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A study of dense water formation over Rockall Bank 

by Clare Katherine O'Neill 

Abstract 

Rockall Bank is a large undersea bank situated in the north-east Atlantic. The region 

features steep bathymetry with the depth of Rockall Trough reaching 3000 m, rising to 

the surface at Rockall rock itself. Winter convective mixing in this area is strong and 

can reach 600 m or more. As this is deeper than a significant proportion of the bank, 

the water column above the bank becomes cooler than in the surrounding area, and a 

"cold water patch" forms. This water has been observed moving off the slope as a dense 

water cascade, a process that is important for shelf-ocean exchange and ventilation and 

which is also biologically important. 

This research contributes to knowledge of the dense water formation over Rockall Bank 

by analysing remotely-sensed data as well as numerical model results. Within this study: 

i) satellite sea surface temperature data were obtained for a ten year time series and the 

presence and properties of the surface cold water patch were investigated, and ii) the 

POLCOMS numerical model was adapted to simulate the Rockall Bank under different 

climatological conditions. 

It was demonstrated that a surface cold patch could be seen regularly in the satellite SST 

data, though more often there is a cold front associated with the Bank with no distinct 

cold patch. The duration of the cold patch and the duration of the front are inversely 

linked, and the cold patch is seen for longer in winters with a greater winter temperature 

difference across the Bank. The model successfully simulated the formation of the dense 

water in three test years, and the results show that the Bank greatly amplifies the effect of 

changing meteorological conditions. Dense water formation is very sensitive to changes 

in the winter air temperature, with a 2°C temperature decrease leading to a three-fold 

increase in the density difference between the water over the Bank and the surrounding 

area. The model results show a limited amount of cascading during the cooler years, but 

no cascading at all in the warmer year. Such large changes in the dense water formation 

caused by a relatively small change in air temperature suggests that climate change will 

have a significant impact on this system. 
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CHAPTER L INTRODUCTION 

Chapter 1 

Introduction 

1.1 Motivation and Objectives 

Rockall Bank is a large undersea bank situated in the north-east Atlantic. Along with 

Hatton Bank (located to the immediate north west of Rockall Bank) it separates the 

Rockall Trough from the Iceland Basin. The region features steep bathymetry with 

the depth of Rockall Trough reaching 3000m, rising to the surface at Rockall rock 

itself. 

Winter convective mixing in this area is strong due to relatively weak stratification 

(Holliday et ai, 2000), and the mixed layer can reach 600m depth or more (Meincke, 

1986). As this is deeper than a significant proportion of the bank, the water column 

above the bank becomes cooler than in the surrounding area, and a "cold water patch" 

forms (Shapiro ef ai, 2003; Ivanov et ai, 2004; Mohn and White, 2007). This water 

has been observed moving off the slope as a dense water cascade (Huthnance, 1986; 

Shapiro et a/., 2003). Additionally, increased chlorophyll levels have been observed over 

the Bank (Mohn and White. 2007). 

Dense water cascades are a type of buoyancy-driven current that occur when dense water 

formed over the continental shelf (by cooling, evaporation or freezing) descends down 

the continental slope (Huthnance, 1995). The first direct observation of cascading in the 

oceans was made by Nansen at the Rockall Bank in 1913 (Ivanov et a/., 2004). There 

are several different mechanisms for formation of the favourable horizontal density gra-
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dients needed for a cascade; relevant to Rockall Bank are temperature driven cascades. 

Although the primary factor in temperature driven cascades is the surface response to 

meteorological conditions, advection of temperature and/or salinity may also play a role 

(either hindering or assisting the formation of cascade favourable conditions). In the case 

of the Rockall Bank, the cascades are driven by the response to surface cooling (Shapiro 

et a/., 2003). Dense water cascades are an important mechanism for the ventilation 

of intermediate waters as well as shelf-ocean exchange (e.g. Huthnance, 1995; Shapiro 

et a/.. 2003). 

Theoretical analysis based on heat balances (Symonds and Gardiner-Garden, 1994) and 

reduced-physics analytical models (Shapiro and Hill. 1997) indicate that shallow areas 

such as Rockall Bank can enhance dense water formation and subsequent cascading. 

