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Abstract – This paper presents a novel stiffened plate buckling model for describing the 

distortional buckling of cold-formed steel zed- and channel-section beams when they are bent 

about their major axis. In the model the compression flange and lip together with the web are 

treated as a plate with an angle stiffener. By using the classical principle of total potential 

energy, an analytical expression for the critical buckling stress of the stiffened plate is 

obtained. In order to validate the present model, finite strip analysis is also carried out for 59 

CFS channel-section beams used in the UK market. The comparison of the critical stresses 

calculated from the present stiffened plate buckling model and those obtained from the finite 

strip analysis demonstrates that the present model provides an excellent prediction for the 

critical stress of distortional buckling of CFS section beams.   

 

Keywords: Cold-formed steel, beams, distortional buckling, modelling, analytical solution 

 

 

1. Introduction 

 

Thin-walled, cold-formed steel (CFS) sections have been widely used as purlins and rails in 

buildings for farming and industrial use. These sections, when subjected to compression 

and/or bending, may undergo a mode of buckling called distortional, which involves a 

rotation of the lip/flange component about the flange/web corner with a half-wavelength that 

is greater than that of local buckling mode but much shorter than the member length. Unlike 

the local and lateral-torsional bucklings which have been well-defined and can be analysed 

using the classical theories of plates and beams, the distortional buckling is not fully 

recognised and its analysis is rather complicated.  

 

Distortional buckling was first discovered by Hancock in 1978 [1], who investigated the local, 

distortional, and flexural-torsional modes of buckling of I-beams bent about their major axis 

by using the finite strip method. However, as far as the CFS section is concerned, the analysis 

of distortional buckling was not started until mid of 1980s. The first analytical model for 

describing the distortional buckling of CFS sections was developed by Lau and Hancock in 

1987 [2] for columns subjected to axial compression. Later, this model was extended by 

Hancock [3] to CFS beams subjected to bending. In Law and Hancock’s model the 

distortional buckling was modelled by a beam comprising only the compression flange and 

lip with a rotational spring and a translational spring applied at the compression flange-web 

junction. By using the flexural-torsional buckling theory of undistorted thin-walled columns 

developed by Timoshenko and Gere (1961) [4] and Vlasov (1961) [5], the critical buckling 

stress of the compression flange and lip can be calculated. The prettiness of the model is that 
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the critical stress of distortional buckling can be obtained analytically, although the formula is 

complicated. The shortcoming is the formula that requires the determination of rotational 

spring constant and the stress interaction between the compression flange and web. The 

former has been discussed by Jiang and Davies [6], who investigated the effect of the 

rotational spring constant on the critical stress of distortional buckling of CFS beams, in 

which the rotational spring stiffness was obtained by assuming the tension end of the web to 

be pinned instead of fixed as originally suggested in Hancock’s model. Li and Chen [7] also 

modified the Law and Hancock’s model by taking account the flexural ability of the 

compression flange. Li and Chen used a vertical spring applied at the centroid of the 

compression flange and lip system to replace the rotational spring at the web-flange junction, 

which leads to a reduced critical buckling stress. Interestingly, the reduction fact obtained by 

using the vertical spring in Li and Chen’s model is very much similar to the artificial 

reduction factor employed in Law and Hancock’s model. Li and Chen’s modified model has 

been further extended to analyse the distortional buckling of CFS section beams under 

transverse loading with moment gradient along the longitudinal axis of the beams [8].  

