
School of Engineering, Computing and Mathematics

Faculty of Science and Engineering

2019-08-01

A proactive malicious software identification approach for digital A proactive malicious software identification approach for digital

forensic examiners forensic examiners

Muhammad Ali

Stavros Shiaeles

Nathan Clarke School of Engineering, Computing and Mathematics

Dimitrios Kontogeorgis

Let us know how access to this document benefits you

General rights General rights
All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies.
Please cite only the published version using the details provided on the item record or document. In the absence of an open
licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Take down policy Take down policy
If you believe that this document breaches copyright please contact the library providing details, and we will remove access to
the work immediately and investigate your claim.
Follow this and additional works at: https://pearl.plymouth.ac.uk/secam-research

Recommended Citation Recommended Citation
Ali, M., Shiaeles, S., Clarke, N., & Kontogeorgis, D. (2019) 'A proactive malicious software identification
approach for digital forensic examiners', Journal of Information Security and Applications, . Available at:
https://doi.org/10.1016/j.jisa.2019.04.013
This Article is brought to you for free and open access by the Faculty of Science and Engineering at PEARL. It has
been accepted for inclusion in School of Engineering, Computing and Mathematics by an authorized administrator of
PEARL. For more information, please contact openresearch@plymouth.ac.uk.

https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/secam-research
https://pearl.plymouth.ac.uk/fose-research
https://forms.office.com/e/bejMzMGapB
https://pearl.plymouth.ac.uk/about.html
https://pearl.plymouth.ac.uk/secam-research?utm_source=pearl.plymouth.ac.uk%2Fsecam-research%2F915&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.jisa.2019.04.013
mailto:openresearch@plymouth.ac.uk

Journal of Information Security and Applications 47 (2019) 139–155

Contents lists available at ScienceDirect

Journal of Information Security and Applications

journal homepage: www.elsevier.com/locate/jisa

A proactive malicious software identification approach for digital

forensic examiners

Muhammad Ali a , Stavros Shiaeles a , ∗, Nathan Clarke

a , Dimitrios Kontogeorgis b

a Centre for Security, Communications, and Networks Research (CSCAN), School of Computing and Mathematics, Plymouth University, UK
b School of Applied Science, Open University of Cyprus, Latsia, Nicosia, Cyprus

a r t i c l e i n f o

Article history:

Available online 16 May 2019

Keywords:

Digital forensics

Malware

Machine learning

Registry hives

Windows Registry

Windows 7/8/10

Sandbox

Agentless sandbox

Cuckoo

a b s t r a c t

Digital investigators often get involved with cases, which seemingly point the responsibility to the person

to which the computer belongs, but after a thorough examination malware is proven to be the cause,

causing loss of precious time. Whilst Anti-Virus (AV) software can assist the investigator in identifying

the presence of malware, with the increase in zero-day attacks and errors that exist in AV tools, this is

something that cannot be relied upon. The aim of this paper is to investigate the behaviour of malware

upon various Windows operating system versions in order to determine and correlate the relationship

between malicious software and OS artifacts. This will enable an investigator to be more efficient in

identifying the presence of new malware and provide a starting point for further investigation.

The study analysed several versions of the Windows operating systems (Windows 7, 8.1 and 10) and

monitored the interaction of 90 samples of malware (across three categories of the most prevalent (Tro-

jan, Worm, and Bot) and 90 benign samples through the Windows Registry. Analysis of the interactions

has provided a rich source of knowledge about how various forms of malware interact with key areas

of the Registry. Using this knowledge, the study sought to develop an approach to predict the presence

and type of malware present through an analysis of the Registry. To this end, different classifiers such as

Neural Network, Random forest, Decision tree, Boosted tree and Logistic regression were tested. It was

observed that Boosted tree was resulting in a correct classification of over 72% – providing the inves-

tigator with a simple approach to determining which type of malware might be present independent

and faster than an Antivirus. The modelling of these findings and their integration in an application or

forensic analysis within an existing tool would be useful for digital forensic investigators.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

As malware evolves and becomes more complex, malicious at-

tackers are able to adapt their behaviour depending on the system

they wish to infect. Malicious software can only be revealed after

the recognition of specific factors of the system and the combina-

tion of many parameters and conditions. For example, a particular

malware might reveal it’s behaviour when installing on a Windows

7 platform or when specific software is installed on the victim’s

computer (for example a PDF Reader) and to remain totally inac-

tive in any other situation. Similarly, it can reveal a part of his be-

haviour, while parts of the functionality remain hidden until cer-

tain conditions that will cause additional activity. Attempts have

been made to uncover malware activated behaviour [8,47] but it

has also shown for it to be possible to trick such analyzers [58] .

∗ Corresponding author.

E-mail address: sshiaeles@ieee.org (S. Shiaeles).

During the examination of a case, the possibility always exists that

digital evidence or criminal activity is the result of malware activ-

ity. It could be that the owner of a computer system is unjustly

suspected due to the presence of malicious software. Therefore, in

each case prior to the recording of evidence, a thorough investiga-

tion for the presence of malware should be undertaken. Tradition-

ally, this is achieved using one or more Anti-Virus (AV) systems.

However, weaknesses in AV technology and the increasing pres-

ence of zero-day vulnerabilities make them less than full-proof.

Many researchers have conducted studies to find digital arti-

facts on the Windows operating system, including earlier versions

of Windows, were analysed, such as Vista [53] , 7 [64] and 8 [61] .

Further research has also been undertaken on the study of spe-

cific operating regions such as the Registry [44] , volatile memory

[23,56,57,64] , USB devices [12,19] and the file system [9,10,40] . In

this research work a comparative study of three core Windows OSs

(Windows 7, 8.1 and 10) is undertaken in order to study whether

the version of OS has an impact over the behaviour and perfor-

mance of malicious software. This will provide digital forensics

https://doi.org/10.1016/j.jisa.2019.04.013

2214-2126/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.jisa.2019.04.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jisa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jisa.2019.04.013&domain=pdf
mailto:sshiaeles@ieee.org
https://doi.org/10.1016/j.jisa.2019.04.013

140 M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155

analysts with invaluable help [13,32] , as they will have a guide for

the locations to which are expected to have digital evidence. With

a targeted investigation at specific locations, it is possible to iden-

tify whether a system is infected with malware or not. The paper

also develops and evaluates an approach to automatically predict

which type of malware is present. This allows forensic examiners

to more quickly and reliably identify the presence and type of mal-

ware.

2. Background and related work

The detection of malware through an analysis of unknown exe-

cutables is not a new problem. Consequently, many solutions al-

ready exist. These solutions can be divided into two categories:

static and dynamic analysis.

2.1. Static analysis

In static analysis, an incident response team analyses the code

or the structure of a program to determine the functionality

without running the program [60] . First steps include the use of

all available anti-virus programs. This could give information to a

known malware for which signature is available, saving valuable

time in the process. A major disadvantage of this technique is

the dependence upon the detection of the virus based largely on

file signatures. Malicious code developers can easily change the

code in order to avoid detection [21] . Another technique used in

the static analysis is binary code disassembling, which convert

the binary code into an assembly and then analytical techniques

control data flow resulting in a report of the running program.

A series of binary code analysis techniques [16,18,34] have been

presented for the detection of different types of malware. The

advantage of static analysis is that its carried out quickly and

that can cover the entire application code. Whilst, there is rich

literature on static analysis techniques, which indicates that many

problems can be tackled well in practice due to predictability,

often this is because it is being applied to real applications rather

than malware. Unfortunately, since malware is directly created by

cyber criminals it can be deliberately crafted so that it is difficult

to analyse. Specifically, the attacker can make use of technical bi-

nary obfuscation to prevent both the disassembly of the code and

analysis, methods which are used by static analysis techniques.

2.2. Dynamic analysis

The dynamic analysis techniques of malware behaviour charac-

terized by the analysis of the actual instructions of a program or

the results it brings the program to the operating system. Com-

pared with the static approach, dynamic analysis is less suscep-

tible to various code obfuscation techniques [47] . Christodorescu

et al. [17] introduce the specifications of malware using data flows

between the system calls. They found the actual relationships be-

tween system calls are difficult to overcome with random system

calls. Since then, this knowledge of malicious software has been

widely used in malware analysis tasks such as extraction of dis-

tinct malware functions, mining the difference between malware

behaviour and benign behaviour of the program [26] , determin-

ing malware families in which samples are sharing common func-

tions [3,5,51] and to detect malicious behaviour [7,7,33,37] . Another

method uses a representative audience behaviour chart for all sam-

ples of malware in a family, instead of a behaviour chart per case.

