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Abstract: In this paper, a novel real time non-linear model predictive controller (NMPC) for a multi-variable coupled tank system
(CTS) is designed. CTSs are highly non-linear and can be found in many industrial process applications. The involvement of multi-input
multi-output (MIMO) system makes the design of an effective controller a challenging task. MIMO systems have inherent couplings,
interactions in-between the process input-output variables and generally have an unknown structure. The aim of this paper is to design,
simulate, and implement a novel real time constrained NMPC for a multi-variable CTS with the aid of intelligent system techniques.
There are two major formidable challenges hindering the success of the implementation of a NMPC strategy in the MIMO case. The
first is the difficulty of obtaining a good non-linear model by training a non-convex complex network to avoid being trapped in a local
minimum solution. The second is the online real time optimisation (RTO) of the manipulated variable at every sampling time. A
novel wavelet neural network (WNN) with high predicting precision and time-frequency localisation characteristic was selected for an
MIMO model and a fast stochastic wavelet gradient algorithm was used for initial training of the network. Furthermore, a genetic
algorithm was used to obtain the optimised parameters of the WNN as well as the RTO during the NMPC strategy. The proposed
strategy performed well in both simulation and real time on an MIMO CTS. The results indicated that WNN provided better trajectory
regulation with less mean-squared-error and average control energy compared to an artificial neural network. It is also shown that the
WNN is more robust during abnormal operating conditions.

Keywords: Wavelet neural network (WNN), non-linear model predictive control (NMPC), real time practical implementation,
multi-input multi-output (MIMO), modelling, system identification, genetic algorithms (GA), non-linear optimisation, coupled tank
system (CTS).