 

The second analytical model for analysing the distortional buckling of CFS sections was 

presented in Eurocode 3 (EN1993-1-3, 2006) [9], which was developed based on the 

compression buckling of a beam on an elastic foundation. In this model, a beam, which 

comprises the effective lengths of the lip and half flange adjacent to the lip, on an elastic 

foundation was used to represent the distortional buckling behaviour of the CFS section. The 

key in the model is the elastic foundation that reflects the restraint of the rest part of the 

section on the beam when it buckles. Li [10] examined the effect of the stiffness of the elastic 

foundation on the critical stress by using different web support conditions. It was shown that, 

the most appropriate support condition for achieving good results in Eurocode 3 is when a 

fixed support on the tension end of the web and a roller support on the compression end of 

the web are used. This finding illustrates the potential effects of stiffened folds in the web on 

the distortional buckling of the compression flange and lip system. It should be pointed out 

that, the mathematical expression for calculating the critical stress of distortional buckling is 

much simpler in Eurocode 3 than in any other analytical models. However, in terms of the 

accuracy of the obtained critical stress the Eurocode 3 is not as good as the other analytical 

models. This was demonstrated by a detailed comparison of critical stresses of distortional 

buckling obtained from various different methods for a wide range of CFS zed- and channel-

sections [11].  

 

In addition to the analytical models mentioned above, numerical methods such as the finite 

strip method [12-18], finite element method [19-21], generalized beam theory (GBT) [22-26], 

neural network [27-29] and experimental methods [30-32] have also been used to analyse the 

distortional buckling of CFS columns and beams. An exhaustive review of these works is 

beyond our scope since the research in the present paper is to focus on the analytical 

modelling of distortional buckling of CFS beams. The paper is organised as follows. In the 

section two the key features of the distortional buckling of CFS zed- and channel-sections are 

reviewed. By the examination of the modes of distortional buckling a stiffened plate buckling 

model is proposed. In section three, an analytical solution of the critical buckling stress of the 

proposed stiffened plate is derived by using the classical principle of total potential energy. 

The validation of the proposed model is explained in section four, where the critical stresses 

of distortional buckling of CFS channel-sections obtained by using the finite strip method are 

compared with the critical buckling stresses calculated from the proposed stiffened plate 

model. The main findings of the study are presented in the conclusion section.        
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2. Overview of distortional buckling modes 

 

It is known that the distortional buckling mainly occurs in the structural members of open 

cross sections. Its buckling mode usually involves both translation and rotation at the 

sectional fold lines of a member leading to a distortion of the cross section. The half-

wavelength of the distortional buckling mode is typically several times larger than the largest 

characteristic dimension of the cross-section. Figure 1 shows the typical buckling curves of a 

zed-section and a channel-section under a pure bending about their major axis, obtained by 

using the finite strip analysis program (CUFSM Version 2.6) developed originally by Schafer. 

For each section there are two buckling curves that are plotted in the figure; the case one is 

when the tension end of the web is completely free and the case two is when the tension end 

of the web is rotationally fixed. It can be seen from the figure that, for both sections the 

rotational restraint applied at the tension end of the web has little influence on the local and 

distortional buckling of the sections. Table 1 gives a comparison of the lowest critical stresses 

of the distortional buckling of the un-restrained and restrained zed- and channel-sections. It is 

found that the difference in terms of the lowest critical stress between the un-restrained and 

restrained sections is less than 4.3%. Also, it is observed from the figure that the buckling 

curves of the zed-section are almost the same as those of the channel section. This indicates 

that the distortional buckling of the CFS zed- and channel-section beams under bending about 

their major axis can be modelled by a system comprising the web and the compression flange 

and lip, while the tension flange and lip can be ignored if the tension end of the web is 

assumed to be fixed in the system.  

 

 

3. Two-parameter stiffened plate buckling model 
 

As described above, during the distortional buckling the web line deflects laterally, behaving 

like a cantilever beam. The compression flange and lip lines behave as a ‘rigid body’ to 

follow the translation and rotation of the compression end of the web, as shown in Figure 2. 

Hence, the web can be treated as a plate, whereas the compression flange and lip can be 

modelled together as an angle stiffener. The whole system can be treated as a plate with an 

angle stiffener. 

