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How can geomorphology facilitate a better understanding of 1 

glacier and ice sheet behaviour? 2 

 3 

Abstract 4 

 5 

Glaciers and ice sheets are an integral part of Earth’s system, advancing 6 

and retreating in response to changes in climate. Clues about the past, 7 

present, and future behaviour of these ice masses are found throughout 8 

current and former glaciated landscapes. In this commentary, we outline 9 

recent scientific advances from a collection of articles in which 10 

geomorphological evidence is used to inform us about the behaviour of 11 

glaciers and ice sheets across a range of spatial (landform to continent) 12 

and temporal (seasons to millennia) scales. Through a diversity of 13 

approaches including field measurements, remote sensing and numerical 14 

modelling, these studies build on an extensive background literature to 15 

deepen our understanding of how ice flows, how glaciers and ice sheets 16 

respond to climate change, and of the processes of ice advance and 17 

retreat and the stability of the system. Further integration of knowledge 18 

across the fields of geomorphology and glaciology will have tangible 19 

benefits for managing the societal and environmental impacts of glacier 20 

change, and for improved projections of sea-level rise over the coming 21 

decades to centuries. 22 

 23 

Keywords: glaciology, glacier, ice sheet, glacial geomorphology, 24 

sedimentology, glacial geology, modelling, remote sensing, landforms, 25 

climate change  26 



 

1. INTRODUCTION 27 

 28 

Glaciers and ice sheets cover 12.5% of the Earth’s surface. They are 29 

found on most continents, and in temperate, continental and polar 30 

climatic zones (Bamber et al., 2018). Changes in their size (i.e. length, 31 

area, volume, mass) and dynamics (e.g. ice flow direction, speed, thermal 32 

state) serve as key indicators of climate change and affect global sea 33 

level, regional water resources, and local geohazards and biodiversity 34 

(Cauvy-Fraunié & Dangles, 2019; Ding et al., 2021; Huss & Hock, 2018; 35 

Pörtner et al., 2019; Zemp et al., 2015).  36 

 37 

Whilst changes in the size of glaciers and ice sheets have been observed 38 

for over a century (e.g. Cruikshank, 2001; Esmark, 1824), recent 39 

measurements and numerical modelling reveal unprecedented states and 40 

trends. Near-synchronous global glacier retreat and ice sheet mass loss 41 

has occurred over the last 50 years, and human influence on the climate 42 

has very likely contributed to ice loss in Greenland and was the main 43 

driver for mountain glacier retreat (Bamber et al., 2018; Fox-Kemper et 44 

al., 2021; Malles & Marzeion, 2021; Otosaka et al., 2023). Together, 45 

glaciers and ice sheets were the primary contributors to global mean sea-46 

level rise over the last two decades, and are expected to continue losing 47 

mass over the coming decades to centuries, and possibly millennia (Fox-48 

Kemper et al., 2021).  49 

 50 

There is an urgent need to better understand both past and contemporary 51 

glacial systems, principally to enhance our ability to predict future 52 

changes and their associated impacts. Knowledge of the past and present 53 

behaviour of glaciers and ice sheets can be gleaned from large swaths of 54 

Earth’s surface as glacial ice is a principal agent of landscape evolution 55 

through the processes of erosion, transport, reworking and deposition of 56 

sediments (Herman et al., 2021). ‘Glacial geomorphology’—broadly 57 

defined here as landform- to landscape-scale features produced by glacial 58 

ice, and their associated sediments (akin to ‘glacial geology’ in some 59 

literature)—describes this interaction between ice and the Earth’s surface, 60 

reflecting the physics of ice flow and recording how glaciers and ice sheets 61 

respond to climate change. 62 

 63 

The field of glacial geomorphology has typically focused on providing 64 

physically-based explanations for how glaciers and ice sheets contribute 65 

to landform and landscape development (e.g. Harbor, 1993). However, 66 

we reflect on how geomorphology can improve our understanding of 67 

glacier and ice sheet behaviour, and the role geomorphology may have in 68 

future ice mass change (Figure 1). 69 

 70 



 

