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Abstract

Eye center localization has been an active research topic for decades due to its impor-
tant biological properties, which indicates human’s visual focus of attention. However,
accurate eye center localization still remains challenging due to the high degree appear-
ance variation caused by different kinds of viewing angles, illumination conditions, oc-
clusions and head pose. This paper proposes a hierarchical adaptive convolution method
(HAC) to localize the eye center accurately while consuming low computational cost.
It mainly utilizes the dramatic illumination changes between the iris and sclera. More
specifically, novel hierarchical kernels are designed to convolute the eye images and a
differential operation is applied on the adjacent convolution results to generate various re-
sponse maps. The final eye center is localized by searching the maximum response value
among the response maps. Experimental results on several publicly available datasets
demonstrate that HAC outperforms the start-of-the-art methods by a large margin. The
code is made publicly available at https://github.com/myopengit/HAC

1 Introduction
Eye center localization has attracted much attention due to its importance in gaze estima-
tion, virtual reality, human-robot interaction, human-machine interfaces, psychology, and
cognitive linguistics [12]. Although accurate eye center location can be obtained through
high-quality wearable eye-gaze tracking systems, the unconformable user experience or ex-
pensive devices make these methods unattractive [22]. Thus, this paper focuses on localiz-
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ing eye centers from images captured in practical non-wearable scenarios such as interaction
with a desktop, a laptop, a phone or a robot equipped with cameras.

As a similar research with eye center localization, face alignment aims to locate several
outstanding facial landmarks such as eye corners, mouth lips, noses and eyebrows. The last
five years have seen a great improvement of face alignments techniques [15, 29]. However,
the eye center is often excluded from these facial landmarks due to its high degree of appear-
ance variation caused by the occlusion of eyelids, viewing angles, ethnicity, illumination
conditions and head poses. For example, Vicente et al. [23] suggested using other shape
based methods for eye center localization rather than jointly locating it with other landmarks
for more accurate performance. Although many eye center localization methods have been
proposed and significant improvements have been achieved in the past three decades, fast
and accurate eye center localization is still very challenging [11], especially for images with
low resolution.

One of the most popular eye center localization methods is the Integral Differential Oper-
ator (IDO) [8], which locates the eye center by searching the maximum differential response
along with a predefined circle boundary. However, as pointed out in [27], IDO is too com-
putationally intensive to achieve real-time performance. To reduce the computational com-
plexity of IDO, Cai et al. [5] proposed a Convolution based Integral Differential Operator
(CIDO) by coding the integral operation into kernels which contain different circular bound-
aries. Although CIDO improves the localization speed to a large extent, the requirement of
frontal 2D circular boundaries limits its performance in dealing with different viewing an-
gles. The circle boundary property of the iris is also utilized by many researchers [1, 7, 22]
to locate the eye center. The limitation of these methods lies in that they assume a frontal
view condition.

To overcome the circular boundary limitation in non-frontal view condition, this paper
proposes to model the 3D viewing pose into the designed kernels. The main contributions of
this paper are listed as follows:

1) Novel hierarchical kernels are constructed according to different viewing angles and
they are adaptively selected according to the obtained 3D head pose in the localization stage.
The designed kernel enables the algorithm to effectively deal with the situations when the
boundary of the iris is not circular.

2) The design of the hierarchical kernels and convolutional framework greatly improves
the eye center localization accuracy. Experimental results on two of the most frequently used
publicly available datasets demonstrate that HAC outperforms the state-of-the-art eye center
localization methods by a large margin.

The remainder of this paper is organized as follows. Section 2 briefly reviews the related
work of eye center localization. The proposed HAC is explained in detail in Section 3. The
experimental results are presented in Section 4 . Finally, Section 5 concludes this paper.

