution time
values are taken (about 60 seconds each). By using OpenCV2
library [59], the average reading time of an image ranges
between 1.55-14.5 msec for the PC, 8.3-69 msec for the RP4,
4.8-36 msec for the INANO, 3.8-24 msecs for the JXAVIER
(power mode 0), 4.8-32 msecs for the JXAVIER (power
mode 2) and from 7 to 52 msecs for IMX8P. JXAVIER
supports five different power modes to provide different
performance vs power solutions. The power mode 0 uses just
2 out of 6 CPU cores running at 1.9GHz, while power mode
2 uses all the 6 cores but their frequency is lower (1.4GHz).
The process of reading the input image is executed on a single
core and thus, power mode 0 is more efficient for this task.

The time needed to read the image is lower on the PC
and JXAVIER as their DDR memories are faster com-
pared to the DDR memories of the other platforms, e.g.,
JNANO achieves memory bandwidth 25.6GB/sec while JX-
AVIER 59.7GB/sec. PyTurboJPEG [60]], which is an opti-
mized Python library for encoding/decoding JPEG images
in x86/x64 and ARM architectures, achieves lower loading
times because it uses the CPU SIMD instructions discussed
in Subsection 4; instead of loading the pixels one by one,
multiple pixels are loaded at a time, boosting performance.
The highest performance gain is for the PC because it can
load 256-bits of data by using a single instruction. On the
contrary, the ARM CPUs that the edge devices support can
load up to 128-bit. Pillow library provides slightly higher
read times than OpenCV for the PC and IMX8P platforms
and much higher for the other platforms. Pillow [61]] library
supports an optimized version leveraging the CPU vector
instructions too (a.k.a Pillow-SIMD [62]), but it is not tested
here. For the rest of this paper, we have used PyTurboJPEG
library.

As it was expected, the bigger the input image, the higher
the time to read/store from/to DDR memory. Reading the
input image is one of the time-critical parameters, especially
for large input images, even when the fast PyTurboJPEG
library is used. Although, the time needed to run the DL mod-
els scales well by providing more processing units (explained
next), the read frame time cannot be reduced and therefore
it remains a performance bottleneck, especially when the
powerful coprocessors are being used; in this case, the time
needed to read the image is higher than the time needed to
run the DL models.

2) Evaluation of the time needed for pre/post-processing
The time needed to pre-process the image (Fig. [5) is lower
than the time needed to read the image. This is because in the
pre-processing step, the image has already been loaded into
the CPU’s fast cache memory. The time of the pre-processing
step is not highly affected by the image size.

The pre/post processing steps are insignificant for RP4, as
the pre/post-processing time is much lower than the latency
time. On the contrary, the pre/post processing time of the

VOLUME 4, 2016



Author et al.: Preparation of Papers for EEE TRANSACTIONS and JOURNALS

IEEE Access

other boards accounts for a significant part of the overall
time. This is because the pre/post-processing steps are always
executed on the CPU and not on the computationally power-
ful coprocessors. In NCS2, JNANO and JXAVIER, the image
classification model (latency) scales well by providing more
processing elements (GPU cores or vector processing units),
while the pre-post-processing step does not scale well as it is
executed on the CPU. Therefore, the un-optimized pre/post-
processing steps account for a significant portion of time in
NCS2, JNANO and JXAVIER.
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FIGURE 5. Evaluation of the Pre-Processing step
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FIGURE 6. Evaluation of the Post-Processing step
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3) Evaluation and optimization of the IC DL models
(Method1)

In this subsection, Methodl is evaluated (Fig. [7}Fig. [I3).
Note that the loading time is shown in secs, while the latency
times are shown in msecs.

a: Loading time

As far as the loading time is concerned (Fig. [7}Fig. [I2),
different models give different loading times as their memory
footprint and parameters are different. The larger the memory
size of a model, the more time is needed for loading. Note
that when a model is loaded for a second time, it is normally
loaded faster, because in this case it is already located into
the CPU’s cache; therefore, the loading time is sometimes
higher for the R1 case and lower for the R2/R3 cases. It is
important to note that INT8 achieves the least loading time
as the memory size of the model is minimized. The loading
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FIGURE 7. Method1: Latency evaluation/comparison of the IC models on the
PC

time of M2 was expected to be lower than that of M1, as the
memory size of M2 is smaller, but MobileNetV1 achieves a
better loading time.