The proposed approach is valid and effective since most new mal-

ware variants are from known families [28,52,69] . Despite vari-

ous metamorphic and polymorphic blackouts, samples of malicious

software within the same family tend to reveal similar malicious

behaviour [36] .

The most popular method of analysing the malware operation

in a safe way is to use sandbox technology. The sandbox is running

as a separate system, contains the untrusted program and prevents

any action from accessing the real network and often provides net-

work services for malware in a form of "black hole." If the un-

trusted program makes a DNS request, for example, the sandbox

will answer the question, usually with 127.0.0.1 (loopback).

Since the spread of metamorphic and polymorphic viruses, dy-

namic analysis of malware has been established as an effective ap-

proach to understanding and classifying malware by observing the

execution of malware samples in quarantine environment [24,72] .

The interaction between the execution of the malicious sample and

operating system allows dynamic malware analysis systems to col-

lect those behavioural characteristics that help shape technical de-

fense.

A problem that was found in modern viruses is that the ma-

licious code is often equipped with detection routines that check

for the presence of a virtual machine or a simulated operating

system environment. When such an environment is detected, the

malware modifies its behaviour and the analysis yields incorrect

results or even worst, the malware stops to function making

analysis impossible. Moreover, some malware also checks for

software (even material) having breakpoints to detect whether

the program is running in a debug program. In order to bypass

the aforementioned problems, the analysis environment should be

invisible to malicious code, comprehensive and cover all aspects of

the interaction of an environmental program.

Effort s to investigate the possible prevention of malware inci-

dents have prompted earlier studies on malicious codes [4,20,74] .

Current research in cybersecurity focuses on the characterization

and modelling of specific attacks, with the aim of understanding

the mechanisms of penetration, detection, and response. As cyber

threats are increased both in number and in complexity, it has

increased the interest in infectious malware [38] . In theory, one

of the interesting issues is the creation of reliable mathematical

models that can be applied to effectively describe and forecast

the evolution of malicious computer software. Since the spread

of malicious code is similar to the biological epidemics [66] ,

some epidemiological models have been employed to study the

behaviour of malicious software [15,35,45,46,59] . In addition, new

strategies and methodologies necessary to prevent invasions and

addressing their effects [27] .

3. Experimental methodology

The purpose of this research was to examine in a dead-box

mode the impact that malware has on the Windows Registry. Fur-

thermore, the research sought to understand what differences ex-

ist in differing versions of the OS. To this end, 90 samples of both

malware (split between Trojans, worms, and bot) and cleanware

were selected to provide a robust and comprehensive analysis. The

Microsoft’s Windows operating systems was focussed upon as, it is

still the prominent OS in use today [48] .

3.1. Virtual lab

The analysis laboratory consists of two testbeds. The first one

is running locally on a host machine with a CPU Intel Core i7-

4790, 16 GB RAM and Windows 10 Pro as the bare metal con-

figuration. In this machine we installed VMware Workstation Pro

12 [70] and we created a Virtual Machine|(VM) with Ubuntu 16.04

operating system which hosted the Cuckoo Sandbox. Ubuntu com-

patibility with the Cuckoo Sandbox [50] is excellent and has been

used by other investigators [57] for the same purpose (Fig. 1).

Cuckoo utilised a methodology for the understanding of malicious

code based upon sandboxing [29] and execution of arbitrary code

M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155 141

Fig. 1. Virtual lab architect.

in a controlled manner that allows direct observation of results

through a Python agent script. The script in Python and the li-

braries are Cuckoo’s important components [31] . The system con-

sists of a server where the Cuckoo software is installed along with

a virtualization program such as Oracle VirtualBox [22] . In Oracle

VirtualBox, various VMs can be created with different versions of

Operating Systems where the agent of Cuckoo should be also in-

stalled. In the guest VM an examiner has to make sure to disable

any services that may prevent the malware executed successfully

such as User Account Control (UAC), automatic updates, Antivirus

and firewall in case of Windows Operating System. The isolated

environment allows the sample to run without adversely affecting

the system host computer or the quest and simultaneously docu-

menting evidence, such as open ports, registry keys, IP addresses,

file incorporated and domain names, which are important for an

examiner. Once the desired state of the system has accomplished,

a system snapshot is taken. This snapshot can be used to restore

the system to a known clean state after the sample is analysed. In

our case in VirtualBox, three VMs were created with the following

characteristics: CPU a core of the Intel Core i7-4790, 2 GB RAM and

Operating System Windows. In each of these three VMs, a different

version of Windows Operating System is installed and specifically

7, 8.1 and 10. In order Cuckoo to communicate with each guest

machine, Cuckoo network card and a unique guest VM card were

connected to a virtual isolated network (192.168.56.0/24) as shown

in Fig. 2 .

The second testbed was hosted on cloud and we utilised two

cloud sandboxes to withdraw as much information as possible in

order to find more unique registry hives from the malware and

cleanware. For this experiment we utilised an Agentless (VMRay

Analyzer) and AI-based (SNDBOX) sandbox. VMRay Analyser as

aforementioned is an agentless sandbox cloud solution and the

reason choosing this platform is that some sophisticate malware

usually monitor the running environment and to prevent their dis-

covery they usually stop their execution which provides insignif-

icant features to the analysis [1] . SNDBOX applies an invisible

kernel mode agent and AI to offer the next generation Sandbox,

extending the individual capabilities and expertise of security and

research teams through AI, dynamic analysis and network map-

ping. It is Located between the User mode and Kernel mode, SND-

BOX’s invisible agent deceives malware into executing its full range

of intended functionality, revealing its true malicious nature, in-

tent, and capabilities [63] .

3.2. Standardized naming scheme for malware

Security analysts and researchers from different AV com panies

in 1991 developed a standardized naming scheme for malware

known as Computer Antivirus Research Organization (CARO) (“A

New Virus Naming Convention (1991) - CARO - Computer Antivirus

Research Organization,” n.d.). The philosophy behind the develop-

ment of this standard is to remove the confusion among the users

Fig. 2. Virtual network configuration.

142 M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155

Fig. 3. CARO malware naming scheme (“Malware names | Microsoft Docs,” n.d.).

Fig. 4. The ratio of clean and malicious hives.

and AV-Vendors by having a common standard or syntax for nam-

ing malware. The generic form of this format is mentioned below

< malware type > :// < platform > / < family name > . < group name > .

< infective length > . < sub-variant >< devolution >< modifiers >

In the string above only family name is compulsory and the rest

of the fields are optional. Although most companies claim that they

follow the CARO scheme, but in practice only Microsoft is using

this convention in their AV software for MSE or the Win8 version

and windows defender etc. (Fig. 3).

In this research work we used the CARO naming scheme to

name malware as shown in Section 3.3 .

3.3. Malware samples used

Often, malware investigators have to deal new threats and un-

known executable. In some cases, there are scenarios where you

can handle malware that already knows its name and is classified,

e.g. for research purposes as in this work. To analyse such mali-

cious software, there are many places where one researcher can

collect known samples. The Lenny Zeltser, who is the head of the

private SANS Institute [55] , recommends several free resources on

his website [73] . The samples of malicious code used in this re-

search were taken from Malware.lu [41] , Virussign [67] , Vx Heaven

[71] , Malekal [39] and MalwareTips [42] . Ninety samples of mali-

cious code were selected, 41 Trojan, 28 Worms, and 21 Bot. These

three malware families were selected (Table 1) as they are the

main categories that are detected more often [2,43,65] .

3.4. Clean samples used

The need to differentiate the clean registry hives from mali-

cious hives, cleanware samples such as chrome, teamviewer, skype

etc. were collected and analysed. During the analysis emphasis was

given on collecting system changes along with register hives in or-

der to have more information. The Table 2 below shows the sam-

ples used as well as the type of each sample.

