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AN EVALUATION OF THE ENVIRONMENTAL FATE OF REACTIVE DYES 

by 

Malcolm John Hetheridge 

ABSTRACT 

Dyestuffs are widely used industrial chemicals, yet surprisingly little is known about their 
fate in the environment. The potential modes of transformation and removal of reactive 
dyes in treatment and in the environment are principally through anaerobic and aerobic 
biodegradation and photodegradation. The research herein describes the use of LC-MS 
analysis with laboratory simulations to develop a better understanding of the occurrence 
and fate of reactive dyes and their degradation products in the aquatic environment. 

One reason for the lack of information on the environmental fate of reactive dyes has been 
the paucity of robust analytical methods suitable for the determination of dyes in aqueous 
samples. Robust analytical methods were optimised to provide LC-MS and MSMS 
identification of degradation products. Additionally, interpretation of the MSMS spectra 
of known reactive dyes provided novel characteristic fragment ions indicative of the 
triazine reactive group of reactive dyes . 

Fibre reactive dyes are designed to have a degree of photostability and therefore their 
photodegradation behaviour has not been widely investigated. Little is known of their 
stability to daylight over prolonged periods of irradiation in dilute aqueous solutions and in 
the presence of humic substances. The kinetics of photodegradation of an anthraquinone 
dye (Reactive Blue H4R) and azo dye (Reactive Yellow P5G) were evaluated. The former 
underwent rapid and extensive degradation 01/2 1.5 h). The major products formed were 
identified using LC-MSMS and a photodegradation pathway proposed. By comparison, 
the photodegradation of the azo dye was significantly slower, 01/2 30 h). The addition of 
humic substances appeared to have little effect on the rate of photodegradation under the 
conditions used. 

The reduction of azo dyes under anaerobic treatment has been extensively studied, but the 
subsequent fate of the initial reduction products when exposed to air are not understood. 
Three relatively simple azo dyes, Amaranth, Sunset Yellow and Naphthol Blue-Black, 
were reduced and their autoxidation products identified by LC-MS. These were 
subsequently used to predict the autoxidation products of a more complex azo reactive 
dye: Reactive Red 3.1. Additionally, a persistent degradation product from the anaerobic- 
aerobic treatment of Reactive Red 3.1 was identified from LC-MS data. 

Azo reactive dyes are generally regarded as being resistant to aerobic degradation and there 
are few published data regarding degradation pathways for reactive anthraquinone dyes. 
Pure cultures of Pseudomonas docunhae, A 9046 and A texaco and mixed bacterial 
consortia (semi-continuous activated sludge, SCAS) aerobic degradation of azo and 
anthraquinone reactive dyes was studied. Two azo dyes were degraded by pure cultures of 
A docunhae and A 9046, suggesting that azo dyes can be aerobically degraded given 
favourable conditions. The antraquinone dye was extensively degraded by SCAS and pure 
culture biodegradation. Metabolites were identified by LC-MS and a degradation pathway 
proposed. 

ii 



The data from two parts of this study have been published to date: 

M. Kudlich, M. Hetheridýze, H-J Knackmuss and A Stolz (1999). Autoxidation reactions 
of different aromatic ortho-aminohydroxynaphthalenes which are formed during the 
anaerobic reduction of sulfonated azo dyes. Environ. Sci. & Technol., 33,896-901. 

KCA Bromley-Challenor, JS Knapp, Z Zhang, NCC Gray, MJ Hetheridge and MR 
Evans (2000). Decolourisation of an azo dye by unacclimated activated sludge under 
anaerobic conditions Wat. Res. Vol.. 34,18,4410-4418. 
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CHAPTER1 

INTRODUCTION 

1.0 DYESTUFF PRODUCTION 

Historically, the main producers of dyestuffs were found in the countries of Western 

Europe and in America, but the last decade has seen increases in production in China, 

India, Japan, Taiwan and central America, as these countries have striven to become self 

sufficient in their dyestuff needs. For instance, China has changed from an importer, to a 

net exporter of dyes in the last 10 years, and now produces in excess of 180,000 tonnes per 

annum (www. chinaeco, 2000). India increased production from 16 tonnes / annum to 

28,000 tonnes between 1951 and 1984'(Khanna, 1991). Accurate figures for the current 

world-wide production of dyes are not available, but world production figures based on 

1993 estimates (Howe, 1993), are shown in Table 1.1 

Table 1.1 World production of dyestuffs expressed as thousands of tonnes per annum 

(Howe, 1993) 

Year W. Europe USA China USSR Japan Others Total 

1978 

1993 

2000 (predicted) 

250 109 57 147 51 26 640 

300 138 200 68 44 750 

300 170 180 Not 84 54 >780 

available 
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1.1 DYE CLASSIFICATION 

Dyes can be classified according to their usage and method of application or by their 

chemical nature. The former tends to be used by dye users and terms such as 'fibre 

reactive' dyes for cotton and 'disperse' dyes for polyester are employed. Users may 

additionally describe dyes by chemical nature using descriptors such as 'azo', 

'anthraquinone' or 'phthalocyanine' dyes. The two methods of classification are often 

mixed. For instance, an 'azo reactive' dye could be used for cotton and an 'azo direct' dye 

for dying polyester. At >40%, textile dyes account for the biggest sector of world dye 

production (Colour Chemistry, 1992). Reactive dyes are becoming increasingly important 

and account for approximately 20% of textile dye production (at least 60,000 tonnes per 

annum, ICI internal com, 1994). The present study is concerned only with fibre reactive 

dyes of the chemical classes azo and anthraquinone, but a brief overview of all major 

dyestuffs follows for completeness. 

Reactive dyes 

The concept of binding a dye to cellulose through chemical reaction is attributed to Cross and 

Bevan (1895), who esterified cellulose with benzoyl chloride and then nitrated and diazotised 

the resultant benzene ring. The first wool reactive dye was an acid dye introduced in 1930, 

although it was not realised at the time that the observed fastness to washing was due to 

chemical bonding (Encyclopedia of Chemical Technology, 1993). The first commercial 

reactive dyes were introduced in 1956 (Rattee and Stephen, 1956) and were characterised 

by the presence of a reactive group which formed a covalent bond with fibres to become an 

integral part of the fibre polymer. Such dyes are particularly suited to the dying of cotton, 

but also are used to die wool, silk and to a lesser extent, nylon. The dye is applied in 

neutral solution and chemical reaction is initiated by addition of alkali. Reactive dyes 
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(eg 1) are characterised by three functional parts; the chromophore, the fibre reactive system 

and a water-solublising sulphonate group: 

Chromophore 

Fibre reactive system 

Sulphonate 

(1) Reactive Yellow P5G 

ý cl 
1-0511 

(i) Chromophore. Interaction of light with this part of the molecule produces the colour. 

These groups are most commonly azo and anthraquinone moieties, or a phthalocyanine group. 

Reactive dyes produce a wide range of bright colours. 

(ii) Fibre reactive group. This part of the dye molecule reacts widi the target fibre material to 

permanently bind the dye to the fibre. 

Cotton is made up of almost pure cellulose which consists of chains of glucose units joined in 

a 1-4 R linkage: 

S03' 

NN 

0= 

CH 3 

ýjt HO 
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HI CH20H 

00 CH20H 

HO 
0 

io 

OH HO 
OH 

OHý 

These chains lie side-by-side in bundles held together by hydrogen bonding. The bundles are 

twisted together to form rope-like structures, which in turn are also twisted together to give 

fibre strands that contain a large number of hydroxyl groups, rendering the fibre hydrophilic. 

'Me fibre readily absorbs water and therefore can be dyed by water soluble dyes. 

Several mechanisms are used to bond the dye to the cellulose fibres. The main ones use either 

a mono- or dichlorotriazine group which reacts with the hydroxyl group of cellulose by 

nucleophilic substitution to form a covalent cellulose-0-dye bond with the elimination of HCI: 

2 

NN+ 

DYE-HN"11ý'WýýCl 

H2 

HO 
N ";;: ý N 

HO DYE-HN-ýýN":: 
ý' 

or addition to the double bond of a vinyl sulphone reactive group for example: 

Dye-S02CH2"CH2 + HO-Cellulose -4 Dye-SO2CH2CH2 -0-Cellulose 

Although these are the most common forms of reactive group used today, many alternatives 

have been developed. These include: dichloroquinoxalines, dichloropyridazones, 

difluorochloropyrimidine and fluorotriazine groups. Because of the covalent chemical 

bonding, reactive dyes show extremely good fixation with cotton and they are well retained 

even after washing. 
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(iii) Water-solubilising sulphonic acid groups. Reactive dyes are also characterised by the 

presence of sulphonic acid groups which make the dye molecule highly polar and therefore 

water soluble, allowing penetration of dyes into the cellulose fibres during the dyeing process. 

Generally, the bigger the dye molecule, the more sulphonic acid groups that are required to 

achieve the desired solubility. 

Reactive dyes are relatively simple to apply, and have extremely good wash fastriess. 

Other advantages over direct dyes are increased brightness and better penetration into 

substrate fibres. 

Direct dyes 

Direct dyes (e. g. Direct Red 2,11) get their name from their ability to dye fibres directly 

from an aqueous solution without the need to chemically pre-treat the cellulose fibre. 

These dyes contain several sulphonic acid groups to make them highly water soluble and 

they tend to have long linear structures which align along the cellulose fibres. The dye can 

be attached to the fibre by hydrogen bonding or can hydrogen bond to other dye molecules 

to form a large aggregate which is then physically trapped within the fibre. They are most 

commonly used for cotton, paper and leather but they do not have the same degree of wash 

fastness as reactive dyes and often require additional treatments to improve this property. 

Most dyes in this class are azo dyes. 
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H'N' H 

NN 

Na, 0' 
s=O 
lb 

Q, 0 
0=S' Sa 

H, 
N, 

H 

(II) Direct Red 2 

Sulphur dyes 

Sulphur dyes are largely of unknown and variable chemical compositions. They are 

applied in solution in their reduced form and an insoluble colour is produced within the 

fibre following chemical oxidation. Sulphur dyes have good wash fastness properties and 

are important because they are very low cost high bulk dyes. Therefore, in terms of 

tonnage production they make a significant contribution to overall world-wide dye stuff 

production figures. Sulphur dyes have a very limited colour range, usually blue or black. 

Vat Dyes 

These are water-insoluble dyes which have to be reduced to a water-soluble form using a 

reducing agent such as sodium dithionite in alkaline solution. This is usually achieved in a 

vat. The material to be dyed, usually cellulose fibres, is then dipped into the vat and the 

dye is regenerated in insoluble form within the fibres by chemical oxidation. Thereafter it 

is trapped within the fibres and because it is insoluble in water it is not readily washed out 

during subsequent washing. The principal chemical classes used as vat dyes are 

anthraquinone and indigo-based dyes. The latter is commonly used as the dye for blue 

denim, for example: 
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0 H, N 

N, H0 

(III) Indigo 

Disperse dyes 

These are non-polar water-insoluble dyes (e. g. IV) used for application to hydrophobic 

fibres such as polyester, which are impermeable to water and therefore cannot be dyed 

with water-soluble dyes. The dye forms a suspension or dispersion in water, where it is 

adsorbed onto the fibre as a solid solution. These dyes also have niche markets for thermal 

transfer printing (where disperse dye is printed onto paper then transferred to fibre using a 

dry heat process) and in dye diffusion thermal transfer, as used in electronic photography. 

N- -N 
O'N 

0 

(IV) Disperse orange 3 
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Basic dyes 

These are water-soluble, cationic dyes used predominantly for dying paper and 

acrylonitrile (e. g. Dralon). The latter contains many carboxylic and sulphonic acid groups 

and basic dyes containing an amino or other cationic function can readily form ionic bonds 

with these: 

Fibre-C02H + Dye-NH3+ Cl- 
-ý Fibre-C02-. Dye- NH3+ 

cl- 

(V) Safranine 

Acid dyes 

These are water-soluble, anionic dyes which can react with fibres which contain a large 

number of amino groups such as nylon, wool and silk. The original members of this class 

all contained at least one sulphonic or carboxylic acid group which gave the class its name. 

In addition to making the dye highly soluble, the acid groups can form ionic bonds with the 

amine groups of the fibre: 

Fibre-NH2 + Dye-S03H -4 Fibre-NH3+. Dye-S03- 

Azo and anthraquinone dyes are the main chemical classes in this group. 

'O'H 

�,: 
jr Na, N"91 

01 1--1 0 
0-1-10 

(VI) Acid Orange 6 
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Solvent dyes 

These are totally water-insoluble dyes used for colouring plastics, petrol and waxes. Again 

the predominant chemical classes are azo and anthaquinone dyes. 

(VII) Solvent Yellow 2 

Chemical classifications of dyes 

Azo dyes are by far the most important and most studied class of dye and account for more 

than 50% of all commercial dye production. As the name suggests, these dyes contain at 

least one -N=N- group, and often two (diazo), three (triazo) or sometimes four or more azo 

groups, although this is less common. Mono azo dyes are most important. The azo bond 

is attached to two different groups both of which are usually aromatic and arranged in a 

trans configuration. One aromatic ring always contains an electron donating group(s), 

typically hydroxyl or amino and the other, electron withdrawing group(s). For example, 

4-alkylphenylazo- I -naphthol (VIII). 

Ro- 

(VIII) 

OH 
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A most important feature of azo dyes is their ability to tautomerise. This has an effect not 

only on the colour of the dye, but also on its properties in terms of light fastness and its 

tinctorial strength (i. e. the intensity of colour produced). The value of a dye is based on 

the latter and so is of great importance to the manufacturing industry. The azo tautomer of 

4'-phenylazo- I -naphthol dye (VIII) is yellow (Xmax 410 nm), whilst the hydrazone 

tautomer (IX) produces a stronger orange colour (Xmax 480 nm). 

Ra 

NN 
OH 

if 

R 

O-N 

(VIII) Yellow (Azo) (IX) Orange (Hydrazone) 

Individual hydroxy azo dyes vary in the proportion of each tautomer present, but generally 

the hydrazone tautomer produces the strongest colour and is therefore most desirable. 

Hence some important classes of dye contain predominantly hydrazones. Examples of 

these are azopyridones and azopyrazolones (X). Reactive Yellow P5G, is an example of 

the latter. 

S03H 

H CH N-N 3 

NH 0 

R RI 

(X) 

Amino-substituted mono azo dyes exist in the azo form only. The imino tautomer is 

believed to be unstable (Howe, 1993). In general terms of colour production, yellow dyes 
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are usually monoazo and most are azopyridones and azopyrazolones. Orange dyes are 

typically monoazo coupled to a pyrazolone, substituted phenyl or naphthyl. Red dyes are 

predominantly based on H-acid (XI), but substituted phenyl and naphthyl groups may also 

be used. Black and brown dyes are generally diazo. 

H03SNC SO3H 

'N=N-R 

NH2 OH 

(XI) H-Acid ( --- N=N-R indicates typical position of azo substitution) 

Anthraquinone (AQ) dyes are the second most important group of dyes. They tend to be 

tinctorially weaker and more expensive to produce than azo dyes, but they have brightness 

and colour fastness properties that still make them desirable for many applications. 

Antraquinone itself shows very weak absorption in the visible range and so is almost 

colourless. However, a wide range of colours can be produced, depending on the nature of 

the electron donating groups substituted at the 1,4,5 and 8 positions (XII). 

0 
8 

9 

oooý 

c 

10 

51 40 

(XII) 

As for azo dyes, primary and secondary amino and hydroxyl groups are most often - used. 

These enhance intramolecular hydrogen bonding with the minimum of steric hindrance 

(XIII): 
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H 

NH 

R 

1% H "-*' 

(XIII) 

The strength of electron donor groups increases in the order ArNH > RNH > NH2 > OH. 

Addition of an hydroxyl group at C-1 produces a shift from 323 nm for anthraquinone to 

402 nm. A second hydroxyl in the 5 or 8 positions produces a further shift to 425 or 

470 nm respectively. Similarly substitution of an amino group in the I position produces a 

shift to 475 nm. Addition of a second in the 5 or 8 positions produce shifts to 487 and 

507 nm respectively. Addition of a sulphonic acid group at the 2 position of 

1,4-diaminoanthraquinone, produces absorption maxima at 562 and 603 nm. 

1,4-diaminoanthraquinone is violet, I-amino-4-methylaminoanthraquinone is blue, 

1,4-diamino-2-phenoxymethylanthraquinone is orange and 1,4-di(methyl-4- 

phenylamino)anthraquinone is green (Shakra, 1992). Clearly a range of colours can be 

produced by varying the type and number of substituents. 
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1.2 FATE OF DYES IN THE ENVIRONMENT 

The potential for dyes to enter the environment is derived mainly from two sources: 

discharges of manufacturing and processing (dye house) wastes to rivers. 

Early studies suggested dyestuffs were unimportant pollutants. Thus, Brown (1987) 

calculated potential UK sewage treatment works (STW) influent concentrations of dyes as 

less than 10 mg 1-1, with expected riverine concentrations of 1-10 gg 1-1. These figures 

were based on hypothetical production quantities and average river flow rates and volumes 

and aimed to give an indication of environmental concentrations for use in risk assessment. 

A more refined approach was adopted by Hobbs (1989), who used actual values for river 

water flow and STW discharge flows to estimate normal and worst case scenarios for both 

acid and reactive dyes. These suggested that, in general, concentrations in river water 

would be 1-30 [tg 1-1, but under exceptional circumstances, ie maximum release of dye 

waste to STW and low river flow, could reach 0.3 mg 1-1 for acid dyes and 1.5-2 mg 1-1 for 

reactive dyes. Both studies also indicated that for all but the most intensely coloured dyes, 

a concentration of 1-2 mg 1-1 was needed for a visible effect on river water to be produced. 

Additionally, Brown (1987) reported results of an 8 week fish bioaccumulation study of 42 

soluble and disperse dyes which demonstrated no bioaccumulation or observable 

detrimental effect on Japanese carp, for dye concentrations of 100 mg 1-1, and the same 

study indicated that 75% of ICI dyestuffs were not toxic to fish at 100 mg 1-1, with only 

3.5% showing any toxicity below I mg 1-1. This was in agreement with the findings of 

Anliker (1980,1988), who reported tests of 3000 dyestuffs for toxicity to fish. 98% 

showed no toxicity based on simple LC5o tests, at concentrations greater than I mg 1-1. The 

remaining 2% were almost entirely due to triphenylmethane dyes. The same authors 

indicated that generally dyestuffs show no inhibition of the activities of sewage sludge 

bacteria at concentrations below 100 mg 1-1 and were not toxic to algae above I mg 1-1. 
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Additionally, Clarke (1980) demonstrated that numerous dyes were of low acute toxicity to 

mammals. Of more than 4000 dyestuffs tested (including replicates), less than 1% showed 

LD50 values for concentrations below 250 mg 1-1. The conclusion from the findings of 

these early studies (i. e. low predicted environmental concentrations, effectively no toxicity 

to fish, algae or mammals), was that dyestuffs did not constitute an environmental 

problem. 

However, it seems these publications tended to over simplify the environmental situation. 

In particular, the estimated environmental concentrations based on calculated dye releases 

and STW concentrations were not reinforced by actual measurements. Contrary to the 

above early predictions ENDS (1992) indicated that 10 rivers in the UK Seven Trent 

region had problems with discoloration of water and at least another four rivers nationally 

had similar problems. These problems were attributed to the increasing popularity of the 

use of reactive dyes, which were poorly degraded in conventional sewage treatment works. 

The same and additional articles (Cooper, 1993) highlighted the difficulties faced by 

textile processors, who were unable to treat their effluent on-site because treatment would 

not only be prohibitively expensive, but many processing works were in city centres where 

space for such plant was not available. 

ENDS (1993), suggested little improvement from the previous year. A survey by the 

National Rivers Authority (NRA, now The Environment Agency, EA) found that 470 krn 

of UK rivers had been affected by dye discoloration, producing over 500 public 

complaints. Once again the blame was attributed mainly to increasing popularity of 

reactive dyes. 
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These articles (ENDS, 1992,1993) demonstrate that the discharge of reactive dyes to river 

waters at concentrations capable of causing significant discoloration is a regular 

occurrence. 

One problem is the large quantities of dye in the waste effluent from textile processing 

plants, despite attempts of dyers to minimise dye wastage for economic reasons through 

the careful and sophisticated control of the dying process. Reactive dye processes which 

require an excess of dye (high dye ratio), generally result in about 50% of dye not being 

fixed to the textile. Much of this is, therefore, lost as waste material (Hobbs, 1988). The 

waste, which is a mixture of reactive dye and hydrolysed dye, is spent and cannot be 

recycled. Reactive dyes provide the least effective fixation (50 - 80%), compared to 

sulphur (60 - 70%), disperse, vat and direct dyes (all 80 - 90+). 

Furthermore, conventional STW show poor removal of reactive dyes and some acid dyes. 

Holme and Thornton, (1994), outlined example calculations to demonstrate how low 

concentrations of some reactive dyes in river water were predictable. The authors 

indicated that the problem associated with this decolouration of rivers was one of 

aesthetics rather than potential health hazards, but neither commented on the possible fate 

of reactive dyes and the impact that degradation products may have on the environment. 

The problem of effluent treatment has become an important consideration in discoloration 

of rivers (Cooper, 1993). Dyes are complex organic molecules which are designed to have 

a high degree of stability and fastness. It is not surprising, therefore, that they tend to show 

little sign of degradation in the relatively short retention times of many biological 

wastewater treatment systems. The effectiveness of different conventional treatment 

systems has been investigated (Clarke 1980; Cooper 1993) and a summary is shown in 

Table 1.2. Primary settlement adequately removes insoluble vat, disperse and sulphur dyes 

15 



and activated sludge treatment can remove soluble basic and direct dyes, mainly by 

adsorption rather than biodegradation (Hitz, 1978). However, under the same regime only 

one of 17 reactive dyes was removed to any extent (ca 35%), the others being less than 

10% adsorbed. Adsorption of acid dyes also tended to be very variable. A further study 

(Holme and Thornton, 1994), suggested that removal of reactive dyes in conventional 

STWs was between 0 and 25% efficient, supporting the findings of Hitz (1978). 

Table 1.2 Summary of effectiveness of different treatment processes for colour 
removal of different dyestuffs (Clarke, 1980; Cooper, 1993). - no data, 0 poor, o good and 

+ particularly suitable 

Treatment 

Coagulation Activated Biological Ozone Sludge 
Dyestuff Carbon Adsorption 

Reactive 0+0 

Acid 

Basic 

Disperse 000 

Vat 0 

Sulphur 0 

Direct 

A review by Clarke (1980) estimated that overall, I- 2% of dye was lost to waste in a 

typical manufacturing process and a further 6- 10% in the processing operations. Based 

on estimated global annual production figures of ca 800,000 tonnes (Table 1.1), this could 

produce 96,000 tonnes of manufacturing and processing dyestuffs discharged into effluent 

streams per annum. A more recent assessment (Hobbs, 1988) broadly agreed with these 

estimates for discharges, but added that for certain dyes (ie reactive and acid dyes) the 

proportion of waste could be even higher. Approximately 6% of annual world dyestuffs 

production is reactive dyes (ca 48,000 tonnes). Considering that around 50% of reactive 
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dye is lost to waste in textile processing and only 10% of this is likely to be removed in 

treatment, this suggests a figure of 20,000 tonnes of reactive dyes alone could be released 

into the aquatic environment per year world wide. 

As discussed earlier, most azo dyes are relatively non-toxic. However, reduction of azo 

dyes produces aromatic amines which may be toxic, carcinogenic or teratogenic (Chung, 

1992; Brown and De Vito, 1993). Thus the release of azo dyes into the environment, in 

which they may be reduced, is a cause for concern. Likewise there is evidence to suggest 

that substituted diaminonaphthalenes produced from the degradation of some 

anthraquinone dyes, may have carcinogenic properties (Chung, 1992). These highlight the 

need for a better understanding of the environmental fate of both azo and antraquinone 

reactive dyes. 

A summary of newer, more effective treatment processes for dye removal is presented in 

Table 1.3 (Cooper, 1993). Although this suggests that dyes, including reactive dyes, can 

be readily degraded under appropriate conditions, the implementation of such systems is 

far from straightforward, (Howe, 1993; Byrom, 1995; Cooper, 1993). 

Table 1.3 Summary of recent improved treatment technologies for colour removal 
(Cooper, 1993) 

Method Colour Volume Speed Cost 
Removal Capability 

Activated Charcoal Very good Small Slow High 

Membrane Good Large Fast High 

Ozone treatments Good Large Medium Medium 

Coagulation Good Large Fast Medium / high 
flocculation 
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Activated carbon is very good at removing low concentrations of water soluble chemicals 

including dyes, but has a limited capacity and is best suited to dilute solutions. Also, the 

viability of such technology is based on the ability to regenerate the carbon through 

desorption of the trapped materials. This is very difficult for dyes, leading to increased 

costs in terms of disposal and replacement of the carbon. Activated carbon is therefore not 

viable for the large volumes involved in dye effluent treatment. 

Membrane filtration is an alternative procedure and can be divided into three main types: 

ultrafiltration is ineffective for dye removal because of the relatively large pore sizes 

which allow dyes to pass through; nanofiltration and reverse osmosis membranes are both 

effective for dye removal. Dye molecules are concentrated on one side of the membrane, 

while water can pass through. The main disadvantages are high initial set-up costs and the 

high cost of disposal of the concentrated 'used' dye collected in the process, which 

generally requires incineration. 

Ozone treatments in the presence of UV are very quick and effective for the degradation of 

dyes, but they are expensive to set-up and are also relatively small scale. This method may 

also produce degradation products which are more toxic than the original dyes. For 

example, some cases of ozone treatment may form diamino aromatic compounds from azo 

dyes, some of which have been shown to be carcinogenic (Brown and DeVito, 1993). 

Chemical treatment by coagulation and flocculation has been shown to be one of the most 

robust methods for removal of colour. Usually coagulating and flocculation agents such as 

lime, Fe(III) or AI(III) salts are added, followed by sedimentation or dissolved air flotation 

to aid the process. These produce a floc that can be removed by filtration, sedimentation 

or can simply be scraped off. However this approach produces a large amount of sludge 

waste and is not effective for all dye types. 
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In conclusion, it is clear that reactive dyes in particular, and acid dyes to a lesser extent, 

can enter UK river waters at concentrations significantly greater than I mg 1-1. Few of the 

textile dye houses have the ability to effectively treat waste prior to discharge into rivers or 

sewers. Reactive dyes are not removed in conventional STW and are possibly of most 

concern in terms of environmental pollution. New technologies exist to remove colour, but 

they are either too expensive or may produce effluents which, although less coloured, are 

more toxic than the original dye waste. 

Little is known about the fate of reactive dyes once they enter the aquatic environment. 

One reason for this lack of information is the paucity of analytical methods suitable for the 

determination of dyes in aqueous samples. 

1.3 ANALYTICAL METHODS FOR THE DETERMINATION OF DYES IN 

AQUEOUS SAMPLES 

Many intact dyes can be easily measured by spectrophotometry because they contain strong 

chromophores. However, process and environmental decomposition of dyes may lead to 

formation of complex mixtures of products, not all of them containing a chromophore. 

Chromatographic separations and sensitive spectroscopic techniques are desirable, especially 

for samples derived from complex environmental matrices such as waste effluent. 

GC-MS, although applicable to the analysis of semi-volatile dye compounds and their 

intermediates such as disperse dyes, (Maguire, 1991,1992), is not suited to the analysis of 

polar, involatile or thermally labile dyes. Several approaches have been adopted for the 

chromatographic separation of mixtures of sulphonated materials including dyes. 'Me most 

efficient have involved use of high performance liquid chromatography (HPLC or LQ. A 

combination of LC and mass spectrometry (MS) is needed to separate and detect or 
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identify dye related materials. From an historical viewpoint, several approaches were 

taken to overcome the incompatibility of a typical reverse phase LC mobile phase at a flow 

of I ml min-' and the high vacuum (typically 10-5 _ 10-6 Torr) of a mass spectrometer. Two 

of the first commercial approaches to overcome this incompatibility problem were the 

direct liquid introduction (DLI) and moving belt interfaces. Both have been widely 

reported (including Vestel, 1986; Cairns and Siegmund, 1990) and are not discussed in 

detail here. For DLI the liquid eluent was directed along a central probe into the mass 

spectrometer source. A3- 10 gm pinhole was placed in a diaphragm at the end of the 

probe, such that a small amount of eluent, typically 5- 15 gl, was sprayed into the MS 

source. In the case of the moving belt interface, LC eluent was spray deposited onto a 

slowly moving polyimide belt. Analyte containing solvent was removed in two stages: 

first by evaporation under an infra red heater, followed by removal of residual solvent in a 

two stage vacuum lock. The deposited analytes were removed from the belt by flash 

vapourisation within the MS ion source. Neither technique was particularly robust. DLI 

had a tendency to block and was not particularly sensitive. The moving belt suffered from 

non-uniform deposition of mobile phase on the belt, particularly for highly aqueous mobile 

phases, leading to poor reproducibility. An inability to vapourise highly polar materials 

from the belt and the memory effects of analytes not wholly removed from the belt on the 

first pass were also commonplace. Although both DLI and moving belt provided workable 

interfaces for certain LC-MS applications, neither interface was particularly suited to non- 

volatile and thermally labile compounds and they are not now widely used. 

Two further LC-MS interfaces have been used for the analysis of dyes. Particle beam was 

used to obtain electron impact (EI) type mass spectra for a range of low molecular weight pure 

non-polar disperse and solvent dyes (Yinon, 1989). A requirement of this technique is 

volatilisation of analytes in the interface prior to entry into the mass spectrometer source and 

so is not applicable to reactive dyes. Monaghan, (1982,1983) described MSMS spectra of a 
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range of highly polar sulphonated and phosphonated azo dyes using fast atom bombardment- 

MS (FAB-MS). 

However the first LC-MS interface to experience widespread usage and application for the 

analysis of dyes was so called thermospray MS. 

1.3.1 Thermospray - Mass Spectrometry 

The first robust and widely accepted LC-MS interface capable of accepting nonnal eluent 

flow rates (I ml min-) and the highly aqueous mobile phases associated with reverse phase 

separations, was thermospray-MS (TSP-MS) (Blackley and Vestel 1983; Garteiz and Vestel 

1985; Vestel 1986; Betowski, 1996). 

In this technique, LC eluent passes through a heated capillary tube into the mass 

spectrometer source. A combination of flow rate through, and direct heating of, the 

capillary produces a supersonic jet of fine droplets at or near the capillary tip. Evaporation 

of solvent molecules associated with the droplets continues until the electrostatic charge on the 

evaporating droplet becomes large enough to expel ions associated with a few solvent 

molecules. Finally, these clusters equilibrate with the vapour in the ion source to give 

molecular ions or adduct ions which may be sampled and analysed by a mass spectrometer. 

Primary ions observed in this process are the same as those present in solution. NW, 

CH3CO2- and clusters of these ions with neutral species such as ammonia, acetic acid (from an 

ammonium acetate buffer) water and methanol (from the mobile phase), are observed after 

vaporisation, suggesting ion evaporation may be applicable to any analyte that is present as an 

ion in solution. These ions are produced without any other external means of ionisation and 

the process is, therefore, called thennospray or ion evaporation ionisation. 
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The second mode of ionisation in thermospray LC-MS is termed buffer ionisation and is 

effectively a gas phase chemical ionisation process where the mobile phase acts as the reagent 

gas. During vaporisation nearly all of a buffer, such as ammonium acetate, is converted to 

ammonia and acetic acid in the gas phase. The following gas phase equilibria are obtained in 

the ion source: 

NH4'. H20 + NH3 'w- NH4. NH3 + H20 

+ -ja. + NH4 (2 2+ Pir- NH4 H20. NH3 + H20 

Vaporised analyte molecules can then interact with the ammonium ions in a gas phase 

chemical ionisation process, where, depending on the proton affinity of the analyte compared 

to ammonia, either [B. H]' or [B. NH4]' ions may be formed, where B is a Lewis base. 

Similarly in negative ionisation mode, the gas phase ionisation process can yield X or 

HA. CH3C02- ions. Mechanisms for ion formation in thermospray have been widely studied 

(Vestel, 1983; Alexander and Kebarle, 1986; Voyksner, 1987). 

The use of then-nospray for the analysis of dyestuffs has been reported (Yinon et al., 1989, 

1990; McLean et al., 1989; Straub et al., 1992). The optimisation and application of 

thermospray is discussed in more detail in Chapter 2. 

Promising though thermospray ionisation MS has been, the advent of modem day electrospray 

ionisation has seen an increasing use of this method. 
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13.2 Electrospray - MS 

A schematic diagram of an electrospray ionisation (ESI) interface is shown in Figure I. I. 

HPLC eluent is introduced through a sample tube consisting of a short length (20 cm) of 

0.1 mm id deactivated fused silica within a stainless steel syringe needle. A sheath gas 

(nitrogen) is passed through the needle which acts as a nebuliser to aid solvent removal. The 

capillary and needle are held within the ESI probe which has an applied voltage, typically 

3-5M Nitrogen auxiliary gas helps to focus the aerosol into the heated capillary region of 

the source and also sweeps the chamber of solvent. 

The ESI process transfers ions present in solution into the gas phase making it particularly 

suitable for the analysis of highly polar compounds including reactive dyes. The ionisation 

process can be described in terms of a series of events (Dole, 1968; Irbame and Thompson, 

1976,1979; Fenn, 1990; Kebarle and Tang, 1993; Kebarle, 1999; Voyksner, 1994). 

First, as the solvent and solute exit the tip of the electrospray needle, the sheath gas and high 

voltage gradient (between the electrospray needle and heated capillary), produce a fine mist of 

charged droplets. The electrical charge density at the surface of the droplets increases as the 

droplets become smaller through solvent evaporation, until a critical point, the Rayleigh 
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Figure 1.1 Schcmatic rcpresentation of an electrospray ionisation (ESI) mass 

spectrometer interface (APCI systems Operators manual, 1993) 
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stability limit, is reached, at which it divides into smaller droplets due to electrostatic 

repulsion. This process is repeated until droplets become very small and highly charged, 

when they can expel ions. As the droplets disperse, the electric field and sheath gas drive 

them towards the heated capillary. Finally, the aerosol containing sample ions and ambient 

gas molecules passes through the heated capillary, where the droplets are desolvated. The 

ions that remain pass into the mass spectrometer, are focused by an octapole lens and pass into 

the mass analyser. Ions formed under ESI may be singly or multiply charged depending on 

the nature of the analyte of interest. 

The use of electrospray for the analysis of dyestuffs has been reported (Lin et al., 1993; Rafols 

and Barcelo, 1997; Straub et al., 1992). The optimisation and application of electrospray-MS 

is discussed in more detail in Chapter 2. 

133 LCMS-MS 

Ibermospray (TSP) and Electrospray (ESI) LC-MS interfaces were both used for the analysis 

of reactive dyes and their degradation products in this study. Further details of optimisation of 

operating parameters are presented in Chapter 2. Both TSP and ESI are soft ionisation 

techniques (Barcelo and Garcia, 1993), which for reactive dyes tend to provide only 

molecular weight information. However structural information can be obtained through the 

use of MSMS experiments. 

Several modes of MSMS operation are possible with a triple stage quadrupole mass 

spectrometer such as that used in this study. These are best described by reference to 

Figure 1.2: 
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Figure 1.2 Schematic view of tnple quadrupole mass spectmmetei, 

QI and Q3 are mass analyscrs. These can be Lised to elther transmit a sinple mass or can be L- 

scanned to transmit ions over a mass range. Q2 is the collision cell where an mert oas (usually I Z71 

ar-on or nitrogen) may be introduced to create a region of' relatively high pressure. lons 

transmitted fi-om Ql collide with the gas in Q2 and fi-apment in it process known its collision 

induced dissociation. 

In a typical MSMS experiment conducted herein, a single mass (the parent lon, usually tile 

molecular ion) was selected using Ql, fragmented in Q2 and Q3 was Lised to obtaill a 

daughter ion' mass spectruni derived from the selected parent Wn. This daughter 1011 L- - 

spectrum may then be used to obtain structural information when little or no fragmentation is I- 

obtained in the nornial LC-MS scanning mode. 

Other modes ol'MSMS not applied in the present study include so-called parent ion scans, in 

which QI is scanned over a chosen mass range and each ion is fragmented in Q2. Q3 is set to Z- 

monitor a selected fragment ]on. This mode is useful for detecting related compounds that 4- 

dissociate to a common fragment ion. For instance if nilz 90 (SOO was observed for a series 

of sulphonated compounds, and nilz 80 was selected using Q3, then only those molecular ions 

scanned using QI which fragmented to give an ion mlz 80, would be observed. This niode can 2- 

sometimes be used to observe related metabolites in cle-radation studies. I- 
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In so-called neutral loss MSMS mode, QI and Q3 are both scanned 'out of phase, such that 

onlY parent ions that lose a certain group by fragmentation in Q2 are observed. For instance if 

QI and Q3 are set to scan 80 mass units 'out of phase', then only molecular ions scanned 

through Q1 which fragmented by loss Of S03 (80), would pass through Q3 and be observed. 

This mode is often used in metabolite studies to screen for related compounds that have a 

common functional group such as -S03, -CO or -C02H. 

1.4 THE PRESENT STUDY 

Chapter I presented an overview of the present knowledge regarding the fate of fibre 

reactive dyes in the environment. Many of the highly polar reactive dyes present in trade 

effluent from dyestuff producers and users are not removed to any great extent by typical 

sewage treatment systems and therefore have a pathway into the aquatic environment. The 

potential modes of transformation and removal of reactive dyes in treatment and in the 

environment are principally through anaerobic and aerobic biodegradation and adsorption 

onto suspended solids. Additionally, photodegradation may also play a part in governing 

environmental fate. 

One reason for this lack of information on the environmental fate of reactive dyes is the 

paucity of robust analytical methods suitable for the determination of dyes in aqueous 

samples. Robust analytical methods are required to characterise and identify reactive dyes 

and their degradation products in order to predict their transport and transfonnation in aqueous 

environmental samples. Chapter 2, describes the development of an LC method suitable for 

the separation of reactive dyes possessing up to four sulphonic acid groups. The subsequent 

use of this method with MS and the optimisation, of LC-MS and MSMS conditions necessary 

for the characterisation of azo and anthraquinone reactive dyes are discussed. 
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Fibre reactive dyes are designed to have a degree of stability to degradation in daylight and 

for this reason they have not been widely investigated. However, little is known of their 

stability to daylight over prolonged periods of irradiation in dilute aqueous solutions and in 

the presence of humic substances. In Chapter 3, details of laboratory photodegradation 

studies of azo and anthraquinone reactive dyes, together with the LC-MS(MS) 

identification of degradation products, are discussed. 

The reduction of azo dyes under anaerobic treatment has been extensively studied, but 

most studies have made use of relatively simple model compounds rather than real dyes. 

Additionally, the subsequent fate of the initial reduction products in the presence of air is 

not understood. Studies of the effects of autoxidation on the reduction products of both 

simple and more complex azo reactive dyes are discussed in Chapter 4, together with the 

LC-MS analysis of samples taken from anaerobic-aerobic treatment Systems. 

Reactive dyes are generally regarded as being resistant to oxidative attack by most bacteria 

under aerobic conditions. However, some cleavage of the azo bond of simple azo dyes has 

been reported under aerobic conditions and this required further investigation. Also, there 

are few published data regarding aerobic degradation pathways for reactive anthraquinone 

dyes. In Chapter 5, studies of single culture and mixed consortia aerobic biodegradation 

of azo and anthraquinone reactive dyes are discussed. 
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1.5 AIMS OF PRESENT STUDY 

Specifically the aims of the present study were, therefore: 

* To develop and optimise analytical conditions for the isolation, separation and 

identification of reactive dyes and their degradation products. 