The loading time ranges between 0.66-1.34secs for the PC
(FP32 is used) and between 0.003-10 secs for the RP4. The
time needed to load the FP32 model on RP4 is about one
order of magnitude higher compared to the PC. However,
when INTS8 is used, the loading time is highly reduced,
and it is even lower than the loading time of the PC. The
loading times for the NCS2, INANO and JXAVIER are 0.07-
1.09 secs, 2.12-65.79 secs and 1.55-49.62 secs, respectively.
NCS2 loading time is higher than that of RP4 because it is
done via USB3.0 interface and uses FP16 data type; NCS2
does not support INT8. Last, RP4 with INT8 achieves lower
loading times than Jetson platforms because TFLITE uses flat

buffers [63].

b: Latency
As far as the latency time is concerned, M7 is by far the
least efficient model because of its high complexity (Section
IV). On the other hand, M6 is the fastest model in most
cases as it achieves the lowest computational complexity
(Section IV). M6 is from 3.5x to 33x times faster than M7
on the edge devices (Fig. [7}Fig. [I2). The only case where
M6 is not the fastest model is the TF-TRT FP16 case (both
Jetson platforms), where M1 is slightly faster than M6 and
the fastest model in this case. According to our analysis, this
is because TF-TRT cannot generate efficient machine code
for M6 in this case. Performance is very implementation
dependent, meaning that different implementations of the
same model might give significant variations in performance.
Another example that supports this statement is shown in
Fig. [I0JFig. [T1] where the TE-TRT FP16 for M6 gives
latency values of 18.9msec and 3.8msec on JNANO and
JXAVIER, respectively, while the NVIDIA optimizer (TRT)
gives 5.1msec and 1.4msec, respectively; it is obvious that
TE-TRT cannot leverage the target hardware architecture as
efficiently as TRT. Furthermore, in elQ FP16 (Fig. @, M5 is
slightly faster than M6 for the same reason. To conclude, the
lightest model is not always the fastest.

As expected, M6 is faster than M5, as M6 is a lightweight
variant of M5, which does not include any of the advanced
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block sets of MobileNetV3. A special case exists in IMXS8P,
where elQ cannot convert INT8 quantized M3 and M4 mod-
els, and also can’t infer the TFLITE INTS generated ones due
to not supporting the advanced block sets of MobileNetV3.
Similarly, M4 is faster than M3, as M4 is a lightweight variant
of M3. There is just one case where M3 performs better
than M4 (eIQ: FP16, Fig. [I2); this also typifies the fact that
performance is very implementation dependent. Last, M5
performs better than M4 in all cases apart from a) the Jetson
platforms, b) INT8 IMX8P because the powerful NPU can
run only the MobileNetV3 minimalistic models.

What was surprising is that M1 is faster than M2 in
most cases, which also typifies the fact that performance is
very implementation dependent. M2 is faster than M1 when
the ARM CPU is used, while M1 is faster than M2 when
the coprocessors are used. According to [64]], depthwise
separable convolutions are not directly supported by NVIDIA
GPUs and thus M1 is faster than M2 in this case. This is also
reported by [65]], where M2 runs faster on ARM, while M1
runs faster on Edge TPU. M2 uses more depthwise separable
convolutions compared to M1 (17 compared to 13), to reduce
the model’s complexity. Although more memory efficient,
depthwise 2D convolutions can indeed be slower than regular
2D convolutions due to their poor arithmetic intensity (ratio
of compute to memory operations) [66].

Before we provide a detailed analysis for each hardware
platform, note that the latency values of the fastest implemen-
tations on RP4, NCS2, INANO, JXAVIER and IMXS8P are
19.2msec, 9.5 msec, 5.09 msec, 1.22 msec and 4.52 msec, re-
spectively. The un-optimized FP32 TensorFlow model takes
22.38msec to run on the PC’s GPU.

4) Evaluation of the edge devices

(A) RP4: On the RP4, TFLITE achieves significant per-
formance improvement over TensorFlow (Fig.8) for all the
MobileNet models, but not for the Inception model. Three
different quantization levels are used. As expected, FP16 is
faster than FP32, DINTS is faster than FP16 and INTS is
faster than DINTS. According to [7], TFLITE generates
more efficient code for the RP4 when INT16 is used, because
RP4 CPU does not have hardware support for fast INT8 dot
product instructions. In our future work, we are planning to
evaluate our models using INT16 too. Furthermore, we have
enabled multithreading with one (TFLITE1), two (TFLITE2)
and four threads (TFLITE4). Although, performance is im-
proved, the scalability is low in all cases.
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FIGURE 8. Method1: Latency evaluation/comparison of the IC models on the
RP4
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(B) NCS2: On NCS2, all the models run faster than RP4
(Fig. P). Note that NCS2 cannot run un-optimized models
(FP32) and supports just FP16. The smallest latency value
being achieved on RP4 is 19.2 msec, while the smallest
latency value on NCS2 is 9.5 msecs. M6 runs 3.7x/2.5x/1.9x
times faster on NCS2 compared to RP4 INTS8, when one,
two and four threads are used, respectively (Fig. ). NCS2
is more efficient because it supports 16 vector engines that
can process 128-bits of data in a single instruction, each.
OpenVINO can run asynchronously up to four inferences
by using multiple threads, but a single inference cannot
be parallelized. The former would increase the latency but
improve throughput. Asynchronous mode has not been used
here.
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FIGURE 9. Method1: Latency evaluation/comparison of the IC models on the
NCS2

