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Aspergillus fumigatus, a saprophytic filamentous fungus, is a serious opportunistic
pathogen of mammals and it is the primary causal agent of invasive aspergillosis
(IA). Mitogen activated protein Kinases (MAPKs) are important components involved in
diverse cellular processes in eukaryotes. A. fumigatus MpkC and SakA, the homologs
of the Saccharomyces cerevisiae Hog1 are important to adaptations to oxidative and
osmotic stresses, heat shock, cell wall damage, macrophage recognition, and full
virulence. We performed protein pull-down experiments aiming to identify interaction
partners of SakA and MpkC by mass spectrometry analysis. In presence of osmotic
stress with sorbitol, 118, and 213 proteins were detected as possible protein interactors
of SakA and MpkC, respectively. Under cell wall stress caused by congo red,
420 and 299 proteins were detected interacting with SakA and MpkC, respectively.
Interestingly, a group of 78 and 256 proteins were common to both interactome analysis.
Co-immunoprecipitation (Co-IP) experiments showed that SakA::GFP is physically
associated with MpkC:3xHA upon osmotic and cell wall stresses. We also validated the
association between SakA:GFP and the cell wall integrity MAPK MpkA:3xHA and the
phosphatase PtcB:3xHA, under cell wall stress. We further characterized A. fumigatus
PakA, the homolog of the S. cerevisiae sexual developmental serine/threonine kinase
Ste20, as a component of the SakA/MpkC MAPK pathway. The 1pakA strain is more
sensitive to cell wall damaging agents as congo red, calcofluor white, and caspofungin.
Together, our data supporting the hypothesis that SakA and MpkC are part of an
osmotic and general signal pathways involved in regulation of the response to the
cell wall damage, oxidative stress, drug resistance, and establishment of infection. This
manuscript describes an important biological resource to understand SakA and MpkC
protein interactions. Further investigation of the biological roles played by these protein
interactors will provide more opportunities to understand and combat IA.
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INTRODUCTION

Protein-protein interactions (PPI) are essential for the
accomplishment of many biological functions (Bork et al.,
2004). Interactome analyses can increase the understanding
of the biological interactions and cellular processes within an
organism. Recent high-throughput studies have obtained a
great amount of PPI data, including model organisms such
as Saccharomyces cerevisiae (Lam et al., 2015) and Aspergillus
nidulans (Bayram et al., 2012; Jaimes-Arroyo et al., 2015), as well
as plant pathogens Fusarium graminearum (Zhao et al., 2009),
Magnaporthe grisea (He et al., 2008), and Phomopsis longicolla
(Li et al., 2018). Bacteria, plants (Nishiyama et al., 2013), and
fungi (Aguirre et al., 2006) use conserved phosphorelay systems
to sense different types of environmental stresses. Mitogen
activated protein Kinases (MAPKs) are important components
involved in diverse cellular processes in eukaryotes (Pearson
et al., 2001). Filamentous fungi contain homologous MAPKs
which mediate specific cell signaling events and coordinated
the appropriate biological response. MAPK pathways control
the response to multiple stresses including, oxidative, osmotic,
heat shock, reactive oxygen species, nutrient limitation, and high
concentrations of heavy metals (Rispail et al., 2009; Hamel et al.,
2012; Turra et al., 2014).

In S. cerevisiae, MAPK Hog1p is involved in many aspects
of the osmotic stress response, such as ion transport across
cell membranes, cell cycle progression, and regulation of
transcription and translation processes (Martínez-Montañés
et al., 2010; de Nadal and Posas, 2015). In A. nidulans, a conserved
phosphorelay cascade activates the MAPK SakA/HogA (Vargas-
Perez et al., 2007) in response to oxidative, osmotic, and nutrient
starvation stresses (Kawasaki et al., 2002; Lara-Rojas et al., 2011).
SakA is a S. cerevisiae Hog1p homolog and in association with
the AtfA transcription factor was shown to be involved in
osmotic stress response (Hagiwara et al., 2009). In addition, SakA
phosphorylation is required for asexual and sexual development
(Lara-Rojas et al., 2011). During oxidative stress, SakA interacts
with AtfA, which then activates the catalase genes catA and catB
(Lara-Rojas et al., 2011). The sakA and atfA deletion mutants
are sensitive to oxidative stress. In other filamentous fungi the
SakA/Hog1p orthologs have been shown to have roles in osmotic
and oxidative stress responses, while also being involved the
regulation of development, and/or virulence (Eaton et al., 2008;
Heller et al., 2012; Lamb et al., 2012; Van Nguyen et al., 2013;
Nimmanee et al., 2015).

Aspergillus fumigatus is a saprophytic filamentous fungus
and a deadly opportunistic pathogen of mammals (Greenberger,
2002; Dagenais and Keller, 2009). It is the primary causal agent
of Invasive Aspergillosis (IA), one of the most common life
threatening fungal diseases in neutropenic patients and has been
shown to have mortality rates that can reach 90% (Brakhage,
2005; Brown et al., 2012a,b; Lackner and Lass-Flörl, 2013).
It has been reported that several phenotypes influence the final
outcome of the IA establishment showing that aspergillosis is a
multifactorial disease (Tekaia and Latgé, 2005; Hartmann et al.,
2011; Sugui et al., 2014). The signaling pathways that regulate
these factors involved in virulence are essentials for A. fumigatus

survival within the human host (Brown and Goldman, 2016).
As many filamentous fungi, A. fumigatus has also four different
MAPKs named as MpkA, MpkB, MpkC, and SakA. The MpkA
function is mainly related to cell wall integrity (CWI, Valiante
et al., 2015a). The MpkB, which is homologous to yeast Fus3, has
not been yet characterized (Elion et al., 1990). In A. fumigatus,
MpkC and SakA are homologs of the S. cerevisiae Hog1 and
are the major regulators of the osmotic stress response (Rispail
et al., 2009). MpkC and SakA also play a role in carbon source
utilization and caspofungin adaptation, respectively (Reyes et al.,
2006; Altwasser et al., 2015; Valiante et al., 2015b).

Our group recently showed that MpkC and SakA are
important to adaptations to oxidative and osmotic stresses, heat
shock, and cell wall damage (de Oliveira Bruder Nascimento
et al., 2016). The double mutant 1mpkC 1sakA demonstrated
increased sensitivity to the above mentioned stresses when
compared to the 1sakA and 1mpkC single mutants. In addition,
this interaction was crucial for macrophage recognition
and full virulence. In most of stress conditions tested,
the phenotypes of 1sakA were intensified by the 1mpkC
mutation, while 1mpkC phenotypes were moderate (de Oliveira
Bruder Nascimento et al., 2016). Accordingly, we proposed
that SakA and MpkC are interactive and that MpkC could
be a modulator of SakA during HOG and CWI pathways
(de Oliveira Bruder Nascimento et al., 2016).

No information is available concerning the SakA and
MpkC protein targets during osmotic and cell wall stresses,
and very little is known about the mechanisms by which
SakA and MpkC control these stress responses. Our aim
was to identify SakA and MpkC targets that could mediate
their functions. We demonstrate that SakA and MpkC show
functional and physical interactions and that these MAPKs of
the HOG pathway play important roles in the CWI pathway.
We report that the identified PakA kinase, similar to Ste20,
a HOG pathway protein in S. cerevisiae, and the MpkA central
regulator of CWI pathway, associate with SakA/MpkC MAPK
pathway. Finally, we show that during cell wall stress, SakA
associates with PtcB, a HOG response phosphatase, involved in
regulation of MpkA and SakA phosphorylation. This manuscript
provides an important resource to understand SakA and MpkC
protein interactions in response to osmotic stress and cell wall
damage. Further investigation of the biological roles played by
these protein interactors will provide more opportunities to
investigate and combat IA.

RESULTS

Identification of Proteins That Interact
With SakA and MpkC During Osmotic
and Cell Wall Stresses
In A. fumigatus SakA and its paralog MpkC, are involved in
osmotic stress, nitrogen and carbon starvation, caspofungin
tolerance and are important to adaptations to oxidative stress,
heat shock, and cell wall damage (Reyes et al., 2006; Rispail
et al., 2009; Altwasser et al., 2015; Valiante et al., 2015a;
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FIGURE 1 | Scheme and Venn diagram of the pull-down experiments for proteins that interact with SakA:GFP and MpkC:GFP upon osmotic (A) and cell wall
stresses (B). A summary of the FunCat terms over-represented (adjusted p-value < 0.05) for proteins observed as interacting with SakA:GFP and MpkC:GFP upon
osmotic (C) and cell wall stresses (D). For the full list refer to Supplementary Tables S1–S10.

de Oliveira Bruder Nascimento et al., 2016). In an attempt to
further explore the regulatory processes and diverse functions of
SakA and MpkC, we sought to identify their interacting protein
partners. As previously shown the SakA:GFP and MpkC:GFP
strains are functional (de Oliveira Bruder Nascimento et al.,
2016). We performed protein pull-down experiments aiming
to identify interaction partners of SakA and MpkC by
mass spectrometry assays. Protein extracts were prepared
from wild-type, SakA:GFP and MpkC:GFP cultures grown
for 24 h and further exposed to sorbitol 1.0 M (10, 30,
and 60 min) or CR 300 µg/ml (5, 15, 30, and 60 min).
We compared proteins that immunoprecipitated with the
SakA:GFP or MpkC:GFP and wild-type negative control,
removing proteins that precipitated with the latter because
they are potential artifacts (Supplementary Tables S1–S8). The
full group of proteins that co-purified with SakA and MpkC
during osmotic and CR stresses are listed in Supplementary
Tables S1, S2, respectively.

In presence of sorbitol, 118 and 213 proteins were detected
as possible protein interactors of SakA and MpkC, respectively.

Interestingly, a group of 78 proteins were common to both
protein interactomes (Figure 1A). Under CR stress, 420 and
299 proteins were detected interacting with SakA and MpkC,
respectively (Figure 1B). Once more a common group of 256
proteins were identified in both interactomes (Figure 1B) which
strongly suggests that SakA and MpkC have some common
functions in A. fumigatus. Among the proteins considered
associated with MpkC (Afu5g09100), SakA (Afu1g12940) was
identified under CR and osmotic stresses (Supplementary
Tables S9, S10), suggesting that MpkC is a SakA interactor.
To verify possible interaction networks, the proteins identified
by proteomics were analyzed using STRING1. We were able to
identify about 72.0–87.8% of the immunoprecipitated proteins as
biologically interacting with either MpkC:GFP, SakA:GFP, both
proteins or proteins that interact with them (Supplementary
Tables S11, S12; osmotic and CR: MpkC:GFP, 80.3, and 85.3%;
SakA:GFP, 72.0 and 84.3%; and MpkC:GFP and SakA:GFP,
79.2 and 87.8%).