3.5. Sandbox analysis procedure

To export information from the samples we performed exper-

iments in three different environments. In the first experiment,

Cuckoo was utilised for behaviour analysis of malware of files

mentioned in Sections 3.3 and 3.4 above. For each analysis request,

a separate subfolder containing all the reports is produced with

raw logs, .pcap files, images and any other information obtained

during the analysis. Using the Cuckoo as the main malicious soft-

ware analysis tool, each sample was studied in three different soft-

ware environments (Windows 7, 8.1 and 10) and the results of the

analysis are stored in a suitable form for further study and analy-

sis.

The program sends the sample to the virtual machine that we

have selected in the settings file. When injection of the sample into

the operating system has completed successfully, Cuckoo monitors

all system activity and records it. Once the analysis of the virtual

machine is terminated, the .html file with the report of the analy-

sis is created.

The second experiment was completed in two different cloud

sandboxes named VMRay analyzer and SNDBOX. In both these

sandboxes, benign and malicious samples of Sections 3.3 . and

3.4 respective were executed. For each analysis request, a separate

subfolder containing all the reports is produced, the raw logs, .pcap

files, images, JSON and any other information obtained during the

analysis.

3.5.1. Dataset preparation

Data constitute the input/output variables required to make a

prediction. Usually, data comes in two forms either structured or

unstructured data. In this research we have taken structure data

which implies that data are defined and properly labelled. In or-

der to label data VIT and Virus Total reputation scoring were in-

troduced, to categorize samples as malicious and benign. VirusTo-

tal inspects items with over 70 antivirus scanners database along

with URL/domain blacklisting services, in addition to a myriad of

tools to extract signals from the studied [68] . Cuckoo sandbox uses

VirusTotal to perform the experiments, moreover, in the case of

VMRay analyzer VTI score is used to label the samples.

To evaluate the proposed research and create the raw and in-

tegrated feature set, malware and benign samples were collected

from a different source as mentioned in the above section. In order

to validate the propose works different portion of samples were

taken for validation purpose.

3.6. Pre-processing and feature generation

In this stage data were processed and cleaned from noise and

irrelevant entries and string information was extracted from the

logs file generated by the different sandboxes and features set

were constructed. In this research, 34 register hives were identi-

fied for malware and 13 register hives for cleanware as shown in

the Table 3 . Furthermore, these strings were converted into binary

feature vector, so they can be given as input to the machine learn-

ing algorithm.

M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155 143

Table 1

The malware samples that were used.

Category Virus name SPY-STEAL DATA C&C BACKDOOR STEALTH

1 Trojan Trojan-Spy.Win32.Zbot.wijf X X

2 Trojan Trojan.GenericKD.3015891 X

3 Trojan Trojan.GenericKD.3015909 X

4 Trojan Trojan/Win32.Yakes X

5 Trojan Trojan.GenericKD.3016131 X

6 Trojan Trojan/W32.KRBanker X

7 Trojan Trojan-Spy.Win32.FlyStudio.ij X X

8 Trojan Trojan-

Dropper.Win32.Injector.nyds

X

9 Trojan Trojan.Zboter X X

10 Trojan Trojan-Spy.Win32.Recam.yue X X

11 Trojan Trojan. Tesla!1.A322 X X

12 Trojan Trojan.Win32.Waldek.cbp X

13 Trojan Trojan.Win32.Waldek.cbm X

14 Trojan Trojan.Win32.Dridex.v X X X

15 Trojan Trojan.Win32.Tepfer.psxezj X X

16 Trojan Trojan.Win32.Yakes.owmp X

17 Trojan Trojan.Win32.KeyLogger.auqd X

18 Trojan Trojan.GenericKD.3023498 X

19 Trojan Trojan.Generic.8742442 X X X

20 Trojan Trojan.Generic.7738292 X

21 Trojan Trojan.Generic.

AAA._xeDropperSpywareTrojan

X X

22 Trojan Trojan.Generic .Badi X X X

23 Trojan Trojan.Win32.CretClient.exe

24 Trojan Trojan.Generic .InstallBC201401 X

25 Trojan Trojan.Generic.pony X

26 Trojan

Trojan.Generic.Potao_Dropperswdecoy

X

27 Trojan Trojan.Win32.zeus X X X X

28 Trojan Trojan.Generic.kotbjxfkzeq X

29 Trojan Trojan.Generic.Locky X X X

30 Trojan Trojan. Win32.njRAT.exe X X X

31 Trojan Trojan.Generic.pafish X

32 Trojan Trojan.Win32win32.duqu

33 Trojan Trojan.Generic.Cerber.exe X

34 Trojan Trojan. Win32Mole.exe X

35 Trojan Trojan. Win32.Spora.exe X

36 Trojan Trojan.Win32GrandCrab-01.exe X

37 Trojan Trojan. Win32.Delf.xo X

38 Trojan Trojan. Win32.DarkTequila.exe

39 Trojan Trojan. Win32.psiphon.exe X

40 Trojan Trojan.Generic.yigzwl X

41 Trojan

Trojan.Generic.Vcffipzmnipbxzdl

X

42 Worm Win32.Gamarue X X X

43 Worm W32.Cridex.A.worm X X X

44 Worm Worm.VBS.Agent X

45 Worm Worm.Win32.3DStars X X

46 Worm Worm.Generic3.PEM X

47 Worm Worm.Win32.Mira.A X

48 Worm Worm.Generic2.CMVO X

49 Worm Worm.Win32.Cake X

50 Worm Worm.Win32.Fever X X

51 Worm Worm.Win32.Monkey.exe X

52 Worm Worm.Win32.Mydoom.a.exe X X

53 Worm Worm.Win32.Pikachu.exe X

54 Worm Worm.Win32.Postman.exe X

55 Worm Worm.Win32.Sharpei.a.exe X

56 Worm Worm.Win32.Silver.exe X

57 Worm Worm.Win32.Sobig.exe X X

58 Worm Worm.KOOBFCE.SMC X X

59 Worm W32/Wabot X X

60 Worm Worm.vid.exe X

61 Worm Email-Worm.Win32.Mydoom.l X X

62 Worm Email-Worm.Win32.Naked X

63 Worm Worm.Christmas-wishes.doc X

64 Worm Win32.WannaCry.EXE X X X

65 Worm Win32.F7F105F9.exe

66 Worm Win32.2tetup.exe X

67 Worm Win32.GrandCrab-01.exe X

68 Worm Win32.GlobeImposter.exe X

69 Botnet Win32.Lolbot.aoi X

70 Botnet WORM/IrcBot.tlq X X X

(continued on next page)

144 M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155

Table 1 (continued)

Category Virus name SPY-STEAL DATA C&C BACKDOOR STEALTH

71 Botnet W32.Jorik_Lolbot.O!tr X X

72 Botnet Win32.SdBot.aamk X X X

73 Botnet W32.ZBot.42352 X X X

74 Botnet Win32.Jorik.SdBot.e X

75 Botnet MSIL.NanoBot.ibh X

76 Botnet Win32.Zbot.vtii X X X

77 Botnet Win32.Ngrbot.anak X

78 Botnet Win32.Alinaos.G X X

79 Botnet GenericKD.2143403 X

80 Botnet Win32/ChkBot.A X

81 Botnet MSIL/Lizarbot.A X X X

82 Botnet Win32.Jorik.Lolbot.f X X X

83 Botnet Win32.Zbot.sbdj X X X

84 Botnet MSIL.NanoBot.bi X X

85 Botnet Win32.Ngrbot.uyk X

86 Botnet Win32.Boht.qo X X

87 Botnet W32/Zbot.AJJU!tr X X X

88 Botnet Win32.VBInject X

89 Botnet Trickbot X

90 Botnet obfuscated.js X

Re
gi

st
ry

 C
ou

nt
s

Registry Loca�ons

Fig. 5. The impact of malware on the registry.

Re
gi

st
ry

 C
ou

nt
s

Registry Loca�ons

Fig. 6. The impact of Bot on the registry.