Although there have been several observations of dense water over Rockall Bank, little 

is currently known about the extent to which it varies from year to year. The objective 

of this study was to contribute to current understanding of the formation and cascad­

ing of dense water over Rockall Bank by investigating the variability of these processes, 

and to test the sensitivity to meteorological conditions. We set out to achieve these 

goals by analysing a ten-year t ime series of remotely-sensed satellite sea surface temper­

ature (SST) data, and by running various model simulations using the 3-D full-physics 

POLCOMS model. Modelling is useful here due to the sparse nature of in-situ measure­

ments. Three-dimensional modelling is the natural next step to provide more detailed 

information following the reduced physics model developed by Shapiro and Hill (1997). 

The POLCOMS model was chosen as it has a number of features which make it par­

ticularly suitable for this study: the PPM advection scheme has been found to have 

good feature-preserving properties (James, 1996); the s-coordinate system of Song and 

Haidvogel (1994) allows high vertical resolution to be maintained near the bottom even 

with steep bathymetry; the horizontal grid used is the Arakawa (1972) B grid which 

is found to be more suitable than the C grid when modelling large horizontal density 

variations (Holt and James, 2001; James. 1986). 

The questions and challenges posed during this study were: 

• What is the annual variability of the cold water signal in satellite SST? 
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• Set up the P O L C O M S model for the Rockal l Bank area, and t o s imulate the cold 

water fo rmat ion there 

• Use the model to s imulate d i f ferent years w i t h d i f ferent cond i t ions . How variable 

is the fo rmat ion o f cold water? Does cascading occur? 

1.2 Outline of the Thesis 

• Th is thesis cont inues in C h a p t e r 2 w i t h a review o f the relevant l i terature. Th is 

covers the propert ies of the Rockal l Bank area, dense water cascading, a brief 

note on the main features o f P O L C O M S , and previous mode l l i ng studies involv ing 

Rockal l Bank. 

• C h a p t e r 3 describes the methodo logy used in th is study, f r o m in i t ia l data pro­

cessing t o the specifics o f the model ( inc lud ing major changes made to the code) , 

t o the post-processing o f the model o u t p u t . 

• C h a p t e r 4 out l ines the results o f the observat ional data analysis. 

• C h a p t e r 5 contains the detai ls and results o f prel iminary model runs which tested 

each aspect o f the model . 

• C h a p t e r 6 describes the ful l runs t h a t were conducted and the i r results. 

• C h a p t e r 7 compares the model o u t p u t w i t h observat ions and theory in order to 

val idate the results. 

• C h a p t e r 8 fur ther analyses, compares, and discusses the results, l ink ing the ob­

servat ional satel l i te data t o the model results. 

• C h a p t e r 9 provides an overall summary o f the project and the results, and draws 

the conclusions of this thesis. 

• T h e A p p e n d i x contains: full detai ls o f every change made t o the model code; 

a list o f the data processing rout ines t h a t were wr i t ten and used; the re-wr i t ten 

tempera ture and salinity boundary rout ine used in the mode l ; t h e complete set o f 

AVHRR SST month ly f igures (on C D ) . 
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Chapter 2 

Literature Review and Background 

2.1 Rockall Bank Area 

2.1.1 Topography 

Rockall Bank is s i tuated o f f the West coast o f Scot land and, a long w i t h H a t t o n Bank, 

separates the Rockal l Trough ( t o the east o f the Bank ) f r om the Iceland Basin. The 

topography in this area is relatively steep w i t h depths descending f rom 100 m or less over 

Rockall Bank to more than 2500 m in Rockal l T rough . Figure 2.1 shows the ba thymet ry 

o f the Rockall Bank, using E T 0 P 0 2 data downloaded f rom IMOAA (Na t iona l Geophysical 

Data Center; N O A A , 2005) , a long w i th the names o f the main features in the area. There 

is in fact a small islet where the Bank reaches the surface, bu t at less than 30 m across 

th is is t o o small to be represented by the 2 m inu te ba thymet ry data used t o produce 

Figure 2.1 and subsequently is also t o o small t o be included in the model doma in in th is 

study. 

Various banks at the northern end of Rockal l T rough restr ic t the f low between the channel 

and the sur rounding ocean to depths o f around 600 m in the nor th-east and 1200 m in 

the nor th-west (E l le t t et a/., 1986). By cont ras t the southern entrance to the channel 

is over 3000 m deep. 
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Figure 2.1 Bathymetry of the Rockall Bank area depth contours are shown every 200 m. This 
figure was produced from data from National Geophysical Data Center. NOAA 
(2005). 