 71 
Figure 1. Geomorphology can facilitate a better understanding of glacier 72 

and ice sheet behaviour in several ways: by moderating glacial response 73 

to climate change; by providing rates of glacier change and sensitivity to 74 

climate; as information of ice flow properties and basal conditions; and as 75 

constraints for ice sheet modelling. 76 

 77 

2. A BRIEF HISTORY OF GLACIAL GEOMORPHOLOGY 78 

 79 

Our current understanding of glaciers and ice sheets, and arguably the 80 

field of glaciology broadly, can be traced back to early studies of glacial 81 

geomorphology. While speculations that glaciers modified the landscape 82 

have existed for centuries (e.g. Cruikshank, 2001), it was the scientists of 83 

the 19th Century that established the foundation of glacial geomorphology 84 

as we know it today (cf. Boulton, 1987; Clarke, 1987; Krüger, 2013). In 85 

particular, the ‘Ice Age’ theory stemmed from the recognition that glaciers 86 

could erode rock, transport erratic boulders and deposit poorly-sorted 87 

sediment (e.g. Agassiz, 1840; Esmark, 1824). Further discoveries in 88 

subsequent decades include (i) the recognition that glaciers moved as a 89 

result of internal flow and basal sliding, leading to subglacial abrasion 90 

(Forbes, 1842); (ii) that multiple glacial and interglacial periods existed 91 

due to oscillations in the climate (e.g. Croll, 1864; Geikie, 1863); and (iii) 92 

that glaciation impacted both global and local sea level (Jamieson, 1865; 93 

Whittlesey, 1868). 94 

 95 

Building on these early ideas, the field of glacial geomorphology has 96 

grown substantially over the last 150 years. Much of this growth came 97 

from the refinement of existing methods and application of new 98 

technologies. For example, field-based mapping and sedimentology was 99 

carried out in increasing detail to better characterise current and former 100 

glaciated environments, resulting in the birth of the ‘glacial landsystem’ 101 

approach (Evans, 2003; Fookes et al., 1978). Meanwhile, the advent of 102 



 

