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High-throughput designs of hash functions are strongly demanded due to the need for
security in every transmitted packet of worldwide e-transactions. Thus, optimized and

non-optimized pipelined architectures have been proposed arising, however, important
questions. Which is the optimum number of the pipeline stages? Is it worth to develop
optimized designs or the same results can be achieved by increasing only the pipeline
stages of the non-optimized designs? The paper answers the above questions studying

extensively many pipelined architectures of SHA-1 and SHA-256 hashes, implemented in
FPGAs, in terms of throughput/area factor. Also, guides for developing efficient security
schemes designs are provided.

Keywords: Hash function, Message Authentication Code, Pipeline, FPGA, Security

1. Introduction

High-throughput designs of security schemes are highly needed nowadays, since

security services have become an inseparable feature of almost all e-transactions.

A crucial module of these schemes is authentication, which is performed using a

cryptographic hash function. Hash functions are widely used as sole cryptographic

modules or incorporated in hash-based authentication mechanisms like the Hashed

Message Authentication Code (HMAC).1

Applications that usually employ hash functions include the Public Key Infras-

tructure (PKI),2 Secure Electronic Transactions (SET),3 the IEEE 802.16 standard

for Local and Metropolitan Area Networks,4 and digital signature algorithms, like

DSA,5 which are used to provide authenticating services in applications such as elec-

1
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tronic mail and data interchange, electronic funds transfer, software distribution,

etc. Hash functions are also used in Secure Sockets Layer (SSL)6 and Transport

Layer Security (TLS),6 which are protocols for establishing authenticated and en-

crypted sessions between servers and clients. Also, hash functions are required to

provide authentication services to Virtual Private Networks (VPNs).7

Lately, further attention has been drawn to hash functions because of their

usage in the Internet Protocol Security (IPSec).7 IPSec is a mandatory feature

in the forthcoming Internet Protocol version 6 (IPv6),8 which will be massively

adopted.9 In order to provide a high of security, IPSec incorporates encryption and

authentication schemes. Encryption is provided through the block cipher algorithm

AES,10 whereas authentication is offered through HMAC that is built on top of a

standard cryptographic hash function (e.g., MD-5 or SHA-1).11

While security problems have been discovered in SHA-112 and MD-513 hash

functions, the problems of SHA-1 are considered as non-critical. Thus, except SHA-

1, the SHA-2 hash family is expected to be adopted as a secure solution in security

schemes (e.g., IPSec/IPv6) in the forthcoming years.14 Also, the US National In-

stitute of Standards and Technology (NIST), has established a competition for

developing the new hash function standard (SHA-3), to be finalized by the end of

2012.15 As the transition to a new standard does not happen immediately, SHA-1

and SHA-2 families are expected to continue being used in near- and medium-future

applications.14

IPv6 (and other applications that need cryptographic processing in every trans-

mitted data packet) have to be able to operate at high transmission rates, for

instance over 30 Gbps which is currently offered by optical networks.16 This is pro-

hibited by the included security schemes17 that usually incorporate a hash function

and a block cipher algorithm. Hence, hardware implementations are needed in or-

der to achieve high-throughput processing. Many designs for the AES algorithm

implemented in FPGA or ASIC technologies have been proposed achieving high

throughput values ranging from 20 up to 70 Gbps.16,18 The same holds for SHA-1

and SHA-2 functions where design methodologies and optimized implementations

on FPGAs have been introduced achieving throughputs up to 11Gbps.19,20,21,22

In order to improve delay and throughput, pipeline-based designs have been used

extensively. Specifically, in the vast majority of the hash functions implementations,

a four-stage pipeline architecture is adopted.19,20,21,22,23,24,25,26,27,28,29 The most

possible reason for this decision is that the SHA-1 function uses four different non-

linear functions for the operations that constitute the main hash calculations (cf.

Section 3). In these designs, each non-linear function is used for a certain number

of the iterations of the algorithm. This results in a straightforward solution that

uses four pipeline stages, avoiding extra circuitry and complex control logic while

keeping the area budget low. This design choice was also adopted for the design of

SHA-2 family, although the non-linear functions are the same for all iterations of

the algorithms.

However, no study has ever been performed on the optimum number of pipeline
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stages in the hash function designs, in terms of its impact on major design met-

rics such as delay, throughput, and throughput/area ratio. Therefore, there is no

concrete justification that the 4-stage pipeline architecture is the optimal choice

for achieving the best implementation for the SHA-1 hash function or SHA-2 hash

family.

Also, as complex design methodologies and techniques have been proposed,19,20

to develop high-throughput optimized designs for the aforementioned hash func-

tions, an additional question arises, whether all these methods are worth their

complexity. In other words, could we achieve the same or even better results, in

terms of delay, throughput, and throughput/area ratio by simply increasing the

number of pipeline stages of the non-optimized designs? If yes, what would be the

impact on the area? Moreover, in the case of the optimized designs, what is the

optimal number of pipeline stages?

The paper answers all the above questions by performing a comparative anal-

ysis of several pipelined versions of the SHA-1 and SHA-256 hash functions im-

plemented on various Xilinx FPGA families and studying the trade-offs in terms

of performance (delay), throughput, and throughput/area factors. This analysis

is performed for base (non-optimized) designs, which are implementations derived

straightforward as implied by the standard11 and also for the optimized designs

of SHA-1 and SHA-256 hash functions, as proposed in.19,20 It should be noticed

that the SHA-256 function was selected from the SHA-2 family as it is the most

widely used function of this family. The above analysis can be very useful during

the development of complex security schemes that include a hash function as a

major module, since it specifies the bounds of the hash functions designs in terms

of throughput and throughput/area factors in the considered FPGA families. For

that reason, in companion with existing studies for the AES algorithm,16,30,31 de-

sign guides are also provided towards the development of high-throughput designs

for advanced security schemes like IPSec.

The rest of the paper is organized as follows: Section 2 presents the related work,

while Section 3 provides the SHA-1 and SHA-256 hash functions background. Sec-

tion 4 describes the SHA-1 and SHA-256 base and optimized architectures. Section

5 provides the experimental results performed on a large number of pipelined de-

signs of the above hash function architectures implemented on a series of Xilinx

FPGA families, and in Section 6 the performance trade-offs investigation for the

base and optimized architectures of SHA-1 and SHA-256 hash functions are explic-

itly discussed. In Section 7, the design guides suggested by the trade-offs’ investi-

gation along with a general discussion are presented. Finally, Section 8 concludes

the paper.