2.1.2 Water Masses 

Rockall Trough 

The predominant water masses present in the Rockal l T rough (or Rockal l Channel) are 

Eastern Nor th A t lan t ic Central Wa te r ( E N A W ) f rom the surface t o around 1200 m. and 

Labrador Sea Wate r ( L S W ) below (E l le t t et a/.. 1986; Hol l iday et a/.. 2000) . E N A W is 

signif icant ly more saline than the subpolar mode waters ( S P M W ) found in the nearby 

Iceland Basin. LSW may be seen in the deep waters as a sal ini ty and vor t ic i ty m i n i m u m 

(Hol l iday e ta / . , 2000) and oxygen max imum at 1 6 0 0 - 1 9 0 0 m (El le t t ef a / . 1986). Due to 

the topography of the Trough, which shallows towards the nor th , the LSW is prevented 

f rom escaping to the nor th and recirculates w i th in the t rench. El let t e t a/. (1986) note 

tha t LSW retains its characterist ic salinity m i n i m u m and oxygen m a x i m u m , suggest ing 

regular renewal of this water; therefore a large propor t ion must c i rculate out of the 

Trough to the South . 
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To the nor th , Arc t i c In termediate Wate r ( A l W ) and Norwegian Sea Deep Wate r ( N S D W ) 
are able t o f low in to the Trough (E l le t t et ai, 1986) . N S D W is denser than all t he water 
masses ment ioned so far, and i t therefore lies below the L S W where i t can be seen as a 
sal inity max imum jus t below the sal inity m i n i m u m associated w i t h L S W . Dickson e t a/. 
(1986) note t ha t the overf low o f this water is at its m a x i m u m in sumnner /au tumn . 

North East Atlantic 

Wade et a/. (1997) found t ha t the presence of Subarct ic In te rmed ia te Wate r ( S A I W ) , 

which is comparat ively fresh and is highly s t ra t i f ied, can restr ic t t he depth o f w in te r 

mix ing by up to 1 5 0 m . In the Nor th A t lan t ic , S A I W is p redominant ly found in the 

subpolar gyre and west o f 2 0 ' ' W (Wade e t ai, 1997) and is no t found w i th in Rockal l 

T rough, leading to a weaker density gradient in the Trough (Hol l iday e t a/., 2000) . 

2.1.3 Circulation 

T h e Rockall Trough provides a route th rough which warm saline water is supplied t o 

the Norwegian Sea (E l le t t and M a r t i n , 1973; El le t t e t a/.. 1986; Hol l iday e t ai, 2000) . 

However, as ment ioned above th is is l imi ted t o the upper waters since the Trough 

shallows to the nor th t o a depth o f 1200 m on the western side and 500-600 m to the 

northeast. T h e direct ion o f currents in the deep water areas is ext remely variable, but 

(E l le t t et ai, 1986) describe some features o f the mean c i rcu la t ion be low the wind-dr iven 

surface layer: water enters the Rockall T rough f rom the sou th , t o the west o f Porcupine 

Bank, and then diverges f rom the slope cur rent and f lows t o the nor theast . W i t h i n the 

Rockall T rough, the mean cur rent is ant icyclonic w i t h nor thward f low on the western 

side and southward f low in the east. In cont rast . New and S m y t h e - W r i g h t (2001) deduce 

t ha t the c i rculat ion in the in termediate and lower waters is cyclonic in nature. 

T h e eastern edge o f the Rockall T rough features a slope-edge cur ren t (Hu thnance , 1986; 

W h i t e and Bowyer, 1997; Gyory et a/., 2003) . Th is is a nor thward cur ren t t ha t is found 

th roughou t the year. The current generally increases t o the no r th , is typ ical ly 50km wide. 
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and has a mean speed which varies between 3 and 30cms~^ (Hu thnance , 1986) . Est i­
mates o f the inshore t ranspor t range f rom 1.2-3.0 Sv (New and S m y t h e - W r i g h t , 2001) . 
The length and breadth o f the slope cur ren t is m a x i m u m in a u t u m n / w i n t e r (Dickson 
e t a / . , 1986). 

