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Abstract: This study compares the skills of two numerical models at the same horizontal resolution
but based on different principles in representing meso- and sub-mesoscale ocean features. The first
model, titled LD20-NEMO, was based on solving primitive equations of ocean dynamics. The second
model, titled LD20-SDD, used a newer stochastic–deterministic downscaling (SDD) method. Both
models had 1/20◦ resolution, the same meteo forcing, and used outputs from a data assimilating
global model at 1/12◦ resolution available from Copernicus Marine Service (CMEMS). The LD20
models did not assimilate observational data but were physically aware of observations via the parent
model. The LD20-NEMO only used a 2D set of data from CMEMS as the lateral boundary conditions.
The LD20-SDD consumed the full 3D set of data from CMEMS and exploited the stochastic properties
of these data to generate the downscaled field variables at higher resolution than the parent model.
The skills of the three models were assessed against remotely sensed and in situ observations for
the four-year period 2015–2018. The models showed similar skills in reproducing temperature
and salinity, however the SDD version performed slightly better than the NEMO, and was more
computationally efficient by a large margin.

Keywords: ocean modelling; NEMO; downscaling; mesoscale; Indian Ocean

1. Introduction

There is a growing tendency to move to higher and higher resolution in ocean mod-
elling. Higher resolution models are particularly helpful in simulations of ocean circulation
in coastal and shelf seas and in the vicinity of intensive jet currents such as the Gulf Stream
or Kuroshio [1–3]. The enhanced ability of a model to resolve mesoscale and sub-mesoscale
eddies leads to significant improvement in the simulation of large-scale features such
as the Gulf Stream [4]. High-resolution numerical models of ocean dynamics provide a
solid background for the study and prediction of ecosystem dynamics and the distribution
and productivity of key marine species with remarkable detail and realism. Such ocean
models underpin sustainable resource management, improvement in food security and
the development of Blue Economies [5]. However, higher resolution comes at a cost. It is
commonly accepted that the increase in horizontal resolution in ocean models is associated
with a significant increase in required computing power, typically by a factor of ten for
each increase in the horizontal resolution by a factor of two [6]. The enhancement of
resolution by a factor of three from ORCA025 (1/4◦) to ORCA12 (1/12◦) grid in a global
ocean model resulted in the 24-fold increase in computational time on the U.K. Met Office
supercomputer [7].

Therefore, the development of new time saving algorithms could provide a cost-
effective solution in high-resolution modelling. One example is the algorithm named
stochastic–deterministic downscaling (SDD) which was proposed in [8]. It is based on
the philosophy that at smaller scales ocean processes become more chaotic and resemble

J. Mar. Sci. Eng. 2023, 11, 363. https://doi.org/10.3390/jmse11020363 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11020363
https://doi.org/10.3390/jmse11020363
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-2854-503X
https://doi.org/10.3390/jmse11020363
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11020363?type=check_update&version=1


J. Mar. Sci. Eng. 2023, 11, 363 2 of 21

to some extent the dynamics of small-scale turbulence, which is studied by methods
of statistical fluid dynamics [9]. Hence, there is an intention of simulating small-scale
ocean processes employing their stochastic properties inferred from data in addition to
deterministic properties inferred from equations of motion. As a source of data, the SDD
method uses outputs from a coarser resolution (parent) ocean model. In this study, we
conducted an extensive analysis of the properties, efficiency and accuracy of a novel ocean
model based on the SDD method against a traditional deterministic ocean circulation model
in the Lakshadweep Sea located in the tropical Indian Ocean.

The Lakshadweep Sea is also known as the Laccadive Sea and its limits are defined as
follows by the International Hydrographic Organization [10]: “On the West: A line running
from Sadashivgad Lt. on West Coast of India (14◦48′ N 74◦07′ E) to Corah Divh (13◦42′ N
72◦10′ E) and thence down the West side of the Laccadive and Maldive Archipelagos to the
most Southerly point of Addu Atoll in the Maldives. On the South: A line running from
Dondra Head in Sri Lanka to the most Southerly point of Addu Atoll. On the East: The
West coasts of Sri Lanka and India. On the Northeast: Adams Bridge (between India and
Sri Lanka)”. The sea surface temperature has relatively low seasonal variability, changing
between 26 ◦C and 32 ◦C. The Lakshadweep Sea is rich in fishery resources [11].

The area of study (see Figure 1) is located within 68◦ E to 78◦ E and 7.50◦ N to 14.50◦

N, to the west of the Indian Peninsula, around the Lakshadweep Archipelago containing
36 islands, atolls and coral reefs.
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Figure 1. Area of study including the bathymetry.

The climate is strongly influenced by the southwest monsoon during the summer
period. The currents show seasonal changes, with stronger currents during monsoon and
weaker currents during fair weather. In the monsoon season, the dominant direction of
currents is southerly to southwesterly, whereas during the pre-monsoon and post-monsoon
it varies between northwest and southeast [12].