 

Let x be the longitudinal axis of the beam, y and z are the cross-section axes, which are 

parallel to web and flange lines, respectively, w(x) and (x) be the lateral displacement and 

angle of rotation at the compression end of the web (see Figure 2). Thus the deflection of the 

web plate can be expressed as follows: 

)()(),( 21 yNwyNyxwp           (1) 

where wp(x,y) is the deflection function of web plate, N1(y) and N2(y) are the interpolation 

functions, defined as follows, 
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where h is the web depth. The shear centre of the angle stiffener is at the flange/lip junction, 

where the displacements can be expressed as follows, 
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bxvs )(            (4) 

wxws )(            (5) 

 )(xs            (6) 

where vs(x) and ws(x) are the vertical and lateral deflections of the stiffener, s(x) is the angle 

of twist of the stiffener, and b is the flange width.  

 

Note that, during the distortional buckling neither the web plate nor the angle stiffener is bent 

about their own centroid axis because of the compatibility requirement of the longitudinal 

displacement at the web/flange joint point. This means that, apart from the bending about the 

midlines of the plate and the centroid axes of the stiffener, the plate and stiffener may also 

have the longitudinal displacements on the midlines of the plate and at the centroid point of 

the stiffener. The distribution of axial strain in a stiffened plate with asymmetric stiffeners 

has been reported in literature [33-35], but the assumptions used are not consistent. For 

example, Rothwell [33] assumed a strain distribution for the sideway bending of the stiffener, 

which went to zero at the joint between the plate and stiffener; whereas Hughes and Ma [35] 

assumed the strain distribution for the sideway bending of the stiffener was uniform in the 

plate. In order to examine the axial strain distribution in the distortional buckling mode, the 

finite strip analysis of a channel-section beam subjected to pure bending about its major axis 

has been performed. Figure 3 shows the axial displacement distribution of the distortional 

buckling mode along the lip-flange-web-flange-lip midlines. In the two curves shown in 

Figure 3a, one is not modified, in which the axial displacement is caused by both the side and 

vertical bendings of the stiffener; the other is modified in the finite strip analysis by 

restraining the lateral movement of the compression flange/web junction, in which the axial 

displacement is caused only by the side bending of the stiffener. In the two curves shown in 

Figure 3b, one represents the axial displacement caused by the side bending alone, which is 

the same as that shown in Figure 3a, whereas the other represents the axial displacement 

caused by the vertical bending alone, which is obtained by the difference of the two curves 

shown in Figure 3a. It can be seen from Figure 3b that, for the side bending of the stiffener 

the axial displacement varies linearly from a positive value to a negative value in the lip, 

keeps almost constant in the flange, and then reduces almost linearly from the compression 

end to the tension end of the web. For the vertical bending of the stiffener, the axial 

displacement is constant in the lip, varies linearly in the flange, and then reduces almost 

linearly from the compression end to the tension end of the web. Although there are some 

axial displacements in the tension lip and flange, their values are very small. Based on the 

finding of the axial displacement distributions, an approach for the axial strain distributions 

generated by the side and vertical bending is thus proposed herein, which is shown in Figure 

4. Note that in the above discussion the axial strain or axial displacement caused by the twist 

of the stiffener is not considered. This is because the stiffener considered here is an angle 

stiffener for which the warping effect can be generally ignored. 

 

According to the axial strain distribution proposed in Figure 4, the position of the bending 

centre of the stiffened plate thus can be obtained as follows, 
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where yo and zo are the coordinates of the bending centre and c is the lip length.  
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The strain energy of the web plate and the stiffener can be calculated as follows, 
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where Up and US are the strain energy of the web plate and angle stiffener, respectively, 

)1(12 2

3


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Et
D is the flexural rigidity of the web plate, E is the Young’s modulus,  is the 

Poisson’s ratio, t is the thickness, Iy and Iz are the second moments of area of the stiffener 

about y- and z-axes defined at bending centre, Iyz is the corresponding product moment of 

area of the stiffener, G is the shear modulus, J is the torsion constant, and l is the beam length. 