1 Introduction

Process optimisation is a subject area that deals with
the control of processes so as to optimise some stipulated
set of parameters and constraints while still maintaining
the overall goals and objectives of the plants[1, 2]. A typical
process industry consists of many control loops responsible
for controlling parts of the important complex processes
such as maintaining level, flow, or temperature. Liquid
level control is probably the most common control prob-
lem in practical process systems[3]. Complex activities in
industries can be comprehended easily by the understand-
ing of the basic working principles of some process such as
the laboratory coupled tank system (CTS)[4]. The diverse
utilisations of CTS usages can be found in flow and level
controls, temperature controls, chemical blending, reactions
vessels, hot-water inputs, storage tanks, and temperature
stabilisations[4, 5]. The usefulness of CTS equipment has
also provided many scientists an environment for many re-
search studies[4, 6−13]. The coupled tank apparatus is used
to analyse and examine the basic and advanced engineering
principles which include the study of static and dynamic
systems[4, 14]. A CTS is highly non-linear due to the fea-
ture characteristics of the valves and the fundamental dy-
namic equation which is time variant[3]. In the majority of
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cases, fluids are expected to be pumped and mixed under
varying conditions. In all these processes, fluid level, flow
and reactants rates must be controlled and regulated[5, 15].
Real process plants are usually large scale, non-linear, time
variant, multi-objective and are very complex[16] and con-
trolling such a multi-input multi-output (MIMO) system
poses a very challenging task in the process industries[17].
The control of the MIMO processes is more difficult than
the single-input single-output (SISO) processes because of
the couplings between the process variables. Therefore, the
design procedures for SISO systems cannot be used effec-
tively for MIMO systems[18]. Many of these processes are
complex in nature and exhibit non-linearity and the design
of a non-linear MIMO model for the plant is an extremely
arduous task[15]. Another major design hurdle in the pro-
cess industries is an improper and an inefficient controller
that makes the process runs below its optimum level. A
huge economical advantage can be achieved with a design
of an optimal control strategy for the process industries[4].
Classical control strategies such as proportional-integral-
derivative (PID) have been well established in the process
industries[8, 10, 12, 19] but they are not suitable for non-linear
and complex plants. Researchers are always looking for new
control methods and approaches for greater and increased
efficiency[4]. Today, most effective process operations de-
mand operating ranges closer to the boundary of the al-
lowable operating region[1, 4] and hence linear models are
mostly deficient to sufficiently represent the non-linear dy-
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namics of the plant[4, 20]. In addition, MIMO control sys-
tems are more difficult to design as they integrate multiple
sensors data to coordinate multiple actuators. Some re-
searchers used multiple models and combined different con-
trollers for MIMO systems[16, 21−22]. An accurate non-linear
model with an efficient control strategy is thus required to
increase efficiency and higher production in the process in-
dustries. The model predictive control (MPC) strategy can
control and optimise complex processes with constraints[23].
Model predictive controllers rely mainly on dynamic models
of the process and therefore can either use a linear or non-
linear model representation of the plant for prediction pur-
pose. As already mentioned, process industrial plants are
implicitly non-linear in composition[20, 24−25] and the pre-
diction performance of MPC becomes complex in the pres-
ence of higher degree of non-linearity[25]. A reliable and effi-
cient non-linear model is thus required to predict accurately
the behaviour of the plant in an MPC strategy. Non-linear
model gives a more accurate prediction for a wider operat-
ing range of control[4]. The couple tank system considered
in this study is a typical example of the plant with a high
degree of non-linearity[26, 27]. The non-linearity in the CTS
is mainly due to the basic dynamic equations of the CTS,
the characteristics of the valves and as a result of the non-
linear flow characteristics in the tank system[4]. Most of the
literature concerned with CTSs deals with the non-linearity
of the SISO system case only[8, 28, 29] and to the best of the
authors knowledge no work has been reported in the lit-
erature indicating real-time control of the MIMO system
which is recognised as being difficult to achieve. This paper
uses a novel approach based on an efficient wavelet neu-
ral network (WNN) based model for an MIMO system and
the design a non-linear model predictive control (NMPC)
strategy for the CTS. This study primarily builds on previ-
ous works where a backpropagation artificial neural network
(ANN) was used to design NMPC strategies using SISO[4],
MIMO[15] and non-linear CTS models to control the height
of the fluid in a second tank. One of the major advantages
of using a wavelet for training of a neural network (NN)
is the inherent capability of both time and frequency sig-
nal localisation, which ultimately helps in achieving a global
minimum solution. Wavelets are one of the most exciting re-
search areas in signal processing today and researchers have
increasingly seized the opportunity to employ wavelet func-
tions with its choice of different mother wavelet in various
modelling disciplines[30−39]. The main focus of this work
is to use time-frequency localisation feature of the wavelet
to design an efficient non-linear MIMO model for a CTS
which can operate in nearly all regions of operating points
and then design an optimised NMPC for a CTS based on a
WNN model. The proposed strategy was tested first in sim-
ulation and then in a real time implementation. The results
were benchmarked against the NN model in the NMPC and
showed that better control actions and accurate control of
the CTS were achieved both in terms of mean-squared error
(MSE) and in terms of average controller energy (ACE). As
no work is recorded yet in the area of robust RTO NMPC on
CTS using a single MIMO WNN non-linear model instead
of an adaptive model, this paper shows a WNN model to
be more robust than an ANN does in the NMPC strategy.
The rest of the sections are described as follows: Section 2

describes the CTS while Section 3 contains the modelling
details and results of WNN modelling. Section 4 presents
the NMPC strategy and a genetic algorithm (GA) real time
optimisation (RTO) process. The NMPC strategy results
are shown in Section 5 while conclusions are given in Section
6.

2 MIMO coupled tank system

Fig. 1 (a) shows the picture of the multi-variable coupled
tank apparatus from TQ TecQuipment CE105MV at Ply-
mouth University while its schematic diagram, which rep-
resents a fragment of a typical complex process industry
operation, is shown in Fig. 1 (b). A data acquisition (DAQ)
device (NI 6009) from National Instrument with LabView
software driver is configured to acquire real time sensor data
and used to send the multi-variable input to control the fluid
levels in both tanks. The algorithms were implemented on
a PC with IntelR©. core i5-2410M central processing unit
(CPU) and 3.0GB of random-access memory (RAM). The
CE105MV unit comprises of two variable speed pumps, two
tanks connected by a variable area channel and drain valves
to a sump located in the base of the equipment. There
are two calibrated piezo-resistive silicon pressure type depth
transducers (level sensors), an electronic flow meter and a
variable area gap flow meter to provide visual indication
of flow rate. The control strategy is designed in a way
that the rate of change of the control input is controlled in
small steps to avoid major fluctuations. The equipment can
be configured as MIMO, SISO, single-input, multi-output
(SIMO) or multi-input, single-output (MISO) by the ma-
nipulation of pumps inputs and by varying the sectional
area of rotary valves A and C as shown in Fig. 1 (b). The
physical parameters of the TQ CE105MV coupled tank ap-
paratus are given in Table 1. The MIMO configuration
adopted in this work involves both pump 1 and pump 2
receiving voltages and pumping fluid into both tanks with
valve A fully opened so that there can be interaction be-
tween both tanks. In addition, valves B and C are opened
in midway position with their parameters given in Table 1.
The input voltages are also referred to as manipulated vari-
ables while the outputs, which are the height or level of the
fluid in both tanks, are known as the controlled variables.
At any given time, the heights of the fluid in both tanks
are related to the fluid inlet rates of both pumps and the
outlet rates of both tanks.