1https://string-db.org/

Frontiers in Microbiology | www.frontiersin.org 3 May 2019 | Volume 10 | Article 918

https://string-db.org/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00918 May 4, 2019 Time: 16:18 # 4

Manfiolli et al. Aspergillus fumigatus MAP Kinases

FunCat2 enrichment analyses for both strains under osmotic
stress demonstrated an enrichment for proteins involved in
phosphate metabolism, protein processing, ATP and GTP
binding, and translation (osmotic stress, Figure 1C). FunCat
for both strains upon CR stress showed an enrichment for
proteins involved in unfolded protein response, translation, stress
response, protein processing, electron transport, biosynthesis of
glycine and arginine, and amino acid metabolism (Figure 1D).
This implies that SakA and MpkC collaborate in several biological
processes involving stress responses, translation and protein
modification, and amino acid metabolism upon osmotic and
cell wall stresses.

SakA and MpkC Interact to Regulate
Cell Membrane and Wall Biogenesis
During Stress
Among the proteins identified in the SakA or MpkC interactome
there are potential partners that can be associated to the
functions of these kinases. These comprise MpkA (Afu4g13720,
Tables 2, 4), the central regulator of CWI pathway, whose
phosphorylation during cell wall, and osmotic stresses is
regulated by SakA (de Oliveira Bruder Nascimento et al., 2016),
and PtcB (Afu1g09280, Table 3), a putative HOG phosphatase
involved in regulation of MpkA and SakA phosphorylation
(Bom et al., 2015). PakA (Afu2g04680, Table 3), found to be
associated with SakA, is the putative homolog of S. cerevisiae
Ste20, which is involved in the response to osmotic stress (Tanaka
et al., 2014). Other proteins that co-purified with SakA or MpkC
include some proteins involved in the biosynthesis of the cell
wall polysaccharides (Afu3g12690, Afu7g02180, Afu6g12400,
Afu1g06210, Afu2g05340, Afu7g05450, and Afu3g14420,
Tables 1–4) and ergosterol (Afu3g10660, Afu6g14200,
Afu5g02450, Afu7g03740, Afu4g06890, Afu4g07130, and
Afu4g03630, Tables 1–3). The transcription factors DvrA
(Afu3g09820, Table 1), the putative C. albicans Bcr1p ortholog,
that regulates biofilm formation and expression of cell-surface
genes, and NsdD (Afu3g13870, Tables 1, 3, 4), required
during an early stage of mating, that plays a role in resistance
toward cell wall stress, were also identified in the SakA
interactome. In response to osmotic and cell wall stresses,
SakA and MpkC were also found to be associated with
some heat shock proteins and chaperones (Afu2g02320,
Afu7g01860, Afu1g06710, Afu1g01740, Afu6g07540,
Afu7g01860, Afu3g14540, Afu5g13920, and Afu2g16020,
Tables 1–4). We observed the interaction of these MAPK with
the glucan synthase Fks1 (Afu6g12400), which facilitates the
production of the major cell wall component 1,3 β-D-glucan,
Agm1 (Afu1g06210), a N-acetylphosphoglucosamine mutase
involved in chitin biosynthesis, Gel4 (Afu2g05340), a essential
1,3 β-glucanosyltransferase and Sun1 (Afu7g05450), a 1,3
β-glucan modifying enzyme involved in fungal morphogenesis
(Tables 1–4). SakA and MpkC also interact with proteins
involved in the ergosterol biosynthetic pathway including
the HMG-CoA synthase Erg13 (Afu3g10660) and the sterol

2https://bio.tools/fungifun

demethylase proteins, Cyp51A (Afu4g06890) and Cyp51B
(Afu7g03740), that are related to the mechanisms for azole drug
resistance (Tables 1–4). These proteins are possibly related to
SakA and MpkC functions.

In summary, SakA and MpkC show both physical and
functional interactions and that SakA/MpkC pathways play
important roles in the signaling processes that regulate the
response to osmotic stress and cell wall damage.

SakA and MpkC Physically Associate
During Osmotic and Cell Wall Stresses
To confirm the physical association between SakA and MpkC we
decide to carry out co-immunoprecipitation (Co-IP) experiments
(see section “Materials and Methods”) using protein extracts
from wild-type and strains expressing SakA:GFP and SakA:GFP
MpkC:3xHA. We observed no changes in the phenotypes of these
tagged strains compared to the wild-type (de Oliveira Bruder
Nascimento et al., 2016; Supplementary Figure S1). Protein
extracts were prepared from wild-type, SakA:GFP and SakA:GFP
MpkC:3xHA strains that were untreated or treated with sorbitol
1.0 M or CR 300 µg/ml for 10, 30 and 60 min. Figure 2 shows
that pull-down of SakA:GFP results in co-purification of MpkC
only in the strain expressing SakA:GFP MpkC:3xHA and not
in a wild-type or SakA:GFP strains. Moreover, this interaction
occurs even in the absence of stress conditions (without Sorbitol
and CR). We also tried to IP MpkC:3xHA and SakA:GFP first
before probing for MpkC with an anti-HA or anti-GFP antibody,
but the MpkC:3xHA and SakA:GFP tags interacted with the
IP resin in control conditions, therefore de-validating the assay
(data not shown).

SakA Associates With the MAPK MpkA
and the Protein Phosphatase PtcB
As both MpkA and PtcB have been implicated in the HOG
and CWI pathway and here they were identified in the SakA
interactome in presence of CR (Figure 3A and Tables 2, 4),
we used pull-down experiments to validate these interactions.
We introduced into SakA:GFP strain, a plasmid expressing
MpkA or PtcB tagged at C-terminus with HA tag. We showed
that HA-tagging did not affect the phenotypes of these strains
compared to the wild-type (Supplementary Figures S2, S3).
We carried out Co-IP assays using GFP-Trap beads with the
wild-type, SakA:GFP, SakA:GFP MpkA:3xHA (Figure 3B) and
SakA:GFP PtcB:3xHA (Figure 3C) that were untreated or treated
with CR 300 µg/ml (10, 30, and 60 min). Interaction of HA
tagged MpkA with PtcB were then identified with HA antibody
via Western blot. The results of the immunoblotting analysis
showed that MpkA and PtcB were only co-immunoprecipitated
from the SakA:GFP MpkA:3xHA (Figure 3B) and SakA:GFP
PtcB:3xHA (Figure 3C), respectively, illustrating that these two
protein associate with SakA. Moreover, our results show that
SakA-PtcB interaction occurs only in presence of CR stress
(Figure 3C). We also tried to IP MpkA:3xHA or PtcB:3xHA
and SakA:GFP first before probing for MpkA or PtcB with an
anti-HA or anti-GFP antibody, but once more the MpkA:3xHA
or PtcB:3xHA and SakA:GFP tags interacted with the IP resin
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TABLE 1 | Selected proteins interacting with SakA::GFP identified during osmotic stress.

Accession Description Time
(min)

10

Time
(min)

30

Time
(min)

60

MW
(kDa)

calc.
pI

Signal transduction

Afu1g12940 sakA putative mitogen-activated protein kinase (MAPK) with predicted roles in the
osmotic and oxidative stress responses; involved in sensing nitrogen in the medium

I∗ I I 41.9 5.60

Afu4g13170 cpcB G-protein complex beta subunit; conidia-enriched protein; immunoreactive NI∗∗ NI I 35.0 6.52

Afu6g02230 glkA putative glucokinase; conidia-enriched protein; transcripts extremely abundant
in resting conidia. Levels decline during germination; transcript induced by
exposure to human airway epithelial cells

NI NI I 54.4 5.50

Afu2g03490 Putative calcium/calmodulin-dependent protein kinase; calcium induced; transcript
induced by exposure to human airway epithelial cells

I NI I 72.1 6.87

Afu6g06720 Putative protein serine/threonine kinase I NI I 99.8 9.64

Afu6g12170 fkbp1 putative FK506-binding protein (FKBP)-type peptidyl-prolyl cis-trans
isomerase; transcript induced by exposure to human airway epithelial cells

NI NI I 12.1 7.25

Afu1g08840 Ortholog(s) have guanylate kinase activity. Role in GMP metabolic process
and cytoplasm. nucleus localization

NI NI I 25.5 7.43

Cell wall

Afu3g12690 glfA putative UDP-galactopyranose mutase. enzyme in the first step of
galactofuranose biosynthesis; mutant unmasks mannan residues on the cell
surface. which is thought to contribute to increased cell adhesion

I NI I 59.4 6.93

Afu7g02180 Ortholog(s) have UDP-N-acetylglucosamine diphosphorylase activity. Role in
UDP-N-acetylglucosamine biosynthetic process and cytosol. Nucleus localization

NI NI I 56.7 6.10

Transcription factors

Afu3g09820 dvrA C2H2 zinc finger domain protein; putative ortholog of C. albicans Bcr1p;
mutants are hypervirulent in neutropenic mice and in flies

NI I I 73.2 9.48

Afu3g11170 Ortholog(s) have sequence-specific DNA binding activity and role in carotenoid
biosynthetic process, circadian rhythm, conidiophore development

NI I I 84.2 6.71

Afu3g13870 nsdD Putative GATA-type transcriptional activator; required during an early
stage of mating; plays a role in resistance toward cell wall stress

I NI I 53.0 9.26

Osmolytes/trehalose

Afu3g12100 Putative trehalase phosphorylase with a predicted role in the
glucose-1-phosphate pathway

NI NI I 78.3 6.10

Afu2g04010 tpsB putative trehalose-6-phosphate synthase; role in trehalose biosynthesis;
expression up during heat shock; hypervirulent in combination with tpsA mutation.
In a mouse model of pulmonary infection; predicted gene pair with AFUA_6G12950

NI I NI 53.8 7.43

Afu4g11510 srb1 GDP-mannose pyrophosphorylase, which catalyzes the synthesis of
GDP-mannose from GTP and mannose-1-phosphate in cell wall biosynthesis

NI NI I 40.1 7.49

Heat shock proteins/

chaperones

Afu2g02320 Hsp70 chaperone NI NI I 61.7 5.15

Lipids

Afu3g06550 Has domain(s) with predicted phosphatase activity. Phosphoserine phosphatase
activity and role in L-serine biosynthetic process. metabolic process

I I I 51.8 5.90

Afu5g05500 Ortholog(s) have phosphoglycerate dehydrogenase activity. Role in serine family
amino acid biosynthetic process and cytosol localization

NI I I 45.9 7.01

Afu3g10660 erg13 putative hydroxymethyl glutaryl-coenzyme A synthase with a predicted role
in ergosterol biosynthesis; SrbA-regulated during hypoxia

NI NI I 50.8 6.55

∗ I, identified. ∗∗NI, non-identified.

in control conditions, therefore de-validating the assay (data no
shown). All together, these data show that the interactions found
in the SakA and MpkC interactomes could be robustly validated
using Co-IP approach.

Molecular Characterization of PakASTE20

Here we identified PakA, the homolog of the S. cerevisiae
sexual developmental serine/threonine kinase (Afu2g04680)

Ste20, as a component of the SakA/MpkC MAPK pathway.
To gain an insight into the function of the Ste20 homolog in
A. fumigatus, a pakA null mutant, and complemented strains
were constructed (Supplementary Figure S4). The wild-type,
1pakA and 1pakA:pakA+ strains were grown in minimal
medium (MM) and exposed to agents that affect CWI pathway,
including CR, calcofluor white (CFW), and the echinocandin
caspofungin (Figures 4A–C). The 1pakA strain showed radial
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TABLE 2 | Selected proteins interacting with MpkC::GFP identified during osmotic stress.

