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Abstract—Profiling based techniques have gained much atten-
tion on computer architecture and software analysis communities.
The target is to rely on one or more profiling tools in order
to identify specific code pieces of interest e.g., code pieces that
slowdown a given application. The extracted code pieces can be
further modified and optimized. In general, the profiling tools
can be classified as deterministic, statistical-based, or rely on
hardware performance counters. A common characteristic of the
available profiling tools is typically based on analyzing or even
manipulating (in case of binary instrumentation tools) machine-
level code. This approach come with two main drawbacks.

First, a lot of information (even GBytes of data) needs to
be gathered, stored, post-processed, and visualized. Second, the
performed analysis of the gathered data is platform-specific and
it is not straightforward to categorize the given application-
s/program phases/kernels into distinct categories that have the
same or almost the same behavior (e.g., the same percentage
of computational vs. control instructions). The latter stems
from the fact even small changes in the source code of the
applications might lead to significantly different machine code
implementations. Therefore, even two specific program kernels
exhibit the same behavior (e.g., they have the same number of
instructions, but with a different ordering), it is very difficult
for a machine-code level profiling tool to assess their similarity,
simply because the generated machine level code might have
significant differences resulting in many missing opportunities
for the available profiling tools. To address this issue, in this
paper, we present a new profiling tool that is able to operate on
the machine independent intermediate representation (IR) level.
The profiler (still in development phase) relies on the LLVM
API and it is able to hierarchically (at various levels of the call
stack) and recursively parse the IR code and extract various
useful statistics. We showcase the practicality of our profiler by
analyzing a subset of the PolyBench benchmarks assuming (as
pointed out by a recent study) that there is a strong correlation
of LLVM IR code.

I. INTRODUCTION

Profiling tools are computer aided design (CAD) tools that
can analyze a given application and extract various useful
statistics. Typically, the various profiling tools are used for
three main reasons: i) to identify the bottlenecks of an appli-
cation, ii) to identify specific problematic cases in the source
code of an application (e.g., memory leaks), iii) to understand
the run-time requirements of an application (e.g., heap size,
cache size etc.), and iv) to help a third user to better understand
a software program (e.g., by building and presenting the code-
flow graph or the call graph of an application). The later

category usually is accompanied by a second tool to visualize
the results.

Generally speaking, the profiling tools can be split into two
main categories: software-based and hardware-based. Software
based tools can be further categorized into deterministic and
statistical profilers. Deterministic profilers create execution
traces of the application code e.g., function calls, functions
returns, interrupt code etc. and for each distinct point a
timestamp is assigned. The main drawback of these kind of
profilers is that a lot of data must be recorded resulting into
a considerable slowdown in application performance.

Statistical profilers raise the level of abstraction by per-
forming a sampling-based approach. Instead of monitoring the
events of interest continuously, the application is interrupted
periodically and in each interrupt, specific statistics are gath-
ered. The periods between two interrupts can be predefined,
random or dynamically extracted (i.e., adjust the sampling rate
dynamically). The latter approach typically leads to highly
accurate statistics with low overheads.

In general, a plethora of open-source and proprietary profil-
ers exist. These tools can offer CPU and memory profiling e.g.,
to extract the time spent in every function of the application,
to reveal CPU hotspots, memory bottlenecks or even to scan
the source code for memory leaks.

Probably the most widely used profiling tool for user space
code is GNU gprof [9]]. gprof actually utilizes the debug
capabilities of gcc and is able to report function relationships
(i.e., caller-callee). These relationships can be annotated, thus
it is possible to identify “hot” functions. The sampling is
performed by Operating System (OS) interrupts, thus signif-
icant overheads is added. Another popular tool is Valgrind
[10]. Valgrind is actually an instrumentation framework and
it comes with a set of various tools: memory error detector,
cache and branch profiler, call graph generator, heap profiler,
and thread error detector. Both gprof and valgrind are not
considered accurate and robust in analyzing multi-threaded
applications. On the contrary, the gperf tool [[11]] (developed
by Google) can help the designers to analyze and enhance the
performance of multi-threaded applications.

Moving now to the category of the hardware based profiling
tools, these tools utilize the hardware performance counters
[2](6] that are available on almost all modern processors



e.g., Intel or ARM processors. These hardware counters are
dedicated in the run-time monitoring of the execution of an
application. Although different processors (even from the same
company) support a different set of performance counters,
typically various hardware events can be exposed [2]] [6].
These events include memory accesses, branch misprediction,
memory fill times, register spill events etc. Hardware based
profiling typically introduces minor performance overheads
[8], since no instrumentation is needed. In order to read
these counters, external tools need to be installed. These
tools are perf [11], oprofile [[14], and Performance Advance
Programming Interface (PAPI) [13].