The f low around Rockall Bank itself is ant icyc lon ic (E l le t t e t a / . , 1986; Huthnance, 1986) 

due to a combina t ion o f factors: f irst a Taylor co lumn process is c o m m o n l y seen at sea 

mounts . As the water co lumn is forced over a Bank or sea moun t , the dep th o f the water 

co lumn is reduced. In order t o conserve potent ia l vor t ic i ty the relat ive vor t ic i ty must 

therefore also be reduced. Th is means the water must acquire negat ive, i.e. ant icyclonic, 

ro ta t ion . Second is due to t idal resonance, wh ich appears t o be the d o m i n a n t cause at 

Rockall Bank in part icular ( M o h n and W h i t e , 2007) . Huthnance (1974) found t ha t the 

diurnal t ide at Rockall Bank is close in frequency to the natura l f requency o f a clockwise 

(ant i -cyc lon ic) t rapped wave around the Bank. 

The ant i -cyclonic c i rculat ion around Rockall Bank displays a seasonal signal in s t rength , 

w i t h m i n i m u m mean f low at the nor th o f the Bank in O c t o b e r / N o v e m b e r (Dickson 

e t a/., 1986). Dickson e t a/. (1986) also no te t ha t the weakening o f this c i rcu lat ion is 

associated w i t h an increase in the open ocean f low towards Rockal l Bank . 

2.1.4 Convection and Dense Water Formation 

The weak density gradient due t o the absence o f S A I W in the Rockal l Trough allows 

unusually deep win ter convect ive mix ing, w i t h the mixed layer typ ica l ly reaching depths 

o f 600 m or more (Meincke, 1986) which leads to a s t rong seasonal t empera tu re signal 

(Hol l iday et a/.. 2000) . 

Meincke (1986) presents results f rom a cruise between Porcupine Bank, Rockall Bank, 

Ha t t on Bank, and the Hebrides shelf wh ich t ook place in March 1984. and was repeated 

in June 1984. T h e observations include: 

• In some areas, vert ical ly homogeneous layers were observed t o 630 m depth . These 

had a hor izontal scale o f less than 40 n m . 
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• A t some stat ions the upper 600 m consisted o f a sequence o f homogeneous layers. 

• Except for the summer heated surface layer, the weak vert ical gradient (charac­

ter is t ic o f the region) was preserved in to the summer . 

Meincke (1986) concluded tha t a l though the number o f areas w i t h deep convect ion is 

small and w i t h a spatial extent of less than 4 0 n m , over a long t ime per iod such deep 

convect ion occurs across the region. In add i t i on , the s imi lar i ty o f the upper water co lumn 

in the w in te r and summer cruises suggests t h a t advect ion is low and so the water is not 

replaced between the seasons. 

Th is deep convect ion results in di f ferent ia l coo l ing between the Bank and the deeper 

areas, leading to the format ion o f a dense "co ld water pa t ch " over the s u m m i t o f the Bank 

which has been subsequently observed cascading downslope (Shapiro et ai, 2003; Ivanov 

et a/., 2004) . Mohn and W h i t e (2007) used remotely-sensed sea surface tempera tu re 

data t o produce month ly c l imatologies for the Rockal l Bank area. They conclude t h a t 

the cold water is most clearly seen between December and March , a l though i t is present 

in some form almost all year round. 

2.1.5 Biological Importance 

The area o f cold water over Rockall Bank is co inc ident w i t h higher levels o f chlorophyl l 

than in the surrounding areas ( M o h n and W h i t e , 2007) ind icat ing t h a t the Bank has a 

s igni f icant impac t on the local ecosystem. Submar ine banks in general are recognised 

as impo r tan t biological habits ( M o h n and W h i t e , 2007) and co ld-water corals have been 

found at Rockall Bank (e.g. Kenyon e t a/., 2003; Roberts e t a/., 2003) . The area is also 

an impo r tan t fishery for the Uni ted K i n g d o m and Ireland ( M o h n and W h i t e , 2007) . 

2.2 Dense Water Cascades 

Dense water cascades are a type o f buoyancy-dr iven cur rent wh ich occur when dense wa­

ter formed over the cont inenta l shelf (by coo l ing , evaporat ion or f reezing) descends down 
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the cont inenta l slope (Shapiro e t a/., 2003) . T h e f i rst d i rect observat ion o f cascading 
was made by Nansen at Rockall Bank in 1913. 