9 To determine the potential for azo and anthraquinone dyes to photodegrade and to 

detennine the effects of hurnic substances on these processes. 

To study the effects of autoxidation on the reduction products of simple azo reactive 

dyes and to use these as a predictive tool for the identification of autoxidation products 

of more complex dyes. 

* To examine the role of aerobic degradation on the fate of reactive dyes. 

1.6 REACTIVE DYES USED IN DEGRADATION EXPERIMENTS IN THE 

PRESENT STUDY 

The dyes used in degradation studies are listed below and additionally as a pull-out section 

in Appendix 1. 
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CHAPTER 2 

ANALYTICAL METHOD DEVELOPMENT 

2.1 LC OPTIMISATION 

2.1.1 Introduction 

Several different approaches have been adopted for the LC separation of dyestuffs. Berzas- 

Nevado (1997) used an ion pair separation with tetrabutyl ammonium as the counter ion in a 

methanol / tetrabutylammonium phosphate mobile phase to study the chromatography of six 

acid dyes. Reverse phase LC systems have also been reported which used either sulphuric 

acid to adjust the pH of the mobile phase to 2.5 for the separation of acid dyes, (Speers, 1994) 

or included phosphate buffers (Truslove, 1992). Another method used a Manion exchange 

mixed mode column for the separation of a range of acid dyes (Weatherall, 1991), but once 

again phosphate buffer was used. None of these approaches are compatible with LC-MS 

interfaces such as those used in this study because inorganic buffers such as phosphates 

deposit in both thennospray and electrospray interfaces on desolvation, causing blockages and 

system failure. Also, reactive dyes can be detected best in negative ionisation mode wbereas 

protonation of the sulphonic acid groups in the dyes at low pH require monitoring in positive 

ion mode with a reduction in sensitivity. The method developed in this study was therefore 

based on a reverse phase separation using tetrabutyl ammonium hydroxide as an ion pairing 

reagent (Truslove 1990), but used ammonium acetate in the mobile phase as buffer. 

Eight reactive dyes were chosen for the initial evaluation of LC separation. The structures of 

the dyes are shown in Figure 2.1. Each dye was assigned a unique codename which is used as 

reference in the subsequent text: 

32 



0 NH2 
S03H 

H 

NH 
S03H 

H3 

HO, S 

W428 Reactive Blue 4 or Blue MX-R 

N=N-u N= 

ý \N 

H03S 

W429 

H03 

cl 
N 

NH-ý 
NN ==\/NH2 

Reactive Red-Brown HEXL 

=N-R N= 

H03S I 

cl 
N--; ý 

NH-ý 
NN ==\NH2 

W430 Reactive Brown 7 or Brown H3R 

Figure 2.1. Structures for reactive dyes used in LC optimisation 
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Figure 2.1 contd. Structures for reactive dyes used in LC optimisation 

The LC separation developed was based on details supplied by the dyestuffs manufacturers, 

Zeneca Specialties. 
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2.1.2 Experimental 

A 25 cm x 4.6 mm id, S50DS2 (Hichrom) LC column was used, with the mobile phase 

supplied by a Jasco 980 (or Waters 600e-ms) gradient elution pump. Elution was obtained 

using a linear gradient from 100% 0.01M ammonium acetate (10 min), to 50150 ammonium 

acetatelacetonitrile (@ 30 minutes). Components were detected using a Jasco 875UV detector 

at 254 nm. Data were collected using an Xchrom data system (VG Ltd). Samples (50 gl) 

were injected either manually or via a Jasco 85 1 AS autosampler. 

2.13 Results of HPLC optimisation 

Suggested conditions for HPLC separation of dyes resulting from much previous research 

(summarised by Truelove, 1990) used reverse phase LC with ion pairing reagents. An ion pair 

is required to reduce the solubilising effect of the sulphonic acid groups in the eluent, without 

which the dyes are unretained. However, since the sensitivity of negative ion thermospray 

LC-MS is impaired by the presence of buffer (Flory et al., 1987; Covey et al., 1988), buffer 

concentration has to be limited. Thus, LC conditions were re-optimised herein to give base 

line separation of the selected dyes at low (0.01M) buffer concentrations (Figure 2.2). The 

dyes were separated on the basis of decreasing polarity, ie those with four sulphonic acid 

groups (W430) eluted first, followed by those with three. The two dyes with two sulphonic 

acid groups (W435, and W428) were also resolved using this system. Analysis of four 

formulated dyes under these optimised conditions (Figure 2.2) suggested that several were 

impure (W433,54% pure; W435,56% pure). 
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2.2 PURIFICATION OF DYES BY SEMI-PREPARATIVE HPLC 

2.2.1 Experimental 

Semi-preparative LC separation was achieved on a 25 cm x 10 mm id ODS5 column, using a 

gradient of 0.01M ammonium acetate (100%) for 5 minutes, to 0.01M ammonium 

acetate/acetonitrile (50150) at 40 minutes, operated at 1.5 ml min-' and using aI ml injection 

loop. UV detection at 400 run (yellow dye W433) or 630nm (blue dyes W428 and W435) was 

used. Fractions were collected on a Gilson model 912 fraction collector. The fractionation 

process was repeated several times. Fractions containing the pure dye were combined and the 

aqueous mobile phase removed by freeze drying. 

Each purified dye was re-analysed by LC with Photo Diode Array (PDA) detection over the 

wavelength range 200 to 700 nm, with a Hewlett Packard 1050 system using conditions given 

in Section 2.1.2 and subsequently by LC-MS (conditions are described in Sections 2.3 and 

2.6). 

2.2.2 Results for purification of selected dyes 

Given the impurity of the formulated dyes, the dyes were purified by preparative LC. This 

produced dyestuffs (ca 150 mg of each dye) of >90% purity (Table 2.1). UV spectra of each 

purified dye are shown in Figure 2.3. As would be expected, the two blue dyes (W435 and 

W428) each show an absorption maximum in the 600 mn region (Xmax 590 and 630 nm) 

whereas W433 (yellow) shows a maximum in the 400 - 500 nm region (Xmax 410 nm), under 

the chromatographic conditions used. 
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Figure 2.2 LC-UV (254 run) separation of four reactive dyes using a gradient elution of 

100% 0.01 M anunonium acetate (10 min) to 50 / 50 with acetonitrile (30 min) 
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Table 2.1 Purity of W428, W433 and W435 after preparative LC 

W428 

Peak No. tR 

(minutes) 

Peak Area % 

3 21.68 0.0054 5.1 

4 22.01 0.0002 0.2 

5 22.17 0.0006 0.6 

6 23.5 0.0003 0.3 

7 24.86 0.001 0.9 

8 25.53 0.0022 2.1 

9 25.88 0.0957 90.8 

W433 

Peak No. tR 

(minutes) 

Peak Area % 

1 

-I 

21.88 
I 

0.0786 

-I 

100 ýýl 

W435 

Peak No. tR 

(minutes) 

Peak Area % 

1 21.72 0.0004 0.4 

2 23.56 0.0047 4.3 

3 24.31 0.0005 0.5 

4 25.52 0.1031 94.6 

39 



W433 

............ ......................... ................................................... ....... 

. ... ........... ...... ...... ................. ....... .......................... . ............ 

......................................................................................... ................ 

Sig 

. .......... 

. .......... ...................... ........................ ......................................................... . 

. ............... .......................................... ................ ................. .......... . 

. ........... ........................................................................... .............. ............. 
4; G 5; Q 

Figure 2.3 UV-Visible spectra (250-750 nm) for reactive dye W428, reactive Blue MX-R 

(Top), W433, reactive Yellow P5G (Middle) and W435, Reactive Blue HGR (Bottom). 
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2.3. I'll ERMOSPRA Y LCMS 

2.3.1 Introduction 

At tile onset ofthese studies. only tile rt-nospray (TSP) was available its an interface for LC-MS 

analysis. TSP is both an interface for introduction of' liquid samples into the niass 

spectrometer and an ionisallon technique, (niodes of ionisation \xere discussed in detail in 

Chapter 1.3). A schematic diagram showing the key elements to the interflicc and mass I 

spectrometer source is shown in Figure 2.4. 

Mass 2\11ýil\Nci- 
11 

TSPTcni cratmecontrol 
Filament-- 

LC 1-10)* J00'. 
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Figure 2.4. Schematic diap-am of thcrmospi-ay som-ce L- 

The flow from an LC pump passes through a heated stainless steel capillary known as the 

vaporiser, which has a laser drilled ruby at its tip. A combination of flow rate thi-OLI(YI1 the 

capillary and heating of the vaporlser, produces a supersonic Jet of fine droplets at or ilear 

the vaporiser tip. The droplets then undergo rapid desolvation as they enter the relatively 

low pressure of the source, a process which is encouraged by heat supplied from the source C- 

block. Ions are fornied which are focused into the sampling cone and source lenses by the 

repeller. The mobile phase and excess ionii are removed under vacuum to a liquid nitrogen 
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2.3. THERMOSPRAY LCMS 

2.3.1 Introduction 

At the onset of these studies, only then-nospray (TSP) was available as an interface for LC-MS 

analysis. TSP is both an interface for introduction of liquid samples into the mass 

spectrometer and an ionisation technique, (modes of ionisation were discussed in detail in 

Chapter 1.3). A schematic diagram showing the key elements to the interface and mass 

spectrometer source is shown in Figure 2.4. 

Mass Analyser 

TSP Tern eratUre controi 
Filament 

I-C Flo)sjo- 
++ To vacuum pump and trap . 0+ +- 

=010. 

Heated VaporKser 
Discharge electrode 

I Aerosol temperature sensor 
Repeller 

Figure 2.4. Schematic diagram of thermospray source 

The flow from an LC pump passes through a heated stainless steel capillary known as the 

vaporiser, which has a laser drilled ruby at its tip. A combination of flow rate through the 

capillary and heating of the vaporiser, produces a supersonic jet of fine droplets at or near 

the vaporiser tip. The droplets then undergo rapid desolvation as they enter the relatively 

low pressure of the source, a process which is encouraged by heat supplied from the source 

block. Ions are formed which are focused into the sampling cone and source lenses by the 

repeller. The mobile phase and excess ions are removed under vacuum to a liquid nitrogen 
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trap. The vaporiser temperature is measured by a sensor on the heated capillary and the 

temperature of the eluent passing through the source is monitored by a sensor placed 

within the path of the aerosol through the source. 

Additional to the variables described above, sensitivity can sometimes be increased 

through the use of a filament and/or discharge electrode. The former is an iridiurn 

filament, which ionises by means of an electron cloud. The discharge electrode is a small 

pin near the then-nospray jet which may impart a charge on the droplets passing through. 

Filament and discharge can be used together or separately and their usefulness is very 

much compound dependent. 

In summary, the vaporiser temperature, repeller voltage and LC flow rate are the most 

important parameters to be optimised in thermospray. Additionally, source block 

temperature, filament and discharge may also have an effect. 

2.3.2. Initial investigations of LC-MS using thermospray 

Initial work concentrated on tuning and optin-ýisation of the TSP variables: Vaporiser heater 

temperature, filament, discharge and repeller voltages. For this, a test material, Reactive Blue 

74 (W435), was added to the LC eluent via a 20 W sample loop on a rheodyne valve. 

Replicate injections were made for each change of parameter and the optimum conditions 

selected. 

LC eluent of 100% IIPLC grade water was used, the source was set to 2501C, filament off and 

discharge 1200 V. The vaporiser temperature (t,, ) was varied between 85 and 100'C. Once 

optimum t,, had been established, the repeller voltage was varied from -6 to -30 Volts in 2 
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Volt increments, to determine optimum setting. Using these optimised conditions, eight dyes 

were analysed by flow injection (20 W loop), equivalent to 20 gg of each dye injected. 

The LC eluent was then changed to 100% 0.01M ammonium acetate, the starting mobile 

phase composition for the optimised LC separation (Section 2.1). All other parameters were 

unchanged, but this time only those dyes giving a reasonably intense mass spectrum for the 

100% water mobile phase were used, (W428, W433, W434 and W435), equivalent to 20 gg 

injected. 

233. Initial investigation of thermospray using a needle repeller 

Several authors, (Yinon, 1989a, 1989b; McLean, 1990) suggested a repeller modification 

which enhanced sensitivity for thermospray LC-MS. A modified needle repeller was 

manufactured 'in-house' for comparison with the existing flat bed repeller. The mass 

spectrometer was operated in negative ion mode, scanned over the mass range 

200 - 900 daltons in I second, with a multiplier voltage of 1400 V and source temperature 

250'C. Vaporiser temperature was optimised for maximum sensitivity by flow injection of 

W435 using an LC eluent of 100% 0.01M ammonium acetate. The repeller voltage was 

optimised at m1z 731 and 365, (singly and doubly charged W435 respectively). 

Following optimisation, mixtures of dyes (100 mg 1-1) were analysed using the optimised LC 

conditions given in section 2.1.2 to obtain negative ion mass spectra. 
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23.4. Determination of limit of detection using thermospray LC-MS 

The thermospray vaporiser temperature was optimised for best sensitivity and stability by flow 

injection of purified W435, then fine tuned under the standard gradient elution program. This 

gave optimum vaporiser temperatures of 87'C (100% ammonium acetate) and 830C (50150 

ammonium acetate/acetonitrile). A small instrument control procedure was written to allow a 

linear decrease in temperature from 87 to 83'C over the course of the gradient elution. 

Calibration standards of purified W428, W430 and W435 were prepared by serial dilution of a 

mixed stock solution to give concentrations in the range 25 - 500 mg 1-1. This was equivalent 

to the nominal concentration range I- 25 [tg on column for a 50 gl injection volume. The 

optimised LC conditions (Section 2.1) were used. The mass spectrometer was scanned over 

the mass range 200 - 900 daltons in I second, repeller voltage ramped from -15 V (nilz 200) to 

-30 V (nilz 900), multiplier 1400 V and source temperature 250'C. The full scan data was 

collected by the data system and selected mass chromatograms for the sum of major ions of 

each dye plotted against concentration, to produce calibration plots. 

2.3.5 Results for thermospray optimisation 

23.5.1 Initial investigations of LC-MS using thermospray 

The most critical feature for the successful and reproducible operation of TSP is the 

balancing of vaporiser temperature, source temperature and LC flow rate. These three are 

interactive. For a given LC flow rate, vaporiser and source block temperatures may be 

optimised to produce stable thermospray ions. Should the flow rate be increased, a higher 

source block and/or vaporiser temperatures are required. In practice the source block was 

maintained at constant temperature to avoid prolonged delays while the large mass of the 
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stainless steel block stabilised following a temperature change. The LC flow rate was 

determined by the optimised chromatographic conditions (Section 2.1) and to a lesser 

extent by the size of the liquid nitrogen solvent trap. The latter had a working volume of 

approximately 500 ml, which at LC flow rates of 1.5 ml min-I provided a useful operating 

time of only 5 hours (including system conditioning and cleaning at the start and end of 

operation). This increased to 8 hours at a flow rate of I ml min-. Following an initial 

evaluation of source block temperature and using a flow rate of I ml min-', it was then 

necessary to optimise only the vaporiser temperature. At temperatures below optimum, 

droplets formed within the vaporiser jet are too large and do not desolvate efficiently 

within the source, leading to a poor response. At temperatures above optimum, the 

droplets can desolvate within the capillary, leading to deposition of buffers and inorganic 

materials within the vaporiser which change its characteristics and ultimately cause 

blockages. Through continued operation it was observed that the point at which the 

vaporiser temperature becomes too high, tended to coincide with the most intense 

response, but was characterised by a highly unstable signal, peaks obtained at too high 

temperatures being characterised by 'jagged' peak shape on flow injection. Generally a 

temperature about 3- 5'C below this point was found to be most satisfactory. 

Ballard and Betowski (1987) demonstrated that a range of dyes could be analysed using a 

thermospray interface. They had chosen positive ionisation for the majority of their analyses 

because most of the chosen dyes did not contain sulphonic acid groups. The exception was 

the azo dye Acid Orange 6, a rather simple chemical containing one sulphonic acid group. 

This produced mass spectra in both positive and negative ionisation modes witli suggested 

limits of detection of 0.2 and 2-5 gg on-column for positive and negative ionisation 

respectively. Straub and Voyksner (1992) also used positive ionisation thennospray for the 

analysis of a range of solvent, disperse and acid dyes. However , only one of the selected 

dyes, Acid Orange 10, was sulphonated and this showed poor sensitivity (-35 gg on-column) 
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and a mass spectrum which indicated loss of the sulphonate which was probably due to 

then-nal decomposition in the interface. Based on these data and other recommendations 

(Powel, personal com), which suggested that more complex reactive dyes did not produce 

mass spectra in positive ionisation mode, negative ionisation mode was chosen for the initial 

evaluation herein, using a dye concentration of 20 gg per injection. 

Initial optinusation was achieved by flow injection of one of the least polar of the available 

dyes, (Reactive Blue 74, W435) into an LC eluent of 100% water. The mass spectrometer 

was operated in full scan mode and the reconstructed ion current (RIC) signal intensity plotted 

against vaporiser temperature (Figure 2.5). An operating temperature of 92'C was selected, 

YC below the maximum. 

4.5 

4 

3.5 

3 

2.5 

2 

1.5 

1 

0.5 

0 
85 90 92 95 97 100 

Vapouriser Temperature (C) 

Figure 2.5. Initial TSP vapouriser optimisation for 100% water @I ml min' 

Having selected the vapouriser temperature, it was necessary to optirmse the repeller voltage. 

The repeller is used to enhance the entry of ions into the sampling cone and subsequently 

the source lenses and mass analyser. When operated in negative ionisation mode, it had a 

negative charge. The repeller voltage was varied between -6 and -30 Volts and a dye 

concentration of 20 gg per injection was again used. The mass spectrometer was operated in 

full scan mode and the peak intensity of selected ion chromatograms for m1z 365 and 753 QM- 

2NaI2- and [M-Nal- respectively) plotted against repeller voltage, (Figure 2.6). 
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Figure 2.6 Optimisation of repeller voltage for the molecular ions of Reactive Blue 74 
(W435) 

The optimurn repeller voltage increases with increasing mass. For nilz 365 the optimum was Z- Z-- 

-12 V, whilst at mIz. 753 it was -16 V. Because these two were relatively close, an 

intermediate voltage of - 14 V was selected for the flow injection analysis of the reactive dyes. 

The TSP response for W435 with change in discharge voltage was monitored following FIA 

of 20 gg of dye per injection. An optimum voltage of 600 V was observed. The use of a 

filament was also evaluated. This did not improve the signal for W435, but appeared to 

decrease the background signal and improve the overall stability of the observed 

chromatograms. A discharge voltage of 600 V and filament current of 600 ýtA were used for 
r-I -- 

subsequent analysis. 

A mass spectrum of each of the selected dyes was obtained by FIA-MS into a 100% water LC 

eluent. Each dye produced a series of molecular ions representing many of the possible charge 

states. Dyes containing four sulphonic acid groups produced four molecular ion clusters, for 

example. Observed ions and their relative intensities are summansed in bold in Table 2.2. 

Since the dye solutions were prepared from fon-nulated material, which is known to contain a 
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high degree of salt (Encyclopaedia of Chemical Technology), molecular ions derived from 

protonated sulphonic acids were not observed, but these are included on Table 2.2 for 

reference. Note that W433 contains three chlorine atoms which, because of their isotope 

contributions, produce a doublet of major molecular ions at each charge state. The mass 

spectra of three dyes, indicating each degree of sulphonation, are shown in Figure 2.7. It was 

noticeable from these spectra and the tabulated data that the intensities of the observed 

molecular ions decreased with decreasing charge state, such that for a dye containing four 

sulphonic acids: [M-4Na]4- > [M-3Na]3- > [M-2Na]2- > [M-Na] -. Similarly, for those dyes 

containing three and two sulphonates. In most cases the singly charged molecular ion was 

responsible for less than 20% of the ion abundance of the base peak. 

Four dyes were analysed by flow injection into an BPLC eluent containing 0.0 1M ammonium 

acetate which was to be the starting composition of the eluent for the optimised separation. Of 

the four dyes analysed, (W435, W434, W433 and W428), only the first produced a serviceable 

mass spectrum. A full evaluation of this phenomenon was not undertaken, but a qualitative 

assessment was made by comparison of the reconstructed ion current (RIC) intensity for 

W435 obtained in either a pure water or 0.01M ammonium acetate eluent. Peak intensity in 

pure water was 350,000 counts compared to only 10,000 counts in the presence of ammonium 

acetate -a 35 fold difference in observed sensitivity. This effect was also reported by Florey 

(1987), who indicated that ammonium acetate concentrations greater than 0.01M were 

detrimental to sulphonated azo dye detection in TSP, due to neutralisation reactions occurring 

in the ion source. From this analysis it would appear that buffers have a detrimental effect on 

thermospray sensitivity at even lower concentrations than previously reported. The same 

authors also reported the formation of [M-2Na+H]-, the protonated form of sulphonate at 

higher ammonium acetate concentration, which was also observed for W435 (nilz 731) in this 

analysis. 
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23.5.2 Initial investigation of thermospray using a needle repeller 

From the foregoing discussion (Section 2.3.5.1) it can be shown that the initial thermospray 

analysis of formulated dyes gave poor sensitivity for flow injection analysis using water as 

eluent and extremely poor sensitivity in the presence of buffer. However, several authors had 

reported increased sensitivity for dyes following modification of the repeller in the TSP 

source. Yinon (1989), described a wire repeller which increased the detection lirrýt by two 

orders of magnitude compared to a source with no repeller, for the positive ionisation. of azo 

dye Disperse Blue 79. McLean and Freas (1989), described in detail how modifications to 

both the vaporiser tip orifice and incorporation of a needle repeller made a significant impact 

on TSP sensitivity for sulphonated dyes. In particular, optimum flow rates of 1.4 and 

0.8 ml min-' were described for 100 and 50 gm orifices respectively. ne commercial TSP 

capillary (Finnigan MAT), employed a pre-set ruby tip with an orifice diameter of 60 pm. By 

analogy with Mclean and Freas (1989) this would be compatible with an optimum flow rate 

between 0.9 to I ml min-, which was consistent with the LC system developed within this 

study (Section 2.1.2). 

A modified needle repeller was manufactured (BEL engineering) which comprised a brass rod 

honed to a point and insulated with two ceramic spacers which were held in place with 

hardened ceramic paste. The basic source modification is illustrated in Figure 2.8: 
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Figure 2.8 Modified TSP source 

The vaporiser temperature was again optimised by FIA of W435 (equivalent to 20 R, - 

injections), which indicated a working temperature of 95'C. Figure 2.9 shows a oraph, cal 

depiction to illustrate the variability exhibited by the TSP interface at higher temperatures and Z-- 

in so doing confin-ned the need to work below the maximum. 
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Figure 2.9 Optimisation of TSP vapouriser temperature @ 100% Aqueous eluent 

The next stage in the optimisation of TSP source conditions was to determine the effect of 

repeller voltage on sensitivity. FIA of W435 was again used. Interestingly the LC eluent of 

100% 0.01M ammonium acetate produced predominantly [M-2Na+H]- ion (mlz 731) in 
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preference to the previously observed [M-Na]- ion (mlz 753). The peak intensities of the 

singly and doubly charged molecular ions (mlz 731 and 365 respectively), at various repeller Z-- 

voltages are shown in Figure 2.10 L- 

60000 
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40000 
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30000 2ý m/z 731 

20000 

10000 

0 

-60 -50 -40 -30 -20 -10 0 

Repeller Voltage (V) 

Figure 2.10 Optimisation of repeller voltage for W435 

Unlike the previously described optimisation of the flat repeller (Figure 2.6), the needle 

repeller showed two quite separate maxima, equivalent to -30 to -40 and -15 V for nilz 731 

and 365 respectively. Thus it was impossible to use a single repeller voltage covering the 2n, 

whole mass range. Instead the repeller tune file was ramped to reflect the established maxima. 

The initial tuning using the modified TSP source showed a significant improvement in signal 

response when compared to the original configuration, to the extent that the system could be ZI -- 

used with the established LC separation for the analysis of selected dyes. 

54 



23.5.3 Determination of TSP calibration and limit of detection 

The thermospray interface was now capable of producing mass spectra of reactive dyes in the 

presence of ammonium acetate buffer. The next stage was to use the interface with the LC 

separation developed in this study (Section 2.1). This separation made use of a gradient 

change in mobile phase composition from 100% aqueous to 50150 with acetonitrile organic 

modifier, it was therefore necessary to optimise vaporiser temperature at both the initial and 

final conditions of the gradient. Also, the vaporiser used for earlier work had blocked and was 

exchanged, so the optimum conditions determined in previous analyses had to be confmned 

for the new one. A plot of observed peak intensity vs change in vaporiser temperature at two 

mobile phase compositions is shown in Figure 2.11 below. The first observation from this 

was the position of the maximum response for the 100% ammonium acetate mobile phase 

composition, (90'C), when compared to previous analysis (Figure 2.9; 100'Q. This change 

must have been a function of the new vaporiser because all other parameters were the same. 

The second observation was the response for a mobile phase containing 50% acetonitrile. The 

optimum temperature, (851C), was not unexpected, acetonitrile being more volatile than water. 

However, it was interesting to observe the associated increase in response with the presence of 

organic modifier. This was not pursued for TSP because of the acquisition of an electrospray 

interface (ESI; see Section 2.6). However, the change in signal response as a function of 

mobile phase composition was thought to be independent of interface type and was 

subsequently explored using the ESI interface. This is discussed later, (Section 2.6). 
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Figure 2.11. Optimisation of vapourisei- temperatui-e at mobile phase compositions of 100t, /(, 
0.0 1M ammonium acetate (*) and 50/50 with acetonitrile (0). 

A mixture of three dyes (W433,434 and 435) were used for the initial LC-MS analyses which 

was carried out using a vaporiser temperature of 87'C. However this resulted in a loss of 

signal for later eluting peaks, particularly W435, which was accompanied by an extremely 

noisy baseline, a characteristic of a high vaporiser temperature. Therefore a small mass 

spectrometer instrument control procedure was written to allow a linear change in vaporiser 

temperature (87 - 83'C), over the course of the gradient LC run: 

Calibration solutions of approximately 25 - 500 mg 1-1 W428, W433 and W435, were analysed 

using the optimum conditions described above. A typical chromatogram for a 25 mg I-' mixed 

solution, equivalent to 0.88,1.12 and 0.92 ltg on column of W428, W433 and W435 

respectively, is shown in Figure 2.12. The major molecular ions for each dye were summed Z-- 

and plotted as selected ion traces, which were then used to deterrnine the signal to noise ratio 

(S/N) for each dye. These were 7: 1,20: 1 and 15: 1 for W428, W433 and W435 respectively. 

A S/N ratio of 5: 1 is typically used to estimate limit of detection for analytical methods 

(Rafols et al., 1997), suggesting concentrations of approximately 0.6 gg (W428) and 0.3 gg 

(W433 and W435) on column, were achievable for these three dyes. Figure 2.13 shows a 
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typical mass spectrum for a 25 mg F' solution of W435. All molecular ions are clearly t:, 

discernible at this concentration. 

71 

yI 

xI 

Figure 2.12 Thermospray LC-MS chromatogram showing selected mass chromatograms for 

molecular ions of W428 (Top), W435 (Middle) and W433 (Bottom) for 0.88,0.92 and 1.12 gg 

on-column, respectively 
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Figure 2.13 Thennospray LGMS mass spectrum for 1.12 [L,,:, on-column of reactive dye 

W435 
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The thermospray analysis of Acid Orange 6, an azo dye with one sulphonic acid group, was 

reported by Ballard et al., (1986). Also, Yinon et al., (1989) demonstrated the analysis of a 

further four mono and di-sulphonated acid and direct dyes, and Rafols and Barcelo (1997), 

reported spectra for a further eleven acid and mordant dyes including one acid dye with three 

sulphonic acid groups. In all cases, full scan mass spectra could be obtained from I-5 gg of 

dye analysed by flow injection. These are comparable to the results obtained here and 

confirrns the needle repeller was functioning as predicted. 

The fin-dt of detection can be reduced by a factor of at least 10 - 20 through the use of selected 

ion recording (SIR). This was not pursued in this study where a qualitative tool was required. 

However, published quantitative data including McUan et al., (1989) 5- 20 ng on column 

and Yinon et al., (1989) 10 ng on column, demonstrated the potential sensitivity that could be 

achieved using thermospray LC-MS. 

The major ions for each dye were summed to produce selected mass chromatograrns and the 

resulting peaks integrated and areas plotted against concentration to produce a calibration 

graph for each dye, (Figures 2.14 - 2.16). 
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Figure 2.16. Thennospray LC-MS calibration graph for W435 

It was noticeable that all calibration graphs appeared to have a large positive intercept on the 

y axis, yet the blank (water only), showed no background interference or carry-over. 

Inspection of the calibration graphs shows they are non-linear and tend to curve towards the 

origin at low concentrations. Therefore, it may be possible under idealised conditions to 

detect these dyes at lower concentrations than originally predicted from the peak height signal 

to noise data discussed earlier. 

2.3.6 Summary of thermospray evaluation 

The modification to the repeller of the TSP source made a significant improvement to the 

signal response of this interface for the analysis of sulphonated dyes. The detection limits 

observed in full scan mode (200 - 400 ng on column), were compatible with proposed dyestuff 

environmental fate studies, particularly if a concentration step was used and the ammonium 

acetate buffer required to obtain a reasonable LC separation of sulphonated dyes did not 

compromise the mass spectrometric determination. Considering the complete lack of 

suitability of the 'conventional' TSP source, this was a major advancement in the qualitative 

analysis of sulphonated dyes. 
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2.4 STABILITY OF W428 

2.4.1 Experimental 

A solution of purified 428 in water (100 mg 1-1) was prepared, divided into three test tubes and 

stored; a) under laboratory lighting at ambient temperature (approximately 21'C), b) in light 

proof flasks at ambient temperature and c) refrigerated at 4'C in the dark. Samples were taken 

from each tube following storage for 0,30 and 48 h and analysed using the optimised HPLC 

conditions (Section 2.1). A sample taken from tube (a) post 48 h storage was subsequently 

analysed by LC-MS using conditions described in Section 6.1. 

2.4.2 Results for the stability of W428 

Given the rather low purity of even HPLC purified dye W428 (ie 90%; Table 2.1) an 

experiment was designed to investigate the stability of the purified dye under laboratory 

conditions. Some of the observed impurities had significantly different retention times to the 

purified dye itself, (Figure 2.17), suggesting they were not simply co-extracted during 

preparative LC, but instead were produced by decomposition of the dye at some stage after the 

isolation process. 

The peak area of W428 was determined for solutions stored in the light at ambient temperature 

(21*C), in a darkened container at ambient temperature and in the dark below 4C, over a 

30 hour period. A summary of this data, (Table 2.3), suggests that dye W428 does indeed 

degrade on storage and this degradation occurs under each of the storage conditions, although 

it occurs at a faster rate at ambient temperature in the light. 
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Table 2.3. Stability of W428 following storage in daylight, in the dark and in the dark under 

refrigerated conditions 

Time W428 
(hours) Fridge Dark Bench 

0 100% 100% 100% 
30 93% 93% 79% 
48 90% 85% 75% 

The bench stored material was subsequently analysed by thermospray LC-MS with in-line UV 

detection. If one considers the structure of W428 then degradation products formed on storage 

may be predicted based on simple hydrolysis of the chlorine(s) on the reactive group, and/or 

dimerisation. as outlined below: 
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Figure 2.17. LC-UV (254 nm) chromatograms for a sample of W428 purified by semi- 

preparative LC. 

64 



0 NH2 
S03 

0 HN S03 

RH 

NN 

Cr"lýN: ý; 
ýCi 

A 

Fast Hydrolysis 
R ý-r N "'Ir cl 

N N 

B 
Slower R 

--r 
N OH 

Hydrolysis 
NN 

Dimerisation Dimerisation 

A+AA+ 13 

jjrCý 
RN0NRR,, rN,, 

N zý, NN_NN 'Y N 
r 

cl 

TH 
OH 2 

cD 

Predicted molecular ions for these products are reported in Table 2.4. 

Table 2.4. Predicted molecular ions for W428 degradation products. 

Molecular ions Adduct ions 
Structure 

m M-H M-2H M-3H M-4H 2M-H 2M-2H 2M-3H 2M-4H 

W428 636 635 317 - - 1271 635 423 317 
A 618 617 308 - - 1235 617 411 308 
B 600 599 299 - - 1199 599 399 299 

Dimers 
C 1200 1199 599 399 299 - - - - 
D 1182 1181 590 393 294.5 

Five components were observed in the UV chromatogram of the degraded W428 sample, 

(Figure 2.18). Of these, three components produced a reasonably strong response in the 

reconstructed ion current chromatogram. The mass spectra derived from these peaks are 

shown in Figure 2.19. 
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Peak 11 showed molecular ions consistent with proposed product (D), the dihydroxy dimer. 

Peak III, shows ions which could be derived from either structure B or C, both of which 

can produce the same ions (Table 2.4). The intensity of the ion of m1z 399 is important. 

This ion can be derived from either an adduct ion [2M-3H]3- for structure B, or a molecular 

ion [M-3H]3- for structure C. Since adduct ions are usually weak and in this spectrum the 

m1z 399 ion is the second most abundant, this suggests peak III is most likely to be that of 

the chloro-, hydroxy-dimer, proposed structure C. 

The m1z 399 ion is very weak in the mass spectrum derived from Peak V, suggesting it is 

an adduct ion and therefore this mass spectrum corresponds to the dihydroxy monomer, 

structure 

Further experiments, including the accurate determination of molecular ion isotope 

contributions, would be required to confirm these observations. 

The instability of W428, the tendency for standard solutions to dimerise and possibly degrade 

under normal laboratory storage conditions, indicated dyes containing the dichloro triazine 

group were not suitable reference materials for controlled laboratory degradation studies. 

W428 was, therefore, not used in subsequent studies. 
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Figure 2.18. Comparison of LC-UV and LC-MS chromatograms for W428 following 
bench storage for 48 h 
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2.5 SOLID PHASE EXTRACTION OF REACTINTI)YE. S 

2.5.1 Experimental 

Cis extraction cartridges (Bond ElLite) were conditioned usin1g, methanol (5 ml) followed by 
tý 

0.01M ammonium acetate (5 ml). Standard solutlons of unpunfied (10 ink 5 nig, 1-1) or 

purifled (IW nil, 500 po I l-, 500 mi, 100 po 1 1) dye, were passed till-OL1011 tile C0111111ITS by 
L- 17, Z- 

POSItIVC PIVSSLII-Cý ýlt ýl 11OW rate of I-3 ml min 1. Dye mixtures were elUted with methanol 

(5 nil) and collected in Reacti-vials. Residual solvent was removed with a stream ofnitro-cii 

at 50'C. Residues were re-dissolved in water (I ml) before analysis by 1. (' as detailed in 

Section 2.1. Dye concentration in the extracts was determined by COMPIll-i-sOll to calibration 

standards in the concentration range 5,10,25 and 50 mo I C- 

2.5.2 Results for the solid phase extraction (SPE) ot'dyes 

As demonstrated previously in Section 2.4, therniospray 11CILlid chromatography mass 

spectrometry (LC-MS) was not a particularly sensitive technique for reactive (1yes, with 

LODs of approximately 300 ng on column. Therefore. a coiicenti, ýitioii, 'exti-iictioiI 4- 

procedure wits required before identification of minor degradation products produced in 

laboratory and field studies could be attempted. The extraction process chosen followed 

the same philosophy used for LC separation viz use of' ion pairing and aC IS reverse phase. 

A summary of the recoveries obtained by SPE of five reactive dyes in water are shown in 

Table 2.5. An excellent extraction efficiency (ý! 77(/( ), was observed for each dye at all 

sample volumes. The extraction process appears to be suitable for the concentration of 

dyes possessing up to four sulphonic acid groups, prior to LC and LC-MS analysis. L- L- 
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Table 2.5. Recovery diita of dyes fi-oni standard nuXtLII'CS C01IM1111110 Lip to fOL11' ZI 
reactive dyes giving ýi sample loading of 50 p- ofeach dye L- - C- 1: 1 

DYE 
x 10 Concentrat ion 

(10 nil, 5 nig F') 

x 100 Concentration 

(100 nil, 0.5 ni- 1 

x500 Concentration 

(500 nil, 0.1 nig, I 

(SOM groups) Recovery 
C/c, 

% SD 
(n=4) 

Recovery 
(17() 

SD 
(n=4) 

Recovery 
(C/c) 

SD 
(n=4) 

W428(2) - - 77 5 88 3 

W430(4) 95 7 86 9 

W433(3) 96 6 100 2 105 3 

W434(3) 90 8 

W435(2) 79 8 87 1 4 94 1 

It is interesting to compare these results to a dillere"t approach adopted by Rafols ( 1997), who L- 

used C IS Empore disks to extract a range of niono and di-sulphonated acid dyes spiked into 

drinking water at 600 ng 1 1. Rafols did not use loll Pýlil- I-eil"ClItS, but '11SICIld ! ld'IlStCd the IM 

to 1.25 or 3. Recoveries for three dyes ranged between 4 and 251, "(. Althouoh the 

concentration of dye used in this study was at least a factor of 200 higher than used in (lie 

Rafols study, the excellent recoveries suggest it to be I bc-ttel- ýIpproacli than pH adjustment zl-ýZ-' 

and more applicable to dyes with a higher degree ot'sulplionation. L- 

2.6 ELECTROSPRAY 1, C-MS INTERFACE EVALUATION 

2.6.1 Initial evaluation of electrospray (ESI) NIS 

Reactive Blue H4R, W435 (100 mg 1-1), was added by continuous infusion (5 ýtl min-1 ) to 

an LC eluent comprising of 60% aninioniurn acetate 401/( acetonitrile at a flow rate of 

0.7 nil min-'. The peak intensity of the singly and doubly charged molecular ions (mlz 731 

and 365) were monitored while nebuliser (sheath) and auxiliary gases were optinlised for 

maximurn signal response and stability using the guide-stability tuning package of the C- Z, 

TSQ700 data system. The effect of capillary temperature was then evaluated over the 
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range 260 - 320 *C using the optimised gas pressures and the same LC eluent composition. 

This exercise was repeated using a 100% aqueous LC eluent. 

2.6.2 Effects of mobile phase modifiers 

The effect of adding organic modifier to the LC mobile phase was evaluated using various 

water/acetonitrile eluent compositions to represent regular steps of the standard gradient 

system (Section 2.1). W435 (5 gl min-', 1000 mg 1-1), was added to the eluent by 

continuous infusion and the peak intensities of the singly and doubly charged molecular 

ions (mlz 731 and 365) recorded for eluent compositions of. 100,90,80,70,60,50,40 and 

30% aqueous phase. 

The effect of ammonium acetate buffer on mass spectrometer response was determined by 

continuous infusion of W435 (5 [d min-, 100 mg 1-1) in to an aqueous LC eluent 

containing 0,2,4,6,8,10 or 50 mM of ammonium acetate buffer. The peak intensities of 

the singly and doubly charged molecular ions (mlz 731 and 365 respectively), were 

monitored. 

This exercise was repeated with an LC eluent of 50150 aqueous phase/acetonitrile in the 

presence of 0.5,1,2,3,4 or 5 mM ammonium acetate, to determine the effect of buffer 

concentration at the final mobile phase composition of the standard gradient system 

(Section 2.1). The peak intensities of the singly and doubly charged molecular ions 

(m/z 731 and 365 respectively), were monitored. 

An evaluation of the combined effect of organic modifier and buffer was carried out using 

various ammonium acetate/acetonitrile eluent compositions to represent regular steps of 

the standard gradient system (Section 2.1). W435 (5 gl min-, 100 mg 1-1), was added to 
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the eluent by continuous infusion and the peak intensities of the singly and doubly charged 

molecular ions (mlz 731 and 365) recorded for eluent compositions ranging from 100% 

0.01M NH4Ac to 40% aqueous phase (equivalent to 0.004M NH4Ac). 

