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Everyday Amnesia: Residual Memory for High Confidence Misses and
Implications for Decision Models of Recognition

Christopher J. Berry1 and David R. Shanks2
1 School of Psychology, University of Plymouth

2 Department of Experimental Psychology, University College London

Despite studying a list of items only minutes earlier, when reencountered in a recognition memory test, under-
graduate participants often say with total confidence that they have not studied some of the items before. Such
high confidence miss (HCM) responses have been taken as evidence of rapid and complete forgetting and of
everyday amnesia (Roediger & Tekin, 2020). We investigated (a) if memory for HCMs is completely lost or
whether a residual memory effect exists and (b) whether dominant decision models predict the effect.
Participants studied faces (Experiments 1a, 2, and 3) or words (Experiment 1b), then completed a single-
item recognition memory task, followed by either (a) a two-alternative forced-choice recognition task, in
which the studied and nonstudied alternatives on each trial were matched for their previous old/new decision
and confidence rating (Experiments 1 and 2) or (b) a second single-item recognition task in which the targets
and foils were HCMs and high confidence correct rejections, respectively (Experiment 3). In each experiment,
participants reliably distinguishedHCMs from high-confidence correct rejections. The unequal variance signal
detection and dual-process signal detection models were fit to the single-item recognition data, and the param-
eter estimates were used to predict the memory effect for HCMs. The dual-process signal detection model pre-
dicted the residual memory effect (as did another popular model, the mixture signal detection theory model).
However, the unequal variance signal detection model incorrectly predicted a negative, or no, effect, invalidat-
ing this model. The residual memory effect for HCMs demonstrates that everyday amnesia is not associated
with complete memory loss and distinguishes between decision models.

Public Significance Statement
Participants in our experiments appeared to completely forget studying particular items (pictures of faces or
words) over short intervals in tests of recognition memory—thereby showing everyday amnesia. However,
memory for such itemswas evident in a follow-upmemory test. This suggests that thememory loss that occurs
in everyday amnesia is not complete and also has implications for formal decision models of recognition.

Keywords: everyday amnesia, forgetting, unequal variance signal detection model, dual-process signal
detection model, recognition memory

In tests of recognition memory, participants will often claim with
complete confidence that they did not study some of the items before,
despite studying them only minutes earlier. As an example, in
Experiment 2 of Tekin and Roediger (2017), undergraduate students

first studied a list of 50 faces for 2 s each. After a 10-min retention
interval, they were shown the same faces intermixed with 50 new
faces and asked to decide whether each one was previously studied
or not by responding “old” or “new.” Participants indicated how
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confident they were in each decision on a rating scale ranging from
“not confident at all” to “totally confident.” Although participants
tended to correctly judge a greater proportion of actual old items to
be “old” compared to new items—indicating that they had memory
for old items—a substantial proportion received “new” decisions
(i.e., were misses). Strikingly, 19.7% of these misses were made
with total confidence. In a reanalysis of their study, Roediger and
Tekin (2020) drew attention to the relatively high propensity with
which undergraduate students made such high confidence misses
(HCMs) and also reported a similar percentage (16%) in a reanalysis
of other published studies (Tekin & Roediger, 2017, Experiment 1;
DeSoto & Roediger, 2014).
From one perspective, these findings are relatively surprising: the

participants were undergraduate students, presumably of sufficient
capacity to learn and retain new information given their position
in higher education, and yet were declaring with total confidence
that they did not study something they had in fact studied only min-
utes earlier. Indeed, Roediger and Tekin (2020) referred to this as an
example of everyday amnesia and took it to mean that “rapid and
complete forgetting” (Roediger & Tekin, 2020, pp. 6, 8) of fully pro-
cessed experiences can occur in all individuals, not only those with
neurological disorders, for example, as a result of damage to the hip-
pocampus/medial temporal lobes (Squire, 1992; Squire et al., 2004),
as is most commonly associated.

Signal Detection Theory and HCMs

An alternative viewwas proposed by Levi et al. (2022) and Goshen-
Gottstein et al. (2022) from the perspective of signal detection theory
(SDT), a widely used framework for conceptualizing decision and
memory signal components of recognition processes (Green &
Swets, 1966; Hautus et al., 2022; see Wixted, 2020, for a historical
review). In its standard form, SDT assumes that each item in a recog-
nition task is associated with a continuous memory strength of evi-
dence variable, most commonly assumed to be Gaussian, the mean
of which is greater for studied items, owing to their presentation in
the study phase. In order to decide whether a test item was studied
or not, participants compare its strength against a decision criterion,
C. If the strength exceeds the criterion, the item is judged old, other-
wise it is judged new. To model N confidence ratings, N− 1 decision
criteria can be used. For example, with six ratings (i.e., where 1= sure
new… 6= sure old), there are five criteria,C1–C5. If the strength of an
item exceedsC5, it receives a “6” rating. If it falls betweenC5 andC4, it
receives a “5” rating, representing amedium confidence old decision; if
it falls between C4 and C3 it receives a “4” rating, representing a low
confidence old decision; if it falls between C3 and C2 it receives a
low confidence new “3” rating; if it falls between C2 and C1 it receives
a medium confidence new “2” rating, and if the strength value falls
below C1, it receives a sure new “1” rating.
Levi et al. (2022) and Goshen-Gottstein et al. (2022) advocated a

popular version of SDT as applied to recognition tasks, the unequal
variance signal detection (UVSD) model. In this model, the variance
of the old item strength distribution can take on a different value
from that of the new item strength distribution. The UVSD model
is motivated by the properties of the empirical receiver operating
characteristic (ROC), which is a plot of the hit rate against the
false alarm rate at different levels of bias (also known as an isosen-
sitivity curve). The slope of the z-transformed empirical ROC is typ-
ically less than 1, which is inconsistent with the expectation of a

slope value equal to one if the old and new item strength distribu-
tions have equal variances. The UVSD model, in contrast, produces
a z-ROC slope less than one when the variance of the old item
strength distribution is greater than that of new items (Egan, 1958;
see Wixted, 2007; Yonelinas & Parks, 2007, for reviews). Levi
et al. (2022) and Goshen-Gottstein et al. (2022) pointed out that,
in the UVSD model (and SDT more generally), a miss is simply
an item with a strength value that does not exceed the old-new deci-
sion criterion (i.e., C, or C3), and the miss will be made with the
highest level of confidence if its strength value falls below the lowest
decision criterion C1. Thus, a proportion of HCMs is to be expected
given the way that the decision process is represented in SDT, and in
this sense, their occurrence is “predicted,” even trivial. Levi et al.
(2022) and Goshen-Gottstein et al. (2022) also used the UVSD
model to reproduce the proportions reported in Roediger and
Tekin (2020) in two Monte Carlo simulations and fitted the model
to the data of Tekin and Roediger (2017, Experiment 1) using max-
imum likelihood estimation (MLE).

Roediger and Tekin (2022) and Dobbins (2022) in turn questioned
the usefulness of the UVSD model as an explanation of HCMs and
also its predictive value, pointing out that the model can reproduce
any proportion of HCMs in an ad hoc manner by varying its parame-
ters. To illustrate, we can express the proportion of HCMs that will
occur in the UVSD model with the following equation:

P(HCM) = F C1 − d( )/so[ ]
F C3 − d( )/so[ ] , (1)

where Φ is the cumulative distribution function of the standard
normal distribution, C1 is the criterion value (relative to the
mean of the new item distribution, µn, which is fixed to µn= 0
with no loss of generality), d is the mean difference in strength
of old and new items, and σo is the standard deviation of the
strength distribution of old items relative to that of new items, σn
(which is fixed to σn= 1 to allow the other parameters to be identi-
fied, again with no loss of generality). To restate Equation 1 in
words, the proportion of HCMs is the proportion of old items that
fall below the C1 criterion, divided by the proportion of old items
judged new. The proportion of HCMs therefore depends on the val-
ues of C1, C3, d, and σo, and any proportion can potentially be repro-
duced exactly by varying these parameter values. For instance, all
other parameter values being held constant, the proportion of
HCMs (a) increases as the criterion C1 takes on higher values (i.e.,
becomes more conservative), (b) decreases as d increases, and (c)
interacts with C1 and d as σo increases; for example, when d is rela-
tively low and C1 is relatively high, P(HCM) decreases as σo
increases, but when d is relatively high, P(HCM) increases with
σo. For comparison, the proportion of high-confidence new judg-
ments to new items (i.e., high-confidence correct rejections, hence-
forth HCCRs) is:

P(HCCR) = F(C1)
F(C3)

. (2)

Roediger and Tekin (2022), Dobbins (2022), and Roediger and
Dobbins (2022) additionally questioned the theoretical informative-
ness of signal detection accounts of everyday amnesia, given their
abstractness, favoring instead accounts that provide explanations in
terms of psychological constructs, mechanisms, or neural processes.
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Roediger and Dobbins (2022) maintained that HCMs are worthy of
further attention.
We agree that HCMs are worthy of further attention and, in this

article, we investigate whether SDT models do in fact make any
interesting predictions concerning them. Our overall goal is to
shed theoretical light on the important and novel concept of every-
day amnesia, via two specific aims: First, we sought to establish
whether memory for HCMs is completely lost, or whether some
degree of “residual” memory for HCMs can be demonstrated. We
did this using additional memory tasks in which participants must
distinguish HCMs from HCCRs. If a residual memory effect for
HCMs can be shown, this would inform the phenomenon of every-
day amnesia in that it would have implications for the completeness
of forgetting that can be said to have occurred. Second, we sought to
determine whether the UVSDmodel successfully predicts any resid-
ual memory effect that can be demonstrated for HCMs.
Our approach was to first fit the model to the single-item recogni-

tion memory data and then use the parameter estimates to derive ex
ante predictions in the additional memory tasks. Predictions derived
in this way can be considered true “predictions” of the model, as
opposed to mere fits or reproductions of the data, since the parameters
are estimated on the basis of the single-item recognition task data, and
the data from the subsequent memory task can therefore have no bear-
ing whatsoever on these parameter estimates (Busemeyer & Wang,
2000). A similar approach to testing decision models was recently
taken by Ma et al. (2022) and Dobbins (2023). We also compared
the predictions of the UVSD model to those of another dominant
model in the literature, the dual-process signal detection (DPSD)
model (Yonelinas, 1994), which is commonly pitted against the
UVSD model (see e.g., Parks & Yonelinas, 2007; Rotello, 2017;
Wixted, 2007, for reviews). Finally, in further modeling, we broad-
ened out the range of models by also considering the predictions of
the two-high threshold (2HT) model (Bröder & Schütz, 2009;
Egan, 1958; Moran, 2016; Snodgrass & Corwin, 1988), the mixture
SDT model (DeCarlo, 2002), and versions of the UVSD model in
which the distributions are not Gaussian.

Expected Strength of HCMs Versus HCCRs

The potential for the UVSD and DPSD models to make opposing
predictions concerning the residual memory effects for HCMs can be
identified by considering the expected strength values for HCMs and
HCCRs in each model. Despite receiving the same recognition
response, the expected strength value for HCMs can differ from that
of HCCRs in both models. Interestingly, in the UVSD model, when
σo is greater than σn, the expected strength of HCMs can be lower
than that of HCCRs. This is because the old item strength curve inter-
sects the new item curve at two points—the lower and upper tails of
the distribution—meaning that the likelihoods of the lowest old
item strengths are greater than those of new items with the same
strength values. In other words, the ratio of the densities of new and
old item strengths at each strength value does not vary monotonically
along the strength axis. This feature is well-known and has been dis-
cussed by others (e.g., Green & Swets, 1966; see also DeCarlo, 2002;
Dubé, 2023; Glanzer et al., 2009; Kellen et al., 2021; Stretch &
Wixted, 1998; Yonelinas & Parks, 2007). The characteristic is clearly
counterintuitive from a psychological perspective since it means that,
as a result of the study phase, some old items will end up with a lower
strength than the lowest strength of all new items. Despite this, it has

not prevented widespread adoption of the model by many in the liter-
ature, presumably because of the model’s successes in accounting for
other aspects of recognition data.

To demonstrate the conditions under which the expected strength
of HCMs will be lower than that of HCCRs in the UVSD model, we
can state the expected strength (S ) of an HCM as:

E(S| HCM) = d − so
f (C1 − d)/so[ ]
F (C1 − d)/so[ ], (3)

where φ is the normal density function. The expected strength of an
HCCR is:

E(S| HCCR) = − f(C1)
F(C1)

. (4)

The difference in expected strength of HCMs and HCCRs as the σo
and d parameters are varied in Equations 3 and 4 is shown in
Figure 1. It is evident that the expected strength of HCMs is
more likely to be lower than that of HCCRs as σo increases, d is rel-
atively low, and C1 is relatively low (i.e., when the propensity to
make high confidence new decisions is lower). Interestingly,
HCM strength can be lower than HCCR strength even with rela-
tively “standard” values of σo and d. For example, in the σo=
1.25 panel of Figure 1, where the ratio of lure to target variance
is 1/1.25= 0.8 (Ratcliff et al., 1992), the difference in expected
strength to HCMs and HCCRs is negative or close to zero when
d is between 0 and 1.5 and C1 is relatively low.