4. Experimental results

During the analysis of malware, some locations in the reg-

istry and in the Windows file system, have been recognized

as important for potential contamination data. Based upon

prior work, the following locations were recorded in Table 3

[6,11,14,25,30,40,49,54,62] :

The following sub-sections present an analysis of the findings

based on three perspectives:

• The purpose/payload/motivation of the malware (e.g., spying

or command and control)

• The type of malware (i.e., Bot, Trojan or Worm)

• The version of the operating system (i.e., Windows 7, 8, or

10)

In each case, the previously identified 47 registry and file lo-

cations are analysed against the 90 samples of both malware and

cleanware to proof our initial research question. The raw results

from the analysis derive can be found in Appendix A .

4.1. Analysis of malware motivation

The first analysis is concerned the research question, whether

the motivation of the malware affected the frequency of digital ev-

idence in a particular position within the Registry. As previously

identified in Table 1 , the types of functionality include:

• Spying and/or steal user data (Trojan)

• Communicating with a control centre to receive commands

(Botnet)

• Self-Propagation (Worm)

• Benign file

Figs. 5 –7 illustrate the degree to which the registry locations

are affected. The analysis focussed upon an analysis of the reg-

istry against the type of malware. Fig. 4 illustrates the proportion

of each type of malware upon the 34 Registry locations. The signif-

icant register keys/values for malware and benign values are men-

tioned below

M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155 145

Table 2

The cleanware samples that were used.

Category Sample name Type

1 Normal grammarlyaddinsetup.pe32 Application software plug

2 Normal Poweriso6-x64. Executable

3 Normal Vlc-2-2-1-win32 Executable

4 Normal Wireshark-win64-2.6.5 Executable

5 Normal ProtonVPN.exe Executable

6 Normal Notepad.exe Executable

7 Normal McAfeeWebAdvisor.exe Executable

8 Normal Putty2.exe Executable

9 Normal FTPDesktopClient.exe Executable

10 Normal SQLiteStudio-3.2.1.exe Executable

11 Normal KeePass-2.40-Setup Executable

12 Normal LinuxLiveUSB Creator 2.9.4.exe Executable

13 Normal flashplayer32_install.exe Executable

14 Normal Firefox Setup 14.0.1 Executable

15 Normal 7za.EXE Executable

16 Normal GoogleUpdateSetup.exe Executable

17 Normal Epson512523eu.exe Executable

18 Normal Microsoft-Toolkit.exe Executable

19 Normal Googlewebdesigner_win.exe Executable

20 Normal PDFSAM_Installer.exe Executable

21 Normal FoxitReader_Setup.exe Executable

22 Normal TeamViewer_Setup.exe Executable

23 Normal Internet.Download.Manager.exe Executable

24 Normal TrueCrypt.exe Executable

25 Normal SkypeSetup.exe Executable

26 Normal HottNotes4.1Setup.exe Executable

27 Normal TorchSetup Executable

28 Normal GitHubDesktopSetup Executable

29 Normal Nektar Bolt v1.0 CE.exe Executable

30 Normal ForkInstaller.exe Executable

31 Normal hashcat32.exe Executable

32 Normal AdobePatchInstaller.exe Executable

33 Normal TWUploader.exe Executable

34 Normal vmnat.exe Executable

35 Normal SenseDriver.exe Executable

36 Normal ISSetup.dll DLL

37 Normal SrvCtl.dll Executable

38 Normal panfinder.exe Executable

39 Normal strings.exe Executable

40 Normal procexp.exe Executable

41 Normal cbhqgi.vbs vbs

42 Normal acc.exe Executable

43 Normal KutoolsforExcelSetup.exe Executable

44 Normal DTools.exe Executable

45 Normal winsdk_web.exe Executable

46 Normal ClipboardHistory.exe Executable

47 Normal MEGAsync.exe Executable

48 Normal AnyDesk.exe Executable

49 Normal npp.7.6.Installer.exe Executable

50 Normal CVHP.exe Executable

51 Normal WinSCP-5.13.6-Setup.exe Executable

52 Normal coreftplite64.exe Executable

53 Normal eagleget_setup.exe Executable

54 Normal NetAssemblyInfo.exe Executable

55 Normal Morgan Spencer.htm htm

56 Normal fdminst-lite.exe Executable

57 Normal sigcheck.exe Executable

58 Normal RBInternetEncodings500.dll DLL

59 Normal cryptolibcps-5.0.43.exe Executable

60 Normal Trustlook PDF

61 Normal shell.hta Executable

62 Normal rufus-usb-3-3.exe Executable

63 Normal photosync_setup.exe Executable

64 Normal Home Sweet Home 2 -

Kitchens and Baths.exe

Executable

65 Normal ThrottleStop.exe Executable

66 Normal Portal.2.incl.upd30-NSIS.exe Executable

67 Normal libeay32.dll Executable

68 Normal PwDump7.exe Executable

69 Normal UaInstall-7.0.6-4.msi MSI

70 Normal TP8-2019.exe Executable

71 Normal tlscntr.exe Executable

72 Normal cccredmgr.exe Executable

73 Normal fdminst-lite.exe Executable

(continued on next page)

146 M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155

Table 2 (continued)

Category Sample name Type

74 Normal HoMM3_HD_Latest.exe Executable

75 Normal ILSpy.exe Executable

76 Normal AnyDesk.exe Executable

77 Normal

vs_community__1072350829.1545770560.exe

Executable

78 Normal winsdk_web.exe Executable

79 Normal KutoolsforExcelSetup.exe Executable

80 Normal acc.exe Executable

81 Normal cbhqgi.vbs VBS

82 Normal PDFsam_Basic3_3_Installer.exe Executable

83 Normal A_info.pdf PDF

84 Normal Angry Birds.exe Executable

85 Normal aspcmd.msi MSI

86 Normal Research_Paper1.pdf PDF

87 Normal SupportAssistLauncher.exe Executable

88 Normal meda-mp3-joiner-install.exe Executable

89 Normal AutoCopyFiles.exe Executable

90 Normal soffice.exe Executable

Table 3

The locations were investigated for digital forensics.

Digital forensics locations

1 HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control \ Nls \ CustomLocale \ en-US

2 HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control \ Nls

3 HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control \ SESSION

4 HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

5 HKEY_LOCAL_MACHINE \ SYSTEM

6 HKEY_LOCAL_MACHINE \ Software \ Microsoft \ Rpc

7 HKEY_LOCAL_MACHINE \ SOFTWARE \ Wow6432Node \ Microsoft \ Windows \ CurrentVersion

8 HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \
9 HKEY_LOCAL_MACHINE \ SOFTWARE \ Wow6432Node \ Microsoft \
10 HKEY_CURRENT_USER \ Software \ Microsoft \ Windows NT \ CurrentVersion \ Windows

11 HKEY_CURRENT_USER \ Software \ Microsoft \ Windows \ CurrentVersion \ Setup

12 HKEY_CURRENT_USER \ SOFTWARE \ Microsoft \ Windows \ CurrentVersion \ Uninstall

13 HKEY_CURRENT_USER \ SOFTWARE \ Microsoft \ Windows \ CurrentVersion \
14 HKEY_CURRENT_USER \ SOFTWARE \ Microsoft \ Windows \ CurrentVersion \ Explorer

15 Documents and Settings \ [user name] \ Start Menu \ Programs \ Startup

16 %systemdrive% \ Documents and Settings \ [User Name] \ Local Settings \ Temp

17 %Systemdrive% \ Users \ victim_user \ AppData \
18 %Systemdrive% \ Windows \ System32

19 %Systemdrive% \ Windows \ INF \
20 %Systemdrive% \ Windows \ Globalization \ Sorting \ sortdefault.nls

21 %Systemdrive% \
22 HKEY_LOCAL_MACHINE \ software \ policies

23 HKEY_LOCAL_MACHINE \ SOFTWARE \ Classes \
24 HKEY_CURRENT_USER \ Software \ Microsoft

25 HKEY_CURRENT_USER \ Software \ Microsoft \ Windows \ CurrentVersion \ Explorer \ Shell Folders

26 HKEY_LOCAL_MACHINE \ Software \ Microsoft \ Windows \ CurrentVersion \ explorer \ UserShell

27 HKEY_LOCAL_MACHINE \ Software \ Microsoft \ Windows \ CurrentVersion \ RunServices

28 HKEY_CLASSES_ROOT \ exefile \ shell \ open \ command

29 HKEY_CLASSES_ROOT \ comfile \ shell \ open \ command

30 HKEY_LOCAL_MACHINE \ Software \ CLASSES \ batfile \ shell \ open \ command

31 HKEY_LOCAL_MACHINE \ Software \ CLASSES \ exefile \ shell \ open \ command

32 HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \ Windows NT \ CurrentVersion \ Winlogon \ Shell

33 HKEY_LOCAL_MACHINE \ Software \ Microsoft \ Active Setup \ Installed Components \ KeyNameHKEY_LOCAL_MACHINE \ Software \ Microsoft \ Windows \ CurrentVersion \ Explorer \
34 Advanced \ Start_ShowDownloads