3 System identification and modelling

The non-linear dynamic equations of the CTS in Fig. 1
are determined by relating the flow Qi into the tank to the
flow Qo leaving through the tank valves. Applying the mass
balance of flow equation of the tank, it is possible to write[3]

Qi −Qo = A
dh

dt
(1)

where A is the cross-sectional area of the tank, and h is
the height of the fluid in the tank. The unit of (1) is ex-
pressed in m3 · s−1. The flow through the valve can also be
expressed as[3]

Qo = δxβxαx

√
2ghx (2)
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Fig. 1 Coupled tank system setup. (a) Pictures of CTS at Plymouth University; (b) Schematic diagram of CTS

Table 1 Physical parameters of the coupled apparatus

Symbol Quantity Value

Tank 1 and Tank 2 Tank cross sectional area 9.35 × 10−3 m2

Valves A (α12), B (α1), C(α2) Valve orifice cross sectional area 7.85 × 10−5 m2

β12 Discharge coefficient of 10mm valve orifice between tank 1 and tank 2 0.25

β1 and β2 Discharge coefficient of valve C orifice 0.25

g Gravitational constant 9.80ms−2

Liquid level sensors 0 to 10V DC output (0 to 250mm height)

Pump flow sensors 0 to 10V DC output (0 to 4 400 cm3/min)

where αx is the cross sectional area of the orifice, and δx

is the discharge coefficient of the valve. Note that δx takes
into account all fluid characteristics, losses and irregulari-
ties in the system such that the two sides of the equation
balance. In addition, βx is the valve opening expressed as
ratio. At any given time, the heights of fluid in tank 1 and
tank 2 relate to the fluid inlet rates and fluid outlet rates.
Therefore, (1) and (2) can be combined together and apply
to tank 1 and tank 2 in order to respectively derive

A1
dh1

dt
= K1V1(t)− β1α1

√
2gh1±

β12α12

√
(2g(h1(t)− h2(t))) (3)

A2
dh2

dt
= K2V2(t)− β2α2

√
2gh2±

β12α12

√
(2g(h1(t)− h2(t))) (4)

where A1 and A2 are the cross sectional areas of tanks, h1

and h2 are the fluid levels of the tanks. K1 and K2 are re-
spective constants of the pumps and the units are expressed
in m3s−1V−1. Subscripts 1 and 2 refer to tanks 1 and 2, re-
spectively. The discharge coefficient of the valve takes into
account the fluid characteristics, losses and irregularities in
the system such that the two sides of the equation balance
and cancel out. The rest of the parameters are given in
Table 1. Fig. 2 shows the Simulink representation of the
MIMO coupled tank equations, where input 1 is u1, input
2 is u2, output 1 is h1 and output 2 is h2. This represen-

tation of the plant will be used in simulation to test the
NMPC algorithm.

System identification techniques are used to predict the
behaviour of the CTS using the raw measured input out-
put data. Three sets of different input-output data of 2 445
sample each were collected from real open loop practical ex-
periments on the MIMO coupled tank system with a sam-
pling rate Ts of 0.2 s. Figs. 3 (a)–(c) show the three data
sets collected for analysis. These are crucial plant details
for system identification stage. These samples of data were
collected and obtained in such a way as to show the clear
differences in the two output variables, the fluid filling up
and draining processes of the two output variables.