Avisual representation of the UVSDmodel when fit to the data from
Experiment 1 of Tekin and Roediger (2017) is shown in the top left
panel of Figure 2 (where the maximum likelihood estimates are d=
1.08, σo= 1.29, C1=−1.04, C2=−0.39, C3= 0.38, C4= 0.96,
C5= 1.48). With these estimates, the proportion of high-confidence
new responses to old items in the model is lower than that of new
items (0.05 vs. 0.15), but, using Equations 3 and 4, the expected
strength of HCMs is simultaneously lower than that of HCCRs
(−1.58 vs. −1.56) (Figure 2, lower left panel). That is, despite being
studied, an HCM is expected to have a lower strength than an HCCR
inExperiment 1 of Tekin andRoediger (2017). Although the difference
is small in this example, it can be greater (or indeed reverse), depending
on the estimates of d, σo, and C1, as shown in Figure 1.

For comparison, consider the DPSD model (Yonelinas, 1994),
according to which, recognition decisions are made on the
basis of two distinct processes, recollection and familiarity.
Recollection involves the retrieval of qualitative information asso-
ciated with an item’s previous presentation (e.g., where or when it
was encountered), whereas familiarity is not associated with the
retrieval of such contextual information and instead is strength-
based, being modeled as an equal variance signal-detection pro-
cess. If an old item is recollected, with probability Ro, it receives
an “old” decision with the highest level of confidence; if it is not
recollected, then the decision is based on familiarity. HCMs are
therefore described by an equal-variance SDT process, and their
expected strength is given as:

E(S| HCM) = d ′ − f(C1 − d′)
F(C1 − d′)

. (5)

HCCRs are also described by the same process, and the equation
for their expected strength is the same as that of the UVSD model
(Equation 4). Note that d is used to refer to the mean difference in
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strength of old and new items in theUVSDmodelwhile dʹ refers to the
equivalent difference, in units of σ= σo= σn, in the DPSD model.
As shown in Figure 3, the expected strength of HCMs is greater

than that of HCCRs in the DPSD model as dʹ and C1 increase, and
the difference is independent of Ro. A visual representation of the
DPSD model when fit to Experiment 1 of Tekin and Roediger
(2017) is shown in the top right panel of Figure 2 (where the maxi-
mum likelihood estimates are dʹ= 0.61, Ro= 0.24, C1=−1.01,
C2=−0.38, C3= 0.36, C4= 0.92, C5= 1.50). Using these esti-
mates, the probability of a high-confidence new decision to an old
item is lower than that of a high-confidence new decision to a new
item (0.04 vs. 0.16) and the expected strength of HCMs is greater
than that of HCCRs (−1.42 vs.−1.53). Thus, HCMs are more famil-
iar than HCCRs in the DPSD model.
In sum, the expected strength of an HCM can be lower than that of

an HCCR in the UVSDmodel, but not in the DPSDmodel. Assuming
that participants can be sensitive to differences in the strength of
HCMs and HCCRs, and this translates to the capacity to discriminate
between such items when presented in an additional memory test,
there is a strong possibility that themodels will make opposing predic-
tions concerning participants’ ability to positively discriminate HCMs
from HCCRs once their parameters have first been fixed by fitting
them to the recognition data. This constitutes a test of strong inference

(Platt, 1964). Specifically, given suitable fits to the recognition data,
the UVSDmodel predicts that participants will either be unable to dis-
criminate between HCMs and HCCRs, or even that they will respond
as if HCCRs are associated with greater strength than HCMs (i.e., a
negative residual memory effect for HCMs). In contrast, the DPSD
model predicts that HCMs and HCCRs can be discriminated, that
is, there will be a residual memory effect for HCMs.

Measuring Residual Memory for HCMs

To measure residual memory for HCMs, we gave participants one
of two additional tasks after the standard single-item recognition task:
a modified two-alternative forced choice (2AFC) task, or a second
single-item recognition task in which the targets and foils were
HCM and HCCR items and participants were instructed to decide
whether each item was previously studied or not (Lee & Shanks,
2023, recently adopted a similar approach in the context of implicit
learning). In the modified 2AFC task, studied and nonstudied alterna-
tives were presented on each trial that were matched in terms of the
previous single-item recognition decision and confidence rating they
had received, and participants had to decide which one was presented
in the study phase. The key 2AFC trials are those where an HCM is
paired with an HCCR. From the participant’s perspective, even

Figure 1
Expected Difference in Strength of HCMs and HCCRs in the UVSD Model

Note. The solid lines indicate d= 0, 0.5, 1, 1.5, 2, and 2.5 (dark to light). The horizontal dashed line
indicates zero difference. HCM= high confidence miss; HCCR= high confidence correct rejection;
UVSD= unequal variance signal detection; σo= the standard deviation of the strength distribution of
old items relative to that of new items; C1= the criterion value. See the online article for the color ver-
sion of this figure.
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though they previously indicated with total confidence that both items
are new, they still have to select the one they think was studied. If par-
ticipants reliably select the HCMon such trials (i.e., percentage of cor-
rect decisions is greater than 50%), then this can only be because of
the presentation of the HCM but not the HCCR in the study phase
and would therefore demonstrate that participants do in fact have
some residual memory for HCMs.
Representing items from the single-item recognition phase in 2AFC

trials is similar to the error correction paradigm devised by Starns and
colleagues (e.g., Ma et al., 2022; Starns et al., 2018), in which, after 12
trials of a recognition task where participants make old-new decisions
to studied and nonstudied items, error items (i.e., misses or false alarms)
are represented with ones for which responses were correct (correct
rejections or hits) in 2AFC trials, and participants are required to select
which of the alternatives they think was from the study list. In doing so,
they are thereby given an opportunity to correct their previous errors.
The 2AFC trials in this task are presented after every 12 trials to reduce
the likelihood that items will be in a different state in the repeated test,
due, for example, to forgetting. Given that our intention was to use sim-
ilar procedures to Tekin and Roediger (2017) to investigate HCMs, we
presented the 2AFC trials after all the trials of the single-item recogni-
tion task, rather than after a subset of trials. Our 2AFC task—devised
independently from the error correction paradigm—also differs from
it in that the alternatives are matched according to the decision and

confidence rating, whereas in the error correction paradigm, studied
and nonstudied items are matched only by the old/new decision.
Instead of using confidence ratings, Ma et al. (2022) identified and
tested competing predictions of the UVSD and 2HT models through
manipulations of the response criterion and biased the tendency for par-
ticipants to respond old or new using payoff manipulations.

Ma et al. (2022) provided equations to determine the probability
with which an old item will be selected on a 2AFC trial consisting
of a studied and nonstudied item, where both items were judged as
old or new. We adapted these functions for trials where the alterna-
tives are matched according to confidence ratings. The probability
that a studied item will be correctly selected from a forced-choice
pair, J–J, comprising a studied and nonstudied item that both
received the same rating J in the preceding single-item recognition
task (e.g., 1–1, when J= 1, where 1= high confidence new), is
given as:

P(correct| J − J) =
∫Cj

C j−1

f( f , d, so)
F(Cj, d, so)−F(Cj−1, d, so)

F(f )−F(Cj−1)
F(Cj)−F(Cj−1)

dx,
(6)

where j= J= 1, …, 6, C0=−∞, C1–C5 are the decision criteria,
and C6=∞; f is the strength value. In Figure 4, Equation 6 is

Figure 2
Visual Representation of the UVSD and DPSD Models When Fit to Experiment 1 of Tekin and
Roediger (2017) (Top Row), and the Expected Strengths of HCMs and HCCRs, Given These Fits
(Bottom Row)

Note. UVSD= unequal variance signal detection; DPSD= dual-process signal detection; HCMs= high confi-
dence misses; HCCRs= high confidence correct rejections. See the online article for the color version of this figure.
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used to plot accuracy as a function of the UVSD model parameters
and shows that, all else being equal in the UVSD model, accuracy
on 1–1 trials (i.e., those where the alternatives are an HCM and
HCCR) tends to increase as d and C1 increase but decreases as
σo increases. Accuracy can be at or below chance (50% correct)
when σo is relatively high and d is relatively low.With fairly typical
parameter values (i.e., d� 1, σo� 1.25), accuracy is around 50%
correct for items falling below a C1 of approximately −1.5.
Thus, predicted accuracy follows approximately the same pattern
as the expected differences in HCM and HCCR strength
(Figure 1). The values in Figure 4 additionally serve to demonstrate
that the strength differences in Figure 1 can translate to nontrivial
quantitative differences in predicted accuracy.
In the DPSD model, accuracy on 1–1, 2–2, 3–3, 4–4 and 5–5

2AFC trials (i.e., when J= 1–5) is determined by the formula:

P(correct| J − J) =
∫Cj

C j−1

f( f , d′, 1)
F(Cj, d′, 1)−F(Cj−1, d′, 1)

F(f )−F(Cj−1)
F(Cj)−F(Cj−1)

dx.
(7)

In the 6–6 forced-choice condition, because of the influence of
recollection, an old item is either recollected with probability Ro,
in which case it is correctly selected as the studied item, or else

the decision is based on familiarity as in Equation 7. Thus, accuracy
on 6–6 trials is given by:

P(correct | 6− 6) =

Ro + (1− Ro)
∫Inf
C5

f( f , d′, 1)
1−F(C5, d′, 1)

F(f )−F(C5)
1−F(C5)

dx.
(8)

Accuracy of 1–1 trials across parameters in the DPSD model is
shown in Figure 5. As was the case with the expected difference
in strength to HCMs and HCCRs (Figure 3), accuracy tends to
increase as d′ and C1 increase and is greater than chance when d′

is greater than zero. Accuracy for these trials is unaffected by Ro,
since recollection only occurs for the highest confidence old ratings,
and 1–1 trials are based on familiarity.

Next, we describe four experiments designed to determine
whether a residual memory effect can be demonstrated for HCMs
before considering how well the UVSD and DPSD models predict
the effect once fit to the single-item recognition data. To foreshadow
our behavioral findings, we found evidence of residual memory for
HCMs using the aforementioned 2AFC task (in Experiments 1a, 1b,
and 2), and also when a second single-item recognition task was
given in which the targets and foils are HCMs and HCCRs, respec-
tively (in Experiment 3).

Figure 3
Expected Difference in Strength of HCMs and HCCRs in the DPSD Model

Note. The solid lines indicate dʹ= 0, 0.5, 1, 1.5, 2, and 2.5 (dark to light). The horizontal dashed line
indicates zero difference. HCM= high confidence miss; HCCR= high confidence correct rejection;
DPSD= dual-process signal detection; Ro= probability with which an old item is recollected; C1=
the criterion value. See the online article for the color version of this figure.
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Experiment 1a

Experiment 1a was based on Experiment 2 of Tekin and
Roediger (2017), which was the first data set that Roediger and
Tekin (2020) referred to when describing the phenomenon of
everyday amnesia. There were the following key differences to
enable the 2AFC task to be added after the single-item recognition
task. First, in Tekin and Roediger’s (2017) experiment, after each
“old”/“new” decision, participants indicated their confidence on
either on a 4-, 5-, 20-, or 100-point scale, whereas we only used
a 4-point scale. We did this to ensure that the number of trials
that could be presented in the 2AFC task was as high as possible,
since the number of studied and nonstudied items that receive the
same rating becomes less likely as the number of ratings increases.
Another difference was that we had only one study-test phase cycle,
rather than two, in order to reduce the likelihood of potential carry-
over effects between 2AFC tasks. Given that we wanted to have the
same number of studied faces (100) as Tekin and Roediger, and
also that presenting them in a single study phase would effectively
increase the study list length, relative to their experiment, we
attempted to offset the poorer memory that would be expected
from the longer list length by showing faces for a longer duration
(4 s rather than 2 s as in Tekin & Roediger, 2017). The additional

2AFC task was presented on completion of the single-item recog-
nition task. For completeness, in addition to the key 1–1 trials, we
also included trials on which the items were matched for all possi-
ble combinations of old-new decision and confidence rating. The
stages of the experiment are shown in Figure 6.