2. Materials and Methods

The parent model was the operational global numerical model at 1/12◦ of resolution
and 50 vertical layers, which was, until recently, available from Copernicus Marine Service,
product GLOBAL_REANALYSIS_PHY_001_026 [13]. This product is not available anymore
and has been upgraded to product GLOBAL_MULTIYEAR_PHY_001_030 [14].
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The parent model assimilates observational data on sea surface temperature (SST), sea
surface height, and in situ temperature/salinity profiles. The parent model provides out-
puts, amongst others, of potential temperature, salinity, meridional, and zonal components
of velocity. The model outputs are compared with three observational data sets: OSTIA [15],
Argo float temperature/salinity profiles [16] and GHRSST Multiscale Ultrahigh Resolution
(MUR) L4 analysis [17]. The OSTIA global sea surface temperature reprocessed product
provides daily gap-free maps of foundation sea surface temperature and ice concentration
(referred to as an L4 product) at 0.05◦ × 0.05◦ horizontal grid resolution, using in situ and
satellite data [18]. A Group for High Resolution Sea Surface Temperature (GHRSST) Level 4
sea surface temperature analysis produced as a retrospective data set (four-day latency)
and near-real-time data set (one-day latency) at the JPL Physical Oceanography DAAC
using wavelets as the basis functions in an optimal interpolation approach on a global 0.01
degree grid. The version 4 Multiscale Ultrahigh Resolution (MUR) L4 analysis is based
upon night-time GHRSST L2P skin and subskin SST observations from several instruments
(https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1, accessed on 21 December
2022). Argo is a global array of 3800 free-drifting profiling floats that measure the tempera-
ture and salinity of the upper 2000 m of the ocean. Argo is a major contributor to the World
Climate Research Programme’s (WCRP) Climate Variability and Predictability Experiment
(CLIVAR) project and to the Global Ocean Data Assimilation Experiment (GODAE). The
Argo array is part of the Global Climate Observing System [16].

2.1. LD20-SDD Model

The child SDD-LD20 model had the same geographical limits as the extract from the
parent model used for this study, however different depth levels, also 50 in number, were
selected to be better suited to the dynamics of the Lakshadweep Sea than the parent model.
The daily averaged outputs of temperature, salinity and horizontal velocity were obtained
by statistical–deterministic downscaling from the parent to the child model. The SDD
method [8] is based on the modified version of objective analysis [19], which is applied to
the parent model output in order to downscale it to a finer (child) model grid. The method
treats fluctuations of field variables around their statistical means as a random process to
which Gauss–Markov theorem can be applied in order to minimise, in a statistical sense, the
error of calculation of field variables on the fine grid. The SDD method assumes isotropy
and local spatial homogeneity of the first and second statistical moments of the probability
distribution function. Local spatial homogeneity is defined, in this case, as small relative
variations of statistical moments over the length of one grid cell. The method allows
the exposure of details of oceanic features, which are only embryonically represented by
the parent model. The SDD method requires knowledge of the correlation functions of
fluctuations of field variables. It uses the usual ergodic hypothesis that replaces ensemble
averages with time averages [20]. The slowly changing averages are calculated using a
moving time window. The length of the window is chosen to be long enough to have
a sufficient number of members for averaging, but short enough so that the seasonal
variability can be ignored.

In this study, we used 11 days as the length of the time window and the total time
period was two years (1 January 2016 to 31 December 2017). The correlation function was
calculated for each field variable Q and for each parent grid node. First, the time averages
Ew

(
Qk

ni

)
within the time window centred at time tk were computed for all the nodes

ni = 1, 2 . . . Np, where Np was the total number of nodes in the parent mesh. The subscript
w indicated that time averaging was performed only within the temporal window. Then
fluctuations Q′kni = Qk

ni − Ew

(
Qk

ni

)
were calculated at all grid nodes for the time point tk.

Fluctuations related to the same time point tk but different nodes were used to calculate the
products of fluctuations Q′kni Q′kn0, where n0 was the node under consideration, or ‘central’
node. The process was repeated taking, in turn, all grid nodes in the 3D parent model
domain as ‘central’ nodes. Second, the time point tk (and the related moving average time

https://podaac.jpl.nasa.gov/dataset/MUR-JPL-L4-GLOB-v4.1
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window) were shifted by one time point (in our case, one day) to calculate the next set of
averages, fluctuations, and their products. Third, the spatial correlations Cor

(
Q′n0,Q

′
ni

)
were computed between each ‘central’ node n0 and other grid nodes ni at the same depth
level using the equation:

Cor
(
Q′n0, Q′ni

)
=

Et
(
Q′n0Q′ni

)
stdt

(
Q′n0

)
stdt

(
Q′ni
) (1)

where, Et and stdt denoted averaging and standard deviation, respectively, which were
calculated over a large time period (in our case, two years). The small correlations at large
distances between the nodes are known to be noisy [21]. In calculation of correlations
around each ‘central’ node n0 we only included the nodes ni which belonged to the area
of influence, in this case, it was 1.7 × 1.7 degrees in size. The process was repeated for
different ‘central’ nodes.