The first integration in Eq. (9) is the bending strain energy of the web plate, whereas the 

second one is the membrane strain energy of the web plate. The moments and product 

moment of area of the stiffener are calculated as follows, 
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The lateral displacement and angle of rotation at the compression end point of the web can be 

assumed as follows, 
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where Ak and Bk are the constants, and k is the number of half waves. Substituting Eqs. (15) 

and (16) into (1), (4)-(6) and then into (9) and (10), it yields, 
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The work done by the pre-buckling axial stresses in the web plate and angle stiffener can be 

calculated as follows, 
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where cr is the critical stress located in the compression flange when the buckling of the 

stiffened plate occurs. Substituting Eqs. (15) and (16) into (19) and (20), it yields, 
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The condition when the buckling occurs is the total potential of the system to have a 

stationary condition with respect to the constants Ak and bk. This requires the following 

conditions,  
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This leads to the following eigenvalue equation, 
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in which, 
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Eq. (25) is a 2x2 eigenvalue equation. The critical stress cr of the stiffened plate can be 

solved from Eq. (25) analytically. Note that if the half wavelength is equal to the beam length 

then k = 1 and cr,1 is the critical stress. Otherwise the critical stress should be taken as the 

smallest one from all calculated wave numbers (k=1,2,…,N). In this case if cr,k is the 

smallest one, then l/k is the corresponding half wavelength. 

 

 

4. Validation of the model 

 

In order to validate the present stiffened plate buckling model (SPBM), Figure 5 shows a 

detailed comparison of buckling curves obtained from the present model and those obtained 

from the finite strip method (FSM) for three typical CFS channel-section beams with web 

tension end being rotationally restrained. These three sections represent the small, medium 

and deep sections, respectively. It can be seen from the figure that the critical stress predicted 

by SPBM is consistently higher than that calculated from FSM. However, in terms of the 

lowest critical stress which is to be used in design, the difference between the two models is 

only marginal. Also, it can be observed from the figure that, the larger the section, the smaller 

the difference between the two models. The reason for this is partly because the deflection 

function employed for the web plate involves only two degrees of freedom, and partly 

because the use of the stiffener model for the flange and lip; both make the web-flange-lip 

system stiffer and thus yields higher critical buckling stress. It also should be pointed out here 

that the FSM results shown in Figure 5 are for the beam with the web tension end being 

rotationally restrained. If there is no rotational restraint at the tension end of the web, the 

critical stress calculated from FSM will be even smaller, thus leading to a more diverse of the 

predicted critical stresses from the FSM results. 

 

In order to compensate the effects from both the rotational restraint used in developing the 

stiffened plate model and the simplified deflection functions used in calculating the potential 

energy, a section size-based reduction factor,  = [h+3(b+c)/5]/(h+b+c), is introduced in the 

critical stress calculated from the present model. This reduction factor reflects the relative 

flexural ability of the web, flange and lip. Figure 6 shows a comprehensive comparison of the 

critical stresses of distortional buckling of 59 channel-section beams (see Table 2) obtained 

by using FSM and SPBM. The sections examined here are manufactured by Albion Sections 

in the UK. In Figure 6, the critical stress plotted on the x-axis is the distortional buckling 

stress obtained from FSM for the channel-section with no any restraint, whereas the critical 

stress plotted on the y-axis is predicted by using Eq. (25) with applying the reduction factor . 