Accession Description Time
(min)

10

Time
(min)

30

Time
(min)

60

MW
(kDa)

calc.
pI

Signal transduction

Afu1g04950 glcA ortholog(s) have protein serine/threonine phosphatase activity NI∗∗ I∗ NI 28.3 4.72

Afu2g16520 pld2 putative phospholipase D; calcium induced; repressed by exposure to
artemisinin

NI NI I 64.7 7.65

Afu4g13720 mpkA mitogen-activated protein kinase; activated by phosphorylation; role in cell
wall signaling and the oxidative stress response; mpkA(p)-lacZ expression
increased by cell wall disturbing compounds; required for adaptation to iron
starvation

NI I NI 48.4 5.88

Afu5g09100 mpkC putative mitogen activated protein kinase (MAPK); involved in the oxidative
stress response; transcript abundance increases in response to carbon source and
oxidative stress

I I I 43.3 5.76

Afu6g02230 glkA putative glucokinase; conidia-enriched protein; transcripts extremely abundant
in resting conidia. Levels decline during germination; transcript induced by
exposure to human airway epithelial cells

NI NI I 54.4 5.50

Afu2g05910 hxkA putative hexokinase; protein induced by heat shock NI NI I 68.2 6.14

Afu6g08580 fkbp4 putative FK506-binding protein (FKBP)-type peptidyl-prolyl cis-trans
isomerase

NI I I 53.0 4.55

Afu6g12170 fkbp1 putative FK506-binding protein (FKBP)-type peptidyl-prolyl cis-trans
isomerase; transcript induced by exposure to human airway epithelial cells

NI NI I 12.1 7.25

Afu4g13170 cpcB G-protein complex beta subunit; conidia-enriched protein; immunoreactive NI NI I 35.0 6.52

Afu1g12940 sakA putative mitogen-activated protein kinase (MAPK) with predicted roles in the
osmotic and oxidative stress responses; involved in sensing nitrogen in the médium

I NI I 21.0 5.71

Afu1g08840 Ortholog(s) have guanylate kinase activity. Role in GMP metabolic process and
cytoplasm. Nucleus localization

NI NI I 61.0 6.34

Cell wall

Afu7g02180 Ortholog(s) have UDP-N-acetylglucosamine diphosphorylase activity. Role in
UDP-N-acetylglucosamine biosynthetic process and cytosol. Nucleus localization

NI NI I 56.7 6.10

Afu3g12690 glfA putative UDP-galactopyranose mutase. Enzyme in the first step of
galactofuranose biosynthesis; mutant unmasks mannan residues on the cell
surface, which is thought to contribute to increased cell adhesion

NI NI I 59.4 6.93

Afu6g12400 fks1 putative 1.3-beta-glucan synthase catalytic subunit. Major subunit of glucan
synthase; predicted transmembrane protein; and essential

NI I NI 218.0 8.15

Transcription factors

Afu3g11170 Ortholog(s) have sequence-specific DNA binding activity and role in carotenoid
biosynthetic process, circadian rhythm, and conidiophore development

NI I I 84.2 6.71

Osmolytes/trehalose

Afu3g12100 Putative trehalase phosphorylase with a predicted role in the glucose-1-phosphate
pathway

NI NI I 78.3 6.10

Afu2g10660 mpdA putative mannitol-1-phosphate dehydrogenase; conidia-enriched protein;
protein induced by heat shock; reacts with rabbit immunosera exposed to conidia;
no human homolog

NI NI I 27.5 5.03

Afu4g11510 srb1 GDP-mannose pyrophosphorylase. which catalyzes the synthesis of
GDP-mannose from GTP and mannose-1-phosphate in cell wall biosynthesis

NI NI I 40.1 7.49

Afu3g11640 Homoserine dehydrogenase; no human homolog I NI NI 38.5 5.87

Afu2g03810 hosA putative histone deacetylase NI I I 28.3 7.87

Heat shock proteins/

chaperones

Afu2g02320 Hsp70 chaperone NI NI I 41.3 5.99

Afu7g01860 sti1 putative heat shock protein; protein levels increase in response to amphotericin
B; transcript induced by exposure to human airway epithelial cells; induced by
gliotoxin exposure

NI NI I 64.3 5.58

Afu1g06710 Ortholog(s) have chaperonin-containing T-complex. Nucleus localization NI NI I 210.7 6.05

Afu1g01740 Ortholog(s) have unfolded protein binding activity. Role in protein folding and
chaperonin-containing T-complex. Nucleus localization

NI NI I 51.8 5.90

Afu6g07540 Ortholog(s) have chaperonin-containing T-complex localization NI NI I 59.8 5.52

(Continued)
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TABLE 2 | Continued

Accession Description Time
(min)

10

Time
(min)

30

Time
(min)

60

MW
(kDa)

calc.
pI

Lipids

Afu5g05500 Ortholog(s) have phosphoglycerate dehydrogenase activity. Role in serine family
amino acid biosynthetic process and cytosol localization

NI I I 45.9 7.01

Afu2g01010 Putative myo-inositol-phosphate synthase; transcript up-regulated in conidia
exposed to neutrophils

NI NI I 73.9 9.86

Afu3g06550 Has domain(s) with predicted phosphatase activity. Phosphoserine phosphatase
activity and role in L-serine biosynthetic process. Metabolic process

I I NI 64.3 7.06

Afu6g14200 erg10 putative acetyl-CoA acetyltransferase; transcript up-regulated in conidia
exposed to neutrophils; SrbA-regulated during hypoxia

NI NI I 45.7 8.95

Afu2g09910 f4 putative long chain fatty acid CoA ligase; fatty acid activator; hypoxia repressed
protein

I NI NI 163.9 9.36

∗ I, identified. ∗∗NI, non-identified.

growth similar to the wild-type strain in MM (Figure 4). The
1pakA strain was slightly more sensitive to CR (Figure 4A) and
showed similar sensitivity to high sorbitol concentrations when
compared to the wild-type strain (data not shown). The 1pakA
was sensitive to CFW and caspofungin stresses (Figures 4B,C),
and the loss of the caspofungin paradoxical effect (CPE, a
phenomenon where high caspofungin concentrations revert the
anticipated inhibition of A. fumigatus growth; Steinbach et al.,
2015; Figure 4C).

Finally, to further characterize the possible effect of PakA
on pathogenicity of A. fumigatus, an Galleria mellonella model
which had been demonstrated as a good model to evaluate fungal
pathogenicity was used (Slater et al., 2011). In the G. mellonella
model, infection by either of wild-type or the complementing
strains resulted in 100% mortality 8 and 7 days post-infection,
respectively (Figure 5). However, the 1pakA mutant strain
showed 100 % mortality 10 days post-infection, which was
statistically different to the wild-type, and complementing strains
according to the Mantel-Cox and Gehan-Brestow-Wilcoxon tests
(p-values 0.0041 and 0.0124, respectively). These results suggest
that the lack of pakA attenuated the A. fumigatus virulence in
this animal model.

DISCUSSION

Fungi live in diverse environments ranging from soil to
mammalian host. Fungi are also exposed to many stressing
conditions including heat shock, oxidative stress, osmotic and
pH changes, chemical challenges, and nutrient limitations. These
stress conditions can be found either in natural habitats or in
animal and human hosts during the infection process (Brown
and Goldman, 2016). Exposure of fungal cells to these stress
conditions leads to the activation of some MAPK cascades
(Pearson et al., 2001; Rispail et al., 2009). In fungi the signaling
through the MAPK cascades result in altered gene expression
that regulates many processes including pheromone response,
filamentous growth, biosynthesis of cell wall components, the
HOG pathway, the establishment of virulence, and mediation
of drug resistance (Bahn et al., 2005; Monge et al., 2006;

Román et al., 2007; Valiante et al., 2008, 2009, 2015a,b; de
Castro et al., 2014; Altwasser et al., 2015; Bom et al., 2015;
Winkelströter et al., 2015a,b).

In A. fumigatus, Hog1 orthologs SakA and MpkC show
multifunctional roles. In addition to the role played in the
osmotic stress response, these MAPKs also regulate stress
response to stimuli such as oxidative stress, cell wall damaging
agents (de Oliveira Bruder Nascimento et al., 2016) and also
play a role in caspofungin adaptation, carbon source utilization,
and collaborate during virulence establishment (Reyes et al.,
2006; Altwasser et al., 2015; Valiante et al., 2015a; de Oliveira
Bruder Nascimento et al., 2016). A. nidulans SakA and MpkC
not only physically interact, but also show opposite and common
functions during stress responses and development (Jaimes-
Arroyo et al., 2015; Garrido-Bazán et al., 2018). However, little is
known about the mechanisms by which SakA and MpkC execute
their signaling functions.

We have identified by mass spectrometry many common
SakA and MpkC protein interactors, suggesting they perform
similar roles. Pull-down experiments strongly indicated SakA
and MpkC are physically interacting, possibly forming a protein
complex which regulates these down stream processes under
specific conditions. Subsequently, by using SakA GFP-tag pull-
down and mass spectrometry analysis, we showed that SakA
interacts not only with MpkC, but also with the CWI pathway
MAPK MpkA, the HOG response phosphatase PtcB and other
proteins involved in signal transduction pathways, biosynthesis
of the cell wall, transcription factors, heat shock proteins, and
chaperones. Previously, we proposed that SakA and MpkC are
interacting and that MpkC could be a modulator of SakA
during HOG and CWI pathways, since SakA appears to play a
major role in response to several types of stresses (de Oliveira
Bruder Nascimento et al., 2016). In this work we proved this
interaction by using Co-IP experiments and MpkC was showed
to be continuously associated with SakA (stress and no stress).
This resembles what happens in A. nidulans where MpkC was
found to be linked with SakA with and without oxidative
stress (Jaimes-Arroyo et al., 2015). Furthermore, we showed
previously that both MpkC:GFP and SakA:GFP translocated
to the nucleus upon osmotic stress, with SakA:GFP showing
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TABLE 3 | Selected proteins interacting with SakA::GFP identified during cell wall stress.