The field variables were correlated through a number of processes having different
length scales. Following the approach suggested in [22], we introduced two correla-
tion length scales—Ls and Ll for short-range and long-range correlations, respectively.
They were estimated by fitting, at every node, an isotropic Gaussian curve of parameters
a ∈ [0, 1] Ls, Ll > 0 to the correlation values obtained by Equation (1).

C′(r, r0 ) = a(r0) exp

[
−
(

r
Ls(r0)

)2
]
+ (1− a(r0)) exp

[
−
(

r
Ll(r0)

)2
]

(2)

where, r0 was the vector of coordinates of the node n0, and r was the distance between
the nodes n0 and ni. For eddy-resolving modelling we are interested in the short-range
correlation represented by the correlation length Ls(r0), therefore, in the calculation of
correlations using Equation (1), we only included the nodes ni which belonged to the
‘search area’ around each ‘central’ node, in this case, it was 1.7 × 1.7 degrees in size
(4–5 times greater than the anticipated short length scale). Once the correlations were
computed, only the short-length component of the correlation given in Equation (3) was
used for the downscaling:

C(r, r0 ) = exp

[
−
(

r
Ls(r0)

)2
]

(3)

The computations according to Equation (1) were carried out for a 3D array of ‘central’
nodes on the parent grid to create a 3D array of correlation lengths. For calculation of the
correlation functions, we used an enlarged domain so that nodes near the limits did not
suffer from boundary effects. To indicate the numbers, the total number of n0 nodes of the
parent model within the LD20_SDD domain was 306,106. As expected, the values of Ls(r0)
depended only weakly on r0, supporting the assumption of local statistical homogeneity.
Therefore, if r0 was the vector of coordinates of a node on the child rather than parent
model grid, then the correlation length Ls(r0) could be approximated by its value at
neighbouring points. With this in mind, and to reduce the computation times and the effect
of outliers, we computed the fitting using Equation (2) only for every other node in each
horizontal dimension of the parent mesh, while the correlation lengths for other nodes
were obtained by linear interpolation. The correlations thereby computed were smoothed
layer-by-layer with a 2D Gaussian filter. This filtering respected the assumption of local
statistical homogeneity as the correlation lengths varied smoothly in space [23].

Figure 2a,b show examples of correlation data sets Cor
(
Q′n0, Q′ni

)
for SST calculated

using Equation (1) at two different locations of the ‘central’ node n0 and the fitted Gaussian
curves. For comparison, Gaussian curves corresponding to the short-length scales were
superimposed. The scattering of correlation coefficients was relatively small within the
short (mesoscale) length and became larger at greater distances. Similar graphs (not shown)
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were obtained for other field variables and other depth levels. The smaller scatter at
shorter distances was consistent with greater coherency of ocean structures within meso
and sub-mesoscale ranges.
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According to Equation (2), the correlation function is, in general, different for different
‘central’ nodes, n0. Figure 3a–h show the spatial distribution of the correlation lengths
across the domain at the surface and at a depth of 156 m for temperature (T), salinity (S),
and the U- and V- components of current velocity. Similar maps were obtained for other
depth levels of the parent mesh.

Figure 3 shows that the values of the short correlation length were similar at different
depth levels and different field variables: T, S, U, V. We were interested in the coherent
structures at meso and sub-mesoscale ranges which penetrate deep into the ocean interior,
sometimes down to 1000 m. Therefore, to protect the consistency of calculations, the
same spatially varying value of correlation length calculated for the surface temperature
was used for all variables and all depths of the child model grid. The validity of such
simplification and other assumptions will be judged by model validation shown later in
the text.
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The downscaled value for the variable Q̃m, where m is a node number on the child
mesh, was calculated using Equation (4) [19,24].

Q̃m = ∑
ni∈CI

Pni,mQ̃ni (4)
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where, CI was the set of nodes in the area of influence, approximately six correlation
lengths in diameter and the weighting factors Pni,m were obtained from the solution of
the system of linear equations [19] which was extended to take into account slow spatial
variations of the correlation length:

∑
ni∈CI

C(|ri − rk|, rm)Pni,m = C(|rk − r0|, rm). (5)

where, given the high density of parent data, the weights satisfied the normalisation
condition ∑ni∈CI Pni,m = 1 with high accuracy. In these conditions, Equation (4) provides
the best unbiased linear estimate (BLUE) to the true value [19,24,25].

The system in Equation (5) was solved for all child model grid nodes m. This was
the most computationally expensive part of the method as there were 764,858 nodes and
approximately 118,000,000 weighting factors in the child LD20_SDD model, which was
performed separately for four field variables. ‘The advantage of this approach was that
the weighting factors were computed only once for the whole forecasting/hindcasting
period’. The estimate of the full value of the variable Q̃m was obtained utilising the local
homogeneity of the first statistical moments. The process was applied separately for
potential temperature, salinity, northward and eastward components of velocity and for
each day during the period from 1 January 2015 to 31 December 2018.