2.6.3 Calibration and limit of detection 

The mass spectrometer was scanned over a mass range of 200 - 900 daltons in 1 second using 

a capillary temperature of 300 'C, sheath gas: 60 psi and auxiliary gas: 10 psi. The multiplier 

was set to 1000 V and the dynode to -15 M Full scan data were collected by a Dec 5000 data 

system. 

Calibration standards of W433 and W435 were prepared by serial dilution of a mixed stock 

solution to give concentrations in the range I- 30 mg 1-1, equivalent to a nominal 

concentration range of 0.08 -2 gg on-column for a 40 gI injection volume. LC conditions as 

given in 2.1 were used. Major ions for each dye were summed to generate selected mass 

chromatograms. The resulting peaks were integrated and the areas plotted against 

concentration to produce calibration graphs for each dye. The signal to noise ratio for the 

lowest concentration standard was used to estimate the limit of detection. 

2.6.4 Results for the optimisation of electrospray LCMS 

2.6.4.1 Initial evaluation of electrospray (ESI) NIS 

A detailed description of ESI operation and ionisation process is given in the introduction. 

The optimisation. of the electrospray interface was somewhat simpler than for 

Thermospray. Where the latter had several key parameters to be defined such as vaporiser 
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and source temperature, flow rate, filament current, discharge and repeller voltages, ESI 

had only LC flow rate, capillary temperature and nebulizer and auxiliary gas pressures to 

consider. 

The accepted LC flow rate for ESI was reported to be 0.7 ml min" or below, (Harrison, 

personal com. ). The standard LC separation of dyes used for LC-UV and thermospray 

analysis (Section 2.1), was modified to use 0.7 ml min-I mobile phase, without any 

discernible loss of chromatographic integrity. 

The ESI interface was supplied with a syringe pump which enabled the continuous 

infusion of a tuning solution into the LC eluent via a tee piece. Optimisation was carried 

out by infusion of W435 into a mobile phase of 60% 0.01M ammonium acetate, 40% 

acetonitrile (ie the approximate mobile phase composition at elution of most of the selected 

dyes under the standard gradient conditions). The sheath and auxiliary gas pressures are 

dependent on the eluent flow rate only and were optimised at 65 and 10 psi respectively 

using a flow rate of 0.7 ml min-. Therefore the only remaining ESI parameter to be 

investigated was capillary temperature. For this, the mass spectrometer was set to monitor 

m1z 365 and 731, the doubly and singly charged molecular ions for W435 respectively, 

while the capillary temperature was varied between 260 and 320'C. Instrument tuning 

(particularly tube and capillary lenses), was checked following each change of capillary 

temperature. The peak intensities of the two molecular ions are shown in Figure 2.20. 
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Figure 2.20. ESI capillary temperature optimisation 

Interestingly, the capillary temperature appeared to have a greater effect on the doubly 
Z- -- 

charged molecular ion. Also, ion intensities for both nilz 365 and 731 did not var by more y 

than 10% for a 30 'C change in capillary temperature between 290 and 320 'C, which 

suggests that ESI interface temperatures are not as critical as those observed for TSP. The 

capillary temperature was then checked for a 100% aqueous mobile phase, which also gave 4- 

an optimum temperature of 300 'C. This temperature together with the optimised sheath 

and auxiliary gas pressures of 65 and 10 psi respectively, was used for all subsequent 

analysis. 

Calibration solutions of W433 and W435 in the concentration range I- 35 mg F', equivalent 

to a nominal concentration range of 0.04 - 1.4 ggg on-column for 40 lt] injection volumes, were 

analysed. The major ions for each dye were summed using selected mass chromatograms and 

the resulting peaks integrated and areas plotted against concentration to produce a calibration 

graphs for each dye, (Figures 2.21 and 2.22). 

74 



1.40E+07 T 
1.20E+07 t 

1. OOE+07 

8. OOE+06 

cc 6.00E+06 

4. OOE+06 

2. OOE+06 

O. OOE+00 
05 10 15 20 25 30 35 

Concentration (mg 1-1) 

Figure 2.21. ESI LCMS calibration of W433 
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Figure 2.22. ESI LCMS calibration of W435 

A comparison of ESI calibration with the previously described TSP data (Figures 2.14 and 

2.15), show the latter to have a large positive Y-axis intercept, which was not so apparent for 

electrospray calibration graphs. It should also be noted that the ESI calibration was over a 

significantly lower concentration range, (I - 30 mg 1-1 compared to 25 - 300 mg 1-1 for TSP). 

An estimation of limit of detection for W433 and W435 using ESI was again calculated using 

a signal to noise ratio of >5: 1. The S/N ratio for the lowest calibration standard (-60 ng on 

column), was greater than 20: 1 for W433 and 40: 1 for W435, suggesting an approximate LOD 

of 13 ng (W433) and 6 ng (W435) on column, in full scan mode. 
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Figure 2.23 shows a comparison of selected ion chromatograms (based on the summed area of 

all major ions for each dye, obtained using TSP (-25 mg 1-1) and ESI (-I mg 1-1) LC-MS 

respectively. These clearly illustrate the better sensitivity provided by ESI for reactive dyes. 
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A comparison of TSP and ESI sensitivity under full scan acquisition, is provided in Table 2.6. 

ESI clearly provides far greater sensitivity than TSP. This was of particular significance 

because ESI could be used for analysis of dyes and their degradation products at 

environmentally realistic concentrations (low mg 1-1), which was not possible for TSP without 

a concentration step prior to analysis. 

Thermospray is most suited to polar, ionisable compounds, whereas ESI is suited to 

compounds that are already ionised in solution. Sulphonic acids have extremely low pK,, 

and are generally ionised in solution and therefore favoured by ESI. 

Table 2.6. Comparison of TSP and ESI sensitivity for reactive dyes W433 and W435 

Thermospray Electrospray 

W433 W435 W433 W435 

Calibration range 28-590 23-480 1.3-35 1.1-32 
(mg 1_1 ) 

Lowest standard on-column 1.1 0.9 0.052 0.044 
(ug) 

Signal/Noise ratio 20: 1 15: 1 20: 1 40: 1 

Estimated limit of detection 300 300 13 6 
(ng on column) 

II I I I I 

These electrospray data compare favourably with those for a range of mono and di- 

sulphonated azo dyes which showed a limits of detection of 10 ng on-column (Straub 

et al., 1992) for full scan analysis, and I- 70 ng on-column (Rafols and Barcelo, 1997) 

using selected ion monitoring. 

78 



2.6.4.2 Effect of buffer and mobile phase on ESI signal response 

LC-MS requires a compromise between the conditions needed to provide an operable LC 

separation and those which enable reasonable mass spectrometer sensitivity. When 

ammonium acetate is used, the concentration has to be high enough to ensure ion pairing 

of the sulphonic acid groups of the dye. Failure to do this results in loss of 

chromatographic integrity. However, thermospray (TSP) analysis (Section 2.3), showed 

that mass spectrometer signal response is suppressed in the presence of buffer. It was, 

therefore, necessary to determine whether the buffer had the same effect on ESI signal 

response. Additionally, it was noted from the thermospray analysis that mobile phase 

composition, ie the % organic modifier in the eluent, had a significant effect on signal 

response. It was necessary to at least understand these phenomena, even though the 

gradient elution selected could not be significantly altered for dye analysis. 

Using the standard gradient separation the mobile phase composition varies with time as 

follows: 

Table 2.7 Mobile phase composition for analysis of W435 

Time 
(minutes) 

Aqueous 
M 

Acetonitrile 
M 

0 100 0 
10 100 0 
14 90 10 
18 80 20 
22 70 30 
26 60 40 
30 50 50 

The mass spectrometer response at regular steps of the gradient was determined by 

infusion of W435 (5 gI min-) in to the mobile phase composition as outlined in Table 2.7. 

The peak intensity of the singly and doubly charged molecular ions (m/z 731 and 365 
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respectively), were monitored and their response plotted against mobile phase I 

coniposition, (Fioure 2.24). 
Z- 

100 

90 

80 

70 

60 

50 

40 
IL 30 

20 

10 

0 
0 10 20 30 40 

Acetontrile (%) 

50 60 70 

s rrVz 365 

-m-- rrVz 731 

Figure 2.24 The effect of mobile phase composition on ESI signal response for W435 

A significant increase in the mass spectrometer response for both singly and doubly 

charged molecular ions was observed with increasing percentage of organic modifier. A 

maximum response was observed for a composition containing approximately 40% 

acetonitrile, after which an increasing acetonitrile component had little effect on the mass 

spectrometer response. There was a greater effect for the doubly charged molecular ion 

which showed a greater than 3 fold increase in signal response between initial conditions 

and 40% acetonitrile composition, when compared to the singly charged species which 

doubled in response over the sarne range. This has implications for the overall sensitivity 

of the method - the earlier a peak elutes the poorer will be its response. All of the dyes 

used in this study elute with retention times between 20 and 30 minutes, equivalent to the 

mobile phase containing 30 - 50% organic modifier. Based solely on this criterion, the 

more polar dyes containing 3 or 4 sulphonic acid groups will show a response at least 30% 

below that of later eluting dyes. This may explain why W433 showed a higher limit of 

detection than W435 for the ESI calibration discussed earlier (Section 2.6). 
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The effect of organic modifier was repeated using 0.0 1M ammonium acetate in place of tý L- 

pure water in the LC eluent, to establish whether the same effect was observed in the 

presence of buffer. A very similar profile for both molecular ions of W435 was observed 

indicating the effect of organic modifier to be independent of buffer. 

The effect of ammonium acetate buffer concentration on mass spectrometer response was 

determined by continuous infusion of W435 (5 pl min-1) in to an aqueous LC eluent 

containing 0,2,4,6,8,10 or 50 nlM of ammonium acetate buffer. The peak intensities of 

the singly and doubly charged molecular ions (ml, -, 731 and 365 respectively), were tý r_- 

monitored and their response plotted against buffer concentration, (Figure 2.25). 
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Figure 2.25. The effect of ammonium acetate buffer concentration on the response for 
singly (nilz 73 1) and doubly (nilz 365) charged molecular ions for reactive dye W435 

Clearly the addition of even small amounts of buffer greatly diminishes the mass 

spectrometer response. 

This exercise was repeated with an LC eluent of 50/50 aqueous phase/acetonitrile in the 

presence of 0.5,1,2,3,4 or 5 mM ammonium acetate, to explore the effect of buffer 

concentration at the final mobile phase composition of the standard gradient system. The Z, 
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responses for singly and doubly charged molecular ions as a function of ammonium acetate 

concentration are shown in Figure 2.26. 
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Figure 2.26 The effect of buffer concentration on ESI signal response for W435 

Once again there was a rapid decrease in mass spectrometer response for both singly and Z, -- 

doubly charged ions with increasing ammonium acetate concentration. However, it was 

noticeable that following the initial dramatic drop-off in signal response, the decline in 

response became quite shallow. The presence of organic modifier appeared to moderate 

the effect of buffer. These findings are consistent with previous reports (Flory et al., 1987; 

Covey et al., 1988; Rafols and Barcelo, 1997), which indicated that I mM ammonium 

acetate was a suitable buffer concentration for a mobile phase composition of 50/50 

aqueous/organic phase. 

The final part of the present evaluation was to determine the combined effect of organic 

modifier and buffer at the proportions used for the standard LC separation. Again W435 

was added to the LC eluent by infusion (5 gl min-'). On this occasion the mobile phase 

composition was changed in steps between 10017c (0.01M NH4Ac) and 40% (equivalent to 

0.004M NH4Ac), aqueous phase. 
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The response for singly and doubly charged molecular ions as a function of ammonium r_- -- 

acetate concentration is shown in Figure 2.27. 
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Figure 2.27 The effect of gradient clutlon on the ESI signal response for W435 
t- 2- 

This confirms the previous observations. A near linear increase in signal response for Z- 

W435 was observed with increase in the organic modifier of the mobile phase, (and with 

concurrent dilution of the buffer). The biggest effect was observed for the doubly charged C- L- 

ion, which showed a4 fold increase in sensitivity at 40% aqueous phase compared to the 

initial conditions. 

In summary, the combination of buffer concentration and % organic modifier in the mobile 

phase, has an impact on the mass spectrometer response. In general, degradation products r_l C- 

formed within this study are expected to be more polar than the parent dye they are derived 

from and therefore to elute earlier, so will be less responsive than parent dye under the 

standard LC-MS conditions. This needs to be considered when estimating the 

concentration of degradation products by reference to the parent dye response factor. 
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2.7 MSMS OPTIMISATION and INTERPRETATION 

2.7.1 Experimental 

W435 (100 mg 1-1), was added by continuous infusion (5 gI min-') to an LC eluent 

comprising of 50% water, 50% acetonitrile at a flow rate of 0.7 ml min-. The mass 

spectrometer was set to monitor the daughter ion spectra derived from nilz 731 and nilz 365 

the singly and doubly charged molecular ions respectively, over a mass range of 200 - 

900 daltons in 2 seconds, using a capillary temperature of 300'C, sheath gas 60 psi, auxiliary 

gas 10 psi and a spray voltage of 4.5 M 

The collision gas (argon), was maintained at I mTorr while the collision energy (COFF) was 

adjusted in 5 eV steps from 10 to 60 eV for nilz 731 and 10 - 40 eV for m1z 365. This process 

was repeated for collision gas pressures of 2,3 and 4 mTorr to achieve an optimum value. 

This optimisation was then repeated for m1z 402.5 the doubly charged molecular ion of W433 

(100 mg 1-1), using collision energies between 10 and 40 eV. W433 has three chlorine atoms 

which may be present as either 35CI or 37CI isotopes. The chlorine isotope ratio for the doubly 

deprotonated molecular ions m1z 401.5,402.5,403.5 and 404.5 is 27: 27: 9: 1 respectively. 

Additionally, W433 has three sulphur atoms which will modify this isotope ratio to 

27: 30: 12: 2. Therefore, m1z 401.5 and 402.5 are the most prominent ions in the W433 mass 

spectrum. 

Additionally, the daughter ion spectra of m1z 733 (the 37CI_isotope containing ion of the 

singly charged molecular ion of W435), and m1z 401.5 (the 35CI isotope of the doubly 

charged molecular ion of W433), were obtained using the same conditions but at 3 mTorr 

only. These spectra were obtained to aid the interpretation of MSMS data. 
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2.7.2 Results for collision offset optimisation 

2.7.2.1 Introduction 

The only MSMS experiments used in this study were in daughter ion mode. There were 

three stages to the analyses: 

I An ion, usually the molecular ion, formed in the source under electrospray 

conditions is selected using the first mass analyser (Q I). The single mass chosen is 

termed the parent ion. 

2 This ion enters an octapole rod assembly (Q2), which acts as a collision cell. Q2 is 

an RF-only device which can efficiently transmit (>90%) ions of a wide range of 

mass to charge ratio (mlz). Ions entering the collision cell can be fragmented by 

interaction with an inert collision gas present in the cell at a pressure which is 

elevated relative to the surrounding environment, typically I to 4 mToff. This 

process is termed collision activation because the parent ion gains energy from the 

collisions. When this leads to the fon-nation of fragment ions (daughter ions), the 

process is known as collision induced dissociation (CID) or sometimes collision 

activated dissociation (CAD). 

Fragment ions formed in the collision cell then enter the second mass analYser 

which is scanned to produce a daughter ion mass spectrum of ions derived 

from the selected parent mass. 
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The whole process can be represented by the equation: 

Mp+ N_4 Md+ + Mn 

where p and d are parent and daughter ions respectively, n represents a neutral loss and N 

is the inert (neutral) collision gas. The terms d and n suggest only one daughter ion or 

neutral loss take place, but these can in reality be the sum of several fragmentations. Also, 

the daughter ion itself may collide and dissociate to form further fragment iods which 

collectively produce a daughter ion mass spectrum. 

For dissociation (fragmentation) of the parent ion to take place following collisional 

activation, the parent ion has to overcome an activation barrier. The mechanism of 

dissociation involves the conversion of translational kinetic energy (TKE) of the parent 

ion, into internal energy, raising the ion to an excited state. The internal energy may be 

stabilised within the ion but if it is sufficiently high, fragmentation occurs. 

The efficiency of the fragmentation process depends on several factors: The more stable 

the ion, the less likely it is to fragment on collision. The more massive an ion the more 

likely it will be able to stabilise the vibrational energy imparted to it by the collision and, 

therefore, the less likely it will be to fragment. At very high collision gas pressures (ie 

above 4 mTorr), most ions will fragment due to the potential for multiple collisions. 

However, increasing collision gas pressure also increases the degree of scattering of ions 

and decreases the overall transmission of ions through Q2. The mass and molecular 

diameter of the collision gas also have an effect, the more massive the gas (or larger its 

diameter), the greater the probability of collision, therefore fragmentation increases. 

Argon is the most common choice of collision gas, but nitrogen and helium are also used. 
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One other variable which has a major impact on CID is the collision energy. This is the 

quadrapole offset voltage applied to Q2, which represents the potential difference between 

the ion source and Q2. An increase in the collision energy increases the TKE of the parent 

ion, thus increasing the energy of ion/molecule collisions in Q2, leading to increased 

fragmentation. 

In summary, a useful analogy would be driving a car into a brick wall in order to break it 

up. The faster the car is travelling (increasing the collision energy, increases the TICE of 

the ion), the more fragmentation will occur. Similarly, the thicker the wall (collision gas 

pressure) the more fragmentation. The type of collision gas used is usually not changed, 

therefore, optimisation of CID information is a balance between collision energy and 

collision gas pressure, to produce the optimum degree of fragmentation. 

2.7.2.2 MSMS optimisation 

Two reactive dyes were selected for the determination of the effect of collision gas 

pressure and collision energy on daughter ion fragmentation. The disulphonated 

anthraquinone dye W435, using the singly (mlz 731) and doubly charged (m/z 365) 

molecular ions and the tri-sulphonated azo dye W433, using the doubly charged molecular 

ion (m/z 402.5) only, because the singly charged ion was too weak to provide useful 

daughter ion spectra. In each case the molecular ion was selected using Q1 and 

fragmented in the collision cell Q2, at a fixed collision gas pressure, whilst the collision 

energy was increased in regular steps. This process was repeated at collision gas pressures 

of 1,2,3 or 4 mTorr for each of the sele7cted molecular ions. 

Figure 2.28 shows a comparison of the effect of increasing COFF on transmission of the 

singly charged parent ion of W435 (mlz 731), at each of the four collision gas pressures. 
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Increasing collision energy increased fragmentation resulting in a decrease in the intensity 

of the parent ion. The parent Ion was totally removed at collision energies above 35 eV for 

2,3 and 4 niTorr gas pressure. whilst sionificantly less fi-acynientation was observed at 

I mTorr pressure. 
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Figure 2.28. Effect of increasing collision energy on the parent ion in the daughter ion 
spectra of nilz 731 QM-HI-) for W435, at collision gas pressures of 1,2,3 and 4 rifforr 

Figure 2.29 shows a comparison of total fragment ion current (ie all ions derived from 

dissociationof M/7731, but not including the contribution made by this ion). A collision 

gas pressure of I mTorr produced significantly less fragmentation than the others. 

Pressures of 2 and 3 mTorr appeared to produce a quite similar response with maximum 

transmission of fragment ions occurring in the range 35 - 45 eV. A collision gas pressure 

of 4 mTorr showed a similar maximum at 35 eV, but also showed a rapid drop-off in 

response for collision energies above this maximum. 
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Figure 2.29. Effect of increasing collision energy on the surn of major fragment ions r-I t-I L- 
in the daughter ion spectra of mIz. 731 ([M-H]-) for W435, at collision gas pressures of 

1,2,3 and 4 niTorr 

Figure 2.30 shows profiles for the major fragment ions formed on dissociation of the W435 

parent ion nil, -. 731. At higher collision gas pressures the onset of fragmentation occurs 

earlier and lower collision energies are required to induce fragmentation. Using mlz 580 as L- Z-- -- 

an example, the maximum response is observed for a COFF of 45 - 50 eV at I mTorr ggas 

pressure, compared to 35 - 40,35 and 30 - 35 eV for 2,3 and 4 mTorr gas pressure 

respectively. This is generally consistent with the profiles obtained for the sum of 

fragment ions shown in Figure 2.29. The profiles observed for occurrence and 

disappearance of the major fragment ions were similar at each gas pressure, yet there was 

no one combination of collision energy and collision gas pressure that produced all of the 

major fragment ions. This is illustrated by the daughter ion m1z 652, which was almost 

completely removed before the appearance of ml, -, 500 and 475. This demonstrates the 

need to use a ranoe of COFF settina for MSMS experiment. A COFF of 30 - 45 eV L- Z- 

produced the most useful fragment ion spectrum from m1z 73 1. 

It was noticeable that little fragmentation occurred at I mTorr gas pressure, indicating that 

this was not a suitable collision gas pressure for MSMS studies. Also, as shown in 

Figure 2.28, the parent ion was present at collision energies up to 35 eV for each gas 
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pressure. The presence of the parent ion in the mass spectra although not absolutely 

necessary, is useful for explanation of fragmentation pathways. Therefore, considering tile 

lower ion transmission at 4 niTorr for collision enenjes above 30 eV and the relative lack 

of fragnientation at I mTorr, the optinium conditions for singly charged dyes was tý t! -- 

established as 2-3 niTorr collision -as pressure using a COFF of 30 - 45 eV. Z!, 1: 1 
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Figure 2.30. Effect of increasing collision energy on major fragment ions of nilz 731 
([M-H]-) for W435, at a collision gas pressure of 1,2,3 and 4 mTorr, 

Figures a-d respectively 
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Figure 2.30 (contd). Effect of increasing collision energy on major fraornent ions of mlz Z, Z, zr 
731 ([M-H]-) for W435, at a collision gas pressure of 1,2,3 and 4 niTorr, 

Figures a-d respectively 

The effect of increasing collision energy on the doubly charged molecular ion of W435, 

m/z 365, is shown in Figure 2.31. When compared to the singly charged parent ion Zý Z-- 

(Figure 2.28), complete dissociation of the parent ion was observed at a much lower 

collision energy, ie 20 - 25 eV for collision gas pressures of 2-4 rnTorr. Once again the 

parent ion was less susceptible to fragmentation at I rnTorr gas pressure. 

91 



3000000000 

2500000000 

2000000000 

1500000000 

1000000000 
CL 

500000000 

0 
05 

-a--- 2 

-1--- 3 

-*--- 
4 

Figure 2.31. Effect of increasing collision energy on the parent Ion in the daughter ion 
spectra of mll-, 365 Q M-2H I-' ) for W435, at collision gas pressures of 1,2,3 and 4 niTorr 

Figure 2.32 shows a comparison of total fragment ion current (ie all ions derived from 

dissociation of the parent but not including the contribution made by the parent ion). The 

total abundance of fragment ions increased with increasing collision gas pressure. There 

was little difference between the responses at 3 and 4 rnTorr gas pressures, which both 

provided significantly more abundant fragmentation than at I and 2 mTorr gas pressure. 

Also, the optimum collision energy was not only the sarne for each collision gas pressure, 

(20 eV), it was considerably lower than the optimum for the corresponding singly charged 

parent ion (ca 35 - 40 eV, Figure 2.28), suggesting that the doubly charged parent ion is 

less stable than the corresponding singly charged species and therefore more prone to 

dissociation. 
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Figure 2.32. Effect of increasing collision energy on the surn of major fraorrient ions t, 

in the daughter ion spectra of mIz, 365 QM-2H] for W435, at collision gas pressures r-I 
of 1.2.3 and 4 rnTorr 

The profiles for the formation of major fragment ions with increasing collision energy for 

each gas pressure are shown in Figure 2.33. With the notable exception of the I rnTorr 

optimisation, the other three produced very similar profiles. It was also noticeable that a 

much narrower range of collision energies (20 - 25 eV), was required to produce all of the 

major fragment ions derived from the doubly charged species. 
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Figure 2.33. Effect of increasing collision energy on major fragment ions of nilz 365 Z-- L- L- 
([M-2H ] 2- ) for W435, at collision gas pressures of 1,2,3 and 4 mTorr, a-d respectively 
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Figure 2.33 (contd). Effect of increasing collision energy on major fragment ions of /? I/, - 
365 QM-21-1 j2-) for W435, at collision gas pressures of 1,2,3 and 4 mTorr, a-d 

respectively 
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To determine whether these findings were consistent for other reactive dyes, the doubly 

charge molecular ion of W433 (Reactive yellow 2) was also subjected to similar profiling. 

The effect of increasing collision energy on the doubly charged molecular ion of W433, 

nilz 402.5, is shown in Figure 2.34. The profiles were much the sarne as observed for the 

doubly charged ion of W435 (ml, -. 365, Fig 2.3 1). Once again complete dissociation of the 

parent ion was observed at a 1111.1ch lower collision energy than for singly charged ions, 

(20 eV) for collision gas pressures of 2-4 rnTorr and again the parent Ion was less 

susceptible to fragmentation at I mTon- gas pressure. 
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Figure 2.34. Effect of increasing collision energy on the parent ion in the daughter 
ion spectra of nil, -. 402.5 ([M-2H] 2- ) for W433, at collision gas pressures of 

1,2,3 and 4 rnTorr 

The effect of collision energy on the sum of fragment ions for m/z 402.5 is shown in 

Figure 2.35. This was similar to the profile for m1z 365 the doubly charged ion of W435 

(Fig 2.32). The least degree of dissociation was shown at I mTorr pressure. The 

transmission of ions is slightly impaired by the high degree of collisions for the 4 mTorr L- -- Z- 

gas pressure leading to a lower response than either of the 2 and 3 mTorr gas pressure, 

which gave a very similar response. However the onset of fragmentation and the position 
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of most fragmentation . (ca 6 and 19 eV respectively) were both lower than observed for 
ztý - 

nil, -. 365 of W435. As previously discussed, the degree of fragmentation is compound 

dependent and is affected by the ability of the ion to stabilise the internal energy gained Z-- tý 

through collision with the inert gas. This data suggests the anthraquirione dye W435 is 

more able to stabilise this energy gained in the MSMS process than the azo dye W433. 
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Figure 2.35. Effect of increasing collision energy on the surn of major fragment ions 
in the daughter ion spectra of mIz. 402.5 QM-21-11 2- ) for W433, at collision gas 

pressures of 1,2,3 and 4 rnTorr 

The profiles for the formation of major fragment ions with increasing collision energy for 

each gas pressure are shown in Figures 2.36. Once again, with the exception of the 

I mTorr optimisation, the other three gas pressures produced very similar profiles. 

However, there appeared to be a broader spread of collision energies required to produce 

fragment Ions than was observed for the equivalent nil, -. 365 parent ion of W435. This 

maybe because W433 contains three sulphonic acid groups and the doubly charged species 

could involve any two of the three possibilities, whereas W435 contains only two 

sulphonic acid groups both of which must be charge carrying in the doubly charged state. Z-- -- Z-- 

Further work would be needed to confin-n this observation. The outcome is that, for 

W433, a wider range of collision energies could be used to obtain useful MSMS spectra. L- t- 

That is, COFF was not such a critical parameter for W433 as it was for W435 analysis. 
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Figure 2.36. Effect of increasing collision energy on major fragment ions of nilz 402.5 
Z-- Z-- -- ( M-2H] I -) for W433, at collision gas pressures of 1,2,3 and 4 mTorr, a-d respectively 
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Figure 2.36 (contd). Effect of increasing collision energy on major fragment ions of mlz 
402.5 ([M-2H])-) for W433, at collision gas pressures of 1,2,3 and 4 rnTorr. a-d 

respectively 

Another method of displaying the chanve in ion abundance with increasing collision 

energy is to use contour plots (Figure 2.37). These show that diversity as well as intensity 

of fragment ions was favoured by a collision gas pressure of 3 niTorr. They also confirm Z-- -- 

that no one collision energy can be used to produce a maximum for each of the fragment 

ions. 
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2.7.2.3 Summary 

Under LC-ESI-MSMS conditions increasing collision energy and or collision gas pressure 

increased the degree of dissociation (fragmentation) of parent ions of the dyestuffs under 

study. From the fragmentation patterns observed, I mToff collision gas pressure is too low 

to provide abundant fragment ions for large molecules such as reactive dyes. Conversely, 

high gas pressures such as 4 mToff have a tendency to produce too many collisions, 

reducing the overall transmission of ions leading in some cases to poor signal response. 

The collision energy (COFF) required to induce fragmentation was dependent on charge 

state. Energies of 30 - 40 eV were required for singly charged parent ions compared to 

about 20 eV for doubly charged ions. Also, MS-MS spectra were influenced by the 

collision energy, as observed for daughters of m1z 73 1, where additional fragment ions 

were observed with increasing collision energy. This did not appear to be the case with 

doubly charged ions. However, this phenomenon highlighted the need for use of a range 

of collision energies when attempting to obtain structural information from the MSMS 

analysis of unknowns. 

Based on these observations it would be imprudent to select one collision gas pressure and 

one collision energy to analyse unknown dye degradation products. Instead, the detailed 

optimisation studies above suggest choice of a collision gas pressure in the upper part of a 

range from 2-3 mToff with collision energies of 30 - 45 eV for singly charged ions and 

15 - 25 eV for doubly charged ions are appropriate. 
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2.7.2.4 Interpretation of MSMS Spectra 

W435 (Reactive Blue MR) 

Daughter ion spectra derived from singly charged parent ion mlz 731. 

Figure 2.38 shows the daughter ion mass spectrum derived from the collision induced 

dissociation (CID) of parent ion m1z 73 1, the singly charged molecular ion of W435 (I). 
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The first and most significant observation from this spectrum is the lack of low mass 

fragment ions (not shown in Figure 3.38 for clarity of high mass ions). Many of the more 

intense ions are associated with losses of neutral molecules from the ethoxy side chain 

and/or loss of HCI from the triazine ring. 
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Figure 2.38. Daughtei- ion mass specti-um daived I't-om ml, - 731, JM-H I t'()i- W435 
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When proposing structures for SLICII fragmentation, it was useful to determine which 

fragment ions were chlorine-containing. This wits achieved by examinino the daughter ion r-I 17,1- 

spectrum of mlz 733 shown in Figure 2.39. This ion contains an A+2 isotope contribution Z- 
fM 37CI 35 14S 
ro (32.5% of Cl) and a second contribution from 'ýCl together with (8.4(/c), 

16 0 (21/() and a contribution from the 30 carbon atorns in W435 (5.4%). The ratio of "'Cl 

to the contribution made by isotopes of the other elements was calculated to be 

approximately 2: 1. 
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A comparlson of spectra derived from mlz 731 and 733, showcd which fi-agment ions, 

contained chlonne. Daughter ions of mlz. 733 which contain chlorine were shown its a 

single peak two niass units higher than the equivalent ]on derived from mIz. 73 1. due to tile 

presence of 37C, 
. Daughter ions which did not contain chlorine I were seen as a doublet: 

loss Of 
37C, 

to give an ion of the sarne mass observed for mlz 73 1 and a peak 2 mass units 

higher due to loss Of 
35C, from the A+2 ion still containing 

; 4S 160 
isotopes and a 

contribution from carbon. The ratio of the two peaks was approximately 2: 1. Clearly nilz 

705,687 and 661 contain chlorine, whereas nilz 695,652,580 and 555 do not. 
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The assi-nnient of lons 555,580 and 652 is based on the rim, openino of the reactive 

chlorotriazinc group with the forillitioll Of 11111*11C C011IM111110 COMPOLInds which could Zý IT, 

either retain the charge and be observed as a fragment ion or be removed by loss ofiieffll'al 

molecules: 

H 
R-N-('N 

R 
(555) 

N'll 

I., -, 10 INUCI + 11A)l P. (olS 2) 

e, 
ýIl 

-ýI-% 
c1l, cly) N UN 
A-- . 11 

(-"'(-"3 IWI ). ONO) 
(ý(""('113 

Fraoment ions and neutral losses such as these provide uset'Lil diagno. stic Ions for the 

presence of the reactive chlorotnazine proup. Support for these assionments was fOLIII(I III 

reported positive ionisation thermospray analysis of triazine pesticides (Voyksncr o al., 

1987b). The chlorotriazincs: cyprazine, atrazine, cyanazine and procyazine were shown to 

exhibit a characteristic nno opening reaction with the neutral loss of: 

N 
III 
C-NHR 

Where R=an alkyl side chain. 

The fraLmientation for atrazine for instance, is as follows: 
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(71) 

M+H - [(', ti, -Nli-('Nl' 
(140) 

rM+H -NH-CNI' jCH7 

(132) 

The lon IRNH-CN+H]'. observed for each of the chlorotriazine pesticides (VoyKsncr, 

et al.. 1987b) Is equivalent to ml, -. 555 described for thc CID SI)eCtIIIIII of' mlz 73 1. Thc 

fragment ion ml, - 132 was accompanied by IOSS Of HCI tO PI-OCILICC ml, - 96, which is L- 

equivalent to mlz. 580 for the CID spectrum mlz 73 1. 

Voyksner ei al., (1987b) suggested the 1-111o opening, process to be *cfiagonostic' for 

chlorotriazines. This fi-agnicntation pathway could be used to provide LISCfLll SIRICRINII 

information for the Identification ofunknowns observed in subsequent degradation stUdies. I- 

Interestingly, this rim, opening reaction was not observed for triazine pesticides which did Z- Zý Zý 

not contain chlorine. This has implications for degradation studies of reactive dyes where Z-1 

hydrolysis (replacement of reactive chlorine by an hydroxyl) may be observed. 

The ion mIz, 652 was difficult to explain. It does not contain chlorine (as shown by the 

dau4, hter ion spectruni of mIz, 733) and the elimination of NC-Cl would be predicted f L- 1 1,0111 

the ring opening reaction previously discussed. However tile associated loss of' water Z- 

could not be explained in terms of a simple elimination. 

Returning to the proposed structures for fragment ions of inlz 731, Figure 2.38, several 

fragment ions showed a further dissociation to loose 80 niass units due to S03. These 

included 703 --) 623,580 ---) 500 and 555 ---) 475. It was noticeable From the collision 

offset optimisation for mlz. 731 (Fio 2.30) that each of these transitions occurred at hioher 
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collision energies than required for the initial fragmentation. This suggests the initial 

fragment ions were quite stable and required higher energy to overcome the activation 

energy (E. ) barrier to induce further dissociation. This may explain why so little low mass 

fragmentation was observed. 

Daughter ion spectrum of nilz 365 the doubly charged molecular ion of W435 

The fragmentation pattern observed for m/z 365 is shown in Figure 2.40. These ions were 

effectively the same or equivalent to those described for the singly charged parent ion, 

m1z 731 and did not provide additional structural information. 

The CID spectra of multiply charged ions can produce fragment ions of higher mass as 

well as at a lower mass than the parent ion. For doubly charged parent ions, higher mass 

ions can be formed by loss of one of the charges. This can occur in two ways. One of the 

charge carrying groups (eg SOD can be lost. This is frequently observed as m1z 80 in the 

spectra of sulphonated compounds. Alternatively, one of the charge-carrying groups can 

be neutralised by collision with another dye molecule or with the collision gas. Several of 

the fragment ions formed by dissociation of m1z 365 the doubly charged parent ion of 

W435, (ie m/z 695,580 and 652) showed this neutralisation reaction. 

Molecules containing sulphonic acid groups often produce an ion m/z 80 under CID 

experiments in negative ionisation mode, due to S03-, (Lee et al., 1989; Bruins et al., 1986; 

Straub et al., 1992). Ions formed by such a loss were not prominent in the daughter ion 

spectra of either of the W435 molecular ions selected for these experiments. 
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Daughter ion spectrum of W433 

Daughter ion spectrum of nilz 401.5 the doubly charged molecular ion of W433 

W433 does not produce a significant singly charged molecular ion suitable for MSMS 

studies. Therefore, the more intense doubly charged parent ion m1z 401.5 [M-2H]2- was 

selected as parent ion. The daughter ion spectrum derived from this ion is shown in 

Figure 2.41, which also shows the proposed structural assignments for fragment ions. The 

CID spectra for a range of relatively simple mono and di-sulphonated azo dyes analysed by 

CZE-MS, FAB-LCMS and thermospray, electrospray and atmospheric pressure chemical 

ionisation LCMS interfaces have been reported (Edlund et al., 1989; Monaghan et al., 

1982,1983; Rafols and Barcelo, 1997). These authors reported fragment ions 

corresponding to cleavage of the bond between the azo nitrogen and adjacent aromatic 

rings, which support the proposed structures for m1z 454 and 321. These ions are 

particularly important because they provide information regarding each half of the dye 

molecule and can be used as diagnostic tools when considering structural changes to the 

dye in subsequent degradation studies. However another significant assignment, the 

fission of the azo bond to form either an imine or amine which was reported by several 

authors, was not observed for W433. Another observation for the reported data was that of 

a common fragment ion m1z 80, which corresponds to S03'. the intensity of which varied 

considerably in the literature spectra and which appeared to be very much compound 

dependent. This was not a significant fragment ion in the daughter ion spectra derived 

from m/z 401.5 of W433 although loss Of S03 from the parent ion was observed (401.5 -4 

361.5). 
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The apparent loss ot'nitrogen (401.5 --4 387.5 and possibly 361.5 --4 347.5) in the daugliter 

lOtl SPCCti-Lllll of W433 is a frapmentation pathway which shouid be a characteristic ofazo L- 

compounds. However there wits only one reported observation of this Fragmentation 

(Richardson, 1990), su--estin- it may not be a common loss. Ail alternative but less likeiv 

explanation is loss of carbon monoxide from the pyrazone ring adjacent to the azo bond. 

but this was not observed in the previously cited studies of azo-pyrazone dyes. A loss of' 

28 daltons (assumed to be from the hydroxyl of a naphthol group) was reported for Acid 

Orange 10 (Straub, 1992). 

The previous discussion of the daughter ion fragmentation of W435, highlighted it ring Z- Z- L- L- 

opening ofthe chlorotnazine group to form thi-ce nitrile containing fragnicnts which were 

401.4 
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observed as ions or as loss of neutral molecules. This ring opening reaction was again 

observed in the daughter ion spectrum of m1z 401.5: 

SO3H 

N=Z 
H3 

> 

HO 
NH 

ci 

c cHN 1555ýý H 

0: 3 

0; 0; 

(m/z 401.5) (m/z 197) 

This was very similar to the ring opening fragmentation discussed earlier for W435, except 

that in this case the dissociated nitrile fragment also had a charge-carrying sulphonic acid 

group, so was observed as a fragment ion (mlz 197) instead of a neutral loss. The other 

possible fragment ions derived from ring opening of the chlorotriazine were not observed, 

but the presence of at least one of these ring-opening products in a dye that has a very 

different structure to W435, suggests that this fragmentation may be a very useful indicator 

of the presence of a chlorotriazine reactive group. 

One other fragmentation observed in the reported MSMS spectra of azo pyrazone dyes, 

was the formation of isocyanate and amine moieties from fission of the pyrazone ring 

(Monaghan et al., 1984; Rafols and Barcelo, 1997): 
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For W433, this would produce ions at m1z 266 and 240 for the isocyanate and amine 

respectively, however these ions were not observed. 

Daughter ion spectrum of nilz 267 the triply charged molecular ion of W433 

Additional useful information was not provided by the daughter ion spectrum derived from 

m/z 267 [M-3H]3-. Most of the ions were the same (mlz 320 and 285) or equivalent to 

(226.5=- 454) those discussed earlier for the doubly charged species. The exception was 

m/z 255 which corresponds to [M-HCI]3-. 