Method

Participants

We aimed to have an appropriate number of participants to match
the statistics reported in Table 1 of Roediger and Tekin (2020) (i.e.,
7,200 study items/100 study items per participant= 72 participants).
Seventy-two participants were recruited but one was excluded from
the analysis because their performance in the single-item recognition
task was at the floor (their hit-minus-false alarm rate was equal to
0.02), and so an additional participant was recruited to replace
them. The 72 participants (60 female, 11 male, and one nonbinary/
other) had a mean age of 19.56 years (SD= 1.73). All individuals
in this and subsequent experiments were psychology students from
the University of Plymouth, who participated in partial fulfillment
of a course requirement, and were recruited through the University’s
online participant pool. Ethical approval for all experiments was

Figure 4
Predicted Accuracy on 1–1 2AFC Trials (Percentage of Trials on Which the HCM Strength
Exceeds That of HCCRs) in the UVSD Model

Note. The solid lines indicate d= 0, 0.5, 1, 1.5, 2, and 2.5 (dark to light). The horizontal dashed line
indicates 50%. 2AFC= two-alternative forced choice; HCM= high-confidence miss; HCCR= high-
confidence correct rejection; UVSD= unequal variance signal detection; σo= the standard deviation
of the strength distribution of old items relative to that of new items; C1= the criterion value. See the
online article for the color version of this figure.
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obtained via the School of Psychology Ethics Committee, Faculty of
Health, University of Plymouth.

Materials

As in Tekin and Roediger (2017), the stimuli were 200 neutral
faces of individuals between 19 and 50 years of age, taken from
the Minear and Park (2004) database; 160 of the faces were white
(80 male, 80 female) and 40 were black (20 male, 20 female). The
faces were divided into two lists, matched in terms of the proportion
of Black/White×Male/Female faces. One of the lists was randomly
assigned to act as the studied stimuli for each participant, with the
other list acting as the nonstudied stimuli. The experiment was writ-
ten in OpenSesame (Mathôt et al., 2012) and the OSWeb function-
ality of the programwas used to run it on aweb browser on a desktop
personal computer for each participant, via hosting on a JATOS
server (Lange et al., 2015).

Procedure

Participants were tested individually in a quiet laboratory room.
After reading a brief introduction and giving consent, participants
read the instructions for the study phase, which told them that they

would see faces presented one at a time, each for a few seconds,
and that they should try to memorize each one for an upcoming
but unspecified memory test.

On each trial of the study phase, a face was presented for 4 s, fol-
lowed by a central fixation point for 500 ms. After the study phase,
there was a 10-min retention interval during which participants
engaged in an unrelated task (word searches of countries of the
world or counties in the United Kingdom). Next, the instructions
for the single-item recognition memory test phase were presented.
Participants were told that they would see a previously studied or
nonstudied face on each trial, and for each one they must decide
whether it was presented in the first stage or not by responding
“old” (if they thought it was studied) or “new” (if they thought it
was not), after which they must indicate how confident they are in
their decision on a 4-point scale, where 1 corresponds to not at all
confident and 4 corresponds to totally confident.

The single-item recognition phase consisted of 200 trials, com-
prising 100 old and 100 new faces in a random order. On each
trial, a face was shown in the center of the screen, with the cue
“Was this shown in the first phase? Z=New/M=Old” displayed
below it. All responses were self-paced, and once participants had
pressed Z or M, the cue was replaced with the text “How confident
are you in your decision?” with the numbers 1–4 shown below this,

Figure 5
Predicted Accuracy on 1–1 2AFC Trials (Percentage of Trials on Which the HCM Strength
Exceeds That of HCCRs) in the DPSD Model

Note. The solid line indicates dʹ= 0, 0.5, 1, 1.5, 2, and 2.5 (dark to light). Horizontal dashed line indi-
cates 50% correct. 2AFC= two-alternative forced choice; HCM= high-confidence miss; HCCR=
high-confidence correct rejection; DPSD= dual-process signal detection; Ro= probability with
which an old item is recollected; C1= the criterion value. See the online article for the color version
of this figure.
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and the text not at all confident below number 1 and totally confident
shown below number 4. After participants made their confidence rat-
ing, there was a 200 ms blank interval before the next trial was
presented.
On completion of the single-item recognition memory phase,

instructions for the 2AFC phase were presented. Participants were
told that they would see a pair of faces side-by-side on each trial,
and that one was presented in both the first stage (the study phase)
and also the previous phase (the recognition task), whereas the
other was not presented in the first phase and was only shown in
the phase just completed. Their task was to select the face from
the pair that they thought had been presented in the first phase.
After making their selection they were to once again indicate how
confident they were in their decision on a 4-point scale. On each
2AFC trial, a pair of faces was presented, side-by-side. Each pair
consisted of one studied face and one nonstudied face. Below the
two faces, the question “Which one was presented in the first
phase? Left/Right”was presented with the keypress response prompt
“D= Left, J=Right” beneath. Crucially, the faces on each trial had
been given identical ratings in the single-item recognition stage. An

algorithm was built into the experimental program whereby, before
the 2AFC phase commenced, studied and nonstudied items that had
received the same old/new decision and rating were randomly
paired, for as many pairings as the responses made would allow.
Following Roediger and Tekin (2020), responses at the lowest two
confidence ratings (1 and 2) were binned. There were, therefore, six
possible types of 2AFC trial, arising from 2 decisions (old, new)×
3 ratings (1 or 2, 3, 4), henceforth referred to as 1–1, 2–2, 3–3, 4–4, 5–
5, and 6–6 trial types, where the number denotes the rating of the
studied and nonstudied alternatives on each 2AFC trial and the
responses have been remapped to a 1–6 scale, with endpoints 1=
totally confident new and 6= totally confident old. Thus, the items
on 1–1 trials had both received a “new” decision and a “4—totally
confident” rating, those on 2–2 trials received a “new” decision
and a medium confidence “3” rating, those on 3–3 trials received a
“new” decision and a “1—not at all confident” or “2” rating, those
on 4–4 trials received an “old” decision and a “1—not at all confi-
dent” or “2” rating, those on 5–5 trials received an “old” decision
and a “3” rating, and those on 6–6 trials received an “old” decision
and a “4—totally confident” rating. Hence the total number of

Figure 6
Schematic of the Task

Note. (a) Experiment 1a task and (b) Experiment 3 task. Photos of faces are from “A Lifespan Database of Adult
Facial Stimuli,” byM.Minear and D. C. Park, 2004,Behavior ResearchMethods, Instruments, & Computers, 36(4),
pp. 630–633 (https://doi.org/10.3758/BF03206543). Copyright 2004 by Springer (Research Database). See the
online article for the color version of this figure.
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2AFC trials was variable across participants. 2AFC trials were ran-
domly ordered for a given participant. Similarly, the left–right posi-
tion of the studied item was randomly determined on each trial. Trials
were self-paced. On completion of the final phase, participants were
debriefed. The entire experiment took approximately 45 min,
depending on the pace of the participant.

Transparency and Openness

An α level of .05 was used for all statistical tests. Data were ana-
lyzed in R (R Core Team, 2023) and Bayes factors (BFs) were
obtained using the BayesFactor package (Morey & Rouder, 2022)
using the default priors. The experiment was not preregistered (only
Experiment 2 was preregistered, see https://osf.io/2q5yw/). The data,
analysis scripts, and materials are available on the Open Science
Framework at https://osf.io/2q5yw/ (Berry & Shanks, 2023).

Results

In the single-item recognition task, the proportion of old items
judged old (hits) was reliably greater than that of new items judged
old (false alarms), indicating that participants could discriminate old
from new items (Table 1), t(71)= 18.06, p, .001, BF10= 1.11×
1025, Cohen’s d= 2.13. The measure of discriminability (d′ = 0.98)
was comparable to that of Tekin and Roediger (2017, Experiment 2),
who found that d′ ranged from 0.89 to 1.17.
The proportions of low (1–2), medium (3), and high (4) confi-

dence ratings made to hits, misses, false alarms, and correct rejec-
tions are shown in Table 2, and 18.40% of misses received high
confidence ratings, which is comparable to that reported by
Roediger and Tekin (2020) (19.74%).
Having established a similar level of recognition discriminability

and propensity for participants to make HCMs as Tekin and
Roediger (2017, Experiment 2), we turned to performance in the
2AFC task. The mean number of trials in each 2AFC condition is
shown in Table 3. Given that the number of trials in each condition
differed across participants, and that some participants, because of
their individual responses, had zero trials in a given 2AFC condition,
we analyzed the data from this phase using generalized linear mixed
models, using the glmer() function in the lme4 package in R (Bates
et al., 2015). The outcome variable was whether the decision on the
2AFC trial was correct or not, the fixed effect was the type of forced
choice trial (i.e., 1–1, 2–2, 3–3, 4–4, 5–5, 6–6), and the random
effect grouping factor was the participant. Item was not included
as a random effect, since the items on each 2AFC trial were uniquely
determined for each participant according to their previous

responses. The model with binomial family and logit link function
was fit using MLE. To allow model convergence, the model con-
tained random intercepts but not random slopes associated with
the fixed factor. Overdispersion in the residuals was evaluated
using the DHARMa package (Hartig, 2022) and was not detected.

Accuracy differed reliably across 2AFC conditions, χ2(5)=
33.10, p, .001. The estimated marginal mean and 95% confidence
interval (CI) for each condition are shown in Figure 7. Tests of each
mean against 0.5 (i.e., proportion correct performance expected due
to chance) were performed, with p values adjusted using the Holm
method for six tests. Of key interest, accuracy in the 1–1 condi-
tion significantly exceeded chance (M= 0.57, SE= 0.02, 95% CI
[0.51, 0.63], z= 3.074, p= .0042), suggesting that participants
had some residual memory for HCMs. Accuracy did not exceed
the level expected due to chance in the 2–2 condition (M= 0.52,
SE= 0.02, 95% CI [0.48, 0.57], z= 1.26, p= 0.21), but did in the
other conditions (Ms. 0.54, zs. 3.33, ps, .0027).
The confidence rating made after each 2AFC decision (1= not at all

confident… 4= total confidence) was also analyzed using linear
mixed models with condition (1–1… 6–6) and decision (correct vs.
incorrect) as fixed factors and participant as a random factor. Model
terms were tested with the Satterthwaite method. Both the effects of
rating and decision were statistically significant: F(5, 4536.3)=
30.34, p, .001, and F(1, 4501.3)= 50.12, p, .001, respec-
tively. Moreover, a Condition×Decision interaction was found,
F(5, 4498.2)= 5.25, p, .001, indicating that confidence generally
increased across conditions 1–1 to 6–6 and tended to be greater for cor-
rect decisions than incorrect ones, but with the difference in the 2–2
and 3–3 conditions tending to be smaller than the others (Figure 8).
Thus, the differences in confidence ratings to correct and incorrect
decisions generally followed the same pattern as the accuracy data.

Discussion

In Experiment 1a, participants tended to select an HCM as the pre-
viously studied item rather than an HCCR in the 2AFC task. The
finding that accuracy exceeded 50% in the 1–1 condition demon-
strates that HCMswere encoded to some degree, and that some resid-
ual memory exists for these items. Interestingly, accuracy on 2–2
trials did not exceed 50%, indicating an absence of memory for
misses made with medium confidence. On the surface, this result
could be taken to reflect everyday amnesia, yet Roediger and
Tekin (2020) did not make any claims with regard to these items,
and there is no justification a priori for why memory should be
absent for these responses but not HCMs. Furthermore, to fore-
shadow the findings of our other experiments, the absence of mem-
ory for misses made with a medium level of confidence is not a
robust finding. Finally, although not the focus of our investigation,
an interesting aspect of our results is that accuracy was significantly
greater than 50% correct on 6–6 trials, which shows that highly con-
fident “false memories” (high-confidence false alarms) could be dis-
tinguished from true ones (high confidence hits).

Experiment 1b

The aim of Experiment 1b was to determine if the residual mem-
ory effect for HCMs would also be demonstrated with word stimuli.
The experiment was therefore similar in design to Tekin and
Roediger (2017, Experiment 1) except for the following key

Table 1
Single-Item Recognition Phase Hit Rate, FA Rate, and Discriminability
Scores in Experiments 1a, 1b, 2, and 3

Experiment Study instruction

Hits FAs d′

M SD M SD M SD

1a Memorise items 0.57 0.14 0.23 0.10 0.98 0.53
1b Memorise items 0.63 0.13 0.29 0.12 0.97 0.63
2 Decide age 0.67 0.13 0.16 0.09 1.53 0.55
3 Decide age 0.67 0.12 0.20 0.09 1.34 0.47

Note. FA= false alarm.
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differences: As in our Experiment 1a, there was a single study-test
phase cycle, rather than the two cycles used by Tekin and
Roediger. Once again, the reason for this was to avoid potential
carry-over effects from the inclusion of the additional 2AFC task.
We also used half the total number of study items as Tekin and
Roediger (2017, Experiment 1) (i.e., 100 words in a single study
phase) to facilitate comparison with Experiment 1a. Given that over-
all levels of memory performance were lower in Tekin and
Roediger’s Experiment 1 (with words) compared to their
Experiment 2 (with faces), we attempted to counteract the antici-
pated lower levels of memory by doubling the study exposure dura-
tion of each word (from 2 to 4 s). Thus, Experiment 1b was in fact
identical to Experiment 1a, except that the stimuli were words.

Method

Participants

We recruited 72 participants for parity with Experiment 1a. One
participant's performance was at floor in the single-item recognition
task (their false alarm rate was greater than their hit rate) and was

replaced. The 72 participants (62 female, nine male, and one nonbi-
nary/other) had a mean age of 19.62 years (SD= 2.15).