2.2. LD20-NEMO Model

The model was based on NEMO-Nucleus for European Modelling of the Ocean version 3.6
(stable) ocean modelling engine [26] and was set up in the same geographical area and
with the same depth levels as LD20-SDD. In contrast with the CMEMS model which uses
NEMOv3.1, LD20-NEMO used version NEMOv3.6.

The model variables were discretised on the Arakawa C-grid. The model used the
variable volume non-linear free surface and the total variation diminishing time stepping
scheme. LD20 employed the Laplacian formulation for horizontal viscosity with the 3D
time-varying diffusivities which were set using the Smagorinsky approach (compilation
keys key_ traldf_c3d and key_ traldf_smag) with the multiplicative factor rn_chsmag = 1.0.
For current velocities, LD20 used a combination of Laplacian and bi-Laplacian horizontal
diffusivity with multiplicative coefficients rn_cmsmag_1 = 1.0 and rn_cmsmag_2 = 1.0 for
the Laplacian and bi-Laplacian components, respectively. Vertical diffusion and viscosity
coefficients were calculated using the k-ε option in the general length scale (GLS) turbulence
closure scheme (key_zdfgls). The baroclinic and barotropic time steps were 120 and 6 s,
respectively. The model bathymetry was obtained from GEBCO_2020 Grid [27] with
15 arc-second resolution. The model was forced by U and V wind speeds at 10 m above
surface, air temperature at 10 m above surface, total downward shortwave radiation flux,
total longwave radiation flux, precipitation and relative humidity. The wind stress and
surface radiation fluxes were estimated using the CORE formula of Large and Yeager [28].
The meteorological forcing was extracted from the global atmospheric data set [29]. The
LD20 was run operationally within the ROSE-CYLC model control suite [30,31]. The
initial state and the lateral open boundary conditions were taken from CMEMS, which
was the same parent model as used for LD20-SDD. They were implemented using NEMO
unstructured BDY algorithm [26], including Flather radiation conditions for barotropic
components and flow relaxation scheme (FRS) for baroclinic velocities. The width of the
sponge layer for FRS was ten grid nodes. The current velocities at the boundary from
the parent model were combined with tidal currents produced by nine tidal harmonics
obtained from TPXO version 7.1 [32]. The first guess model tuning parameters (such as
diffusion and viscosity coefficients) were taken from [33] and further adjusted from the
comparison of model results against the Operational Sea Surface Temperature and Ice
Analysis (OSTIA) database [15]. The LD20-NEMO model outputted 3-hourly instantaneous
and daily average values for temperature, salinity and U, V components of current velocity.
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3. Results

Both LD20-SDD and LD20-NEMO models were run independently for the period
from 1 January 2015 to 31 December 2018. The LD20-SDD was run on an office Windows
PC, while LD20-NEMO was run on an HPC cluster using 96 computing cores.

The skills of LD20-NEMO and LD20-SDD were assessed by comparing the SST pro-
duced by the models as well as the CMEMS parent model and GHR-MUR observations
against OSTIA data. It must be noted that, in contrast with LD20-NEMO, the CMEMS
model [10] used NEMOv3.1 and ERA5 atmospheric forcing. The following parameters were
computed for each day of the study period: area averaged temperature for each data set
(AVG_SST_M and _SST_OSTIA), area averaged Bias (BIAS_SST_M), root-mean-square
deviation (RMSD_SST_M), root-mean-square deviations of anomalies (RMSDA_SST_M),
and the correlation coefficient r, using Equations (6)–(13) below.

AVG_SST_M = 〈SST_M(m)〉 (6)

AVG_SST_OSTIA = 〈SST_OSTIA(m)〉 (7)

BIAS_SST_M = AVG_SST_M− AVG_SST_OSTIA (8)

RMSD_SST_M = 〈[SST_M(m)− SST_OSTIA(m)]2〉 (9)

RMSDA_SST_M = 〈[SSTA_M(m)− SSTA_OSTIA(m)]2〉 (10)

SSTA_M(m) = SST_M(m)− AVG_SST_M (11)

SSTA_OSTIA(m) = SST_OSTIA(m)− AVG_SST_OSTIA (12)

CORR =
〈SSTA_M(m) SSTA_OSTIA(m)〉√
〈(SSTA_M(m))2〉〈(SSTA_OSTIA(m))2〉

(13)

where, symbol ‘_M’ is a placeholder for the name of the data set used for comparison with
OSTIA (M being one of CMEMS, LD20-NEMO, LD20-SDD, GHR-MUR); m is the node
number on the child model grid at the surface, and the subscripted angle brackets 〈 〉
denote the area average; and symbol ‘A_’ denotes the anomaly around the area average.
Anomalies were calculated using Equation (11). Area averaging took place over the LD20
model domain but excluded a narrow flow relaxation sponge rim used by LD20-NEMO
(approximately 90 km in width) around the open boundaries. The mismatch between the
two observational data sets, OSTIA and GHR-MUR, provided a reference for assessing the
quality of the models.