2.8. CONCLUSIONS 

e Optimised conditions have been established for the LC-MS and LC-MSMS analysis of 

four reactive dyes. 

e Conditions have been determined which allow the HPLC separation of the reactive dyes 

using ammonium acetate as an ion pairing reagent. At low buffer concentration this 

system is compatible with commonly available mass spectrometer interfaces such as 

thermospray and electrospray. 

e Separation of dyes was achieved on the basis of polarity. The greater the number of 

sulphonic acid groups on the dye, the earlier they eluted. 

9 Mass spectrometer signal response increased with increasing organic modifier content 

in the mobile phase and decreased with increasing buffer concentration. 
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* The greater the number of sulphonic acid groups on the dye, the greater the number of 

potential charge states that could be formed and, generally, the less intense were the 

singly charged molecular ions. 

e Reactive dyes could be extracted and concentrated using a similar system to that used 

for HPLC separation (ie C18 cartridges preconditioned with either tetrabutyl 

ammonium hydroxide or ammonium acetate). 

* Of the two commercially available LCMS interfaces evaluated, electrospray provided 

the better sensitivity and linearity of response. 

* MS-MS produced quite complex spectra, but several fragmentation pathways were seen 

to provide useful and diagnostic information for dyes containing chlorotriazine reactive 

groups. Additionally the loss of N2 from the molecular ion was observed for azo dyes. 

e The optimised conditions and mass spectral interpretations provide a sound basis for 

analysis of dyestuffs in laboratory and field degradation experiments. 

112 



CHAPTER 3 

PHOTODEGRADATION OF REACTIVE DYES 

3.1 INTRODUCTION 

Factors which may determine the environmental fate of water soluble dyes in water include 

biotransformation, photolysis and partitioning onto suspended solids and sediments. 

Considerable research into the effects of aerobic and anaerobic microbial degradation on 

the environmental degradation of dyes has been made (Horitzu, 1977; Spadaro, 1992; 

Carlielli, 1995; Haug, 1991; Junqi, 1992; Chung, 1993). However the photochemical 

transformation of dyes under environmental conditions has received little attention 

(Baughman, 1988). One reason for this is that a high degree of photo-stability is a desired 

property of commercial fabric dyes and so photodegradation has been tacitly assumed to be 

of little significance. However it is known that temperature, humidity and the presence of 

oxygen can effect the photo-stability of dyes (Clarke, 1980). Therefore investigations of 

the effects of sunlight on the fate of reactive dyes, especially considering the extensive use 

of such materials in sub-tropical climates such as those found in India and South America 

are justified and indeed possibly overdue. 

A study of the photo-stability of azo dyes (Porter, 1973) concluded that the half life for 

many synthetic azo dyes in sunlight was generally greater than 2000 hours. However the 

experiments were performed with concentrated solutions whereas test guidelines 

(EPA 1996), suggest that optically thin solutions (<0.5 absorbance units) are required to 

obtain meaningful degradation rates. 

Haag and Mill (1987) reported studies of the direct and indirect photolysis of a range of 

azo dyes. The observed half lives varied between 2.6 hours, and 3 10 hours depending on 
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dye structure. These studies demonstrate that photodegradation is potentially a major route 

for transformation for some azo dyes in the environment. 

Several studies have investigated the photostability of dyes on materials such as silk and 

cotton. Massafra et al., (1999) compared the effect of photofading of two azo dyes Acid 

Red I and Acid Orange 8 on silk and in water at different pH values. Photodegradation in 

water was slow with half lives generally in excess of 100 hours, but appeared to be faster 

for dyes bound to silk. However no kinetic calculations were available to confirm this 

observation and no attempt to identify the degradation products was made. 

The photostability of a range of azo reactive dyes on cellulose in the dry state, in the 

presence of water, or artificial perspiration, was studied by Bredereck and 

Schumacher (1993). They concluded that the rate of degradation was dependent on the 

nature of substituents adjacent to the azo group of azo dyes. Those containing a strong 

electron donating function tended to fade 8- 10 times faster when wet compared to the dry 

state. The impact of water on fading decreased with increasing electron withdrawing 

power of the substituents. They concluded that azo dyes with strong electron donating 

substituents fade by an oxidative mechanism favoured by dissolved oxygen in water, 

whereas those with strong electron accepting functionality fade by a reductive process 

favoured by the absence of oxygenated water. Shastri and Ali (1992) also suggested that 

the light stability of simple anthraquinone dyes could be predicted from the nature of 

substituent groups in positions I-4 (see Structure XII, Section 1.1). Photostability was 

increased by the presence of strong electron withdrawing groups. 

The photostability of four azo pyridone disperse dyes on polyester fabric and films was 

investigated (Wang and Wang, 1992). The authors were able to characterise the 

degradation products by LC-UV and TLC retention time coincidence compared to 
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reference materials. The identification of aromatic amines led them to conclude that 

photoreduction was the characteristic degradation pathway for disperse dyes on a polyester 

substrate. 

Aranyosi et aL, (1999), carried out a comparison of photodegradation of two sulphonated 

azo reactive dyes in distilled water and artificial perspiration. As part of this study they 

used dye standards in distilled water, in distilled water saturated with oxygen before or 

after light exposure and in distilled water de-aerated by argon purging. Photodegradation 

in water was rapid and followed first order kinetics. Half lives for the two dyes were 

determined to lie between 100 and 200 minutes depending on dye and interestingly, on the 

dissolved oxygen concentration. Distilled water alone and argon-purged water produced 

similar degradation rates, but the two aerated water samples showed a marked increase in 

rate of degradation. Conversely, the rate of degradation was decreased by an increase in 

oxygen concentration for both dyes in the presence of synthetic perspiration. This was 

assigned to the presence of reducing components, probably lactic acid. The authors 

concluded that for aqueous dye solutions (in the absence of reducing agents), 

photodecomposition is oxidative and therefore increased by dissolved oxygen and that a 

radical oxidation mechanism can be assumed. In the presence of reducing agents (such as 

lactic or maltic acid), photodegradation proceeds by a radical reduction mechanism and is 

slowed in the presence of dissolved oxygen. 

From these studies it is clear that photodegradation of dyes may depend on the nature of 

substituents about their chromaphores, on the presence of additives within the test solution 

and on the dissolved oxygen concentration. 

The potential of photodegradation for the treatment of industrial and domestic waste is 

reflected by an increasing number of publications describing the use of photosensitisers to 
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aid the degradation process. Pasin and Rickabaugh (1991) determined the effect of 

acetone on photodegradation of two sulphonated azo dyes, Acid Yellow 6 and Acid 

Red 40. Both showed 99% colour removal in 20 minutes compared to minimal 

degradation in 50 minutes in distilled water alone. Colonna et al., (1999) showed the UV 

enhanced degradation of several acid and disperse dyes in the presence of hydrogen 

peroxide. However Shu and Huang (1995) found that a combination of UV light and 

ozone had no discernible effect on dye decolouration for the azo dyes tested. The use of 

Ti02 as a photosensitiser has become very popular for effluent treatment. Tang et al., 

(1997) reported the decolourisation of II mono-, di- and tri-azo acid, basic and direct dyes. 

Colour removal was observed and the mechanism proposed was oxidation involving 

hydroxyl radicals (110). Hu and Wang (1999) demonstrated the >90% decolouration of 

three reactive dyes within I hour of treatment. They also showed that decoloured water 

samples were subsequently more amenable to conventional biodegradation treatment 

systems and proposed sensitised photodegradation followed by aerobic degradation, as a 

suitable treatment system for dye waste waters and effluent. 

Notably, with the exception of Wang and Wang (1992), studies reported colour removal by 

change in UV absorbance and there were no attempts to identify photodegradation 

products to confirm degradation mechanisms in any of the other cited literature. 

A number of publications have suggested that humic substances have sensitising effects on 

photodegradation. Haag and Mill (1987) showed that photodegradation rate increased for 

a range of azo dyes in the presence of humic substances. Zepp et al., (1985) compared the 

photosensitising effect of humic substances isolated from different origins and used the 

transformation of simple organic compounds to probe the mechanism and kinetics of this 

process. The authors concluded that absorption of sunlight by humic substances can lead 

to the rapid photosensitised reactions of certain pollutants. Moza (1995) observed an 
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increase in the rate of photodegradation for the fungicide Bayltin in the presence of both 

hurnic and fulvic acids. Contrary to these findings, Fukuda, (1988) and Hwang (1987) 

found hurnic substances to inhibit photodegradation of alkyInaphthalenes and 

chloroanilines, respectively. 

The propensity for hurnic substances to encourage or interfere with photodegradation 

processes may depend on whether degradation is an oxidative or reductive process and 

also on the nature of the hurnic substance used (Aranyosi et al., 1999). Humic substance is 

a generic term referring to humic acids, fulvic acids and the water insoluble fraction, 

humin. These terms are derived from their mode of isolation. Humic acids are insoluble 

in water at low pH (< 2) and can therefore be precipitated from solution and filtered. They 

form the major extractable component of soil humic substances. Fulvic acids are the 

fraction of humic substances that are soluble in water under all pH conditions. They 

remain in solution after removal of humic acid by acidification. Humin is the fraction of 

humic substances that is not soluble in water. 

When considering the photochemical transformations within environmental water bodies it 

is necessary to first understand the spectral distribution and intensity of sun light impacting 

on the media. Solar spectral irradiation, transmission through the Earth's atmosphere and 

transmission of sunlight through the water body, will all have an impact on rates of 

degradation. 

Solar Radiation 

As sunlight passes through the Earth's atmosphere, its intensity is diminished or attenuated 

by scattering from water droplets, atmospheric particles and aerosols, and through 

absorption by atmospheric gases, in particular ozone. The transmitance of light decreases 
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with decreasing wavelength (UV and visible region). There is a rapid decrease between 

280 and 320 nm such that there is little light transmitted below 300 nm. Low wavelength 

radiation such as UV-B is highly energetic and is responsible for the photodegradation of 

many chemicals (Zepp, 1977), which emphasises the need to use a light source that is 

closely related to natural sunlight when laboratory simulations of photodegradation are 

made. 

The intensity of natural radiation will also vary according to the angular height of the sun 

such that it decreases from midday to sunset and from summer to winter and to a certain 

degree from the equator to higher latitudes. The latter has a more marked effect in winter 

months. Calculations to allow extrapolation from observed photodegradation rates to 

different seasons and latitudes are described later in this chapter. 

The scattering of sunlight by water droplets and air-bome particulates also tend to increase 

for decreasing wavelengths (UV-B). This scattered light can also contribute to the total 

amount of light incident on the earth's surface and is termed diffuse light. Light impacting 

on a water body consists of a mixture of direct and diffuse or scattered radiation. 

Transfer from air to water 

When sunlight impacts on water surface, part is reflected at an angle equal to the angle of 

incidence and part passes into the water body and is reflected. The fraction reflected is on 

average approximately 10% (Leifer, 1988). The intensity of sunlight in water is attenuated 

by absorption and scattering. In "pure" water, such as oceans and lakes, absorption is 

primarily due to water itself and light can penetrate to great depths. In inland water bodies 

the presence of dissolved natural organics such as humic substances, result in light 

attenuation due to both absorption and scattering. Once again absorption is wavelength 
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dependent and tends to increase with decreasing wavelength from the visible to the UV 

region of the spectrum. Therefore, chemicals that only show absorbance in the UV-low 

visible region will be affected more than dyes which also show strong absorbance at higher 

wavelengths. The presence of humic materials can lead to increased photodegradation 

rates. Zepp, (1985) concluded that absorption of sunlight by humic materials can lead to 

rapid, photosensitised reactions and that most polyaromatic chemicals were potentially 

susceptible. Equally Haag (1987) demonstrated increased rates of photodegradation for 15 

azo dyes in the presence of humic material (indirect photolysis) when compared to pure 

water solutions (direct photolysis). However humic materials are light-absorbing which 

can slow the photodegradation rates for those compounds which undergo direct photolysis, 

(Mill, 1981). The attenuation of light due to the effect of scattering is in general less 

important than attenuation due to absorption in natural water bodies and is only of 

significance in particularly turbid lake and river waters. 

Photodegradation rates in water are therefore dependent on the intensity of the light source, 

the attenuation by the water body and the absorption characteristics of the pollutant. 

3.2 EXPERIMENTAL CONSIDERATIONS 

A number of experimental conditions need to be considered for construction of appropriate 

laboratory-simulated photodegradation studies. It is important that the most appropriate 

light source and filter system be selected and that quartz glass sample tubes which allow 

maximum transmission of light at most wavelengths are used. The temperature of the 

sample vessels needs to be constant if kinetic data are to be obtained and losses of test 

chemical from the reaction vessels by processes other than photodegradation should be 

minimised. The loss of sample through volatilisation or biodegradation can be avoided 

through the use of minimum headspace in the vessel (Literathy, 1989) and use of sterile 
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conditions (Paalme, 1990), respectively. Losses due to hydrolysis are difficult to avoid but 

these can be evaluated by using dark controls (ie vessels containing test substances which 

are not exposed to light). Losses due to hydrolysis can then be corrected for in 

photodegradation rate calculations. 

Light source 

Natural sunlight comprises a broad range of wavelengths. However, as discussed earlier, 

light with wavelengths below 300 nm is largely absorbed by ozone in the upper 

atmosphere, so for photochemical reactions taking place at the Earth's surface, 

wavelengths greater than 300 nm are most important. The Grothus-Drapr law (the first law 

of photochemistry) states that only light that is absorbed can be effective in producing a 

chemical transformation. Therefore only chemicals showing UV-visible absorption in the 

300 - 800 nm range can absorb energy and would be expected to be photodegraded. All 

dyes are designed to absorb light in the visible region. Typical UV-visible spectra for a 

range of dyes (Figure 2.3, Chapter 2), show that all of those in the present study meet this 

criterion. 

Several light sources have been used previously for photodegradation experiments. These 

include low, medium and high pressure mercury lamps, fluorescent daylight lamps and 

xenon arc burners (reviewed by Gould, 1989). Most of these emit light at the low end of 

the UV-visible region (ie below 300 nm) which although more energetic is not available at 

the Earth's surface in natural daylight because of absorption by ozone. Artificial light 

sources therefore have to be filtered to simulate natural light. This is achieved through the 

use of borosilicate glass filters (EPA guidelines, 1996) or by the use of chemical filters 

(Leifer, 1988). A schematic representation of the spectra of several light sources and of 

natural light (Roof, 1982) is shown in Figure 3.1. A direct comparison of the spectrum of 
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natural daylight (midday, Spring) with that of filtered xenon arc source lamp over relevant 

UV-visible wavelengths (250 - 800 nm), is shown in Figure 3.2. Xenon lamp show 

particularly good agreement with natural light up to approximately 550 nm. Thereafter the 

correlation is somewhat poorer. However the lower wavelength radiation is most energetic 

and therefore most important and the xenon lamp probably represents the best available 

simulation of natural daylight for laboratory studies. A comparison of a filtered xenon 

lamp with natural daylight for aqueous photodegradation studies was reported by Yager 

(1988), who concluded the xenon lamp provided data comparable to those obtained with 

natural light. Zepp (1982), reported a comparison of xenon, medium pressure mercury and 

fluorescent lamps with natural sunlight for the photodegradation of three PAHs and 

showed that the degradation rates obtained using the xenon lamp were closest to natural 

sunlight. 
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Figure 3.2 Comparison of UV-Visible spectra of a Xenon lamp 

with natural daylight (Midday in March) - 

Light intensity is one of the most critical factors in laboratory photodegradation studies. t- 

Therefore to obtain useful degradation rates and to extrapolate these to environmental 

conditions, it is particularly important to accurately measure the intensity of the light 

source. Two approaches are generally used for lamp calibration; chemical actinometers 

and radiometers. Both have advantages and disadvantages. 

Chemical actinometers are photochemical reactions which have been calibrated with light 

sources of known flux and have well defined quantum yields at particular wavelengths. 

They are used to measure the integrated light intensity incident on a sample withi 4- I: 
_, 

IIi in a test 

vessel during irradiation with either natural or artificial light. 

Chemical actinometers have the advantage that they undergo the same experimental 

regime as the test sample and can give an accurate measure of light intensity. Their 

photoclegradation properties are well characterised and understood. The main 

disadvantage of chemical actinometers is that they may not absorb light at the same 
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wavelength as the chemical under test, particularly as most useful actinometers absorb 

light in the 290 - 400 nm region (Liefer, 1988). 

Radiometers are easier and more convenient to use than chemical actinometers. They give 

a measure of total light incident on the sample vessels and can easily be used to compare 

light intensity of lamps with natural daylight for the estimation of environmentally relevant 

photodegradation rates (Parker and Leahey, 1988). However the equipment is relatively 

expensive and not particularly portable for use with field studies. Given that laboratory 

studies were to be made in the present programme, a spectro-radiometer was used in this 

study to calibrate the lamp source. 

Temperature control 

The photodegradation rate constant will be affected by temperature as described by the 

Arrhenius equation. Therefore it is necessary to maintain a constant temperature for 

experiments in order to obtain reliable kinetic data. Leifer (1988) suggested the sample 

temperature should be maintained to within 2"C of the chosen experimental temperature. 

Other experimental considerations 

Since contaminants may absorb light, laboratory photodegradation experiments should be 

carried out using homogenous solutions of pure test chemical at concentrations at least half 

the water solubility (EPA, 1996). Since pure dyes were to be used in the present study and 

since sulphonated reactive dyes are water soluble no solubility problems were expected 

and difficulties with photosensitisation by co-solvents, Pasin (1991) should be avoided. 
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The incorporation of dark controls in laboratory experiments is also essential since these 

show the degree of degradation not caused by irradiation (ie due to chemical hydrolysis or 

biodegradation in water). In practice this requires a sample tube to be bench-stored 

wrapped in foil to exclude light, for the duration of photolysis study. An initial evaluation 

can be used to determine whether hydrolysis makes a significant contribution to 

degradation over the exposure period of the experiment. If it does not, the dark control 

only requires confirmatory analysis at the end of the exposure period. For experiments 

where hydrolysis is an issue, analysis of the dark control for each irradiation time period is 

required and the measured concentration of sample chemical corrected to reflect 

photodegraclation only. 

3.3 EXPERIMENTAL 

Two dyes, Reactive yellow P5G (W433) and Reactive Blue H4R (W435) were supplied by 

ICI Colours Ltd, Blackley, Manchester UK. Aldrich Humic acid was obtained from 

Aldrich Chemical co. Milwaukee, USA. The humic materials used in this study were 

isolated from UK and Irish river waters using filtration, adsorption chromatography (XAD- 

8 and XAD-4 resin) and ion chromatography to purify and fractionate samples into humic, 

fulvic and hydrophilic acids. Humic substances are the major components of the organic 

surface coating on particles found in water. The structures of these substances are 

unknown, and they tend to be characterised by their elemental composition and aromatic 

content. The hurnics used in this study have been characterised previously in tenns of 

carbon, nitrogen and oxygen content and degree of aromaticity (Zhou and Rowland, 1994). 

River Dodder, Dublin (Eire) and River Trent (UK) bumic, fulvic and hydrophilic acids 

were provided by Dr M Hayes (University of Binningham). 
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The Suntest CPS xenon lamp was manufactured by Heraeus instruments GmbH, Germany. 

The water cooled stainless steel sample vessel holder was manufactured and supplied by 

the engineering department of Zeneca Agrochemicals, Jealott's Hill, Bracknell, UK. 

3.3.1 Exposure apparatus 

A schematic diagram of the xenon lamP/filter system and the laboratory arrangement for 

suntest photolysis unit, water cooled sample tube holder and chiller unit, respectively are 

shown in Figures 3.3 and 3.4. Radiation from the xenon arc lamp or reflected from the UV 

miffor above the lamp, passes through a quartz glass filter which has a UV cut-off at 

approximately 290 nm. The parabolic reflector ensures even distribution of the filtered 

UV-Visible light over the whole sample tank. 

Samples were placed in up to six 25 X2 cm (od) quartz tubes, each with a sample volume 

of 50 ml. Samples were placed in the stainless steel tank (Parker and Leahey, 1988), 

partially filled with glycerol as coolant. Initially water was used as coolant but this tended 

to evaporate on prolonged irradiation and therefore offered inadequate temperature control. 

Samples were therefore maintained at constant temperature by circulating dilute ethylene 

glycol from the chiller unit through a reservoir at the bottom of the tank. A thermocouple 

attached to a digital thermometer was used to monitor the sample temperature at the centre 

of the tank at mid depth. The sample tank was held in position at the bottom of the Suntest 

unit, such that it made a light tight seal, using a lab jack. 
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Figure 3.3 Schematic diagram for the Xenon lamp/filter system 
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Figure 3.4 Experimental set-up for photolysis studies 

The xenon lamp and cooling system for the stainless steel tank were operated for I hour 

prior to the start of photolysis experiments to allow both to equilibrate. The variation of 

radiation intensity at different parts of the sample tank has been evaluated previously 

(All, 1996). Less than 2% variation over 7 different points within the tank was found, 

indicating consistent incident light on each sample vessel. 

Initial experiments were carried out at the University of Plymouth, with subsequent 

experiments at Brixham Environmental Laboratory. The photolysis equipment used at 

each site was effectively the same, but the xenon lamp intensity differed due to the age of 

each lamp. The radiation intensity of the Plymouth and Brixharn systems were measured 

by radiometry (All, 1994) as 7.6 mE CM-2 day- I and 14.1 mE cm -2 day-I respectively. 
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Each photodegradation experiment used essentially the same apparatus and conditions, but 

differed by exposure time, temperature and substances added to the dye solutions, such as 

humic acids. 

3.3.2 Photolysis of reactive dye W433 in the presence and absence of humic substances 

Standard solutions of W433 were prepared in distilled water. Aliquots (40 ml) were added to 

quartz photolysis tubes, spiked with hurnic substances (I mg 1-1, where appropriate), placed in 

a bath which was water cooled to a constant temperature and irradiated using the Heraeus 

Suntest CPS xenon lamp (Table 3.1). Control samples were stored wrapped in foil on the 

bench. The temperature of the ethylene glycol cooling bath was constantly monitored using a 

thermocouple linked to a temperature data logger (Ali, 1996). 

Table 3.1 Experimental parameters for the photolysis of W433 using an Heraeus 
Suntest xenon lamp. Humic substances were present at I mg 1-1 total. 

Experiment Dye 
concentration 

(mg 

Sampling times 
(h) 

Additives Temp. 
(OC) 

1 8 0.5,1,2,4,8,12 and 18 a None 26 '1.3 
1,2,4,6,8,15 and 2e River Trent humic 

acid 
2. 11 4,8,12,18,24 and 48 None 23 '/. 2 

4,8,12,18,28 and 40 River Dodder humic 22+/-2 
acid 

4,8,12,18,28,40 and 70 River Dodder fulvic 22+/-2 
and hydrophilic acids 

6,12,18,28 and 40 Aldrich humic acid 23 +/- 2ý 
(a) Duplicate test vessels for each sampling time 

(b) Sample concentrated ten-fold prior to LC-MS analysis (as per Section 2.3). 

After irradiation, each sample was transferred to a volumetric flask, made up to 50 ml, covered 

with foil and stored refrigerated until required. Aliquots (I ml) of each photolysed dye, the 

corresponding dark stored control and calibration standards (0.2 to 10 mg 1-1) were spiked with 
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internal standard (naphthalene sulphonic: acid, 10 gl equivalent to 10 mg 1-1), and analysed by 

LC-LW254 
. and LC-MS using the conditions described in Section 2.1. 

3.3.3 Photolysis of reactive dye W435 

Standard solutions of W435 were prepared in distilled water. Aliquots (40 ml) were added to 

quartz photolysis tubes and irradiated using the Heraeus Suntest CPS xenon lamp, using the 

method described in Section 3.1. Experimental variables are shown in Table 3.2. 

Table 3.2 Experimental parameters for the photolysis of W435 using the Heraeus 
Suntest xenon lamp. 

Experiment Dye Sampling times Additives Temp. 
concentration (h) (OC) 

(mg 1-1) 
1 10 0.5,1,2,4a, 8,12 and 18 

' 

None 28 3 

2 
1 

10 40 b 2,4,8,12,18,24 and None 28 3 

(a) Sample concentrated ten-fold for LC-MS analysis (as per Section 2.3). 

(b) Duplicate test vessels for each sampling time 

3.4 RESULTS 

Preliminary experiments with dyes W428, W430, W433 and W435 established that only 

W433 and W435 were photolabile following 8 hours irradiation. W430 did not 

photodegrade over the photolysis period. W428 degraded on storage in the dark to three 

major products (described in Section 2.4), plus the unchanged dye, therefore a thorough 

investigation of the effects of photolysis could not be made. The photolysed solution of 

W428 showed only two major components, one of which had a different retention time to 

all of the degradation products of the control stored standard. Solutions of known 
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concentration of W433 or W435 and the internal standard were examined by LC-UV254 and 

calibration graphs of response were drawn (Fig 3.5). These were used to determine the 

concentrations of dyes in various photolysed samples. 

Calibration standards were analysed with each photodegradation experiment to accurately 

determine dye concentration and estimate degradation product concentration in degraded 

samples. A detector wavelength of 254 nm was chosen rather than a more selective one 

for the dyes (e. g. X., 590 nm W435; 400 nm W433), in order that degradation products 

with different Xna,, might be detected. 
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4.00 

3.00 y-0.4932x + 0.0257 
2.00 

R'- 0-9-998 
1.00 

0.00 
02468 10 
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cl 4.00 
40 y-0.6782x - 0.0133 

R2_ 0.99 9 
3.00 
2.00 0.9989 

1.00 
0.00 

2468 10 12 

Concentration (mg 1-1) 

Figure 3.5 HPLC-UV (254 nm) calibration graphs for aqueous solutions of (0.2 to II 
mg 1-1) of W433 and W435. Peak area ratio is the ratio of peak areas of the dye to a known 

concentration of internal standard (naphthalene sulphonic acid). 
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3.4.1 Photolysis of W433 in the presence and absence of river Trent humic acids. 

Degradation and half lives 

The concentrations of W433 remaining after irradiation in two different experiments are 

shown in Table 3.3. River Trent humic acids (1 mg 1-1) were added to the W433 solutions 

in experiment 2. A number of publications have described humic acids as having either 

sensitising effects (Haag, 1986; Zepp, 1985), or inhibiting effects on photolysis (Fukuda, 

1988). River Trent (north east UK) humic acids was chosen because many of the major 

UK dye processors discharge to rivers in this region. A concentration of humic acids of 

I mg 1-1 is environmentally realistic for riverine waters (Thurman, 1985). 

Table 3.3 Effects of irradiation time on photolysis of W433 in the absence and 
presence of I mg 1-1 river Trent humic acids. 

Time 
(h) 

Experiment I 
(W433) 

Experiment 2 
(W433 +I mg 1-1 rent hurnic acids) 

Conc. (mg 1-1) % of initial Conc. (mg 1-1) % of initial 

0.0 8.1 100 7. 100 

0.5 8.0 99 n. d n. d 

1.0 7.9 98 7.0 97 

2.0 7.9 98 6.9 96 

4.0 7.4 91 6.9 96 

6.0 n. d n. d 6.5 90 

8.0 7.0 86 6.1 85 

12.0 6.4 79 n. d n. d 

15.0 n. d n. d 5.0 69 

18.0 5. 1 68 n. d n. d 

24.0 n. d - 1 
n. d 4.4 61 

n-d - Not Determined 

The dark control for each experiment was analysed at the end of each experiment and 

found to be equal to the starting concentration in both cases, indicating degradation was 
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due to photolysis only. The decline in W433 concentrations with increasing irradiation 

time for both experiments is shown graphically in Figures 3.6a and b. The decreases 

follow zero order kinetics whereby the photodegradation rate constant (kp) is independent 

of concentration: 

ct = C, kp 

Where Ct is the concentration at time t and Q, is the initial concentration. kp, determined 

from the slope of a plot of [Ct/C. ] vs irradiation time t, was -0.0 164 and -0.0 166 hr- 1 for 

experiments without and with humic acids respectively. The half life was determined from 

the equation of a straight line: y- mx + C, where y-0.5 (concentration ratio at half the 

original concentration). This gave a t1/2 value of 30.5 and 30.1 hours for W433 

photodegradation in pure water and with river Trent humic acids, respectively. These half 

lives are essentially the same. Interestingly, this suggests that in the case of W433 river 

Trent hurnic acids had no observable effect on the photodegradation process. 
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Figure 3.6 Change in concentration with time of dye W433 in pure water and in the 
presence of river Trent humic acids (I nig 1-1). 

Analysis of degradation products 

Only one degradation product was observed in the LC-UV chromatograrns of irradiated 

W433 solutions. The concentration of this product was measured by reference to the 

W433 calibration curve, Figure 3.7 shows the changes of concentration with irradiation 

time. The sum of the concentrations of unchanged W433 and the degradation product was 

approximately equal to the initial dye concentration, suggesting that no other degradation 
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pathways had occurred. A very similar pattern was observed for the dye exposed in the 

presence of river Trent hurnic acids. 

w:, 9.0 -- 
8.0 4 ----A 
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5 0 0 De'radation product 

-- . 
4.0 -- 

W433 
3.0 -- W433 + products 

2.0 -- 

0.0 
05 10 15 20 

Time (h) 

Figure 3.7 Chanoe in concentration of parent dye (W433 in pure water) and single L- L- 
degradation product with increasing irradiation tinie. 

In an attempt to identify the W433 degradation product, electrospray LC-MS was used to 

obtain mass spectra of an extract of W433 in pure water following irradiation for 18 hour. 
47! 1 1 

Figure 3.8 shows a comparison of LC-UV and LC-MS chrornatograrns, indicating the 

presence of two components. 
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1 1110 Figure 3.8 LC-UV and LC-MS chromatop-ams ol'W433 solLitions l')Ilow' 2- 
in-adiation foi- 18 how-s 

Electrospray mass spectra of each of the two components are shown In Houre 3.9. The 

spectrum of peak 1, (ml, -, 267.3 IM-3H]'. 401.5 IM-2H]2 and 804 IM-H] ). is consistent 

with unchanged W433. The observed singly, doubly and triply charged MOICCLIkll' IOIIS Of Zý It:, 

the photodegradation product (peak 11), indicated a molecular weight of 787. This is L- L- 

19 mass units lower than W433 which is consistent with the displacement of -Cl by -OH 

and suggests product (11). ZýZ- 
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Figure 3.9 Mass spectra derived from peak I and peak 11 obtained from irradiation of 
W433 solutions for 18 h. The spectrum of peak I is consistent with W433 

The mass spectrum of peak 11 although indicating the displacement of Cl, which one would t- 

expect to be the reactive chlorine of the triazine L, , roup, could not be used to assign which 

of the three chlorine atorns on W433 was removed, but this was achieved usill(I dau"l-iter 

ion MSMS. The singly charged molecular ion (mlz- 796) was too weak for MSNIS studies. 

Therefore the more intense doubly charged parent ion nilz. 392.5 1 M-21-11 2- was selected as 
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parent ion. The daughter ion spectrum derived fi-om this ion is shown in Fioure 3.10, 

which also shows the proposed structural assignmcnts ofthe fragment ions. 
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Figure 3.10 Dau(Ner ion mass specti-um ofinl, -. 392.5, dei-ived I't-oni peak 11 pi-odUccd by 

in-adiation of W433 solutions fm 18 h 

To aid the interpretation, it was necessary to compare this niass spectrum to that of W433 

(Chapter 2, Section 2.7.2.4, Figure 2.41 ). The most important fraornent lons in ternis of 

structural information were those corresponding to cleavage of the bond between the azo Z- I- 

nitrogen and an ad* 321 and 436). The former, which is present III jacent aromatic r ncy. (nil, 

both spectra, is derived from the right hand side of the molecule and shows the two 

chlorine atorns to be present. However mlz 436 (Figure 3.10), is 18 mass units lower than 

the equivalent ion for W433 (mlz 454), confirming the structural change has OCCUrred on 

the left hand side of the molecule. The weak fragment lon nil, -. 5 18, is derived from 

cleavage at the secondary arnino group adjacent to the triazine ring, this was also observed 

for W433 and again supports the proposed hydroxy-triazine assignment. 

Interestingly, the ring opening reaction proposed for W433 to produce the fragment loll L- -I Z- 

mlz 197, was again observed. This fragmentation wits not observed for hydroxy-triazine Z, -- 

137 



pesticides, (Voyksner, 1987), but appears to be a useful characteristic fragment for the 

triazine group within dyes. 

A similar hydroxylation of a chlorotriazine ring was reported when chlorotriazine 

pesticides were photodegraded (Pelizzetti, 1990). 

Photolysis of W433 in the presence and absence of river Dodder humic, fulvic and 

hydrophilic fractions. 

The presence of hurnic acids have been shown to both sensitise and inhibit 

photodegradation reactions rates. Humic substances in water are made up of three main 

components referred to as humic acids, fulvic acids and a hydrophilic acids (Section 3.3). 

River Dodder, Dublin, (Eire), humic substances and a commercially available humic acid 

(Aldrich), were each added to W433 at concentrations of I mg 1-1 and the mixtures 

irradiated for up to 72 hours. W433 was chosen because a rather slow photodegradation 

rate was observed in pure water. Figure 3.11 shows a graphical representation of the 

changes in concentration vs time for each mixture, for duplicate analyses. 
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Figure 3.11 Changes in concentration of W433 with increasing irradiation time in (a-b) 

pure water, (c-d) river Dodder humic acid and (e-f) river Dodder fulvic acid 

b) 

d) 

Irradiation time (hours) 

01 i 

-031 20 40 6600 

2 99 

-1.5 
-2-- 

-23-- 
-3 -Slope= -0.0549x 

'3*5 Rý = 0.. 997 11 
4 -L 

139 



Irra(liation time Oiours) 

0 

-0.5 0 20 40 60 

-1 
u -1.5 

-2 
-2.5 E3 

-3 Slope 4) 

\0548x --2 i- 
0 40 60 

-3.5 R' = 0.9924 
-4--l- 

g) 

80 

Irradiation time 0iours) 
04 

-0.5 
10 20 30 

.1 

-1.5 

-2 

-15 
Slope=-0.0686x 

-3 
Rý = 0.9931 

i) 

Irradiation time (hours) 

-0.5 1) 20 40) 60 

u. 1.5 

-2.5 
-3 - Slope = -0.0548x 

-3.5 2 R2 0.9893 

80 

h) 

j) 

-2.5 t Slope= -0.1 

-3 
Rý = 0.9934 

Irradiation time (hours) 
01ai " 

10 20 30 40 

Figure 3.11 (contd) Changes in concentration of W433 with increasing irradiation time in 

(g-h) riyer Dodder hydrophilic acid and (i-j) Aldrich humic acid 

The slope of each graph is equal to the photodegradation rate constant and from this the 

half lives of each mixture were calculated (Table 3.4). 
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Table 3.4 Photodegradation rate constants and half lives for the photolysis of W433 in 
the presence of humic materials. 

Humic substance kp (h") 

12 

t In (h) 

12 

Mean fin 

(h) 

None -0.0624 -0.0594 11.1 11.7 11.4 

Dodder humic acid -0.0569 -0.0574 12.2 12.1 12.1 

Dodder fulvic acid -0.0552 -0.0549 12.6 12.6 12.6 

Dodder hydrophilic -0.0548 -0.0548 12.6 12.6 12.6 

Aldrich humic acid -0.0686 -0.0716 10.1 9.8 9.9 

From these limited data it appears that the river Dodder humic substances tend to slow the 

rate of photolytic degradation, whilst the commercial humic mixture slightly enhanced the 

photodegradation process. However it should be noted that commercial Aldrich humic 

acid is derived from German lignite and is not necessarily representative of humic acids 

typically found in rivers and estuaries. This is apparent from a comparison of reported 

elemental analyses and aromatic carbon contents of humic acids isolated from the river 

Dodder (Zhou and Rowland, 1994) and river Suwannee, USA (Murphey et al., 1990). 

None of the humic substances made a dramatic change to reaction rate at the 

concentrations used. Haag (1988) showed how the presence of hurnic substances 

sensitised the photolysis of a range of simple azo dyes, often shortening their half lives by 

factors of 2- 10. The concentration of hurnic acid used by Haag (1988) was 5 mg 1-1, five 

times higher than that used in this study. A further experiment would be needed to 

evaluate the impact of increased humic substances concentrations on the photodegradation 

of W433. 
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Profiles of reaction products from irradiated samples are very similar regardless of which 

humic substance is present. A typical chromatogram of W433 plus river Dodder fulvic 

acid following 72 hour irradiation is shown in Figure 3.12. The major peak (retention time 

22 min) was hydroxylated W433 (11). There are at least 10 minor components which elute 

before this which are therefore probably more polar degradation products. The change in 

concentration of W433 and its photodegradation products in the presence of the same 

fulvic acid solution is shown in Figure 3.13. Quantification of the reaction products was 

carried out by reference to the W433 calibration. 

Figure 3.12 HPLC-UV chromatogram for W433 following 72 h photolysis in the 
presence of river Dodder fulvic acid 
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Figure 3.13 Change in concentration of photodegradation products of W433 in the 
presence of river Dodder fulvic acid, with increasinL, irradiation time 

1-1 

This approach assumes the degradation products have similar UV absorption properties to 

parent dye which may not be the case for all products, therefore the results provide only an 

estimate of product concentrations. The surn of W433 and photodegradation products 

accounted for greater than 80% of the initial dye concentration, the majority of which was 

due to the stable hydroxylated product (11). It should be noted that the minor component 

(Fig 3.13) consists of the sum of up to 10 different compounds, separated on the LC system 

(Fig 3.12) and quantified by reference to the W433 calibration curve. It was not possible 

to identify these relatively weak components by LC-MS. Further work would be needed, 

including either photolysis of a more concentrated solution or for a longer period of time, 

to produce a more concentrated sample for LC-MS and MSMS identification. However 

these data indicate that azo reactive dyes do photodegrade partially in 72 hours irradiation 

time. 
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3.4.2 Photolysis of W435 in pure water. 

The effects of irradiation on solutions of W435 are shown in Table 3.5 for duplicate 

experiments. 

Table 3.5 Effects of iffadiation time on photolysis of W435 

Time 
(h) 

W435 W435 (repeat) 

Conc. (mg 1-1) % of initial Conc. (mg 1-1) % of initial 

0.0 8.1 100 8.4 100 

0.5 6.5 80 6.4 76 

1.0 4.2 52 4.7 56 

2.0 2.8 35 2.9 35 

4.0 1.3 16 1.4 17 

8.0 0.3 4 0.3 4 

12.0 0.0 0 0.0 0 

19.0 0.0 0 0.0 0 

Data from both W435 experiments were very similar. The decline in W435 concentration 

with increasing irradiation time is exponential i. e. can be represented by the equation: 

Ct = C. e -Kp, t 

Where Ct is the concentration at time t and C, is the initial concentration. Therefore W435 

photodegradation kinetics can be described as first order: 

Ln [Ct/C,, ] = -kp, t 

and the first order photodegradation rate constant kp can be determined from the slope of a 

graph of Ln [Ct/C,, ] vs irradiation time (Figure 3.14). 
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Figure 3.14 Change of concentration with time for duplicate W435 photodegradation 
experiments 

The first order photodegradation rate constants (kp); were -0.43 and -0.44 h-'. The half 
L- 

lives were 1.7 and 1.6 hours respectively. 

The close correlation between calculated results denionstrates the reproducibility of 

experiments under controlled laboratory conditions. LC-UV (254 rim) analysis of the 

photodegraded samples indicated that one major and four minor products were formed 

which persisted on further irradiation. These had LC retention times between 19 and 

25 minutes and were labelled 11 - VI. Underg-raded W435 (1) was also present. A further 

product (VII) was barely retained on the LC column and a small transient peak with a 
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variable retention time (VIII) was also observed. Quantification of these products was 

measured by reference to the W435 calibration graph. Figures 3.15 and 3.16 show the 

change of concentrations of each component with increasing irradiation time. Since peaks 

III and IV were of similar intensity and overlapped, they could not be reproducibly 

integrated as individual peaks and their areas were combined. 