Accession Description Time
(min)

5

Time
(min)

15

Time
(min)

30

Time
(min)

60

MW
(kDa)

calc.
pI

Signal transduction

Afu1g04950 GlcA Ortholog(s) have protein serine/threonine phosphatase activity NI∗∗ I∗ NI NI 37.1 5.78

Afu1g09280 PtcB putative type 2C protein phosphatase (PP2C) involved in dephosphorylation
of SakA MAP kinase in response to osmotic stress

NI I I NI 46.6 4.79

Afu1g12940 SakA putative mitogen-activated protein kinase (MAPK) with predicted roles in the
osmotic and oxidative stress responses; involved in sensing nitrogen in the medium

I I I I 41.9 5.60

Afu2g03490 Putative calcium/calmodulin-dependent protein kinase; calcium induced; transcript
induced by exposure to human airway epithelial cells

I I I I 72.1 6.87

Afu2g04680 PakA protein serine/threonine kinase; similar to Ste20. a sexual development
regulator

I I I I 89.6 9.44

Afu2g10620 Ortholog(s) have protein serine/threonine kinase activity YPK1 NI I NI NI 70.9 7.65

Afu3g07680 Putative ran GTPase activating protein NI I I NI 46.2 4.68

Afu3g10000 cAMP-dependent protein kinase regulatory subunit; induced by endothelial cells
and human airway epithelial cells; mutants sensitive to storage in water and contain
more nuclei than wild-type; up-regulated in neutrophil-exposed conidia

NI NI I NI 44.5 5.19

Afu3g12530 PkhB putative sensor histidine kinase/response regulator; transcript induced by
exposure to human airway epithelial cells

NI I NI I 213.4 6.52

Afu4g10050 Calmodulin I 17.0 4.27

Afu6g02230 GlkA putative glucokinase; conidia-enriched protein; transcripts extremely
abundant in resting conidia. levels decline during germination; transcript induced by
exposure to human airway epithelial cells

NI NI I NI 54.4 5.50

Afu8g04810 Ortholog(s) have protein serine/threonine kinase activity cka1. Alpha’ catalytic
subunit of casein kinase 2 (CK2)

NI I I NI 39.5 7.31

Afu3g10300 Putative galactokinase with a role in galactose catabolism; transcript up-regulated
in conidia exposed to neutrophils

NI I I NI 57.6 6.65

Afu1g05610 Putative protein phosphatase 2a 65kd regulatory subunit; conidia-enriched protein;
protein induced by heat shock

NI NI I NI 69.1 4.86

Cell wall

Afu7g02180 Ortholog(s) have UDP-N-acetylglucosamine diphosphorylase activity. Role in
UDP-N-acetylglucosamine biosynthetic process and cytosol. Nucleus localization

NI NI I NI 56.7 6.10

Afu1g06210 agm1 N-acetylphosphoglucosamine mutase. Involved in chitin biosynthesis;
essential

NI I NI NI 61.5 6.11

Afu2g05340 gel4 essential 1.3-beta-glucanosyltransferase. GPI-anchored to the plasma
membrane; constitutively expressed during hyphal growth; and hypoxia induced
protein

NI I NI NI 57.1 5.01

Transcription factors

Afu3g13870 NsdD putative GATA-type transcriptional activator; required during an early stage of
mating; plays a role in resistance toward cell wall stress

I I NI NI 53.0 9.26

Afu6g10470 Zpr1 putative zinc finger protein; transcript highly induced during conidial
germination

NI I I NI 53.5 4.67

Osmolytes/trehalose

Afu1g09930 Gcy1 putative glycerol dehydrogenase; protein level decreases upon heat shock;
transcript up-regulated in conidia exposed to neutrophils

NI I I NI 39.1 8.84

Afu6g07620 GDP-mannose pyrophosphorylase A; repressed by exposure to artemisinin NI NI I NI 48.3 7.30

Afu3g12100 Putative trehalase phosphorylase with a predicted role in the glucose-1-phosphate
pathway

NI I I NI 78.3 6.10

Afu2g04010 TpsB putative trehalose-6-phosphate synthase; role in trehalose biosynthesis;
expression up during heat shock; hypervirulent in combination with tpsA mutation.
In a mouse model of pulmonary infection; predicted gene pair with AFUA_6G12950

I NI NI I 53.8 7.43

Afu2g10660 MpdA putative mannitol-1-phosphate dehydrogenase; conidia-enriched protein;
protein induced by heat shock; reacts with rabbit immunosera exposed to conidia;
and no human homolog

NI I NI NI 43.0 5.90

Afu1g02150 Ortholog(s) have glycerol-3-phosphate dehydrogenase [NAD+] activity and role in
NADH oxidation. Cell-abiotic substrate adhesion. glycerol biosynthetic process.
Intracellular accumulation of glycerol

NI I I NI 56.4 8.19

(Continued)
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TABLE 3 | Continued

Accession Description Time
(min)

5

Time
(min)

15

Time
(min)

30

Time
(min)

60

MW
(kDa)

calc.
pI

Heat shock proteins/

chaperones

Afu2g16020 Putative heat shock protein; transcript induced during conidial germination NI NI I NI 61.7 6.87

Afu1g01740 Ortholog(s) have unfolded protein binding activity. Role in protein folding and
chaperonin-containing T-complex. Nucleus localization

NI NI I NI 57.2 6.21

Afu6g07540 Ortholog(s) have chaperonin-containing T-complex localization NI I I NI 59.8 5.52

Afu3g14540 Hsp30 putative 30-kilodalton heat shock protein; conidia-enriched protein; protein
levels increase in response to amphotericin B and hydrogen peroxide

NI I I NI 20.5 6.55

Afu4g10010 Ortholog(s) have heat shock protein binding activity. Role in protein folding.
Regulation of mitotic cell cycle and cytosol. Nucleus localization

NI I I NI 54.5 5.00

Afu5g13920 wos2 putative Hsp90 binding co-chaperone; reacts with rabbit immunosera
exposed to A. fumigatus conidia

NI NI I NI 22.2 4.48

Afu7g01860 sti1 putative heat shock protein; protein levels increase in response to amphotericin
B; transcript induced by exposure to human airway epithelial cells; induced by
gliotoxin exposure

NI I I NI 64.3 5.58

Afu2g02320 Hsp70 chaperone NI NI I NI 61.7 5.15

Pentose phosphate

pathway oxidative

branch

Afu1g02980 Putative 6-phosphogluconolactonase; calcium downregulated NI I I NI 28.8 6.28

Afu3g08470 Glucose-6-phosphate 1-dehydrogenase NI NI I NI 58.9 7.01

Lipids

Afu2g11340 Ortholog(s) have role in intracellular sterol transport and fungal-type vacuole lumen
localization

NI I I NI 27.3 5.94

Afu3g06550 Has domain(s) with predicted phosphatase activity. Phosphoserine phosphatase
activity and role in L-serine biosynthetic process. Metabolic process

I I I I 51.8 5.90

Afu5g05500 Ortholog(s) have phosphoglycerate dehydrogenase activity. Role in serine family
amino acid biosynthetic process and cytosol localization

I I I NI 45.9 7.01

Afu5g02450 erg20 putative polyprenyl synthetase; farnesyl-pyrophosphate synthetase;
SrbA-regulated during hypoxia

NI NI I NI 39.7 5.50

Afu5g05820 Ortholog(s) have homoserine kinase activity. Role in homoserine metabolic process.
Threonine biosynthetic process and cytoplasm localization

NI I NI NI 38.5 6.74

Afu5g03690 Ortholog(s) have phosphatidylinositol transporter activity NI I I I 46.1 4.84

Afu6g04970 Ortholog(s) have O-phospho-L-serine:2-oxoglutarate aminotransferase activity.
Role in L-serine biosynthetic process. Purine nucleobase biosynthetic process and
cytosol localization

NI I I I 46.9 6.81

Afu3g11640 Homoserine dehydrogenase; no human homolog I I I I 38.5 5.87

Afu7g03740 cyp51B putative 14-alpha demethylase with a predicted role in ergosterol
biosynthesis

NI NI I NI 58.9 7.75

Afu4g06890 Cyp51A 14-alpha sterol demethylase; commonly mutated in drug resistant isolates NI I NI NI 58.0 8.53

Afu4g07130 mvd1 diphosphomevalonate decarboxylase; SrbA-regulated during hypoxia NI NI I NI 43.1 6.01

Afu4g03630 erg6 putative sterol 24-C-methyltransferase with a predicted role in ergosterol
biosynthesis

NI I I NI 42.5 6.43

Afu3g10660 erg13 putative hydroxymethyl glutaryl-coenzyme A synthase with a predicted role in
ergosterol biosynthesis; SrbA-regulated during hypoxia

NI I I NI 50.8 6.55

Afu3g09910 Ortholog(s) have phosphatidylcholine transporter activity and role in Golgi to plasma
membrane transport, ascospore formation, mitotic cytokinesis, phospholipid
transport, and regulation of filamentous growth

NI I I NI 37.3 5.52

Afu3g08980 Ortholog(s) have threonine synthase activity. Role in threonine biosynthetic process
and cytosol. Nucleus localization

NI I I NI 59.2 6.20

Afu2g01010 Putative myo-inositol-phosphate synthase; transcript up-regulated in conidia
exposed to neutrophils

NI NI I NI 58.6 6.23

∗ I, identified. ∗∗NI, non-identified.

a quicker response (de Oliveira Bruder Nascimento et al., 2016).
This data can explain the absence of MpkC co-purified with SakA
after 10 min of sorbitol exposure. Our pull-down experiments

not only showed SakA-MpkC interaction, but also identified
a common group of 78 and 256 proteins that potentially
interact with both SakA and MpkC upon osmotic stress and
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TABLE 4 | Selected proteins interacting with MpkC::GFP identified during cell wall stress.

Protein identifier Description Time
(min)

5

Time
(min)

15

Time
(min)

30

Time
(min)

60

MW
(9 kDa)

calc.
pI

Signal transduction

Afu1g05610 Protein phosphatase 2a 65kd regulatory subunit; conidia-enriched protein; protein
induced by heat shock

I∗ NI∗∗ NI NI 69.1 4.86

Afu1g12940 sakA putative mitogen-activated protein kinase (MAPK) with predicted roles in the
osmotic and oxidative stress responses; involved in sensing nitrogen in the medium

I I I I 41.9 5.60

Afu2g13680 Putative calcium/calmodulin-dependent protein kinase; transcript induced by
exposure to human airway epithelial cells

NI NI I NI 48.7 6.49

Afu4g10050 Calmodulin I 17.0 4.27

Afu5g09100 MpkC mitogen activated protein kinase (MAPK) I I I I 43.3 5.76

mpkB putative mitogen-activated protein kinase (MAPK) I NI NI NI 40.8 6.90

Afu4g13720 MpkA mitogen-activated protein kinase NI I NI I 48.4 5.88

Afu6g02230 GlkA putative glucokinase NI NI I NI 54.4 5.50

Afu5g02560 Ortholog(s) have protein serine/threonine phosphatase activity NI NI NI I 73.8 6.99

Afu3g10300 Putative galactokinase with a role in galactose catabolism I NI I NI 57.6 6.65

Transcription factors

Afu3g13870 nsdD putative GATA-type transcriptional activator; required during an early stage of
mating; plays a role in resistance toward cell wall stress

NI I NI NI 53.0 9.26

Afu6g10470 Zpr1 putative zinc finger protein; transcript highly induced during conidial
germination

NI I NI NI 53.5 4.67

Afu3g11170 Ortholog(s) have sequence-specific DNA binding activity and role in carotenoid
biosynthetic process, circadian rhythm, and conidiophore development

NI I I NI 84.2 6.71

Cell wall

Afu7g02180 Ortholog(s) have UDP-N-acetylglucosamine diphosphorylase activity. Role in
UDP-N-acetylglucosamine biosynthetic process and cytosol. Nucleus localization