The time series of area averaged sea surface temperature from LD20-SDD, LD20-
NEMO, OSTIA and GHR-MUR, are shown in Figure 4.

The large seasonal variability in temperature and salinity in the Lakshadweep Sea
was consistent with observations carried out during the Arabian Sea monsoon experiment
(ARMEX), see [34]. In contrast with salinity, the yearly cycle for temperature had two
peaks due to the monsoon climate in the area. India receives southwest monsoon winds in
summer and northeast monsoon winds in winter. The time series of model skill parameters
specified by Equations (6)–(13) are shown in Figure 5.

All three models, CMEMS, LD20_NEMO and LD20_SDD had approximately the same
daily deviations from observations as the deviations between the two observational data
sets, OSTIA and GHRSST-MUR, except for the year 2015. In the warm season of this year,
the LD20_NEMO produced slightly higher SST than the other models and observations.
The comparison of Figure 5a–c suggested that the difference was caused by a positive
temperature Bias during this period. This suggestion was also supported by the fact that
the time series of the de-biased deviation represented by RMSDA for LD20_NEMO was in
line with other models on observations. The effect of overestimated solar radiation in the
meteorological forcing was evident for the year 2015 and it disappeared after correction to
the radiance data was performed by the data provider from 15 March 2016 by introducing
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‘Variational Bias control for satellite radiances’ [35]. Therefore, Table 1 below shows the
year 2015 separately, as well as in combination with other years.
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Table 1. Time-averaged RMSD, RMSDA, Bias and CORR, for GHR-MUR, CMEMS, LD20-NEMO and
LD20-SDD, with OSTIA SST taken as reference.

GHR-MUR CMEMS LD20-NEMO LD20-SDD

Average over
year 2015

RMSD (◦C) 0.37 0.39 0.70 0.39

RMSDA (◦C) 0.31 0.29 0.37 0.29

Bias (◦C) −0.07 0.18 0.53 0.17

CORR 0.59 0.53 0.44 0.50

Average over
years

2016–2018

RMSD (◦C) 0.39 0.33 0.47 0.33

RMSDA (◦C) 0.31 0.26 0.36 0.26

Bias (◦C) 0.04 0.12 0.23 0.12

CORR 0.70 0.68 0.55 0.65

Average over
years

2015–2018

RMSD (◦C) 0.38 0.35 0.53 0.35

RMSDA (◦C) 0.30 0.26 0.36 0.26

Bias (◦C) 0.01 0.14 0.31 0.14

CORR 0.67 0.65 0.53 0.61

In Table 1, a better performance was indicated by lower values of Bias, RMSD, RMSDA,
and higher values of correlation coefficient CORR. In terms of temperature anomalies rep-
resented by RMSDA, the deterministic child model LD20-NEMO produced approximately
the same level of discrepancy against OSTIA as the alternative observational data set
GHR-MUR and the parent model CMEMS over all three time periods shown in Table 1.
As expected, the Bias in LD20-NEMO was higher in the year 2015 (0.53 ◦C), and then it
reduced in the subsequent years to 0.23 ◦C, producing a four-year average of 0.31 ◦C. The
elevated Bias contributed to higher values of root-mean-square deviations in the first year
(0.70 ◦C), which then reduced to 0.47 ◦C. The correlation coefficient, which was independent
of the Bias, was still somewhat lower in LD20-NEMO than in the observational GHR-MUR
and coarser model CMEMS. The slight deterioration of correlation in LD20-NEMO was
probably due to the ‘double-penalty’ effect, which generates higher RMSD errors caused
by small spatial shift in the distribution of field variables. This phenomenon is common for
both ocean and atmospheric models of finer resolution [36].

The stochastic model LD20-SDD consistently showed slightly smaller (better) Bias,
RMSD and RMSDA errors, as well as higher correlation with observations, than the deter-
ministic LD20_NEMO. The discrepancy between LD20_SDD and OSTIA was similar to,
and sometimes better than, the differences between observational data sets, GHR-MUR
and OSTIA, except for the Bias. The area and time-averaged Bias between any of the three
models and OSTIA was higher than between the observational data sets.