2. Related Work

SHA-1 and SHA-2 hash standards were announced by NIST in 2002.11 Since then

a variety of hardware implementations has been proposed. Existing studies ini-
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tially proposed hardware implementations of SHA-1 and SHA-256 functions with-

out paying much effort to throughput.32,33 There are also designs that do not apply

pipeline,21,34,35,36,37,38 as they were mainly targeting area or focusing on the opti-

mization of the transformation round only.

Later on, more complex implementations were proposed applying advanced de-

sign techniques and methods such as pipeline, hardware reuse, and parallelism

exploitation.23,24,25,26,28,29 However, the growing need for high throughput cryp-

tographic designs led to studies proposing more sophisticated methods to opti-

mize hardware implementations of the hash mechanism, such as algorithmic- and

system-level optimization techniques (e.g., retiming, pre-computation, resource re-

scheduling, and loop-unrolling) which aim to optimize both the transformation

round (as explained in Section 3) of the hash function and the whole system

design.19,20,21,22

There are also many commercial Intellectual Property (IPs) designs implement-

ing the SHA-1 and SHA-256 cores that incorporate certain optimization techniques,

which are not revealed for commercial reasons.39,40,41 However their performance

lags that of designs offered by.19,20

All previously published works on SHA-1 and SHA-2 implementations that em-

ployed pipelining incorporate a pipeline of four stages; however, none of these works

justifies the selection. Instead, the authors simply adopt a four-stage pipeline archi-

tecture by using four operational rounds, separated by pipeline registers as guided

by the logic variation of SHA-1 algorithm. The application of 4-stage pipeline, when

targeting high-throughput hardware designs, was also adopted for SHA-2 hash fam-

ily algorithms without any motivation about this decision.

It has to be stressed that, no previous work has been presented that explores

the number of the employed pipeline stages in SHA-1 and SHA-2 hash functions’

designs as a design optimization parameter that affects performance, throughput,

and throughput/area trade offs. A similar work exists for the AES block cipher

algorithm. Specifically, the throughput/area trade-offs were explored for a wide

range of pipelined implementations for ASIC16 and FPGA technologies.30,31 Thus,

in conjunction with these works, the proposed one can be used as a designers guide

for developing optimized designs in terms of performance, throughput,

and area of widely used security schemes and especially for the whole IPSec,

used in IPv6.

3. SHA-1 and SHA-256 Hash Function Background

A hash function, H(M), operates on an arbitrary-length message, M , and returns

a fixed-length output, h, which is called the hash value or message digest of M . The

aim of hash function is to provide a “signature” of M that is unique. Given M it is

easy to compute h if H(M) is known. However, given h, it is hard to compute an

M such that H(M) = h, even when H(M) is known.

Hash functions are iterative algorithms, which perform a number of iterations
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called transformation rounds or operations, which include identical or slightly vary-

ing arithmetic and logical computations. As shown in Figure 1, the hash func-

tion’s computation consists of two main stages, namely the preprocessing and

computation.11

In the preprocessing stage, the input message, M , is padded to ensure that

the size of the padded message is a multiple of 512 or 1024 bits (according to

the employed algorithm). Then, the padded message is parsed into k-bit blocks

and the initial hash values, H(0), are set. In the computation stage, a message

schedule is performed on the k-bit blocks producing the Wt values, which each of

them is fed to the corresponding t-th iteration of the transformation round. The

transformation round takes as input the corresponding Wt value, a constant value

Kt defined by the standard, and the H(0) values (in the first iteration) or the values

generated during the previous iteration and then performs word-level processing,

which includes additions, non-linear function, and logical computations. Finally,

after a certain number of iterations, the hash value or message digest is generated.

Fig. 1. Hash function computation

Concerning the SHA-1 function, the sizes of the k-bit block, word, and message

digest equals to 512, 32, and 160 bits, respectively, whereas 80 iterations of the

transformation round are required. Regarding the SHA-2 hash family, the most

widely-used algorithm is the SHA-256 hash function for which the sizes of the k-

bit block, word, and message digest equals to 512, 32, and 256 bits, respectively,

whereas it requires 64 iterations. For more details the reader is referred to.11
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4. SHA-1 and SHA-256 Base Architectures

In this section, the base and the optimized architectures for the SHA-1 and SHA-256

functions, which are used next in the comparative study, are presented. Specifically,

we present the implementation of the transformation round for each function and

the whole organization of each architecture. For the base versions, the transfor-

mation round is implemented exactly as described by the standard without per-

forming any optimization. For the optimized versions, the architectures of 19,20 are

used since they are among the best published designs in terms of throughput and

throughput/area.

4.1. Base architectures

The base transformation round of SHA-1 hash function is depicted in Figure 2.

During the t-th iteration (t = 1, 2, . . . , 80), it receives five (at−1, . . . , et−1) 32-bit

words, performs the computations shown in Figure 2, and produces the output

values (atet). It should be noticed that during the first iteration the initial values,

which are provided by the standard, are used. Also, the transformation round takes

as input the Wt−1 value produced by the message schedule unit and the Kt−1

constant value also provided by the standard.11

The computations include modulo 232 additions, rotations, ROTLn, which corre-

spond to n-times circular left rotation, and the function ft(x, y, z), which comprises

4 non-linear functions, which are given bellow:

ft(x, y, z) =


Ch(x, y, z) = (x ∧ y)⊕ (x̄ ∧ y) 0 ≤ t ≤ 19

Parity(x, y, z) = x⊕ y ⊕ z 20 ≤ t ≤ 39

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z) 40 ≤ t ≤ 59

Parity(x, y, z) = x⊕ y ⊕ z 60 ≤ t ≤ 79

(1)

where ∧ and ⊕ stand for logical AND and XOR operations respectively.