NI NI I NI 56.7 6.10

Afu7g05450 sun1 novel beta-1.3-glucan modifying enzyme involved in fungal morphogenesis NI NI I NI 43.5 5.48

Afu3g14420 chsG putative class III chitin synthase NI NI NI I 101.6 8.15

Osmolytes/trehalose

Afu4g11510 srb1 GDP-mannose pyrophosphorylase. which catalyzes the synthesis of
GDP-mannose from GTP and mannose-1-phosphate in cell wall biosynthesis

NI NI I NI 40.1 7.49

Afu1g09840 gcy1 putative glycerol dehydrogenase; protein level decreases upon heat shock;
transcript up-regulated in conidia exposed to neutrophils

NI NI NI I 39.1 8.84

Afu3g12100 Putative trehalase phosphorylase with a predicted role in the glucose-1-phosphate
pathway

NI I I NI 78.3 6.10

Afu2g04010 tpsB putative trehalose-6-phosphate synthase; role in trehalose biosynthesis;
expression up during heat shock; hypervirulent in combination with tpsA mutation.
In a mouse model of pulmonary infection

NI I NI NI 53.8 7.43

Afu6g07620 GDP-mannose pyrophosphorylase A; repressed by exposure to artemisinin NI NI I NI 48.3 7.30

Afu2g04010 tpsB putative trehalose-6-phosphate synthase; role in trehalose biosynthesis;
expression up during heat shock

NI I NI NI 53.8 7.43

Heat shock proteins/

chaperones

Afu2g02320 Hsp70 chaperone NI NI I NI 61.7 5.15

Afu7g01860 sti1 putative heat shock protein; protein levels increase in response to amphotericin
B; transcript induced by exposure to human airway epithelial cells; induced by
gliotoxin exposure

NI I I NI 64.3 5.58

Afu3g14540 Hsp30 putative 30-kilodalton heat shock protein; conidia-enriched protein; protein
levels increase in response to amphotericin B and hydrogen peroxide

I I NI NI 20.5 6.55

Afu5g13920 Wos2 Putative Hsp90 binding co-chaperone; reacts with rabbit immunosera
exposed to A. fumigatus conidia

NI NI I NI 22.2 4.48

Afu1g02980 Putative 6-phosphogluconolactonase; calcium downregulated NI I NI NI 2.8 6.28

Afu3g08470 Glucose-6-phosphate 1-dehydrogenase NI NI I NI 58.9 7.01

∗ I, identified. ∗∗NI, non-identified.

cell wall damage, respectively. It is clear that these common
interactions confirm that SakA-MpkC interact with similar
proteins in A. fumigatus.

Previous work showed that the phosphorylation level of the
MpkA protein during osmotic stress and cell wall damage is
regulated by SakA and MpkC. The 1sakA mutant showed
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FIGURE 2 | Co-immunoprecipitation (Co-IP) of SakA:GFP and MpkC:3xHA. (A) Verification of association between SakA:GFP and MpkC:3xHA by Co-IP. Affinity
purification assays from GFP-tagged SakA strain in the background of 3xHA-tagged MpkC were performed with GFP-Trap and anti-HA beads to verify interactions
upon sorbitol (A) and cell wall stresses (B). The coimmunoprecipitated proteins were analyzed by the indicated antibodies. CB, coomassie blue staining.

reduced MpkA phosphorylation and the double 1mpkC 1sakA
demonstrated no detectable MpkA phosphorylation (de Oliveira
Bruder Nascimento et al., 2016). Furthermore, Altwasser et al.
(2015) using systems biology approach, demonstrated the
activation and cross talk between the A. fumigatus MpkA and
SakA pathways during treatment with increased caspofungin
doses. These authors have demonstrated that after exposure to
caspofungin there is a higher level of SakA phosphorylation
in the 1mpkA mutant. Additionally, caspofungin influenced
intracellular transport inducing a further osmotic stress; however
this osmotic stress is reduced under high concentrations of
caspofungin (Chen et al., 2011). The data presented here shows
that MpkA and SakA are interactive under unstressed conditions
and during the cell wall stress. In addition, our data show that
SakA and MpkC associate with some proteins involved in the
biosynthesis of the cell wall during the presence of osmotic stress
and cell wall damage. Collectively, these presented data indicate
that SakA and MpkC are allowing the signal integration and
information exchange between HOG and CWI pathways.

Among the proteins identified in the Co-IP experiments
that might be directly related to SakA function include the
phosphatase PtcB. Previously we identified PtcB as a phosphatase
related to the HOG pathway. We have shown that the
1ptcB strain has both increased phosphorylation of SakA and
MpkA, and regulates the expression of osmo-dependent genes
(Winkelströter et al., 2015a). Our results provide the new insights
into the mechanisms by which PtcB influences the HOG pathway
in A. fumigatus.

Our results show that A. fumigatus mutant lacking the kinase
PakA, homolog of the S. cerevisiae Ste20, is sensitive to agents that
affect CWI pathway, and PakA does not mediate the sensitivity to
osmotic stress. In yeast, Ste20p is involved in cellular responses to

nutritional limitation and mating pheromone, and is required to
establish cell polarity (Cvrcková et al., 1995; Pringle et al., 1995;
Simon et al., 1995; Richman et al., 1999). In addition, Ste20p is
necessary for osmotic stress response via the Sho1p branch of
the HOG pathway in S. cerevisiae (Raitt et al., 2000). Vaga et al.
(2014) showed by phosphoproteomic analyses that yeast Ste20p
is a key mediator of the Hog1 phosphorylation in response to
high osmolarity and mating pathways. In this work, we reported
the interaction between SakA and PakA. We then showed for the
first time that PakA kinase is a component of the SakA/MpkC
MAPK pathway in A. fumigatus which contributed to cell wall
and caspofungin stress, plus virulence.

Together, our data support the hypothesis that SakA and
MpkC are part of an osmotic and general signal pathways
involved in regulation of the response to the cell wall
damage, oxidative stress, drug resistance, and establishment
of infection. The identification and characterization of novel
protein interactors that are directly linked to SakA and
MpkC function vital to antifungal resistance and virulence,
represent potential new targets for the development of new
antifungals combating IA.

MATERIALS AND METHODS

Strains, Media, and Growth Conditions
All strains used in this study are listed in Supplementary
Table S13 in the supplemental material, and the primers used
are listed in Supplementary Table S14. The A. fumigatus
parental strain were CEA17 (pyrG+) akuBKU80 and CEA17
(pyrG−) akuBKU80 (da Silva Ferreira et al., 2006). The
MpkC:GFP and SakA:GFP strains were constructed by
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FIGURE 3 | SakA:GFP associates with MpkA and PtcB. (A) Interaction network performed by using STRING (https://string-db.org/) showing the interaction among
SakA, MpkC, MpkA, PtcB, and PakA. (B) Co-IP of SakA:GFP, MpkA:3xHA, SakA:GFP, and PtcB:3xHA. Affinity purification assays from GFP-tagged SakA strain in
the background of 3xHA-tagged MpkA or PtcB were performed with GFP-Trap and anti-HA beads to verify interactions upon cell wall stress. CB, coomassie
blue staining.

de Oliveira Bruder Nascimento et al. (2016). Media were of
two basic types. A complete medium [YAG: 2% (w/v) glucose,
0.5% (w/v) yeast extract, 2% (w/v) agar, trace elements] with
three variants: YUU (YAG supplemented with 1.2 g/l each of
uracil and uridine) and liquid YG or YUU medium of the same
composition but without agar. A modified minimal medium
(MM: 1% (w/v) glucose, original high nitrate salts, trace elements,
2% (w/v) agar, pH 6.5) was also used. Trace elements, vitamins,
and nitrate salts were described by Kafer (1977).

Plasmid Constructions
All A. fumigatus genes were isolated from the strain CEA17
D’Enfert et al. (1996). The cassette for pakA deletion was
constructed by in vivo recombination in S. cerevisiae as previously
described by Colot et al. (2006). Thus, approximately 2.0 kb
from the 5′-UTR and 3′-UTR flanking region of the targeted
ORF regions was selected for primer design. The primers 5F
(pakA pRS426 5fw) and 3R (pakA pRS426 3rv) contained a

short homologous sequence to the MCS of the plasmid pRS426.
Both the 5- and 3- UTR fragments were PCR amplified from
A. fumigatus genomic DNA (gDNA). The pyrG gene placed
within the cassette as a prototrophic marker was amplified
from pCDA21 plasmid. The deletion cassette was generated by
transforming each fragment along with the plasmid pRS426 cut
with BamHI/EcoRI into the S. cerevisiae strain SC94721 using
the lithium acetate method (Schiestl and Gietz, 1989). The DNA
from the transformants was extracted by the method described
by Goldman et al. (2003). The cassette was PCR amplified from
these plasmids utilizing TaKaRa Ex TaqTM DNA Polymerase
(Clontech Takara Bio) and used for A. fumigatus transformation.
Southern blot analysis demonstrated that the transformation
cassette had integrated homologously at the targeted loci
(Supplementary Figure S4). The single gene deletion of the
pakA was complemented by co-transforming a DNA fragment
(approximately 1 kb from each 5′ and 3′ flanking regions plus
the ORF) together with the pHATα (Herrera-Estrella et al., 1990)
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FIGURE 4 | PakA is important for the response to cell wall stress. (A) The wild-type, 1pakA, and 1paKA:pakA+ and 1crzA 1zipD mutant strains were grown on
minimal media with increasing concentrations of congo red (A), calcofluor white (CFW) (B), and caspofungin (C) for 5 days at 37 oC. The results are expressed as
the average of three repetitions ± standard deviation. Statistical analysis was performed using a one-way ANOVA test when compared to the wild-type
condition (∗∗p < 0.005; ∗∗∗p < 0.001).

and selecting for hygromycin resistance in MM plates with
250 mg/ml of hygromycin B. Southern blot was used to
confirm the reconstituted strain (Supplementary Figure S4).
For the generation of 3xHA fusion fragments mpkC:3xHA:ptrA,
mpkA:3xHA:ptrA and ptcB:3xHA:ptrA, a portion of DNA
consisting of the gene ORF and 5′ UTR region, along with a 1-Kb
segment of DNA consisting of the 3′ UTR flanking region were
amplified with the primers pairs listed in supplemental table SX,
from CEA17 gDNA. The 0.8 kb 3xHA-trpC fusion was amplified
with primers OZG916/trpC REV ptrA from the pOB430 plasmid
and a ptrA fragment amplified from the plasmid pPTR. The
cassette was generated by transforming each fragment along with
the plasmid pRS426 cut with BamHI/EcoRI into the S. cerevisiae
strain. These cassettes were then transformed into the CEA17
strain and verification of 3xHA tagged strains were confirmed via
PCR reaction (Supplementary Figures S1–S4).