-*--I (W435) 
&0 4, 

4 -E3.. -V (W435-OH) 

7.0 -0 Sum W435 + products 
&0 --0 Others products 

tM 5.0 
E 

C 4.0 
0 
M 3.0 

2.0 
0 1.0 

0,0 F 

050 15 20 

Irradiation time (h) 

Figure 3.15 Change in concentration of W435 (1), the major photodegradation product 
(V) and the sum of degradation products, with increasing irradiation time 

Z- I- 

1.00 

0.90 

0.80 

0.70 

.20.60 III-IV 
0.50 

Ce VII 
0.40 

9 VIII 0 0.30 

0.20 

E &10 

0 0.00 w 
05 10 15 20 

Irradiation time (h) 

Figure 3.16 Change in concentration of the minor photodegradation products of W435 
with increasing irradiation time 
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This approach assumes the degradation products have similar UV absorption properties to 

parent dye which may not be the case for products not containing the anthraquinone 

chromophore. Therefore these results provide only an estimate of product concentration. 

The sum of W435 and photodegradation products accounted for only 60 - 69% of the 

initial dye concentration following >1 hour irradiation. This suggests that either some of 

the degradation products of W435 have much weaker UV absorptions than W435 at 

254 nm, or that some products are not amenable to analysis by LC-UV. 

In an attempt to identify the W435 degradation products, electrospray mass spectra were 

obtained for an extract derived from W435 irradiated for 4 hours. Figure 3.17 shows a 

comparison of LC-UV (254 nm) and LC-MS chromatograms, which show the presence of 

two major and four minor components. The poorly retained product, VII, was not 

observed in either the UV or NIS chromatograms and appears not to have been retained on 

the extraction cartridge. Also, there was no evidence for product VIII in either 

chromatogram. However this was a very minor and short lived component (Fig 3.16) and 

may have further degraded before LC-MS analysis. 
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Figure 3.17 Comparison of LC-UV (254 nm) and LC-MS (RIC) chromatograms for an 
extract of dyestuff W435 following photodegradation for 4h 

147 



Based on molecular weight and molecular ion isotope contribution information, structures 

were postulated for each of the observed degradation products. These were supported by 

MSMS daughter ion analysis of the molecular ions derived from each of these products. 

Interpretation of MSMS spectra of degradation products was aided by reference to the 

fragmentation pattern of W435, (Chapter 2, Section 2.15, Figure 2.38), where certain 

fragment ions provided particularly useful structural information. Prominent among these 

were m1z 555 due to cleavage of the triazine ring and losses of 115 and 72 mass units due 

to neutral loss of CH3CH20CH2CH20CN and CH3CH20CH=CH2 from the ethoxylate side 

chain (Fig 3.18). 

The LC retention time and molecular ions observed in the mass spectrum derived from 

component 1, m1z 731 and 365 (Figure 3.18) were consistent with unchanged parent dye 

W435. The proposed structures of fragment ions observed in the MSMS spectrum of 

W435 are shown in Figure 3.18 to aid interpretation of subsequent data. 
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Figure 3.18 Mass spectrum derived from component I (Figure 3.17) 

Based on a comparison with photodegradation data for W433, component V, the most 

intense and persistent of the photodegradation. products was assigned to the hydroxylated 

form of W435 in which the reactive chlorine is replaced by a hydroxyl group. The mass 
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spectrum of this component, Figure 3.19, showed singly and doubly charged molecular 

ions at m1z 713 and 356 which were consistent with this proposal. 
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Figure 3.19 Mass spectrum of component V (Figure 3.17) formed by photolysis 

of W435 for 4h 

Figure 3.20 shows the daughter ion spectrum derived from ion m1z 713. The characteristic 

ion at m1z 555 was indicative of cleavage of the triazine ring and losses of 115 and 72 

confirmed that no change had occurred to the ethoxylated side chain of the triazine ring 

(cf Fig 3.17). Additionally, losses of H20 (mlz 695) and HO-CN (mlz 670), eliminated 

from the triazine ring, confirmed the proposed structure. 
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Figure 3.20 Daughter ion spectrum of m/z 713 [M-H]- (Peak V) formed by photolysis of 
W435 for 4h 
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Initial inspection of the mass spectrum derived from component VI, (Fig 3.21), suggested 

that it may be an isomer of W435 because it showed the same molecular ions, but 

inspection of the molecular ion isotope cluster indicated the absence of chlorine 

(cf Fig 3.18). 
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Figure 3.21 Mass spectrum derived from Peak VI (Figure 3.17) 

731 [M-Hj- 

The daughter ion spectrum derived from m1z 731 is shown in Figure 3.22. It is quite 

different from that observed for W435 (Chapter 2, Figure 2.38 ) and the hydrolysis 

product, Figure 3.20. The absence of chlorine implies this has been removed by 

hydrolysis. This leaves a mass difference of 18, suggesting a molecule of water has been 

added and since the presence of the characteristic m1z 555 ion indicates the anthraquinone 

and attached substituted benzene ring part of the molecule must be unchanged, hydration 

must have occurred on the triazine ring. The ion mIz 598, [M-H-133] is probably 

equivalent to the characteristic loss of CH3CH20CH2CH20CN observed in the mass 

spectra of components I and V. This would indicate addition of water across the -C=N 

group attached to the ethoxylate side chain. 

The key to the identification of this degradation product was m1z 572, the base peak in the 

daughter ion spectrum. This may be rationalised by the following elimination: 
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Figure 3.22 Daughter ion spectrum of m1z 731 [M-H]- (component VI) 

Components 11 and IV appear to be related (Figs 3.23 and 3.24). Mass spectra of both 

exhibited only singly charged molecular ions (mlz 412 and m/z 430 respectively), 

indicating they possessed only one sulphonic acid group. The isotope pattern for 

component IV showed it to be chlorine containing and as component II has a molecular 
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weight 18 mass units lower and no chlorine isotope, it is likely to be the hydroxylated 

version of component IV. 
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Figure 3.23 Mass spectrum of component 11 (Figure 3.17) derived from photolysis of 
W435 for 4h 
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Figure 3.24 Mass spectrum of component IV (Figure 3.17) derived from photolysis of 
W435 for 4h 

The daughter ion spectra derived from m1z 412 and 430 are shown in Figures 3.25 and 

3.26. 
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Figure 3.25 Daughter ion spectrum of m1z 412 [M-H]- (component H) derived from 
photolysis of W435 for 4h 
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Figure 3.26 Daughter ion spectrum of m1z 430 [M-H]- (component IV) derived from 
photolysis of W435 for 4h 

It was noticeable that the chlorine present in the latter changed the nature of fragmentation. 

However losses of 115 and 72 were evident in both spectra, indicating the presence of the 

ethoxylated side chain. Additionally, both contained a fragment ion at m/z 254 which was 

consistent with: 
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NH2 
CH3 CH3 

-03S NH 
CH3 

I 
CN 

which is the equivalent of the ion m1z 555 for compounds 1, V and VI. Both of these 

compounds therefore are derived from loss of the anthraquinone chromophore. This would 

probably reduce their UV response compared to W435 and may in part account for the 

66missing" (viz under assessed) 30 - 40% of products in the mass balance observed for this 

experiment. 

The mass spectrum derived from the remaining photodegradation product (111; Figure 3.27) 

contained a base peak at m1z 320, with a very weak ion at m1z 641. It was difficult to 

determine whether the former was a singly or doubly charged ion. 
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Figure 3.27 Mass spectrum derived from component III (Figure 3.17) derived from 
photolysis of W435 for 4h 

However, the daughter ion spectrum derived from m/z 320 (Fig 3.28) gave fragment ions 

of higher mass indicating that the parent ion was doubly charged. 
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Figure 3.28 Daughter ion spectrum of m1z 320 [M-H]2- (component III) derived from 
photolysis of W435 for 4 h. Note, * denotes doubly charged ions 

Once again the characteristic ion m1z 555 was observed, indicating the presence of the 

anthraquinone to triazine group of the molecule. The ion m/z 277 was the doubly charged 

version of the same fragment. There was no evidence for the ethoxylated side chain. A di- 

hydroxy structure was therefore proposed (Fig 3.28). 

Based on the assignments presented, the proposed photodegradation pathway of W435 is 

shown below: 
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An experiment involving the irradiation of W435 over a prolonged period of time was 

carried out in order to determine whether the initial photodegradation products identified 

would degrade further. Figure 3.29 shows the estimated degradation product concentration 

with increasing irradiation time. The parent dye was rapidly removed and is not shown on 

this graph. 

156 



7 

6 

III-IV 
5 

V 

4 Vil 

-*. -SUM 

w 

M2 

0 
050 15 20 25 30 35 40 

Irradiation time (h) 

Figure 3.29 Change in concentration of photodegradation products of W435 with 
increasing irradiation time 

Surprisingly the data suggest that following the rapid formation of the initial 
Z-- Z-- Z-- 

photodegradation products, further degradation proceeded at a very slow rate. For 
11 

instance, one might expect product IV, which is chlorinated, to rapidly hydrolyse to 

product 11, but this was not observed. It appears likely that the concentration of oxygen is 

the limiting factor. Mill (1981) studied the effect of reduced levels of dissolved oxygen in 

aqueous solution for the photodegradation of benzo[a]anthracene, whereby 

photodegradation was inhibited when the test sample was nitrogen purged. Sigman (1991 ) tý -- 

also demonstrated the level of dissolved oxygen to effect both the products and product 

yield for the photolysis of anthracene. More relevant was a recent study by Aranyosi 

(1999) which showed the rate of photodegradatlon of two azo reactive dyes to be 

accelerated by increasing the concentration of dissolved oxygen. 
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Relating laboratory xenon lamp to natural sunlight 

Whilst the photodegradation rates of two reactive dyes have been determined herein using 

laboratory simulation experiments with an artificial light source. In order for the data to be 

used to model environmental scenarios the data need to be compared to those for natural 

sunlight conditions. 

Parker and Leahey (1988), describe how a controlled laboratory experiment for the 

photolysis of pesticides using the same xenon lamp used herein, could be compared to 

natural sunlight conditions and how the calculated photodegradation rates could 

subsequently be used to predict rates at different latitudes and seasons. 

In order to establish this relationship it is first necessary to compare the radiation intensity 

of the xenon lamp to that of midday sunlight at a known latitude (L) and season (S). For 

instance, UK (approximately 50' North ), spring sunlight. These were determined herein 

using a spectroradiometer, which was able to measure radiation intensity, over the 

bandwidths of 300 - 800 nm. The ratio (A) of incident xenon light to natural light can then 

be described by the expression: 

A Measured incident light intensity of xenon bumer 
Measured daylight intensity at latitude (L) for season (S). 

Therefore 12 hours of midday sunlight at latitude L and for season S is equivalent to 

12/A hours under a xenon lamp. This ratio is effectively a simple calibration of the xenon 

lamp against natural light. Referring to Figure 3.30, it is beneficial to carry out this 

procedure at a season where irradiation is most intense (ie summer or spring) to minimise 

errors in subsequent calculations. 
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Parker and Leahey (1988) also reported that based on information from the UK 

meteorological office, Bracknell, the average radiation for a 12 hour day is approximately 

equivalent to 1/4 of the intensity at midday. Therefore 12 hours of midday sunlight at 

latitude L and for season S is equivalent to 0.75 x 12/A hours under a xenon lamp, or 

conversely: 

Ih xenon lamp = A/0.75 hours of natural sunlight at specified latitude and season 

Parker and Leahey (1988) also described how data published by Mill (1986) and Leifer 

(1988), and subsequently updated within EPA guidelines (1996), could be used to convert 

data obtained for the xenon burner to predict photodegradation rates at other latitudes and 

seasons. These data, first published by Mill (1986) involve the term Lx, the solar radiance 

in water, which is proportional to the day averaged radiation from sunlight available to 

cause photolysis over a 24 hour day at a specific latitude and for each of the four seasons. 

Calculation of Lk is based on one specific day in each season as defined by the declination 

of the sun: -20" (winter), -10' (autumn), +10* (Spring) and +201 (Summer). Values for 

each season are given in 100 intervals for latitudes from 0 to 70" North. An example of 

how the values for the sum of Lx vary from season to season at different latitudes is shown 

in Figure 3.30. For summer sunlight the intensity of incident radiation does not change 

significantly from equator to northern latitudes. However'a marked difference is observed 

for autumn and winter seasons. 
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Figure 3.30 Change in Y- L, for northern latitudes at different seasons 

In order to convert measured photodegradation rates expressed for latitudes (L) and for 
Z- 

season (S) into rates at another latitudes (Lx) and season (Sx), it is necessary to ratio the 

sum of calculated Lj values over the wavelength range of interest: 

Ratio (R) = 
! 

-L/, (3(X) 8(X) nm for latitude (L) and season (S) 
11-ý 

(300-8(X) nni) for latitude (Lx) and season (Sx) 

Therefore one day of sunlight (assumed to be 12 hours) at latitude (Lx) and season (Sx) is 

equal to: 

(I 2/A x 0.75 xI /R) hours of irradiation under the xenon lamp, or 

I hour xenon lamp = (A/0.75 x R) hours natural daylight 
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Example calculation 

The intensity of incident xenon burner light for the initial experiments herein was 

measured as 7.57 mE CM-2 day-, and natural light measured at midday (spring) at Brixham 

(approximately 50' North), as 14.2 mE CM-2 day-', giving a ratio (A) = 0.533, ie the xenon 

lamp was less intense than spring midday sunlight. 

I hour xenon burner is equivalent to A/0.75 hours of natural sunlight at specified latitude 

and season: 

0.533 / 0.75 = 0.711 hours Brixham (UK) spring daylight. 

The calculated half life for W435 derived from the initial experiment was 1.6 hours, which 

gives an estimated environmental half life of 1.1 hours for UK spring daylight. 

In order to relate this data to other locations around the world it is necessary to ratio the 

sum of calculated Lx values over the wavelength range of interest (Leifer, 1988). Typical 

values are shown in Table 3.6 below. 
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Table 3.6 Lk values for 50' North (UK) and 30' North (USA) 

x 
297.5 
300 

302.5 
305 

307.5 
310 

312.5 
315 

317.5 
320 

323.1 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
525 
550 
575 
600 
625 
650 
675 
700 
750 
800 

Spring 50" North 
3.61 E-06 
3.05E-05 
1.54E-04 
5.24E-04 
1.32E-03 
2.66E-03 
4.53E-03 
6.82E-03 
9.34E-03 
1.19E-02 
2.25E-02 
8.26E-02 
1.08E-0 I 
1.22E-0 I 
1.36E-01 
1.47E-01 
1.57E-0 I 
1.48E-0 I 
2.12E-01 
2.80E-01 
2.89E-01 
2.79E-01 
3.3 1 E-0 I 
3.73E-01 
3.78E-01 
3.90E-01 
4. OOE-01 
3.78E-01 
3.86E-01 
1.1 OE+00 
1.05E+00 
1.05E+00 
1.06E+00 
1.08E+00 
1.1 OE+00 
1.11 E+00 
1.11 E+00 
2.15E+00 
2.08E+00 

7, Lx (300-800) 17.5 

Summer 50* North 
2.86E-05 
1.50E-04 
5.33E-04 
1.39E-03 
2.89E-03 
5.05E-03 
7.75E-03 
1.08E-02 
1.40E-02 
1.71E-02 
3.12E-02 
LIOE-01 
1.40E-01 
1.57E-01 
1.74E-01 
1.86E-01 
1.99E-01 
1.87E-01 
2.69E-01 
3.55E-01 
3.65E-01 
3.52E-01 
4.17E-01 
4.69E-01 
4.75E-01 
4.91E-01 
5.03E-01 
4.76E-01 
4.85E-01 
1.28E+00 
1.33E+00 
1.34E+00 
1.35E+00 
1.37E+00 
1.38E+00 
1.39E+00 
1.38E+00 
2.66E+00 
2.57E+00 

22.0 

Summer 30' North 
1.09E-04 
4.11 E-04 
1.14E-03 
2.46E-03 
4.45E-03 
7.02E-03 
LOOE-02 
1.32E-02 
1.64E-02 
1.95E-02 
3.46E-02 
1.18E-01 
1.48E-01 
1.63E-01 
1.80E-01 
1.91E-01 
2.04E-01 
1.93E-01 
2.77E-01 
3.64E-01 
3.74E-01 
3.61E-01 
4.26E-01 
4.79E-01 
4.85E-01 
5.01E-01 
5.13E-01 
4.85E-01 
4.95E-01 
1.31E+00 
1.36E+00 
1.37E+00 
1.38E+00 
1.39E+00 
1.40E+00 
1.40E+00 
1.39E+00 
2.67E+00 
2.57E+00 

22.3 

Therefore for a comparison of UK spring daylight (50" North) to Florida daylight 

(30' North), for instance, the ratio R= 17.5 / 22.3 = 0.78 
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I hour xenon lamp = (A/0.75) xR= (0.533 / 0.75) x 0.78 = 0.55 hours natural Florida 

daylight, which gives a half life for W435 in Florida of 0.89 hour. 

Using the same procedure it was possible to estimate the half lives for W433 and W435 for 

the UK and other countries where azo and anthraquinone dyes are manufactured. 

Currently these include India, South and Central America, for different seasons of the year. 

Two xenon lamp systems were used in the current studies. The lamp for initial studies at 

Plymouth University had a measured intensity of 7.6 mE CM-2 day-'. The system at 

Brixharn laboratory had a newer lamp and was measured at 14.1 mE cm-2 day-' which, 

coincidentally, was very similar to the value measured for natural midday sunlight 

recorded outside of the laboratory (20th March 2000) as 14.2 mE CM-2 day-'. Ideally this 

measurement should have been taken on the same day as those used to calculate LI values 

to enable a more accurate comparison with other latitudes, but this was not possible due to 

the requirement of having a clear (cloudless) midday sky on the days for which the spectra- 

radiometer was available to take measurements. 

Using the ratio of xenon lamp to natural sunlight, I hour of xenon light was equivalent to 

0.711 and 1.32 hours of UK spring daylight for the Plymouth and Brixham lamps 

respectively. 

The table below shows the sum of Lx values (Leifer, 1988) for different latitudes and 

seasons of the year which have been used in the calculation. 
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Latitude (N: Spring Summer Autumn Winter 
50 17.5 22.0 8.4 4.0 
40 19.2 22.4 12.0 7.8 
30 20.2 22.3 14.9 11.4 
20 20.7 21.9 17.2 14.6 
10 20.7 20.7 18.8 17.1 
0 20.0 18.9 20.0 19.2 

The estimated half lives for W433 and W435 are shown in Table 3.7 below: 

Table 3.7 Calculated half lives (h) for W433 and W435 for different locations: 
UK=50'N, Florida=30'N, India 20'N and South America (Brazil) 0' 

Additive Xenon UK UK UK Florida India South America 
Spring Summer Winter Summer Summer Winter Summer Winter 

W433- 1 30 21.3 17.0 93 16.8 17.1 25.7 19.8 19.5 
30 21.3 17.0 93 16.8 17.1 25.7 19.8 19.5 

W433- 2 11.4 15.1 12.1 66 11.9 12.1 18.2 14.0 13.8 
HA 12.1 16.0 12.8 70 12.6 12.8 19.3 14.9 14.7 
FA 12.6 16.7 13.3 73 13.1 13.4 20.1 15.5 15.3 
HA 12.6 16.7 13.3 73 13.1 13.4 20.1 15.5 15.3 
AHA 9.9 13.1 10.5 57 10.3 10.5 15.8 12.2 12.0 

W435 1.6 1.1 0.91 5.0 0.89 0.91 1.4 1.06 1.04 
1.7 1.2 0.97 5.3 0.95 0.97 1.5 1.12 1.11 

Key: HA River Dodder humic acid, FA River Dodder fulvic acid, Hy River Dodder 

hydrophilic acid and AHA Aldrich humic acid. W433-1 and W433-2 refer to experiments 

I and 2 respectively. 

From these data it is clear that the short half life of W435 indicates that photolysis is a 

major route of degradation for this dye in the aquatic environment, particularly in summer 

time for northern Europe and in countries at lower latitudes which have intense sunlight for 

most of the year. It is important to note that while European and American manufacturing 

has moved towards azo dyes, anthraquinone dyes such as W435 remain the second most 
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important class of reactive dyes world wide and they are still widely used in India and 

South America. 

By contrast, W433 is degraded at a much slower rate and it seems less likely from these 

results that photolysis would be a major route of degradation for such reactive azo dyes. 

Although Haag (1988) reported a significant increase in degradation rate in the presence of 

high concentrations of humic substances this did not seem to be the case with the nearly 

riverine humic substances used herein. Further experiments are required to better 

understand the relationship between hurnic substances on photodegradation rates. 

3.4.3 Conclusions 

A laboratory xenon lamp was successfully used for simulated aqueous photolysis studies 

of two reactive dyes. The main benefits of the laboratory system were shorter exposure 

times (unlike sunlight a xenon lamp can be used for 24 hours each day), which is 

particularly important where test chemicals could undergo non-photolytic degradation in 

aqueous solution. Studies can be performed at any time of year, which is particularly 

important for northern latitudes. Unlike natural daylight, the xenon lamp provides a 

constant exposure and sample temperatures can be closely monitored and regulated, both 

of which lead to reproducible kinetic data. The correlation coefficients for graphs of 

change in concentration against irradiation time (Ln (Ct/Co) vs t) were generally better than 

0.99, particularly for the experiments where a laboratory chiller unit was used to carefully 

control the test vessel temperature. This allowed a reliable comparison between different 

photodegradation experiments. 

Following comparison of the laboratory xenon lamp with natural daylight (Brixham, 

springtime) it was possible to estimate half lives for both dyes in different parts of the 
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world and for each season. This rather simple extrapolation relies on several assumptions. 

The measurements of natural daylight on one day over a very limited time are extrapolated 

via L), tables (Leifer, 1988) to a global situation. Hazy conditions, high cloud cover etc 

could introduce errors in the calculation. Also, the calculations assume the xenon lamp is 

closely matched to natural light at the wavelengths that excite the target chemical. The 

spectral comparison shown earlier, (Fig 3.2), clearly shows a good correlation for 

wavelengths up to approximately 600 nm, but is relatively poor thereafter. Dyes of all 

colour show absorption over the whole spectrum 300 - 800 nm and therefore could be 

'energised' at a wavelength that is not well correlated with natural daylight. 

These limitations accepted, this study found that I hour irradiation with a xenon lamp was 

equivalent to 1.04 hours of Southern USA natural sunlight. Data published by Yager 

(1988) describing a direct comparison of natural sunlight with a xenon source, calculated 

9.06 hours of xenon lamp to equate to 12 hours Florida sunlight or I hour - 1.3 hours 

Florida sunlight, which is in very good agreement with the estimates of this study. 

Photodegradation was very rapid for the anthraquinone dye W435 for which a t1/2 Of 1.5 h 

was determined. The observed degradation pathway indicated cleavage at several parts of 

the dye structure some of which retained the reactive chlorine. It was interesting that 

following initial rapid degradation, continued irradiation did not appear to significantly 

effect the concentration of products. 

Further experiments comparing a continuously aerated sample with a nitrogen purged 

solution may clarify the involvement of oxygen in the degradation process. 

Photodegradation of the azo dye W433 was significantly slower 01/2 30 hours) and 

dechlorination and hydroxylation was the only initial transformation reaction. Extended 

periods of irradiation (up to 72 hours), produced at least 10 degradation products which 
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collectively accounted for an estimated 15% of the initial dye concentration. However 

each component was relatively minor and could not be identified, by LC-MS. A further 

experiment over an extended irradiation time would undoubtedly produce a higher yield of 

degradation products which could be concentrated by solid phase extraction for MSMS 

identification. 

The addition of humic substances (I mg 1-1) isolated from the River Dodder, Eire, appeared 

to have either no effect or slightly reduce the rate of photodegradation of W433. 

Conversely Aldrich humic acid increased the rate of photodegradation. From the limited 

work reported here and that of Haag (1988), humic acids may have an effect on the rate of 

photodegradation, either by absorbing energy which otherwise might energise dye material 

to cause degradation, or by sensitising the photodegradation reaction to encourage a faster 

rate. Further work, including a broader range of origins and concentration of characterised 

humic substances is required to better understand their role in photolysis of reactive dyes. 

The optimised analytical conditions described in Section 2, LC-UV and LC-MS, were 

successfully used for the separation concentration and tentative identification of 

degradation products derived form the photolysis of two reactive dyes. 

The proposed structural fragmentation pattern obtained using optimised LC-MSMS 

parameters were then successfully applied to confirm the structures of proposed 

degradation products. The triazine ring opening reaction postulated in Section 2, was also 

observed for degradation products of both W433 and W435 and mass spectra were found 

to contain useful diagnostic fragment ions for the structural elucidation of this type of 

reactive dye. 
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CHAPTER 4. 

ANAEROBIC DEGRADATION AND AUTOXIDATION OF AZO DYES 

4.1 INTRODUCTION 

Decolourisation of azo dyes has attracted considerable attention over the last 20 years. 

The dyes are generally regarded as being resistant to oxidation by most bacteria under 

aerobic conditions as used in conventional sewage treatment systems. However, some 

cleavage of the azo bond of simple azo dyes has been reported under aerobic conditions; 

this is normally a reductive cleavage (eg Horitsu et al., 1977; Idaka et al., 1978). Aerobic 

decolourisation by white rot fungi and by lignolytic Streptomycetes spp. has been widely 

reported (eg Paszczynski et al., 1991; Pasti-Grigsby et al., 1992) and mechanisms have 

been proposed (Goszczynski et al., 1994). These are discussed in more detail in Chapter 5. 

Anaerobic reduction of azo dyes is well known. Weber (1995) compared the rate of 

chemical reduction of a mono azo dye, Disperse Blue 79, with reduction of the dye by the 

bacteria present in an anaerobic sediment. He concluded that azo disperse dyes are rapidly 

reduced to their corresponding aromatic amines in anoxic bottom sediments. The 

reduction of many dyes of commercial importance was reported by Brown and Laboureur 

(1983). These included Mordant Black 9, Acid Yellow 151, Acid Red 14, Acid Blue 14 

and the reactive dyes, Blue 19 and Acid Black. A review (Chung et al., 1992) highlighted 

the ability of many different bacterial species to reduce azo bonds under anaerobic 

conditions. These included five species of Bacillus, four of Salmonella and six 

Pseudomonads amongst several others. The anaerobic reduction of azo dyes using isolates 

from environmental matrices including soil, polluted river bed, sewage and activated 

sludge (Wuhrmann, 1980), and from the drainage ditches of a dyestuffs manufacturing 

factory (Idaka, 1978) was also reported. Nigram. (1996) described the isolation of mixed 
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bacteria cultures from prolonged anaerobic enrichment cultures of dye effluent samples. 

Complete decolourisation of 5 of 9 azo dyes, including 2 reactive dyes, was reported. 

Kulla (1984) reported the adaptation of a Pseudomonas culture capable of utilising the 

carboxylated azo dye Orange Il (1-(4'-carboxyphenylazo)-2-naphthol), as a sole carbon 

and nitrogen source. Similarly, an isomer, Orange I (1-(4'-carboxyphenylazo)-4-naphthol) 

was also reduced by a different Pseudomonas culture. However, when the dyes were 

substituted with their 4'-sulphonic acid analogues, reduction occurred but neither dye 

could be used as a sole carbon source (ie sulphonation appeared to stop further 

metabolism). It was unclear as to whether this was due to an inability of the cells to uptake 

the sulphonilic acid reduction product, or the suspected antibacterial properties of this 

material. The mode of action of azo reduction was attributed to intracellular azo-reductase 

enzymes. The enzyme from each Pseudomonas strain was isolated and characterised, and 

found to be highly selective such that each had no cross-reactivity with the others 

substrate. 

Wuhrrnann (1980) reported the decolourisation of several sulphonated azo dyes including 

Acid Orange 7,29 and 52 and Acid Red 66 using both anaerobic bacteria and aerobic 

bacteria under temporary anoxic conditions. He determined that dyes that were adsorbed 

onto the cell walls of bacteria were generally reduced at a much slower rate than those able 

to permeate into the cell. However, these same adsorbed dyes were readily reduced by 

extracts of the same bacteria. These data were interpreted by Wuhrmann to indicate that 

the reduction process was intracellular, non-enzymatic and also that the rate limiting step 

in azo reduction was the transport of the dye through the cell membrane. Additionally, the 

presence of sulphonic acid groups on the dye (such as found in acid and reactive dyes) 

tended to impair permeation of the cell wall which therefore inhibited reduction. Yatome 

(1991) also concluded that the rate of azo reduction was limited by the degree of 

sulphonation of the dye and that azo reduction must be intracellular and that permeation 
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through the cell membrane was the principal rate determining factor. Carliell et al., (1995) 

reported the use of acclimated anaerobic digester sludge to reduce Reactive Red 141, a 

high molecular weight diazo dye possessing eight sulphonic acid groups. The rate of 

reduction was, however, very slow (K = 0.44 h-1) but was greatly increased (0.012 h-1) by 

the presence of glucose as a supplemental carbon source, an observation also noted by 

Haug et al., (199 1). Carliell et al., suggested this was due to increased production of 

reduced flavin nucleotides within bacterial cells and this was the rate limiting step for the 

reduction of dyes and not transport across the cell membrane as previously suggested by 

Wuhnnann (1980) and Yatome (1991). 

Haug et al., (1991) demonstrated the mineralisation of the sulphonated azo dye Mordant 

Yellow 3. A bacterial consortium capable of mineralising a range of substituted 

naphthalene sulphonic acids was first pre-adapted to aerobic growth on 

6-aminonaphthalene-2-sulphonic acid (the predicted reduction product of Mordant 

Yellow 3). Mordant Yellow 3 was then successfully reduced by this consortium under 

anaerobic conditions. The aromatic amine reduction products were then metabolised 

following the re-aeration of the culture. This provided an anaerobic-aerobic system 

capable of the complete mineralisation of azo dyes. The ability of the consortia to reduce 

the azo dye was correlated with the presence of bacterial strain BN6. Nortman, (1994) 

examined a range of amino and hydroxy substituted naphthalene sulphonic acid 

compounds (the building blocks of many azo dyes) to establish that most were amenable to 

aerobic mineralisation by BN6 and similar consortia. More recently, work by Keck et al., 

(1997) and Kudlich et al., (1997) using the same BN6 strain, has suggested an alternative 

mechanism for the anaerobic reduction of azo dyes. They have demonstrated that an 

intermediate formed in the aerobic degradation of naphthalene sulphonic acids can act as a 

redox mediator which can 'shuttle reduction equivalents' from the cell to the extracellular 

dye so that it is not always necessary for the dye to penetrate the cell membrane. This may 

170 



explain how highly sulphonated poly-azo dyes that cannot penetrate the cell wall may still 

be reduced by anaerobic bacteria. 

As demonstrated by Haag et al., (1991) alternating anaerobic and aerobic conditions may 

allow an azo bond to be cleaved anaerobically and the resultant aromatic amines to be 

mineralised aerobically. Seshadri et al., (1994) examined the potential of this approach in 

a simulated treatment process for the de-colourisation of azo dyes. He used an anaerobic 

fluidised-bed reactor, followed by a bench scale activated sludge system for subsequent 

aerobic treatment. Four rather simple sulphonated azo dyes were studied: Acid Orange 7, 

8 and 10 and Acid Red 14. All four dyes were reduced using hydraulic retention times 

(HRT) up to 24 hours. Aerobic treatment then appeared to remove the majority of the 

primary degradation products but this was only monitored in terms of COD removal and 

appeared to be inconclusive. A similar approach was adopted by Fitzgerald and Bishop 

(1995) for the treatment of three simple sulphonated azo dyes: Acid Orange 10, Acid Red 

14 and 18. Not only were the dyes reduced in the anaerobic digestor (65 - 90% removal), 

but so too were the aromatic amine metabolites (>99% removal). This is rather surprising 

considering most previous work has indicated that aromatic amines do not show significant 

degradation under anaerobic conditions. 

Knapp and Newby (1995) described the successful decolourisation (>85%) of a highly 

coloured industrial effluent discharge by anaerobic treatment with mixed bacterial 

consortia derived from a variety of sources. Interestingly, when the decolourised effluent 

(pale yellow) was exposed to air, it developed a different, much deeper colour which 

showed a stronger absorbance in the visible region. This suggests the substituted aromatic 

amines produced by the reduction of azo dyes may then autoxidise to products that are 

more highly coloured than the starting material. 
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It is not only in the environment that azo reduction has been reported. Walker (1970) 

reviewed the mammalian metabolism of azo dyes. He concluded that intestinal azo 

reduction was considerably more effective and non-specific than the hepatic system. The 

latter showing negligible azo reductive ability in most animals studied. Metabolism in the 

intestine was believed to be, at least in part, due to bacteria present in the gut microflora. 

Similar findings were made by Watabe (1979) in a study of the decolourisation of four 

sulphonated dyes including Amaranth, Sunset Yellow and Tartrazine, by cultures derived 

from human faeces. Chung (1978) concluded that because the reduction of azo dyes 

occurs anaerobically, it is likely to take place in the colon, which is the most anaerobic part 

of the body. Interestingly, he also suggested that reduction tdkes place outside of the cell 

and involves an extracellular shuttle for this to occur. This is consistent with the findings 

of Keck (1997) and Kudlich (1997), as discussed earlier. In a further study Chung (1992), 

described the azoreductase(s) catalysed reduction of 27 mono and diazo dyes, many of 

them sulphonated, using bacteria derived from intestinal microflora. 

Most azo dyes are relatively non-toxic. However, on reduction of the azo bond, aromatic 

amines are released which may be toxic, carcinogenic or teratogenic (Brown and De Vito, 

1993). The release of azo dyes into the environment where they can be readily reduced, or 

the release of their aromatic amine metabolites into the environment is therefore a cause 

for concern. It is therefore desirable that a means of biological treatment be devised so 

that potential problems caused by their uncontrolled reduction in the wider environment 

can be obviated. 
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4.2 AUTOXIDATION OF AMARANTH, SUNSET YELLOW AND NAPHTHOL 

BLUE-BLACK 

The reduction of dyes has been widely studied as discussed above, and it has been 

demonstrated that azo-dyes undergo microbial reduction under anaerobic conditions 

yielding the corresponding aromatic amines. Most industrially applied azo-dyes contain at 

least one aromatic ring system that carries a hydroxy group in the ortho-position to the azo 

bond to stabilise the compound by the formation of hydrogen bonds (eg Fig 4.1). The 

corresponding reduction products carry an amino group ortho to this hydroxy group on the 

aromatic ring. It has been suggested that these compounds can undergo autoxidation in the 

presence of oxygen, although little is known of the constitution and stability of the 

autoxidation products. The biological and chemical reduction of three model dyes, 

Amaranth, Sunset Yellow and Naphthol Blue-Black, (Fig 4.1) and the stability and kinetics 

of autoxidation of their associated reduction products has been investigated recently 

(Kudlich, 1998), but the identity of these products is unknown. 

H03S OH 

=N-gS03H 

H03S HO 
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H03S N=: N-0 

OH 

NH2 

HO3S =N-9 
D-N02 

III 

OH 

11 

Figure 4.1. Structures of (I) Amaranth, (11) Sunset Yellow and 
(III) Naphthol Blue-Black 
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Dr Kudlich kindly agreed to supply the same three dyes in their reduced form such that the 

LCMS methods developed within this project could be used to better understand the 

autoxidation process. 

4.3 METHODS 

4.3.1 Reduction of azo-dyes 

Reduced dyes (Amaranth, Sunset Yellow and Naphthol Blue-Black) were supplied by kind 

permission of Dr Michael Kudlich of the University of Stuttgart. These were prepared at 

the university by catalytic reduction according to the following method: 

Stock solutions of each dye (50 ml, 20 mM ) were incubated in a hydrogen atmosphere in 

the presence of palladium on barium sulphate (200 mg). After complete loss of colour, the 

solution was transferred anaerobically to a rubber-stoppered serum bottle and stored, 

protected from light, in a nitrogen atmosphere. There was a pressure of 1.5 atm in the 

bottles to prevent the introduction of air when taking samples. Reduced dyes were then 

transported to Brixham for analysis. 

4.3.2 Autoxidation of reduced dyes 

Sub-samples were taken from the stock of reduced Amaranth dye, using a gas tight syringe 

and spiked into control water (8 ml) to give solutions of approximately 0.5 mM reduced 

dye in a 10 ml test tube. A stirring bar was used to help aeration of the solution. Aliquots 

(approximately 1.2 ml) were taken at regular intervals (0,30,55,85 and 105 min) and 

analysed by LC-Photodiode Array (PDA) and LC-MS. The autoxidation process was 
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repeated for Sunset Yellow with samples taken at 0,10 minutes, 1,4 and 6 hours, and 

Naphthalene Blue-Black which was sampled following 0 and 45 minutes oxidation only. 

4.3.3 Analytical methods 

Two liquid chromatography systems were used coupled to photodiode array and mass 

spectrometer detectors (LC-PDA, LC-MS). Where possible these were used in parallel to 

allow a direct correlation of UV-visible and mass spectra. Where this was not possible, 

oxidation experiments were repeated with samples taken at the same time points, and 

analysed using the same LC column. 

The High Performance Liquid Chromatography (LC) system used consisted of a Hewlett 

Packard 1090 gradient elution pump equipped with aI 100 autosampler (10 gl injection 

volumes) and photo diode array (PDA) detector. The analytical column used was a 

250 x4 mm, 5 Itm, C-18 (Hichrom), operated at 0.7 ml min-. Separation was achieved by 

isocratic elution using 100% ammonium acetate (10 mM) as the mobile phase. 

The LC-MS system comprised a Waters 600 ms pump with Jasco 851AS autosampler 

(10 gl injection volume), with a Jasco 875 UV detector operated at 210 nm placed in-line 

for comparison of UV and NIS data. The analytical column and mobile phase were the 

same as for LC-PDA to allow direct comparison. Mass spectra were obtained using a 

Finnigan MAT TSQ-700 mass spectrometer fitted with electrospray ionisation (ESI) 

source operated in negative ionisation mode. The source was operated at a spray voltage 

of 4.5 W, with nitrogen sheath and auxiliary gas at 60 psi and 10 psi respectively, and a 

capillary temperature of 260*C. 
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The molecular ions observed for the reduction and autoxidation products derived from 

Amaranth were subjected to MSMS analysis. In each case the singly and/or doubly 

charged molecular ion was subjected to daughter ion fragmentation using an argon 

collision gas at 3 mToff, and collision offset voltages of 15 - 25 eV. The third quadrupole 

was scanned over the range 30 to 350 mass units at 2 seconds per scan. All other 

parameters were as stated above. 

4.4 RESULTS AND DISCUSSION 

4.4.1 Amaranth 

LC-PDA Analysis 

Amaranth (I) when reduced by hydrogen in the presence of palladium on barium sulphate, 

produced two Products with retention times of 4.1 and 9.3 min respectively when 

examined by LC-PDA (Fig 4.2). 
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Figure 4.2. LC-UV (230 and 210 nm) chromatogram for reduced Amaranth at 
time zero (tO) 

The reduced Amaranth sample was also analysed using Electrospray (ESI) LC-MS 

operated in negative ionisation mode. This ionisation mode tends to produce de- 

protonated molecular ions such that compounds with more than one sulphonic acid group 

may exhibit both single and doubly charged molecular ions, [M-1-11- and [M-2H]2-, 

depending on whether one or both acid groups are de-protonated. Generally no 

fragmentation is observed. 

The mass spectra of components producing peaks 11 and III are shown in Figure 4.3. 