The base implementation of SHA-256 transformation round is shown in . It

receives as inputs eight 32-bit words, (at−1, . . . , ht−1), the value Wt−1, and the

constant value Kt−1, then performs the computations shown in Figure 3, and pro-

duces the values (at, . . . , ht) after 64 iterations. Similar to SHA-1, the initial values

are used in the first iteration. The incorporated computations include modulo 232

additions and four non-linear functions of which Ch(e, f, g) and Maj(a, b, c) are the

same as those of SHA-1 function (provided in Eq. (1), whereas the two new ones

σ256
0 (x) and σ256

1 (x) are given in Eq. (2).

256∑
0

(x) = ROTR2(x)⊕ ROTR13(x)⊕ ROTR22(x)

256∑
1

(x) = ROTR6(x)⊕ ROTR11(x)⊕ ROTR25(x)

(2)



July 8, 2015 20:0 WSPC/INSTRUCTION FILE paper

Area-Throughput Trade-offs for SHA-1 and SHA-256 Hash Functions’ Pipelined Designs 7

Fig. 2. SHA-1 hash function Base transformation round

where ROTRn means n-times circular right rotation.

The general pipeline architecture for the base SHA-1 and SHA-256 hash func-

tions is shown in Figure 4. It consists of n pipeline stages each one including a round

unit i (i = 1, 2, . . . , n), which corresponds to the transformation round (Figure 2

and Figure 4), a W unit for producing the Wt values, and a constant memory, K,

(organized as registers) for storing the constant values. Also, pipeline registers exist

at the output of each round unit. For SHA-1, the W unit comprises XOR trees,

whereas for SHA-256 it is realized by adders, rotators, and gates, as implied by the

standard.

When the number of pipeline stages is smaller than the number of the algo-

rithm’s iterations, each stage executes more than one iteration. Thus, multiplexers

are used in front of each stage to feed back the outputs of the current stage or to

receive the output of the previous one. Also, m 32-bit adders (m = 5 for SHA-1

and m = 8 for SHA-256) are used to add the result of the n-th pipeline stage with

the initial values as implied by the standard.

The control logic includes a set of counters each of which is used for addressing
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Fig. 3. SHA-256 hash function Base transformation round

the corresponding constant memory, controlling the multiplexer in front of the next

stage round unit, and activating the counter of the next stage. Depending on the

pipeline version and the implemented hash function, a counter in pipeline stage i

counts up to the value required for each round unit to complete its computation,

while the counter’s output is used for addressing the corresponding constant mem-

ory. After the computation’s completion of stage i, the counter is deactivated and

the tcroundi and tcccounti signals are generated to trigger the next pipeline stage.

Analyzing the architecture of Figure 4, the critical path is located in the round

unit. The critical paths of the base rounds are shown with darker components in

Figure 2 and Figure 3. The critical path of SHA-1 consists of three adders, a non-

linear function and a multiplexer, whereas the SHA-256 one consists of four adders

and a multiplexer. The multiplexers correspond to those in front of each round unit

(Figure 4). These critical paths have also been verified by measurements performed

on the implementations of the architecture.

As discussed in the introduction, all existing pipeline designs adopt a 4-stage

architecture, with the hash value of the first message block being produced after
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it has been processed in each pipeline stage for 20 iterations (spending 20 clock

cycles) resulting in a total of 80 iterations, as long as SHA-1 is concerned. Due to the

pipelined design, the hash value of each subsequent message block is produced after

20 cycles; thus, compared to the non-pipelined design, throughput is quadrupled.

The same holds for SHA-256 with four pipeline stages. Each stage operates 16

times on the message block and after 64 clock cycles (64 iterations) the hash value

is produced. An initial latency of 64 clock cycles is spent to produce the first message

block and after that a new hash value is produced after 16 clock cycles for each

subsequent message block.

4.2. Optimized Architectures

In 19,20 advanced optimization methodologies led to optimized SHA-1 and SHA-

256 designs, which, when compared to the base ones, improve the throughput/area

metric by 160% and 145% for SHA-1 and SHA-256, respectively.

These methodologies exploit specific properties of hash functions and incor-

porate optimization techniques such as loop un-rolling, spatial pre-computation

and resource re-ordering, retiming, temporal pre-computation and circuit-level op-

timization (including the use of Carry Save Adders - CSAs).

In the optimized designs of the transformation round, which are shown in Fig-

ure 5 and Figure 6, due to the applied balanced loop-unrolling technique, two

iterations are unrolled and merged in a new mega transformation round. In the

mega transformation round, two iterations are performed in a single clock cycle,

so the final hash values are derived after half the number of operations (and half

the number of clock cycles), compared to the non-optimized designs. Concerning

the transformation rounds implementation (Figure 5 and Figure 6), due to the

applied spatial and temporal pre-computation techniques,19,20 it is composed by

the pre- and post-computation units. The purpose of pre-computation unit is to

compute several clock cycles before intermediate values which are required by the

next iterations of the transformation improving in that way the critical path and

throughput. All the above result to much higher throughput designs that improve

also the throughput/area cost factor and set the current state-of-the-art in the field.

The general pipeline architecture of the optimized designs is shown in Figure 7.

It is similar to that of Figure 6with some variations. It includes an extra unit called

initialization unit, required by the applied optimization techniques. Its purpose is

to provide the required initial values which are needed due to the applied loop-

unrolling, retiming, and temporal and spatial pre-computation techniques. Also,

due to the loop-unrolling by two operations, each Wunit computes two W values

per clock cycle. Therefore each Wunit includes two identical modules, a 16 × 32-

bit shift register, and a 4-to-2 multiplexer. Also, as the values Wt+4 + Kt+4 and

Wt+5 + Kt+5 are used in the mega block of SHA-1 (Figure 5) extra adders and

registers are used to feed these values to each Round unit. The same also holds

for the optimized SHA-256 block (Figure 6), where the values Wt+3 + Kt+3 and
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Fig. 4. General pipeline architecture for base SHA-1 and SHA-256 hash functions

Fig. 5. SHA-1 hash function - Optimized transformation round
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Fig. 6. SHA-256 hash function - Optimized transformation round

Wt+4 +Kt+4 are used.