3.1 Wavelet neural network (WNN) for
modelling of the CTS

The WNN has wavelets functions in the hidden layer
which is also referred to as a wavelet layer. Training of
a WNN involves finding the unknown weights between in-
put to hidden layer (WIji), hidden to output layer (WOkj),
translation factor (bj) and dilation (expansion) factor (aj).
For further details of WNN, the intended reader is referred
to [40]. In this work, a Morlet wavelet ϕx is selected as a
mother wavelet. The wavelet ϕx is expressed in (5) and is
used as the activation function for the neurons in the hidden
layers of the WNN.

ϕ(x) = cos(1.75x)× e−
x2
2 (5)
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Fig. 2 MIMO coupled tank system in SimulinkR© design

Fig. 3 Data collected for analysis

where 1.75 is the modulation factor and x is expressed as

x =

L∑
i=1

(WIjiX
n
i − bj)

aj
. (6)

A wavelet transform allows exceptional localisation in the
time domain via translation (a shifting process) and also in
the frequency domain via dilation (a scaling process) of the
mother wavelet. The effect of this shifting and scaling pro-
cess is to produce a time-frequency representation of the
signal. The wavelet basis functions are shifted in time do-
main to maintain the same number of oscillations and its

frequency scaled in amplitude to maintain energy. Owing to
their capability to localise in time, wavelet transforms read-
ily lend themselves to non-stationary signal analysis. The
architecture of an MIMO WNN is shown in Fig. 4, where
the inclusion of wavelet activation functions in the hidden
layer increases the number of unknown in WNN training
compared to a traditional ANN. An initial heuristics study
was conducted to ascertain the optimal number of param-
eters of the WNN, which is represented in a non-linear
auto-regression with exogeneous, inputs (NARX) form of
ymodel = f(h2(t−1), h2(t−2), h1(t−1), h1(t−2), u1(t), u1(t−
1), u2(t), u2(t−1)), where f(·) is an unknown complex non-
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linear function. Here, 2 hidden neurons with two input and
two output delays, which give a total of 24 unknown param-
eters in the WNN structure, were chosen after many initial
trials of different values and configurations. The training
data set consists of two sequences of vectors, which is the
total number of samples of input sequences u1 and u2 and
measured process outputs h1 and h2. These are arranged
in a regressed form of the specified number of two-input
two-output delay feedback. The aim here is to create a
WNN model by finding the optimised unknown parameters
as expressed in (7), where the WNN model output is ymodel.

ymodel(t) =

N∑
j=1

P∏
i=1

wiϕi +

S∑
i=1

Q∏
o=1

netiwo (7)

where neti is the net value of each of the hidden neurons i.
The term δϕx

δx
in (8) is the derivative of (5). This will be

used as part of the terms for calculating the partial deriva-
tives of the error ε functions in (9).

∂ϕ(x)

∂x
= −{

xcos(1.75x) + 1.75sin(1.75x)
}× e

x2
2 . (8)

The partial derivatives of the unknown weights WIji,
WOkj , bj and aj are calculated in (9) by using a conjugate
stochastic gradient method:

∂ξ

∂WIji
=

1

N

N∑
n=1

S∑

k=1

{
(Dn

k − Y n
k )×WOkJ × ∂ϕ(x)

∂x

Xn
i

aj

}

∂ξ

∂WOkj
=

1

N

N∑
n=1

(Dn
k − Y n

k )× ϕ

{∑L
i=1(WIjiX

n
i − bj)

aj

}

∂ξ

∂bj
=

1

N

N∑
n=1

S∑

k=1

(Dn
k − Y n

k )×WOkJ × ∂ϕ(x)

∂x
× 1

aj

∂ξ

∂aj
=

1

N

N∑
n=1

S∑

k=1

(Dn
k − Y n

k )×WOkJ×

∂ϕ(x)

∂x
×

{∑L
i=1(WIjiX

n
i − bj)

a2
j

}
(9)

where ξ is the partial derivative of the error, N is the num-
ber of samples to be trained, S is the number of outputs,
L is the number of regressed inputs in the WNN structure.
In addition, D in (9) refers to ymodel while Y is used to
represent ytarget. The partial derivatives are subsequently
used to update the unknown weights using the formulae:

WIii+1
ji = WIii

ji − ηjj × ∂ξ

∂WIii
ji

WOii+1
kj = WOii

kj − ηjj × ∂ξ

∂WOii
kj

bii+1
j = bii

j − ηjj × ∂ξ

∂bii
j

aii+1
j = aii

j − ηjj × ∂ξ

∂aii
j

. (10)

The training of the feed forward WNN is based on the
minimisation of the error between the model and the target
as shown below:

MSE =

N∑
n=1

S∑

k=1

(ymodel
n
k − ytarget

n
k )2

N
=

N∑
n=1

en2

N
. (11)

During the training process, the validation process is con-
stantly carried out. The WNN is initially trained using the
stochastic conjugate gradient method and the training stops
immediately when the validation model error value starts
to increase. The optimal weight derived from this stage is
used to generate an initial 100 population for a GA, which
was run for 500 generations to obtain the optimal values
of the unknown parameters of the WNN. This is a case of
non-linear MIMO system, which is more challenging than
most recently reported SISO in literature[8, 18, 28, 41], and
the training approach was adopted for the following rea-
sons in order to avoid the problem of being trapped in a
local minimum solution. Moreover, it was shown after some
heuristic study that the proposed is a faster approach. The

Fig. 4 Structure of a conventional MIMO WNN
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ANN model is also obtained in a similar manner for bench-
marking purpose.

3.2 Modelling results

The results of the modelling are given in Table 2. The
mean square errors (MSE) for both ANN and WNN are
calculated using (11). The MSEs were calculated for the
training, validation and the test data. WNN gave lower
MSEs as compared to ANN in all the three data collected.
The means and the variances of the two-input signals for
the three data samples used to excite the real plant are
also given in Table 2. Figs. 5 and 6 give the characteristics
and performance modelling results of ANN and WNN, re-
spectively. Figs. 5 (a) and 6 (a) are the plots of both real
plant output and the model output for the first output and
their prediction errors while Figs. 5 (b) and 6 (b) are sim-
ilarly the plots of both real plant output and the model
output for the second output and their prediction errors.
These are the one step ahead prediction generated by both
derived models. Their MSEs values are already given in
Table 2. Furthermore, Figs. 5 (c), 5 (d), 6 (c), and 6 (d) are
the plots of the auto-correlation and the cross-correlation
model results. Figs. 5 (c) and 6 (c) represent the first output
while Figs. 5 (d) and 6 (d) show the second output results
for the ANN and WNN models, respectively. For the auto-
correlation results, the ANN model results in Figs. 5 (c) and
5 (d) are the auto-correlation coefficients graphs of the pre-
diction errors for both outputs 1 and 2, respectively. They
do not have any value close to zero or within 10% confi-
dence intervals. However, the auto-correlation coefficient
of the WNN prediction errors in Fig. 6 (c) (outputs 1) and
Fig. 6 (d) (output 2) have 50% more zero values in the 10%
confidence intervals than the ANN model. This is a measure
of the validation of the network performance and it gives the
indication of how the prediction errors are related in time.
For a perfect prediction model using the auto-correlation
function, there should only be one non-zero value which
should occur at the zero lag. This would mean that the
prediction errors were completely uncorrelated with each
other.

For the cross-correlation results, both the ANN and
WNN cases have their cross-correlation coefficients inputs
fall with the confidence intervals. Also, for a perfect pre-
diction model using the cross-correlation function, all of the
correlations should be zero. Some initials heuristics trials
were carried out which indicated that the model results will
be admissible if the error correlations fall within the 10%
confidence interval boundaries around zero. Therefore in
this paper, the derived models that fall within the speci-
fied confidence intervals range performed excellently in the
NMPC strategy. The aim of the correlation results is to

make sure that the model is so good for prediction purpose
that there would not be correlation within the prediction
errors.

4 Non-linear control strategy for the
CTS

NMPC is an advanced control strategy in which the cur-
rently manipulated control input applies to the real plant.
A finite prediction horizon (PH) open-loop optimal control
problem is derived by obtaining a real time solution online
at each sampling instant using a non-linear MIMO model
for prediction. The optimisation yields an optimal control
sequence and the first control in this sequence is applied to
the plant. A schematic picture of the whole control strat-
egy is shown in Fig. 7. The predictor task is to predict the
plant output based on the regressed inputs at every instant.
This is done for different control moves within a prediction
range. The value of the control horizon (CH) should always
be less than the PH. The model predictive control strategy
was implemented by using a GA in real time to solve and
minimise the complex optimisation cost function (12) at ev-
ery sampling time. This is used to determine the best or
optimum control inputs that give the least error between
the predicted output and the trajectory reference signals
and minimise the controller efforts while the predictor is
the non-linear WNN model.