These were consistent with the expected reduction products of Amaranth. The spectra 

derived from II shows both singly and doubly charged molecular ions at m1z 318 and 158.5 

indicating two sulphonic acid groups and a molecular weight of 319 which indicates the 

presence of an odd number of nitrogen atoms and is consistent with I-amino-2- 

hydroxynaphthalene-3,6-disulphonic acid (11). The mass spectrum of III shows only one 
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major ion, m1z 222, indicating only one sulphonic acid group and a molecular weight of 

223, consistent with 4-aminonaphthalene-l-sulphonic acid (111). 

NH2 
OH 

H03S S03H 

(11) (111) 

Useful though the molecular weight information provided by LC-MS is, the data are 

insufficient for firm identification of analytes. Thus LC-MSMS was employed to provide 

further structural information. The daughter ion spectra of the singly charged molecular 

ions for compounds II and 111, (mlz 318 and m1z 222 respectively) were selected. 

Additionally, the doubly charged ion for peak 11 (mlz 158.5) was also examined to provide 

further structural information. Daughter ion spectra are shown together with an 

interpretation of fragmentation patterns in Figures 4.4 and 4.5. 
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Figure 4.3 Mass spectra derived from peaks 11 and III for the LC-MS analysis of 
reduced Amaranth at time zero (to) 
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Figure 4.4 Daughter ion ýpectra for peak 11 derived from ndz 318 ([M-HY, top) and 
m/z 158.5 ([M-2H] bottom. Note * denotes doubly charged ions 
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Figure 4.5 Daughter ion spectra derived from ndz 222 ([M-H]-) for peak III 

The first observation was that all of the NISNIS spectra were dominated by ions associated 

with sulphonatc groups. These were generally observed as ions at nilz 80 [S031-, and 

losses of [SOjI (80), and [S021 (64). The latter was formed by a re-arrangement resulting 

in formation of a phenolate anion: 

)ýlls, 

-0' 
-, wo. 

), 

ý, 0- + SO2 
11 
0 

This was generally followed by loss of 28 mass units due to expulsion of carbon 

monoxide. 

Unfortunately, the suspected nitrogen containing amines Il and III did not produce any 

significant fragment ions derived from loss of a nitrogen containing molecule, which 

would have provided a useful diagnostic tool for MSMS interpretation of amines. MSMS 
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fragmentation generally produces loss of a neutral molecule, which for a singly charged 

ion would be of odd mass if the loss contained nitrogen. However, these were not 

observed. The mass spectra, Figures 4.4 (peak- II) and 4.5 (peak 111), contained fragment 

ions associated with the sulphonatc groups only. 

Additional structural information can sometimes be provided by daughter ion spectra 

derived from the doubly charged molecular ion species. 17he daughter ion spectrum 

derived from mIzz 1583 together with assignments for the associated fragmentation is 

shown in Figure 4.4. It should be noted that for MSMS of a doubly charged species, loss 

of a charge carrying fragment ion such as S03". changes the charge state of the remaining 

ions from two to one. Fragment ions, because they become singly charged appear at 

higher mass to charge ratio than the parent ion. Thus in the MSMS spectrum of M/z 158.5, 

Figure 4.4, loss Of S03' (80 mass units) from the parent ion ("dz 158.5) produces an ion of 

mass 237 (2*158.5-80). Interestingly and unlike the equivalent fragmentation pattern 

derived from the singly charged molecular ion, loss of CO from the phenolic -01-1 is 

observed, (15 8.5 -) 144 (doubly charged) and 237 -ý 209). 

A comparison of LC-PDA chromatograms for each of the reduced Amaranth samples 

exposed to air over a period of 0 to 105 minutes, are shown in Figure 4.6. The measured 

peak area of 4-aminonaphthalene-l-sulphonic acid, peak III, (not shown in figure to allow 

an expanded view of the reaction products of interest), remained constant over the duration 

of the experiment, indicating that it was not oxidised. At time 0, only the two proposed 

reduction products, 11, (RT 4.1 min) and III, (RT 9.7 min) were observed. Little change 

was seen in the sample following 30 minutes oxidation. Two small peaks (IV, 3.3 min and 

V. 3.55 min) were observed after 55 minutes oxidation. Iliese became more prominent in 

the sample oxidised for 85 minutes and were joined by two further peaks (VI and VII, 

RT 2.9 min and RT 3.8 min respectively). Here, Peak 11 had noticeably degraded, now 
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being approximately 20% of its original intensity. Following 105 minutes of oxidation the 

original reduction product was totally transformed and one major autoxidation product 

remained (VI, RT 2.9 min), together with an additional minor product (VIII, RT 2.6 min). 

These data suggest the initial reduction product I-amino, -2-hydroxynaphthalene 

disulphonic acid, 11, is rapidly oxidised, via a collection of at least four transient 

intermediates, to one major, relatively stable, product. 
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Figure 4.6. HPLC-UV chromatograrn (230 nm) of reduced Amaranth following 
exposure to air for 0,30,55,85 and 105 minutes 
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A graphical representation is shown in Figure 4.7. This clearly shows the removal of the 

initial reduction product 11, and formation of intermediates IV, V and VII, which in turn 

are degraded to a final, relatively stable compound VI. The formation of a further product, 

VIII, is interesting but the experiment was not continued beyond 105 minutes. Kudlich 

(personal com. ) suggested compound VI is the only prominent degradation product after 

the initial transforniations and that this is stable for greater than II hours. 

5000 900 
4500 -800 
4000 

--700 
111 

3500 
-. 600 1, 

3000 
--500 IV 

2500 
2000 

400 V 

1500 --300 Vil 

1000 -. 200 VI 
500 100 

0 0 
10 30 50 70 90 110 

Time (minutes) 

Figure 4.7. LC-UV(230 nm) Peak areas for each component found in the autoxidation 
of Amaranth 

One of the major benefits of photodiode array is the ability to acquire UV spectra of the 

components separated by HPLC. The wavelength maxima derived from the UV-vIsIble 

spectra obtained for the two reduction products and major autoxidation products are 

summarised in Table 4.1. 

The main aim of this experiment was to identify the transition and stable degradation 

products (I - Vill) produced from the autoxidation of the reduction products of Amaranth 

and through this to better understand the processes that may occur with more complex 

dyes. Therefore LC-MS was used in parallel with the LC-PDA analysis to provide 

molecular weight information for each of the oxidised samples. In-line UV (230 nm) was 

used with LGMS to provide a real time comparison of UV and NIS data. Reconstructed 
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ion current (RIC) and selected mass chromatograms ([M-Hl- molecular ions) for major 

components in the Amaranth sample oxidised for 85 minutes, were compared to the in-line 

UV signal in Figure 4.8. Care has to taken here, because several of the observed molecular 

ions are of similar mass (ie m1z 316,317,318 and 319). Each of these will exhibit an ion 

I mass unit higher than the molecular ion because of the naturally occurring 13C isotope 

(1.1 times number of carbon atoms, expressed as % of 12C isotope), and 2 mass units 

higher due to sulphur isotopes (4.4 times number of sulphurs, expressed as % of 12C 

isotope). Thus isotopes associated with the component producing the molecular ion at 

m1z 316 will also have a contribution to the m1z 317 (approximately I I%) and m1z 318 

(approximately 9%) mass chromatograms. 
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Figure 4.8. LC-MS chromatograms for reduced Amaranth following exposure to air for 
85 minutes, (Peak III, RT 9.7 min, not shown to clarify region of interest) 

Comparison of the LC-MS in-line UV chromatogram. to that obtained by LC-PDA, 

(Figs4.8 and 4.6 respectively), shows that the chromatographic resolution was 

significantly worse for the LC-MS analysis. Peaks IV and VI, for instance, were not base 
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line resolved. However, one of the advantages of mass spectrometry is the ability to use 

selected mass chromatograms to differentiate the molecular ions of interest from co-elutincy 

components. Thus it was possible, using mass chromatography, to measure the peak area 

of each of the identified components in each of the oxidised samples. The results are 

shown graphically in Figure 4.9. Interestingly, peak IV was found to consist of two 

components, which could not be perceived from LC-PDA analysis. 
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Figure 4.9. LC-MS Peak areas for the major components found for reduced Amaranth 
following exposure to air for up to 105 minutes 

From these data it was possible to correlate LC-PDA peaks to those observed in LC-MS 

data. These have been surnmarised in Table 4.1. 
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Table 4.1. Summary of LC-UV and HPLC-MS data for each peak produced by 
oxidation of the reduction products of Amaranth. 

Peak Retention time (min) Peak Information 
LC-PDA LC-MS UV/vis kmax 

(nm) 
MS 

[M-Hl- [M-2H]2- 
11 4.1 4.3 220/250/300- 

380 
318 158. 

9.8 10.5 220/240/320 222 

IV 3.3 3.6 210/260/310- 
380 

317 
319 

158 
159 

V 3.6 3.8 210/260/320- 
420 

316 157.5 

VI 2.9 3.3 215/260/300 351 175 

Vil 3.7 not observed 215/260/320- 
420 

n/a 

The initial autoxidation product (peak IV in Figure 4.3, RT: 3.27 min) had a UV/VIS- 

spectrum typical of quinones, ie with a broad kmax in the range of 300 - 400 nm. The 

corresponding mass spectrum, Figure 4.10, indicated the presence of two compounds. The 

first showed molecular ions at m1z 158 [M-2H]2-and 317 [M-HI- suggesting a molecular 

weight 318 with two sulphonic acid groups and the even molecular weight indicating no 

nitrogen. This was consistent with 1,2-naphthoquinone-3,6-disulfonic acid (IVa). Co- 

eluting with this peak in the LC-MS chromatograrn was a compound with molecular ions 

at m/z 159 and 319, molecular weight 320. These data were consistent with 

1,2-dihydroxynaphthalene-3,6-disulfonic acid (lVb), the reduced form of 

1,2-naphthoquinone-3,6-disulfonic acid (lVa). Since quinones are known to readily 

interconvert to hydroquinones (Morrison and Boyd, 1977), often acting as reducing agents 

and quinones in general act as redox-mediators, it seems probable these exist in 

equilibrium as the reduced (hydroquinone) and oxidized (quinone) form in aqueous 

solution. 

188 



100 

80 

60 

40 

158.1 [M-H]-, lVa 
0 

"Ico H03S S03H 

IVa 

OH 
H 

H03AÖ 03H 

IVb 

159.1 [M-2H]2-, lVb 

20 

0 

317.0 [M-H],, lVa 319.1 [M-H]-, lVb 

Figure 4.10 Mass spectrum derived from peak IV in reduced Amaranth sample 
following exposure to air for 85 minutes 

The daughter ion spectrum derived from the molecular ion m1z 317 is shown in Figure 4.11 

together with proposed fragmentation which supports the proposed structure. The 

observed characteristic loss of carbon monoxide from the molecular ion (317 -4 289) is 

important. This direct loss is an important diagnostic marker for compounds containing a 

carbonyl group and phenols, and is in agreement with the proposed structure (IVa). 
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Figure 4.11 Daughter ion spectra derived from m1z 317 ([M-H]-) for peak Wa 

The daughter ion spectrum derived from the proposed hydroquinone compound (IVb, 

Figure 4.12) was very weak and showed only fragment ions associated with the loss of 

sulPhonic acid groups. Presumably a hydrogen atom was not available for transfer to the 

hydroxyl group to allow the elimination of water. 

190 



100 

80 

60 

40 

20 

Figure 4.12 Daughter ion spectra derived from m/z 319 ([M-H]-) for peak lVb 
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From these data the structures of compounds Wa and lVb were proposed as: 

(lVa) 

0 

,0 o 

H03S S03H 

OH 

OH 

H03! ýý 03H 

(lVb) 

The peak observed in the LC-MS chromatogram (Fig 4.8) corresponding to V, showed 

molecular ions at m1z 157.6 [M-2H]2-and 316 [M-H]- (Fig 4.13), indicating a molecular 

weight of 317, one nitrogen, and two sulphonic acid groups. 
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Figure 4.13 Mass spectrum derived from peak V in reduced Amaranth sample following 
exposure to air for 85 minutes 

The molecular ion of this compound was two mass units lower than that of the starting 

material 11, consistent with 2-naphthoquinone-l-imine-3,6-disulphonic acid (V). The UV 
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spectrum showed a broad maximum in the 300 - 400 nm region again confirming extended 

conjugation consistent with the proposed structure (V). 

NH 

H03S S03H 

(V) 

The most persistent of the autoxidation products, component VI, produced a UV-spectrurn 

which differed quite markedly from the other products in that it showed no UV absorbance 

in the visible region (300 - 400 nm), suggesting an absence of the naphthoquinone type 

structure, consistent with ring opening. MS data (Figure 4.14) showed molecular ions at 

m/z 175 [M-2H]2-and 351 [M-H]- indicating a molecular weight of 352. 
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Figure 4.14 Mass spectrum derived from peak VI in reduced Amaranth sample 
following exposure to air for 85 minutes 
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This suggests a compound containing zero or an even number of nitrogen atoms, with two 

sulphonic acid groups and is consistent with a molecule two oxygen atoms higher than the 

naphthoquinone structure Wa. Considering the proposed structures for the intermediates 

and the UV data, it seems quite likely that ring opening would occur around the existing 

hydroxyl groups. Several structures are consistent with these data: eg a bis hydroxylated 

naphthoquinone: 

OH OH 
OH 

-S03H H03S 

0 

(Vla) 

However, this seems unlikely and can be discounted because absorbance in the visible 

region of the UV/Vis spectrum would be expected for this type of conjugated system. 

A second alternative is a bis carboxylic acid, 3-carboxy-4 (2-sulfonyl-vinyl)-benzene-l- 

sulfonic acid, formed through a hydrolytic intradiol cleavage of the naphthoquinone. 

COOH 
COOH 

'J'J"l 

"'-a S03H 
H03S 

(Vlb) 

An analogous compound has been proposed by Boeseken (1911) as a product of the 

peroxide oxidation of 1,2-naphthaquinone: 

0H 
(a 

OCOOH 
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However this is an extremely polar molecule and it would be surprising to find its retention 

to be so long on the analytical system employed. However without suitable reference 

standards this structure cannot be entirely ruled out. 

Two further possibilities appear more appropriate. Both would be formed by ring opening 

to form a carboxylic acid group, but they differ in the position of this ring opening. 

CHHO 
COOH 

H03S 
S03H 

u OH 
S03H 

COOH 
H03S 

0 

(VIC) (Vld) 

There is evidence in published literature for structure (VId). Wittich (1988), proposed an 

analogous compound for the bacterial (Moraxella strain ASL4), degradation of 

naphthalene-1,6 and 2,6-disulphonic acids. The initial stages of this degradation involved 

oxidation, followed by elimination of sulphate to form a 1,2-dihydroxy-6-sulphonic acid 

which was then further oxidised to an intermediate analogous to structure (Vld) above: 

OH 

COOH 
j 

Hoß 
0 

Similarly Haug et al., (1991), referred to an intermediate formed in the mixed culture 

bacterial mineralisation of Mordant Yellow 3. In this case the initial reduction product, 

6-aminonaphthalene-2-sulphonic acid was oxidised to 6-amino-1,2-dihydroxy naphthalene, 

which was further oxidised to a structure again analogous to (VId): 
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H2 N4CH", Tr 
COOH 
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A further, very similar degradation pathway was also proposed by Kuhm et al., (1991), 

although care has to be taken when comparing biological degradation with autoxidation. 

In all three cited articles the degradation continued with the elimination of the side chain to 

produce substituted 5-hydroxy benzoic acid compounds, where the substituents were 

3-hydroxy or 3-amino, depending on starting material. These products are likely to be 

formed through biological breakdown rather than an autoxidation process, which explains 

why further degradation was not observed for Amaranth. 

From these data it seems likely that structure (VId) is most appropriate. However it was 

decided to obtain MSMS data to gain supporting evidence for this and the other proposed 

autoxidation products, especially given the relevance to the understanding of more 

complicated systems such as the biological treatment of dye effluent. 

By comparison to the spectra of the other reduction and autoxidation transition products, 

the daughter ion spectrum of the stable oxidation product, (VI), showed extensive 

fragmentation, (Fig 4.15). The initial loss of water (351 --> 333) indicated that unlike the 

hydroxyl groups of the proposed hydroquinone (IVa), this molecule had a hydrogen atom 

available for transfer with subsequent elimination of water. This may be explained by a 

ring opened structure. Additionally, this loss coupled with the subsequent elimination of 

carbon monoxide (333 -) 305), suggests the presence of a carboxylic acid. The remaining 

fragment ions provide little additional structural information and in particular show no 

further losses of H20 and CO or C02 which might be expected from a bis-carboxylic acid 

compound. These data indicate structure VIb to be unlikely. 
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Figure 4.15 Daughter ion spectra for peak VI derived from m1z 351 ([M-H]-, top) and 
m1z 175 ([M-2H]2- , bottom. Note * denotes doubly charged ions 
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The daughter ion spectrum for the doubly charged molecular ion derived from peak VI, 

Figure 4.15, appears quite different from that of the singly charged species. Notably, loss 

of water (270 --> 252) and successive losses of CO (252 -4 224 -ý 196) are significant, as 

well as the primary loss of CO (175 -) 161). These suggest a carbonyl (derived from a 

ketone, phenol or aldehyde), in addition to a carboxylic acid group, is readily available for 

expulsion. This again sheds doubt on the second of the proposed structures (Vlb), because 

this structure contains two carboxylic acid groups and one would expect to see multiple 

losses of H20 and CO and/or C02 from this structure, which was not observed. Suggested 

structures (Vlc) and (VId) can both lose water, followed by two carbonyls (one from the 

carboxylic acid and one from either the aldehyde or phenol group). This tends to suggest 

either VIc or VIA, both of which are consistent with the MSMS data, should provide the 

most likely structure, although it was not possible from these data to detennine which of 

them is most likely. 

Both the present study and that of Kudlich (1999) suggest the final autoxidation product 

VI, is relatively stable to further oxidation. However the ring opened structure, although 

resistant to autoxidation, would be expected to be highly susceptible to decarboxylation 

and further degradation under aerobic biological treatment. Such reactivity, if confirmed 

would indicate good potential for the removal of azo dyes by sewage treatment systems. 

From the present reduction/autoxidation experiment we can postulate a degradation 

pathway for Amaranth, as detailed in Figure 4.16 below. 
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Figure 4.16 Proposed autoxidation. pathway for the reduction products of Amaranth 
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4.4.2 Autoxidation of reduced Sunset Yellow 

A different approach was taken for the deterraination of autoxidation products of reduced 

Sunset Yellow. Here the kinetics of autoxidation had already been assessed (Kudlich 

personal com), which indicated that unlike Amaranth, only one autoxidation product was 

forined within the first 5 hours of oxidation. Therefore the approach taken was to use the 

limited material available to concentrate on the identification of autoxidation products and 

to compare these to the degradation pathway of Amaranth (Section 4.3.1) as these two 

compounds differ only by the presence or absence of a sulphonic acid group in the 3- 

position. 

Sunset Yellow (I) when reduced by hydrogen in the presence of palladium on barium 

sulphate, produced two products with retention times of 3.6 and 10.8 minutes, respectively 

when examined by LC-PDA and by LC-MS, (Fig 4.17). 

OH 

H 
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Figure 4.17 LC-MS chromatogram for reduced Sunset Yellow (* denotes background 
peaks also in control) 

The negative ionisation mass spectra suggested molecular weights of 173 ([M-H]", m1z 

172) and 239 ([M-H]-, m1z 238) for peaks II and III respectively, consistent with the 
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expected reduction products 4-aminobenzene-1-sulphonic acid (sulphanilic acid, II) and I- 

amino-2-hydroxynaphthalene-6-sulphonic acid (111, Fig 4.18). 

NH2 

OH 

S03H H03S 

(11) (111) 

However the mass spectrum of (111) (Fig 4.18) also revealed the presence of a second 

component with a molecular weight of 237 ([M-H]-, m1z 236). The presence of this 

component would not have been suspected from the LC-PDA analysis alone. Because the 

molecular weight of compound (IV) differed by only 2 mass units from the initial 

reduction product (III), 2-napthoquinone-l-imine-6- sulphonic acid was proposed. This 

assignment was supported by the observation of the equivalent compound in the 

autoxidation of Amaranth (Compound V, Fig 4.16) 

NH 

JOI r 

H03S 

(IV) 
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Figure 4.18 Mass spectra derived from peaks 11 (top) and III (bottom) for the LC-MS 
analysis of reduced Sunset Yellow at time zero (to) 

This sample was re-analysed following aeration for 10 and 60 minutes to examine the ratio 

of III to IV (m/z 318 to m/z 316). This was to determine whether compound 111, the initial 

reduction product, degraded to compound IV or whether the two compounds were in 
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equilibrium. The measured ratio remained constant over the I hour duration, suggesting 

the two compounds to be in equilibrium. 

Figure 4.19 shows a comparison of LC-MS and LC-UV230 nm chromatograms of a sample 

of reduced Sunset Yellow, oxidised for I hour. Peaks annotated (11), (111) and (IV) were 

confirmed as sulphanilic acid and I-amino-2-hydroxynaphthalene-6-sulphonic acid, the 

reduction products of Sunset Yellow and 2-napthoquinone-l-imine-6- sulphonic acid 

respectively. The remaining component (V) was obviously the result of autoxidation. The 

mass spectrum of this major autoxidation product contained ions at m1z 236.5 and 474, 

suggesting a molecular weight of 475 (Fig 4.20). The presence of a doubly charged ion 

(236.5 [M-2H]2-) is indicative of two sulphonic acid groups and because the initial 

reduction products 11 and III contained only one, suggests dimerization. The odd 

molecular weight suggests this dimer must contain only one nitrogen. 
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Figure 4.19 LC-MS chromatogram for reduced Sunset Yellow following exposure to air 
for I hour, (* denotes background peaks also in control) 
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Figure 4.20 Mass spectrum derived from peak V for the LC-MS analYsis of reduced 
Sunset Yellow following exposure to air for I hour (t6o) 

By comparison with the closely related disulphonic acid (Amaranth), autoxidation may 

have been expected to produce 1-2-naphthoquinone-6-su]Phonate, (equivalent to 

structure IV, Fig 4.16) as an intermediate. However no evidence for this compound was 

observed. It seems possible that 1-2-naphthoquinone-6-sulphonate could be removed by 

reaction with the amine (primary reduction product III) to form a dimer. The following 

reaction scheme is envisaged: 
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In order to confirm that the proposed dimeric structure of the autoxidation product, the 

charge state of the observed molecular ions was investigated. This should eliminate the 

possibility that a higher polymer produces the same ions. A mass spectrometer separates 

ions on the basis of mass (m) to charge (z) ratio (m/z). The charge state of an ion can 

therefore be determined by the mass difference between ions containing 12 C and 13C 

isotopes. AI mass unit difference will be observed for a singly charged ion (m/1), 

0.5 mass units for a doubly charged species, 0.33 for a triply charged species and so on. 

Figure 4.21 shows the singly and doubly charged molecular ions for peak V, obtained 

under enhanced MS resolution conditions. The results clearly show unit resolution for the 

m1z 474 molecular ion and 0.5 mass units difference between isotopes at m1z 236.5. This 

confirms the molecular weight of 475 for the main autoxidation product. 
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Figure 4.21 Molecular ion peak profiles: [M-H]- (top) and [M-2H] 2- (bottom), 
for compound V for the LC-MS analysis of reduced Sunset Yellow 

following exposure to air for I hour (t6o) 
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LC-MS analysis of the samples of reduced Sunset Yellow oxidised for 4 and 6 hours 

showed complete removal of the initial reduction product (III), whilst sulphanilic acid (11) 

and the major autoxidation product (V) proved to be stable. One other minor peak was 

observed in these two samples, as illustrated by peak VI in Figure 4.22. Although of 

similar retention time to a background peak observed in earlier chromatograms, the mass 

spectra derived from this (Fig 4.23) showed additional molecular ions for three compounds 

at m1z 225,253 and 271, suggesting molecular weights of 226 (VIi), 254 (VIii) and 272 

(VIiii) respectively. Also, a small peak was observed in the LC-UV210 
11M chromatograrn at 

the same retention time as LC-MS which was not present in the earlier samples. 
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Figure 4.22 LC-MS chromatogram for reduced Sunset Yellow following exposure 
to air for 4 hours 
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Figure 4.23 Mass spectra derived from peak VI for the LC-MS analysis of reduced 
Sunset Yellow following exposure to air for 4 hours (t4h) 

Based purely on molecular weight information, the following structure was suggested for 

(Viii): 

OH 

(viii) 

This is not entirely unexpected, it being a further oxidised form of naphthaquinone 

sulphonic acid, an expected autoxidation product for the reduced starting material. The 

second compound (VIiii), being 18 mass units higher could be a further oxidised product 

derived from (Vlii), being formed by the addition of water presumably with ring opening: 

C HI 0 
c 
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C, HII 0 
COOH 

H03S 

This is equivalent to peak 'Vlb' observed for Amaranth, (Fig 4.14). 

However another alternative is possible: 

OH 

COOH 
H03, S 

0 

This structure has already been identified by Wittich et aL, as an intermediate for the 

bacterial degradation of 1,6- and 2,6-naphthalene disulphonic acids. These were oxidised 

in the degradation process to the 1,3-dihydroxy-6-sulphonic acid, followed by further 

oxidation with ring opening to the structure above. However, it seems unlikely this 

structure could be derived from further oxidation of proposed structure Vlii. More likelY it 

is formed directly from ring opening of the naphthoquinone structure. 

From these data it would appear that I-amino-2-hydroxynaphthalene-6-sulphonic acid, a 

reduction product of Sunset Yellow, is highly unstable. It is oxidised to the 

naphthoquinone which is highly susceptible to either rapid addition of the parent (reduced) 

material to form a dimer, or hydroxylation. The former is stable and shows no sign of 

further degradation, whilst the latter appears to undergo further oxidation with ring 

opening. The postulated degradation pathway is shown in Figure 4.24: 
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Figure 4.24 Proposed autoxidation degradation pathway for Sunset Yellow 

4.4.3 Autoxidation of Napthol Blue Black 

Based on the reduction of Sunset Yellow and Amaranth, Naphthol Blue Black (I) when 

reduced by hydrogen in the presence of palladium on barium sulphate was expected to 

produce three aromatic amines: 1-hydroxy-2,7,8-triamino-naphthalene-3,6-disulfonic acid 

(II) aniline (III) and I -amino-4-nitrobenzene (IV). 
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Aniline and I-amino-4-nitrobenzene would not be observed under the analytical regime 

used herein. 

The first observation on transfer of the reduced material from serum bottle to test tube was 

the change in colour. In fact, it was not possible to transfer the transparent or slightly 

green reduced dye solution without a dramatic change of colour- the solution quickly 

turned dark blue. This rapid reaction is not totally unexpected considering the proposed 

reduction product (II) which has three amino groups, one of which is ortho to a hydroxy 

substituent. By reference to reduced samples of Amaranth and Sunset Yellow, this would 

be prone to autoxidation. 

The structure of the initial reduction product could not be deduced. Instead, efforts were 

concentrated on the identification of the two major autoxidation products. The LC 

separation obtained for a reduced Naphthol Blue-Black sample analysed following 4 hours 

storage in water with no stirring, is shown in Figure 4.25. Two major peaks were observed 

which had retention times of 2.5 and 3.5 minutes respectively. The UV spectrum derived 

from peak VI, showed a strong absorption above 500 nm, suggesting it was responsible for 

the blue colour change observed in the autoxidation process. A further two minor peaks 

were also observed at retention times of 4.2 and 5.6 minutes respectively. 
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Figure 4.25 HPLC-UV (230 nm) chromatogram of reduced Naphthol Blue-Black 
. M, following aeration for 4 h. 
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Figure 4.26 LC-MS chromatogram for reduced Naphthol Blue-Black following aeration 
for 4 hours (* denotes background peaks also in control) 
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Two major and one minor peaks were observed in the LC-MS analysis of the 4 hour 

oxidised sample (Fig 4.26). Peak VII in the LC-UV analysis (Fig 4.25) did not produce a 

useful mass spectrum under the conditions used. The observed molecular ions [M-HI- for 

the two major peaks (346 and 347), are illustrated by selected ion mass chromatograms, 

which suggest molecular weights of 347 and 348 respectively. The minor component peak 

VIII, showed an ion of mass 359, equivalent to a molecular weight of 360. These 

molecular weights did not support the initial assumptions of Kudlich (1997 personal 

Communication) who postulated that autoxidation proceeded through the formation of 

high molecular weight polymers. All three compounds produced doubly charged ions 

indicating that each possessed two sulphonic acid groups. LC-MS analysis of a sample 

oxidised for 6hours indicated a reduction in the amount of peak V present, with a 

corresponding increase in peak VI. This indicates the former to be the relatively unstable 

transition product in the formation of the more stable peak VI. Taking into account the 

odd molecular weight of peak V, that its mass is only two mass units lower than that of the 

predicted initial reduction product, that it contains two sulphonates and is a relatively 

unstable intermediate, the imine of the initial reduction product is suggested: 

20 

H2N) NH 

H03S S03H 

V 

On close inspection of the mass spectrum of peak V, it was noticeable that the [M+21 

isotope (mainly due to 34S) was larger than would be predicted. A comparison of selected 

ion chromatograms for peaks V and VI showed the latter to give a close to predicted 

[M+21 isotope contribution, whilst that for peak V, was significantly higher. These 

measurements are quite crude and one has to be careful when dealing with an unstable 
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starting reactant and intermediate. Also, the accuracy of such measurements in LC-MS 

mode when scanning a large mass range, is not precise. However, assuming the 

observation is correct, this would suggest the imine to be in equilibrium with the parent 

reduction product, 11, (much in favour of the former), in much the same way as observed 

for both Sunset Yellow and Amaranth. 

On consideration of peak VI, the deep blue colour suggested a large conjugate system, yet 

the prediction of a dimer proved to be inconsistent with the molecular weight and the 

number of charges (sulphonic acid groups) present. The observed even molecular weight 

suggests arrest of autoxidation after the initial loss of one or all three nitrogens. Since the 

compound is deeply coloured, the probability that all three nitrogens are lost by 

autoxidation seems quite low. Therefore, one might expect the formation of a 

naphthaquinone type of structure, similar to that observed for Amaranth and Sunset 

Yellow: 

NH2 0 
H2N 0 

H03S S03H 

vi 

Against this, in the case of Amaranth and Sunset Yellow, the naphthaquinone was unstable 

and continued to oxidise with ring opening. This was not observed for Naphthol Blue- 

Black, so perhaps the stable autoxidation product is an isomer of that suggested above. 

The third component observed in the LC-MS analysis (peak VIII) showed a molecular 

weight of 360 but a structure could not be proposed for this minor component. 
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From the results discussed above it was possible to propose the following autoxidation 

pathway: 

H03S N=N-C3 

OH 

NH2 

H03S =N-(/ 

2 OH 
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Figure 4.27. Autoxidation degradation pathway for Naphthol Blue-Black 
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4.5 CONCLUSIONS FROM AUTOXIDATION STUDIES 

The primary reduction products of Amaranth, Sunset Yellow and Naphthol Blue-Black, 

contain a hydroxy-group in a position ortho to an amino-group, and in each case these 

were found to be unstable in the presence of air (ie prone to rapid oxidation). The 

autoxidation process was affected by the type and degree of substitution on the 

naphthalene ring. Reduction products of Amaranth and Sunset Yellow were oxidised via a 

naphthoquinone intermediate to stable ring-opened structures. However, oxidation of 

reduction products of Naphthol Blue-Black (which has additional amino substituents in the 

7- and 8-positions of the naphthalene ring) stopped at the formation of a naphthoquinone 

structure. Additionally, Sunset Yellow was able to fonn dimers, which were not observed 

for the reduction products of the other two dyes. The primary reduction products of both 

Amaranth and Naphthol Blue-Black have a sulphonic acid group in the 3-position, which 

may hinder addition at the 4-position. This would suggest dimerisation would take place 

by addition at the 4-position of Sunset Yellow. 

4.6 REDUCTION AND AUTOXIDATION OF AZO DYE REACTIVE RED 3.1 

(RR3.1). 

4.6.1 Introduction 

The rather simple dye structures of Amaranth, Sunset Yellow and Naphthol blue/black, 

proved very useful probes for the investigation of reduction/ autoxidation degradation 

pathways. The similarities in degradation products of each dye (ie the formation of 

naphthoquinone-imine, leading to naphthoquinone-type intermediates, which may then 

undergo further hydroxylation and ring opening) gave some confidence in the ability to 

predict degradation products for more complex dye structures. An opportunity arose for 
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collaboration with researchers at the University of Leeds who were attempting to optimise 

the degradation of azo dyes for the treatment of industrial waste (Knapp and Newby, 1995, 

Bromley-Challenor et al., 2000). The aim of this part of the present research was to 

determine whether the initial autoxidation products derived from a complex dye could be 

predicted from the information gained from the study of simpler structures (eg Amaranth, 

Sunset Yellow and Naphthol Blue Black). Structural information regarding degradation 

products was needed to enable optimisation of the treatment process. The dye chosen for 

this study was Reactive Red 3.1, (RR3.1, I) 

HO, 

H, C I 

sH 
4 

N-N-Q 

W--- 

N'OýN 
SO, H 

CAN01%`NH 
3 

I 

The structure of RR 3.1 shows component parts which include the N-N azo bond, 

secondary amino groups: aniline-2-sulPhonic acid (1) and toluidine (2), the chlorotriazine 

reactive group (3) and a 1-hydroxy-naphthalene-2,8-diamino-3,6-disulphonic acid group 

(4; H-Acid). 

4.6.2 Experimental procedures 

All samples of reduced RR3.1 were prepared at the University of Leeds and immediately 

transferred to Brixham Laboratory for subsequent analysis. The experimental detail and 

results are given in the following text. 

221 



Synthetic sewage 

Synthetic sewage mineral salts (SSMS) medium was used throughout the study and 

contained the following (mg 1-1); NH4Cl (380), KH2PO4 (4000), CaC12.21-120 (22), 

MgS04.7H20 (40), FeC13.6H20 (7.5), Na2MOO4.2H20 (1.1), ZnS04.7H20 (0.7), 

MnS04AH20 (0.6), CUS04.5H20 (0.6), COC12.6H20 (0.6). 

Enrichment cultures 

Enrichment cultures were grown using an inoculurn made from the following components 

(ml): - Oil field produced water (200); marine mud (100); acid peat bog water (100); acidic 

peat soil (from 2 sources) (2 x 100); acidic iron water from an iron-bearing moorland 

stream (100); river water and mud from the river Aire at Beal Weir (100 of each); and 

activated sludge from a laboratory reactor (porous pot). After thorough mixing, the 

inoculurn was divided into two and pH adjusted as described for individual experiments. 

Prior to use, oxygen was removed from the inoculum by evacuation using a vacuum pump 

for 2 hours and then sparged with oxygen-free nitrogen overnight. Dye reduction 

experiments were carried out in glass serum bottles (160 ml total volume), which were 

sealed with Neoprene rubber septa and secured in place with aluminium seals. 

Experiments were performed at 27'C. To maintain anaerobic conditions during sampling, 

bottles were stored in a constant temperature cabinet flushed with nitrogen. A 10% ('/, ) 

inoculum was used per serum bottle and serum bottles were not mixed during incubation.. 
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Experiment 1. Initial evaluation of reduction/ autoxidation 

Reactive Red 3.1 was added to serum bottles to give a concentration of either 60 or 

480 mg 1-1, and the pH adjusted to either 5 or 7. Three bottles contained heat sterilised 

inoculum to act as controls. Details of each bottle are listed in Table 4.3. 

Table 4.2 Summary of conditions of bottles incubated in experiment I containing 
Reactive Red 3.1 dye (RR 3.1) and a mixed bacterial culture at 27"C 

Flask pH Salinity Concentration 

RR 3.1 (mg 1-1) 

Comments 

A 5 0.2 480 
B 7 0.2 480 
C 5 0.2 480 Sterile biomass 

control 
D 7 0.2 60 
E 5 0.2 60 
F 7 0.2 60 Sterile biomass 

control 
G 

I 
5 0.2 60 

I 
Sterile biomass 

ontrol 
I 

I d 

Each bottle was incubated until maximum colour loss was observed, (approx 9 days). 

Samples were taken using a hypodermic syringe and were centrifuged at 13,500 rpm in an 

MSE Micro Centaur centrifuge for 5 minutes to remove suspended particles prior to 

transfer to Brixham Laboratory for analysis by LC-MS. 

Experiment 2. Evaluation of stored reduced samples. 

The experiment described in the previous section was repeated using only a 480 mg 1-1 

RR3.1 solution, 0.2% NaCl and at pH 7. Samples were incubated for a time which 

produced maximum colour loss in the dye (ie a change from red to pale straw coloration) 
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this being about 9 days. Samples (Bottle A; reduced dye, B; Dye, mineral salts but no 

inoculurn and C; Dye, mineral salt and sterile inoculum) were transferred to Brixharn 

Laboratory in gas tight bottles. This was to allow analysis without the possibility of 

autoxidation of the samples during manipulation at Leeds or in transit. Samples of all 

three bottles were taken through the rubber septum by syringe and analysed directly by 

LC-MS. No sample preparation was used. 

Experiment 3. Reduction in the presence of activated sludge 

Serum bottles containing activated sludge from Knostrop or Owlwood (UK) sewage 

treatment works, were provided with fresh sludge within 6-8 hours of collection. Each 

bottle contained 80 ml of mineral medium/activated sludge mixture and had a headspace of 

80 ml and was incubated at 27'C. Prior to use, activated sludge was washed and 

centrifuged (4,000 rpm, ca. 2600 g). The sludge concentration was then adjusted to 6g 1-1 

(dry weight) with mineral media (pH 7,0.2% NaCl). After the sludge had been mixed 

thoroughly, it was sparged with oxygen-free nitrogen overnight to ensure the development 

of anaerobic conditions, then oxygen was removed under a vacuum. Reactive Red 3.1 was 

used at a concentration of 120 mg 1-1 and the biomass was constantly stirred during 

incubation. Four samples were taken per activated sludge type. In each case, 200 ml of 

reaction volume was centrifuged at 2600 g for 10 minutes. The sludge was discarded and a 

subsample of the supernatant was transferred to autosampler vials for LC-MS analysis. 

Samples were taken immediately after the addition of the dye (untreated dye, t-0 hours) 

and immediately after decolorization (decolorized dye, t=0 hours). After decolorization, 

samples were incubated aerobically for 48 hours (decolorized dye, t- 48 hours) and 7 days 

(decolorized dye, t=7 days). Samples were also taken for analysis using the activated 

sludge respiration inhibition test (ASRIT) which was adapted from a standard method 
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(HMSO, 1982). Samples were cooled in ice during transit to Brixham Laboratory, where 

they were analysed by LC-MS on the day of affival. 

LC and LC-MS Methods 

All samples from the above degradation studies were first screened using HPLC with 

Photodiode array (PDA) detection to determine effects of the treatment on Reactive 

Red 3.1. Separation was achieved using a 250 mm x 4.6 mm 5 gm C18 column operated 

under gradient conditions with a mobile phase of 100% ammonium acetate (10 mM) for 

10 minutes, to 50150 with acetonitrile at 30 minutes and using a flow rate of 0.7 ml min-'. 

Samples were subsequently analysed by LC-MS using a TSQ-700 mass spectrometer fitted 

with an electrospray (ESI) interface operated in negative ionisation mode with a spray 

voltage of 3.5 W, at a capillary temperature of 255'C, sheath gas at 65 psi and auxiliary 

gas at 10 psi. The system also had an in-line UV/Vis detector operated at 254 nm, for 

comparison with LC-PDA data. The analytical column and mobile phase were the same as 

that used in the LC-PDA sYstern. 