(C) JNANO: Regarding JNANO, it achieves higher perfor-
mance gains over NCS2 (Fig. [T0). The fastest implemen-
tation on JNANO takes 5.09msec, while on NCS2 takes
19.2msec. TF-TRT FP16 and TRT FP16 boost performance,
providing impressive speed-up values over TensorFlow. TF-
TRT FP16 runs from 3.7x to 11.8x times faster than FP32,
while the NVIDIA’s optimizer (TRT FP16) runs from 9.1x
to 29.2x times faster than FP32. As was expected, TRT
generates higher quality code compared to TF-TRT.
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FIGURE 10. Method1: Latency evaluation/comparison of the IC models on
the JNANO

(D) JXAVIER: JXAVIER is by far the fastest platform
(Fig. @), e.g., M6 runs about 2.6x times faster (TRT INTS)
compared to JNANO (TRT FP16). In JXAVIER, TF-TRT
and TRT provide high performance gains, especially TRT.
Note that TRT supports INT8 too, should the hardware be
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capable. TF-TRT FP16 runs from 15.9x to 39.2x times faster
than FP32, while the NVIDIA’s optimizer (TRT INTS) runs
from 32.2x to 76.7x times faster than TF FP32. JXAVIER
also supports a low-power accelerator (DLA) through TRT
libraries; DLA is less performant but more power efficient,
which runs from 13.9x to 19.9x for FP16 and from 16.1x to
23.8x for INT8 compared to TF FP32.
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FIGURE 11. Method1: Latency evaluation/comparison of the IC models on
the JXAVIER_2

(E) IMXS8P: For this platform two different optimization
tools have been used, TFLITE and eIQ (Section 1V). Fur-
thermore, three different quantization levels are used (FP16,
DINTS, INT8). Note that IMX8P cannot run un-optimized
models. Furthermore, the NPU coprocessor supports only
INTS type models. Therefore, the FP16 and DINTS8 quan-
tized models are not supported by the NPU and therefore
they run on the CPU. DINTS8 achieves performance gains
of average 1.8x over FP16 (Fig. [I2). INT8 achieves high
performance gains over FP16 when the NPU coprocessor
is used; about 36.0x/34.7x when TLITE/elQ are used, re-
spectively. TFLITE and elQ fail to use the NPU for M3,
M5 and M7 (elQ gives errors when running M3 and M5
and therefore they are not shown here) and this is why their
performance is poor (they run on ARM). When NPU is used,
IMXS8P is the second fastest platform. elQ gives slightly
worse performance compared to TLITE.
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FIGURE 12. Method1: Latency evaluation/comparison of the IC models on
the IMX8P

(F) Optimization Frameworks: The average speed-up val-
ues achieved by using the optimization frameworks, are
shown in Fig. [[3] TFLITE achieves high speed-up values
for IMX8P when NPU is used (INTS8 only), and a significant
performance gain on RP4 when INT8 and multithreading are
used. Note that NCS2 and IMX8P cannot run un-optimized
models and therefore the speed-up shown for NCS2 is over
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RP4 (host platform), while the speed-up shown for IMXS8P is
over the FP16 model. TFLITE gives a low speed-up value on
IMXS8P for DINTS as the NPU coprocessor supports INT8
models only. To conclude, the optimization tools achieve
high performance gains on all platforms.
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FIGURE 13. Method1: Evaluation/comparison of the optimization frameworks
(average speed-up is shown)

(G) Value: In Fig. |E|, an evaluation in terms of value is
applied. JNANO achieves the best solution here as it provides
the third-best performance, and it is much lower cost than
the faster JXAVIER and IMX8P. JXAVIER and RP4 (M6
only) provide the 2nd best solution. IMX8P does not provide
a good option here as it is very expensive. As it was expected,
the PC is by far the worst platform as it is very expensive.
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FIGURE 14. Method1: Value evaluation/comparison on different edge devices
(the pre/post processing steps are included)

(H) Efficiency: In Fig. [I3] an evaluation in terms of effi-
ciency is applied. In this case, JXAVIER provides the best
solution for all the models but M6. JXAVIER is by far
the fastest board and its maximum power is 15 Watts with
Jetpack 4.5.1. INANO comes first for M6 model and second
in overall. NCS2 is the third best option.
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FIGURE 15. Method1: Efficiency evaluation/comparison on different edge
devices (the pre/post processing steps are included)
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5) Evaluation and optimization of the OD DL models
(Method?2)