The skills of models at sub-surface depth levels were assessed by comparison with
ARGO float profiles. Figure 6 shows the comparison of temperature and salinity profiles
from CMEMS, LD20-NEMO and LD20-SDD, against Argo observations. The Argo profiles
covered the period from 1 January 2015 to 31 December 2018; in total there were 325 profiles
in the Lakshadweep Sea. The profiles from the models were interpolated in time and
space to Argo locations, and in the vertical, to the depth levels of Copernicus CMEMS
model. Then we calculated the misfit and the square of misfit at each profile and then
calculated the statistics (Bias, RMSD, RMSDA) using equations similar to Equations (8)–(10),
i.e., averaging over all profiles. The model skill parameters (Bias, RMSD, RMSDA) were
computed using averaging over four years. All models showed the largest uncertainty at
about 200 m depth. This was likely due to the overestimation of temperature and salinity
by the CMEMS model, which provided either boundary data in the case of LD20-NEMO
model, or full 3D data in the case of LD20-SDD. The errors at the top of the thermocline
might be related to uncertainties in modelling the thermocline depth.
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The ability of a model to resolve smaller scale features can be assessed by analysing
the simulated fields of relative vorticity. Vorticity is an important characteristic of the
mesoscale and sub-mesoscale dynamics of the ocean and is a powerful tool to analyse
ocean dynamics [4]. Vorticity is calculated using derivatives of current velocity, and hence
an overly-smoothed representation of velocity will result in an underestimation of vorticity.
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Figure 7 shows a snapshot of the surface velocity and vorticity fields produced by CMEMS
at 1/12◦, as well as LD20-NEMO and LD20-SDD at 1/20◦. The date in Figure 7 was selected
among the hundreds of thousands of computed maps, as representative of a period of low
mesoscale activity, so that the number of eddies was relatively small and they were clearly
seen on the maps.
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The larger-scale velocity fields were similar between the three models, and the dif-
ferences were better seen on the vorticity maps. The LD20-SDD model produced higher
values of vorticity than CMEMS and resolved some smaller scale features which were only
embryonically seen in CMEMS, in particular in the NW corner of the domain and around
the islands. The LD20-NEMO model also produced higher values of vorticity, however
the spatial pattern was more chaotic than in other models. We were not aware of any high
resolution in time and space data on the velocity or vorticity in this area, therefore, we
could only indirectly judge the validity of patterns represented by the higher-resolution
models. The CMEMS model was data-assimilating and the results were derived from a
reliable source, therefore, it was reasonable to consider the larger scale patterns from this
model as reference. The vorticity patterns from LD20-SDD were more consistent with
CMEMS than patterns from LD20-NEMO. The spatial shift and deformations of vorticity
pattern in LD20-NEMO could have been caused by the ‘double penalty’ effect which is
common to higher-resolution dynamic models and can create small scale features that are
present in the wrong place. The SDD models are less prone to this effect by the design of
the downscaling process, see [8].

The ability of finer-resolution models to better represent small scale gradients was
seen from the time series of area-averaged enstrophy. For this analysis, enstrophy (the
square of vorticity) was a more suitable variable than vorticity itself. According to the
Kelvin–Stokes theorem, the line integral of a vector field over a loop is equal to the flux
of its curl through the enclosed surface. This meant that the area integral of vorticity was
simply a linear integral of tangential component of velocity along the boundaries, which
was the same for all models as they derived boundary data from the same source (CMEMS).
Figure 8 shows how the area-averaged enstrophy varied with time. The enstrophy was
calculated using daily data from the three models.
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An important benefit of higher resolution models is to better represent non-linear
dynamics and ageostrophic flows [4]. The role of the non-linear effects can be assessed
by the Kibel number Ki [37–39], which is equal to the ratio of the absolute values relative
to planetary vorticities. In a curved flow, such as a circular eddy, the use of geostrophic
formulas leads to either underestimation (in anticyclones) or overestimation (in cyclones)
of orbital velocity due to omission of the ageostrophic component of the current caused
by the centripetal force [40]. The Kibel number, in this case, is an indicator of the ratio of
ageostrophic to geostrophic velocities.

In order to separate areas of high and low non-linearity in the ocean dynamics, we
set a threshold value of the Kibel number, Ki = 0.5. Figure 9 shows the time series of the
Kibel number for the year 2017, which revealed that the mesoscale activity exhibited strong
seasonal variability, being higher in winter–early spring. Similar variability was detected
in the other years studied.
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Figure 9. Seasonal variability of areas occupied by highly non-linear processes (Ki > 0.5) as obtained
from CMEMS, LD20-NEMO and LD20-SDD models for the period 1 January 2017 to 31 December 2017.

Figure 10 below shows the maps of high (Ki > 0.5) and low (Ki < 0.5) non-linearity in
the Lakshadweep Sea in winter and summer. These periods were selected to show two
contrasting seasons. The highest and lowest percentage of areas occupied by non-linear
dynamics were produced by LD20_NEMO and CMEMS, respectively. The LD20_SDD
model produced intermediate values. It was likely that CMEMS underestimated the size of
high non-linearity areas due to insufficient resolution. In winter and early spring, the area
occupied with highly non-linear processes could be as high as 20% or more of the whole
Lakshadweep Sea.
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the Lakshadweep Sea in winter (left), and summer (right), for models CMEMS (a,b), LD20-SDD (c,d),
LD20-NEMO (e,f).