Thus any point below the line of slope unity implies that the critical stress is underpredicted, 

and vice versa. It is evident from the figure that, the reduced critical stresses in the present 

model are in exceptionally good agreement with those calculated from the finite strip analysis.  
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Most purlins in practice are used to support roof sheeting. In the action of the gravity loading, 

the purlin can be assumed to be laterally restrained at the compression end of the web. In this 

case, the lateral displacement w is zero (i.e. Ak = 0) and thus the critical stress of distortional 

buckling shown in Eq. (25) can be simplified as follows, 
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Eq. (26) can be interpreted based on the energy balance. The term a22 represents the strain 

energy generated by the unit angle of rotation; whereas the term b22 is the change of potential 

of the pre-buckling stress for the same angle of rotation. The displacements assumed in the 

stiffened plate model may be accurate for deep sections but not for shallow sections. In the 

latter the flange may also be bent [7]. The assumption of “a stiffener” implies that the flange 

and lip may be treated to be too stiff. Thus, from the point of view of energy the strain energy 

of the stiffener is overestimated, while the corresponding displacement is underestimated. 

This leads to “a22/b22” to be overestimated. The reduction factor  is used to compensate this 

“enlarging” effect caused in energy by the displacement functions assumed. As the section 

becomes deeper, the “enlarging” effect becomes smaller, and  is closer to 1. This is why for 

a deep section where h >>(b+c), →1. 

 

The half wavelength corresponding to the smallest critical stress in Eq. (26) can be obtained 

by applying the limiting condition of dcr/d(l/k) = 0, which yields   
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Substituting Eq. (27) into (26), it yields, 








 


































3

3

420

4153105
4

5

)(3

3233

222

min,
ccbbh

t

D

GJhhty
I

Dh

Ebh
D

cbh

cb
h

o
z

cr                (28) 

 

Figure 7 shows the comparison of the critical stress calculated from Eq. (28) and that 

predicted using FSM for the 59 channel-section beams (see Table 2) for the case where the 

lateral displacement at the compression end of the web is restrained. Again excellent 

agreement between the present model and FSM is demonstrated. This confirms that the 

stiffened plate buckling model proposed herein is able to catch the main features of the 

distortional buckling of CFS zed- and channel-section beams, and after the proposed 

reduction factor is applied the model can provide accurate critical stress of distortional 

buckling of CFS section beams. 

 

 

5. Conclusions 
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This paper has presented a stiffened plate buckling model for describing the distortional 

buckling of CFS zed- and channel-section beams when they are bent about their major axis. 

Two analytical formulae have been derived for calculating the critical stress of distortional 

buckling; one is for the beam without any restraint and the other is for the beam with lateral 

displacement restraint at the compression end of the web representing the effect of sheeting 

on the beam. In both cases the critical stresses calculated from the present model have been 

validated by using the finite strip analysis. From the present study the following conclusions 

can be drawn: 

 

 For the distortional buckling of CFS zed- and channel-section beams the web can be 

treated as a plate and the compression flange and lip can be modelled as stiffener of 

the web. While the tension flange and lip can be generally ignored when the tension 

end of the web is assumed to be fixed. 

 

 During the distortional buckling, the bending centre of the stiffened plate comprising 

of the web, compression flange and lip is neither at the centroid point of the stiffened 

plate nor at the centroid point of the section. Thus, apart from their bending strain 

energy, the membrane strain energy of the web as a plate, and flange and lip as a 

stiffener must also be considered.  

 

 Owing to the use of the fixed boundary condition at the tension end of the web and 

the two-parameter deflection function for the web, as well as the stiffener assumption,  

the critical stress calculated from the stiffened plate buckling model is marginally 

overestimated, particularly for small sections. However, this overestimation can be 

compensated by the use of the proposed section size-based reduction factor. 

 

 Excellent agreement between the proposed two formulae and the finite strip analyses 

has been demonstrated for a wide range of CFS channel-sections used in the UK 

market.  
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(a)       (b) 

 

Figure 1. Distortional buckling curves. (a) zed-section under pure bending and (b) channel-

section under pure bending (web depth h = 200 mm, flange width b = 65 mm, lip length c = 

20 mm, thickness t = 2.0 mm, yield strength y = 390 MPa). 