35 HKEY_CURRENT_USER \ Control Panel \ Desktop

36 HKEY_LOCAL_MACHINE \ SOFTWARE \ Classes \ Interface

37 HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \ Windows \ CurrentVersion \ Uninstall \ software_name

38 HKEY_LOCAL_MACHINE \ SOFTWARE \ Policies \ Microsoft \ Windows \ CurrentVersion \ Internet Settings \ ZoneMapKey

39 HKEY_CURRENT_USER \ Software \ Microsoft \ Office \ Software_name

40 HKEY_USERS \ % account id% \ Software \ Adobe \
41 HKEY_LOCAL_MACHINE \ Software \ Classes

42 HKEY_CLASSES_ROOT \ software_name

43 HKEY_LOCAL_MACHINE \ software \ microsoft \ windows \ currentversion \ appmanagement \ arpcache \
44 %Systemdrive% \ Users \ Public \ Documents

45 %systemdrive% \ Program Files \ Software_name \
46 %SYSTEMDRIVE% \ Windows \ Fonts

47 %Systemdrive% \ Users \ Public \ Documents

M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155 147

Re
gi

st
ry

 C
ou

nt
s

Registry Loca�ons

Fig. 7. The impact of Trojan on the registry.

4.1.1. Values for malware

It has been observed that few hives values are of significant im-

portance when the forensic investigator is looking for malicious

activities in the system. The modification of P2, P17, P3, P18 and

P1 are higher in proportion as compared to other counterpart, al-

though P17, P18 were also present in Bots and Trojan but other

keys impact and modification is higher in malware as compared to

them.

• P2 (HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control \
Nls),

• P17 -%Systemdrive% \ Users \ victim_user \ AppData \
• P3 -HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control \

SESSION

• P18 -%Systemdrive% \ Windows \ System32

• P1-HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

\ Nls \ CustomLocale \ en-US

An analysis of the Fig. 5 and Fig. 9 (cleanware) shows that Mal-

ware has a slightly different profile in many cases to that of Bots,

Trojans, and Worms. For example, Bot has distinctive impacts in

the following locations: P1, P2, P8, P13, P17, P18.

4.1.2. Values for Bots

In the case of bots, the Modification of below-mentioned keys

are of indicative of bots activities, the detail of these keys are men-

tioned below

• P18 – %Systemdrive% \ Windows \ System32

• P8 – HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \
• P19 – %Systemdrive% \ Windows \ INF \
• P17 – %Systemdrive% \ Users \ victim_user \ AppData \
• P1 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

\ Nls \ CustomLocale \ en-US

• P2 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

\ Nls

• P4 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

4.1.3. Values for Trojan

It is notable during analysis that modifications of few keys are

higher in the Trojan as compared to malware, the details of these

are as follows

• P18 – HKEY_CURRENT_USER \ SOFTWARE \ Microsoft \ Windows

\ CurrentVersion \ Explorer

• P2 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

\ Nls

• P19 – %Systemdrive% \ Windows \ INF \
• P17 – %Systemdrive% \ Users \ victim_user \ AppData \
• P1 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

\ Nls \ CustomLocale \ en-US

• P2 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

\ Nls

• P4 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

• P20 – %Systemdrive% \ Windows \ Globalization \ Sorting \ sortdef

ault.nls

Table 4

Classes for machine learning.

Class Label

Cleanware 0

Malware 1

Worm −1

Botnet −2

Trojan −3

The analysis of the charts shows that Bot and Trojan have simi-

lar values. Also the following locations tend to be higher: P18, P19,

and P17, P1 in both bots and Trojan.

4.1.4. Values for Worm

• P18 – HKEY_CURRENT_USER \ SOFTWARE \ Microsoft \ Windows

\ CurrentVersion \ Explorer

• P17 – %Systemdrive% \ Users \ victim_user \ AppData \
• P8 – HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \
• P13 – HKEY_CURRENT_USER \ SOFTWARE \ Microsoft \ Windows

\ CurrentVersion \
• P4 – HKEY_LOCAL_MACHINE \ SYSTEM \ ControlSet001 \ Control

• P21 – %Systemdrive% \
• P20 – %Systemdrive% \ Windows \ Globalization \ Sorting \ sortdef

ault.nls

From the empirical analysis, it has been identified that mod-

ification of keys P18 (HKEY_CURRENT_USER \ SOFTWARE \ Microsoft

\ Windows \ CurrentVersion \ Explorer) and P17(-%Systemdrive% \ Users

\ victim_user \ AppData \) tends to be higher in all three classes for

e.g., Bots, Worms, and Trojans thus we can conclude that these two

keys are of great importance for forensic investigator (Fig. 8).

4.1.5. Values for Cleanware

The distinct thing about this research is that forensic investiga-

tor will not only able to find the compromised system on the basis

of aforementioned values but he will be also able to distinguish

between clean systems if below-mentioned keys will be taken in

consideration.

• P45 –%systemdrive% \ Program Files \ Software_name \
• P38 – HKEY_LOCAL_MACHINE \ SOFTWARE \
• Policies \ Microsoft \ Windows \ CurrentVersion \ Internet

Settings \ ZoneMapKey

• P37 – HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \
• Windows \ CurrentVersion \ Uninstall \ software_name

• P40 – HKEY_USERS \ % account id% \ Software \ Adobe \
• P42 – HKEY_CLASSES_ROOT \ software_name

• P43 – HKEY_LOCAL_MACHINE \ software \ microsoft \ windows \
• currentversion \ appmanagement \ arpcache \
• P44 – %Systemdrive% \ Users \ Public \ Documents

• P39 – HKEY_CURRENT_USER \ Software \ Microsoft \ Office \ Soft

ware_name

148 M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155

Re
gi

st
ry

 C
ou

nt
s

Registry Loca�ons

Fig. 8. The impact of Worm on the registry.

Re
gi

st
ry

 C
ou

nt
s

Registry Loca�ons

Fig. 9. The impact of Cleanware on the registry.

Re
gi

st
ry

 C
ou

nt
s

Registry Loca�ons

Fig. 10. Impact of malware on the Windows 7 registry.

Re
gi

st
ry

 C
ou

nt
s

Registry Loca�ons

Fig. 11. Impact of malware on the Windows 8 registry.

The modification of these keys will help the forensic investiga-

tor to consider system clean instead of malicious without consid-

ering the AV scan and test report which will save lots of time as

well as resources of the system (Fig. 9).

4.2. Analysis against operating system version

In comparison to the previous two sections where the iden-

tification of similarities and differences may assist in helping an

investigator in identifying both the presence of malware and the

type of payload, the purpose of this comparison is to identify

whether any significant differences exist across the last three prin-

cipal versions of the Windows OS. Notably, as illustrated in Figs.

10 –12 the profile exhibited against each OS version is very similar.

Going beyond the current state of the art, this study demonstrates

that Windows 10 has a very similar impact upon the previously

identified 47 registry locations as previous versions.

Upon further examination, there are some small differences

that might help identify malware in different versions of the OS.

• Modification to P18 (%Systemdrive% \ Windows \ System32),

P17 (%Systemdrive% \ Users \ victim_user \ AppData \) and P8

(HKEY_LOCAL_MACHINE \ SOFTWARE \ Microsoft \) has signif-

icant impact in all three versions of Windows as shown

in Figs. 10 –12 . It has been observed that register values

from P35 to P47 are at lowest level in all three versions of

Windows.

5. Discussion

From the statistical analysis of the results, the main locations of

digital assets from malicious and benign software were identified.