the satellite era enabled higher-precision field measurements with the use 103 

of Global Positioning Systems (GPS), and remote sensing of ice masses 104 

and glacial landscapes (cf. Chandler et al., 2018; Gao & Liu, 2001). 105 

Numerical models also emerged as vital tools for understanding glacier 106 

and ice sheet behaviour (e.g. Oerlemans, 1986; Pattyn et al., 2017), with 107 

a rapidly rising number of glaciological and glacial geomorphological 108 

applications (e.g. Huybrechts, 1990; Tarasov et al., 2012). 109 

 110 

3. SCIENTIFIC ADVANCES 111 

 112 

Here we outline recent advances in the field of glacial geomorphology, 113 

with reference to new articles published as part of this collection (Table 114 

1). These contributions highlight the role of geomorphology in glacier and 115 

ice sheet change over time—from a year (e.g. Lally et al., 2023) to 116 

decades (e.g. Evans et al., 2023) and centuries and millennia (e.g. 117 

Carrivick et al., 2023; Stutz et al., 2023)—and across space—landforms 118 

to landsystems (e.g. Balaban et al., 2024; Ben-Yehoshua et al., 2023), 119 

and individual glaciers to continental ice sheets (e.g. Kavan et al., 2024; 120 

McKenzie et al., 2022). 121 

 122 

We identify three principal themes pertinent to our knowledge of current 123 

and future change: (1) the response of glaciers and ice sheets to climate 124 

change, (2) processes that could influence their behaviour, and (3) new 125 

methodological developments and their application that will further build 126 

this knowledge. 127 

 128 

3.1 Glacier and ice sheet response to climate change 129 

 130 

Glacier mass balance is sensitive to air temperature, and to a lesser 131 

degree precipitation (Oerlemans, 2001), and so glaciers advance and 132 

retreat in response to a changing climate. The glacial geomorphological 133 

record has long been utilised for improving our knowledge of the climate 134 

system (e.g. Nye, 1965; Porter, 1975; Schaefer et al., 2006; Shakun et 135 

al., 2015), particularly when combined with modern observations and 136 

numerical modelling (Mackintosh et al., 2017).  137 
 138 

Moraines serve as archives of past glacier change, thus acting as proxies 139 

of past climate conditions. However, a comprehensive understanding of 140 

the relationship between climate and moraine formation is crucial for 141 

extracting accurate information from these records. Research by Rowan 142 

et al. (2022) shows that interannual climate variability can lead to 143 

moraine formation, while Boston et al. (2023) suggest that moraine 144 

spacing may be influenced by bed topography, complicating the 145 

interpretation of climate signals from these landforms. Nevertheless, 146 

moraines still record transient and equilibrium changes in ice volume, and 147 

the spatial characteristics (e.g. geometry, number and position) of 148 



 

moraines represent the rate of climate change relative to glacier response 149 

time (Rowan et al., 2022). 150 

 151 

Geomorphological records can also shed light on how different parts of 152 

the glacial system could moderate the response to a warming climate. For 153 

example, two new studies (Carrivick et al., 2023; Stutz et al., 2023) 154 

combined mapped geomorphology or dated deposits with ice-flow 155 

modelling to identify how the glacier thermal regime affects ice dynamics. 156 

Perhaps counterintuitively, Carrivick et al. (2023) indicate that some 157 

Greenlandic outlet glaciers have transitioned towards a cold-based 158 

thermal regime during a warming climate, and Stutz et al. (2023) 159 

similarly suggest that reduced basal sliding occurred at an Antarctic outlet 160 

glacier at a time of rapid thinning. 161 

 162 

Furthermore, specific geomorphological features can moderate glacial 163 

response to climate change. Davies et al. (2022) show that ice fields can 164 

have a non-linear response due to glacier hypsometry; topographic steps 165 

cause disconnections between glacier accumulation zones, leading to 166 

reduced downstream ice flow and increased rates of retreat. Similarly, 167 

Balaban et al. (2024) use a landsystems approach to identify a disconnect 168 

between glacier and plateau ice, attributing this uncoupling to the shape 169 

and elevation of topography as well as burial from excessive glacial 170 

debris. In the presence of rapid climate warming, Evans et al. (2023) 171 

show that such debris cover can ultimately lead to stagnation of the 172 

glacier snout within years to decades. Even on seasonal timescales, 173 

geomorphological factors could influence glacier dynamics. For example, 174 

Kavan et al. (2024) show that the snout of a lake-terminating glacier 175 

changed due to the subglacial bed topography as well as debris cover; 176 

over-deepenings encourage increased ice flow, mass loss and further lake 177 

expansion, whereas increased surface debris insulates some parts of the 178 

terminus, reducing ablation. 179 

 180 

3.2 Processes of advance/retreat and stability/instability 181 

 182 

Geomorphology influences glacier and ice sheet behaviour via feedbacks 183 

at the ice–bed interface, and provides insights into the processes 184 

governing the mass balance and broader stability of the system. For 185 

example, the potential for bed topography to accelerate retreat (e.g. 186 

Jones et al., 2015; Weertman, 1974), the dependence of glacier surging 187 

on thermal regime (e.g. Benn et al., 2019; Raymond, 1987), and the 188 

reliance of ice stream activity on subglacial conditions (e.g. MacAyeal, 189 

1989; Stokes et al., 2007) are now well established through a shared 190 

glaciological and geomorphological understanding. 191 

 192 

The geomorphological record at the margins of glaciers and ice sheets is 193 

indicative of styles of advance, retreat and even shutdown. A new study 194 

by Lane et al. (2023) examined the deglacial landsystem of a Greenland 195 



 

ice stream, revealing evidence of rapid ice shelf disintegration concurrent 196 

with or just before ice stream retreat, underscoring the important role of 197 

ice shelves for ice stream stability. Lee et al. (2024) find that ice flow and 198 