 

 
 

 

Figure 2. A two-parameter (w, ) stiffened plate buckling model. 
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Figure 3. Distribution of the axial-component of distortional buckling displacement along the 

lips, flanges and web (all units in mm) (h = 200 mm, b = 65 mm, c = 20 mm, t = 2.0 mm). 
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(a)             (b) 

 

Figure 4. Proposed axial strain distributions. (a) Side bending. (b) Vertical bending. 

 

 

 
 

Figure 5. Distortional buckling covers. (Section 1: h = 200, b = 65, c = 20, t = 2. Section 2: h 

= 300, b = 75, c = 20, t = 2.5. Section 3: h = 400, b = 100, c = 30, t = 3. All units are in mm). 
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Figure 6. Comparison of critical stresses of distortional buckling of CFS channel-sections 

made by Albion Sections in the UK (dimensions are provided in Table 2, y = 390 MPa). 

 

 

 
 

Figure 7. Comparison of critical stresses of distortional buckling of CFS channel-sections 

when the lateral displacement at the compression end of the web is restrained (dimensions are 

provided in Table 2, y = 390 MPa). 
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Table 1. Critical stresses of distortional buckling of zed- and channel-sections (web depth h = 

200 mm, flange width b = 65 mm, lip length c = 20 mm, thickness t = 2.0 mm, yield strength 

y = 390 MPa, half wavelength  = 600 mm). 

 

Section cr/y (No restraint) cr/y (restrained) Effect of restraint 

Zed-section 1.286 1.340 +4.20% 

Channel-section 1.284 1.339 +4.28% 

 

 

Table 2: Dimensions of CFS channel-sections produced by Albion Sections (unit: mm) 

 

Sections Web depth, h Flange width, b Lip length, c Thickness, t 

C12515 120 50 15 1.5 

C12516 120 50 15 1.6 

C14613 145 62.5 20 1.3 

C14614 145 62.5 20 1.4 

C14615 145 62.5 20 1.5 

C14616 145 62.5 20 1.6 

C14618 145 62.5 20 1.8 

C14620 145 62.5 20 2.0 

C17613 175 62.5 20 1.3 

C17614 175 62.5 20 1.4 

C17615 175 62.5 20 1.5 

C17616 175 62.5 20 1.6 

C17618 175 62.5 20 1.8 

C17620 175 62.5 20 2.0 

C17623 175 62.5 20 2.3 

C17625 175 62.5 20 2.5 

C20613 200 65 20 1.3 

C20614 200 65 20 1.4 

C20615 200 65 20 1.5 

C20616 200 65 20 1.6 

C20618 200 65 20 1.8 

C20620 200 65 20 2.0 

C20623 200 65 20 2.3 

C20625 200 65 20 2.5 

C22614 225 65 20 1.4 

C22615 225 65 20 1.5 

C22616 225 65 20 1.6 

C22618 225 65 20 1.8 

C22620 225 65 20 2.0 

C22623 225 65 20 2.3 

C22625 225 65 20 2.5 

C24615 240 65 20 1.5 

C24616 240 65 20 1.6 

C24618 240 65 20 1.8 
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C24620 240 65 20 2.0 

C24623 240 65 20 2.3 

C24625 240 65 20 2.5 

C24630 240 65 20 3.0 

C26616 265 65 20 1.6 

C26618 265 65 20 1.8 

C26620 265 65 20 2.0 

C26623 265 65 20 2.3 

C26625 265 65 20 2.5 

C26630 265 65 20 3.0 

C30718 300 75 20 1.8 

C30720 300 75 20 2.0 

C30723 300 75 20 2.3 

C30725 300 75 20 2.5 

C30730 300 75 20 3.0 

C34118 345 100 30 1.8 

C34120 345 100 30 2.0 

C34123 345 100 30 2.3 

C34125 345 100 30 2.5 

C34130 345 100 30 3.0 

C40120 400 100 30 2.0 

C40123 400 100 30 2.3 

C40125 400 100 30 2.5 

C40130 400 100 30 3.0 

C40132 400 100 30 3.2 
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