Furthermore, in each type of software, in each operating system

and in each functionality of malware, the most common locations

that create digital evidence were recorded. In future research, this

analysis could be extended to other categories of malware (Ran-

somware, Backdoor, etc.) and other forms of functionality.

Whilst there is value to the investigator in better understanding

the impact differing forms of malware have upon the different ver-

sions of Windows and in particular how the Registry is effected, it

M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155 149

Registry Counts

Registry Loca�ons

Fig. 12. Impact of malware on the Windows 10 registry.

Table 5

Malware classification performance.

Test

ID

Train/Test

ratio

Feature

tested

Accuracy

Logistic regression Neural net Decision tree Random forest Boosted tree

Test 1 80/20 47 58% 34% 62% 58% 72%

Test 2 70/30 47 50% 33.3% 56% 64% 64.9%

Test 3 60/40 47 58% 33% 68.4% 67.5% 71%

Test 4 50/50 47 64% 34% 62% 62% 65%

would arguably be more useful if this analysis could be applied in

a manner that would provide a proactive approach for investiga-

tors to be able to detect and classify the type of malware present

within a case without having to rely upon AV. This is not designed

to replace or remove AV but to complement the approach, particu-

larly in cases where the malware is not being detected by the AV.

To this end, an extended experiment was conducted to determine

the degree to which the impact upon the registry and file loca-

tions is unique to each family of malware (i.e., is it possible given

the impact upon the registry and file locations to determine which

family the malware belongs).

The results from Appendix A were used, with the 47 locations

forming the features from both malware and benign samples. Then

a supervised pattern classification approach was selected because

they have stronger reliability than unsupervised approaches and

a dataset was easily created from existing malware. The samples

from the three families were randomized and split into training

and testing datasets – with differing proportions to measure the

impact that training data has on the overall performance. In this

experiment we have used different machine learning algorithm for

classification of cleanware and malware classes. The classes that

were used are shown in the table below (Table 4).

During the train, test and validate phases the efficiency and ef-

ficacy of the model was measured. Python was utilised and specif-

ically IPython Jupyter notebook v 5.7.2. The Jupyter notebook is

an open-source project which is web-based, interactive computing

notebook environment which is developed to support data science

and scientific computing across the different platform. The first ex-

periment was performed with the label ‘Test 1’, in which train/test

ratio of 80/20 was taken with 47 features, furthermore logic re-

gression, Neural net, Decision tree, Random forest and Boosted

tree supervised learning algorithms were utilised and their effi-

ciency and efficacy was measured. It was observed during analy-

sis that Boosted tree algorithm was performing well with 72% ac-

curacy as compared to all other classifiers as depicted in Table 5 .

Furthermore, investigation was performed by taking training/test

ratio of 70/30 to train the model, it had been found that once

again Boosted tree outperform all other classifiers with 64% accu-

racy as shown in Table 5 . We extend our experiments by taking

training/test ratio to 60/40 to see the impact of accuracy on the

classifier, we found that decision tree and Random forest accuracy

increases to 68.4% and 67.5% respectively, furthermore boosted tree

accuracy decrease from 72% to 71%.

From these experiments, it was observed that the best classi-

fication accuracy was produced by the Boosted tree with setting

80/20 as compared to other learning algorithms, moreover it was

noticed that the Random forest, Logistic regression, and Decision

tree classifiers accuracy increased drastically when we have taken

60/40 ratio but in contrast the accuracy of Boosted tree decrease

from 72% to 71% except the neural net whose accuracy remained

constant.

The results of this extended experiment demonstrate that mod-

elling the impact that malware has upon the registry and hard disk

would be a useful approach to detecting the type of malware fam-

ily. This type of modelling is far faster than traditional AV software

and could be applied either as a standalone tool or integrated into

existing computer forensic software as an additional forensic anal-

ysis. It also has the advantage over AV tools in that, once trained, it

does not need to be continually updated to reflect new signatures

(which can be hourly for some tools) – merely periodically updated

to reflect the general trends in malware composition. Furthermore,

the approach could find applications in host-based intrusion detec-

tion systems (HIDS) or intrusion protection systems (HIPS) as well

as vulnerability scanners.

6. Conclusion

The paper has undertaken an investigation into the impact that

three core types of malware have upon different versions of the

Windows OS – specifically targeting the Registry. Whilst previous

research has presented the impact of limited volumes of malware

upon the Registry, this is the first study to utilize a large volume of

malware across the three core types (Bot, Trojan and Worm) along

with clean samples. The results from this analysis largely confirm

previous studies but provide a greater granularity as to the impact

based on the different types of malware. This study has also ex-

tended the prior work by including Windows 10 and evidencing

that it has overall a similar impact profile on the Registry as pre-

vious versions of the software.

150 M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155

The results have shown that it is possible to accelerate a dig-

ital forensics analysis through a preliminary analysis of the reg-

istry, the modified timestamps and the use of machine learning or

deep learning. Targeting these 47 registry locations can provide a

first indication to the digital forensics examiner on whether or not

malware is present, but also the type across all common versions

of the Windows OS.

This type of analysis has several key advantages over existing

approaches: it is faster to scan and identify than AV, it is able to

detect and classify new malware prior to AV signatures being de-

veloped, it does not need frequent updating and can be built into

existing tools with applications in both the forensic and security

fields.

Conflict of interest

None.

Worm

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27-34

Locations ●
●
●

● ●
● ●
● ● ●
● ● ●

● ●
● ●

● ●
● ●

● ●
● ● ● ● ● ● ● ●

● ● ● ●
● ●

● ● ●
● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●

Trojan

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P 19 P20 P21 P22 P23 P24 P25-34

Locations ● ● ●
● ● ● ● ●

● ● ● ● ●
● ● ● ● ●

● ● ●
● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

●
● ●

● ●

Acknowledgment

This project has received funding from the European

Union’s Horizon 2020 research and innovation pro-

gramme under grant agreement no. 786698 . This work reflects au-

thors’ view and Agency is not responsible for any use that may be

made of the information it contains.

Appendix A

Malware Dynamic Analysis Locations (1–34) that forensics arti-

facts have been recorded during dynamic analysis for each of 180

samples (Malware [p1–p34] and clean [p35–p47]) of Worm, Bot

and Trojan (Tables A1 –A3), Clean (Table A4) and for the three Win-

dows operating systems (Tables A5 –A7).

https://doi.org/10.13039/501100007601

M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155 151

Bots

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25-34

Locations ● ● ● ●
● ● ● ●

● ● ● ● ●
● ● ●

● ● ●
● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ●
● ● ●

● ● ● ● ● ●
● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ●
● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ●
● ● ●

● ●

Cleanware

P1 P2-P34 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47

Locations ● ● ● ●
●

●
●

●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

1
5

2

M
.
 A

li,
 S.

 Sh
ia

eles
 a

n
d
 N

.
 C

la
rk

e
 et

 a
l.
 /
 Jo

u
rn

a
l
 o

f
 In

fo
rm

a
tio

n
 Secu

rity
 a

n
d
 A

p
p

lica
tio

n
s
 4

7
 (2

0
19

)
 13

9
–

15
5

Locations for windows 7

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47

● ●
●

●
●

●
●

●
● ●
● ●
● ● ●

●
●

● ●
●

● ● ●
● ● ●

●
● ● ● ● ●

●
● ●

●
● ● ●

●
●

●
● ● ●

●
●

●
● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ●

●
● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

●
● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
● ●

M
.
 A

li,
 S.

 Sh
ia

eles
 a

n
d
 N

.
 C

la
rk

e
 et

 a
l.
 /
 Jo

u
rn

a
l
 o

f
 In

fo
rm

a
tio

n
 Secu

rity
 a

n
d
 A

p
p

lica
tio

n
s
 4

7
 (2

0
19

)
 13

9
–

15
5

1
5

3

Locations for windows 8

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47

●
● ● ● ●

● ●
● ●

● ●
● ● ●

● ● ●
●

● ●
● ●

● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
● ● ● ● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ●
● ● ●

● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ● ●

● ● ● ●
● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ●
● ●

154 M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155

Lo
ca

ti
o

n
s

fo
r

w
in

d
o

w
s

1
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1

0

P
11

P

1
2

P
1

3

P
1

4

P
1

5

P
1

6

P
17

P

1
8

P
1

9

P
2

0

P
2

1

P
2

2

P
2

3

P
2

4

P
2

5

P
2

6

P
2

7

P
2

8

P
2

9

P
3

0

P
3

1

P
3

2

P
3

3

P
3

4

P
3

5

P
3

6

P
3

7

P
3

8

P
3

9

P
4

0

P
4

1

P
4

2

P
4

3

P
4

4

P
4

5

P
4

6

P
4

7

●
●

●
●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● 2

●
●

●
●

●
●

●
●

●
●

●
●

●
●

Supplementary materials

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.jisa.2019.04.013 .

