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Abstract. This paper will summarise the results obtained to date and which 

demonstrate that the mesoscale CJP model of crack tip fields is capable of provid-

ing an improved correlation of fatigue crack growth rates across a range of stress 

ratios and specimen geometries, compared with the standard stress intensity fac-

tor calculations. 
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1 Introduction 

The CJP model is a meso-scale model of crack tip displacement and stress that was 

proposed a few years ago as an attempt to better characterise the elastic forces induced 

by the plastic enclave that surrounds a growing fatigue crack and hence enable direct 

prediction of the effective range of crack driving force.  The model was a development 

of earlier work that had achieved some success in measuring the wake contact pressure 

arising from the plastic enclave that surrounds a growing fatigue crack [1].  The theo-

retical model in Mode I loading was extended from a stress-based version that could be 

fitted to full-field photoelastic images of the crack tip region [2, 3], to one that utilised 

digital image correlation and could be applied directly to displacement fields on metal-

lic specimens [4].  The next step in the development of the model extended it to deal 

with combined Mode I and Mode II loading which, in principle, would open up its use 

to include characterising surface roughness-induced shielding as well as plasticity-in-

duced shielding [5]. 

Experimental verification of the concepts in the CJP model followed a little more 

slowly than the theoretical developments, reflecting factors such the complexity of 

phase-stepping photoelastic fatigue experiments, the development of software neces-

sary to automate the CJP model solution from photoelastic and DIC images, and the 

training of PhD students.  Over the last several years, however, researchers from the 
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University of Jaen in Spain, Gifu University in Japan, Southwest Jiaotong University 

and Xiamen University in China have been making considerable progress in experi-

mental verification of the model [6, 7] 

This paper will summarise the results obtained to date and which demonstrate that 

the CJP model appears capable of providing an improved correlation of fatigue crack 

growth rates across a range of stress ratios and specimen geometries, compared with 

the standard stress intensity factor calculations.  The model also appears to correctly 

characterise both plastic zone shape and size and this paper will also briefly discuss the 

data obtained from overload experiments. 

2 Background to the Model 

The objective of the work described in reference [2] was to identify the real influence 

or effect on the applied elastic field, of stresses arising from plastic deformation asso-

ciated with crack growth.  Reference [4] notes that the CJP model essentially treats the 

crack as a notional plastic inclusion in an elastic body. This approach leads to the defi-

nition of a stress intensity factor perpendicular to the crack plane, called KF, which 

drives crack growth in an analogous fashion to KI and is modified by the incorporation 

of shielding force components acting perpendicular to the crack.  The shielding effect 

of the plastic enclave is considered via a new retarding stress intensity factor KR that is 

defined to account for forces in the plane of the crack that act to retard the crack, and 

the model also defines an interfacial shear stress intensity factor, KS, which is included 

to capture compatibility-induced shear components of shielding that would perhaps be 

more applicable to Mode II or III loading.  This paper will focus on KF and KR that have 

been shown to be applicable to Mode I fatigue crack growth.  The model also defines a 

value for the T-stress as this parameter has certain characteristics that affect fatigue 

crack growth rate; as stated in reference [8] these depend on the sign and magnitude of 

the T-stress and can include substantially changing the size and shape of the plane strain 

crack tip plastic zone, a decrease in fatigue crack growth rate in the Paris law regime 

with increasing T-stress (this reflects the fact that higher positive values of T-stress 

imply higher constraint and smaller plastic zone size), and crack path influences (neg-

ative T-stress values can stabilise the crack path while, in contrast, positive T-stress 

values induce crack bifurcation).  Reference 4 discusses the T-stress in the context of 

using the CJP model to characterise fatigue crack growth in polycarbonate CT speci-

mens.   The model can also be used to investigate the effect of changing values of T-

stress on the crack tip field as illustrated in reference [2] for the case of photoelastic 

fringes showing difference in principal stress.  Clearly, for a crack tip model to more 

accurately define plastic zone size and shape, the T-stress is an important parameter. 

The intention in developing the CJP model was to elucidate the role and influence 

of factors such as compatibility-induced interfacial shear stresses and wake contact 

forces on the effective range of stress intensity factor and any resulting changes ob-

served in the fatigue crack growth rate.  There was therefore a dual aim of improved 

mechanistic understanding of fatigue phenomena such as crack closure, plasticity-in-
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duced shielding and overload effects, together with obtaining an improved characteri-

sation of fatigue crack growth in situations where these phenomena are occurring.  As 

an example of improved understanding of the mechanisms that underlie observed phe-

nomena, reference [2] indicates that the introduction of interfacial shear stresses causes 

migration along the crack path of the join between the photoelastic fringe loops on 

either side of the crack path. This is perhaps more pronounced in the crack wake, but 

both ahead and behind the crack, the shape of the join between the loops of common 

fringe order changes from a sharp ‘V’ to more of a ‘U’ shape.  This phenomenon has 

been observed before in photoelastic images in the presence of crack closure but the 

discussion in reference [2] is probably the first time that it could be assigned, fairly 

reasonably, to the effect of interfacial shear stresses.  Thus the model offers significant 

potential in terms of obtaining a better physical understanding of the potential role of 

the various forces in plasticity-induced shielding. 