A common parameters of all the above tools is that the
gather information is either too high level (i.e., at the Operating
System level) or platform-specific. The latter issue renders
the work of identifying and classifying applications/program
phases/kernels with common characteristic a challenging task.
For example, inspecting the source code of an application is
difficult to tell if two or more applications exhibit the same
percentage of computational vs. control instructions.

The latter stems from the fact even small changes in the
source code of the applications might lead to significantly
different machine code implementations. Therefore, even two
specific program kernels exhibit the same behavior (e.g., they
have the same number of instructions, but with a different
ordering), it is very difficult for a machine-code level profiling
tool to assess their similarity, simply because the generated
machine level code might have significant differences resulting
in many missing opportunities for the available profiling tools.

To this end, in this paper, we present a new profiling tool
that is able to operate on the machine independent intermediate
representation (IR) level. The profiler (still in development
phase) relies on the LLVM API and it is able to hierarchically
(at various levels of the call stack) and recursively parse the
IR code and extract various code-level statistics. We showcase
the practicality of our profiler by analyzing a subset of the
PolyBench benchmarks assuming (as pointed out by a recent
study [[7]) that there is a strong correlation of LLVM IR code
and the dynamic power figures of a given application.
Structure of this paper. Section 2 provides additional back-
ground information for modeling and/or estimating the power
consumption at processor level. Section 3 presents our devel-
oped profiler and Section 4 provides the results when the pro-
posed profiler is used to analyze the PolyBench benchmarks.
Finally, Section 5 concludes the paper.

II. PROCESSOR POWER ESTIMATION

Knowledge of processor run-time power consumption is
essential for efficiently managing energy-saving techniques
and maximizing performance without exceeding the thermal
and power limits of a target device [1]. Towards this approach
many techniques have been proposed targeting to estimate the
static and dynamic power consumption of a given processor.
The majority of previous works relies on Performance Mon-
itoring Counters (PMCs). PMCs are internal CPU registers
that count (micro-)architectural events and they can be used

to estimate runtime power consumption by building empirical
power models. The idea is to end up with regression based
power models for CPUs using PMCs as inputs.

However, in order to build and train these models the actual
power consumption of the processor must be recorded. This
can be done either by an external measurement device or
by utilizing specific power sensors (introduced in the latest
processors). Bellosa [2] presented one of the first works to
use PMCs for power monitoring purposes. Isci and Martonsi
[6] later presented a technique for combining PMC data with
power consumption to provide run-time power estimations for
a P4 CPU.

A problem in building robust power models is to select
the right set of PMC events [S][8]. An ideal set should
not include PMCs that are correlated to each other to avoid
redundancy [3]]. The problem becomes even more challenging
if we consider: i) almost each processor (even from the same
vendor) has a different set of performance counters and ii)
the diversity of the various workloads precludes the building
of power models that can be used across a wide range of
applications and platforms. One potential way to address this
issue is to raise the level of abstraction and try to categorize
the workloads according to a set of platform-agnostic metrics.
As noted, in this work we select to classify the workloads
based on the mix of the machine independent intermediate
representation (IR) code. However, to this end, we developed
a profiler that relies on the LLVM API and it is able to
hierarchically and recursively parse the IR code and extract
various IR code-level statistics. The internal operation of this
profiler is presented in the next session.

III. THE LLVM IR PROFILER

The LLVM toolchain [12] already includes a number of
passes that can operate at various levels. These passes are
divided into two main categories: analysis passes and trans-
formation passes. Analysis passes extract information from
the source code of the input application, while transformation
passes apply specific code transformations. In this work, we
develop an analysis pass that is built on top of existing passes.
The new pass is modular and it can be easily integrated
in the LLVM codebase, since it relies on LLVM API. As
a first step, the LLVM pass takes as input an LLVM IR
code and outputs the call graph. The call graph information
is a useful representation of the input IR code (thus, the
input application) in order to understand the basic structure
and organization of the code. However, it is not suitable for
more complex purposes such as power consumption analysis,
security analysis etc. To accomplish the latter goals, our
proposed LLVM pass is extended to record and classify the
various IR opcodes of the input source codes. In addition,
the proposed LLVM pass includes a classification step that is
able to classify the IR opcodes into specific categories. These
categories are given as inputs to the classifier. As part of this
work, we assume that the IR opcodes that belong to the same
category exhibit the same power profile. More details about
this classification can be found in Section IV.
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A high level design of the developed profiler is shown in
Figure 1. As the figure illustrates the LLVM-pass takes as input
LLVM IR code and a mapping between IR instructions and
their power figure, and outputs: i) the different IR instructions
organized in categories, ii) the callgraph (thus, the IR level
statistics can be given at a hierarchical manner wrt. the
functions of the program), and iii) a power analysis.