Compared to the base designs, the critical paths of SHA-1 and SHA-256 op-

timized transformation rounds are shorter as indicated by the darker blocks in

Figure 5 and Figure 6 The critical path of the SHA-1 optimized architecture in-

cludes two adders and one non-linear function (two similar paths exist, as shown

in Figure 5) and a multiplexer, whereas the critical path of SHA-256 includes two

non-linear functions, two CSAs, and a multiplexer. When four pipeline stages are

used, the optimized SHA-1 core is able to compute a message block’s hash value in

40 cycles,19 while the SHA-256 one in 32 cycles.20
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Fig. 7. General pipeline architecture for optimized SHA-1 and SHA-256 functions

5. Experimental Results

The base and optimized architectures for the SHA-1 and SHA-256 functions

were captured in VHDL. A set of different designs with varying number of ap-

plied pipeline stages was implemented in four Xilinx families, namely the Vir-

tex (xcv1000-6FG680 device), Virtex E (xcv3200e-8FG1156 device), Virtex II

(xc2v6000-6FF1517 device for SHA-1 and xc2v6000-5FF1517 device for SHA-256),

and Virtex 4 (xc4vlx100-12FF1148 device). These devices were chosen in order to

investigate the trade-offs of the SHA-1 and SHA-256 pipelined architectures in a

wide range of FPGA technologies, thus offering a more complete study.

Table 1 summarizes the key characteristics for each device. We note that this

summary should not be used as a basis for direct comparison of the implemented

designs on different families. Such as comparison is misleading and not fair because

the FPGAs are quite different: one family is targeting low-power implementations,

another family has more complex LUTs, and yet another one has even CLBs with

multiple LUTs.

Table 1. FPGA characteristics

Type System gates CLB array Cells and slices

Virtex (xcv1000-6FG680 device) 1,124,022 64× 96 27,648 cells
Virtex-E (xcv3200e-8FG1156 device) 4,074,387 102× 156 73,008 cells
Virtex II (xc2v6000-6FF1517 device) 6 million 96× 88 33,792 slices

Virtex-4 (xc4vlx100-12FF1148 device) n.a. 192× 64 110,592 cells

Note: Information based on the datasheets available at http://www.xilinx.com/support/

documentation/data sheets/{ds003,ds022,ds031,ds112.pdf}.

The XST synthesis tool of Xilinx ISE Design Suite (version 13.1) was used for
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mapping the designs to the FPGAs devices. The functionality of the implementa-

tions was initially verified via Post-Place and Route simulations using the Model

Technologys ModelSim simulator. A large set of test vectors apart from those pro-

vided by the standard were used. Also, downloading to development boards and

additional functional verification were performed via the ChipScope tool of Xilinx.

The number of the applied pipeline stages in each hash function’s design that has

to be evaluated, depends on the number of the iterations that this hash function

performs. If the number of iterations is divisible by the number of the applied

pipeline stages then all the pipeline stages will be fully exploited without need

for inserting pipeline stalls (where some pipeline stages do not process any values).

Thus, only these numbers of the applied pipelined stages must be evaluated through

development of the corresponding hash functions’ pipelined designs so as to define

the optimum version in each case. In all other versions of pipelined designs there will

be, in certain time instances, idle pipeline stages which results to severe degradation

of the hash functions design performance.

Using this fact as a design guide, for the SHA-1 base design, ten pipeline versions

were developed. These versions correspond to the ones using 1, 2, 4, 5, 8, 10, 16,

20, 40, and 80 pipeline stages, called as SHA1base-p1, SHA1base-p2, SHA1base-

p4, etc. Similarly, for the SHA-256 base hash function, 1, 2, 4, 8, 16, 32, and 64

pipeline stages were developed, which are called as SHA256base-p1, SHA256base-

p2, SHA256base-p4 etc.

In the optimized architectures, due to loop-unrolling, each pipeline stage per-

forms two iterations in one clock cycle. This way, the hash value for SHA-1 is

produced after 40 iterations. Following a similar approach eight versions with 1, 2,

4, 5, 8, 10, 20 and 40 pipeline stages were developed for the SHA-1 optimized hash

function, which are called as SHA1opt-p1, SHA1opt-p2, SHA1opt-p4, etc. Simi-

larly, for the SHA-256 optimized architecture, six versions with 1, 2, 4, 8, 16, and

32 pipeline stages were developed and evaluated which are called as SHA256opt-p1,

SHA256opt-p2, SHA256opt-p4, etc.

In some pipelined versions of SHA-1, more than one non-linear functions must

be incorporated in the round unit. This is because each one of the four non-linear

functions of SHA-1 is used only for 20 iterations. In certain cases of pipelined

designs each transformation round performs a number of iterations that does not

divide 20 completely (without remainder), leading to the need for more non-linear

functions in each round unit. For instance, at the four-stage pipeline version each

stage (round unit) performs exactly 20 iterations, thus incorporating only one non-

linear function. However, if a five-stage design is adopted, then each stage executes

16 iterations. Hence, except the first round unit, the remaining ones contain two

non-linear functions In this case, extra multiplexers are inserted in the round unit

to choose the correct output among all included non-linear functions. Moreover,

a more complex control unit is needed. These SHA-1 pipelined versions consume

extra area leading to degradation of throughput/area factor. This does not happen

for the SHA-256 function as it uses the same non-linear function in all iterations.
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Fig. 8. SHA-1 Base Architecture

The above pipelined designs were implemented in the previously mentioned

FPGA technologies and measured in terms of frequency, throughput, area, and

throughput/area cost factor. The throughput is calculated as

throughput =
#bits× f

#cycles
(3)

where #bits refer to the number of the processed bits, #cycles corresponds to the

required clock cycles between successive messages to generate each message digest,

and f is the operating frequency of the design.

In Figures 8, 9, 10, 11, the experimental results in terms of frequency, area

(FPGA slices), and throughput for all the considered pipelined designs (base and

optimized) of SHA-1 and SHA-256 functions for four different FPGA devices are

presented. It must be stressed that these values are obtained after downloading

the designs to the development boards. Also, the speed grade of the used devices

(which significantly affects the achieved operating frequency) during synthesis is

provided in parenthesis for each FPGA family. Moreover, the Optimization Effort

(opt level) constraint of the Xilinx ISE synthesis tools was set to High and the

Optimization Goal (opt mode) was set to Speed. Experimental results were also

performed with Optimization Goal (opt mode) set to Area. The obtained results

showed minor improvements of consumed area but significant reduction of achieved

frequency. Overall the results for throughput/area factor were always better when

using speed as the optimization goal. For this reason all experimental results were

obtained using speed as the optimization goal.