Southern blot and PCR analyses were used to demonstrate
that the cassettes had integrated homologously at the targeted
A. fumigatus loci. Genomic DNA from A. fumigatus was
extracted by grinding frozen mycelia in liquid nitrogen and

then gDNA was extracted as previously described (Malavazi and
Goldman, 2012). Standard techniques for manipulation of DNA
were carried out as described (Sambrook and Russell, 2001).
For Southern blot analysis, restricted chromosomal DNA

FIGURE 5 | Aspergillus fumigatus PakA contributes to virulence in
G. mellonella. Comparative analysis of wild-type and mutant strains in
G. mellonella animal model. Larvae in groups of 10 per strain were infected
with a 5 µl suspension of conidia at a dose of 1 × 106/larva. PBS, phosphate
buffer saline.
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fragments were separated on 1% agarose gel and blotted
onto Hybond N+ nylon membranes (GE Healthcare). Probes
were labeled using [α-32P]dCTP using the Random Primers
DNA Labeling System (Life Technologies). Labeled membranes
were exposed to X-ray films, which were scanned for image
processing. Southern blot and PCR schemes are shown in
Supplementary Figures S1–S4.

Phenotypic Assays
The phenotypes of the deletion mutant 1pakA were evaluated by
radial growth in MM and in presence of agents that affect CWI,
including CR, calcofluor white (CFW) and the echinocandin
caspofungin. The experiments were performed using 5 µl of a
2 × 107 conidia for the wild-type and mutant strain and grown
for 96 h at 37◦C.

Protein Interaction Network Analysis
For the analysis of the interaction networks, proteins identified by
proteomics were analyzed using STRING3 considering medium
confidence parameter, and all possible interaction parameters
allowed (such as co-expression, experimental evidence, and
co-occurrence, etc). Resulting interaction networks were further
processed using ad hoc Perl scripts and plots were generated
using Gephi4.

GFP-Tag Protein Purification and
Identification by LC-MS/MS
To precipitate GFP-tag-labeled SakA and MpkC, protein
crude extracts were prepared from wild-type, SakA:GFP and
MpkC:GFP cultures grown for 24 h and further exposed to
sorbitol 1.0 M (10, 30, and 60 min) or CR 300 µg/mL (5,
15, 30, and 60 min). Crude protein extracts from mycelia
were obtained by extraction from ground mycelia with B250
buffer (250 mM NaCl, 100 mM Tris–HCl pH 7.5, 10% glycerol,
1 mM EDTA and 0.1% NP-40) supplemented with 1.5 ml/L
1 M DTT, 2 tables/100 mL complete-mini protease inhibitor
cocktail EDTA-free (Roche), 3 ml/L 0.5 M Benzamidine, 10 ml/L
phosphatase inhibitors 100× (10 M NaF, 5 M Na Vanadate, 8
M β-glycerol phosphate), and 10 ml/L 100 mM PMSF. Total
protein lysates were submitted to centrifuge at 13.000 rpm
at 4◦C for 10 min, the supernatant was collected into a
new eppendorf. Magnetics GFP-trap beads were equilibrated
with lysis buffer B250 (20 uL of beads into 500 uL lysis
buffer B250; de Assis et al., 2018) during 10 min, after
then were collected using magnet hack and incubated with
total protein lysate at 4◦C during 3 h. After incubation the
magnetics GFP-trap beads were collected using magnetic hack
and the supernatant was removed. The magnetic GFP-trap
beads were washed two times using 500 uL lysis buffer B250
without DTT and one additional wash step was done with
addition of DTT. The magnetics GFP-trap beads were collected
and supernatant was removed. The LC-MS/MS identification
was performed as described previously (Johnk et al., 2016).
Digested peptides were separated using reversed-phase liquid

3https://string-db.org/
4https://gephi.org/

chromatography with an RSLCnano Ultimate 3000 system
(Thermo Fisher Scientific) followed by mass identification with
an Orbitrap Velos Pro mass spectrometer (Thermo Fisher
Scientific). Chromatographically separated peptides were on-
line ionized by nano-electrospray (nESI) using the Nanospray
Flex Ion Source (Thermo Fisher Scientific) at 2.4 kV and
continuously transferred into the mass spectrometer. Full scans
within m/z of 300–1850 were recorded by the Orbitrap-FT
analyzer at a resolution of 30.000 (using m/z 445.120025
as lock mass) with parallel data-dependent top 10 MS2-
fragmentation in the LTQ Velos Pro linear ion trap. LCMS
method programming and data acquisition was performed
with the software XCalibur 2.2 (Thermo Fisher Scientific)
and method/raw data validation with the program RawMeat
2.1 (Vast Scientific). MS/MS2 data processing for protein
analysis and identification was done with either MaxQuant
quantitative proteomic software in conjunction with Perseus
software for statistical analysis or the Proteome Discoverer 1.3
(PD, Thermo Fisher Scientific) and the Discoverer Daemon
1.3 (Thermo Fisher Scientific) software using the Sequest
(and/or Mascot) peptide analysis algorithm(s) and organism-
specific taxon-defined protein databases extended by the most
common contaminants.

Co-IPs With GFP-Trap and Anti-HA
Magnetic Beads
To perform co-IP assays, C-terminal HA-tagged MpkC, MpkA,
and PtcB strains were generated in the SakA:GFP background.
The strains were grown for 16 h in MM and further exposed
to sorbitol 1.0 M (10, 30, and 60 min) or CR 300 µg/mL
(5, 15, 30, and 60 min). GFP-Trap co-IP experiments were
performed as previously reported (Manfiolli et al., 2017).
To perform reciprocal coimmunoprecipitation assays mycelia
were frozen with liquid nitrogen, ground, and 500 mg was
resuspended in 1 ml of B250 buffer (see above). Samples were
centrifuged at 16,100 × g for 10 min at 4◦C. Supernatant
was collected, and a Bradford assay (BioRad) was carried out
to measure protein content. The same amount of protein for
each sample was added to 20 uL of Dynabeads Protein A
(Thermo Fisher Scientific) previously incubated with monoclonal
anti-HA antibody (Sigma). The resin was washed three times
with resuspension buffer prior to incubation. Cell extracts and
resin were then incubated with shaking at 4◦C for 2 h. After
incubation, the resin was washed three times in resuspension
buffer by placing the tube in a DynaMagTM magnet. To release
the proteins from the resin, samples were incubated with
Sample Buffer and boiled at 98◦C for 5 min. Proteins were
transferred from a 10% SDS-PAGE gel onto a nitrocellulose
membrane for a Western blot assay using a Trans-Blot turbo
transfer system (Bio-Rad). GFP-tagged SakA was detected
using a rabbit anti-GFP antibody (Abcam) at 1:2,000 dilution
and a goat anti-rabbit I gG horseradish peroxidase (HRP)
antibody (Cell Signaling Technology) at 1:10,000 dilution. For
the HA-tagged proteins detection, a mouse monoclonal anti-
HA antibody (Sigma) was used at 1:2,000 dilution as a primary
antibody followed by an anti-mouse I gG HRP conjugate

Frontiers in Microbiology | www.frontiersin.org 14 May 2019 | Volume 10 | Article 918

https://string-db.org/
https://gephi.org/
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00918 May 4, 2019 Time: 16:18 # 15

Manfiolli et al. Aspergillus fumigatus MAP Kinases

(Cell Signaling Technology) used at 1:10,000 dilution as a
secondary antibody.

Galleria mellonella Experiments
Galleria mellonella larvae were obtained by breeding adult moths
(Fuchs et al., 2010). G. mellonella larvae of a similar size were
selected (approximately 275–330 mg) and kept without food
in glass container (Petri dishes), at 37◦C, in darkness for 24 h
prior to use. A. fumigatus conidia were obtained by growing
on YAG media culture for 2 days. The conidia were harvested
in PBS and filtered through a Miracloth (Calbiochem). The
concentration of conidia was estimated by using hemocytometer,
and resuspended at a concentration of 2.0 × 108 conidia/ml.
The viability of the conidia was determined by incubating
on YAG media culture, at 37◦C, 48 h. Inoculum (5 µl
of a 2 × 108 conidia/ml) from the wild-type, mutant and
complemented strains (1 × 106 conidia/larva) were used to
investigate the virulence of A. fumigatus against G. mellonella.
Ten G. mellonella in the final (sixth) instar larval stage of
development were used per condition in all assays. The control
group was the larvae inoculated with 5 µl of PBS to observe
the killing due to physical trauma. The inoculum was performed
by using Hamilton syringe (7000.5KH) and 5 µl into the
haemocel of each larva via the last left proleg. After, the larvae
were incubated in glass container (Petri dishes) at 37◦C in
the dark. The larval killing was scored daily. Larvae were
considered dead by presenting the absence of movement in
response to touch.

AUTHOR CONTRIBUTIONS

AM and NB wrote the manuscript. AM, EM, LA, LS, R-SR,
and MU performed the experiments. NB and GG reviewed the
manuscript. ÖB and GG designed the experiments and obtained
the financial resources.

ACKNOWLEDGMENTS

We thank São Paulo Research Foundation (FAPESP) grant
numbers 2016/07870-9 (GG), 2014/24951 (AM), 2016/21392-
2 (LS), 2017/19288-5 (EM), 2014/00789-6 (LA), and Conselho
Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
(GG), both from Brazil for financial support, and Science
Foundation Ireland (SFI) under grant number 13/CDA/2142 to
ÖB. MS facility in Maynooth University was funded by SFI
[12/RI/2346(3)]. NB was supported by the BBSRC Future Leader
Fellowship (BB/N011686/1) and an internal University of Bath
grant. We would like to thank the two reviewers and the editor
for their suggestions and comments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2019.00918/full#supplementary-material

REFERENCES
Aguirre, J., Hansberg, W., and Navarro, R. (2006). Fungal responses to reactive-

oxygen species. Med. Mycol. 44, S101–S107. doi: 10.1080/13693780600900080
Altwasser, R., Baldin, C., Weber, J., Guthke, R., Kniemeyer, O., Brakhage,

A. A., et al. (2015). Network modeling reveals cross talk of MAP kinases
during adaptation to caspofungin stress in Aspergillus fumigatus. PLoS One
10:e0136932. doi: 10.1371/journal.pone.0136932

Bahn, Y. S., Kojima, K., Cox, G. M., and Heitman, J. (2005). Specialization of the
HOG pathway and its impact on differentiation and virulence of Cryptococcus
neoformans. Mol. Biol. Cell. 16, 2285–2300.

Bayram, Ö., Bayram, Ö. S., Ahmed, Y. L., Maruyama, J., Valerius, O., Rizzoli, S. O.,
et al. (2012). The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3
controls development and secondary metabolism. PLoS Genet. 8:e1002816. doi:
10.1371/journal.pgen.1002816

Bom, V. L., de Castro, P. A., Winkelströter, L. K., Marine, M., Hori, J. I., Ramalho,
L. N., et al. (2015). The Aspergillus fumigatus sitA phosphatase homologue is
important for adhesion, cell wall integrity, biofilm formation, and virulence.
Eukaryot. Cell 14, 728–744. doi: 10.1128/EC.00008-15

Bork, P., Jensen, L. J., von Mering, C., Ramani, A. K., Lee, I., and Marcotte, E. M.
(2004). Protein interaction networks from yeast to human. Curr. Opin. Struct.
Biol. 14, 292–299.