4.6.3 Results 

LC-PDA Analysis of initial batch study 

Attempts were made to develop, through enrichment, cultures which were capable of the 

decolorization of Reactive Red 3.1 (RR3.1) under anaerobic conditions. Attempts were 

made to simulate the conditions of different sewage treatment conditions using variations 

in pH, NaCl concentration and dye concentration. The inoculum used in all experiments 

was a mixed inoculum obtained from a variety of diverse environmental sources which 

included sites with low pH and elevated NaCl. Samples of the mixed anaerobic cultures 
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plus dye (60 and 480 mg 1-1) were taken at time zero and after dye decolorization. These 

were centrifuged to remove suspended particles and the supernatants were transferred to 

Brixham for analysis. This analysis showed that control bottles; those without inoculum or 

heat sterilised, showed no change in the concentration of Reactive Red 3.1, demonstrating 

the stability of the compound under the experimental conditions used. On the other hand, 

decolorization of RR3.1 occurred in all serum bottles receiving a live inoculum under all 

experimental conditions. A colour change from red to a very pale yellow was reported by 

the University of Leeds. However a further change had occurred in three of the reduced 

samples arriving at Brixham: A (yellow/orange), B and D (yellow/green), indicating the 

onset of autoxidation during the time taken for transportation. All four degraded samples 

were analysed and a total of eighteen significant peaks were observed, together with 

numerous smaller and less well defined components contributing to an elevated baseline 

signal. Chromatograms from these samples were similar in constitution, although differing 

in the relative intensity of individual components. This is demonstrated by a comparison 

of the two most concentrated samples (A and B, initial RRM concentration of 480 mg 1-1), 

with the corresponding uninoculated control (C), (Fig 4.28; expanded to show the most 

complex part of the chromatogram in Fig 4.29). Peak XVII was by far the most abundant 

peak in each sample, with peaks IX and XVI also prominent in the less concentrated 

samples D and E (60 mg 1-1). 
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Figure 4.28 LC-PDA (254 nm) chromatograms for reduced samples of RR 3.1 control 
sample (top), sample A, following anaerobic incubation at pH 5 (middle) and sample B, 

following anaerobic incubation at pH 7 (bottom), Peak I is RR 3.1. 
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Figure 4.29 Comparison of LC-PDA (254 nm) chromatograms for reduced samples of Zý RR 3.1. A, RR3.1 following anaerobic incubation at pH 5 (top) B, following anaerobi III Ic 
incubation at pH 7 (bottom) 
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The peak height of the eighteen most significant peaks in sample A and B are shown 

plotted against peak number and retention time in Figure 4.30. This provided a useful 

guide for subsequent LC-MS identification because it showed the relative importance of 

each component. 

Figure 4.30. Comparison of peak height data for major peaks in samples A (pH 5) and B 
(pH 7) for autoxidised samples of reduced Reactive Red 3.1 

LC - MS Studies 

The LC-MS data confirmed the complete removal of Reactive Red 3.1 and furthermore 

allowed the identification of several degradation products. All of the peaks observed in the 

LC-UV analysis were also observed by LC-MS, although in some cases only weak mass Z- 

spectra were obtained. The retention times observed for each peak were generally 

2-3 minutes less than LC-PDA, but use of in-line UV spectroscopy allowed correlation 

between the two systerns. The LC-MS analysis in fact showed the autoxidised samples to 

be even more complex than suggested by the LC-PDA data. Many of the peaks observed in 

LC-UV were shown to consist of mixtures of two or more components. Chromatograms 

from all four samples showed they were similar in constitution, although differing in the 
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relative intensity of individual components. A typical chromatogram. for sample A 

showing both MS and in-line UV (230 nm) data, is shown in Figure 4.31 and an expanded 

section showing the most complex part of the chromatogram in Figure 4.32. 
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Figure 4.31 LC-MS and LC-UV (230 nm) chromatograms of reduced RR 3.1 sample A, 
following autoxidation. 
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Figure 4.32 LC-MS and LC-UV (230 nm) chromatograms of reduced RR 3.1 following 

autoxidation 

The study of the autoxidation processes of reduced Amaranth, Sunset Yellow and 

Naphthol Blue Black (Section 4.4) showed a range of common and characteristic 

degradation products. These processes suggest likely degradation products of the more 
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complex dye RR3.1 would include products of reduction of the azo linkage such as 

primary amines (a) and I-aminobenzene-2-sulphonic acid, (b) below, which would have 

molecular weights of 552 and 173 respectively. 

S03H 
3H 

Nil 

I? 
so 

Nil OH 

N"ýN 

CAN01"NII 

1-13C 
H2N 

S03H 

(a) (b) 

The research described in the previous section showed that I-aminobenzene-2-sulphonic 

acid was stable. However, a naphthalene ring with an amino and hydroxyl group ortho to 

one another as in amine (a), would be expected to oxidise rapidly to naphtho-imine and 

naphthoquinone type structures: 

NH 0 

N'OkN 

H3C 

(c) 

s! 3H 

NH 0 

NOOýN 

I 

)ý 

N NH 

H, C 

C 

(d) 

RR3.1 has two sulphonic acid groups on the main naphthalene ring in the 3 and 6 

positions. By analogy to Amaranth and Naphthol Blue Black, these groups would be 

expected to hinder formation of dimers through aI-4 addition and subsequent 
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degradation would be predicted to continue by hydroxylation of the aromatic ring with the 

possibility of ring opening: 

H 
SO, H SO, H 

COH 
0 

NH 

N'OýN 

Cl 
)ýNokNH 

H, C 
-6 

(e) 

Alternatively the nitrogen-containing intermediates might be stabilised and persist as 

observed for Naphthol Blue-Black. Potentially, the secondary amines present in RR 3.1 

can also be reduced, which on subsequent autoxidation may form another group of 

products: 

C 

(0 

NH2 0 

(h) 

JH 

N ý'N 

0)ýNo 
[-. 

ýNH 

H3C 
1-6 

(j) 

C 

(g) 

S OIH T so 3H 

NH2 0 

(i) 
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Additionally, the process may be further complicated by the presence of the reactive group, 

the chlorine of which is quite labile and may be hydrolysed in the autoxidation process. 

This would produce most of the above structures (a-f plus i) with a hydroxyl group (-OH) 

in place of the reactive chlorine (-Cl), a net change of 18 Daltons (+17 - 35) in the 

predicted molecular weight. Clearly once one moves to a more complex substrate such as 

RRM, there are numerous possibilities for degradation products. To aid interpretation and 

to test the predictions described above, all of these proposals were surnmarised in a check 

list (Table 4.3) which was subsequently used to aid interpretation of the LC-MS data 

obtained for the samples derived from anaerobic degradation studies: 
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Table 4.3. Molecular weight information for possible degradation products of Reactive 

Red 3.1. 

Proposed 
structure 

Comment Number 
OfSO3H 

Chlorine 
(y/n) 

Molecular 
weight 

Molecular ions 

a Arnine 2 y 552 551,275 
b Amino sulphonic 

acid 
I n 173 172 

C Naphthoquinone- 
Imine 

2 y 550 549,274 

d Naphthoquinone 2 y 551 550,274.5 

e Hydroxy acid 2 y 585 584,291.5 
f (c) - toluidine 2 y 460 459,229 

9 (d) -toluidine 2 y 461 460,229.5 
h 2 n 332 331,165 

2 n 333 332,165.5 
0 y 236 235 

Structures roduced by hydroxyl tion of the n hthalene ring 
al Hydroxylated a 2 y 568 567,283 

cl Hydroxylated c 2 y 566 565,282 
- dl Hydroxylated d 2 y 567 566,282.5 
_ fl. Hydroxylated f 2 y 476 475,237 

gI Hydroxylated g 2 y 477 476,237.5 
hi Hydroxylated h 2 y 348 347,173 
ii Hydroxylated i 2 y 349 348,173.5 

Structures produced by substitution of reactive chlorine by h droxyl 
a2 a-CI +01-1 2 n 534 533,266 

c2 c-CI +OH 2 n 532 531,265 
d2 d-CI +OH 2 n 533 532,265.5 

e2 e-Cl + OH 2 n 567 566,282.5 
f2 f-Cl +01-1 2 n 442 441,220 

g2 g Cl +01-1 2 n 443 442,220.5 
J2 j-Cl +01-1 0 n 218 217 

Structures produced by hydroxylation of naphthalene ring and exchange of chlorine with 
hydroxyl 

a3 Hydroxylated a2 2 n 550 549,274 
c3 Hydroxylated c2 2 n 548 547,273 
0 Hydroxylated d2 2 n 549 548,273.5 
e3 Hydroxylated e2 2 n 458 1 457,228 
B Hydroxylated f2 2 n 459 j 458,228.5 

In the light of the known structure of RR3.1, the mass of each component, the presence or 

absence of chlorine, the number of nitrogen atoms, the presence and/or number of 

sulphonic acid groups and the predictions derived from earlier experiments, it was possible 

to suggest structures for several components in the degraded mixtures. A summary of 
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mass spectral information is given in Table 4.4, which also highlights those peaks which 

match predicted structures. Additionally, representative mass spectra for some of the 

major components are shown in Figure 4.33. 

Table 4.4. LC-MS data for autoxidation products of reduced RR3.1 

Peak Number 
(Figures 4.33 

and 4.34) 

Retention 
time 

Number 
OfSO3H 

Chlorine 
(Y/n) 

Molecular 
weight 

Molecular 
ions 

Predicted 
Structure 

11 6: 00 1 n 173 172 b 
(i) 

(ii) 
(iii) 

4 
4 
2 

? 
? 

1032 
1112 
537 

515/343/257 
555/369/277 
536/267.5 

IV 2 y 585 584/291.5 e 
v (i) 
(ii) 

2 
2 

y 
y 

507 
463 

506/252.5 
462/230.5 g-dihydro 

vi (i) 
0i) 

? n 332 
317 

331 
316 

h 

VII (i) 
(ii) 

22.6 2 y 
y 

633 
478 

632/315.5 
477 

Vill 2 507 506/252.5 
Ix 2 y 567 566/282.5 dI 
x 4 ? 1032 515/343/257 
xi 292 291 

x1i (i) 
60 

536 
287.5 

XIII 24.3 2 722 721/360 
xiv 2 y 566 565/282 cl. isomer 

xv (i) 24.9 463 462 (b only) 
xvi (i) 

(ii) 
(iii) 

25.3 0 y 
y 
y 

236 
551 
662 

235 
550/274.5 
661/330 

d 

XVII 25.9 y 566 565/282 cl. isomer 
XVIII (i) 

(ii) 
26.4 2 615 

617 
614/306.5 
616/307.5 

xix y 509 508 
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Figure 4.33 Mass spectra derived from several of the major components in a sample of 

reduced RR 3.1, following autoxidation. 
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Peak Il was confirmed as I-amino-2-sulphonic acid. This gave strong evidence for the 

reductive cleavage of the azo bond of Reactive Red 3.1, with the production of aniline-2- 

sulphonic acid and an amine based on the reduced amino-naphthalene disulphonic acid 

moiety linked to the reactive chlorotriazine group: 

2 

s S03H 

NH 

NooI4ý"N 

Cl ojýN OL-ýNH 

H2N 
HC 

S03H 

I 

(II) (a) 

A mass spectrum for the latter was not observed, but this was not surprising bearing in 

mind the highly reactive nature of these compounds. Previous work with Amaranth and 

Sunset Yellow had suggested the primary 1-hydroxy-2-amino-naphthalene based reduction 

product of azo dyes was stable for only 2-3 hours in the presence of air. These samples 

had been stored under aerobic conditions for ca 8 hours prior to analysis, although they 

were obviously not stirred so care is needed when making a direct comparison with 

Amaranth or Sunset Yellow reduction product stability. There was also no evidence for 

the proposed naphthoquinone-imine (c, Table 4.3) or naphtho-hydroquinone based 

structure. However one of the components of major peak XVI produced a molecular ion 

corresponding to the proposed naphthaquinone structure, (d): 

H3C 
I 

(Xviii) 
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This was not particularly surprising when considering the relatively high stability of 

naphthoquinoic structures compared to their corresponding imines and hydroquinones, as 

discussed in the previous studies. Of particular interest were three other significant peaks; 

IX, XIV and the most prominent peak in both the UV and MS chromatograms, XVII. The 

first of these showed a molecular ion 16 mass units higher than observed for the 

aforementioned naphthaquinone peak XVIii. This suggested the addition of a hydroxyl 

group, which by comparison to Sunset Yellow would be predicted in the 4 position and 

equates to proposed structure d I: 

OH 
s 

NH 0 

N 'oýN 

Cl 

)ý 

N 
ei"%NH 

H3C 
-ä 

(IX) 

The mass spectra obtained for peaks XIV and XVII suggest they are isomers and these 

spectra are consistent with addition of an hydroxyl group to a napthaquinone-imine 

structure (predicted cl). Again one would predict addition at the 4- position to be most 

likely, although hydroxylation of the toluidine ring attached to the reactive group is also 

possible and may explain the presence of two isomers: 

C 

H, C 
ý-6 

I 

NH 0 

N'O'ýN 

Cl 
)ý 

N 
')ý'NH 

H., C 
I ý-OH 

(XVII) (XIV) 
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The retention times of these four structures are in the range 23: 30 - 27 minutes, similar to 

that of RRII, 24: 10 minutes. These structures might be expected to have a similar 

polarity to RR3.1 because although they have one less sulphonic acid group, making them 

less polar, this was compensated by the extra functionality (formation of the quinone 

and/or hydroxylation etc) in the remaining structure. 

Peak IV, is of particular significance. This peak had one of the shortest retention times of 

the observed components, indicating a higher polarity than other degradation products. 

The observed molecular ion is consistent with the proposed ring opened carboxylate (e), 

which by analogy to the discussion of the equivalent compounds identified in the 

autoxidation of Amaranth and Sunset Yellow, suggest one of the following structures: 

QH 
s -S 3H ýCO ýH 

0 

0 

NH 

N'OkN 

Cl "4'ý'N 01'ý'NH 

H3C 
I 

0H 

S)ý rHS03H M 2H ok 

NII 

N 00ýN 

Cl 

)ýNol%%NH 

H3C 
- 

(IV) 

The low retention time of this compound is consistent with a polar constituent and with 

both of the proposed structures, each of which contains a carboxylic acid function in 

addition to two sulphonate groups. Also, the UV spectrum showed no characteristic 

adsorption in the 350 - 450 nm range as observed for other autoxidation products of RR3.1, 

Amaranth and Sunset Yellow, indicating a loss of conjugation of the ring structure 

consistent with ring opening which supports this identification. It was not possible to 

determine which of the two structures proposed is correct, but the second is in agreement 

with proposals for analogous, though much simpler, structures made by Wittich (1988), 

Haug et al., (1991) and Kuhni et al., (1991), for the degradation of substituted 

naphthalenes. This tends to suggest the second of these proposed structures is most likely. 
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The observation of this structure is of particular significance to the treatment of azo dyes, 

because it indicates two desired effects. Firstly, the highly oxidised state of this 

intermediate and the effect of ring opening, leave it susceptible to further aerobic 

degradation including the potential for complete mineralisation of the dye, which is the 

ultimate desired outcome of any treatment process. Secondly, ring opening reduces the 

degree of conjugation within the molecule reducing its light absorption in the visible 

region and therefore heIPing to remove the colour- another desirable outcome of a 

treatment process. 

The structures proposed for Peaks V and VII suggest that cleavage of the secondary amine 

bond between the o-toluidine group and the reactive chlorotriazine (between sub-structures 

2 and 3, compound I) has occurred. Peak V is a little surprising as it indicates the 

formation of the hydroquinone structure, which one might expect to be in equilibrium with 

a naphthaquinone equivalent. However there was no evidence for the latter. 

( 

(Vii) 

Since it has an even molecular weight, peak VII may contain 4 or 6 nitrogen atoms. The 

presence of the chlorine isotope pattern confirms the inclusion of three nitrogen atoms of 

the triazine ring. Two structures can be proposed: 

OH OH 
0, 0, s1H SO3H s SO3H 

NH2 

NH H0 

Wo'ý WoýN 

Cl 
)ý 

Nol'ý%NH2 Cl 
)ýNot""OH 

(VIIa) (VlIb) 
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The second of these compounds (Vllb) features a naphthoquinone sub-structure which by 

analogy to the products of the Amaranth and Sunset Yellow autoxidation experiments is a 

favourcd autoxidation pathway and tends to support (VIIb) as the most likely structure. 

o-Toluidine or o-cresol, compounds that might be expected to be released upon scission of 

the toluidine/chlorotriazine-secondary arnine bond were unlikely to be detected using the 

analytical protocol used. 

Further evidence for the reduction of the secondary arnines within RR3.1 was given by 

peaks VI and XVI. The mass spectra derived from these indicate scission of the secondary 

amine between the naphthalene ring and chlorotriazine ring (between substructures 3 

and 4, compound 1), resulting in proposed structures (h) and 0): 

H3C 

SO 
, 

S03H 

NH2 0 
H3C 

(Xvii) 

One might expect this naphthaquinone-imine type of compound (VI) to be in equilibrium 

with a naphthaquinone as observed for Amaranth, which by analogy would hydroxylate 

and further oxidise with potential for ring opening. No evidence was found for these 
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autoxidation products. Perhaps the extended conjugation of this system stabilises the 

structure and restricts further oxidation (discussed later). 

The components derived from cleavage of the secondary amine bonds form only a small 

contribution to the overall complexity of the oxidised samples, which suggests such 

mechanisms are a relatively minor part of the degradation pathway. The presence of these 

products does however, support the observations of Carleill et al., (1995), who proposed 

the cleavage of azo and secondary amine bonds for the anaerobic degradation of Reactive 

Red 141. Such cleavage is encouraging when considering the whole treatment process, 

because it indicates the bulky naphthalene/chlorotriazine moiety is capable of further 

degradation. 

The presence of proposed imines is interesting because the comparable compounds for the 

autoxidation of both Amaranth and Sunset Yellow were unstable. Yet most of the 

identified peaks for RRM autoxidation appear to contain either a quinoic or an imine 

function. A more significant comparison maybe Naphthol Blue/Black which showed the 

initial reduction/autoxidation products to be stabilised by extended conjugation. By 

analogy the quinones and imines of RRM autoxidation products can be similarly 

stabilised through extended conjugation with the secondary amine in the 8-position: 

s so 3H 

H 

H 
I 

S03H S03H 

H 

H 

and similarly for the quinone structures. 

Likewise the addition of a hydroxyl group at the 4-position can also extend conjugation 

and stabilise the hydroxylated autoxidation products, which again would explain why 

several of these compounds appear to be stable: 
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OH 
sH 

NH 0 
1 
R 

and similarly for the quinone structures. 

0 

NH 0 
1 
R 

So it can be seen how quinones and imines- and in particular their 4-hydroxy- analogues 

may be stabilised through conjugation and may therefore become preferred autoxidation 

products. 

Associated with peak (XVIi) was the mass spectrum derived from a very minor peak 

observed at a retention time of -26 minutes, which indicated the formation of a dimer of 

this degradation product: 

OH 

N U, 

N-4 
CH, 1 

Cl "jýN Ht 

H3C 
-6 

This clearly illustrates the propensity of the reactive triazine group to react with 

breakdown intermediates present in the test media. 

It is probable this reactive triazine group reacts with other breakdown products in similar 

fashion, possibly accounting for the dimers observed in peak III, but no supporting data 

were obtained to confirm this theory. 
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One other component within major peak V, has been tentatively assigned as follows: 

OH 

(Vi) 

This was based on the odd molecular weight, 2 sulphonates and presence of chlorine, but 

should be considered a tentative assignment. 

Several dimers were observed in the LC-MS analysis. In particular, peak III contained two 

compounds and peak X another, with molecular weight above 1000 mass units. These are 

recognisable from the observed multiple charge states ie [M-4H] 4- 
, Figure 4.34, indicating 

four sulphonic acid groups. The potential of Amaranth and Sunset Yellow to form dimers 

has been discussed previously (Sections 4.4 and 4.5). Amaranth did not produce dimers 

because of steric hindrance caused by the bulky sulphonic acid groups adjacent to the 4- 

position of the naphthalene ring. Sunset Yellow, on the other hand, does not have this 

adjacent group and did form dimers by 1,4 addition. Based on this information it seems 

likely that dimers formed in the autoxidation of RRM occur via an interaction between the 

amine or hydroxyl of one product with the chlorine of the reactive triazine of another. No 

structural assignments were possible based on the molecular weight information obtained. 

Unfortunately compounds capable of adopting multiple charge states, particularly those 

greater than two, tend not to form singly charged molecular ion species. 
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Figure 4.34 Mass spectrum of suspected dimer derived from peak I11i for a sample of 

reduced RR 3.1 following autoxidation. 

Conventional quadrupole mass spectrometers provide no energy focusing of the ions, 

therefore multiply charged ions are poorly resolved and accurate isotope contributions are 

difficult to determine. In the case of the proposed dimers it was not possible to determine 

whether the dimer contained 0,1 or 2 chlorine atoms. This information would have 

provided an extremely useful guide to how the dimers were formed. Using the 'zoom 

scan' facility of an ion-trap mass spectrometer (cf McCormack et al., 2001), would have 

been extremely useful to determine the isotope ratios of the observed multiply charged 

ions, but unfortunately this was not available at the time of this experimentation. The 

observation of dimers is of particular relevance to treatment studies, where the aim is to 

formulate a process that will mineralise azo dyes. Dimers derived from dyes or their 

breakdown products tend to be large, highly conjugated therefore coloured, and very stable 

molecules which may be recalcitrant in conventional treatment processes. Some attempts 

to mineralise azo dyes actually form substances that are more stable and coloured than the 

original dyestuff (Knapp and Newby, 1995). 
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Also observed were several components with molecular weights in the region of 600 - 650 

mass units (examples shown in Fig 4.35). Structures could not be assigned to these based 

on observations from previous studies. It seems likely that these have been formed by 

reaction between degradation products, once again possibly involving the reactive triazine 

group. The chlorine of this reactive group is extremely labile and designed to react with 

amino and hydroxyl groups of the intended target material. It seems likely that as many of 

the autoxidation products contain either or both of these functional ities, that reaction 

between degradation products is inevitable. This would also contribute to the complexity 

of the observed chromatograms. Interestingly, this suggests that for the autoxidation 

process there are competitive reactions between dye degradation with removal of colour, 

and the formation of new highly conjugated and stable adducts, which in some cases may 

be larger molecules than the original dye. The successful treatment of azo dyes using the 

recognised best approach of anaerobic reduction of the dye followed by aerobic removal of 

the reduced products, will depend on the ability of the aerobic treatment to remove 

autoxidation products before they have the opportunity to form adducts which may be 

recalcitrant and coloured. 
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Figure 4.35 Mass spectra of two unidentified components present in a sample of reduced 

RR 3.1 following autoxidation 

Although the LC-UV chromatograrns for the dilute samples, D and E, were similar to those 

of higher concentration, because of the large number of products formed in the 

reduction/autoxidation process, and the high background, it was difficult to obtain useful 

mass spectra of many of the components. However, the major peaks observed were 

confirmed as the hydroxylated napthaquinone-imine (XIV), hydroxylated naphthaquinone 

(IX) and naphthaquinone (XVI). There was also some evidence for the presence of 

dimers/adducts, (ie molecular weights greater than 1000 mass units) which suggests this 
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process is not a consequence of high dye concentration, but may also occur at lower dye 

concentrations. However, once again they do not appear to be products of the major 

autoxidation pathway. 

4.7 ANALYSIS OF REDUCED RR 3.1 SAMPLES STORED UNDER 

ANAEROBIC CONDITIONS 

Three samples were provided by the University of Leeds, consisting of two controls and 

one biologically reduced Reactive Red 3.1 sample. Samples were prepared and shipped in 

septum sealed vials in a nitrogen atmosphere to prevent oxidation. On arrival at Brixham, 

all three vessels were sub-sampled and analysed by LC-MS. The colour changes of the 

reduced dye over an extended period of storage were observed. The initial colour on 

delivery to Brixham was pale yellow, but on subsequent multiple sampling and storage 

over several weeks, the colour deepened to a much darker, more intense yellow. 

Apparently contact with even small amounts of oxygen admitted to the sealed vessel 

during sampling was sufficient to induce an autoxidation process. 

LC-MS analysis of the sterile and non-inoculated controls showed two major peaks, the 

largest being due to RR3.1. The smaller peak (-10%) was identified as the hydrolysed 

form of the dye, suggesting a slight deterioration in the starting material. It is well known 

that on standing, aqueous solutions of some reactive dyes can hydrolyse, with replacement 

of the reactive chlorine by hydroxyl. 
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Figure 4.36. LC-MS selected ion chromatograms of reduced Reactive Red 3.1 

(480 mg 1-1,0.2% NaCI at pH 7), stored under a nitrogen atmosphere to limit autoxidation. 

A comparison of LC-UV (254 nm), reconstructed ion current (RIC) and selected ion 

LC-MS chromatograms of the reduced RR3.1 dye sample is shown in Figure 4.36. Seven 

peaks have been annotated and these have been identified from their molecular weights 

and by reference to the interpretation of MS data from the previous section. There was no 

evidence for the presence of the parent dye (1) and the presence of amino benzene 

sulphonic acid (II) gave a strong indication for the successful reduction of RR3.1. Once 
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again there was no evidence for the proposed primary amine reduction product (proposed 

structure 'a'), which suggests the amine is unstable and reacts on sampling and standing in 

the autosampler vial, or that with trace amounts of oxygen present in the incubation vessel. 

The major products of the reduction were similar to those observed for the initial 

experiment. The most significant peak observed in the LC-UV chromatogram, IX 

(mwt 567), was identified as the hydroxy naphthaquinone, equivalent to proposed 

structure di. Peaks XIV and XVII (mwt 566), were identified as two isomers of the 

hydroxylated imine. Peak XVIi, (mwt 236), provided evidence for the breaking of the 

secondary amine bond between the reactive triazine and naphthalene ring. This was also 

observed for the analysis discussed earlier, where formation from an imine intermediate 

was proposed. However its presence in the preserved anaerobic sample suggests that it is 

formed in the initial reductive process rather than from the imine intermediate. This 

provides evidence for the ability of an anaerobic degradation process to metabolise 

secondary amines in addition to azo compounds. Peak XVIii, (mwt 55 1) is consistent with 

a naphthoquinone structure. Peak HE appears to be due to a dimer, m1z 257,343 and 515 

are consistent with 4-, 3- and 2- ions respectively, indicating a molecular weight of 1032. 

These ions were also observed in the initial sample (Figure 4.34) but at a shorter retention 

time, (ca 22 minutes compared to 20 minutes for initial sample). A structure was not 

proposed for this dimer. Two additional peaks observed in the m1z 273.5,548 selected ion 

chromatograrn (XX, Fig 4.36) are consistent with isomers of the hydrolysed form of the 

major hydroxylated naphthaquinone component IX. These were probably formed from the 

10% hydrolysed dye present in the starting material used for this experiment, a mass 

spectrum is shown in Figure 4.37. 
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Figure 4.37 mass spectrum of peak XX in a sample of reduced Reactive Red 3.1 

(480 mg 1-1,0.2% NaCI at pH 7), stored under a nitrogen atmosphere to limit autoxidation. 

The other significant peaks observed in the 'initial' samples such as the early eluting 

dimers (peak IIIii-iii), the ring opened acid (peak IV) and in particular the unidentirted 

compounds with molecular weights above 600 mass units, were not observed in this 

sample. 

The data obtained from the two experiments suggest the initial amine reduction product 

quickly oxidises, either with trace amounts of dissolved oxygen, or more likely once 

exposed to air in the autosampler vial, to form a range of naphthoquinoic and 

naphthoquinone-imine structures. These are themselves hydroxylated to more stable 

products. Then as observed with the 'initial' sample, over a longer period of time, further 

oxidation is observed with ring opening, and at the same time there is interaction between 

some of the degradation products, possibly through the reactive chlorine group, to form a 

range of aducts and dimers. Support for this theory was obtained from the re-analysis of 

the reduced reactive red dye taken from the sealed vessel and allowed to stand open to the 

atmosphere for 24 hours. This sample showed a marked change to the original sample. 

The most prominent peak in the UV chromatogram. was derived from the hydroxylated 

naphthoquinone-imine (proposed structure cl). Also significant was the much reduced 
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intensity of the hydroxylated naphthoquinone, IX, although the ring opened acid (mwt 585, 

IV) derived from the naphthoquinone, was very prominent. Also present were many small 

peaks which appeared to be due to dimers; or adducts the structures of which have not been 

identified. 

From the interpretation of LC-MS data, it has been possible to postulate a degradation 

pathway for the autoxidation of RR3.1 (Fig 4.38). This is based on the major components 

only and does not account for the minor contributions in what is a highly complex mixture. 

However the observations here are important considering the limited information on 

autoxidation available in the published literature. 
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4.8 ANALYSIS OF REDUCED REACTIVE RED 3.1, FOLLOWING AEROBIC 

TREATMENT 

Reactive Red 3.1 was reduced under anaerobic conditions in sewage treatment works 

sludge from two different works, Knostrop and Owlwood (initial dye concentration of 

120 mg 1-1). Samples were taken at the start of experimentation, (sample to-red), and 

immediately following dye decolourization (ie on change from red to pale yellow 

coloration; sample to-yellow), and stored prior to analysis. Following anaerobic treatment, 

reduced dye samples from each sewage source were subjected to aerobic incubation. 

Samples were taken after 2 and 7 days, then all samples were transported to Brixharn for 

analysis by LC-UV. A comparison of chromatograms for all four time points derived from 

each sludge, together with 100 mg 1-1 RRM, are shown in Figures 4.39 and 4.40. The first 

observation from these is that the initial dye solution (to-red), hydrolysed over the course 

of the experiment. It was not possible to determine whether this was prior to the start of 

the study, or during storage of the samples. This is unfortunate but should not detract from 

some useful information that can still be obtained from the study. The second observation 

is that all of the dye has been removed in the reduced Knostrop and >98% in the reduced 

Owlswood (to-yellow) samples. These clearly show the removal of RRM following 

anaerobic treatment with the formation of one major component. A minor degradation 

product was also observed in the Owlwood sample. In both sludge types the intensity of 

the major degradation product did not diminish during the aerobic incubation period of 

7 days. 
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Figure 4.39 LC-UV (254 nm) chromatograms of samples containing Reactive Red 3.1 

before and after anaerobic degradation and following aerobic treatment with inocula 

derived from Knostrop sewage works. 
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Figure 4.40 LC-UV (440 nm) chromatograms of samples containing Reactive Red 3.1 

before and after anaerobic degradation and following aerobic treatment with inocula 

derived from Owlwood sewage works. 
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LC-MS analysis of the initial Owlwood dye solution (to-red), is shown in Figure 4.41. The 

mass spectrum derived from the major dye component (XXI) confirmed RR3.1 was in the 

hydrolysed form (ie the reactive chlorine had been replaced by -OH). 
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100- Y. XI 
H03S S03H 

80- 
ý=N-N-q 

60- 
HOOýNOl"Ml 

40- H_, C 

20 A 

0-1 
... I-r 

o! o' 5. 
LC-UV (254 nm) 

100-1 

80- 

60- 

40- 

20- 

0- 
olýýý 

LC-MS (RIC) 

100- 

80- 

60 A 

40- 

20- 

0- 
0. 

1 U. 0 16.0 20.0 
I O. OE+00 

6.4E+06 

Figure 4.41 LC-MS selected ion chromatogram for reduced Owlwood sample to-red 
denotes background peaks also in control) 
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Early eluting peaks (RT <8 minutes) gave weak UV absorption and were therefore 

unlikely to be dye related but were possibly artefacts of the biological test media. 

LC-MS analysis of the Owlwood (to-yellow) decolorised dye sample (Fig 4.42), showed 

one major dye related peak, (XXII). The mass spectrum of this (Fig 4.43) showed 

molecular ions at mass nilz 273 and 547 indicating a molecular weight of 548 mass units, 

an even number of nitrogen atoms and two sulphonic acid groups. This was consistent 

with the hydrolysed form of hydroxy naphthoquinone-imine (XIV and XVII) in which the 

chlorine of the chlorotriazine group was replaced by a hydroxyl (-OH) group). 

Peak II, highlighted by the selected ion mass chromatogram (m/z 172), confirms the 

presence of aminobenzene-2-sulphonic acid, the initial reduction product. Additional 

small peaks observed in the LC-UV chromatogram did not produce useful mass spectra for 

identification. 
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Figure 4.43 Mass spectrum of peak XXII in a sample of reduced Owlwood to-yellow 

LC-MS analysis of the aerobic degradation samples showed the presence of two peaks 

only, these being due to aminobenzene-2-sulphonic acid (11) and hydrolysed 

naphthoquinone-imine (XXII), as described earlier. It appears that once fonned these 

compounds are relatively stable to aerobic degradation, at least under the laboratory 

conditions used for this study. There was no evidence for the dimers and high mass 

(>600 daltons) compounds observed in the previous reduced samples. This indicates that 

they were fon-ned by interaction between the reactive groups of various degradation 

products and therefore could not be formed in this sample which appears to have started 

with the hydrolysed dye (ie effectively with no reactive group). Also, there was no 

evidence for any of the degradation products previously identified. However, the majority 

of these compounds contained chlorine, which increases MS sensitivity and the previous 

tests were run at a higher initial dye concentration, which may explain why the few peaks 

observed in the UV did not provide an equivalent mass spectrum. Also of concern was the 

relative simplicity of the chromatograms for the initial reduction samples (to-yellow) for 

both sludges. Numerous intermediates were observed in previous studies. This tends to 

suggest that the mode of storage (unknown) over the remaining 7 days of the study was 

inappropriate, leading to continued oxidation and possibly aerobic activity over this period. 
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This does not detract from the fact that one compound persists over the whole degradation 

test. 

The lack of degradation in the aerobic experiment may have been explained by toxicity of 

the dye to the inoculum. Using activated sludge from two sources (Owlwood and 

Knostrop), samples were taken during both the anaerobic dye decolourization phase and 

during a period of aerobic incubation after the decolourization phase. After removing the 

biomass, the samples were analysed using the activated sludge respiration inhibition test 

(ASRIT). Of the four Knostrop samples tested using ASRIT (at a concentration of 

10% V/, ), only the untreated dye (ie sampled immediately after the dye was added) 

inhibited the respiration of un-acclimatised activated sludge (24.6%) and this inhibition 

was not observed for subsequent samples (i. e. following dye decolourization). None of the 

Owlwood samples (at a concentration of 10% '/, ) inhibited respiration. Therefore toxicity 

of the dye to inoculum does not appear to have been an issue. 

4.9 CONCLUSIONS FOR ANAEROBIC DEGRADATION WORK 

The LC-MS and MSMS techniques optimised in this study (Chapter 2), were successfully 

used to elucidate the effects of autoxidation on the reduction products of three relatively 

simple azo dyes. Additionally, several autoxidation products that were not apparent in the 

LC-UV analysis were identified by LC-MS. 

The substituted aromatic amine products of the reduction process were found to be highly 

susceptible to oxidation once air was allowed into the reaction media and some of the 

resulting products were highly conjugated and therefore coloured. Many of the 

autoxidation products of a complex azo dye, Reactive Red 3.1 were predicted from the 

study of relatively simple azo dyes, Amaranth and Sunset Yellow. 
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The analysis of a reduced sample of Reactive Red 3.1, indicated the fission of several 

secondary amine groups had occurred in the reduction process. This is particularly 

relevant since the reduction products of azo dyes are often thought to be recalcitrant. 

Additionally, ring opened autoxidation products of Amaranth, Sunset Yellow and Reactive 

Red 3.1 were observed. These are believed to be readily degraded by aerobic degradation 

and highlight the potential to mineralise azo dyes through a mixed anaerobic-aerobic 

treatment process. Ring opened structures were not observed in samples derived from a 

subsequent mixed treatment process for Reactive Red 3.1. However, one persistent 

degradation product was identified which was stable over the 7 day aerobic degradation 

period of the study and was therefore resistant to aerobic degradation. 
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CHAPTER5 

AEROBIC DEGRADATION 

5.1 INTRODUCTION 

Although reactive dyes are generally regarded as being resistant to oxidative attack by 

bacteria under aerobic conditions and indeed Hobbs, (1988) and Pagga and Brown (1986), 

concluded that static biodegradation tests on 87 dyestuffs, including reactive dyes were 

negative, closer inspection of their data indicates that this conclusion may not be entirely 

valid. The findings of Pagga and Brown were based on observations of >80% 

biodegradation (ie loss of colour). About 50% of the dyes did show signs of degradation 

to some extent. In fact of 19 reactive dyes used in the study, 12 showed greater than 30% 

removal over the 28 - 42 day test period. 

Likewise Shaul (1991) found that three of fifteen acid azo dyes were biodegraded within 

24hours following spiking into a pilot scale treatment plant. A review of biological 

treatment (Dubrow, 1996) concluded that aerobic degradation was very much dependent 

on dye structure. Where biodegradation did occur, it tended to be at too slow a rate to be 

of use in a treatment process for removal of colour from effluent such as dye house waste. 

However these studies did show that some water soluble dyes are degraded under aerobic 

conditions. Also, some cleavage of the azo bond of simple azo dyes has been reported 

under aerobic conditions by Pseudomonas cepacia; (Idaka, 1987). 

Reactive dyes are very water soluble and do not tend to be absorbed onto solids. It is 

believed that anaerobic degradation which is responsible for colour removal in azo dyes 

(azo reduction) takes place on the surface of the solids rather than in the liquid phase 

which, although important for potential treatment processes, may be less important in the 
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environment. Therefore, although aerobic degradation tends to be relatively slow, it may 

have an important role in environmental situations where the residence times will be much 

longer 

Arninobenzene sulphonates and arnino- and hydroxy- substituted naphthalene 

disulphonates are important structural units of many anthraquinone and azo dyes, including 

those used in this study. The biodegradation of these types of compound has been reported 

by several researchers. A range of amino, nitro, methyl and nitro-benzene sulphonates 

were degraded by different single strain cultures of Pseudomonas, which used the benzene 

sulphonates as a sole carbon source (Locher, 1989). However, each culture had a very 

narrow substrate range, each being able to degrade only two or three of the nine 

compounds tested. Other similar examples were included in a review of biodegradation 

(Hooper, 1996). Thurnheer (1988), mixed five different cultures to degrade a range of 

substituted sulphonated benzenes in a reactor. Not only did the degradative capacity of the 

mixed-culture increase, but the new 'evolved' consortium were also capable of degrading 

new compounds that were exposed to the culture for the first time. 

The aerobic biodegradation of substituted amino- and hydroxy- naphthalene sulphonic 

acids by single strains of bacteria, has been widely reported (Ohe, 1986; 1990; Kuhm, 

1991; Nortemann, 1994). Ohe (1986) used two different strains of Pseudomonas isolated 

from soil. Interestingly a degradation pathway for 2-aminonaphthalene-l-sulphonic acid 

via 2-hydroxynaphthalene-sulphonic acid to 1,2-dihydroxynaphthalene, then ring opening 

to produce salicylic acid, was proposed. This entails removal of the sulphonic acid 

function that is believed to cause resistance to biodegradation (Hooper, 1996). Kuhm 

(1990), proposed a similar pathway for hydroxynaphthalene sulphonic acid and 

demonstrated using various strains of Pseudomonas, that degradative pathways for 

naphthalene sulphonic acids were analogous to those of substituted naphthalene. 
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An extension of this work saw the aerobic degradation of naphthalene disulphonic acids by 

bacterial strains of Pseudomonas (Ohe, 1988) and Moraxella sp. (Wittich, 1988). The 

latter proposed a degradation pathway similar to that of the monosulphonic acids 

previously described, but also proposed removal of both sulphonic acid groups. 

These data clearly indicate that both single strain and mixed strains of bacteria can 

successfully degrade sulphonated aromatic materials similar to those present in many 

reactive dyes. The key to degradation appears to be the removal of the sulphonic acid 

groups which subsequently render the material susceptible to further degradation. 