J(θ) =

P∑
i=1

P∑
j=1

|wy
i+1(yj(k + i + 1|k)− rj(k + i + 1))|2+

nu∑
j=1

|w∆
i,ju∆uj(k + i|k)|2). (12)

The value J(θ) on the left-hand side (LHS) of (12) is a
one dimensional vector result of the solution of optimisation
problem using a GA. The length of vector J is equivalent
to the population size (PS) in the GA algorithm. The task
is to select the particular population chromosomes from the
optimised vectors (PS × (number of outputs × CH)) that
corresponds to the entry that has the least error value in
vector J(θ) at every sampling instant. The first value in
the control horizon of each output is then applied to the
plant. In addition, the first summation on the right-hand
side (RHS) of (12) represents the error in prediction value
and the reference valve while the second summation term
denotes the change in the controller actions which are the
previous and current manipulated variables (uj+1 − uj).
These are then calculated from the GA optimised manip-
ulated variables. These parameters are the bounded ran-
domly generated population in the GA. The values rj and

Table 2 Modelling results for both ANN and WNN

Performance function (outputs) Data one (training) Data two (validation) Data three (testing)

ANN-MSE (m2)[15] 1.6395×10−6 7.0135×10−6 2.8588×10−5

WNN-MSE (m2) [Proposed] 9.1331×10−8 9.1679×10−8 1.7239×10−7

Inputs Input 1 Input 2 Input 1 Input 2 Input 1 Input 2

Mean (V) 4.0851 5.0091 4.8336 4.9532 4.5705 5.3594

Variance (V) 9.1842 6.9189 11.5329 14.3033 11.0491 14.5067
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yj stand for the reference value and plant output, respec-
tively while, wi stands for the weight value. The parameters
in (12) that represent the randomly generated population

in the GA are the manipulated variables in vector form,
which represents the controller actions from pump 1, and
pump 2, respectively. In order to deal with real-time impl-

Fig. 5 ANN model results
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Fig. 6 WNN model results

Fig. 7 Structure of the NMPC strategy with GA optimisation

ementation constraints, termination measures were imple-
mented to abort the optimisation once a defined sampling
time is passed. This invariably leads to convergence to some
sub-optimal/optimal solution within the sampling time pe-
riod.

4.1 Genetic algorithm

The GA is a stochastic global search method that op-
erates on a population of potential solutions applying the
principle of survival of the fittest to evolve a better candi-
date to a solution. Here a GA is used to obtain a sequence
of optimal manipulated variable control signals that oper-
ate the plant. The flowchart for the process involved in
the genetic algorithm is shown in Fig. 8. In this work, real-
valued genes are used to represent population chromosomes
as they provide faster optimisation as real-valued genes use
less memory and there is no need to convert chromosomes

to phenotypes before each function evaluation. Initial pop-
ulations are generated randomly between the range of 0 and
10V. This population is created so that the difference be-
tween consecutive CHs is not more than a prescribed value
of 1.5 V. These are constraints limiting the range of control
signal whereas the difference between the individual con-
trol inputs into the plant limits the gradient of the control
signal. In the case of a minimisation problem, the best
individuals will have the lowest numerical value of the as-
sociated objective function. Individuals are assigned fitness
values according to their ranks in the population in each
generation before selections are made. The fitness value is
calculated using

fitness =
1

J + 1
. (13)

Mutation brings variations, diversities and changes in the
genetic structures of the overall population while crossover
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process interchanges the genetic structure of two or more
chromosomes.

Fig. 8 Flowchart of a genetic algorithm procedure

The modified NMPC algorithm is written in such a way
that during the constrained optimisation process, the best
pairs of CH vector (population) is constantly retained so
that the best population is not destroyed. The best pop-
ulation is constantly preserved from one generation to the
other. After some heuristic trials, 0.5 and 0.05 were respec-
tively chosen for crossover and mutation ratios. The GA
optimisation parameters (PS = 10, PH = 5, CH = 2 and a
generation = 20) and model (neurons=2, and delays= 2)
parameters are carefully chosen in order to guarantee sub-
optimal/optimal solution at every sampling instant during
the NMPC strategy.