In this subsection, Method2 is evaluated (Fig. [I6}Fig. [24).
Note that the loading time is shown in secs, while the latency
times are shown in msecs.
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FIGURE 16. Method2: Latency evaluation/comparison of the OD models on
the PC

a: Loading Time

The quantized models achieve a lower loading time com-
pared to the original models (Fig.[I6} Fig.[Z1), as they use less
memory. The loading time of O3 model is higher compared to
the other models, as its memory requirements are higher. We
were surprised when we found out that the loading time of
the quantized models on Jetson platforms can be even higher
than the original models. This is a known and reported issue
of Protobuf library [67], [68]], which is improved by a big
margin by recompiling the Protobuf library with C++ enabled
instead of Python implementation.

b: Latency

03 model is the least efficient method at all hardware
platforms (Fig. [[6}Fig. 2I)), as it gives the highest number
of arithmetical instructions as well as the largest memory
footprint. As in Methodl, SSD-MobileNetV1 is faster than
SSD-MobileNetV2 on all platforms apart from the cases
where the ARM CPU is used (RP4, IMX8P FP16 models),
therefore Ol is faster than O2 and O2 is faster than O4 only
when the coprocessors are used. This is due to depthwise
separable convolutions which are not well implemented [64],
and as it has been discussed before the models are very
implementation dependent. O6 is the least complex model
and therefore it achieves the lowest latency values to all
platforms apart from the PC. OS5 is the second fastest model
on RP4 and on JNANO, while Ol outperforms O5 on the
PC, NCS2 and JXAVIER. O6 and OS5 are not supported by
all platforms; IMX8P does not support SSD-MobileNetV3
(it supports the only minimalistic MobileNetV3 models
for IC). Last, TRT fails to optimize O5 and O6 models
because the following layers are not supported: addv2 and
fusedbatchnormv3. Replacing these with supported layers
resulted in connection issues between adjoining layers, which
are to be resolved as future work.

The latency values of the fastest implementations on RP4,
NCS2, JNANO, JXAVIER and IMXS8P are 47 msec, 22.4
msec, 17.2 msec, 2.9 msec and 13.9 msec, respectively. The
un-optimized FP32 TensorFlow model takes 13.2 msec to run
on the PC’s GPU.

6) Evaluation of the edge devices

(A) RP4: Three different quantized models are used. Mul-
tithreading is not supported by TensorFlow 1.X where we
trained the models. TFLITE did not achieve as high perfor-
mance gains as observed in Methodl with Tensorflow 2.X,
with average gains of FP16: 2.0x, DINTS: 1.4x, INTS: 1.8x.
TF1.X fails to generate efficient machine level code here for
TFLITE quantized models. FP16 is the fastest quantized level
for all the models apart from O1, where INT8 is more effi-
cient in memory footprint than FP16. This also typifies that
performance is implementation dependent. DINTS does not
perform that well compared to INT8 and FP16. According to
(7], TELITE generates more efficient code for the RP4 when
INT16 is used, because RP4 CPU does not have hardware
support for fast INT8 dot product instructions.
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FIGURE 17. Method2: Latency evaluation/comparison of the OD models on
the RP4

(B) NCS2: NCS2 achieves better performance than RP4, in
all cases (Fig.[I8) O6 and Ol are the fastest models. O6 runs
2.1x times faster on NCS2 compared to the fastest solution
on RP4 (FP16-06). On average, NCS2 runs models 9x times
faster than RP4. The time needed to read the input image
accounts for a significant amount of time here which is per-
formed on RP4, for the reason explained before (Method1).
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FIGURE 18. Method2: Latency evaluation/comparison of the OD models on
the NCS2

(C) INANO/JXAVIER: On JNANO and JXAVIER, TF-TRT
and TRT provide significant speed-up values in all cases
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and especially TRT (Fig. [[9/Fig. 20). Regarding TF-TRT,
on average JNANO had 3.1x gains and faster model being
06 while on JXAVIER an average 3.8x gains, with Ol
being slightly faster. TRT resulted with average 4.0x (FP16)
for INANO and 9.3x (INT8) for JXAVIER. TRT does not
support OS5 and O6 and therefore Ol is the fastest solution
on both platforms; TRT cannot convert these models as there
are unsupported layers (we even tried using Jetpack 4.5 and
4.6). As it was explained in Method1, the read time as well
as the pre/post-processing time does not scale well here and
as a consequence the latency time on Jetsons is not the time-
critical parameter, especially for JXAVIER.
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FIGURE 19. Method2: Latency evaluation/comparison of the OD models on
the INANO
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FIGURE 20. Method2: Latency evaluation/comparison of the OD models on
the JXAVIER_2

(D) IMXS8P: TFLITE and elQ optimizations are used here
(Fig.[2T). TFLITE provides significant speed-up values when
the NPU coprocessor is used (supports only INT8). TFLITE
cannot run the FP16 O3 model because the model is too
memory demanding to run on this platform. Furthermore,
elQ does not support conversion of O5 and O6 models and
therefore O1 is the fastest model in this case. Unlike the
IC case, elQ provides faster inference here compared to
TFLITE.