Materials and Procedure

Words were selected from Nelson et al. (2004) with similar con-
straints to Tekin and Roediger (2017, Experiment 1). One hundred
words comprised one list, and a further 100 corresponding associates
comprised another. Each associate was one of the top three words
associated with the other word according to Nelson et al. (2004).
For example, if “table” was on the first list, the associate “chair”
would be on the other list. All words had concreteness scores
between 3.5 and 7 and log hyperspace analogue to language frequen-
cies (Balota et al., 2007) of between 5.99 and 13.55. Words were
between five and six letters in length and each list had the same num-
ber of five- and six-letter words (66 and 34, respectively). Therewere
no duplicates of words across lists. As in Experiment 1a, one of the
lists was randomly assigned to act as the studied stimuli for each par-
ticipant, with the other list acting as the nonstudied stimuli. The pro-
cedure used in Experiment 1b was identical to that of Experiment 1a
except that the stimuli were words instead of faces.

Table 2
Number of Observations and Percentages of Hits,Misses, FAs, andCRs in the Single-Item
Recognition Task for Experiments 1a, 1b, 2, and 3

Response

1–2 3 4
Total

n % n % n % n

Experiment 1a
Hit 872 21.32 986 24.10 2,233 54.58 4,091
Miss 1,482 47.67 1,055 33.93 572 18.40 3,109
FA 781 47.25 551 33.33 321 19.42 1,653
CR 2,282 41.14 1,871 33.73 1,394 25.13 5,547

Experiment 1b
Hit 1,019 22.31 1,073 23.49 2,476 54.20 4,568
Miss 1,564 59.42 817 31.04 251 9.54 2,632
FA 1,060 50.33 621 29.49 425 20.18 2,106
CR 2,518 49.43 1,810 35.53 766 15.04 5,094

Experiment 2
Hit 931 19.31 1,175 24.37 2,716 56.33 4,822
Miss 1,147 48.23 802 33.73 429 18.04 2,378
FA 625 54.44 345 30.05 178 15.51 1,148
CR 2,041 33.72 2,309 38.15 1,702 28.12 6,052

Experiment 3
Hit 1,068 22.08 1,307 27.02 2,462 50.90 4,837
Miss 1,275 53.96 736 31.15 352 14.90 2,363
FA 787 53.39 403 27.34 284 19.27 1,474
CR 2,445 42.70 2,022 35.31 1,259 21.99 5,726

Note. Percentages are within a response type (e.g., hit, miss). FA= false alarm; CR= correct
rejection.

Table 3
Mean Number of Trials in Each FC Condition

Experiment

1–1 2–2 3–3 4–4 5–5 6–6

M SD M SD M SD M SD M SD M SD

Experiment 1a 9.88 9.39 14.44 10.96 20.11 12.98 9.72 6.31 7.68 6.28 6.29 7.20
Experiment 1b 4.76 4.44 11.23 6.78 21.62 12.51 12.56 6.71 8.29 5.03 6.54 6.95
Experiment 2 7.64 10.05 11.76 9.07 16.26 11.87 8.28 5.60 4.95 5.15 3.56 3.83

Note. FC= forced choice.
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Results and Discussion

Participants could reliably discriminate old fromnew items (Table 1),
t(71)= 16.11, p, .001, BF10= 1.82× 1022, Cohen’s d= 1.90.Mean
dʹ was virtually identical to Experiment 1a (d′ = 0.97, Table 1).
Interestingly though, the percentage of misses made with high confi-
dence (9.54%) was approximately half the level found in Experiment
1a (18.40%, Table 2) and in Roediger and Tekin (2020).
The mean number of 2AFC trials in each condition is shown in

Table 3. As in Experiment 1a, we analyzed the data from this phase
in the same manner using generalized linear mixed models, and
derived expected marginal mean accuracy with tests of each mean
against expected chance levels of performance that were adjusted for
multiple comparisons using a Holm correction. Accuracy significantly
differed across conditions, χ2(5)= 51.63, p, .001. As shown in

Figure 7, accuracy in the 1–1 condition exceeded chance performance
(M= 0.60, SE= 0.03, 95% CI [0.52, 0.68], z= 3.09, p= .008), sug-
gesting once again that participants had some residual memory for
HCMs. As in Experiment 1a, accuracy did not exceed the level
expected due to chance in the 2–2 condition (M= 0.52, SE= 0.02,
95% CI [0.47, 0.57], z= 1.08, p= .56). Unlike Experiment 1a, accu-
racy in the 4–4 condition did not exceed the level expected due to
chance (M= 0.50, SE= 0.02, 95% CI [0.45, 0.55], z=−0.04,
p= .97), but accuracy in the 3–3, 5–5, and 6–6 conditions did
(Ms. 0.54, zs. 2.91, ps, .011).

As in Experiment 1a, the confidence rating made after each 2AFC
decision (1= not at all confident… 4= total confidence) was ana-
lyzed using linear mixed models with the condition (1–1 to 6–6)
and decision (correct vs. incorrect) as fixed factors and participant
as a random factor. Model terms were tested with the Satterthwaite

Figure 7
2AFC Task Accuracy According to 2AFC Condition (1–1, 2–2, 3–3, 4–4, 5–5, 6–6)

Note. In the left column, the estimated marginal means (controlling for participants; transformed to percentages)
are plotted as dark circles, and the error bars represent the 95% CIs of these estimated means from the model; light
circles denote data from individual participants. Predicted accuracies according to the UVSD and DPSDmodels are
shown in the middle and right columns, where each dark circle represents the mean expected accuracy across
participants and the light circles denote the expected value for each participant. 2AFC= two-alternative forced
choice; Exp.= Experiment; UVSD= unequal variance signal detection; DPSD= dual-process signal detection;
CI= confidence interval. See the online article for the color version of this figure.
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method. Both the effects of rating and decision were statistically sig-
nificant, F(5, 4449.7)= 64.56, p, .001, and F(1, 4416.1)= 40.54,
p, .001, respectively. Amarginal Condition×Decision interaction
was also found, F(5, 4409.1)= 2.14, p= .06, indicating that confi-
dence generally increased from conditions 1–1 to 6–6 and tended to
be greater for correct decisions than incorrect ones, except in condi-
tions 2–2 and 3–3 where the difference tended to be smaller
(Figure 8). Thus, like Experiment 1a, confidence and accuracy
were generally related in the 2AFC task.
Once again, accuracy in the 1–1 condition exceeded the level of

performance expected due to chance, demonstrating a residual mem-
ory effect for HCMs, this time with word stimuli. Interestingly, the
effect was shown even though the percentage of HCMs made was
roughly half that of Experiment 1a.

Experiment 2

In Experiment 2, we aimed to replicate the residual memory effect
for HCMs, but under more demanding encoding conditions where a
given study item was more likely to have been processed. Although
participants were instructed to memorize the set of study images/
words in Experiments 1a and 1b, it is possible that not all items
were attended to, and so these items may be functionally equivalent
to new items at the time of the test phase, which could have given rise
to HCM responses. This alternative explanation for HCMs was con-
sidered by Roediger and Tekin (2020), and if it occurred, may have
diluted the residual memory effect we found for HCMs. Thus, to
help ensure that participants processed each item during the study
phase, they were required to make a decision for each one, rather
than simply memorize the study list. To achieve this, the design
was identical to Experiment 1a, except that in the study phase, par-
ticipants decided whether they thought each face was of a person
older or younger than 25 years of age. We chose 25 years for the
decision, since approximately half of the faces in each counterbal-
ance condition were older than 25 and approximately half were
younger. We based this experiment on Experiment 1a rather than
Experiment 1b, since the proportion of HCMs was higher, and

more comparable to the level reported by Roediger and Tekin
(2020). Experiment 2 was preregistered at https://osf.io/2q5yw/.

Method

Participants

Seventy-two participants were recruited from the same participant
pool database as Experiment 1a but had not taken part in that exper-
iment. One participant was replaced because of their performance in
the single-item recognition task being at floor (their hit minus false
alarm rate was less than the 0.05 criterion we preregistered, and was
equal to zero). Participants received either course credit or £7.50 in
exchange for their participation. The paid participants included stu-
dents from the University of Plymouth who were not necessarily
studying psychology. Fifty-six participants identified as male, 14
as female, one as nonbinary/other, and one did not provide this infor-
mation. Their mean age was 20.15 years (SD= 2.69).

Design and Procedure

The design and procedure were identical to Experiment 1a, except
that after each face was shown in the study phase, participants had to
decide whether the face was of a person who was older or younger
than 25 years of age. The study instructions informed participants
that they would see faces presented one at a time, each for a few sec-
onds, and that they would have to decide whether the person looked
older or younger than 25 by pressing one of two keys. The decision
would sometimes be difficult to make but they should try their best to
do so within 2 s after they are presented. On each trial of the study
phase, a central fixation point was presented for 500 ms, then a
face was presented for 4 s. After the face disappeared the question
“Did the face look older or younger than 25 years?” was presented
and the keypress prompts “Q= older” and “P= younger” appeared
below the question. Participants had up to 2 s to make their keypress
before the program automatically advanced to the next trial (if no
keypress was made). If a keypress was made in under 2 s, the pro-
gram advanced to the next trial.

Figure 8
Confidence Ratings to Correct and Incorrect Decisions in Each 2AFC Condition in Experiments 1a,
1b, and 2

Note. 2AFC= two-alternative forced choice; Exp.= Experiment. See the online article for the color version of
this figure.
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Results

In the study phase, the mean proportion of items receiving an
“older” or “younger” judgment within the trial duration was 0.98
(SD= 0.11). There were no participants who made no responses,
and no participants exclusively responded “older” or “younger.”
In the single-item recognition task, the hit rate was reliably greater

than the false alarm rate (Table 1), indicating that participants could
successfully discriminate old from new items, t(71)= 26.53, p, .001,
BF10= 1.53× 1035, Cohen’s d= 3.13. Mean d′ (1.53) was numeri-
cally greater than those of Experiments 1a and 1b and Tekin and
Roediger (2017, Experiment 2) (where d′ ranged from 0.89 to 1.17),
in line with the deeper encoding task performed by participants.
The proportions of low (1–2), medium (3), and high (4) confidence

ratings made to hits, misses, false alarms, and correct rejections are
shown in Table 2. The percentage of HCMswas 18.04%, which is com-
parable to the level in Experiment 1a and Roediger and Tekin (2020).
This percentage remained similar (18.20%) even when old items for
which no key press decision was made during the study phase were
excluded. This bolsters our confidence that HCMs were extensively
attended and processed during the study phase.
We turn next to the central issue of whether residual memory

could be detected for HCMs in the 2AFC task. The mean numbers
of 2AFC trials in each condition are shown in Table 3. As in
Experiments 1a and 1b, we analyzed the data from this phase in
the same manner, using generalized linear mixed models and con-
ducted tests of accuracy versus levels expected due to chance with
p values adjusted for multiple comparisons using the Holm correc-
tion. Accuracy significantly differed across conditions, χ2(5)=
19.41, p, .001. As shown in Figure 7, accuracy in the 1–1 condition
exceeded the level expected due to chance (0.5) (M= 0.64, SE=
0.024, 95% CI [0.57, 0.70], z= 5.56, p, .0001). Once again, this
suggests that some residual memory for HCMs could be detected
in this task. Accuracy also exceeded the level expected due to chance
in the other 2AFC conditions (Ms. 0.61, SEs, 0.035, 95% CIs
[.0.57, ,0.80], zs. 5.47, ps, .0001).
As in the previous experiments, confidence ratings made after

each 2AFC decision (1= not at all confident… 4= total confi-
dence) were analyzed using linear mixed models with condition
(1–1… 6–6) and decision (correct vs. incorrect) as fixed factors
and participant as a random factor. This analysis was exploratory
and was not preregistered. Model terms were tested with the
Satterthwaite method. Both the effects of rating and decision
were statistically significant, F(5, 3386.3)= 10.62, p, .001, and
F(1, 3353.9)= 72.89, p, .001, respectively. ACondition×Decision
interaction was also found, F(5, 3354.5)= 3.34, p= .005, indicating
that confidence generally increased across conditions 1–1 to 6–6 and
tended to be greater for correct decisions than incorrect ones, with a
smaller difference apparent in the 2–2, 3–3, and 4–4 conditions
(Figure 8). Thus, confidence tended to followaccuracy in the 2AFC task.

Discussion

Once again, a residual memory effect for HCMs was demon-
strated in Experiment 2, this time following a deeper encoding
task, wherewe can have greater confidence that HCMswere attended
to and processed during encoding. For almost every HCM, the par-
ticipant had processed the face stimulus sufficiently in the study
phase to make a decision about the person’s age. Indeed, in line
with there being deeper processing, performance in both recognition

tasks was numerically greater than in Experiments 1a and 1b, and
accuracy in all 2AFC conditions was greater than chance.