For the cases that the design does not fit in the FPGA device, the corresponding

cell in the above Figures appears empty. Also, along with the area, the device

utilization is provided in parenthesis.

6. Trade-offs Study

In this section the obtained experimental results of the implemented pipelined ver-

sions of SHA-1 and SHA-256 hash functions are analyzed in terms of throughput,

area, and throughput/area factors along with the trade-offs obtained for the various
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Fig. 9. SHA-256 Base Architecture

Fig. 10. SHA-1 Optimized Architecture

Fig. 11. SHA-256 Optimized Architecture

numbers of pipeline stages. The throughput/area metric is the fairer factor as it

relates the achieved throughput with the consumed area.

As mentioned in Section 4, the critical path of the architecture lies inside the

round unit and it should be, somewhat, constant regardless of the number of the

pipeline stages. This happens because the rounds units are identical (except for

the cases in SHA-1 where more than one non-linear function is integrated in the

round) and the architecture is modular. Specifically, the architecture consists of

tiles that include the round and W unit, the local registers (memory), and the

counter, which are repeated in the horizontal direction. However, the result Figures

reveal a variation of the achieved frequency, caused by the different routing delays

of each implementation. Indeed, this becomes more pronounced in the Virtex device

whose interconnection network is not as rich as the other families. Also, in SHA-1

designs frequency varies more when the round unit includes more than one non-
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linear function and the required multiplexer, as discussed earlier.

For all the considered FPGA families, throughput increases almost linearly with

the number of pipeline stages. This is justified considering Eq. (3), where the dom-

inant factor is the number of clock cycles, which decreases linearly as the number

of pipeline stages increases, whereas the contribution of the frequency variations in

changing drastically the linearity is small. Also, both in SHA-1 and SHA-256 imple-

mentations, the frequency and throughput are improved when moving to modern

FPGA families.

Concerning the occupied area there is no linear relation with the number of

pipeline stages due to the special nature of the FPGA devices. As it is known, each

FPGA slice contains one or more LUT, multiplexers, and flip-flops to implement

logic. Thus, as the number of the pipeline stages increases, the unused resources of

the already employed slices can be also used to implement the extra logic, which

results in a non-linear increase of area. The tendency it that as the pipeline stages

increase, a better area resources utilization is achieved leading to corresponding

increased throughput/area factor.

6.1. Trade-offs of Base Designs

In Figure 12, the throughput/area graphs for the base SHA-1 and SHA-256 imple-

mentations are provided for the number of pipeline stages discussed in Section 5. In

addition, in Figure 13 the percentage improvements of throughput/area factor over

the non-pipelined (one-stage) implementation are illustrated. The improvement I

ratio is computed based on Eq. (4), where T is the througput, A the area, and k is

the number of pipeline stages.

I =
Tk/Ak

T1/A1
(4)

As shown in Figure 12, for SHA-1 base pipelined designs, throughput/area in-

creases for SHA1base-p4, SHA1base-p8, SHA1base-p40, and SHA1base-p80 designs

in all devices. Moreover, as shown in Figure 13, the throughput/area ratio does

not improve linearly although the whole architecture is modular. Specifically, the

throughput/area improvement over the non-pipelined design is reduced for the

SHA1base-p5 and SHA1base-p10 designs, compared to all other designs. This is

explained by the fact that in these cases the transformation round (Round unit

in Figure 4) contains more than one non-linear function and extra multiplexers,

which results to an area increase, frequency decrease and correspondingly to re-

duced throughput/area values.

For all FPGA families, regarding SHA-1, the design with eight pipeline stages

achieves higher throughput/area values than the one with 4 pipeline stages, as

shown in Figure 13. Specifically, the throughput/area improvements of the eight-

staged pipelined designs vs. the four-staged ones over the non-pipelined designs

is about 8%, with the eight-stage pipeline design being the best. The design with



July 8, 2015 20:0 WSPC/INSTRUCTION FILE paper

Area-Throughput Trade-offs for SHA-1 and SHA-256 Hash Functions’ Pipelined Designs 17

Fig. 12. Base architectures Throughput /Area: SHA-1 (a), SHA-256 (b)

Fig. 13. Base architectures - Throughput/Area improvements over 1-stage pipeline design: SHA-1
(a), SHA-256 (b)

eight pipeline stages is also area-efficient (see Table 8), especially in newer and

more spacious FPGA devices like Virtex-4, as it occupies 3,930 of 49,152 slices

(8% area utilization). The 16- and 20-stage pipelined designs also have increased

throughput/area improvement and may be considered as area efficient in certain

cases.

This leads to a first conclusion: more pipeline stages can be utilized to achieve

not only higher throughput, which is required by the security protocols integrated

in modern communication protocols like IPv6, but also achieve higher through-

put/area values and thus better exploitation of the utilized area, without violating

the area constraint. This is important as it turns over a critical design choice that

has been widely adopted in literature, where the four-stage pipeline dominates all

the published implementations for the SHA-1 hash function.

Moreover, the possibility of applying more than eight pipeline stages (e.g., 16 or

20 stages) should be carefully considered, as it greatly increases throughput, while it

also achieves improved throughput/area cost factor. Considering the rapid evolution

of the FPGA technology, the adoption of this design choice (if the whole system
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will fit in the selected device) cannot be rejected nowadays in certain applications.

However, as it can be seen in the Figures with the analytical results, a fully

pipelined design with 80 pipeline stages is unrealistic, as it cannot even fit in older

and smaller families (like Virtex), while in newer and more spacious but also more

expensive devices, (like those in Virtex 4 family), it takes up a significant portion of

the whole FPGA device (utilization 31,420 of 49,152 slices, almost 64%). Also, the

80-stage pipeline design achieves a high throughput that cannot be exploited by re-

alistic commonplace applications and thus it is not worth paying the corresponding

area penalty.