(E) Optimization Frameworks: The average speed-up values
achieved by using the optimization frameworks, are shown
in Fig. 24} The performance gain is lower compared to the
IC case, but mainly due to TF1.X not generating efficient
machine code for some of the platforms like RP4. Note
that NCS2 and IMX8P cannot run un-optimized models and
therefore the speed-up shown for NCS2 is over RP4 (host
platform), while the speed-up shown for IMXS8P is over the
FP16 model.
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FIGURE 21. Method2: Latency evaluation/comparison of the OD models on
the IMX8P
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FIGURE 22. Method2: Value evaluation/comparison on different edge devices
(the pre/post processing steps are included)

(F) Value: As far as the evaluation in terms of value is
concerned (Fig.[22), INANO and JXAVIER provide the best
solutions, depending on the model being used. NCS2 and
RP4 are very good solutions for O6 only.
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FIGURE 23. Method2: Efficiency evaluation/comparison on different edge
devices (the pre/post processing steps are included)

(G) Efficiency: Regarding the evaluation in terms of effi-
ciency (Fig. 23), JXAVIER provides the most efficient so-
lution. JNANO comes second, while NCS2 provides a very
good solution for O6. Note that TRT is not supporting yet
SSD-MobileNetV3 and therefore we would expect JXAVIER
to score even higher in this case. The same holds for INANO
and IMXS8P (where O5 and O6 is not supported).

IX. DISCUSSION

A. OPTIMIZATION FRAMEWORKS

To efficiently run DL IC and OD models on the edge,
different optimization frameworks and options need to be
investigated and the balance of accuracy vs inference speed
must be investigated for the target use case. To this end, we
provide our insightful observations:
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The optimization frameworks used in this work provide
improved latency values for all the models in most
cases (apart from SSD-Inception; see next bullet); they
provide up to 6.8x/16.4x/15.9x/56.44x/36x times lower
latency on IC models and up to 2x/9x/4x/9.3x/80.6x
times lower latency on OD models, for RP4 / NCS2 /
JNANO /JXAVIER / IMX8P, respectively. The IC mod-
els are better optimized for all the hardware platforms
apart from the IMX8P where the OD models achieve
higher speed-up compared to the IC ones.

TFLITE fails to speed up the SSD-Inception model (this
is computationally expensive model) in Method2 and
consequently TFLITE gives even slower latency than
the un-optimized case.

MobileNetV2 runs faster than MobileNetV1 only on
ARM processor (RP4 and IMX8P when the coproces-
sor is not used), while the opposite is true when any
type of coprocessor is used (NCS2, INANO, JXAVIER,
IMX8P). One of the main reasons is that depthwise
separable convolutions are not well implemented by the
coprocessors [64]-[66], therefore the more are used, the
bigger the bottleneck.

The models’ latency strongly depends on whether the
optimization tools generate efficient machine code for
the target platform (e.g., use the appropriate SIMD
instructions) and whether the optimization tools can take
advantage of the available powerful coprocessors’ ca-
pabilities. We also show that different implementations
of the same model provide high variations in latency.
For example, the latency of O4 on JXAVIER can be
from 4.26 up to 40.72 msecs; the latency of O4 is
40.72/10.76/4.42/4.46 msec when TF FP32, TF-TRT
FP16, TRT FP16 and TRT INTS, are used, respectively.
Performance does not always align with the quantization
level. Although quantized models with shorter bit-width
values should run faster compared to the wider bit-width
ones, we found out that this is not always true. This is
because the optimization frameworks fail to generate
efficient machine code in this case. For example, on
RP4, the OD models derived from TF1.X run faster
in the FP16 case compared to the INT8 case, while
in TF2.X the INT8 models were always the fastest.
Furthermore, on JXAVIER, the OD TRT INT8 models

run as fast as the FP16 ones, which also derived from
TF1.X. Note that different platforms support different
quantization levels.

o The most lightweight model is not always the fastest,
but the most complex model is always the slowest. This
is because the optimization frameworks fail to generate
efficient machine code in many cases. For example,
MobileNetV1 is faster than MobileNetV2 when ARM
is not used, for both IC and OD.

« Depthwise separable convolutions are not well imple-
ment on non-ARM CPU hardware.

o TRT (NVIDIA’s optimizer) is superior to TF-TRT in all
cases (Jetson platforms) due to being able to optimize
model as a whole graph, while TF-TRT optimizes layer
by layer and leaves unsupported layers in their original
quantization format (FP32).

o Multithreading implementations on RP4 do not scale
well. Although the latency is reduced by providing
more threads, the speed-up values do not align with the
number of the CPU cores being used.

o The time needed to read the input image and/or the time
needed to pre/post process the image can be comparable
(or even higher) to the time needed to run the DL model,
especially for large input images. Reading the input
frame normally takes more time than running the model,
even using the PyTurboJPEG library which improves
the reading time. Therefore, using such libraries is of
critical importance. The pre/post processing time is less
but still can be comparable to the time needed to run
the model. For example, the time needed to read the
input frame on JNANO ranges within 3.78-29.6 msec,
the time needed to pre-process the image ranges within
2.97-3.35, the time need to post-process the image 7.9-
9.84 msec and the time needed to run the IC/OD TRT
models 0.71-1.46 / 21.34-32.7 msecs, respectively.

e We believe that there is room for improvement to the
optimization frameworks as they fail to generate ef-
ficient machine code in many cases. We expect that
first, the new versions of the optimization frameworks
will further optimize the models, and second, manually
optimized code for the target hardware platform would
run much faster.