Further independent evidence of the utility of the model in providing predictions of 

the effective range of stress intensity factor comes from work recently published by 

Nowell et al [9].   In reference 9 they discuss the CJP model and present a slightly 

simplified version of the force diagram given in reference 2.  They go on to demon-

strate, using DIC data obtained from a growing fatigue crack, that the combined KF + 

KR parameter predicts, a priori, very similar values of ∆Keff throughout a fatigue cycle 

to those measured experimentally on an existing crack with their technique.  Nowell et 

al [9] express reservations regarding the split of ΔK into the KF and KR terms although 

they note in their paper that the split into what they call “applied and residual terms” 

may be helpful, even for measurements taken very close to the crack tip. 

In terms of providing an improved characterisation of fatigue crack growth rate, suf-

ficient experimental work has now been performed across a range of stress ratio values, 

specimen geometries and materials to verify that the model does indeed achieve this, 

compared with data obtained using the standard Irwin stress intensity value.  

This paper will demonstrate this by presenting experimental fatigue crack growth 

rate data obtained at Plymouth and Jaen over the last two years and it will also summa-

rise current work aimed at predicting fatigue crack growth rates using the CJP model 

and a calibration curve approach.  Other ongoing work has considered the capability of 

the CJP model to characterise plastic zone size and shape through the application of 

overload cycles during constant amplitude (CA) fatigue [10], and compared the size 

and shape results with those given by other commonly used elastic models of crack tip 

stresses [11].  The results demonstrate that the CJP model provides a very good char-

acterisation of plastic zone size and shape during CA loading and throughout an over-

load event, while the accurate prediction of effective stress intensity factor range and 

the insights offered into the mechanisms operating during shielding allow the influence 

of other potential causes of crack growth changes during an overload to be identified 

[10]. 
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3 Specimen Geometries and Experimental Techniques 

Recent work has focussed on Grade 2 (commercially pure - CP) titanium with a meas-

ured yield strength of 390 MPa and a tensile strength of 448 MPa.  The elastic Young's 

modulus E = 105 GPa and Poisson's ratio ν = 0.33.  Fig. 1 shows the three specimen 

geometries that were used in the tests, i.e. compact tension (CT), double edge-notched 

tension (DENT) and centre-cracked tension (CCT).  Fatigue testing was performed on 

an ElectroPuls E3000 with the relevant details given in Table 1.   

The CCD camera used to acquire DIC images was equipped with a 10x magnifica-

tion macro-zoom lens to provide the necessary spatial resolution in the measurement 

region surrounding the crack tip.  The field of view was 1624 pixels by 1202 pixels 

(approximately 13.68 mm by 10.12 mm, with slight specimen-to-specimen variations), 

giving the spatial resolution for each specimen shown in Table 1.  Data acquisition 

involved periodically pausing the fatigue cycling and applying stepwise loading 

through a fatigue cycle, making DIC measurements at each step and crack tip positon 

was recorded using a travelling microscope on the reverse side of the specimen (reso-

lution ≈ 10μm). Full experimental and analysis details are given in reference 7. 

Fig.2a presents the crack growth rate data characterised in terms of ∆K, while Fig. 

2b presents the same information characterised using ∆KCJP, which is defined as: 

 

∆𝐾𝐶𝐽𝑃 = (𝐾𝐹,𝑚𝑎𝑥 − 𝐾𝑅,𝑚𝑎𝑥) − (𝐾𝐹,𝑚𝑖𝑛 − 𝐾𝑅,𝑚𝑖𝑛) 

 

The level of plasticity-induced crack tip shielding in CP titanium is fairly low and 

hence, on a log-log plot the improvement in the characterisation into a single curve may 

not appear very high, reflecting the low level of plasticity-induced shielding in CP tita-

nium.  However, statistical analysis demonstrates a significant improvement in terms 

of fitting the data with a single straight line, e.g. from a regression parameter of 0.9504 

for the DENT, CT and CCT curves using ∆K to 0.9861 using ∆KCJP.  It is also the case 

that the CJP crack tip field model does not require the incorporation of compliance-

based geometry-correction factors in the calculation of stress intensity.  Reference 7 

has shown that there are simple relationships between ΔKCJP and ΔK using calibration 

curves that relate the values of the parameters in the CJP model to the standard ΔK 

value.  These relationships have been determined for CT and DENT specimens of the 

CP titanium alloy, and they would be affected by influences that change the stress com-

ponent parameters A, B or D, i.e. changes in the forces that contribute to shielding. 

4 Concluding Remarks 

The work described in reference 7 and the additional data on CCT specimens pre-

sented here give confidence that the CJP model has significant potential to improve 

crack growth characterisation where plasticity-induced shielding of the crack tip is oc-

curring.  The work reported in reference 10 has shown that the CJP model can be used 

to obtain accurate predictions of both the effective range of stress intensity factor and 



5 

the changes in plastic zone size and shape that occur during variable amplitude fatigue, 

and to then assess how well the changes in crack growth rate can be correlated with the 

effects of plasticity-induced closure. 
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Table 1. Fatigue test parameters used in this work 

Specimen Pmax (N) R DIC Spatial Resolution (μm/pixel) 

CT1 700 0.1 8.33 

CT2 700 0.3 8.33 

CT3 700 0.6 8.22 
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DENT1 2200 0.05 8.62 

DENT2 2200 0.3 8.61 

CCT1 2200 0.1 8.88 

CCT2 2200 0.3 7.36 

CCT3 2200 0.6 7.65 

 

 

 

Fig.1. The three specimen geometries used in this work: a) CT; b) DENT; c) CCT. 

 

 

Fig. 2. Fatigue crack growth rate data characterised by a) the standard definition of 

∆K; b) ∆KCJP. 
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