retreat patterns evolved differently during the advance and retreat phases 199 

of a marine-based ice sheet. Mapping and sedimentological analysis by 200 

Aradóttir et al. (2023) and Ben-Yehoshua et al. (2023) shed light on 201 

locations of crevasse-squeeze ridges formation and how they reflect 202 

stresses within the ice. These features are interpreted as indicators of 203 

surge behaviour, where an ice stream advance is followed by stagnation, 204 

melting and down-wasting. Iverson et al. (2023) also propose that ice 205 

sheet lobes can undergo stagnation and down-wasting during periods of 206 

quiescence. 207 

 208 

Processes at the bed of glaciers and ice sheets are difficult to directly 209 

observe in contemporary systems, and subglacial landforms and 210 

sediments can provide novel signatures of ice–bed conditions and bed-211 

modulated ice flow. Ely et al. (2023) describe a continuum of ice sheet 212 

behaviour reflected in subglacial landforms; ribbed moraines initially occur 213 

following an instability, which can evolve into drumlins under consistent 214 

sheet flow conditions or in ice stream onset zones, while mega-scale 215 

glacial lineations result from the elongation of drumlins under ice stream 216 

conditions. The degree of elongation and the density of such streamlined 217 

landforms could also reflect a combination of lithology and bed 218 

topography (McKenzie et al., 2022), and the presence of certain 219 

landforms (e.g. drumlins) may indicate a climate-driven advance of an ice 220 

stream (Iverson et al., 2023). Using subglacial landforms to reconstruct 221 

laminar ice-flow patterns, Kamleitner et al. (2024) propose that basal ice 222 

can flow at relatively high velocities despite varied bed topography, whilst 223 

McCerery et al. (2023) suggest that surge behaviour of ice streams could 224 

occur in oil sands due to enhanced slipperiness at the bed. 225 

 226 

Additionally, process-based information about meltwater drainage within 227 

and beneath glaciers and ice sheets can be gained from the 228 

geomorphological record (Simkins et al., 2022). A new study by Lally et 229 

al. (2023) suggests that glacier meltwater drainage systems are likely 230 

more complex than previously considered, as englacial eskers are not 231 

always preserved in the geomorphological record. Where ice scour lakes 232 

are found, Mastro et al. (2023) propose that the density and orientation 233 

of these lakes is evidence for ice flow direction and locations of ice 234 

divides; an abundance of ice scour lakes in an area under a contemporary 235 

ice sheet could signify that an ice divide has migrated. 236 

 237 

3.3 New methods to improve understanding of glaciers and ice 238 

sheets 239 

 240 

Continued progress in understanding glacier and ice sheet change will 241 

occur in hand with methodological developments. Remote sensing 242 



 

continues to evolve rapidly, offering new technologies and supporting 243 

quantitative analyses in glacial geomorphology (cf. Chandler et al., 2018). 244 

For example, air- and space-borne Light Detection and Ranging (LiDAR) is 245 

being increasingly applied to generate regional-scale topographic datasets 246 

at high resolution (~1 m), enabling detailed geomorphological 247 

assessments (e.g. Carrivick et al., 2023; Iverson et al., 2023; McKenzie 248 

et al., 2022). To help optimise this resource, Eyles et al. (2023) provide a 249 

semi-automated, stepwise approach to utilise LiDAR databases for 250 

mapping of subglacial landsystems. Unmanned Aerial Vehicles (UAV) 251 

support the acquisition of even higher spatial resolution (<0.1 m) 252 

datasets, and are becoming a standard part of the geomorphological field 253 

toolkit (Chandler et al., 2018). Best suited to a glacier or glacial foreland, 254 