Comparisons of various SHA-256 base pipelined designs are a little different.

The plot lines of Figure 12(b) and Figure 13(b) clearly indicate that a better ratio

of throughput/area ratio is achieved when using more pipeline stages. Due to the

fact that the same non-linear function is used in all 64 iterations of the algorithm,

the plot lines of Figure 12(b) are smoother than those of SHA-1 base graph and do

not present extremes. This conclusion is independent of the adopted FPGA family.

In antithesis to the SHA-1 base hash function design, in SHA-256 base design, it

is the application of the four pipeline stages that results to higher throughput/area

ratio. This highlights the fact that this design decision is not straightforward, but

also depends on each certain implemented hash function and its design architecture.

Thus, this conclusion verifies the correctness of the decision of four-stage pipeline

implementations that has been widely adopted in the designs presented in literature,

which in case of SHA-256 has no clear motivation.

However, considering the evaluation results of Figure 12(b) and Figure 13(b), it

seems that designers can adopt more pipeline stages for their SHA-256 implemen-

tations, thus achieving much higher throughputs in cases that a certain application

calls for that extra throughput (e.g. IPSec). Nevertheless, in that case, they will

end up with a worse exploitation of the utilized area. In any case the designers can

use the performed analysis so as estimate the cost of each pipelined version and

based on the area penalty they are willing to pay they can determine how many

pipeline stages they will utilize in their SHA-256 implementation.

As it can be seen from the Table 9, the application of a fully pipelined design

with 64 pipeline stages is unrealistic since in older and smaller devices like Virtex

cannot even fit in the device, while in modern and larger but also more expensive

devices like those in Virtex-4 family takes up a very significant portion of the whole

area. As in SHA-1, the fully pipelined design achieves a very high throughput that

however, cannot be exploited by realistic nowadays applications and thus, it is not

worth paying this area penalty. It must be stressed that for both SHA-1 and SHA-

256 functions, the increased performances of the fully pipelined designs occur due

to the lack of multiplexers between the rounds, resulting to shorter critical paths

and thus higher operating frequencies.

In general, throughput and throughput/area improve significantly for all

pipeline versions when newer and bigger FPGA families are used, as expected.
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Fig. 14. Optimized architectures - Throughput /Area: SHA-1 (a), SHA-256 (b)

Fig. 15. Optimized architectures - Throughput /Area improvements over 1-stage pipeline design:

SHA-1 (a), SHA-256 (b)

6.2. Trade-offs of Optimized Designs

Concerning the achieved frequency, throughput and occupied area the conclusions

derived for the base designs also hold for the optimized designs of SHA-1 and SHA-

256 hash functions.

Due to the routing delay, the achieved frequency exhibits variations among the

applied pipeline stages; however, the throughput still increases almost linearly by

a factor equal to the number of the utilized pipeline stages. Also, for the reasons

explained in Section 6, the area increases non-linearly with the number of the

pipeline stages.

The performance trades-offs in terms of throughput/area cost factor of the var-

ious pipeline versions of SHA-1 and SHA-256 optimized architectures are shown in

Figure 14 and Figure 15. The same conventions as in Figure 12 and Figure 13 are

used to present the evaluation results and performance trade-offs.

Comparing the SHA-1 optimized designs, as shown in Figure 14 and Figure 15,

an increased performance in terms of throughput/area occurs for the SHA1opt-p4,
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SHA1opt-p8, SHA1opt-p20 and SHA1opt-p40 in all FPGA families. It is clear that

also in the optimized SHA-1 design the application of 8 pipeline stages results to

higher throughput/area ratio compared to the application of four pipeline stages.

Similarly to the base designs, the difference between SHA1opt-p4 and SHA1opt-p8

designs in terms of throughput/area improvement over the non-pipeline implemen-

tation is 8%, with SHA1opt-p8 being the best. Moreover, eight-stage pipeline design

is considered as area efficient (see Table 10) especially in modern FPGA families

like Virtex 4.

This leads to the same conclusions as earlier about the general design guide

towards adoption of more pipeline stages to hash functions’ designs either in their

conventional or optimized designs, leading to designs with increased throughput

but also with increased throughput/area factor. Also in this case, the design choice

of applying four pipeline stages, which has been widely adopted in literature, is

turned over.

As expected, the fully pipelined SHA-1 optimized design with 40 pipeline stages

dominates all optimized pipelined versions in all devices both in throughput and

throughput/area metrics. However, as it can be seen from Table 10, the application

of a fully pipelined design is unrealistic for exactly the same reasons that were

previously stated in Section 6 for the fully pipelined base SHA-1 and SHA-256

hash functions’ designs.

Comparisons among the various SHA-256 optimized pipelined designs are shown

in Figure 14(b) and Figure 15(b). The plot lines clearly indicate that also in this

case a better ratio of throughput/area is achieved when adopting more pipeline

stages.

This conclusion arises no matter what the implementation FPGA family is.

Moreover, because of the fact that the same non-linear function is used in all oper-

ations, the evaluation line once again presents no extrema. As in SHA-1 optimized

design and in antithesis with SHA-256 base design, the application of eight pipeline

stages is the best solution since it results to higher throughput/area ratio compared

to the application of 4 pipeline stages.

Taking in considerations the experimental results in Figure 15, it is clear that

for the same reasons stated previously designers should adopt more pipeline stages

to their SHA-256 designs achieving much higher throughputs and area exploitation.

This conclusion is very important since it is validated in three out of four cases that

were evaluated throughout this work. Hence, not only does it turns over a design

decision that has been widely adopted in literature, but also leads to the necessity

for performing a separate analysis for the pipeline stages that should be used in

high performance designs.

The possibility of applying more than eight pipeline stages (i.e., 16) should also

be carefully considered in this case, since it will greatly increase the throughput.

However, it will significantly increase the occupied area, leading (in most of the

cases) to overall decrease of the resulted throughput/area cost factor. However, as

it can be seen from the Table 11, the application of a fully pipelined design with 32
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pipeline stages is unrealistic since in older and smaller families like Virtex cannot

even fit in the device, while in newer ones like Virtex 4 takes up a significant portion

of the whole FPGA device. As in SHA-1 designs, the fully pipelined design achieves

a very high throughput that however, cannot be exploited by realistic everyday

applications and thus, it is not worth paying this area penalty.