The computational efficiency of the higher-resolution models was as follows. For LD20-
NEMO, one model day of simulation took 2.5 min on 96 computing cores of an HPC cluster.
LD20-SDD was run on a single core of an office Windows PC. It also took 2 min to simulate
one model day, the speed was mostly dependent on the speed of reading and writing
data to the disk storage. Therefore, the LD20-SDD model was approximately 100 times
more computationally efficient than LD20-NEMO.
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4. Discussion

The need for higher resolution ocean modelling has been identified in several areas of
research. The study of mesoscale and sub-mesoscale dynamics in the Gulf of Aden was
much improved when 5 km and 1.5 km resolution models were used, even though the
baroclinic radius of deformation was in the range of 40 to 50 km [41].

The increase in ocean resolution in global coupled models, where the ocean compo-
nent explicitly represents transient mesoscale eddies and narrow boundary currents, was
shown to improve the coupled ocean–atmospheric model and produce a better weather
forecast [42]. The uncertainty of climate models is partially attributed to the insufficient
resolution of their ocean component [43,44], however, the refinement of model resolution is
associated with significant increase in computational cost [42]. In this study, we provided a
comparative skill test for two ocean models of the same resolution, LD20-NEMO and LD20-
SDD. The former was based on the widely used deterministic approach, while the latter
was based on the new stochastic–deterministic methodology and was significantly faster,
by a factor of about 100. The models were set up to study the Lakshadweep Sea, which
is known for its dramatic seasonal change of general circulation and intensive mesoscale
dynamics, in particular around the southern tip of India [45]. The Lakshadweep Sea is
an important source of food supply for India, Sri Lanka and the Maldives [46], and the
efficiency of fishery is reliant on the smaller scale phenomena such as variations in the
coastal current and upwellings.

At a glance, the NEMO and SDD versions of the LD20 Lakshadweep Sea model
seem to be very different. LD20-NEMO is based on the laws of physics implemented as
deterministic equations, whilst LD20-SDD is entirely data driven. At a deeper level, these
models have some common features. Scientific laws are generalizations about a range
of natural phenomena, sometimes universal and sometimes statistical [47]. An example
may be the immense catalogue of astronomical observations giving the positions of about
1000 stars, collected by Tycho Brahe over many years. Brahe’s observations were then
consolidated in Kepler’s laws of planetary motions and then further generalised by Isaac
Newton as the law of gravity. However, due to the limitations of the purely deterministic
approach, the equations used in ocean modelling must be supported by observations, for
example, in the form of data assimilation. The limitations for the equations of motion for
ocean modelling are dominated by resolution issues and ultimately by the very small scales
of oceanic turbulence. In addition, adequate representation of boundary condition and
initial conditions as well as other issues are important, see [48]. Data assimilation improves
the output of a deterministic model by using statistical properties of differences between
the model and observations.

In contrast with data assimilation, the SDD method is concerned with the statistics
of the external data, alone. The practical statistical parameter used in SDD is the correla-
tion length between fluctuations of field variables. Dynamical processes in the ocean are
interconnected, and the field variables may have a number of correlation lengths reflecting
different processes. The purpose of the SDD method is to reconstruct the meso- and sub-
mesoscale structure of the field variables, which is only embryonically seen in the coarser
parent model. The typical size of mesoscale features, such as eddies or filaments, is deter-
mined by the baroclinic radius of deformation, usually of the first or second mode [49,50].
If the non-linearity parameter of a mesoscale eddy r = Uorb

Cphase
> 1 (where Uorb is the max-

imum orbital velocity in the eddy, and Cphase is the phase speed of Rossby waves) then
the eddy has an inner core which traps fluid in highly correlated motion, and the outer
ring continuously entrains and sheds fluid [51]. As the non-linearity parameter reduces,
the inner core becomes smaller. The core of an eddy also becomes smaller if the eddy is
embedded in a shear flow [52]. Therefore, the area of highly correlated field variables is
likely to be smaller than the area determined by the radius of deformation. This result
was consistent with our calculations. In this study, the correlation length was calculated
using a two-scale approach [22]. Only the shorter (i.e., mesoscale) length scale was used for
further computations, as larger scale structures were well resolved by the coarser parent
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model. The mesoscale correlation length in the Lakshadweep Sea was typically in the range
of 15 to 60 km (see Figure 3). As expected, it was lower than the first baroclinic radius of
deformation in the deep Lakshadweep Sea ranging from approximately 80 to 100 km [53].