2 Related Work

Eye center localization has been an area of active research for many decades. Recent years
have seen great improvements in both the localization accuracy and computational cost.
Generally speaking, the existing eye center localization methods can be classified into shape-
based and appearance-based according to whether a learning progress is involved.
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2.1 Shape-Based Methods

Shape-based methods rely on prior eye shapes information such as rotation invariant points,
edges, or filtered responses for the eye center localization. Daugman [8] proposed IDO
which makes use of the large intensity change between the iris and sclera. IDO achieves
good performance when the captured eye image has a high resolution and the iris’s boundary
is near circular [4]. However, IDO suffers from computation cost too high to be applied
into real-time eye tracking applications as mentioned in [27] and requires high-resolution
with a minimum of 50 pixels in iris radius [13]. Cai et al. [5] proposed a convolutional
variation of IDO method to reduce the computational complexity of IDO for real-time eye
center localization. Timm et al. [21] proposed to model the radial symmetry information
as a form of means of gradient and developed a simple yet efficient eye center localization
method by calculating the dot products of the gradient for each point in the image. George
et al. [10] proposed a fast eye center localization method by convoluting a series of Hough
transform kernels with the eye image, which can be seen as a convolution version of the
classic Hough transform based eye center localization method [26]. Asadifard et al. [2] cal-
culated the histogram cumulative density function of the eye region, followed by a minimum
intensity pixels’ filter to locate the eye center. Valenti et al. [22] proposed to locate the eye
center by using a voting strategy where each pixel of the eye image has the ability to vote a
potential center according to the gradient information. They further constructed a pyramid
by resizing the images and linearly summing the response maps of the pyramid images to
determine the final eye center position. Skodras et al. [20] applied the fast radial symmetry
transform method [18] on a constructed eye region color map for eye center localization.
Due to the model restriction, most of the shape-based eye center localization methods are
not well adapted to extreme low-resolution images.

2.2 Appearance-Based Methods

Unlike the shape-based methods, appearance-based methods take the entire eye image as
an input and try to learn a mapping function for the target position. Jesorsky et al. [14]
presented a method of detecting faces in an image using Hausdorff distance as a similarity
measure and then localized the pupil by a multilayer perceptron trained with pupil centered
images. Kroon et al. [17] located the eye position by searching the maximum response of
a trained fisher linear discriminant classifier. Kim et al. [16] proposed an eye localization
method based on multi-scale Gabor feature vectors. Two support vector machines trained
on properly selected Haar wavelet coefficients were used to localize the eye position in [6].
Valenti et al. [22] added scale invariance to their former isophote based method using a scale
space pyramid and finally determined the eye location by matching the SIFT vector of each
candidate with a database. Markuvs et al. [19] proposed to train an ensemble of randomized
regression trees for the eye center localization. Wu et al. [28] utilized a Deep Boltzmann
Machine to learn the eye features and trained a Neutral Network to detect the eye centers.
Encouraged by the great success of supervised descent method [29] in face alignment, Gou et
al. [11] proposed to employ a cascaded regression framework to jointly detect the eye center
and eye state. The state of the eye can also provide useful information for the potential eye
center localization. Compared to model-based methods, the learning-based methods might
achieve better performance in low-resolution images and in the situations where the eyes are
near fully closed due to the modality in the training data. On the other hand, appearance-
based methods require a large amount of data for training and their performance is largely
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related to the training data.

3 Method
This paper proposes a hierarchical adaptive convolution method (HAC) to localize the eye
center accurately while consuming low computational cost. The following subsections firstly
introduce the theory of IDO and then present HAC which improves the accuracy of IDO by
overcoming the circular boundary limitation.

3.1 Integro-Differential Operator

Observing the tremendous illumination changes along the iris and scalar, IDO [8] located the
eye center via searching the biggest differential radius of the mean value along the circles.
The mathematical definition of IDO is as follows:

max(r,x0,y0)

∣∣∣∣Gσ (r)∗
∂

∂ r

∮
r,x0,y0

I(x,y)
2πr

ds
∣∣∣∣ (1)

where the Gσ (r) represents for a smoothing function. I(x,y) means the extracted eye images.
The integral operation

∮
r,x0,y0

is calculated by averaging the pixels around the contour which
is constructed by a circle with radius r and center of (x0,y0).