« To efficiently run deep learning IC and/or OD models
on the edge devices is a non-trivial and time-consuming
task. To ease the model selection phase we deliver Sub-
sections 8.2-8.3, and to ease the board selection process
we provide Subsection 8.4-8.9.

B. IMAGE CLASSIFICATION (IC) MODELS

Seven SoTA IC models have been used, six lightweight
MobileNet models (MobileNetV1, MobileNetV2 and four
different versions of MobileNetV3) and a complex one (In-
ceptionV3). MobileNetV3 (M3-M6) is superior as it provides
the best solution in terms of both accuracy (Fig. [2) and la-
tency, while InceptionV3 (M7) is the least attractive solution
as it is neither the most accurate for our use case nor the
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fastest. The most accurate model in terms of accuracy is M3,
while M3-M5 (MobileNetV3) and M7 (InceptionV3) provide
roughly the same accuracy. Note that M3-MS5 run several
times faster than M7. M6 (MobileNetV3 Small Minimalistic)
is the fastest model but it is less accurate than M3-MS5.
MobileNetV1 is faster than MobileNetV2 in most cases, but
MobileNetv2 is more accurate. To sum up, MobileNetV3 is
by far the most efficient solution.

C. OBJECT DETECTION (OD) MODELS

Six SoTA IC models have been used, five lightweight
MobileNet models (SSD-MobileNetV1, SSD-MobileNetV2,
SSDLITE-MobileNetV2, and two different versions of SSD-
MobileNetV3) and a complex one (SSD-InceptionV2). As in
the IC case, MobileNetv3 is superior in terms of both latency
and accuracy (Fig. [3); however, it is not supported by all
hardware platforms. SSD-InceptionV2 is by far the slowest
model and not the most accurate, and therefore it does not
present an efficient solution here. As in the IC case, SSD-
MobileNetV1 runs faster than SSD-MobileNetV2 in most
cases.

To conclude, if MobileNetV3 is supported to the target
hardware platform, it presents the most efficient solution.
Otherwise, MobileNetV1 is the most preferable model. Mo-
bileNetV3 is expected to further boost performance on the
Jetson platforms, if TRT will be supporting this model’s ar-
chitecture. Furthermore, SSD-MobileNetV3 is also expected
to boost performance on IMXSP, if its engine and conversion
tools are to support its architecture.

D. RP4 PLATFORM

RP4 is the cheapest board used and it provides a very good
value for money; in IC, RP4 presents the 2nd best solution
in terms of value just for M6, while in OD, it presents the
third best solution just for O6. If higher accuracy is needed
M4/MS5 are competitive solutions too; for the OD case, the
most accurate models run much slower. Although, INTS is
the best quantization level for IC, FP16 performs better for
the OD models, as in this case it seems that TF1.X cannot
efficiently use the ARM INT8 SIMD instructions, while this
seemed to be improved in TF2.X (based on IC model results).
RP4 supports multithreading with TF2.X and although the
models do not scale well, lower latency values are always
achieved. TFLITE cannot provide that high latency gains on
OD models compared to the IC ones, and therefore it presents
a more competitive solution for the IC case. The time needed
to read and pre/post process the image is a small percentage
of the overall inference time.

E. NCS2 PLATFORM

NSC2 is a low-cost, high-performance accelerator whose
maximum power consumption is just 2 Watts but required
to be connected to a host, which was RP4 in our setup. For
the most lightweight models (M6 and O6), it presents the 3rd
best solution in terms of value and efficiency, for both the IC
and OD case. NCS2 supports FP16 only, where OpenVINO
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provides up to 16.4x/9.0x times faster code than the un-
optimized FP32 method for the IC/OD, respectively. M6 and
06 models (MobileNetV3) are the superior models in terms
of latency. If higher accuracy is needed, M5 and O1 present
the best options. The read frame time accounts for a signifi-
cant amount of the overall execution time even by using the
PyTurboJPEG library and thus the usage of such libraries
is beneficial. Note that OpenVINO can run asynchronously
multiple inferences by using multiple "requests"”, but a single
inference cannot be parallelized. The former would increase
the average latency but also increase throughput.