The skills of both NEMO and the SDD version of the LD20 model were assessed
using the standard methodology, namely, by estimating biases, two variants of RMS
errors, and the correlation coefficients between the models and observation data sets.
A similar comparison was performed between two alternative observational data sets,
namely, (i) GHRSST-MUR and (ii) OSTIA, which serves as a reference for judging the skills
of the LD20 models. Both LD20 models performed well, showing the deviations from the
reference OSTIA data within the same range as the CMEMS re-analysis and GHRSST-MUR
observational data set. However, the SDD model showed slightly better performance in
terms of all skill-defining parameters. The discrepancy between LD20_SDD and OSTIA
was similar to, and sometimes better than, the differences between the observational data
sets, GHR-MUR and OSTIA, except for the Bias. The similarity of the Bias between the
LD20-SDD and OSTIA was not surprising because it was part of the design of the SDD
method [8]. However, the discrepancy shown by nonlinear metrics (RMSD and RMSDA)
could be higher for the finer resolution models than for CMEMS. The reason for this was
that the finer resolution model may have greater gradients and/or be prone to the ‘double
penalty effect’. For example, a finer resolution ORCA12 model had larger forecast errors
compared with the coarser ORCA025 in regions of high temperature gradients [54]. The
area and time-averaged Bias between any of the three models and OSTIA was higher than
between the observational data sets.

The spatial distribution of variables demonstrating dynamic properties of the ocean
state, such as current velocities, vorticity and enstrophy, is an important outcome of an
ocean model, either hydrodynamic or stochastic. The maps of current velocity from all three
models (see Figure 7) showed the difference in the spatial patterns produced by different
modelling approaches. CMEMS is data assimilating but at lower resolution; LD20-NEMO
is a dynamic model at higher resolution and has no DA; LD20-SDD is a stochastic model at
higher resolution and has no DA, see Figure 7a,c,e. The difference between the models in
representing currents was further clarified by the maps of enstrophy, the variable which
is more sensitive to meso–sub-mesoscale variations in the ocean current gradients, see
Figure 7b,d,f. In addition, the time series of surface current enstrophy was presented
in Figure 8, which showed a systematic difference between lower and higher resolution
models. We compared the full velocities rather than only their geostrophic components,
as the Lakshadweep Sea is an area of strong ageostrophic currents, as shown in Figure 9.
The computations of vorticity and enstrophy showed a greater difference between the
lower-resolution CMEMS and higher-resolution LD20 models. The underestimation of
vorticity by CMEMS was likely to have been caused by ‘representative error’ [55], which is
related to the underestimation of sharp small-scale gradients due to insufficient resolution.
The ‘representative error’ was shown to be reduced by the SDD method, which is capable
of partial reconstruction of extreme values of a variable which are missed on a coarser
grid [8]. It would be beneficial to validate models against velocity observations in addition
to the modelled inter-comparison presented in Figures 7–9, however, we were not aware
of observations of surface currents or sea surface height with the required resolution to
perform model-to-observation comparisons. For example, a reputable source of data [56]
warned against the use of their SSH data sets for research purposes.

Both SDD and NEMO versions of LD20 showed higher values of enstrophy. The
level of non-linearity of meso- and sub-mesoscale dynamics was assessed by the temporal
and spatial variability of the Kibel number. A higher Kibel number is associated with
relatively higher ageostrophic components of current velocities. In areas of high Kibel
number, the geostrophic formulas which are usually used to infer the surface currents
from satellite-derived sea level height [57] may result in large errors. The areas of highly
non-linear dynamics (i.e., with a Kibel number larger than 0.5) occupied as much as 20–25%
of Lakshadweep Sea in early spring, and as low as 5% in summer. The seasonal variability
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of the size of highly dynamic areas was consistent between all three models; while the
LD20_NEMO produced the highest estimate (up to 28% in 2016), LD20_SDD produced a
slightly smaller figure (up to 26% in 2017), and the lower resolution CMEMS produced the
lowest figures, of up to 18% in 2017.

In summary, all three models produced a similar representation of the area-averaged
values and temporal evolution of temperature and salinity. The benefit of higher resolution
models comes into play in simulations of gradient-dependent values, such as vorticity
and enstrophy. Both versions of LD20 showed higher values of vorticity and associated
parameters than the coarser resolution CMEMS. The NEMO version of LD20 produced
slightly higher values of enstrophy than the SDD version, however the SDD model was
approximately 100 times more efficient computationally. It was difficult to judge which
version of LD20 would produce more realistic fields of vorticity at smaller scales as we
were not aware of any current velocity observations with comparable spatial coverage
and resolution.

5. Conclusions

In this study, we compared the skills of three ocean models, the parent model CMEMS
run by EU Copernicus Marine Service at 1/12◦ resolution, and two child models,
LD20_NEMO and LD20_SDD run by Plymouth Ocean Forecasting Centre, both at 1/20◦

resolution. LD20_NEMO was based on the deterministic approach while LD20_SDD used
the stochastic properties of the field variables assessed from the outputs from the parent
model. All three numerical models showed similar skills in reproducing temperature
and salinity assessed against observations. As expected, higher resolution models better
resolved smaller scale processes. This difference was particularly significant in simulation
of vorticity fields and computation of the share of the sea occupied by highly non-linear
processes. The lower values of vorticity and enstrophy by the coarser CMEMS model was
likely to be caused by underestimation of sharp small-scale gradients due to insufficient
resolution. We found that the SDD model was more computationally efficient than the
NEMO model, by a very large margin.
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