5 Results and discussion

The result of the design of an ANN model in previous
work[15] and the proposed WNN model are given in Table
2. The MSE is used as the performance criteria. Two per-
formance indexes are considered here to evaluate the per-
formance of the NMPC strategy: the MSE in (13) and the
average control energy (ACE) in (14). The MSE is the ad-
dition of all the squares of the error differences between the
reference and the plant output for the two outputs divided

by the total number of samples.

MSE =

N∑
j=1

(y1
r
j − y1

p
j )2 +

N∑
j=1

(y2
r
j − y2

p
j )2

N
. (14)

In (13), superscripts r and p stand for the reference value
and plant output, respectively, while N stands for the total
number of samples. The average control energy is defined
as the addition of the squares of all the manipulated vari-
able inputs (U1 and U2) to the plant divided by the total
number of samples and expressed as

ACE =

N∑
j=1

U1
2
j +

N∑
j=1

U2
2
j

N
. (15)

The performance of the NMPC strategy are analysed in
simulation with Simulink model as plant. All the NMPC
strategy results are given in Table 3.

Fig. 9 gives the response and the comparisons of the
NMPC strategies for the simulation of both ANN and
WNN, respectively. These show the ability to track all dif-
ferent heights up to the maximum of 0.25m. The MSE
obtained for Fig. 9 (a) is 0.0049m2 (ANN) and Fig. 9 (b) is
0.0046m2 (WNN) while their ACE values are 82.41V2 and
78.26V2, respectively.

The WNN-NMPC strategy has a better energy usage and
less MSE as compared to that of ANN-NMPC. In addi-
tion, the WNN-NMPC strategy is able to track precisely
the maximum height without tank spillage unlike the ANN-
NMPC strategy. These results show that the WNN-NMPC
requires lower average control energy in order to pump and
control different heights. The same experiment is performed
in real time and the response result is shown in Fig. 10. The
real time result for the WNN-NMPC strategy is also bet-
ter as in the simulation case. The WNN has lower MSE
of 0.0046m2 as compared to 0.0049m2 for ANN. It can
be seen from Table 3 that ANN has a lower ACE value
of 55.01V2 than 65.92V2 for WNN. The rational reason
for this ACE result is that ANN-NMPC strategy required
lower work to be expended in order to carry out the inef-
ficient and imprecise trajectory tracking unlike in the case
of the WNN-NMPC strategy.

The plant is further subjected to two different abnor-
mal scenarios by increasing the interaction between the two
tanks and the opening of both outlet valves for the two
tanks. This creates a different scenario as compared with
the data obtained for system identification. In the first sce-
nario, fluid is first pumped to the levels 0.25m and 0.20m
for tanks 1 and 2, respectively. From the start of the exp-

Table 3 NMPC strategy results for both ANN and WNN

Simulation Real time

Scenarios ANN WNN ANN WNN

All heights (Figs. 9 and 10)
MSE (m2) 0.0049 0.0046 0.0036 0.0022

ACE (V2) 82.41 78.26 55.01 65.92

Abnormal condition at lower height (Figs. 11 and 12)
MSE (m2) 0.0123 0.0122 0.004 0.0037

ACE (V2) 10.45 9.96 135.41 127.88

Abnormal condition at upper height (Figs. 13 and 14)
MSE (m2) 3.1×10−4 8.2×10−5 0.0048 1.4×10−4

ACE (V2) 67.53 90.72 76.13 84.46
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Fig. 9 Simulation of NMPC strategy tracking different heights

Fig. 10 Real time NMPC strategy tracking different heights

eriment, three valves A, B and C are all left fully opened to
the maximum and the NMPC strategy was used to control
the lower heights of the fluid in both tanks. Figs. 11–12 ((a)
and (b)) show the performances of the NMPC strategies for
both simulation and real time implementation. It can be
observed that the NMPC strategy was able to control the
low heights with both models. In this case, WNN also has

lower values for both MSE (0.0122m2) and ACE (9.96V2)
than ANN with MSE (0.0123m2) and ACE (10.45V2).