F. JNANO PLATFORM

JNANO is a lost-cost, low-power and powerful hardware
platform. This makes JNANO an excellent choice for all the
target metrics. INANO achieves the best solution in terms
of value and the second best in terms of efficiency. Just
for M6 it presents the best solution in terms of efficiency
too. Furthermore, it is the 3rd fastest board after JXAVIER
and IMXS8P. TRT is by far the optimization tool that needs
to be used to leverage the NVIDIA’s hardware architecture.
JNANO does not support INT8 and thus FP16 quantization is
the only choice. MobileNetV3 is the fastest model here. M6
is the fastest model for the IC case, while O6 if the fastest
model for the OD case. Note that MobileNetV3 (05 and O6)
is not supported by TRT for the OD method and therefore
JNANO will present an even more attractive solution for the
OD case if MobileNetV3 can natively be supported by TRT.
JNANO achieves low latency values for most of the IC/OD
models and thus it provides a competitive solution even when
higher accuracy is needed. The time needed to read the input
frame accounts for a high part of the overall execution time
and thus a library such as PyTurboJPEG is advantageous
here, especially for high resolutions input images. The Jetson
platforms provide extra GPU utilities for efficiently reading
and pre-processing the input frame, but we did not see any
improvements over the OpenCV libraries. JNANO achieves
lower read frame times compared to RP4 and IMXS8P.

G. JXAVIER PLATFORM

JXAVIER is by far the most powerful board and its power
consumption is not high, considering the performance gains
it can achieve. JXAVIER presents an excellent solution for
all the target metrics. Even if it is an high-cost board, its
performance gains compensate for its high cost. JXAVIER
achieves the best solution in terms of efficiency and latency
and the 2nd best solution in terms of value, on both IC
and OD. TRT with INTS is the best option to leverage the
NVIDIA’s hardware architecture. MobileNetV3 (M6) is the
fastest model for IC, but MobileNetV3 is not supported by
TRT for the OD case. Thus, MobileNetV1 is the best option
for the OD method (O1). It is important to note that apart
from the very powerful GPU and CPU, JXAVIER also has
two DLA coprocessors to further reduce energy consumption
and run multiple models concurrently; although we have
evaluated its performance (it runs slower than the GPU) we
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have not evaluated its power consumption (future work).
JXAVIER achieves low latency values for most of the IC/OD
models and thus it provides a competitive solution even when
higher accuracy is needed.

As in JNANO, a dedicated library for efficiently reading
the input frame (such as PyTurboJPEG) is required, as the
time needed to run the models is normally lower than reading
the input frame and pre/post process the image. It is important
to note that JXAVIER supports a very fast LPDDR memory
and therefore it reads the input frame faster compared to the
other boards. Last, note that JXAVIER supports five different
power modes, to provide different trade-offs between latency
time and power consumption, e.g., the power mode 0 uses
just 2 out of 6 CPU cores which running at 1.9GHz, while
power mode 2 uses all the 6 cores but their frequency is lower
(1.4GHz).

H. IMX8P PLATFORM

IMXS8P presents an excellent solution in terms of latency
time (it is the second fastest board). However, it is the most
expensive board and therefore the worst solution in terms of
value, on both IC and OD. Regarding efficiency, it provides
an efficient solution for most of the models. Fast inference is
achieved only in the INT8 case, where the NPU coprocessor
is used. Note that the non-INT8 models run on the ARM pro-
cessor and in this case the latency is much higher. Although
elQ provides higher performance than TFLITE for the OD
case, TFLITE gives slightly better latency times for the
IC case. Furthermore, NPU supports only the minimalistic
models of MobileNetV3 and thus it cannot run M3 and M5
models; additionally, elQ fails to convert SSD-MobileNetV3
models in the OD case. Therefore, M6 (MobileNetV3) is the
fastest model for the IC case, while O1 (SSD-MobileNetV 1)
is the fastest model for OD. Last, an optimized library such as
PyTurboJPEG to efficiently read the input frames is required
here.

X. CONCLUSIONS AND FUTURE WORK

Developing efficient DL IC and OD applications is a non-
trivial and challenging task as different hardware platforms,
models, libraries, optimizations tools and optimization op-
tions need to be investigated. In this paper seven IC and six
OD on-the-edge SoTA models are optimized, evaluated, and
compared on five commercial off-the-shelf edge devices in
terms of accuracy and latency. To this end, an IC and OD
face mask wearing detection architecture is developed. The
IC and OD models have been optimized by using the SoTA
optimization frameworks and different quantization levels.
The five edge devices are also evaluated and compared in
terms of inference time, value and efficiency.