6.3. Base vs. Optimized Designs

As it mentioned in Section 2, another question that arises is whether it is worthy

to spent effort and area to produce an optimized design or it should be better to

use the extra for applying more pipeline stages. In other words, in the base ar-

chitectures can we achieve the same throughput as in optimized architectures by

only increasing the pipeline stages and what happens with occupied area? The op-

timized SHA-1 and SHA-256 designs have been proposed, evaluated and shown to

have significant improvements over base designs when comparing their correspond-

ing four pipeline stages designs in 19 and 20. However someone could claim that

when adopting more pipeline stages, the complexity of the optimized designs might

result to decreased improvement. This way there could be certain cases where base

designs could perform better than the optimized ones for the same occupied area

by exploiting the extra area for more pipeline stages and not for optimizations.

In Figure 16 and Figure 17 the area and throughput graphs for the base and

optimized implementations of SHA-1 and SHA-256 hash functions in Virtex 4 and

Virtex II FPGAs are illustrated. Considering Figure 16(a), it is clear that the

optimized architecture is more efficient in terms of throughput and occupied area

than the base one, in all cases, regardless of the number of applied pipeline stages.

For instance, consider the SHA-1 five-stage base design. In this case, the achieved

throughput equals to 3.5 Gbps and requires about 2,600 slices. The same through-

put can also be achieved by the 2-stage optimized design. However, in this case

the consumed area equals to 1,300 slices which corresponds to 50% less occupied

area compared to the five-stage base design. Moreover, even increasing the pipeline

stages of the base architecture, the area penalty remains almost double. Specifi-

cally, for the ten-stage base implementation, the achieved throughput equals to 7

Gbps consuming 4,800 slices, whereas the 4-stage optimized design achieves higher

throughput (8.1 Gbps) with the half area (2,400 slices).

Similar conclusions are derived for the implementations on the older Virtex II

FPGA family. A throughput equal to 2.1 Gbps can be achieved by both five-stage

base and two-stage optimized designs. However, in the former case 2,600 slices are

required, whereas in the second the area penalty is 1,400 slices.

Concerning the SHA-256 function designs similar observations are derived

studying Figure 17. For instance, the eight-stage base implementation achieves a

throughput equal to 6.9 Gbps spending 6,300 slices, whereas the four-stage pipelined

optimized design achieves an 8.3 Gbps throughput and consumes about 4,000 slices.

Based on the above, it is clear that also the SHA-256 optimized implementa-
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Fig. 16. Area, throughput of SHA-1 hash function implementations: Virtex-4 (a), Virtex-II (b)

Fig. 17. Area, throughput of SHA-256 hash function implementations: Virtex-4 (a), Virtex-II (b))

Fig. 18. Throughput/area (T/A) ratio of optimized and base SHA-1 and SHA-2 hash function
implementations: Virtex,4 (a), Virtex,II (b)

tions always outperform the base ones when both throughput and area taken into

account. For clarity reasons a reduced number of pipeline versions are depicted in

Figure 16 and Figure 17. A more global picture is provided in Figure 18. In partic-
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ular, we provide graphs that represent the throughput/area ratios of the optimized

and base implementations for different number of pipeline stages. The vertical axis

represent the (throughput/area) opt / (throughput/area) base ratio.

It is evident, that the optimized designs outperform the base ones regardless

of the number of applied pipeline stages in both Virtex-4 and Virtex-II FPGA

families. In particular, for the SHA-1 hash function, the achieved throughput/area

of the optimized designs is 2.2 times higher than the base designs in both Virtex-4

and Virtex-II implementations. The same also holds for SHA-256 hash function,

where the throughput/area values of the optimized designs are 1.8 or 1.9 times

higher than the base ones in Virtex-4 and Virtex-II implementations.

Hence, based on the above analysis it is concluded that even though an extra

effort is paid for developing sophisticated designs such as those in 19,20, the benefits

are significant as the throughput/area metric is drastically increased compared to

the base implementations. It is obvious that in case of applications calling for extra

throughput, this should be gained by paying the area penalty for optimized designs

and not for applying more pipeline stages to our design, if area is considered as

constraint. The choice of applying more pipeline stages for throughput increment

should be considered only in the case where extra throughput is needed only after

the optimized designs have been deployed in the targeted security schemes.

7. Design Guides and Discussion

In previous sections an analysis of trade-offs in terms of area, throughput, and

throughput/area among the various pipelined versions of the base and the optimized

pipeline architectures of SHA-1 and SHA-256 hash functions was performed. Sev-

eral Virtex FPGA families have been used for implementing the various pipelined

designs making the above analysis holistic and fair leading to a number of important

conclusions.

First, the widely-adopted decision about the four-stage pipeline implementations

is turned-over. It has been shown that in most cases the designs with eight pipeline

stages outperforms that with the four pipeline stages in term of throughput/area

cost factor (and of course in terms of throughput as it is expected). Moreover it has

been revealed that the number of applied pipeline stages is a design parameter that

should be analyzed through validation in the targeted implementation device. This

way better exploitation of used area resources can be achieved but also applications

calling for high throughput can be efficiently realized in FPGAs through integration

of the optimum number of pipeline stages in each case.

Concerning the optimized designs it was derived that they clearly outperform

the base ones in all cases of applied pipelined stages, when both the throughput

and throughput/area factor are taken into consideration. This is also an important

conclusion as it recompenses the extra effort required to develop an optimized

design. Moreover, it occurs that if a certain amount of integration area can be

sacrificed for speeding-up a hash function’s design, this area should be used for
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algorithmic optimizations like those in 19 and 20 rather than for applying more

pipeline stages.