References

[1] Ali M , Shiaeles S , Papadaki M , Ghita BV . Agent-based vs agent-less sandbox for

dynamic behavioral analysis. In: Proceedings of the 2018 global information
infrastructure and networking symposium (GIIS). IEEE; 2018 .

[2] AlienVault (2013). What are the most common types of malware? Available
at: https://www.alienvault.com/blogs/security- essentials/what- are- the- most

- common- types- of- malware . Accessed: 22 Mar 2019.

[3] Babi ́c D , Reynaud D , Song D . Malware analysis with tree automata inference.
In: Computer aided verification. Berlin Heidelberg: Springer; 2011. p. 116–31 .

[4] Balthrop J , Forrest S , Newman ME , Williamson MM . Technological networks
and the spread of computer viruses. Science 2004;304(5670):527–9 .

[5] Bayer U , Comparetti PM , Hlauschek C , Kruegel C , Kirda E . Scalable, be-
haviour-based malware clustering. In: Proceedings of the NDSS, 9; 2009.

p. 8–11 .

[6] Bayer U, Habibi I, Balzarotti D, Kirda E, Kruegel C. A view on current malware
behaviours. Available at: http://static.usenix.org/event/leet09/tech/full _ papers/

bayer/bayer _ html/ . Accessed: 31 Jan 2019.
[7] Bayer U , Kirda E , Kruegel C . Improving the efficiency of dynamic malware anal-

ysis. In: Proceedings of the 2010 ACM symposium on applied computing. ACM;
2010. p. 1871–8 .

[8] Brumley D , Hartwig C , Liang Z , Newsome J , Song D , Yin H . Automatically iden-

tifying trigger-based behaviour in malware. In: Botnet detection. US: Springer;
2008. p. 65–88 .

[9] Carrier B . File system forensic analysis. Addison-Wesley Professional; 2005 .
[10] Carvey H . Windows forensic analysis DVD toolkit. Syngress; 2009 .

[11] Carvey H . Windows registry forensics: advanced digital forensic analysis of the
windows registry. Elsevier; 2011 .

[12] Carvey H , Altheide C . Tracking USB storage: analysis of windows artifacts gen-

erated by USB storage devices. Digit Investig 20 05;2(2):94–10 0 .
[13] Casey E , Katz G , Lewthwaite J . Honing digital forensic processes. Digital Inves-

tigation 2013;10(2):138–47 .
[14] Cert-Eu. Incident response methodology. Cert-Eu; 2012 .

[15] Cheng SM , Ao WC , Chen PY , Chen KC . On modeling malware propagation in
generalized social networks. IEEE Commun Lett 2011;15(1):25–7 .

[16] Christodorescu M , Jha S . Static analysis of executables to detect malicious

patterns. Wisconsin University - Madison Department of Computer Sciences;
2006 .

[17] Christodorescu M , Jha S , Kruegel C . Mining specifications of malicious behav-
ior. In: Proceedings of the the 6th joint meeting of the European software en-

gineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering. ACM; 2007. p. 5–14 .

[18] Christodorescu M , Jha S , Seshia SA , Song D , Bryant RE . Semantics-aware mal-
ware detection. In: Proceedings of the IEEE symposium on security and pri-

vacy. IEEE; 2005. p. 32–46 .

[19] Collie J . The windows IconCache. db: a resource for forensic artifacts from USB
connectable devices. Digit Investig 2013;9(3):200–10 .

[20] Costa M , Crowcroft J , Castro M , Rowstron A , Zhou L , Zhang L , Barham P . Vigi-
lante: end-to-end containment of internet worms. In: Proceedings of the ACM

SIGOPS operating systems review, 39. ACM; 2005. p. 133–47 .
[21] Dalziel H . How to defeat advanced malware: new tools for protection and

forensics. Syngress; 2014 .

[22] Dash P . Getting started with oracle VM virtualbox. PACKT Books; 2013 .
[23] Dolan-Gavitt B . Forensic analysis of the Windows registry in memory. Digit

Investig 2008;5:S26–32 .
[24] Egele M , Scholte T , Kirda E , Kruegel C . A survey on automated dynamic mal-

ware-analysis techniques and tools. ACM Comput Surv (CSUR) 2012;44(2):6 .
[25] Fnal (2016). Common Windows Trojan/application startup locations. Available

at: https://security.fnal.gov/cookbook/WinStartup.html . Accessed: 27 Mar 2016.

[26] Fredrikson M , Jha S , Christodorescu M , Sailer R , Yan X . Synthesizing near-opti-
mal malware specifications from suspicious behaviours. In: Proceedings of the

IEEE symposium on security and privacy (SP). IEEE; 2010. p. 45–60 .
[27] Gil S , Kott A , Barabási AL . A genetic epidemiology approach to cyber-security.

Scientific Report 2014;4:5659 .
[28] Gordon S . What is wild?. In: Proceedings of the 20th national information sys-

tem security conference; 1997 .

[29] Greamo C , Ghosh A . Sandboxing and virtualization: modern tools for combat-
ing malware. IEEE Secur Priv 2011;9(2):79–82 .

[30] Horsman G , Laing C , Vickers P . A case-based reasoning method for locating ev-
idence during digital forensic device triage. Decis Support Syst 2014;61:69–78 .

[31] Hosmer C . Python forensics: a workbench for inventing and sharing digital
forensic technology. Elsevier; 2014 .

[32] James JI , Gladyshev P . A survey of digital forensic investigator decision pro-

cesses and measurement of decisions based on enhanced preview. Digit Inves-
tig 2013;10(2):148–57 .

[33] Kolbitsch C , Comparetti PM , Kruegel C , Kirda E , Zhou XY , Wang X . Effective
and efficient malware detection at the end host. In: Proceedings of the USENIX

security symposium; 2009. p. 351–66 .

https://doi.org/10.1016/j.jisa.2019.04.013
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0001
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0001
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0001
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0001
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0001
https://www.alienvault.com/blogs/security-essentials/what-are-the-most-common-types-of-malware
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0002
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0003
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0004
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0004
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0004
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0004
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0004
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0004
http://static.usenix.org/event/leet09/tech/full_papers/bayer/bayer_html/
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0005
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0005
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0005
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0005
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0006
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0006
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0006
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0006
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0006
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0006
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0006
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0007
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0007
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0008
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0008
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0009
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0009
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0010
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0011
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0011
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0011
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0011
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0012
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0013
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0013
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0013
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0013
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0013
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0014
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0014
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0014
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0019a
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0019a
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0019a
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0019a
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0016
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0018
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0018
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0019
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0020
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0020
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0021
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0021
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0022
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0023
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0023
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0023
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0023
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0023
https://security.fnal.gov/cookbook/WinStartup.html
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0024
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0027
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0028
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0028
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0029
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0030
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0031
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0031
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0032
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0032
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0032
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0034
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0034

M. Ali, S. Shiaeles and N. Clarke et al. / Journal of Information Security and Applications 47 (2019) 139–155 155

[34] Kruegel C , Robertson W , Vigna G . Detecting kernel-level rootkits through bi-
nary analysis. In: Proceedings of the 20th annual computer security applica-

tions conference. IEEE; 2004. p. 91–100 .
[35] Li Y , Hui P , Jin D , Su L , Zeng L . Optimal distributed malware defense

in mobile networks with heterogeneous devices. IEEE Trans Mob Comput
2014;13(2):377–91 .

[36] Lindorfer M , Di Federico A , Maggi F , Comparetti PM , Zanero S . Lines of ma-
licious code: insights into the malicious software industry. In: Proceedings

of the 28th annual computer security applications conference. ACM; 2012.

p. 349–58 .
[37] Lippmann R , Clark A . Recent advances in intrusion detection.