The aerobic decolorization of azo dyes by the white rot fungi Phanaerochaete 

chrysosporium was first reported by Cripps (1990) for Orange II, Trapeolin 0 and Congo 

Red. Lignin peroxidase was expected to be involved in this degradation, but this was not 

the case for Congo Red. Spadaro, (1992) used a 14C labelled azo dye to demonstrate 

complete mineralisation by Phanaerochaete chrysosporium. Further degradation studies 

(eg Paszczynski, 1992; Pasti-Grigsby, 1992) have also demonstrated mineralisation of 

several structurally related sulphonated azo dyes, where structure did not appear to 

significantly influence susceptibility to degradation. In a continuation of these studies 

Goszczynski (1994) proposed mechanisms for the peroxidase-catalysed degradation 

pathways of several azo dyes. Recent studies (Heinfling, 1998), demonstrated the 

degradation of six reactive azo and phthalocyanine dyes using the ligninolytic peroxidases 

derived from white rot fungi. 

The majority of studies cited above involved the use of simple azo dyes. None of them 

examined the effects on anthraquinone dyes and only Heinflung (1998) examined the 

effects on more complex reactive dyes. The studies reported herein used both reactive 

anthraquinone and azo dyes to determine the effects of single strain bacteria and activated 
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sludge on aerobic degradation. The single strain cultures were three species of 

Pseudomonas, because these had previously been demonstrated to degrade azo dyes. 

Two approaches were used for evaluation of aerobic biodegradation in this study. The 

semi-continuous activated sludge (SCAS) method was based on the inherent 

biodegradability OECD test guideline 302 (1981) and because of the reported success of 

aerobic degradation using Pseudomonas (discussed above), three single strain cultures 

were also evaluated in this study. 

5.2 METHODS 

5.2.1 Evaluation of Semi-Continuous Activated Sludge (SCAS) aerobic degradation 

A schematic diagram of a typical unit is shown in Figure 5.1. The unit consists of a 

cylindrical glass vessel calibrated to 0.5 and I litre. A drain tap at approximately the 

350ml level was used to decant off supernatant and the vessel was aerated using 

compressed air via a sintered glass disc in the base of the vessel. The air supply has a duel 

role in that it oxygenates the test mixture and provides mixing of the test solution and 

keeps the sludge solids in suspension. 

The SCAS units are charged with sewage containing approximately 1000 mg 1-1 solids and 

require a period of equilibration before the test substance is added. At regular intervals 

over this period, aeration is stopped, solids allowed to settle and 500 ml (50%) of 

supernatant decanted. This is replaced by fresh sewage liquor (no solids) which will 

contain fresh bacteria and nutrients. The cycle is repeated until the dissolved organic 

carbon (DOC) in the decanted supernatant shows greater than 80% removal when 

compared to fresh sludge; usually 10 - 14 days. This shows that carbonaceous material in 
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the sewage feed is extensively oxidised. Test guidelines (ISO/DIS 9887,1990), suo'-'est 

this is nomially completed within 8 IIOLII-S Of the onset of aeration. Thereafter. bacteria in 

the sludge respire enclogenously for the remainder of the acration period where the only Zý 

food source is the test compound. This process, with the regular introduction of relatively t, 

high concentrations of fi-esh inocull. 1111 and nutrients to the test system (every 2 days), 

provides highly favourable conditions for the selection and adaptation of bacteria for the 

test compound and therefore maximises the potential for extensive blodeoraclation. As t, 

such the test is meant to provide an indication ofthe biodegm-adability ofthe test substance 

rather than a simulation ot'a sewaoe treatment plant. 

Olaill tap 

Supernatant 

Sludge solids 
Sintered -lass disc L- 

Alr supply 

Figure 5.1 Schematic diagram of a Semi-Continuous Activated Sludge (SCAS) system 47ý -- 

The test guidelines recommended a test substance concentration providing a DOC level of 

20 - 50 mg carbon 1-1. The mass fraction of carbon in the three test dyes used (expressed as r-- 

the number of carbon atom x 12/molecular weight), was 0.49,0.37 and 0.43, giving 

approximate test concentrations of 40,54 and 46 mg 11 for W435, W433 and Reactive Red tý 

3.1 respectively. However the SCAS units were initially charged with half of' this 
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concentration, then increased over approximately a one week period to the required DOC, 

in order to allow the inoculurn a better opportunity to acclimate. 

Activated sludge (192 ml) was added to each of four SCAS units to give a concentration of 

1000 mg 1-1 of solids. Each unit was topped up with deionised water and the mixture 

aerated. On every-other day over a two week period, the aeration was stopped and the 

solids allowed to settle for approximately I hour and 500 ml of supernatant decanted and 

replaced by fresh settled sewage liquor. After this time each SCAS unit was ready for the 

addition of the test dyes and these were added along with the fresh sewage liquor at an 

initial concentration of 20 mg 1-1 (W435), 25 mg 1-1 (W433) and 25 mg 1-1 (RR3.1), which 

on subsequent charging produced a maximum loading of 40,50 and 50 mg 1-1, as 

determined for their theoretical oxygen demand. Because 50% of the liquid phase is 

removed every-other day, the system is said to have a hydraulic residence time of 4 days. 

This procedure of removing 500 ml of supernatant and adding fresh sewage liquor and dye, 

was continued on alternate days for 27 days, after which it was sampled once every three 

days to save on dye usage (Hydraulic residence time (HRT) of 6 days). However this was 

returned to a HRT of 4 days after a period of 9 weeks, which was then maintained to the 

end of the study. The temperature of the SCAS units was maintained at 22*C ± 2'C. 

Additionally pH was checked on each sampling day. 

The samples of supernatant removed from each SCAS unit were stored refrigerated and 

analysed by LC using the conditions described in Section 2.1. 
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5.2.2 Single strain bacterial cultures 

5.2.2.1 Initial evaluation of single strain degradation 

Cultures of Pseudomonas dacunhae, A fluoriscens 9046 and A texaco were each prepared 

in sterile tryptone soy broth consisting of casein digest (17 g 1-1), soy peptone (3 g 1-1), 

sodium chloride (5 g 1-1), dipotassium phosphate (2.5 g 1-1) and dextrose (2.5 g 1-1), at 

pH 7.3. Each culture was sealed within a conical flask and allowed to grow for 72 hours. 

Eight test vessels (25 ml) were set-up, four containing W433 and four W435 dyes, (100 gl; 

1000 mg 1-1). To each vessel were added media salts (9 ml) and glucose (500 g], IM). 

One vessel of each dye was sealed for use as a control, while 200 gI of each prepared 

culture broth was added to each remaining vessel. Each vessel was then sealed and 

incubated in a water bath at 19'C. 

Samples were taken from each vessel at regular intervals up to 7 days. Samples (I ml) 

were taken using sterile pipettes and centrifuged in Eppendorf tubes using a micro- 

centrifuge (MSE), at 13,000 rpm for 5 minutes. Supernatant was transferred to sample 

vials and chloroform (100 gl) added to destroy bacterial activity. Each sample was then 

spiked with naphthalene sulphonic acid as internal standard and analysed by LC-UV using 

the conditions described in Section 2.1. 
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5.2.2.2 Extended evaluation of single strain culture biodegradation 

Ten conical flasks were prepared for each of three dyes: W433, W435 and Reactive Red 

3.1 (RR3.1), each at a nominal concentration of 50 mg 1-1. To each conical flask was 

added: deionised water (70 ml), growth media (4 ml) which contained a mixture of 

dipotassiurn hydrogen phosphate, potassium dihydrogen phosphate, trisodium citrate 

dihydrate, ammonium sulphate and magnesium sulphate heptahydrate, and one inoculum 

(2 ml) as detailed in Table 5.1. Glucose (4 ml; 6g 1-1), was added to each of flasks I-6, 

flasks 7-9 were used as glucose free controls to determine whether the bacteria would 

utilise the dye as a sole carbon source and flask 10 was a negative control. 

Table 5.1 Distribution of inoculum, growth media and glucose for each 
batch of test vessels. 

Contents Vessel Number 
1 2 3 456789 10 

P. dacunhae x x x 

P. 9046 x xx 

Atexaco xxx 

Media x x x xxxxxxx 

Glucose x x x xxxx 

All flasks were incubated at 24"C in the dark, using an incubator shaker at 150 rpm for a 

period of up to 4 weeks. Samples were taken at regular intervals using sterile pipettes 

(I ml), transferred to glass Reacti-vials and stored frozen until required. It was assumed 

that the freeze-thaw process would not only preserve the sample, but would also disrupt 

the bacteria cell walls to stop subsequent degradation. Samples were thawed at room 

temperature and an aliquot (approximately 100 gl) transferred to an Eppendorf micro- 
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centrifuge container and centrifuged at 13.000 rpm for ten minutes. The supernatant was L- C, 

then transferred to low volume autosampler vials for analysis by LC-UV using the method Z- 

described in Section 2.1. 

5.3 RESULTS 

5.3.1 Evaluation of Semi-Continuous Activated Sludge (SCAS) aerobic degradation 

of W435 

The SCAS units were initially run with an HRT of 4 days (half of the liquid content 

(500 ml) was decanted off every two days and replaced by a fresh solution of dye made up 

with the liquid supernatant from sewage liquor). The initial concentration of W435 was L- 

23 mg 1-1 which was supplernented by the addition of 23 nig at the start of each cycle. The Z- 

concentration of dye in the SCAS unit therefore increased on each cycle: 50cl'( of initial 

solution 0 1.5 mg) plus 23 mg fresh dye equal to 34.5 mg 1 -1, up to a maximum of 

approximately 46 mg 1-1 after 9 cycles (i. e. 18 days). This shown by the theoretical 

SCAS dye concentration in Figure 5.2. 

Measured 

Theoretical 
60 

a 50 . - 

40 

30 

20 

10 

0 
0 10 20 30 40 50 60 70 80 90 100 110 

Treatment period (Days) 

Figure 5.2 105 day aerobic incubation of W435 using Seml-Continuous Activated 
Sludge systern (SCAS) L- 
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Clearly W435 was rapidly biodegraded in the test system. The bacteria present, although 

from domestic sewage and therefore not previously exposed to high concentrations of 

dyestuffs, were able to degrade the dye without the need for extensive acclimation. During 

this early part of the study, the maximum extent of degradation was observed on day 19, 

where the measured concentration of parent dye was 5 mg 1-1 compared to a theoretical 

concentration of 46 mg 1-1. This represents 89% degradation, which according to OECD 

guidelines, indicates extensive biodegradation. Interestingly, the observed concentration 

of W435 then continually increased, eventually reaching the theoretical concentration at 

approximately day 50. This coincided with a change in HRT from 4 to 6 days (ie fresh 

nutrient added every three days) and implies that either degradation only occurs when 

W435 was not the sole carbon source (ie co-metabolism was required for degradation), or 

that a metabolite was formed which inhibited degradation on prolonged treatment where 

the dye became the sole carbon source. Additionally, because the measured concentration 

of dye reached the theoretical level, it can be assumed that W435 was not extensively 

adsorbed onto the solids within the SCAS unit. On reverting to the original HRT of 4 daYs 

(on day 64), extensive degradation was again observed (>80%), confirming the original 

observation for the need for nutrients in the sewage liqour as a co-substrate. It was quite 

surprising that a small change in HRT could have such a marked effect on degradation. 

However this is not significant in terms of a sewage treatment works environment which 

has a constant replenishment of nutrients. Aerobic biodegradation would therefore appear 

to be a major route for elimination of anthraquinone dyes. 

The extent of degradation may be seen in the LC-UV (254 nm) chromatograms of W435 

samples taken up to day 19 during the initial stages of the study (Fig 5.3). These clearly 

demonstrate the diversity of degradation products formed, where at least ten products, 

none of which were present in the control sample, were observed during this initial period. 
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Figure 5.3 LC-UV (254 nm) chromatograrn of samples taken for a sample of dyestuff 
W435 degraded for zero, 4 and 19 days by a consortium of aerobic bacteria (SCAS unit) 

The identification of the degradation products was attempted using LC-MS. A comparison 

of reconstructed ion current (RIC) and UV (254 nm) traces for the day 19 sample is shown 

in Figures 5.4 and 5.5. A comparison of these chromatograms with the HPLC-UV 

chromatogram of the same sample analysed on the corresponding day, (Figure 5.3c), 

suggests that degradation had continued despite refrigerated storage (4C) of the sample 

prior to LC-MS analysis. In particular, the intensity of peak VIII decreased whilst peak IV 

increased. Despite this, it was possible to correlate the major peaks in each chromatogram 

by calculating retention times relative to the parent dye, peak XI. 
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LC-UV (254 nm) 

LC-MS (RIC) 

Figure 5.4 Comparison of LC-UV(254 nm) and LC-MS (RIC) chromatograms for a 
sample of dye W435 degraded for 19 days in a SCAS system. 
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LC-UV (254 nm) 

.0 

0 
Figure 5.5 Comparison of LC-UV(upper) and LC-MS (lower) chromatograms (17.5 to 

30 minutes) for a sample of dyestuff W435 degraded for 19 days by a consortium of 
aerobic bacteria (SCAS unit) 
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The identification of products was based on several criteria, including the molecular 

weight (odd or even number of nitrogen atoms), number of sulphonic acid groups 

(determined by number of charge states present) and presence or absence of chlorine 

isotopes. The mass spectra for some of the products, including the parent dye (I), an 

hydrolysis product (II) and two further products with molecular ions at m1z 320 / 641 (IV) 

and m/z 430 (IX), were previously identified by analysis of samples from the photolysis 

study, (Section 3.4.2). 
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The mass spectrum observed for component V11b, (Fig 5.6), shows a molecular ion [M-H]' 

m1z 218 which indicates an odd molecular weight and therefore an odd number of nitrogen 
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atoms and appeared to be singly charged, therefore possessing no more than one sulphonic 

acid group. A characteristic chlorine isotope pattern was present. This was consistent with 

a hydroxylated compound derived from the chlorotriazine reactive group function of the 

dye W435. 

100 

80 

60 

40 

20 

0 

218 

Figure 5.6 Mass spectrum derived from component VIIb (Figure 5.5) for a sample of 
dyestuff W435 degraded for 19 days by a consortium of aerobic bacteria (SCAS unit) 

A much smaller component, (VIla) was not observed in the original LC-UV 

chromatogram, (Fig 5.3). The molecular ion of this component (m/z 200; Fig 5.7), differed 

by 18 mass units from that observed for peak Vllb and no chlorine isotope pattern was 

present. This is consistent with de-chlorination and concurrent hydroxylation of 

compound VIIN 
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Figure 5.7 Mass spectrum of component V11a (Figure 5.5) for a sample of dyestuff 
W435 degraded for 19 days by a consortium of aerobic bacteria (SCAS unit) 

The mass spectrum of component V, (Fig 5.8), produced molecular ions at m1z 351 and 

703 indicating a molecular weight of 704 and the presence of two sulphonic acid groups. 

The even molecular weight is indicative of an even number of nitrogen atoms in the 

molecule. The presence of chlorine was confirmed by the isotope pattern of the singly 

charged molecular ion. The mass difference between the molecular weight of component 

VI and the parent dye W435 (equal to 28 mass units) is most likely to be due to the net loss 

Of C2H4 which can be rationalised by the hydrolytic fission of the ethoxylate side chain to 

produce an alcohol, with the elimination of ethanol: 

R-OCH2CH2-0-CH2CH3 -o- R-OCH2CH2-OH + HO-CH2CH3 
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Figure 5.8 Mass spectrum of component V (Figure 5.5) for a sample of dyestuff W435 
degraded for 19 days by a consortium of aerobic bacteria (SCAS unit) 

The mass spectrum of component VIII, (Fig 5.9), contained molecular ions at m1z 717 and 

358 (ie two sulphonic acid groups) an even number of nitrogen atoms and a characteristic 

chlorine isotope pattern. Interestingly the molecular weight of this compound (718) was 

only 14 mass units less than that of the parent dye W435, yet its retention time was nearly 

4 minutes less than the parent, suggesting it was significantly more polar. These data can 

be explained by the further oxidation of component V to form a carboxylic acid, which 

would result in a net change in molecular weight of 14 mass units compared to the parent 

dye: 

0 
11 

R-OCH2CH2-OH R-OCH2COH 
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Figure 5.9 Mass spectrum of component VIII (Figure 5.5) for a sample of dyestuff 
W435 degraded for 19 days by a consortium of aerobic bacteria (SCAS unit) 

The mass spectrum for component XI (Fig 5.10) was not observed in the initial LC-UV 

(254 nm) analysis, (Fig 5.3). The observed molecular ion m1z 302, indicated an odd 

number of nitrogen atoms and showed no chlorine isotope pattern. The presence of only 

one charge state suggested no more than one sulphonic acid group. This was consistent 

with I-amino-anthraquinone-2-sulphonic acid. 
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Figure 5.10 Mass spectrum of component XI (Figure 5.5) for a sample of dyestuff 
W435 degraded for 19 days by a consortium of aerobic bacteria (SCAS unit) 

Peaks III, VI and X did not produce mass spectra under the conditions used for this 

analysis. The proposed aerobic biodegradation pathway for W435 is surnmarised in 

Figure 5.11. 
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Figure 5.11 Proposed aerobic degradation pathway for dyestuff W435 following 
degradation for 19 days by a consortium of aerobic bacteria (SCAS unit) 

It was noticeable that at the end of the experiment the sludge residue was blue, indicating 

that unlike the parent dye, at least some of the degradation products were absorbed onto 

the sludge. A sample of filtered sludge was stored frozen for future analysis. 

283 



5.3.2 Products of incubation of dyestuff W435 with single strain cultures of bacteria 

The concentrations of W435 determined for samples incubated with three different single 

strain cultures of bacteria, are shown in Table 5.2. It was noticeable that the control 

sample (no culture) showed 100% degradation of parent dye on day 7, indicating that it 

had become non-sterile. Also, re-analysis of samples showed that chloroform added to 

each sample to terminate biological activity was ineffective and degradation within 

samples had continued. The data below should therefore be treated with care, although 

rapid degradation by P. 9046 and P. texaco was observed. 

Table 5.2 Concentration of W435 incubated with three different single strain cultures 
of bacteria 

Day Relative amount of dye (%) 

Control P. docunhae A fluoriscens - A texaco 
9046 

1 100 94 92 87 
2 92 97 60 24 
3 94 96 21 9 
4 95 63 13 6 
7 0 0 0 0 

The second single strain culture experiment was carried out in a more controlled 

environment. Each test vessel not only had a sterilised foam bung, but was sealed with 

aluminiurn foil, to prevent cross contamination of the cultures. This enabled the 

experiment to be extended to 24 days. Additionally, it was possible to have a control for 

each dye (no culture) and a glucose free test vessel for each dye with each culture to 

determine the potential of each dye as the sole carbon source for degradation. 

Figures 5.12a-c show the measured concentration for duplicate test vessels of W435 

incubated with A docunhae, A 9046 and P. texaco respectively. There was no loss of 

W435 in the dye only control, confirming the observation in the SCAS experiment that 
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W435 does not adsorb to bacterial cultures or solids. Also, there was no loss of W435 in 

the glucose-free vessels, again confirming the SCAS observation that W435 does not 

degrade when it is the sole carbon source. 
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Figure 5.12 Incubation of replicate test vessels of W435 with single stram cultures of 
a) P. tiocunhae (b I, b2), b) P. 9046 (b3, b4) and c) P. texaco(b5, M). The control vessels 

contained W435 but no glucose or culture and b7, b8 and b9 contained culture but no 
glucose 

Removal of W435 was observed in samples taken after day 13 from the P. tiocunhae test 

vessels, (Fig 5.12a) but there was no evidence for major degradation products in the 

LC-UV chromatograms of day 19 or day 24 samples. Growth wits observed in both 
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P. docunhae duplicate test vessels, which was not observed in the controls or any of the 

other test vessels. This growth started on day 13 and effectively removed the dye leaving a 

colourless solution by day 24. The origins of the growth were not investigated, but its 

physical form; a solid ball, suggested it was not a Pseudomonas species. 

A somewhat different pattern was observed for W435 in the presence of A 9046, 

(Fig 5.12b) where a significant and rapid decrease in concentration (to 46% on day 1) was 

observed for duplicate vessels containing both culture and glucose. Since no losses were 

observed in the control or glucose-free vessels, simple sorption onto either the culture or 

glucose was ruled out. The chromatograms derived from day 1,13 and 24 experiments are 

sh own in Figure 5.13. These indicate a number of relatively minor components formed on 

prolonged incubation, but this seemed unlikely to account for the 54 - 60% removal 

observed. Because of the strong blue coloration of the dye it became noticeable that a blue 

residue remained after centrifugation of the sample prior to analysis, the colour being 

associated with the culture deposit. This residue was extracted with methanol, used both to 

dissolve the dye and to disrupt the cell structure of associated bacteria. The recovery of 

W435 from the centrifuged solid together with the concentrations in the liquid phase are 

shown in Figure 5.14. The sum of liquid plus sorbed material accounted for greater than 

70% of W435, the remainder was probably due to the sum of the minor degradation 

products observed. 
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Figure 5.13 LC-UV (254 nm) chromatograrns of samples taken during the 24 day 
aerobic incubation of W435 with Pseudomonas 9046 
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Figure 5.14 Comparison of W435 concentration in liquid (mean of b3 and b4) and 
methanol extracts from solid residue (sorbed), derived from the incubation of W435 with 

single strain culture of P. 9046. The control vessel contained W435 but no glucose or 
culture 

It was interesting that adsorption occurred only when glucose was also present. Sorption 

may have been associated with the rapid growth of the culture in the presence of glucose as tý 

a carbon source, or possibly due to dual uptake of dye and glucose by the bacteria. 

, rbe effect of incubation of W435 with P. texaco is shown in Figure 5.12c. Significant 

biodegradation was observed after 19 days incubation, with numerous degradation 

products observed in the LC chromatograms of samples taken at days 19 and 24, 

j7ig 5.15). These data suggest that a period of acclimation was required before the dye 
tý4! 1 

CoLild be digested by P. le-itico. The LC retention times of the degradation products could 4- L- 

Irlot be related to any observed in previous studies. Samples were not identified further, but 

, tored frozen for future analysis. 
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Figure 5.15 LC-UV (254 nm) chromatograms of samples taken during the 24 day 
aerobic incubation of W435 with Pseudomonas texaco 

Ili summary, some evidence for partial aerobic degradation of dye W435 by A texaco and 

to a lesser extent A 9046, was observed. Based on LC-UV retention times, the products 

formed were different from those observed in the SCAS study, suggesting a different 

Iretabolic pathway. Additionally, a substantial amount of dye was removed by sorption to 

9046 in the presence of glucose. There was no evidence of degradation by A 

jgocunhae. 
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5.3.3 Evaluation of Semi-Continuous Activated Sludge (SCAS) aerobic degradation 

of W433 

The changes in measured concentrations with incubation time for the SCAS 

biodegradation of W433 are shown in Figure 5.16. The observed and theoretical 

concentrations were very similar, indicating no significant aerobic degradation or sorption L- Zý L- 

of the dye. There were no additional peaks observed in the LC-UV (254 nun) 

chrornatograrns of extracts following incubation. confirming that W433 was not degraded L- -- tý t- 

under the test regime used. The dip in measured and theoretical concentrations from 

day 38 was due to a change in added stock solution concentration. 

Figure 5.16 105 day aerobic incubation of W433 using Semi-Continuous Activated 
Sludge system (SCAS) L_ 

290 



5.3.4 Incubation of dye W433 with single strain cultures of bacteria 

The concentrations of W433 determined in samples of dye W433 inoculated with three 

different single strain cultures of bacteria, are shown in Table 5.3. As previously discussed L- 

for W435, re-analysis of samples showed that chloroform added to each sample to 

ten-ninate biological activity was ineffective and that degradation within samples had 
r-- III ztý 

continued after extraction. However the data suggest rapid degradation of W433 by 

P. 9046 and P. texaco. This was particularly interesting considering there was no Z- 

degradation of W433 in the SCAS experiment (Section 5.3.3). 

Table 5.3. 

Da y '( of Relative aniount of dye (I/ I starting concentra Cý tion) 
Control P. (Iocunhae P. 9046 P. lexaco 

1 103 98 91 99 
2 102 103 65 57 
3 99 82 23 49 
4 95 80 14 45 
7 101 62 0 35 

Figure 5.17 shows the measured concentrations in duplicate test vessels of dye W433 

incubated with P. docunhae for 24 days. There was no loss of W433 in the control but a 

significant decrease in dye concentration was observed after 3 days incubation in the 

presence of glucose and after 12 days in the absence ot'glucose. 
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Figure 5.17 Incubation of replicate test vessels of W433 (a I, a2, with glucose and a7, 
no glucose) with P. docunhae. The control vessel contained W433 

but no glucose or culture. 
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'Fýe concentration of dye in the duplicate samples containing both culture and glucose 

remained constant for the first 3 days (indicating no sorption), but then decreased rapidly 

from day 4 onwards. This suggests a short acclimation period was required before the 

culture was able to degrade the dye. LC-UV analysis of extracts from these samples 

(Fig 5.18) revealed a range of degradation products in samples incubated for 19 and 

24 days, confirming the extensive degradation of dye by A docunhae. 
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jFigure 5.18 LC-UV (254 nm) LC-UV (254 nm) chromatograms of samples taken during 

- the 24 day aerobic incubation of W433 with Pseudomonas docunhae. 
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Figure 5.19 shows the change in concentration of W433 following incubation with 

P. 9046. The dye was rapidly and extensively removed from solution over the incubation 

period suggesting significant degradation. However LC-UV chromatography of extracts 

showed no evidence for the presence of degradation products. The data for the test system I- 

with no glucose (ag) dernonstrates that W433 does not simply adsorb onto the culture, 

indicating that an interaction between the dye, glucose and culture led to the adsorption of L- r-I 

the dye. This effect was also observed for W435 in the presence of P. 9046. 
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Figure 5.19 Incubation of replicate test vessels of W433 (a3, a4, with glucose and ag, no 
glucose) with single strain culture of P. 9046. The control vessel contained W433 but no 

olucose or culture. 

Figure 5.20 shows the measured concentration for duplicate test vessels of W433 incubated 

with P. texaco for up to 24 days. There was no loss of dye in the control or with culture in 

the absence of glucose (a9). The initial concentration of dye decreased by 50% on day 1, 

but then remained at this concentration for the remainder of the incubation period. LC-UV 

analysis of extracts showed a few minor degradation products in the day I sample, but this 

would not account for the large decrease in W433 concentration and suggests the dye was 

removed by a process other than degradation. Only one degradation product was observed 

following 24 days incubation, Interestingly, this had a very short retention time indicating 

high polarity. 

W 293 



80.0 - P. texaco 
70.0 - 

E 60.0 0 a5 
50.0 

a6 0 40.0 
30.0 0 a9 
20.0 A Control 

0 100 
&0 

0 5 10 15 20 25 

Incubation time (Days) 

lFigure 5.20 Incubation of replicate test vessels of W433 (a5, a6, with (-, Iucosc and a9, no 
glucose) with single strain culture of P. texaco. The control vessel contained W433 but no 

olucose or culture Z- 

In summary, extensive degradation of W433 was observed in the presence of P. docullhae. 

Rernoval of dye by P. 9046 and texaco appeared to be due to adsorption with little 

evidence of biodegradation. 

5.3.5 Evaluation of Semi-Continuous Activated Sludge (SCAS) aerobic degradation 

of Reactive Red 3.1 

The change in measured concentration with incubation time for the SCAS biodegradation 

of RR3.1 is shown in Figure 5.21. The observed and theoretical concentrations were very 

similar, indicating no significant aerobic degradation or sorption of the dye. There were no 

significant degradation product peaks observed in the LC-UV (254 nm) chromatograms 

confirming that RR3.1 was not degraded under the test regime used. The feed 

concentration of dye to the SCAS unit was reduced after day 48 to observe the effect of 

biodegradation on lower concentrations of dye. However, this change in concentration did 

not induce degradation of the dye. A further reduction in concentration at day 91 was 

caLised by exhaustion of available dye stock solution leading to dilution of the dye on each 

addition of fresh nutrients. 

294 



80 

70 

60 

50 

4u 

30 

20 

10 

o 
0 20 40 60 80 

Treatment period (Days) 

ýd 

ical 

100 120 

Figure 5.21 105 day aerobic incubation of W435 using, Serill-Continuous Activated 
Sludge system (SCAS) 

5.3.6 Incubation of Reactive Red 3.1 dye with single strain cultures of bacteria 

Figure 5.22 shows the measured concentration for RR3.1 incubated with P. tlocunhae for 

24 days. There was no loss of RR3.1 in the control. The onset of degradation for the test 

system containing both culture and glucose (c I) was observed on day 2. The number an(] 

concentration of products increased over the duration of the study (Fig 5.23). LC-UV L- 

chromatograms of samples taken on and beyond day 19 indicated extensive metabolism of 

the dye. A substantial decrease in dye concentration was observed for test systern c7 (no 

glucose), suggestin(y the culture could use RR3.1 as a sole carbon source. However the 

LC-UV analysis showed a quite different pattern of degradation products to those observed 

in the presence of glucose suggesting that degradation occurred by a different pathway in 

the absence of glucose. 
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Figure 5.22 Incubation of replicate test vessels ofRR3.1 (c 1, with glucose and c7, no 
glucose) with single strain culture of P. docunIme. The control vessel contained RR3.1 but 

no glucose or culture 
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Figure 5.23 LC-UV (254 nm) chromatograms of samples taken during the 24 day 
aerobic incubation of W435 with Pseudonionas docunhae (c 1, with glucose). 
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]Figure 5.24 shows the measured concentration for RR3.1 incubated with P. 9046 for 

24 days. There was no loss of RR3.1 in the control or the glucose free test system 

indicating that RR3.1 was not degraded when present as the sole carbon source and was Z!, 

not adsorbed by the culture. The onset of degradation in the test vessel containing both 

culture and glucose was rapid, several products being observed on day 1. Additional 

products were observed following increasing incubation time, (Fig 5.25) Including one 

with a later HPLC retention time than the parent dye (ie a less polar compound than 

P, R3-1 ). However, although the range of products increased over the duration of the study, 

the measured concentration of parent dye showed only a slight decline up to day 24 of 

jincubation. This suggests the degradation products formed on the first day were further 

transformed to new metabolites, but degradation of the parent dye ceased. 
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Figure 5.24 Incubation of replicate test vessels of RR3.1 (c3, with glucose and c8, no 
glucose) with single strain culture of P. 9046. The control vessel contained RR3.1 but no 

glucose or culture 
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Figure 5.25 LC-UV (254 nm) chromatograms of samples taken during the 24 day 
aerobic incubation of W435 with Pseudomonas 9046 (c3, with glucose). 

_. 
]Figure 5.26 shows the measured concentration for RRM incubated with P. texaco for 

24 days. There was no loss of RR3.1 in the control or the glucose free test system 

, 
indicating that RR3.1 is not degraded when present as the sole carbon source and is not 

adsýrbed by the culture. 
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One major metabolite was observed. This was confirmed by LC-UV retention time as the 

hydrolysis product of the parent dye: 

HO, S S) I 
1ýýN=N 

N'll 
hi 

--Q 

N"kN 
so'll 

110 N-'L'Nif 

1; (, 
1 

This suggests a simple oxidative process rather than extensive metabolism of RIO. 1. The L- 

hydrolysis product was quantified using the parent dye calibration (since it had the same 

UV response factor), which confirmed the formation of' the hydrolysis product its the only 

significant process. 
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Figure 5.26 Incubation of replicate test vessels of RR3.1 (c5. with glucose and c9, no r-- 
glucose) with single strain culture of P. texaco. The control vessel contained RR3.1 but no 

glucose or culture 

5.4 CONCLUSIONS 

Given suitable conditions of temperature, co-substrates, nutrients and titne, bacterial 

aerobic degradation of dyes is likely to be a major pathway for the removal of' 

anthraquinone dyes within sewage treatment works and in the environment. Many of the 

degradation products are formed from the fission of bonds attached to the anthraqU111011C 
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moiety and these do not have the same intense blue colour of the parent. Addlllollallý, 

many of the degradation products can be renloved by adsorption onto solids, whereas the 

parent dyes are highly water soluble. 

Two azo dyes did not deorade under the SCAS biodegradation conditions suggesting this Z- c L- L- t 

type of dye are not susceptible to aerobic degradation. However there wits evidence of 

degradation by pure cultures of Pseudomonas, which suggest degradation may he possiblc 

given suitable conditions. 
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CHAPTER 6 

CONCLUSIONS 

IMe first aim of this project was to establish a robust LC separation that was compatible 

with mass spectrometer interfaces, for the identification of reactive dyes and their 

degradation products. This was achieved through the adaptation of an existing ion pairing 

inethod through the use of dilute ammonium acetate buffer. The method was capable of 

the reproducible separation of a range of di-, tri and tetra-sulphonated azo and 

anthraquinone reactive dyes and formed the basis of the analysis method used thereafter in 

this project. The same ion pair approach was also used to demonstrate the effective 

extraction and concentration of reactive dyes from aqueous solution, using either tetrabutyl 

ammonium hydroxide or ammonium acetate as buffers. The MSMS spectra of reactive 

dyes are quite complex. However, the optimisation of collision gas pressure and collision 

energy, and interpretation of the MSMS spectra of known azo and anthraquinone reactive 

cjyes, provided novel fragment ions characteristic of reactive dyes. These optimised 

C onditions and mass spectral interpretations provided a sound basis for the analysis of 

clyestuffs in subsequent fate studies. 

The most likely routes of transformation of reactive dyes in the aqueous environment 

(eg rivers) are photodegradation, aerobic and anaerobic biodegradation. Aspects of all 

three of these processes were researched within this study. 

fibre reactive dyes are designed to have a degree of photostability and therefore their 

photodegradation behaviour has not been widely investigated. Little is known of their 

stability to light over prolonged periods of irradiation in dilute aqueous solutions and in the 

presence of hurnic substances. 
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In this study, a xenon lamp was successfully used for laboratory-simulated aqueous 

photolysis studies of two reactive dyes. In order to relate laboratory kinetic data to that of 

environmental situations around the world, it was necessary to compare the light intensity 

of natural sunlight to that of the laboratory system. In this study a spectro-radiometer was 

used to provide a direct comparison of UK midday sunlight (Brixham) with that of the 

%enon lamp of the laboratory system. It was then possible to predict the half lives for two 

reactive dyes in other parts of the world such as USA, Brazil and India. 

Photodegradation was very rapid for the anthraquinone dye W435 for which a t1/2 Of 

1.5 hours was determined. The solid phase extraction, LC-MS and LC-MSMS methods 

developed in the initial part of this study were utilised for the concentration and 

identification of photodegradation products respectively. The observed degradation 

pathway indicated cleavage at several parts of the dye structure some of which retained the 

reactive chlorine moiety. It was interesting that following initial rapid degradation, 

continued irradiation did not appear to significantly effect the concentration of products 

which suggests the process may have been limited by dissolved oxygen concentration. 

Photodegradation of the azo dye W433 was significantly slower 01/2 30 hours) than that of 

W435. LC-MS and LC-MSMS confirmed the only initial transformation reaction to be 

dechlorination with accompanying hydroxylation. Extended periods of irradiation (up to 

72 hours), produced at least 10 degradation products which collectively accounted for an 

estimated 15% of the initial dye concentration. However each component was relatively 

rninor and these were not identified by LC-MS- 

The addition of humic substances (I mg 1-1) isolated from the river Dodder, Eire, to 

dyestuffs in water appeared either to have no effect or to slightly reduce the rate of 

photodegradation of W433. Conversely, Aldrich hurnic acids slightly increased the rate of 
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photodegradation. From the limited work reported here humic acids may have an effect on 

the rate of photodegradation, either by absorbing energy which otherwise might energise 

dye material to cause degradation, or by sensitising the photodegradation reaction to 

ericourage a faster rate. However, further work, including a broader range of origins and 

concentration of characterised humic substances is required to better understand their role 

in photolysis of reactive dyes. 

The reduction of azo dyes under anaerobic treatment has been extensively studied, but 

Inost studies have made use of relatively simple model compounds rather than real dyes. 

Additionally, the subsequent fate of the initial reduction products in the presence of air (as 

may be expected for a mixed anaerobic-aerobic treatment system), is not understood. In 

this study, three dyes: Amaranth, Sunset Yellow and Naphthol Blue-Black, were reduced 

and the effect of aeration on the reduction products examined. The substituted I -amino-2- 

hydroxynapthalene products of the reduction process were found to be highly susceptible 

to oxidation, and some of the resulting products were highly conjugated and therefore 

coloured. Optimised LC-MS and LC-MSMS conditions were used to identify and monitor 

autoxidation products as they changed with increasing time, and autoxidation pathways for 

each dye were proposed. Interestingly the formation of ring-opened structures was 

observed. These, although resistant to autoxidation, would be expected to be highly 

susceptible to decarboxylation and further degradation under aerobic biological treatment. 

Such reactivity, if confirmed by further studies, might indicate good potential for the 

removal of azo, dyes by sewage treatment systems employing aerobic treatment. The 

primary reduction product of the more complex Naphthol Blue-Black dye proved to be 

very unstable; indeed few degradation products were observed by LC-MS. One major 

autoxidation product which produced a blue colouration was found to be stable and was 

identified by LC-MS. 
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The I autoxidation products identified for Amaranth and Sunset Yellow were used to 

successfully predict the autoxidation products of the more complex azo dye, Reactive 

Red 3.1. This dye underwent rapid autoxidation to form more than nineteen major 

- products. Several of these indicated that fission of secondary amine groups had occurred 

in the reduction process. This is particularly relevant since the reduction products of azo 

dyes are often thought to be recalcitrant. 

Additionally, the ring-opened autoxidation products observed for Amaranth and Sunset 

Yellow were also observed for Reactive Red 3.1. These are believed to be readily 

degraded by aerobic degradation and highlight the potential to mineralise azo dyes through 

a mixed anaerobic-aerobic treatment process. Indeed, ring-opened structures were not 

observed in samples derived from a subsequent mixed treatment process for Reactive 

Red 3.1. However, in this anaerobic-aerobic treatment system, one persistent degradation 

product was identified which was stable over the 7 day aerobic period of the study and was 

therefore resistant to aerobic degradation. This suggests the need for optimisation of the 

degradation process to enhance the ring-opening process. 

Three reactive dyes: W435, W433 and RR3.1 were subjected to aerobic biodegradation 

using both mixed culture (SCAS) and single strain inocula. Given suitable conditions of 

temperature, co-substrates, nutrients and time, bacterial aerobic degradation is likely to be 

a major pathway for the removal of anthraquinone dyes within sewage treatment works 

and in the environment. The major degradation products of the mixed culture (SCAS) 

experiment were identified by LC-MS and an aerobic biodegradation pathway proposed. 

This was quite different from the pathway described for photodegradation. Many of the 

degradation products were formed from the fission of bonds attached to the anthraquinone 

moiety and these do not have the same intense blue colour of the parent. Additionally, 

many of the degradation products were removed by adsorption onto solids within the 
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SCAS system, whereas the parent dyes are highly water soluble. For the single strain 
I 

cultures, there was some evidence for partial aerobic degradation of W435 by 

Pseudomonas texaco and to a lesser extent by Pseudomonas 9046. Based on LC-UV 

retention times, the products formed were different from those observed in the semi- 

continuous activated sludge (SCAS) study, suggesting a different metabolic pathway. 

Additionally, a substantial amount of dye was removed by sorption to Pseudomonas 9046 

in the presence of glucose. Two azo dyes did not degrade under the SCAS biodegradation 

conditions suggesting this type of dye is generally not susceptible to aerobic degradation. 

However there was evidence of extensive degradation by pure cultures of Pseudomonas 

docunhae, which suggests that degradation of azo dyes may be possible given suitable 

conditions. 
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APPENDIX 1 

Dyes used in degradation studies 
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