Also it was derived that designs with more than eight pipeline stages are also

very promising in certain cases, taking into account the evolution of the FPGA

technology. Specifically, designers aiming at achieving high throughput FPGA im-

plementations of SHA-1 and SHA-256 hash functions without having hard area

constraints could adopt the SHA1opt-p20 and SHA256opt-p16 choices. However

fully pipelined designs are unrealistic since in older and smaller families like Virtex

cannot even fit in the device, while in newer ones like Virtex-4 take up a signifi-

cant portion of the whole FPGA device. It must be considered that hash functions,

in most cases, are incorporated in a bigger security system like a security protocol

(e.g., IPSec). Hence, the hash function design itself has to have reasonable area con-

sumption. Those who are concerned about area but have to achieve an increased

performance design are encouraged to exploit SHA1opt-p4 and SHA256opt-p4. In

general, four-stage pipelined designs are the most balanced ones concerning the

throughput/area cost ratio in conjunction with their area consumption.

The work in this paper, in conjunction with similar works16,30,31 for AES can

be used as a designers’ guide for developing efficient designs in terms of perfor-

mance, throughput, and area of widely used security schemes in form of hardware

accelerators for network security schemes, e.g., IPSec for IPv6.

Specifically, IPSecs functionality and bottleneck is determined by the incorpo-

rated HMAC mechanism and block cipher algorithm. HMAC mechanism, utilizes

two hash cores in its implementations. Thus from Figures 9 and 11, a rough estima-

tion about the consumed area for HMAC (something more than 2 times the area

of each optimized hash function), and the achieved throughput (the same as the

incorporated optimized hash function, see Eq. (3)) occurs. It has been proved that

in any case only the optimized hash functions (that is those reported in Figures 9

and 11) should be considered for integration in high-throughput demanding appli-

cations. For example, after a thorough analysis of the AES implementation results

in 16,30,31, an IPSec designer can decide (depending on the specific development

board at his availability), how many pipeline stages will he adopt for his/her AES

and hash implementation, so as to end up with a balanced, high-throughput for

IPSec’s hardware accelerator.

On the other hand if a designer realizes a different security protocol which

incorporates different security mechanisms (i.e., based only on a single hash function

and not on HMAC mechanism), then the designer of this protocol will end up with

different design choices for optimization of the specific protocol’s design.

Finally an issue that should be clarified is that all pipelined designs of hash func-

tions in order to function correctly they must be supplied either directly with only

one-block messages or via a scheduler for messages that consist of more blocks.42

This is because in multi-block messages, the computation of every next block begins

from the hash value of the previous block and not from values (which initiate the
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computation of the first block only). For processing of multi-block messages with

pipelined hash designs, where m pipeline stages have been applied, a scheduler

should be used so as to enable full exploitation of all pipeline stages.

In such cases, m different messages can be concurrently processed, but each

pipeline stage must process blocks from m different messages at each time instance.

The scheduler will arrange consecutive feeding of the hashing core with blocks

from different messages and will synchronize the processing of the next block of a

message with the process finalization of the previous block of the same message in

the hash core. This way all the pipeline stages will always be fully exploited, and

thus the reported values of achieved throughputs are valid. The development of the

above scheduler, which can be easily implemented in software without affecting the

presented results, is outside of the aims and scope of this paper.

We note that there is no reason to implement the message scheduler in hardware.

The corresponding software component does not affect the operating frequency or

the achieved throughput and does not impose any security issues.20 To the best of

our knowledge, no published work considers a message scheduler as a viable option

for implementing hash functions in hardware.

8. Conclusions

In this paper, a detailed study and evaluation of various pipelined -base and

optimized- designs of SHA-1 and SHA-256 hash functions in terms of several perfor-

mance factors was presented. Certain design choices were emerged, while it was also

proved that optimized designs always outperform the base ones regardless of the

number of applied pipeline stages. The performed analysis, in conjunction with sim-

ilar works on AES, provides useful design guidelines, towards the implementation

of high throughput security schemes like IPSec.

Acknowledgments

The authors would like to thank Dr. Artemios G. Voyiatzis for typesetting support

and suggestions that improved presentation clarity.

References

References

1. FIPS 198, the keyed-hash message authentication code (HMAC) federal information
processing standard (2002), NIST Publication, US Dept. of Commerce.

2. SP 800-32, introduction to public key technology and the federal PKI infrastructure
(2001), NIST Publication, US Dept. of Commerce.

3. L. Loeb, Secure Electronic Transactions: Introduction and Technical Reference
(Artech House Publishers, 1998).

4. D. Johnston and J. Walker, Overview of IEEE 802.16 security, IEEE Security &
Privacy 2(3) (2004) 40–48.



July 8, 2015 20:0 WSPC/INSTRUCTION FILE paper

26 H.E. Michail, G.S. Athanasiou, V.I. Kelefouras, G. Theodoridis, T. Stouraitis, and C.E. Goutis

5. FIPS 186-3, the digital signature standard (DSS) federal information processing stan-
dard (2009), NIST Publication, US Dept. of Commerce.

6. S. Thomas, SSL & TLS Essentials: Securing the Web (John Wiley and Sons Publica-
tions, 2000).

7. SP800-77, Guide to IPSec VPNs (2005), NIST Publication, US Dept. of Commerce.
8. P. Loshin, IPv6: Theory, Protocol and Practice (Elsevier Publications: USA, 2004).
9. Available pool of unallocated IPv4 internet addresses now completely emptied the

future rests with IPv6 ICANN Press Release, (2011).
10. FIPS 197, advanced encryption standard (AES) (2001), NIST Publication, US Dept.

of Commerce.
11. Fips 180-3, secure hash standard (shs) (2008), NIST Publication, US Dept. of Com-

merce.
12. X. Wang, Y. L. Yin and H. Yu, Finding collisions in the full SHA-1, in Advances in

Cryptology–CRYPTO 2005 , (Springer, 2005), pp. 17–36.
13. H. Dobbertin, The status of MD-5 after a recent attack RSAlabs’ CryptoBytes, (1996).
14. B. Preneel, Cryptographic hash functions and the SHA-3 competition Talk in Asi-

aCrypt 2010 Conference, (2010).
15. NIST, Cryptographic hash algorithm competition - SHA-3 (2010).
16. A. Hodjat and I. Verbauwhede, Area-throughput trade-offs for fully pipelined 30 to

70 gbits/s AES processors, Computers, IEEE Transactions on 55(4) (2006) 366–372.
17. H. Michail, Cryptography in the dawn of IPv6 IEEE Goldrush Newsletter, (2010).
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