Experiment 3

In Experiment 3, we sought to determine whether the residual
memory effect for HCMs would be also found when the 2AFC
task was replaced with a second single-item recognition task in
which the targets and foils were HCMs and HCCRs, respectively.
If so, this would suggest that the conditions necessary to demonstrate
the residual memory effect for HCMs are not restricted to those
imposed by a 2AFC task, for example, the requirement to make a rel-
ative assessment of the strength of two items. Experiment 3 was
identical to Experiment 2 except that, after the first single-item rec-
ognition task, participants completed a second single-item recogni-
tion task comprising solely previous HCMs and HCCRs (see
Figure 6b). Participants were told that half of the items in this
phase were in fact from the study phase, and that they must decide
for each item whether it was presented in this phase or not. The
design was otherwise equivalent to Experiment 2.

Method

Participants

As in the previous experiments, we recruited 72 participants on
the basis of acquiring a set of data of roughly the same size (i.e.,
7,200 study items) as Roediger and Tekin (2020). None had taken
part in the other experiments with face stimuli (Experiments 1a or
2). Demographic data for five participants were lost because of tech-
nical failure. The remaining 67 individuals (51 female, 15 male, one
nonbinary/other) had a mean age of 19.51 years (SD= 1.85).

Materials and Procedure

The materials and procedure of Experiment 3 were identical to
those of Experiment 2 except that the 2AFC task was replaced with
a second single-item recognition task. The instructions for this
phase told participants that they would see a mixture of faces that
they had just seen, each presented one at a time. For each face, they
were to decide whether they thought it was one that was presented
in the first phase or not, indicating their decision using a 6-point rating
scale, where 1= high confidence no, 2=medium confidence no, 3=
low confidence no, 4= low confidence yes, 5=medium confidence
yes, and 6= high confidence yes. This one-step rating scale was
used, rather than the two-step procedure used in Experiment 1a, in
order to help distinguish the two single-item recognition phases,
and also to help reduce the likelihood that participants would attempt
to simply reproduce their response from the first test phase. That is, we
wanted to avoid a situation where, for a particular face, a participant
could adopt a strategy whereby they remembered that they responded
“new” followed by “4” to it, and then attempt to reproduce these exact
same responses in order to be consistent with their previous respond-
ing. In addition, participants were told that half of the faces theywould
see were in fact from the first phase and half were not. We reasoned
that by giving participants this information, they may be less likely
to adopt a strategy in which they attempt to be consistent in their
responses across phases.

An algorithm was built into the experimental program that
ensured that the number of HCMs and HCCRs presented in the
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second single-item recognition phase was the same. If the number
of HCCRs was greater than that of HCMs, a random sample of
HCCRs was selected, with N equal to the number of HCMs, and
vice versa if the number of HCMs was greater than the number
of HCCRs. The order of presentation of HCMs and HCCRs was
randomized for each participant. In the event that a participant
made no HCMs or HCCRs in the first single-item recognition
phase, no items could be presented in the second single-item rec-
ognition phase, so the experiment ended, and the participant was
debriefed.

Results

In the study phase, the mean proportion of items receiving an
“older” or “younger” judgment within the trial duration was 0.94
(SD= 0.19). There were no participants who made no responses
or who exclusively responded “older” or “younger.”
As in the previous experiments, the hit rate was reliably greater

than the false alarm rate, indicating that participants could suc-
cessfully discriminate old from new items (Table 1), t(71)=
27.45, p, .001, BF10= 1.33× 1036, Cohen’s d= 3.23. Mean d′

(1.34) was numerically greater than those of Experiments 1a and
1b and Tekin and Roediger (2017, Experiment 2) (where d′ ranged
from 0.89 to 1.17), in line with the deeper encoding task performed
by participants.
The proportion of low (1–2), medium (3), and high (4) confi-

dence ratings made to hits, misses, false alarms and correct rejec-
tions is shown in Table 2. The percentage of HCMs was 14.90%,
which is slightly lower than that found in Experiment 1a and

reported by Roediger and Tekin (2020). As in Experiment 2, this
value remained similar even when old items for which no key
press decision was made during the study phase were excluded
(13.87%).

We turn next to the question of whether any residual memory
could be detected for HCMs in the second single-item recognition
task. Fifty out of 72 participants made at least one HCM and one
HCCR response in the first single-item recognition task and were
therefore presented with the second single-item recognition task.
The mean number of trials in this phase was 14 across participants
(SE= 2.35, range 2–104 trials). Participants were able to discrimi-
nate between old and new items in this phase as indicated by the
mean confidence rating (from 1= high confidence new to 6=
high confidence old) being greater for old items (M= 2.98, SE=
0.15) than new items (M= 2.47, SE= 0.15), t(49)= 3.52, p, .001,
BF10= 30.11, d= 0.48. Likewise, the hit rate (i.e., classifying
HCMs as old; M= 0.37, SE= 0.04) was significantly greater than
the false alarm rate (i.e., classifying HCCRs as old; M= 0.23,
SE= 0.04), t(49)= 2.90, p= .006, BF10= 6.29, d= 0.45. The
mean differences in confidence ratings and proportions of old judg-
ments are shown in Panels A and B of Figure 9.

Discussion

In Experiment 3, when represented with HCMs and HCCRs
in a second single-item recognition task, participants were more
likely to judge HCMs to be old and assign them higher confidence
ratings, compared to HCCRs. As with the previous experiments,
this demonstrates a residual memory effect for HCMs and that the

Figure 9
Experiment 3 Results and Model Predictions

Note. Mean difference in hit and false alarm rate (Panel A) and 6-point confidence ratings (Panel B) for HCMs and
HCCRs when presented in the second single-item recognition memory phase of Experiment 3. Panels C and D show
the expected difference in strength of HCMs and HCCRs, given fits of the UVSD and DPSDmodels to the single-item
recognition data. Twenty-two individuals did not make any HCMs so are omitted from the experimental data panels
andmodel data. One individual had an extreme negative outlying difference in expected strength toHCMs andHCCRs
in the UVSD model (difference less than −3) and is not shown in either the UVSD or DPSD panels. Black circles
indicate mean; error bars denote 95% CI of the mean. Grey circles denote individual participant data (Panels A and
B) or expected values under each model (Panels C and D). FA= false alarm; HCM= high-confidence miss;
HCCR= high-confidence correct rejection; UVSD= unequal variance signal detection; DPSD= dual-process signal
detection; CI= confidence interval. See the online article for the color version of this figure.
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effect generalizes to another type of recognition task other than
2AFC.

Modeling

UVSD and DPSD Models

Having established a residual memory effect for HCMs, we turn
next to our second main aim, which was to determine the extent to
which the UVSD and DPSD models could predict this effect once
their parameters were first fixed by fitting them to the data from
the initial single-item recognition phase.

Fits to the Single-Item Recognition Data

The parameters of the UVSD and DPSD models were obtained
from the single-item recognition data for every participant in each
experiment using MLE. This involved obtaining the likelihood of
every response given particular parameter values and using the
optim function in R (R Core Team, 2023) to obtain the values that
maximized the summed log-likelihood across trials. In Experiment
2, the data of two participants could not be fit by the models because
of there being no responses in some of the Stimulus×Ratings cells;
data from one other participant could not be fit in Experiment 3 for the
same reason. A number of participants had extreme positive C5

parameter estimates (i.e., C5. 100) when fit by the DPSD model
(nine in Experiment 1a, one in Experiment 1b, four in Experiment
2, seven in Experiment 3). These participants made no “totally confi-
dent old” decisions to new items and were not included in the calcu-
lation of the mean parameter estimates shown in Table 4. In each
experiment, we also fit the data aggregated across participants and

the same pattern of predictions for HCMs that we report below was
found in each model.

We assessed the fit of each model by obtainingG2 values for each
participant, comparing the observed frequencies of each response,
and the expected frequencies given the parameter estimates. Each
model yielded a satisfactory fit to the majority of participants across
experiments (79%–90%), as indicated by G2 values with associated
p values greater than .05 (see Table 5). If anything, the UVSDmodel
tended to fit a greater proportion than the DPSD model.

We also calculated ΔAIC for each model, where the AIC for a par-
ticipant for a givenmodel is AIC=−2ln(L) + 2p, where L is the max-
imum likelihood value, p is the number of free parameters (seven in
each model: σo, d, C1–C5 in the UVSD model, and dʹ, Ro, C1–C5 in
the DPSD model), and ΔAIC is the AIC value minus the AIC for
the best fitting model for that participant (Akaike, 1973). Note that
both DPSD and UVSD models have an equal number of parameters,
so comparisons of AIC are equivalent to comparisons of the
log-likelihood.ΔAIC values less than 2 do not distinguish the models,
offering little support for the best-fitting one (Burnham & Anderson,
2002). Although the UVSDmodel tended to fit the majority of partic-
ipants best by this criterion, the mean ΔAIC values were less than 2 in
each experiment. Overall, the goodness-of-fit statistics confirm that
the models fit the single-item recognition data well, as might be
expected from the literature (e.g., Wixted, 2007; Yonelinas & Parks,
2007). Both models also closely reproduced the percentage of
HCMs found in each experiment (see Table 6).

Forced-Choice Accuracy Predictions

For Experiments 1a, 1b, and 2, the parameter estimates were then
used to obtain predicted accuracy for each 2AFC condition. In
Experiment 2, it was not possible to derive the expected accuracy
in the 6–6 condition of the 2AFC task for those individuals with
extreme positive C5 estimates in the DPSD model, since derivation
of the cumulative normal probability failed, so a simulation-based
approach was used to derive their predicted accuracy in this condi-
tion instead. For parity across conditions and models, we obtained
predicted 2AFC accuracy in each condition using this simulation-
based approach (which yielded the same results as Equations 6–8).
For each participant, 200,000 2AFC trials were simulated per condi-
tion, and the item with the greater strength value on each trial was
assumed to be selected as the alternative that had been studied. On
6–6 trials in the DPSD model, if recollection occurred for the old
item, it was assumed to be selected, otherwise, the item with the
greater strength value was selected. Even with this simulation
approach, derivation of the expected accuracy of 6–6 trials in the
DPSD model failed for three participants with the most extreme
C5 estimates (two participants in Experiment 1a, and one in
Experiment 1b) since familiarity-based 2AFC decisions could not
be determined. These participants were not included in the analysis
for this model below.

Predicted accuracy in each condition is shown in Figure 7. The
UVSD model did not predict a residual memory effect for HCMs,
as indicated by the mean predicted accuracy across participants
in the 1–1 condition being below or no different from 50%. In
Experiment 1a, predicted accuracy was significantly below 50%
(M= 45.39%), t(71)=−4.54, p, .001; likewise in Experiment 1b
(M= 46.83%), t(71)=−3.22, p= .002. In Experiment 2, predicted
accuracy did not differ from 50%, (M= 49.02%), t(69)=−0.87,

Table 4
Mean Parameter Estimates of the UVSD and DPSDModels in Each
Experiment

Parameter

Experiment

1a 1b 2 3

M SE M SE M SE M SE

UVSD
d 1.16 0.08 1.18 0.08 1.83 0.10 1.62 0.08
σo 1.46 0.04 1.38 0.05 1.58 0.06 1.48 0.04
C1 −1.42 0.21 −1.98 0.27 −1.02 0.15 −1.69 0.30
C2 −0.12 0.07 −0.40 0.06 0.18 0.07 −0.13 0.06
C3 0.82 0.05 0.62 0.05 1.06 0.04 0.87 0.04
C4 1.31 0.06 1.16 0.05 1.59 0.05 1.48 0.07
C5 1.93 0.08 1.73 0.06 2.25 0.08 2.27 0.13

DPSD
d′ 0.50 0.04 0.64 0.07 0.99 0.06 0.88 0.06
Ro 0.23 0.02 0.23 0.02 0.30 0.02 0.26 0.02
C1 −1.24 0.18 −1.76 0.22 −0.86 0.12 −1.29 0.16
C2 −0.11 0.07 −0.36 0.06 0.21 0.06 −0.07 0.06
C3 0.70 0.04 0.57 0.04 0.99 0.04 0.79 0.04
C4 1.17 0.05 1.10 0.05 1.50 0.05 1.32 0.06
C5 5.74 1.54 2.56 0.44 7.42 1.89 5.75 1.18

Note. UVSD= unequal variance signal detection; DPSD= dual-process
signal detection; d= distance between old and new strength distributions;
d′ = standardized distance between old and new strength distributions;
σo= the standard deviation of the strength distribution of old items relative
to that of new items; C1–C5=Criteria 1–5; Ro= probability with which an
old item is recollected.
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p= .39, and is far below the lower limit of the 95% CI on the
observed data. The DPSD model did, however, predict the effect,
as indicated by the predicted mean accuracy being greater than
50% in Experiment 1a (M= 55.76%), t(69)= 11.82, p, .001,
Experiment 1b (M= 55.69%), t(70)= 9.38, p, .001, and
Experiment 2 (M= 60.35%), t(69)= 16.10, p, .001. In each case,
the predicted effect falls inside the observed 95% CI.
It is also evident from Figure 7 that the UVSD and DPSD models

tended to numerically underestimate accuracy in the 2–2, 3–3, 4–4,
and 5–5 conditions. In this sense, there is room for improvement in
the quantitative predictions made by both models. Predicted accu-
racy in the 6–6 condition was closer to levels observed in the data.
Most importantly though, the main qualitative patterns were pre-
dicted in the remaining conditions: both models predicted that accu-
racy is greater than chance, tends to be greatest in the 6–6 condition,
and is generally higher in Experiment 2, where memory was stronger
following the encoding manipulation employed.