UAV technology enables relatively small spatial and/or temporal changes 255 

to be identified due to the resolution and repeatability of the 256 

measurements (e.g. Carrivick et al., 2023; Kavan et al., 2024; Lally et 257 

al., 2023). Investigating novel geomorphological or glaciological patterns 258 

in these higher-resolution geospatial datasets will also require new 259 

analytical methods and frameworks. Mastro et al. (2023), for example, 260 

used semi-automated morphometric analysis to characterise ice scour 261 

lakes at a national scale. 262 
 263 

In addition to morphological characteristics, the sedimentology of a glacial 264 

landsystem can reflect glaciological processes (e.g. of transport, 265 

deposition, advance and retreat), and can influence ice dynamics (e.g. 266 

slipperiness at the bed). An emerging application of investigation is 267 

geochemical fingerprinting to glacial sediments. Kirkbride et al. (2023) 268 

use XRF-enabled sediment fingerprinting to understand the provenance 269 

and source of supraglacial debris, providing a method to assess 270 

glaciological changes within a high-mountain system over time. Similarly, 271 

McCerery et al. (2023) use geochemical fingerprinting to investigate oil 272 

sand mobilisation at the bed of a former ice stream, proposing that 273 

naturally-occurring hydrocarbons at the ice-sediment interface could 274 

enhance basal slipperiness. 275 

 276 

Finally, applications of numerical modelling to investigate the 277 

relationships between geomorphology and glacier or ice sheet behaviour 278 

have been limited to date, largely due to the complexity of representing 279 

coupled glaciological and geomorphological processes. Adequately 280 

incorporating these processes in models, whilst leveraging ever-improving 281 

computational infrastructure, is already enabling scientific advances. 282 

Rowan et al. (2022) and Ely et al. (2023) exemplify, respectively, how 283 

glacial landscape modelling, and coupled ice-, water- and subglacial 284 

sediment-modelling can deepen our understanding of climate change and 285 

ice dynamics. 286 

 287 

Despite such advances, the field of ice sheet modelling has not yet fully 288 

utilised the geomorphological record, instead relying largely on 289 



 

geochronological constraints and/or glaciological observations (e.g. 290 

Goelzer et al., 2017; Lecavalier et al., 2023). A study by Archer et al. 291 

(2023) introduces a new data-model comparison tool to quantitatively 292 

assess models against mapped subglacial landforms. Following this 293 

approach, records of glacial geomorphology can now be used to 294 

determine best-fit simulations of past ice sheet behaviour. 295 

 296 

4. CONCLUSIONS 297 

 298 

In recent decades, the fields of glacial geomorphology and glaciology 299 

have operated somewhat independently. There are, however, numerous 300 

advantages to be gained by these research communities working more 301 

closely together if we are to better understand current and future glacier 302 

and ice sheet change (cf. Bingham et al., 2010; Ely et al., 2021; 303 

Mackintosh et al., 2017; Simkins et al., 2022). 304 

 305 

High-precision reconstructions of past glacier change that utilise 306 

geomorphological observations and numerical modelling will extend our 307 

understanding of glacier behaviour over timescales relevant to the 21st 308 

century and beyond. This could include bounds on possible rates of 309 

change, conditions under which glaciers may elude retreat in a warming 310 

climate, or glacier sensitivity to different environmental factors. 311 

 312 

Further imaging of contemporary ice sheet beds in combination with 313 

knowledge gained from formerly glaciated landscapes could help identify 314 

regions vulnerable to future ice mass change. These could include 315 

locations susceptible to ice streaming or stagnation, ice divide migration, 316 

or englacial and subglacial meltwater drainage. Additionally, 317 

geomorphological landforms in front of, or beneath, contemporary ice 318 

sheets can now be leveraged to improve the predictive capability of ice 319 

sheet models that are projecting future sea-level rise. 320 

 321 

Sustained climate warming will continue to prompt dramatic glacier and 322 

ice sheet changes, resulting in substantial societal and environmental 323 

impacts. This commentary, alongside the new findings published in this 324 

collection, underscore the important role of geomorphology in 325 

understanding how these ice masses could change into the future. 326 

 327 
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Table 1. Articles published as part of this Special Issue. 626 

SI paper Region Process domain(s) Landforms of interest (non-exhaustive) Methodological 
approach 