We show that even by using the SoTA optimization tools
the inference time of the complex IC and OD models cannot
be reduced in most cases. On the contrary, the inference time
of the lightweight MobileNetV1-V3 models can be highly re-
duced by using the appropriate optimization options. Another
insightful observation is that inference time does not always
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align with the quantization level as the optimization tools
fail to generate efficient machine code in some cases. For
the same reason, we show that the most lightweight model
is not always the fastest. Furthermore, we show that the time
needed to read the input frame and/or pre/post-process the
input/output image is comparable or even higher than the
time needed to run the deep learning models. Therefore, the
optimization of this process is of critical importance too.
Last, we show that JXAVIER is the best board in terms of
latency and efficiency, while JNANO is the best board in
terms of value.

As far as our future work is concerned, we are planning to
measure the energy consumption of the edge devices by using
power meters, instead of using the maximum power values.
In the longer term, we are planning to expand this work to
PyTorch framework and derive a bigger SOTA model pool for
both IC and OD, with further optimization techniques applied
such as pruning / weight clustering and lastly adding further
hardware platforms such “suitable for the edge” FPGA solu-
tions.
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APPENDIX

TABLE 5. Detailed Method1 (IC) Training Results

Training Time
(hh:mm:ss)
M1 99.71% 99.86% 99.57% 99.71% 00:02:13
M2 99.78%  99.57% 100.00% 99.78% 00:02:15
M3 99.64%  99.71%  99.57% 99.64% 00:02:18
Datasetl | M4 99.71%  99.71%  99.71% 99.71% 00:02:11
M5 99.20%  98.99%  99.42% 99.20% 00:02:10
M6 99.42%  99.71%  99.14% 99.42% 00:02:07
M7 99.64%  99.42%  99.85% 99.64% 00:02:24
Ml 90.31% 80.98% 99.42% 89.26% 00:06:01
M2 92.24%  84.97%  99.33% 91.59% 00:06:12
M3 96.38% 94.39% 98.26% 96.29% 00:06:11
Dataset2 | M4 95.39% 91.41% 99.26% 95.17% 00:06:03
M5 9578%  9230%  99.16% 95.60% 00:05:59
M6 85.86% 72.71% 98.44% 83.64% 00:05:50
M7 95.49%  91.62%  99.26% 95.29% 00:06:30

Model | Accuracy Precision Recall fl-score

TABLE 6. Detailed Method2 (OD) Training Results - mAP

mAPIoU mAPIoU mAPIoU mAP mAP mAP | Training Time
.50:.05:.95 .50 75 small medium large (hh:mm:ss)
o1 30.30%  57.90% 26.80% 19.30% 45.70% 82.90% 02:13:00
02 33.80% 64.10% 31.40% 22.90% 49.50% 81.40% 02:32:00
03 32.70% 66.70% 28.60% 22.70% 54.80% 68.40% 02:53:00

Datase3 | 4 | 35609  61.40% 31.70% 22.00% 50.60% 67.90% | 02:38:00
05 | 2890% 52.90% 27.70% 16.90% 44.20% 84.00% | 02:25:00
06 | 30.60% 57.90% 2660% 19.20% 46.20% 84.70% | 00:38:00
Ol | 4440% 6720% 49.20% 14.80% 36.10% 72.80% | 02:41:00
02 | 4740%  74.80% 49.30% 2030% 39.00% 73.90% | 02:55:00
Datasetd | 03 | 5L70%  8270% 55.40% 24.00% 46.20% 75.80% | 03:10:00

04 46.20%  69.80% 31.70% 25.90% 50.60% 71.80% 03:00:00
05 48.50%  76.00% 53.40% 18.20% 43.80% 73.30% 02:46:00
06 4190%  69.30% 43.10% 13.20% 34.40% 71.70% 01:23:00

TABLE 7. Detailed Method2 (OD) Training Results - mAR

mAR mAR mAR mAR mAR mAR | Training Time
max=1 max=10 max=100 small medium large (hh:mm:ss)
o1 17.60% 34.70% 36.20% 26.00% 49.40% 86.00% 02:13:00
02 |18.70% 39.10% 40.80% 30.90% 54.90% 83.90% 02:32:00
03 |16.70% 40.40% 42.90% 32.30% 61.70% 76.10% 02:53:00

Dataset3 | 4 | 17700 37.70% 39.10% 28.80% 57.10% 71.30% | 02:38:00
05 |1640% 35.70% 39.50% 27.30% 58.50% 86.70% | 02:25:00
06 |1670% 36.10% 38.80% 27.20% 55.50% 88.20% | 00:38:00
Ol [29.70% 48.10% 4890% 2030% 40.20% 76.50% | 02:41:00
02 [3030% 51.40% 52.70% 26.60% 45.40% 76.80% | 02:55:00
Dataseta | 03 |3110% 5550% 58.60% 32.90% 55.90% 80.50% |  03:10:00

04 | 17.80% 41.10% 43.00% 33.90% 58.20% 74.40% 03:00:00
05 [29.80% 52.60% 55.50% 26.20% 55.70% 77.10% 02:46:00
06 |27.50% 46.40% 48.70% 19.90% 43.80% 75.50% 01:23:00
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