Second Single-Item Recognition Phase Predictions

In Experiment 3, where a second single-item recognition phase
was used as the additional memory test, Equations 3–5 were used
to obtain the expected difference in strength to HCMs and HCCRs
from the model parameter estimates. We did not derive predictions
for the hit and false alarm rates or confidence ratings to HCMs
and HCCRs in this phase, since doing so would require estimating
further parameters for this stage (e.g., decision criteria), which
would require fitting the data from this phase rather than deriving
ex ante predictions for it. Figure 9 shows that the mean expected
strength of HCMs was lower than that of HCCRs in the UVSD
model, t(70)=−3.88, p, .001, contrary to the observed pattern,
but the DPSD model predicted the opposite, t(70)= 14.57,
p, .001. Assuming that differences in strength translate to subse-
quent levels of discriminability, the UVSD model did not predict
the residual memory effect for HCMs, and instead predicted a

Table 6
Mean Percentage (and Standard Error) of Each Response Type Across Participants According to the Parameter Estimates of the UVSD and
DPSD Models for Each Experiment

Response

UVSD DPSD

1–2 3 4 1–2 3 4

M SE M SE M SE M SE M SE M SE

Experiment 1a
Hit 22.85 1.82 26.33 1.81 50.81 2.48 22.77 1.82 23.59 1.75 53.65 2.44
Miss 48.82 2.74 30.42 1.82 20.76 2.33 51.47 2.95 30.89 1.94 17.64 2.32
FA 49.08 2.86 30.94 2.03 19.98 2.22 47.95 2.80 36.06 2.12 15.98 2.34
CR 40.88 2.86 34.77 1.94 24.35 2.72 39.54 2.71 34.59 1.88 25.86 2.69

Experiment 1b
Hit 24.44 1.58 24.47 1.18 51.10 2.23 24.52 1.57 22.37 1.13 53.11 2.18
Miss 59.57 2.37 29.40 1.65 11.03 1.63 62.05 2.45 29.31 1.74 8.63 1.39
FA 51.16 2.13 29.05 1.22 19.79 1.88 50.19 2.08 32.73 1.28 17.08 1.90
CR 49.30 2.37 36.51 1.67 14.19 1.73 48.21 2.33 36.38 1.65 15.42 1.81

Experiment 2
Hit 19.48 1.52 23.88 1.93 56.64 2.75 19.66 1.57 22.30 1.91 58.05 2.80
Miss 51.21 2.78 30.58 2.06 18.20 2.43 53.98 2.91 31.66 2.18 14.35 2.35
FA 55.72 2.73 27.50 1.87 16.79 2.28 53.83 2.59 32.39 2.00 13.79 2.18
CR 32.99 2.55 38.90 2.24 28.12 2.75 32.09 2.48 38.24 2.23 29.67 2.77

Experiment 3
Hit 22.79 1.82 27.32 1.59 49.89 2.77 23.22 1.86 25.43 1.56 51.35 2.82
Miss 57.17 2.82 28.25 1.81 14.58 2.04 60.61 3.04 27.85 2.02 11.54 1.92
FA 55.39 3.41 27.27 1.92 17.35 2.39 52.67 3.14 32.25 1.87 15.08 2.34
CR 42.86 2.67 36.73 1.90 20.40 2.35 41.54 2.57 36.63 1.85 21.83 2.38

Note. UVSD= unequal variance signal detection; DPSD= dual-process signal detection; FA= false alarm; CR= correct rejection.

Table 5
Goodness of Fit of the UVSD and DPSD Models in Experiments 1–3

Experiment

Percentage of
participants with
nonsignificant G2 ΔAIC

Percentage of
participants best

fit by AIC

nUVSD DPSD UVSD DPSD UVSD DPSD

1a 86.11 81.94 1.38 1.53 44.44 55.56 72
1b 84.72 79.17 0.97 1.16 55.56 44.44 72
2 90.00 80.00 0.66 1.78 68.57 31.43 70
3 88.73 81.69 0.47 1.90 61.97 38.03 71

Note. UVSD= unequal variance signal detection; DPSD= dual-process signal detection; G2=
discrepancy measure; AIC=Akaike information criterion.
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negative effect, whereas the DPSD model successfully predicted
the effect.

Other Models

Alternative Distributional Assumptions

Although the dominant version of the UVSD model is one in
which the distributions are Gaussian, versions in which the distri-
butions are not Gaussian have occasionally been fit in the literature
(see e.g., Wixted & Mickes, 2010), and, more broadly, the
Gaussian assumption in SDT is technically an auxiliary assump-
tion (Kellen et al., 2021). To explore the extent to which the mis-
prediction of the UVSD model is due to this Gaussian assumption,
we fit versions of the model where the underlying distributions
were either Gumbel, logistic, Weibull, lognormal, exponential, or
gamma, and then obtained their predictions in a similar manner.
The parameter estimates are shown in Table 7. These models all
closely reproduced the percentage of HCMs in each experiment
(Table 8) and fits were comparable to the Gaussian–UVSD
model (Table 9).

Notably, the Gumbel–, lognormal–, and logistic–UVSD models
all still failed to predict the residual memory effect for HCMs in
Experiments 1a, 1b, and 2 (see Figures 10–12), and the expected
value for HCMs was lower than that of HCCRs in Experiment 3
(as shown by the solid-black points below the zero-difference line
in Figure 13). In the Weibull–UVSD model, predicted accuracy
did not differ from chance in Experiment 1a (M= 49.54%), t(71)=

Table 7
Parameter Estimates of the 2HT, MSD, and Non-Gaussian–UVSD
Models for Each Experiment

Parameter

Experiment

1a 1b 2 3

M SE M SE M SE M SE

2HT
do 0.27 0.02 0.30 0.02 0.37 0.02 0.31 0.02
dn 0.10 0.01 0.06 0.01 0.16 0.02 0.10 0.01
g1 0.11 0.02 0.05 0.01 0.11 0.02 0.08 0.01
g2 0.25 0.02 0.23 0.01 0.30 0.02 0.25 0.01
g3 0.31 0.02 0.34 0.02 0.29 0.02 0.32 0.02
g4 0.14 0.01 0.17 0.01 0.15 0.01 0.16 0.01
g5 0.13 0.01 0.14 0.01 0.13 0.01 0.15 0.01

MSD
dʹ 2.74 0.52 2.82 0.37 3.31 0.61 2.17 0.11
λ 0.58 0.03 0.62 0.03 0.76 0.02 0.73 0.02
C1 −1.52 0.29 −1.90 0.24 −1.14 0.22 −1.70 0.33
C2 −0.13 0.07 −0.41 0.06 0.16 0.07 −0.14 0.07
C3 0.80 0.05 0.61 0.05 1.07 0.04 0.87 0.04
C4 1.32 0.06 1.25 0.11 1.58 0.05 1.47 0.06
C5 2.22 0.16 1.94 0.13 2.19 0.07 2.16 0.09

Gumbel–UVSD
location (old
items)

1.34 0.12 1.44 0.14 2.39 0.17 2.05 0.13

scale (old
items)

2.01 0.08 1.91 0.09 2.59 0.12 2.28 0.10

C1 −0.86 0.16 −1.33 0.23 −0.59 0.16 −1.31 0.37
C2 0.31 0.08 0.00 0.07 0.67 0.08 0.29 0.07
C3 1.50 0.08 1.21 0.08 1.89 0.07 1.59 0.06
C4 2.30 0.10 2.05 0.10 2.82 0.09 2.62 0.12
C5 3.46 0.16 3.09 0.13 4.18 0.17 4.30 0.31

Logistic–UVSD
location (old
items)

1.95 0.14 1.99 0.15 3.15 0.17 2.75 0.15

scale (old
items)

1.50 0.04 1.39 0.05 1.62 0.07 1.49 0.04

C1 −2.96 0.58 −5.32 1.44 −2.32 0.60 −3.80 0.90
C2 −0.22 0.12 −0.68 0.11 0.30 0.12 −0.22 0.11
C3 1.37 0.09 1.04 0.09 1.82 0.07 1.48 0.07
C4 2.22 0.11 1.96 0.10 2.75 0.09 2.53 0.12
C5 3.35 0.15 2.97 0.12 3.92 0.14 3.90 0.22

Weibull–UVSD
shape (old
items)

2.87 0.07 3.15 0.10 3.34 0.12 3.23 0.08

scale (old
items)

1.47 0.03 1.46 0.03 1.72 0.04 1.63 0.04

C1 0.53 0.03 0.41 0.02 0.60 0.03 0.50 0.03
C2 0.84 0.02 0.75 0.02 0.95 0.02 0.84 0.02
C3 1.16 0.02 1.09 0.02 1.24 0.01 1.18 0.01
C4 1.33 0.02 1.28 0.02 1.43 0.02 1.39 0.02
C5 1.57 0.03 1.48 0.02 1.66 0.03 1.68 0.05

Lognormal–UVSD
mean (old
items)

0.29 0.02 0.29 0.02 0.46 0.02 0.40 0.02

standard
deviation (old
items)

0.37 0.01 0.34 0.01 0.39 0.02 0.37 0.01

C1 0.75 0.02 0.66 0.02 0.80 0.02 0.72 0.02
C2 0.98 0.02 0.91 0.01 1.06 0.02 0.98 0.02
C3 1.23 0.02 1.17 0.01 1.31 0.01 1.25 0.01
C4 1.40 0.02 1.34 0.02 1.49 0.02 1.46 0.03
C5 1.65 0.04 1.56 0.02 1.78 0.04 1.84 0.08

Exponential–UVSD
rate (old
items)

0.39 0.02 0.38 0.02 0.24 0.02 0.27 0.02

C1 0.25 0.04 0.12 0.02 0.33 0.04 0.21 0.03
(table continues)

Table 7 (continued)

Parameter

Experiment

1a 1b 2 3

M SE M SE M SE M SE

C2 0.71 0.05 0.49 0.04 0.94 0.06 0.67 0.05
C3 1.62 0.07 1.37 0.07 1.95 0.06 1.67 0.06
C4 2.44 0.11 2.20 0.10 3.05 0.12 2.89 0.15
C5 3.83 0.21 3.50 0.17 5.11 0.29 5.70 0.61

Gamma–UVSD
shape (old
items)

1.70 0.07 1.91 0.07 1.96 0.09 1.91 0.07

scale (old
items)

3.32 0.27 3.18 0.55 4.74 0.52 3.74 0.34

C1 0.76 0.07 0.49 0.04 0.94 0.08 0.69 0.06
C2 1.64 0.09 1.30 0.07 2.03 0.09 1.61 0.08
C3 3.00 0.09 2.65 0.09 3.45 0.08 3.09 0.07
C4 4.07 0.15 3.71 0.12 4.69 0.12 4.50 0.17
C5 5.81 0.26 5.15 0.17 6.72 0.27 7.34 0.65