Temporal scale 

Aradóttir et al. 
(2023) 

Europe (Iceland) Subglacial (ice stream) Streamlined subglacial bedforms, crevasse-squeeze 
ridges 

Remote sensing Millennia 

Archer et al. (2023) Hypothetical, Europe (UK, 
Ireland) 

Subglacial (ice sheet) Subglacial lineations Modelling Millennia 

Balaban et al. (2023) Europe (Romania) Landsystem (ice cap, 
mountain glacier) 

Moraines, ice-moulded bedrock, meltwater channels, 
protalus ramparts, rock glaciers 

Remote sensing, field 
mapping 

Millennia 

Ben-Yehoshua et al. 
(2023) 

Europe (Svalbard) Landsystem (outlet glacier) Crevasse-squeeze ridges, flutes Remote sensing, field 
mapping 

Year-decades 

Boston et al. (2023) Europe (Norway) Foreland (outlet glacier) Moraines, subglacial bedforms (various) Remote sensing, field 
mapping 

Decades-centuries 

Carrivick et al. 
(2023) 

Europe (Greenland) Foreland (outlet glacier) Moraines, outwash fans, kames, eskers Remote sensing, field 
mapping 

Millennia 

Davies et al. (2022) N. America (USA, Canada) Landsystem (icefield, outlet 
glacier) 

Moraines, glacial lakes, trimlines, flutes, cirques Remote sensing Decades 

Ely et al. (2022) Hypothetical Subglacial (ice stream) Streamlined subglacial bedforms (various) Modelling Centuries 

Evans et al. (2023) Europe (Iceland) Landsystem (outlet glacier) Outwash fans, moraines, overdeepenings, eskers Remote sensing, field 
mapping 

Decades 

Eyles et al. (2022) N. America (USA) Subglacial (ice sheet lobe) Drumlins, mega-scale glacial lineations Remote sensing Millennia 

Lee et al. (2024) Antarctica Subglacial (ice stream) Streamlined subglacial bedforms, grounding-zone 
wedges 

Field surveying/mapping Millennia 

Iverson et al. (2023) N. America (USA) Subglacial (ice sheet lobe) Drumlins Remote sensing Millennia 

Kamleitner et al. 
(2023) 

Europe (Switzerland, 
Germany, Austria) 

Subglacial (outlet glacier) Streamlined subglacial bedforms (various) Remote sensing Millennia 

Kavan et al. (2024) Europe (Iceland) Proglacial (outlet glacier) Glacier surfaces, glacial lakes Remote sensing, field 
mapping 

Decades 

Kirkbride et al. 
(2023) 

South Asia (Nepal) Landsystem (mountain glacier) Supraglacial debris cover Field sampling, 
modelling 

Millennia 

Lally et al. (2023) Europe (Iceland) Englacial, subglacial (outlet 
glacier) 

Eskers Field mapping Year-millennia 

Lane et al. (2023) Europe (Greenland) Landsystem (ice stream) Blockfields, erratics, moraine, hummocky 
topography 

Remote sensing, field 
mapping 

Millennia 

Mastro et al. (2023) Europe (Iceland) Subglacial (ice sheet) Ice-scour lakes, streamlined subglacial bedforms Remote sensing Millennia 

McCerery et al. 
(2023) 

N. America (Canada) Subglacial (ice stream) Till, moraines, subglacial landforms (various) Field sampling, 
laboratory 

Year-millennia 

McKenzie et al. 
(2022) 

N. America (USA, 
Canada), Europe (Iceland, 
Norway, Sweden) 

Subglacial (ice sheet, ice 
stream) 

Streamlined subglacial bedforms (various) Remote sensing Millennia 

Rowan et al. (2022) Hypothetical Landsystem (mountain glacier) Moraines Modelling Millennia 

Stutz et al. (2023) Antarctica Landsystem (ice sheet, outlet 
glacier) 

Nunataks, erratics Field sampling, 
laboratory, modelling 

Millennia 
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