3.2 Hierarchical Adaptive Convolution

Originally designed for iris recognition, IDO has an assumption that the iris always has a
circular boundary since it requires the users to frontally place their eye towards a camera
at a short distance. However, in human-machine interaction scenarios, this assumption is
not always true due to different viewing angles and head poses. Besides the frontal view
assumption, IDO also suffers from high computational cost as mentioned in [27]. Recently,
some researchers [5, 7] proposed to adapt IDO to human-machine interaction scenarios by
reducing the computational load or adjusting the energy function. However, the assumption
of circular boundary still exists in the constructed models, which greatly affects the local-
ization accuracy. This paper proposes to remove this assumption by modeling the viewing
angle property into the designed hierarchical kernels.

3.2.1 Framework Description

Fig. 1 shows the framework of HAC. The input of the algorithm is an image and the out-
put is the localized eye centers. The top left quarter of the figure shows an illustration of
the pre-constructed hierarchical kernels, which will be introduced in detail in Section 3.2.2.
The input of the algorithm is an image located in the bottom left corner of the image. Once
an image is captured, the classic cascade face detector [25] is employed for face detection.
Then the supervised descent method [29] is used to detect the face landmarks. Based on
the localized eye region landmarks, a rough eye region can be extracted. The detected eye
region is then normalized to a 50×50 eye patch image. It should be noted that other size of
eye patch should possibly result in similar performance and HAC is robust to different initial
eye regions as long as the eye is within the patch. By accurately detecting and normalizing
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Figure 1: Framework of hierarchical adaptive convolution method.

the eye region, we can set a fixed range for the eye radius. The obtained facial landmark po-
sitions can also be used to calculate the 3D head pose information by solving the classic PnP
problem. In our case, we utilize the POSIT algorithm [9] with a pre-defined 3D face model
to estimate the person’s head pose. The estimated head pose is used to adaptively select the
nearest viewing hierarchical kernels. The final hierarchical kernels consist of both the se-
lected hierarchical kernels and the frontal viewing hierarchical kernels. Then, a hierarchical
of integral maps shown in the middle part of the figure can be obtained by convoluting the
normalized eye region images with the final hierarchical kernels. The convolution operation
simulates the integral operation as proposed in IDO, which improves the executing speed
by a large margin. After using an element-wise division operation, we can obtain different
response maps as shown in the right part of the figure. The final eye center can be localized
by searching the maximum response pixel in the response maps.

Inspired by [11] which separates the open status and close status of the eye to improve
the localization performance, this paper proposes a simple yet effective way to check if the
eye is fully closed. The height of an eye is measured by using the distance of the eyelids and
the length of the eye can be determined using the two eye corners. If the ratio of the height
and the length of the eye is smaller than 0.08, the status of the eye is regarded as fully closed
and the eye center is calculated by using the average of four landmarks alongside the eyelids.

3.2.2 Hierarchical Kernels

This section introduces the design of different hierarchical kernels, which model the 3D
viewing pose to improve the localization accuracy. As the first step, a 2D circular boundary
is constructed using the following equation:

Tr(x,y) =

{
1, if (x,y) = (r cos(θ)+ r,r sin(θ)+ r)
0, otherwise

θε[−t, t]∪ [1800− t,1800 + t]
Kr =

Tr
∑

2r+1
x=0 ∑

2r+1
y=0 Tr

(2)

where r represents the radius. The size of the kernel is 2r+1. (x,y) is the location of a pixel
inside the kernel. The value of a specific pixel Tr(x,y) depends on its location. For example,
the pixel’s value will be assigned to 1 if its location is alongside the circle boundary. θ is
the sampling angle which is limited to the right and left part of the circle to cope with the
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obscure of eyelids as with IDO. t is the range of the sampling angle. The sampling interval
∆θ is set to be small enough to locate every pixel around the selected part of the circular
boundary. Finally, the selected pixels along the circular are normalized to a unit value.