Inputs LLVM Instruction Counter Pass Outputs

Source Code . Function Parsing
e  Basic Block Parsing

N LLVM IR instructions profile
3>
> |® Instruction Parsing

LLVM IR instructions figures Power Analysis

Y Y

Fig. 1: Profiler overview

A. Profiler Design

The LLVM API is a well organized API that allows to add
additional LLVM transformations with new features. In the
context of this work, we extend the Instruction class of LLVM.
We insert new hooks and features in order to classify the IR
opcodes of the input application into different IR categories.
More specifically, the LLVM toolchain provides a class called
Function that represents a function in the LLVM IR. The class
Function provides an iterator for each Basicblock classes and
in each basic block an iterator for its Instruction classes. In
Figure 2, these steps are annotated as (4) and (5). Therefore,
we have at least three abstraction layers in our source code to
begin with.

Moreover, all LLVM passes are subclasses of the LLVM
Pass class and their functionality comes from overriding the
virtual methods inherited from the Pass class. For our work, we
override the function runOnFunction (step 1 in Figure 2). The
pass iterates through the various functions in the IR, the basic
blocks of each function, and finally the instructions of each
basic block. During this process, the profiler holds a record
for every visited instruction and updates a data structure with
their total numbers of occurrences (step 6 in Figure 2). In
addition, it operates recursively when the instruction “call” is
visited (step 7) in order to create a call graph for the function
and accordingly count all the instructions in the created call
tree. Finally, the classification of each instruction, based on its
power profile, is performed. The output of the profiler are a
call graph for each function, a analysis of all its opcodes, and
a power figure analysis (as a result of the classification of the
LLVM IR instruction types).

B. Working Example

For validation purposes we present an example of an _

OpenCL kernel (Listing [T)), on which we applied our LLVM
pass.

__kernel void doitgen_kernel2 (int nr, int ng, int
np, global DATA_TYPE «A, global DATA_TYPE =
C4, __global DATA_TYPE xsum, int r)

{
int p = get_global_id(0);
int g = get_global_id(1);
if ((p < np) && (g < nqg))

{

1

4

LLVM pass API
runOnFunction(&F)

v

- Initialize map instr_type []

- Call CountFunc():
Args: Function F, opcode_map,
Callgraph, map instr_type

v

CountFunc()

1)

(2)

—> o

‘ For BasicBlock in function F do ‘ 4)

v

‘For Instruction in Basic Block do‘ (5)

v

- Get opcode_name and update opcode_map

- Call function update Types(map inst_type, instr):
- Call to LLVM Instruction class functions to
identify the type of each instruction

‘/‘V

.\\

True—_ If instr.isCall() > (7)

‘T,
False

// - Print results \\.‘ )
\\ -End /

Fig. 2: Profiler block diagram

Alr =
* np)

(ng * np) + g » np + p] = sum[r * (ng

+ g * np + pl;

Listing 1: Source code of doitgen kernel 2

This OpenCL kernel is part of the doitgen benchmark
from the Polybench Suite [4]. This kernel is used for Multi-
resolution Analysis or MADNESS and is typically is used in
linear algebra for solving integral and differential equations
of many dimensions (more details about this kernel is out of
the context of this work). This source code corresponds to the
LLVM IR code (shown in Listing [2) as it is generated by the
clang compiler.

@doitgen_kernel2 (132 %nr, floatx*

nocapture

i32 %nqg, i32 %np,

%A, floatx nocapture readnone %C4, floatx nocapture
readonly %sum,
i32 %r) {
entry:
%$call = tail call 164 @_Z13get_global_idj(i32 0)
#3
%$conv = trunc i64 %call to i32
$calll = tail call 164 @_Z13get_global_idj(i32 1)
#3
$conv2 = trunc i64 %calll to 132
$cmp = icmp slt 132 %conv, %np
$cmp4 = icmp slt 132 %conv2, %ng
$or.cond = and il %cmp, %cmpé
br il %or.cond, label %if.then, label %$if.end
if.then: B
preds = %entry



smul6e =
%reass.add =
%$reass.mul =
%$add8 =

mul i32 %r, %ng

add i32 %mul6, %conv2

mul i32 %reass.add, %np

add i32 %reass.mul, %conv

$idxprom = sext 132 %$add8 to i64

%$arrayidx = getelementptr inbounds float,
%sum, 164 %$idxprom

%0 = load float, floatx %arrayidx,

'8

%$arrayidxl5 = getelementptr inbounds float,
* %A, 164 %idxprom

store float %0, floatx %arrayidxl1l5, align 4, !
tbaa !8

br label

float~*

align 4, !tbaa

float

%if.end

if.end: 8
preds = %$if.then, %entry
ret void

Listing 2: LLVM IR code of doitgen kernel 2

As we can see in lines 5 and 7 in Listing [2] there are
two call instructions, that correspond to the get_global_id()
function calls in the source code. In addition, the if statement
in source code (line 6 in Listing is translated to the IR
opcode depicted in lines 9, 10, and 11 in Listing 2] Line 12
is the branch instruction coming from the if...then label or the
if...end label. The body of the if statement corresponds to the
lines 15-24 inside the if...then label.