Note. The new item distribution parameters were fixed to the following
values in each model. Gumbel–UVSD, location= 0, scale= 1; logistic–
UVSD, location= 0, scale= 1; Weibull–UVSD, shape= 3, scale= 1;
lognormal–UVSD, mean= 0, standard deviation= 0.25; exponential–
UVSD, rate= 1; gamma–UVSD, shape= 2, scale= 1. Four participants
with an extreme positive value of d′ in the MSD model were not included
in the calculation of the means and standard error for the parameters of
that model (one participant in Experiment 1b, three in Experiment 2).
2HT= two-high threshold; MSD=mixture signal detection; UVSD=
unequal variance signal detection; do= probability that an old item is
detected as “old”; dn= probability that a new item is detected as “new”;
g1–g6= guessing parameters 1–6; d′ = standardized distance between old
and new strength distributions; λ= probability that an old item will be
represented by the attended distribution; C1–C5=Criteria 1–5.
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−0.66, p= .51, or Experiment 1b (M= 51.00%), t(71)= 1.22
p= .23. However, it was greater than chance in Experiment 2
(M= 53.52%), t(69)= 3.81, p, .001, although below the lower
limit of the 95% CI on the observed effect. The expected strength
of HCMs was greater than that of HCCRs in Experiment 3,
t(70)= 3.37, p, .001, but the predicted difference was very small
(M= 0.009). In the gamma–UVSD model, predicted accuracy was
below chance in Experiment 1a (M= 47.60%), t(71)=−2.62,
p= .01, and did not differ from chance in Experiment 1b (M=
49.43%), t(71)=−0.59, p= .56, or Experiment 2 (M= 51.90%),
t(69)= 1.72, p= .09. Again, these predicted effects fell outside
the observed 95% CIs. Expected strength of HCMs and HCCRs
also did not differ in Experiment 3, t(70)= 1.06, p= .29 (M differ-
ence in strength = 0.006).
Interestingly, the exponential–UVSD model predicted that 1–1

accuracy was greater than chance in Experiment 1a (M=
51.34%), t(71)= 6.38, p, .001, Experiment 1b (M= 50.68%),
t(71)= 5.48, p, .001, and also Experiment 2 (M= 52.07%),
t(69)= 7.72, p, .001, but, crucially, predicted accuracy was
generally much lower than observed empirically. Although the
predicted effect for Experiment 1a was inside the observed 95%
CI, those of Experiments 1b and 2 fell outside the observed
95% CIs. The expected strength of HCMs was also greater than
that of HCCRs in Experiment 3, t(70)= 3.02, p= .004, but
again, the predicted effect was very small (M difference in
strength= 0.007).
Our explorations of versions of a UVSD model with

non-Gaussian distributions show that the failure of the UVSD
model to predict the residual memory effect for HCMs is not
because of the Gaussian assumption. Neither the Gumbel, logistic,
lognormal, or gamma versions of the UVSD model predicted the
residual memory effect. The Weibull–UVSD model did
predict the presence of the effects in Experiments 2 and 3,
but not in Experiments 1a and 1b, so is unsatisfactory overall.
Interestingly, the exponential–UVSD model predicts a positive
residual memory effect for HCMs and can do so because the like-
lihood ratio is monotonic with strength in this version, but the pre-
dicted effects were generally far smaller than we observed in our
experiments and so in this sense, the model is also unsatisfactory.
We could have extended this exploration by considering yet

more distributions (e.g., exponentially modified Gaussian distribu-
tion), or by using different fixed values for the new item distribu-
tions, but such an exercise is clearly post hoc. Furthermore, any
non-Gaussian implementation of the UVSD model would also
need to explain the recognition literature at least as well as the
Gaussian version, and this would require additional investigation.
What this exploration of non-Gaussian distributions highlights is

that, even when the distributions are not Gaussian, it is possible
for the likelihood of extreme low strength old items to be greater,
or practically indistinguishable from the likelihood of new items,
which can lead the UVSD model to mis-predict the residual mem-
ory effect for HCMs. This effect therefore represents a serious
problem for the model.

2HT

Although ourmain interest was in comparing the UVSD andDPSD
models, we also explored two other popular models. First, we consid-
ered the 2HT model (Snodgrass & Corwin, 1988), which is a discrete
state model of recognition. The model assumes that old items are
detected as “old” with probability do, whereas new items are detected
as “new” with probability dn. If an item is detected, it receives a high
confidence decision (“sure old” if in the do state, and “sure new” if in
the dn state). If an item is not detected, then the probability with which
it will receive a given confidence rating is based on a guessing param-
eter, gj, where j= 1… 6 (e.g., with probability g1 for the 1 “sure new”
rating) and g1–g6 sum to 1.

For new items, the probability of a particular rating j is therefore
given as:

P(j|new) = dnrn + (1− dn)gj, (9)

where rn= 1 when j= 1, and rn= 0 when j= 2–6. For old items, the
probability of a given rating is given as:

P(j|old) = doro + (1− do)gj, (10)

where ro= 1 when j= 6, and 0 when j= 1–5.
More complex versions of the model allow for the do and dn states

to give rise to intermediate confidence levels, but we did not imple-
ment these versions because they are not identifiable when there is
only a single old item and a single new item condition, as is the
case in our experiments (see Moran, 2016, for further details), and
their parameters therefore cannot be estimated (but see Bröder
et al., 2013, who fit such a model when the parameters were suffi-
ciently constrained).

The percentage of HCMs reproduced by the model for each exper-
iment is shown in Table 8. The model generally did not fit the
data from individual participants as well as the other models (see
Table 9), and did particularly poorly in Experiments 2 and 3,
where, unlike the other models, it did not fit the majority of partici-
pants. Predicted 2AFC accuracy in each condition was obtained
by adapting the equations described in Ma et al. (2022) but for
a 1–6 ratings scale rather than binary “old”/“new” judgments.
2AFC accuracy is given for 1–3 ratings (i.e., sure-, medium-, and

Table 8
Percentage of HCMs Produced by the 2HT, MSD, and Non-Gaussian–UVSD Models

Experiment

2HT MSD
Gumbel–
UVSD

Logistic–
UVSD

Weibull–
UVSD

Lognormal–
UVSD

Exponential–
UVSD

Gamma–
UVSD

M SE M SE M SE M SE M SE M SE M SE M SE

1a 17.05 2.29 20.23 2.38 21.32 2.34 22.38 2.34 20.33 2.33 20.76 2.33 19.22 2.32 20.48 2.33
1b 8.29 1.38 10.52 1.45 11.72 1.65 12.67 1.65 10.59 1.60 11.03 1.63 10.70 1.38 10.71 1.62
2 14.44 2.34 19.02 2.45 19.31 2.43 20.85 2.41 17.55 2.43 18.20 2.43 18.64 2.24 17.78 2.44
3 11.42 1.89 14.77 2.08 15.46 2.05 16.77 2.04 14.03 2.02 14.58 2.04 14.46 1.87 14.22 2.04

Note. HCM= high-confidence miss; 2HT= two-high threshold; MSD=mixture signal detection; UVSD= unequal variance signal detection.
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low-confidence new) as:

P(correct| J = 1, 2, 3) = dnrn + 0.5(1− dn)gj
dnrn + (1− dn)gj

, (11)

where j= J and rn= 1 when j= 1, and rn= 0 when j= 2 or j= 3.
2AFC accuracy for 4–6 ratings (i.e., low-, medium-, and high-
confidence old) is given as:

P(correct| J = 4, 5, 6) = doro + 0.5(1− do)gj
doro + (1− do)gj

, (12)

where ro= 1 when j= 6, and ro= 0 when j= 4 or j= 5.
The model correctly predicted a residual memory effect for HCMs

in each experiment (see Figures 10–12), but the prediction was clearly

greater than was observed empirically and outside the observed 95%
CIs. It also predicted a memory effect on 6–6 trials (which was greater
than that in the 1–1 condition), but again, this was clearly greater than
observed empirically. The model incorrectly predicted accuracy
would be at chance in the remaining 2–2, 3–3, 4–4, and 5–5 condi-
tions, because of the items appearing in such conditions arising only
from guessing states. Since the model is a discrete-state model, we
did not derive expected strength values for HCMs and HCCRs for
Experiment 3, as we did for the other models.

Mixture Signal Detection (MSD) Model

Lastly, we considered the MSD model (DeCarlo, 2002).
In this model, the studied item distribution is actually a mixture

Figure 10
Predicted 2AFCAccuracy According to the 2HT, MSD, and Non-Gaussian–UVSDModels When Fit to the Data From Experiment 1a Shown
in Figure 7

Note. 2AFC= two-alternative forced choice; 2HT= two-high threshold; MSD=mixture signal detection; UVSD= unequal variance signal detection. See
the online article for the color version of this figure.

Table 9
Goodness of Fit of the 2HT, MSD, and Non-Gaussian–UVSD Models

Experiment n

Percentage of participants with nonsignificant G2

2HT MSD Gumbel–UVSD Logistic–UVSD Weibull–UVSD Log-normal–UVSD Exponential–UVSD Gamma–UVSD

1a 72 51.39 90.28 76.39 69.44 88.89 86.11 88.89 88.89
1b 72 48.61 86.11 76.39 77.78 84.72 84.72 81.94 86.11
2 70 17.14 90.00 84.29 82.86 92.86 90.00 80.00 90.00
3 71 26.76 90.14 85.92 81.69 92.96 88.73 87.32 90.14

Note. 2HT= two-high threshold; MSD=mixture signal detection; UVSD= unequal variance signal detection; G2= discrepancy measure.
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distribution, made up of an attended (or more strongly encoded)
item distribution and a nonattended (or more weakly encoded)
distribution, representing the possibility that items may have
been encoded in different states. Studied items are represented
by the attended distribution with probability λ. The remaining
studied items are represented by a strength distribution with a
lower mean value, with probability (1− λ). The distributions
are assumed to be Gaussian with equal variances. This means
that the model does not have the same capacity to mispredict
the residual memory effect for HCMs as the UVSD model
because, unlike the UVSD model, and as pointed out by
DeCarlo (2002), the likelihood ratio is monotonic with the strength
axis.
In theMSDmodel, when the mean of the nonattended distribution

is greater than that of the new item distribution, but less than that of
the attended old distribution, the model is not identifiable when there
is only a single old-new item condition, as is the case in our exper-
iments. A simplifying assumption is often made where the mean of
the nonattended distribution is set equal to that of the new item dis-
tribution (e.g., DeCarlo, 2002; Spanton & Berry, 2020), and this
model is identifiable with the design. The probability of a given rat-
ing j to an old item is given as:

P(j|old) = l[F(Cj, d
′)−F(Cj−1, d

′)] + (1− l)[F(Cj)−F(Cj−1)],
(13)

where j= 1… 6, and C6=∞, C0=−∞. The probability of a given
rating j to a new item is given as:

P( j|new) = F(Cj)−F(Cj−1) . (14)

The parameter estimates of the model when fit to the single-item
recognition data are shown in Table 7. Like the othermodels, it closely
reproduced the percentage of HCMs in each experiment (Table 8). It
also tended to fit the majority of participants (Table 9). As is shown in
Figures 10–12, the model predicted the residual memory effect for
HCMs in the 1–1 condition in Experiment 1a (M= 59.54%),
t(71)= 16.18, p, .001, Experiment 1b (M= 59.37%), t(71)=
14.62, p, .001, and Experiment 2 (M= 64.84%), t(69)= 22.08,
p, .001, with the predicted effects falling within the observed
95% CIs. It also predicted the other trends in the accuracy data rea-
sonably well. Similarly, it predicted the residual memory effect in
Experiment 3 (Figure 13), t(70)= 13.37, p, .001, and the mean
predicted difference in strength to HCMs and HCCRs was nonne-
gligible (M= 0.17).

General Discussion

We investigated whether a residual memory effect for HCMs
exists and the implications of such an effect for the phenomenon
of everyday amnesia and decision models of recognition. Residual
memory for HCMs was found in (a) a modified 2AFC task in
which the alternatives are matched in terms of their previous single-

Figure 11
Predicted 2AFCAccuracy of the 2HT,MSD, and Non-Gaussian–UVSDModels When Fit to the Data From Experiment 1b Shown in Figure 7

Note. 2AFC= two-alternative forced choice; 2HT= two-high threshold; MSD=mixture signal detection; UVSD= unequal variance signal detection.
See the online article for the color version of this figure.
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item recognition response (Experiment 1a, 1b, and 2) and (b) a sec-
ond single-item recognition task in which HCMs and HCCRs must
be discriminated (Experiment 3). The effect was demonstrated with
face stimuli (Experiments 1a, 2, and 3) and also word stimuli
(Experiment 2), and under instructions to memorize the study stimuli
(Experiments 1a and 1b) as well as under more demanding encoding
conditions requiring a semantic decision to each studied stimulus
(Experiments 2 and 3).

Implications for Everyday Amnesia

Although participants may say with total confidence that they do
not remember previously studying an item, and in this sense com-
plete and rapid forgetting of the item’s presentation during the
study phase (and hence everyday amnesia) can be said to have
occurred (Roediger & Tekin, 2020), participants are still able to reli-
ably discriminate such items from HCCRs, which are matched in
terms of the previous response received. This demonstrates that
HCMs are not permanently lost from memory or inaccessible, and
that the forgetting that occurs for HCMs in the first single-item rec-
ognition phase is because of retrieval failure and not necessarily the
loss of a fully processed item from memory (Miller, 2021).

Implications for Decision Models

The residual memory effect for HCMs discriminated between dom-
inant decision models of recognition. Importantly, the experiments

provided strong tests (Platt, 1964) of the models as parameter-free pre-
dictions were derivable. When fit to the single-item recognition data,
the UVSD model closely reproduced the proportion of HCMs, but
when using these same parameter estimates to derive predictions for
residual memory effects for HCMs, it incorrectly predicted either a
subchance effect (Experiments 1a and 1b) or no effect (Experiment
2). The misprediction arises because, when the value of σo (the var-
iance of the old item distribution) is greater than that of σn (the var-
iance of the new item distribution), the expected strength of HCMs
can actually be lower than that of HCCRs. This prediction is coun-
terintuitive from a psychological perspective; it is not clear why
studying an item would endow it with a lower strength value, rel-
ative to a nonstudied item. Despite this feature being often
acknowledged, this has not prevented the widespread adoption of
the model over the past few decades (Egan, 1958; see Rotello,
2017; Wixted, 2007, for reviews), presumably because of its suc-
cesses in accounting for other aspects of recognition data. To our
knowledge though, evidence relevant to this specific feature of
the model does not exist, and our findings therefore constitute
the first direct evidence against it: our findings imply that the
mean strength of HCMs is greater than that of HCCRs, not lower
(or equal). Moreover, the UVSD model was still unable to suffi-
ciently predict the effect in each experiment when non-Gaussian
distributions (Gumbel, logistic, lognormal, Weibull, exponential,
and gamma) were assumed.