Berlin/Heidelberg: Springer; 2008 .
[38] Liu W , Liu C , Liu X , Cui S , Huang X . Modeling the spread of mal-

ware with the influence of heterogeneous immunization. Appl Math Modell
2016;40(4):3141–52 .

[39] Malekal (2016). Available at: http://malwaredb.malekal.com/ . Accessed: 10 Apr

2019.
[40] Malicious-streams (2014). Digging for malware: suspicious filesystem ge-

ography. Available at: http://www.malicious-streams.com/resources/articles/
DGMW1 _ Suspicious _ FS _ Geography.html . Accessed: 31 Jan 2016.

[41] Malware.lu (2016). Available at: https://malware.lu/ . Accessed: 10 Mar 2019.
[42] MalwareTips (2016). Available at: https://malwaretips.com/ . Accessed: 10 Mar

2019.

[43] Malwaretruth (2016). A list of malware types and their definitions. Avail-
able at: http://www.malwaretruth.com/the- list- of- malware- types/ Accessed:

22 Mar 2019.
[44] Mee V , Tryfonas T , Sutherland I . The windows registry as a forensic arte-

fact: illustrating evidence collection for Internet usage. Digital Investigation
2006;3(3):166–73 .

[45] Mishra BK , Pandey SK . Dynamic model of worm propagation in computer net-

work. Appl Math Modell 2014;38(7):2173–9 .
[46] Misra AK , Verma M , Sharma A . Capturing the interplay between malware and

anti-malware in a computer network. Appl Math Comput 2014;229:340–9 .
[47] Moser A , Kruegel C , Kirda E . Limits of static analysis for malware detection. In:

Proceedings of the Twenty-third annual computer security applications confer-
ence, ACSAC. IEEE; 2007. p. 421–30 .

[48] NetMarketShare.com (2019). Operating system market share. Available at:

https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=
10&qpcustomd=0&qpcustomb . Accessed: 21 Mar 2019.

[49] Norton (2010). Malware removal guide.
[50] Oktavianto D , Muhardianto I . Cuckoo malware analysis. Packt Publishing Ltd.;

2013 .
[51] Park Y , Reeves DS , Stamp M . Deriving common malware behaviour through

graph clustering. Comput Secur 2013;39:419–30 .

[52] Park Y , Zhang Q , Reeves D , Mulukutla V . AntiBot: clustering common semantic
patterns for bot detection. In: Proceedings of the IEEE 34th annual computer

software and applications conference (COMPSAC). IEEE; 2010. p. 262–72 .

[53] Purcell DM , Lang SD . Forensic Artifacts of Microsoft windows Vista system.
In: Proceedings of the intelligence and security informatics. Berlin Heidelberg:

Springer; 2008. p. 304–19 .
[54] RSA (2013). The cyber espionage blueprint.

[55] SANS. Available at: https://www.sans.org/ . Last Accessed: 10 Apr 2019.
[56] Schuster A . Pool allocations as an information source in windows memory

forensics. In: Proceedings of the IMF; 2006. p. 104–15 .
[57] Shanks W . Enhancing incident response through forensic, memory analysis

and malware sandboxing techniques. SANS Institute.; 2014. p. 39 .

[58] Sharif MI , Lanzi A , Giffin JT , Lee W . Impeding malware analysis using condi-
tional code obfuscation. In: Proceedings of the NDSS; 2008 .

[59] Shukla JB , Singh G , Shukla P , Tripathi A . Modeling and analysis of the effects
of antivirus software on an infected computer network. Appl Math Comput

2014;227:11–18 .
[60] Sikorski M , Honig A . Practical malware analysis: the hands-on guide to dis-

secting malicious software. No Starch Press; 2012 .

[61] Stormo, J.M. (2013). Analysis of Windows 8 registry artifacts.
[62] Symantec (2009). Common loading points for viruses, worms, and Tro-

jan horse programs. Available at: https://support.symantec.com/en _ US/article.
TECH99331.html . Accessed: 2 Feb 2019.

[63] SNDBOX (2019). Available at: https://app.sndbox.com/upload/ (Accessed: 23
January 2019).

[64] Thomas S , Sherly KK , Dija S . Extraction of memory forensic artifacts from win-

dows 7 ram image. In: Proceedings of the IEEE conference on information &
communication technologies (ICT). IEEE; 2013. p. 937–42 .

[65] Veracode (2012). Common malware types: cybersecurity 101. Avail-
able at: https://www.veracode.com/blog/2012/10/common-malware-types

- cybersecurity- 101 . Accessed: 22 May 2019.
[66] Vespignani A . Complex networks: behind enemy lines. Nat Phys

2005;1(3):135–6 .

[67] VirusSign (2016). Available at: http://www.virussign.com/ . Accessed: 10 Apr
2019.

[68] VirusTotal (nd). VirusTotal – free online virus, malware and URL scanner. Avail-
able at: https://www.virustotal.com/ . Accessed: 25 Mar 2019.

[69] Vlachos V , Ilioudis C , Papanikolaou A . On the evolution of malware species.
In: Proceedings of the global security, safety and sustainability & e-democracy.

Berlin Heidelberg: Springer; 2012. p. 54–61 .

[70] Vmware (2016). VMware virtualization for desktop & server, application, Public
Hybrid Clouds. Available at: http://www.vmware.com/ . Accessed: 22 Mar 2019.

[71] VxHeaven (2016). Available at: http://vxheaven.org/ . Accessed: 10 Apr 2016.
[72] Willems C , Holz T , Freiling F . Toward automated dynamic malware analysis

using cwsandbox. IEEE Security Privacy 2007;5(2):32–9 .
[73] Zeltser L. (nd). Available at: https://zeltser.com/ . Accessed: 10 Mar 2019.

[74] Zou CC , Towsley D , Gong W . Modeling and simulation study of the propaga-

tion and defense of internet e-mail worms. IEEE Trans Depend Secure Comput
2007;4(2):105–18 .

http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0035
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0036
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0037
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0039
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0039
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0039
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0040
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0040
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0040
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0040
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0040
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0040
http://malwaredb.malekal.com/
http://www.malicious-streams.com/resources/articles/DGMW1_Suspicious_FS_Geography.html
https://malware.lu/
https://malwaretips.com/
http://www.malwaretruth.com/the-list-of-malware-types/
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0042
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0043
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0043
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0043
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0044
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0045
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0045
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0045
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0045
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0&qpcustomb
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0047
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0047
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0047
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0048
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0048
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0048
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0048
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0049
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0050
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0050
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0050
https://www.sans.org/
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0051
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0051
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0052
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0052
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0053
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0053
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0053
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0053
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0053
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0054
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0054
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0054
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0054
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0054
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0055
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0055
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0055
https://support.symantec.com/en_US/article.TECH99331.html
https://app.sndbox.com/upload/
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0057
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0057
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0057
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0057
https://www.veracode.com/blog/2012/10/common-malware-types-cybersecurity-101
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0058
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0058
http://www.virussign.com/
https://www.virustotal.com/
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0059
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0059
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0059
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0059
http://www.vmware.com/
http://vxheaven.org/
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0061
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0061
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0061
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0061
https://zeltser.com/
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0062
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0062
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0062
http://refhub.elsevier.com/S2214-2126(18)30636-7/sbref0062

	A proactive malicious software identification approach for digital forensic examiners
	Recommended Citation

	A proactive malicious software identification approach for digital forensic examiners
	1 Introduction
	2 Background and related work
	2.1 Static analysis
	2.2 Dynamic analysis

	3 Experimental methodology
	3.1 Virtual lab
	3.2 Standardized naming scheme for malware
	3.3 Malware samples used
	3.4 Clean samples used
	3.5 Sandbox analysis procedure
	3.5.1 Dataset preparation

	3.6 Pre-processing and feature generation

	4 Experimental results
	4.1 Analysis of malware motivation
	4.1.1 Values for malware
	4.1.2 Values for Bots
	4.1.3 Values for Trojan
	4.1.4 Values for Worm
	4.1.5 Values for Cleanware

	4.2 Analysis against operating system version

	5 Discussion
	6 Conclusion
	Conflict of interest
	Acknowledgment
	Appendix A
	Supplementary materials
	References