In the second scenario, the tanks contain initial pumped
fluid as done previously. From the start of the experiment,
three valves A, B and C are all left fully closed and the
NMPC strategy was used to control the same high height
of the fluid in each tank. Precisely, after 40 S of opera-
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tion, valves B and C are fully opened to create abnormal
situation of valves failure. Four seconds later valve A is
also fully opened to give a maximum interaction, which also
creates different dynamics from the previously trained data.
Figs. 13 (a) and (b) show the simulation performances of the
the NMPC strategy with both ANN and WNN models in
the abnormal situation of tracking high height. WNN has
MSE value of 8.2 × 10−5 m2 and ACE of 90.72V2 with a
better performance than ANN. WNN-NMPC strategy was
able to maintain the same initial height with WNN but
ANN model has a steady state. In this case, it can be ob-
served from Table 3 that ANN however has a lower ACE of
67.53V2 than WNN. This is because ANN-NMPC com-
pletely failed to control the level of fluid at the desired
heights. It shows further that the WNN-NMPC strategy
is reliable and robust. This is useful in abnormal situations
like valve malfunctions or total valve failure.

This same above scenario is implemented in real time.
Figs. 14 (a) and (b) show the real time performances of
NMPC with both ANN and WNN models in the abnor-
mal situation of tracking high height. Just as in the sim-
ulation case, the ANN model could not maintain both the
levels while WNN is able to track the 0.2 m. Both levels are
the same here because of the applied maximum interaction.
The MSE obtained for WNN is 1.4 × 10−4 m2 while ANN
is 0.0048m2. The ACE obtained for ANN is less because it
is doing lesser useful work as explained already in the sim-
ulation case. This also shows that WNN performed better
than ANN in both simulation and real time case.

Moreover, the results indicate that the WNN model not
only perform better than the ANN model but also can op-
erate effectively in abnormal situations which can arise at
any time because of plant degradations, valve malfunctions
and equipment wear and tear. This is one of the benefits of
using non-linear models even though the NMPC strategy
is not working adaptively. The results given in the abnor-
mal scenarios show that the non-linear model predictive
controller can adapt easily as it takes action based on the
present situation. The NMPC can adopt easily as the real
system is not a 100% match to the simulated system but

results confirm that robust control is achieved in this case
as well. The paper considers different scenarios to take into
account of abnormal situations. Real time application of
GA helps to achieve optimised controller parameters in the
non-linear case, which is difficult to obtain by other means.

6 Conclusions

This paper has demonstrated a novel model based WNN-
NMPC strategy for an MIMO CTS and implemented both
in simulation and in real time. A system identification ap-
proach was employed by training raw input-output data ob-
tained from open loop experiment. In order to handle the
difficulties in network training, a global search stochastic
wavelet conjugate algorithm is employed for initial network
training to give a good initial starting weight for training
a GA. This is a case of non-linear MIMO system, which is
more challenging than most recently reported SISO in the
literature, and this training approach was deployed in order
to avoid the problem of being trapped in a local minimum
solution. Initial heuristic results showed that the proposed
two-stage training is a faster approach. The obtained reli-
able non-linear model of the CTS showed the effectiveness of
the system identification procedure which allows for a wide
range of prediction capabilities. Results further showed that
the single WNN model is well suitable to perform in all op-
erating regions of control and the capabilities of handling
disturbance rejection. It was also shown that WNN model
could perform even at abnormal conditions especially in
cases of plant degradation, valve malfunctions, and equip-
ment wear. This shows the strength of the WNN non-linear
model in tackling difficult MIMO problems especially when
properly trained without the use of adaptive models. Fur-
thermore, the whole NMPC strategy is able to overcome
the challenges of using GA for RTO and real time applica-
tions for real-time set point tracking. This is also evident
in that the sampling time of 0.2 s is smaller compared to
most reports in cited literature. The whole strategy is well
suited for chemical processes with varying interaction rates.

Fig. 11 Abnormal NMPC Strategy scenarios tracking low level in simulation
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Fig. 12 Abnormal NMPC strategy scenarios tracking low level in real time

Fig. 13 Abnormal NMPC strategy scenarios tracking high level in simulation

Fig. 14 Abnormal NMPC strategy scenarios tracking high level in real time
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