Other models, however, did not suffer from the same problem as
the UVSD model. The DPSD and MSD models successfully

Figure 12
Predicted 2AFC Accuracy of the 2HT, MSD, and Non-Gaussian–UVSDModels When Fit to the Data From Experiment 2 Shown in Figure 7

Note. 2AFC= two-alternative forced choice; 2HT= two-high threshold; MSD=mixture signal detection; UVSD= unequal variance signal detection.
See the online article for the color version of this figure.
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predicted the residual memory effect for HCMs in each experi-
ment. Unlike the UVSDmodel, HCMs (and HCCRs) in these mod-
els are the product of an equal variance signal detection process,
meaning that the negative effect for HCMs will not occur because
the likelihood ratio is monotonic with the strength axis in these
models. The expected strength of HCMs will always be greater
than that of HCCRs whenever the mean strength of old items is
greater than that of new items.
The 2HT model was also fit to the data and was able to predict the

memory effect for HCMs, but substantially overestimated it (like-
wise for accuracy in the 6–6 condition). It also incorrectly predicted
chance levels of accuracy in the other 2AFC conditions. Future
research should explore whether more complex versions of the
2HT model make more accurate predictions in extended experimen-
tal designs (e.g., with multiple old item conditions) that allow the
parameters of more complex versions of the model to be identified
(Moran, 2016).

Related Recent Studies

Others have recently used a similar approach to the one we have
taken here. Ma et al. (2022) identified competing predictions of
the UVSD and 2HT models in a single-item recognition paradigm
with old/new ratings and where a payoff manipulation was used to
manipulate response bias. They found that neither model satisfacto-
rily predicted the relative bias effects on forced-choice accuracy. The
DPSD model was found to produce a better quantitative prediction
for the effect, but their data did not distinguish between competing
qualitative predictions of the models in the way that ours do.
Dobbins (2023) recently found evidence against the UVSD model

using a three-alternative forced choice (3AFC) test, in which partici-
pants must select the new item when presented with two alternatives
that are old items. Once fit to single-item recognition data, estimates of
σo in the UVSD model were found to be positively correlated with

3AFC accuracy across participants, whereas the model actually pre-
dicted a negative correlation. Accuracy was, however, positively cor-
related with estimates of Ro in the DPSD model, as predicted by this
model. Furthermore, estimates of σo and d in the UVSD model were
positively correlated across participants.1 This correlation would
occur if, as σo increases, estimates of d become greater to compensate
for the depression in the upper portion of the ROC that results.
Interestingly, σo and d were also positively correlated when the
UVSD model was fit to data generated from the DPSD model. In
this sense, the DPSD model predicted the UVSD model’s mispredic-
tions. As in our study, the UVSD model’s mispredictions were made
despite providing slightly better fits to the data than the DPSDmodel.
This again demonstrates the value of deriving and testing the predic-
tions of models in additional tasks as we have done here, rather than
relying solely on the goodness of fit of the models.

These two studies, together with ours, converge on highlighting
problems for the UVSD model in predicting performance in addi-
tional tasks once its parameters are fixed by first fitting it to single-
item recognition data. Furthermore, recent attempts to validate
a psychological explanation offered for the unequal-variance

Figure 13
Expected Difference in Strength Values of HCMs and HCCRs in the MSD and Non-Gaussian–UVSD Models When Fit to the Data of
Experiment 3 Shown in Figure 9

Note. HCM= high-confidence miss; HCCR= high-confidence correct rejection; MSD=mixture signal detection; UVSD= unequal variance signal detec-
tion. See the online article for the color version of this figure.

1 Estimates of σo and dwere similarly positively correlated in each of our
experiments (.42, rs, .73). Following Dobbins (2023), we also explored
whether estimates of the memory evidence parameters in the UVSD and
DPSD models were correlated with performance in the additional task,
specifically 1–1 accuracy. This analysis did not shed further light on our
model results though. In the UVSD model, although estimates of σo
were strongly negatively correlated with predicted 1–1 accuracy across
individuals (rs,−.73 in Experiments 1a, 1b, and 2), they were not reli-
ably correlated with observed 1–1 accuracy (.08, rs, .16). Estimates
of d were also not correlated with predicted 1–1 accuracy (−.14, rs
, .02). In the DPSD model, estimates of dʹ were strongly positively corre-
lated with predicted 1–1 accuracy (rs. .92), but not with observed 1–1
accuracy (−.14, rs, .28). Estimates of Ro were also not consistently cor-
related with 1–1 accuracy across experiments (−.06, rs, .3).
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assumption in the UVSD model in terms of encoding variability
have proven unsuccessful (Spanton & Berry, 2020, 2023). Thus,
although the UVSD model has been popular for several decades,
these recent studies along with our findings here highlight major
issues for the model.

Everyday Amnesia and Organic Amnesia

Roediger and Tekin (2020, p. 6) defined amnesia as rapid and
complete forgetting and argued that the occurrence of HCMs in
memory-intact individuals implies that amnesia “occurs in all people
(not just amnesia patients)” (p. 1). In light of the findings reported
here, to what extent is it reasonable to maintain this degree of conti-
nuity between everyday and organic amnesia?
If forgetting in explicit memorymust be complete in order to qual-

ify as amnesia, then the present findings clearly challenge Roediger
and Tekin’s (2020) claim. Residual memory exists for forgotten
items, even ones classified as new with complete confidence.
Although left largely implicit, this was in effect the whole point of
the critiques of Levi et al. (2022) and Goshen-Gottstein et al.
(2022). To the extent that SDT can explain HCMs, it does so
by regarding these items simply as ones which fall below the rele-
vant decision criterion; with a different criterion placement, these
items would receive a different rating. Levi et al. (2022) and
Goshen-Gottstein et al. (2022) were incorrect in suggesting that
the UVSD model could explain the properties of HCMs, but the
more general point that SDT (particularly as instantiated in the
DPSD model) explains HCMs in terms of residual memory is cor-
rect, as we have shown here.
But just because the occurrence of HCMs in memory-intact indi-

viduals fails to meet Roediger and Tekin’s definition of amnesia
does not mean that it is unrelated to organic amnesia. Indeed a con-
siderable body of work attempts to conceptualize organic amnesia
precisely in terms of the DPSD model (see e.g., Yonelinas et al.,
2010, 2022, for reviews). Moreover, as we have argued elsewhere,
complete forgetting in individuals with amnesia (that is, recognition
at chance) occurs only in rare cases and can often be attributed to
insufficient power to detect small residual memory effects (see
Berry et al., 2014, for discussion; see also Wixted & Squire, 2004).
After outlining an SDT-based account of organic amnesia, in

which the old and new item distributions are largely overlapping,
Roediger and Tekin asked: “Will the scientific world accept the
SDT-based explanations of anterograde amnesia… proposed here?
We suspect not. SDT provides a useful conceptualization of the
underlying memory signals and the decision criteria, not a theoreti-
cal explanation in terms of psychological constructs or neural pro-
cesses of why they are depicted as they are. Likewise, we do not
find the SDT interpretation of everyday amnesia to be an explana-
tion, for the same reasons.” We disagree. SDT explains recognition
memory phenomena including HCMs in term of theoretical con-
structs (signal and noise distributions, decision criteria) and the
DPSD model explains the occurrence and detailed nature of residual
memory, whereas the UVSDmodel does not. These explanations are
equally applicable to both organic and everyday amnesia.

Potential Limitations

A potential limitation of our findings is that, given that we used
conventional procedures for testing recognition memory—namely,

a single study-test phase separated by a retention interval—it is pos-
sible that the underlying memory state or strength of an item may
have changed from its presentation in the first recognition test to
the second (see also Ma et al., 2022, for a discussion of this
issue). Memory for HCMs could, for example, have been weaker
with the longer retention interval, or items could move from a detect
state to a not detected state (from the perspective of the 2HT model),
or from the attended item distribution to the unattended item distri-
bution (from the perspective of the MSDmodel). We adopted a con-
ventional single-item recognition design because we wanted to
replicate the percentage of HCMs under the same conditions
reported by Roediger and Tekin (2020). In the future, however,
the predictions of other instantiations of these models that allow
for the memory of individual items to change from one phase to
the next could be explored. If, for example, memory weakens over
time, and the variance of the old relative to the new item distribution
is linked to overall strength as some have observed (e.g., Spanton &
Berry, 2020, 2023), then the UVSD model predictions may be more
similar to those that would be made under equal variance assump-
tions, and the model may therefore not mis-predict the residual mem-
ory effect for HCMs.

An issue with this account, however, is that, aside from being post
hoc, it would need to be subjected to empirical test by devising a
method to confirm that the value of σo is equivalent to that of σn
in the additional memory test, despite the fact that studied and non-
studied items can be discriminated reasonably well in this test, as our
experiments showed. For example, overall accuracy across 2AFC
conditions in Experiment 2 was 64.11% correct, the mean difference
in the hit and false alarm rate in the second single-item recognition
phase of Experiment 3 was 0.14, and these values would likely have
been much greater had the alternatives not been matched for their
previous single-item recognition response. Moreover, this type of
post hoc explanation is not necessary to explain the ability of the
DPSD andMSDmodels to successfully predict the residual memory
effect for HCMs.

Finally, it is also possible that the first recognition test influenced
performance on the second recognition test by acting as an additional
learning episode. The UVSD model might be able to account for the
residual memory effect for HCMs once the increment in strength
that occurs for items as a result of their presentation in the first test is
taken into account. If the increment is inversely related to an item’s
strength (Bjork & Bjork, 1992; Storm et al., 2008), then the increment
for HCMs might be expected to be greater than that for HCCRs, and
their strength for the second test will then be more likely to be greater
than that of HCCRs, giving rise to the residual memory effect for
HCMs. A problem with this account is that, for the other single-item
recognition rating categories (e.g., items receiving a “2–medium con-
fidence new” rating), the expected strength of nonstudied items is lower
than that of studied items under the UVSDmodel (discussed further in
Lee et al., 2024). If the increment these items receive from the first test
is also inversely related to strength, the nonstudied items would be
expected to receive a greater strength increment than the studied
items receiving the same rating. Expected 2AFC accuracy in all but
the 1–1 condition ought then to be below 50%, yet this is not what
we observed in our experiments. Indeed, in Experiment 2, accuracy
was reliably above 50% in all 2AFC conditions. Thus, this explanation
of the residual memory effect for HCMs in terms of the UVSD model
comes at the expense of mispredicting accuracy in the other 2AFC con-
ditions and is therefore implausible.
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Conclusions

Our conclusions are twofold: First, the residual memory effect for
HCMs demonstrates that even though a studied item receives a “new”
decision with total confidence in a recognition test, memory of the
item is not completely lost. If given another opportunity, be it in a
2AFC task or additional single-item recognition task, participants
can reliably distinguish these items from HCCRs. Second, once the
parameters of the UVSD and DPSD models were fixed by fitting
them to the single-item recognition data, they made opposing predic-
tions. Specifically, the residual memory effect for HCMs was not pre-
dicted by the UVSD model, which instead tended to predict a
subchance effect or an absence of an effect, providing evidence
against this model. In contrast, the DPSDmodel did predict the effect,
and this is because of the equal variance signal detection process
assumed to give rise to HCMs and HCCRs. For the same reason, in
additional modeling, the MSD model was found to correctly predict
a residual memory effect for HCMs. The 2HT model also predicted
the effect, but tended to overpredict it and incorrectly predicted an
absence of memory on all other 2AFC trial types except 6–6 trials.
The residual memory effect for HCMs therefore distinguished
between decision models of recognition and provides a new bench-
mark for testing such models.

Constraints on Generality

We observed the residual memory effect for HCMs using a variety
of stimuli (words, faces) and recognition tasks (2AFC and single-item
recognition tasks). The stimuli were selected from the same sources
used by Tekin and Roediger (2017) (words from Nelson et al.,
2004; faces fromMinear & Park, 2004), whose data, like ours, demon-
strate the phenomenon of everyday amnesia (HCMs). Although we
expect our findings to generalize to other types of stimuli typically
used in recognition tasks (e.g., pictures of objects or scenes), it will
be important to demonstrate this in future research. As in Tekin and
Roediger (2017), our participants were adults in higher education—
all were students at the University of Plymouth, and almost all were
studying psychology—and tended to be younger (18–32 years).
Although we expect our findings to generalize to other age groups
and similar participant pools, it will be important to demonstrate this
in future research. We have no reason to believe that the results depend
on other characteristics of the participants, materials, or context.
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