By assigning a zero depth value to the constructed 2D circular boundary, we can obtain a
3D circular boundary. The pixels along the 3D circular boundary are then rotated from three
different axis to handle the different viewing angles. For each axis, we set the rotate range
from -45o to 45o with an interval of 15o. In total, there are 343 viewing angles including the
frontal viewing angle. By multiplying the 3D circular boundary with the constructed rotation
matrix and projecting it back to the frontal view, the designed kernels can cover a wide range
of viewing angles.

Since each eye patch is normalized to a fixed size of 50×50, the range of the radius in
the designed kernels can also be fixed. In practical, we set the range of the radius from
9 to 12 and found that it is sufficient to cover the correct radius for different people with
different distance. Thus, each set of hierarchical kernels consists of 4 convolution kernels
with different radii. It should be noted that the construction of these kernels are calculated
ahead and thus the computation load is not increased at the localization stage.

3.2.3 Convolution and Differential Operation

Once the kernels are constructed, they can be used to convolute the eye patches. As men-
tioned ahead, we selected two sets of hierarchical kernels to convolute the eye patches. One
is the nearest viewing hierarchical kernels and the other is the frontal viewing hierarchical
kernels. The employment of frontal viewing kernels is for the covering of situations where
the person is still viewing frontal direction with his head turned away. For each set of hi-
erarchical kernels, the convolution operation and the differential operation are conducted
according to the following equation:

Mr = Kr⊗ Ie

Dr = div(Mr+1,Mr)

argmax(r,x0,y0)(Dr)

rε[rmin,rmax]

(3)

where Ie represents for the input eye images and Kr is the designed kernels when the radius is
r. The radius has a searching range from rmin to rmax. The convolution operation is denoted
as ⊗ and the convolution result Mr is named as the integral map. The element-wise division
of the integral map is the differential map Dr. The localized eye center can be found by
searching the maximum response in the two sets of response maps.

4 Experimental results

This section describes the details of the evaluation procedure and the analysis of experi-
mental results. Experimental evaluation of HAC has been conducted on two of the most
popular datasets for eye center localization including the BioID database [14] and the GI4E
database [24]. During the testing, we use the same set of model parameters and accuracy
measure equation for all the databases. We uploaded the localization results together with
the code of HAC in the aforementioned link.
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4.1 Databases
The BioID database has 1521 grayscale images of 23 different people with a resolution of
384 * 288 pixels. Eye center localization in this dataset is considered as challenging due to
the low resolution of eye images, different viewing conditions, strong glints and various eye
statuses. The dataset also contains some fully closed eye images where it is even impossible
for human beings to point out the actual eye center. In some images, the eyes are completely
hidden by reflections on the glasses. The face detection rate on this dataset is around 96.5%.

The GI4E database contains 1236 images of 103 different subjects with a resolution of
800*600 pixels. Each subject has 12 images corresponding to different gaze points in the
screen. Due to the relative high resolution, this dataset is considered as a normal desktop or
laptop setup nowadays. The face detection rate of this dataset is around 97.4%.

4.2 Accuracy measurement
The accuracy measurement of eye location is calculated in normalized error which records
the maximum error of both eye points. It is introduced by Jesorsky et al. [14] and is defined
as follows:

e =
max(dl ,dr)

d
(4)

where dl is the Euclidean distance between the detected left eye center and the one in the
ground truth. dr is the corresponding Euclidean distance for the right eye. d is the Euclidean
distance between the left and right eyes in the ground truth. The normalized error of e≤ 0.05
means the localization result should be within the length of pupil to the ground truth.

4.3 Qualitative results
Table 1 shows a comparison of maximum normalized error in the BioID database. Con-
sidering the low-resolution property of the images in this dataset, the normalized error of
e≤ 0.05 means that the Euclidean distance between the detected eye center and labeled eye
center distance should be within 2 to 3 pixels. The proposed method achieved 92.8% accu-
racy which outperforms the state-of-the-art methods by 1.6%. The boost of performance is
owing to the utilization of the easily detected illumination changes between the iris and sclera
and the design of the hierarchical adaptive convolution framework. The importance of iris
circulary boundary in eye center localization has been extensively studied in [5, 8, 21, 22].
The new results in this paper show that better performance can still be achieved via carefully
designing the convolutional kernels to remove the circular boundary assumption.