Brakhage, A. A. (2005). Systemic fungal infections caused by Aspergillus species:
epidemiology, infection process and virulence determinants. J. Curr. Drug
Targets 6, 875–886.

Brown, G. D., Denning, D. W., Gow, N. A., Levitz, S. M., Netea, M. G., and
White, T. C. (2012a). Hidden killers: human fungal infections. Sci. Transl. Med.
4:165rv13. doi: 10.1126/scitranslmed.3004404

Brown, G. D., Denning, D. W., and Levitz, S. M. (2012b). Tackling human fungal
infections. Science 336:647. doi: 10.1126/science.1222236

Brown, N. A., and Goldman, G. H. (2016). The contribution of Aspergillus
fumigatus stress responses to virulence and fungicide resistance. J. Microbiol.
54, 243–253. doi: 10.1007/s12275-016-5510-4

Chen, S. C., Slavin, M. A., and Sorrell, T. C. (2011). Echinocandin antifungal drugs
in fungal infections: a comparison. Drugs 71, 11–41. doi: 10.2165/11585270-
000000000-00000

Colot, H. H., Park, G., Turner, G. E., Ringelberg, C., Crew, C. M., Litvinkova,
L., et al. (2006). A highthroughput gene knockout procedure for Neurospora
reveals functions for multiple transcription factors. Proc. Nat. Acad. Sci. U.S.A.
103, 10352–10357. doi: 10.1073/pnas.0601456103

Cvrcková, F., De Virgilio, C., Manser, E., Pringle, J. R., and Nasmyth, K.
(1995). Ste20-like protein kinases are required for normal localization
of cell growth and for cytokinesis in budding yeast. Genes Dev. 9,
1817–1830

da Silva Ferreira, M. E., Kress, M. R., Savoldi, M., Goldman, M. H., Härtl,
A., Heinekamp, T., et al. (2006). The akuB(KU80) mutant deficient for
nonhomologous end joining is a powerful tool for analyzing pathogenicity in
Aspergillus fumigatus. Eukaryot. Cell 5, 207–211.

Dagenais, T. R., and Keller, N. P. (2009). Pathogenesis of Aspergillus fumigatus
in invasive aspergillosis. Clin. Microbiol. Rev. 22, 447–465. doi: 10.1128/CMR.
00055-08

de Assis, L. J., Ulas, M., Ries, L. N. A., El Ramli, N. A. M., Sarikaya-Bayram, O.,
Braus, G. H., et al. (2018). Regulation of Aspergillus nidulans CreA-mediated
catabolite repression by the F-Box proteins Fbx23 and Fbx47. mBio 9:e00840–
18. doi: 10.1128/mBio.00840-18

de Castro, P. A., Chen, C., de Almeida, R. S., Freitas, F. Z., Bertolini, M. C., Morais,
E. R., et al. (2014). ChIP-seq reveals a role for CrzA in the Aspergillus fumigatus
high-osmolarity glycerol response (HOG) signalling pathway. Mol. Microbiol.
94, 655–674. doi: 10.1111/mmi.12785

de Nadal, E., and Posas, F. (2015). Osmostress-induced gene expression—a
model to understand how stress-activated protein kinases (SAPKs) regulate
transcription. FEBS J. 282, 3275–3285. doi: 10.1111/febs.13323

de Oliveira Bruder Nascimento, A. C., Dos Reis, T. F., de Castro, P. A., Hori,
J. I., Bom, V. L., de Assis, L. J., et al. (2016). Mitogen activated protein kinases
SakA(HOG1) and MpkC collaborate for Aspergillus fumigatus virulence. Mol.
Microbiol. 100, 841–859. doi: 10.1111/mmi.13354

Frontiers in Microbiology | www.frontiersin.org 15 May 2019 | Volume 10 | Article 918

https://www.frontiersin.org/articles/10.3389/fmicb.2019.00918/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2019.00918/full#supplementary-material
https://doi.org/10.1080/13693780600900080
https://doi.org/10.1371/journal.pone.0136932
https://doi.org/10.1371/journal.pgen.1002816
https://doi.org/10.1371/journal.pgen.1002816
https://doi.org/10.1128/EC.00008-15
https://doi.org/10.1126/scitranslmed.3004404
https://doi.org/10.1126/science.1222236
https://doi.org/10.1007/s12275-016-5510-4
https://doi.org/10.2165/11585270-000000000-00000
https://doi.org/10.2165/11585270-000000000-00000
https://doi.org/10.1073/pnas.0601456103
https://doi.org/10.1128/CMR.00055-08
https://doi.org/10.1128/CMR.00055-08
https://doi.org/10.1128/mBio.00840-18
https://doi.org/10.1111/mmi.12785
https://doi.org/10.1111/febs.13323
https://doi.org/10.1111/mmi.13354
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00918 May 4, 2019 Time: 16:18 # 16

Manfiolli et al. Aspergillus fumigatus MAP Kinases

D’Enfert, C., Diaquin, M., Delit, A., Wuscher, N., Debeaupuis, J. P., Huerre, M.,
et al. (1996). Attenuated virulence of uridine-uracil auxotrophs of Aspergillus
fumigatus. Infect. Immun. 64, 4401–4405.

Eaton, C. J., Jourdain, I., Foster, S. J., Hyams, J. S., and Scott, B. (2008). Functional
analysis of a fungal endophyte stress-activated MAP kinase. Curr. Genet. 53,
163–174. doi: 10.1007/s00294-007-0174-6

Elion, E. A., Grisafi, P. L., and Fink, G. R. (1990). FUS3 encodes a cdc2+/CDC28-
related kinase required for the transition from mitosis into conjugation. Cell 60,
649–664.

Fuchs, B. B., O’Brien, E., Khoury, J. B., and Mylonakis, E. (2010). Methods for using
Galleria mellonella as a model host to study fungal pathogenesis. Virulence 1,
475–482. doi: 10.4161/viru.1.6.12985

Garrido-Bazán, V., Jaimes-Arroyo, R., Sánchez, O., Lara-Rojas, F., and Aguirre,
J. (2018). SakA and MpkC stress MAPKs show opposite and common
functions during stress responses and development in Aspergillus nidulans.
Front. Microbiol. 9:2518. doi: 10.3389/fmicb.2018.02518

Goldman, G. H., dos Reis Marques, E., Duarte Ribeiro, D. C., de Souza Bernardes,
L. A., Quiapin, A. C., Vitorelli, P. M., et al. (2003). Expressed sequence
tag analysis of the human pathogen Paracoccidioides brasiliensis yeast phase:
identification of putative homologues of Candida albicans virulence and
pathogenicity genes. Eukaryot. Cell 2, 34–48.

Greenberger, P. A. (2002). Allergic bronchopulmonary aspergillosis. J. Allergy Clin.
Immunol. 110, 685–692.

Hagiwara, D., Asano, Y., Marui, J., Yoshimi, A., Mizuno, T., and Abe, K. (2009).
Transcriptional profiling for Aspergillus nidulans HogA MAPK signaling
pathway in response to fludioxonil and osmotic stress. Fungal Genet. Biol. 46,
868–878. doi: 10.1016/j.fgb.2009.07.003

Hamel, L. P., Nicole, M. C., Duplessis, S., and Ellis, B. E. (2012). Mitogen-
activated protein kinase signaling in plant-interacting fungi: distinct messages
from conserved messengers. Plant Cell 24, 1327–1351. doi: 10.1105/tpc.112.
096156

Hartmann, T., Sasse, C., Schedler, A., Hasenberg, M., Gunzer, M., Krappmann,
S., et al. (2011). Shaping the fungal adaptome-stress responses of Aspergillus
fumigatus. Int. J. Med. Microbiol. 301, 408–416. doi: 10.1016/j.ijmm.2011.
04.008

He, F., Zhang, Y., Chen, H., Zhang, Z., and Peng, Y.-L. (2008). The prediction of
protein-protein interaction networks in rice blast fungus. BMC Genomics 9:519.
doi: 10.1186/1471-2164-9-519

Heller, J., Ruhnke, N., Espino, J. J., Massaroli, M., Collado, I. G., and Tudzynski,
P. (2012). The mitogen-activated protein kinase BcSak1 of Botrytis cinerea
is required for pathogenic development and has broad regulatory functions
beyond stress response. Mol. Plant Microbe Interact. 25, 802–816. doi: 10.1094/
MPMI-11-11-0299

Herrera-Estrella, A., Goldman, G. H., and Van Montagu, M. (1990). High-
efficiency transformation system for the biocontrol agents, Trichoderma spp.
Mol. Microbiol. 4, 839–843.

Jaimes-Arroyo, R., Lara-Rojas, F., Bayram, Ö., Valerius, O., Braus, G. H., and
Aguirre, J. (2015). The SrkA kinase is part of the SakA mitogen-activated
protein kinase interactome and regulates stress responses and development in
Aspergillus nidulans. Eukaryot. Cell 14, 495–510. doi: 10.1128/EC.00277-14

Johnk, B., Bayram, O., Abelmann, A., Heinekamp, T., Mattern, D. J., Brakhage,
A. A., et al. (2016). SCF ubiquitin ligase F-box protein Fbx15 controls nuclear
co-repressor localization, stress response and virulence of the human pathogen
Aspergillus fumigatus. PLoS Pathog. 12:e1005899. doi: 10.1371/journal.ppat.
1005899

Kafer, E. (1977). Meiotic and mitotic recombination in Aspergilllus and its
chromosomal aberrations. Adv. Genet. 19, 33–131.

Kawasaki, L., Sanchez, O., Shiozaki, K., and Aguirre, J. (2002). SakA MAP kinase
is involved in stress signal transduction, sexual development and spore viability
in Aspergillus nidulans. Mol. Microbiol. 45, 1153–1163.

Lackner, M., and Lass-Flörl, C. (2013). Up-date on diagnostic strategies of invasive
aspergillosis. Curr. Pharm. Des. 19, 3595–3614.