Function: doitgen_kernel2
2 add :: 2
3 and 1
br :: 2
5 call :: 2
getelementptr :: 2
7 icmp :: 2
load :: 1
mul :: 2
ret :: 1
sext :: 1
2 store :: 1
3 trunc :: 2

5 Power type profiling

NoType —-> 5

typel -> 3
type2 -> 2
type3d -> 4
typed —> 5

22 Callgraph for doitgen_kernel2

23 Null

Listing 3: Output of the profiler

The Listing |3|illustrates the output of the proposed profiler.
As we can see, the top part of Listing [3] enumerates the IR
level statistics for the two functions of the studied kernel (lines
1-5 and lines 6-13). The bottom part of Listing [3] (lines 15-
20) depicts the IR level instruction classification statistics. As
noted more details about the classification process will be
given in Section IV.

IV. RESULTS

A. Approach

To generate the LLVM IR bitcode from the OpenCL kernels,
we use the clang compiler version 12.0.0. We also use the opt

tool from the LLVM toolchain. To perform the IR instruction
classification, we accordingly extent the Instruction class of
the LLVM codebase. Finally, we apply our profiler to the
Polybench-ACC [4] benchmark suite and more particularly
in the linear algebra OpenCL applications. Each application
consists of 1 or 2 OpenCL kernels (annotated as K1 or K2
hereafter).

As noted, the goal of this work is to classify different
OpenCL kernels wrt. the number of IR-level instructions.
Therefore, the next step was to classify each IR opcode to five
distinct categories. Obviously, each category contains opcodes
with similar or almost similar power profiles. As part of this
work, the following categories were used (we plan to extent
this categorization and further validate our approach as part
of our future work).

The typel group includes all the simple ALU operations
e.g., additions, subtractions, and bitwise operations. type2
group contains the long-latency, thus more power consuming,
ALU operations like multiplications and divisions instructions.
The type3 group consists of the load-store memory opera-
tions and the type4 includes all the control instructions e.g.,
branches, function calls, function returns etc. Finally, there is
a last category (NoType) with all the remaining LLVM IR
instructions.

B. Kernel Characterization

The section presents our profiler-based characterization of
the following OpenCL applications from the Polybench-ACC
[4] benchmark suite: 2mm, 3mm, atax, bicg, doitgen, gemm,
gemver, mvt and syr2k. In total, 17 OpenCL kernels were
used. Our goal, as explained, was to create groups of similar
kernels depending on their IR instruction mix, thus groups with
similar power behavior. Our classification algorithm works as
follows: two kernels are grouped together if the difference in
the same type instructions is lower than a predefined threshold.
In this work we set two threshold values: 10% and 20%. Table
1 contains the extracted kernel groups. As we can see from
Table 1, when the first threshold value is enforced, we end up
with 12 groups, while only eight groups are extracted for the
second threshold value.

Finally, Figure 3 presents the whole range of the profiler
outputs for each OpenCL application and kernel (shown in the
horizontal axis). The y-axis shows the absolute values of the
number of instructions of each instruction type. It is obvious
from Figure 3 that specific kernels (belonging to the same or
to different applications) exhibit the same behavior (equal or
almost equal number of instructions per instruction type) e.g.,
the 2mm k1 and gemm k1 kernels, while other kernels show
different instruction statistics (e.g., doitgen k2 and 2mm k2),
thus different power profiles.

V. CONCLUSIONS

In this work, we implement a new proﬁlelﬂ based on
the LLVM framework [12]. The profiler extends the Call

IThe profiler will be released as an open-source tool
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Fig. 3: LLVM IR instructions classification

group 1 2mm k1, gemm k1 2mm k1, gemm k1
2mm k2, 3mm kI,

group 2 2mm k2 3mm k2, doitgen k1,
gemver k3

3mm k1, 3mm k2, atax k1, bicg k1,

group 3 doitgen k1 mvt kl

group 4 atax k1, mvt k1 i:?:: 1522 > bicg k2,

group 5 atax k2, mvt k2 doitgen k1

group 6 bicg ki gemver k1

group 7 bicg k2 gemver k2

group 8 doitgen k2 syr2k k1

group 9 gemver k1

group 10 gemver k2

group 11 gemver k3

group 12 syr2k k1

TABLE I: Kernels classification

Graph pass functionality of LLVM and also manages to create
clusters of IR instructions based on the power characteristics
of each IR instruction. We evaluate the proposed profiler over
a subset of Polybench OpenCL kernels (17 in total) and we
conclude that the studied benchmarks can be classified into
into 12 groups when we set a similarity factor equal to 90%
and into eight groups when the factor is equal to 80%.
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