Table 1: Comparison of maximum normalized error in the BioID database.
Method e≤ 0.05

Timm2011 [21] 82.5%
Valenti2012 [22] 86.1%
Markus2014 [19] 89.9%
George2016 [10] 85.1%
Daugman1993 [8] 80.3%

Cai2017 [5] 86.8%
Gou2017 [11] 91.2%
Proposed HAC 92.8%
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Table 2 shows a comparison of maximum normalized error in the GI4E database. Com-
pared to the BioID database, its resolution is higher and most of the methods achieved above
90% accuracy with the normalized error of e ≤ 0.05. The proposed method has achieved
99.5% accuracy which outperforms the highest reported accuracy by 1%. In this database,
the normalized error of e ≤ 0.025 corresponds to the 2 to 3 pixels distances error. HAC
achieved 86.4% accuracy which outperforms existing methods by a large margin. Consider-
ing that the dataset is constructed for the task of gaze estimation, we argue that the normal-
ized error of e ≤ 0.025 is a better evaluation criteria since even one pixel’s deviation might
result in several degrees gaze angle deviation.

Table 2: Comparison of maximum normalized error in the GI4E database.
Method e≤ 0.025 e≤ 0.05

Timm2011 [21] − 92.4%
George2016 [10] 69.1%∗ 89.3%

Baek2013 [3] 57.4%∗ 81.4%
Villanueva2013 [24] − 93.9%

Gou2017 [11] − 94.2%
Skodras2015 [20] − 98.5%

Proposed HAC 85.7% 99.5%
∗ means data is estimated from the curve in [10, 11].

By combining Table 1 and Table 2, we can see that the cascade based regressor pro-
posed by Geo et al. [11] achieved the relatively high accuracy on the low-resolution dataset,
however its performance on the high-resolution dataset drops dramatically. The decrease
of the performance might due to its over-fitting in the low-resolution images. On the other
hand, HAC achieves stable and leading performance on both low-resolution images and
high-resolution images.

Fig. 2 shows some snapshots of accurately localized eye center in the two databases. The
green dots and red dots represent the ground truth and the localized eye center respectively.
In the situation where the localized eye center is exactly same with the ground truth, we
can only observe the red dots. As we can see from the figure that although the eyes are
partly occluded by the eyelids and glasses, HAC can still locate the eye centers accurately.
However, for those images where the faces are wrongly detected or there are strong glints
that occlude most of the eyes, HAC will not be able to locate accurately. Fig. 3 shows some
wrongly detected eye centers. The firstly line of the image shows some wrong judged cases
due to the labeling errors of the dataset. The second line shows some localization errors due
to the strong glints of the glasses, the closure of the eyes and wrongly detected faces.

The designed novel hierarchical kernels not only improve the localization accuracy to a
large extend, they also greatly reduce the computational cost compared to IDO. To evaluate
the computational performance, HAC is implemented in C++ in the aforementioned code
link. The average processing time to locate the two eye centers is around 1ms on a laptop
equipped with Intel Core i7-8550U CPU.

5 Conclusion
This paper proposed a hierarchical adaptive convolution method to localize the eye center
accurately and quickly. Novel hierarchical kernels which model different viewing angles
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Figure 2: Snapshots of the successful localization results.
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Figure 3: Snapshots of the failed localization results. For the BioID dataset, the localization
result considered to be failed if the normalized error is bigger than 0.05.

of the iris were proposed to improve the localization accuracy. The convolution operation
greatly reduces the computational cost and enables the algorithm to be integrated into real-
time applications. The high accuracy and low combinational cost property make HAC an
ideal solution for eye center localization in the common human-machine interaction scenario.
HAC was shown to achieve a large performance improvement on two most commonly used
eye center localization datasets, covering both low-resolution conditions and high-resolution
lab environments. Future direction will focus on exploring its performance in more practical
human-robot interaction scenarios.
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