Lam, M. H., Snider, J., Rehal, M., Wong, V., Aboualizadeh, F., Drecun, L.,
et al. (2015). A comprehensive membrane interactome mapping of sho1p
reveals Fps1p as a novel key player in the regulation of the HOG pathway in
S. cerevisiae. J. Mol. Biol. 427, 2088–2103. doi: 10.1016/j.jmb.2015.01.016

Lamb, T. M., Finch, K. E., and Bell-Pedersen, D. (2012). The Neurospora crassa OS
MAPK pathway-activated transcription factor ASL-1 contributes to circadian

rhythms in pathway responsive clock-controlled genes. Fungal Genet. Biol. 49,
180–188. doi: 10.1016/j.fgb.2011.12.006

Lara-Rojas, F., Sanchez, O., Kawasaki, L., and Aguirre, J. (2011). Aspergillus
nidulans transcription factor AtfA interacts with the MAPK SakA to regulate
general stress responses, development and spore functions. Mol. Microbiol. 80,
436–454. doi: 10.1111/j.1365-2958.2011.07581.x

Li, S., Musungu, B., Lightfoot, D., and Ji, P. (2018). The interactomic analysis
reveals pathogenic protein networks in Phomopsis longicolla underlying
seed decay of soybean. Front. Genet. 9:104. doi: 10.3389/fgene.2018.
00104

Malavazi, I., and Goldman, G. H. (2012). Gene disruption in Aspergillus fumigatus
using a PCR-based strategy and in vivo recombination in yeast. Methods Mol.
Biol. 845, 99–118. doi: 10.1007/978-1-61779-539-8_7

Manfiolli, A. O., de Castro, P. A., Dos Reis, T. F., Dolan, S., Doyle, S., Jones, G.,
et al. (2017). Aspergillus fumigatus protein phosphatase PpzA is involved in iron
assimilation, secondary metabolite production, and virulence. Cell. Microbiol.
19:e12770. doi: 10.1111/cmi.12770

Martínez-Montañés, F., Pascual-Ahuir, A., and Proft, M. (2010). Toward a genomic
view of the gene expression program regulated by osmostress in yeast. OMICS
14, 619–627. doi: 10.1089/omi.2010.0046

Monge, R. A., Román, E., Nombela, C., and Pla, J. (2006). The MAP kinase signal
transduction network in Candida albicans. Microbiology 152, 905–912.

Nimmanee, P., Woo, P. C., Kummasook, A., and Vanittanakom, N. (2015).
Characterization of sakA gene from pathogenic dimorphic fungus Penicillium
marneffei. Int. J. Med. Microbiol. 305, 65–74. doi: 10.1016/j.ijmm.2014.11.003

Nishiyama, R., Watanabe, Y., Leyva-Gonzalez, M. A., Ha, C. V., Fujita,
Y., Tanaka, M., et al. (2013). Arabidopsis AHP2, AHP3, and AHP5
histidinephosphotransfer proteins function as redundant negative regulators
ofdrought stress response. Proc. Natl. Acad. Sci. U.S.A. 110, 4840–4845. doi:
10.1073/pnas.1302265110

Pearson, G., Robinson, F., Beers Gibson, T., Xu, B. E., Karandikar, M., Berman, K.,
et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and
physiological functions. Endocr. Rev. 22, 153–183.

Pringle, J. R., Bi, E., Harkins, H. A., Zahner, J. E., De Virgilio, C., Chant, J., et al.
(1995). Establishment of cell polarity in yeast. Cold Spring Harb. Symp. Quant.
Biol. 60, 729–744. doi: 10.1101/SQB.1995.060.01.079

Raitt, D. C., Posas, F., and Saito, H. (2000). Yeast Cdc42 GTPase and Ste20 PAK-
like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway.
EMBO J. 19, 4623–4631.

Reyes, G., Romans, A., Nguyen, C. K., and May, G. S. (2006). Novel mitogen-
activated protein kinase MpkC of Aspergillus fumigatus is required for
utilization of polyalcohol sugars. Eukaryot. Cell 5, 1934–1940.

Richman, T. J., Sawyer, M. M., and Johnson, D. I. (1999). The Cdc42p
GTPase is involved in a G2/M morphogenetic checkpoint regulating the
apical-isotropic switch and nuclear division in yeast. J. Biol. Chem. 274,
16861–16870.

Rispail, N., Soanes, D. M., Ant, C., Czajkowski, R., Grunler, A., Huguet, R.,
et al. (2009). Comparative genomics of MAP kinase and calcium-calcineurin
signalling components in plant and human pathogenic fungi. Fungal Genet.
Biol. 46, 287–298. doi: 10.1016/j.fgb.2009.01.002

Román, E., Arana, D. M., Nombela, C., Alonso-Monge, R., and Pla, J. (2007).
MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 15,
181–190.

Sambrook, J., and Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual,
3rd Edn. London: CSHL Press.

Schiestl, R. H., and Gietz, R. D. (1989). High efficiency transformation of intact
yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16,
339–346.

Simon, M. N., De Virgilio, C., Souza, B., Pringle, J. R., Abo, A., and Reed, S. I.
(1995). Role for the Rho-family GTPase Cdc42 in yeast mating-pheromone
signal pathway. Nature 376, 702–705. doi: 10.1038/376702a0

Slater, J. L., Gregson, L., Denning, D. W., and Warn, P. A. (2011). Pathogenicity
of Aspergillus fumigatus mutants assessed in Galleria mellonella matches that
in mice. Med. Mycol. 49(Suppl. 1), S107–S113. doi: 10.3109/13693786.2010.
523852

Steinbach, W. J., Lamoth, F., and Juvvadi, P. R. (2015). Potential microbiological
effects of higher dosing of echinocandins. Clin. Infect. Dis. 61, S669–S677.
doi: 10.1093/cid/civ725

Frontiers in Microbiology | www.frontiersin.org 16 May 2019 | Volume 10 | Article 918

https://doi.org/10.1007/s00294-007-0174-6
https://doi.org/10.4161/viru.1.6.12985
https://doi.org/10.3389/fmicb.2018.02518
https://doi.org/10.1016/j.fgb.2009.07.003
https://doi.org/10.1105/tpc.112.096156
https://doi.org/10.1105/tpc.112.096156
https://doi.org/10.1016/j.ijmm.2011.04.008
https://doi.org/10.1016/j.ijmm.2011.04.008
https://doi.org/10.1186/1471-2164-9-519
https://doi.org/10.1094/MPMI-11-11-0299
https://doi.org/10.1094/MPMI-11-11-0299
https://doi.org/10.1128/EC.00277-14
https://doi.org/10.1371/journal.ppat.1005899
https://doi.org/10.1371/journal.ppat.1005899
https://doi.org/10.1016/j.jmb.2015.01.016
https://doi.org/10.1016/j.fgb.2011.12.006
https://doi.org/10.1111/j.1365-2958.2011.07581.x
https://doi.org/10.3389/fgene.2018.00104
https://doi.org/10.3389/fgene.2018.00104
https://doi.org/10.1007/978-1-61779-539-8_7
https://doi.org/10.1111/cmi.12770
https://doi.org/10.1089/omi.2010.0046
https://doi.org/10.1016/j.ijmm.2014.11.003
https://doi.org/10.1073/pnas.1302265110
https://doi.org/10.1073/pnas.1302265110
https://doi.org/10.1101/SQB.1995.060.01.079
https://doi.org/10.1016/j.fgb.2009.01.002
https://doi.org/10.1038/376702a0
https://doi.org/10.3109/13693786.2010.523852
https://doi.org/10.3109/13693786.2010.523852
https://doi.org/10.1093/cid/civ725
https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-10-00918 May 4, 2019 Time: 16:18 # 17

Manfiolli et al. Aspergillus fumigatus MAP Kinases

Sugui, J. A., Kwon-Chung, K. J., Juvvadi, P. R., Latgé, J. P., and Steinbach, W. J.
(2014). Aspergillus fumigatus and related species. Cold Spring Harb. Perspect.
Med. 5:a019786. doi: 10.1101/cshperspect.a019786

Tanaka, K., Tatebayashi, K., Nishimura, A., Yamamoto, K., Yang, H.-Y., and Saito,
H. (2014). Yeast osmosensors Hkr1 and Msb2 activate the Hog1 MAPK cascade
by different mechanisms. Sci. Signal 7:ra21. doi: 10.1126/scisignal.2004780

Tekaia, F., and Latgé, J. P. (2005). Aspergillus fumigatus: saprophyte or pathogen?
Curr. Opin. Microbiol. 8, 385–392.

Turra, D., Segorbe, D., and Di Pietro, A. (2014). Protein kinases in plant-
pathogenic fungi: conserved regulators of infection. Annu. Rev. Phytopathol.
52, 267–288. doi: 10.1146/annurev-phyto-102313-050143

Vaga, S., Bernardo-Faura, M., Cokelaer, T., Maiolica, A., Barnes, C. A., Gillet,
L. C., et al. (2014). Phosphoproteomic analyses reveal novel cross-modulation
mechanisms between two signaling pathways in yeast. Mol. Syst. Biol. 10:767.
doi: 10.15252/msb.20145112

Valiante, V., Heinekamp, T., Jain, R., Härtl, A., and Brakhage, A. A. (2008). The
mitogen-activated protein kinase MpkA of Aspergillus fumigatus regulates cell
wall signaling and oxidative stress response. Fungal Genet. Biol. 45, 618–627.

Valiante, V., Jain, R., Heinekamp, T., and Brakhage, A. A. (2009). The MpkA MAP
kinase module regulates cell wall integrity signaling and pyomelanin formation
in Aspergillus fumigatus. Fungal Genet. Biol. 46, 909–918. doi: 10.1016/j.fgb.
2009.08.005

Valiante, V., Macheleidt, J., Föge, M., and Brakhage, A. A. (2015a). The Aspergillus
fumigatus cell wall integrity signaling pathway: drug target, compensatory
pathways, and virulence. Front. Microbiol. 6:325. doi: 10.3389/fmicb.2015.
00325

Valiante, V., Monteiro, M. C., Martín, J., Altwasser, R., El Aouad, N., González, I.,
et al. (2015b). Hitting the caspofungin salvage pathway of human-pathogenic
fungi with the novel lasso peptide humidimycin (MDN-0010). Antimicrob.
Agents Chemother. 59, 5145–5153. doi: 10.1128/AAC.00683-15

Van Nguyen, T., Kroger, C., Bonnighausen, J., Schafer, W., and
Bormann, J. (2013). The ATF/CREB transcription factor Atf1 is

essential for full virulence, deoxynivalenol production, and stress
tolerance in the cereal pathogen Fusarium graminearum. Mol.
Plant Microbe Interact. 26, 1378–1394. doi: 10.1094/MPMI-04-13-
0125-R

Vargas-Perez, I., Sanchez, O., Kawasaki, L., Georgellis, D., and Aguirre, J.
(2007). Response regulators SrrA and SskA are central components
of a phosphorelay system involved in stress signal transduction
and asexual sporulation in Aspergillus nidulans. Eukaryot. Cell 6,
1570–1583.

Winkelströter, L. K., Bom, V. L., de Castro, P. A., Ramalho, L. N., Goldman,
M. H., Brown, N. A., et al. (2015a). High osmolarity glycerol response PtcB
phosphatase is important for Aspergillus fumigatus virulence. Mol. Microbiol.
96, 42–54. doi: 10.1111/mmi.12919

Winkelströter, L. K., Dolan, S. K., Dos Reis, T. F., Bom, V. L., Alves de Castro,
P., Hagiwara, D., et al. (2015b). Systematic global analysis of genes encoding
protein phosphatases in Aspergillus fumigatus. G3 5, 1525–1539. doi: 10.1534/
g3.115.016766

Zhao, X. M., Zhang, X. W., Tang, W. H., and Chen, L. (2009). FPPI: Fusarium
graminearum protein-protein interaction database. J. Proteome Res. 8, 4714–
4721. doi: 10.1021/pr900415b

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Manfiolli, Mattos, de Assis, Silva, Ulaş, Brown, Silva-Rocha,
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