There are numerous sites around the wor ld where cascading is known t o occur, and there 

are several d i f ferent mechanisms for the fo rmat ion o f the favourable hor izontal density 

gradients. Temperature-dr iven cascades occur due to surface coo l ing o f the ocean, 

which has a di f ferent ia l effect between the shelf and ocean areas, or by advect ion o f 

cold water. Sal in izat ion may faci l i ta te cascading by several means: by advect ion o f more 

saline water, by surface evaporat ion in hot c l imates, or by ice fo rma t ion ( leading t o fresh 

water removal ) . Relevant t o this study are tempera ture-dr iven cascades. A l t hough the 

primary factor in tempera ture driven cascades is the surface response to meteorological 

condi t ions, advect ion o f tempera ture a n d / o r sal ini ty may also play a role (ei ther h inder ing 

or assisting the fo rmat ion o f cascade favourable cond i t ions) (Shapiro et ai, 2003) . In 

the case o f the Rockal l Bank, the cascades are dr iven purely by the response to surface 

cool ing. 

Cascading is a mesoscale process and generally f r i c t ion is impor tan t . Th is means t ha t 

the constra int o f conservat ion o f potent ia l vor t ic i ty does not apply and geostrophy is 

broken, a l lowing the f low t o cross isobaths (Shapi ro and Hi l l , 1997) . In add i t ion , th is 

moderate spatial scale means t ha t the f-ptane approx imat ion is suf f ic ient when analysing 

cascading (Shapiro and Hi l l , 1997) . 

Shapiro and Hil l (1997) used a '1.5 layer' model t o invest igate the dynamics o f cascading 

for some simpl i f ied cases. The model uses a homogenous layer o f dense water, w i t h an 

over ly ing upper layer (also homogeneous). The i r f i rst case was on a f lat surface w i t h 

no ent ra inment between the two layers, and no cur ren t in the upper layer; they found 

tha t the result ing propagat ion o f dense water was a slow di f fusive- l ike spreading. W h e n 

ent ra inment between the upper and lower layers was inc luded, the propagat ion was 

signi f icant ly enhanced because the en t ra inment enables water f rom the main body o f 

the plume to steepen the dense water interface. W h e n a cur rent in the upper layer was 

added (and ent ra inment set t o zero aga in) , the b o t t o m f ron t o f the dense water layer 

advanced twice as quickly as i t d id w i t h o u t the upper current . 
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The second case considered by Shapiro and Hi l l (1997) was t h a t o f a un i formly s loping 
b o t t o m . As w i t h the f lat b o t t o m case, w i t h o u t an upper layer cur ren t there is di f fusive-
like spreading, and the propagat ion is enhanced when en t ra inmen t is considered. Unlike 
the f lat b o t t o m case however, there is now a downslope componen t o f reduced gravi ty 
g ' wh ich could create downslope mot ion w i t h i n the Ekman layer (where the grav i ty is 
only part ial ly opposed by the Coriol is force) . 

W i t h the addi t ion o f the cur ren t in the upper layer (and no e n t r a i n m e n t ) , t he result 

was dependent upon the d i rect ion of the current . When the cur ren t was f lowing in the 

same direct ion as the Coriolis force, a downslope (ie t o the le f t ) Ekman f low is induced 

which enhances the propagat ion of the density interface. W h e n the upper layer current 

was f lowing in the opposi te d i rect ion, the Ekman f low t h a t is induced is in the upslope 

direct ion which opposes, and blocks, the downslope propagat ion o f the dense water 

(Shapiro and Hi l l . 1997). 

Laboratory exper iments were carried ou t by Condie (1995) wh ich s imula ted cascading 

using a circular source o f dense (saline) water at the centre o f a r o ta t i ng tank. When 

the tank was rotated rapidly, the isopotent ia ls are d is tor ted so t h a t t he gradient in f luid 

depth increases l inearly w i t h the radius of the tank and the system represents dense 

water at the top o f a slope. W i t h a cont inuous supply o f dense water at the source 

area, Condie (1995) observed t h a t the f ront between the two layers spread radially. T h e 

induced f lows were more stable than the surface currents produced in earl ier studies w i t h 

similar condi t ions, suggest ing the Ekman layer has a stabi l is ing ef fect (Condie, 1995). 

Condie (1995) also found t h a t when the supply o f dense water was s topped, before i t 

separates f rom the source region the dense f lu id cont inues to be removed (by Ekman 

t ranspor t ) unt i l the ent ire vo lume is d is t r ibuted across a viscous f low, wh ich f lows down 

slope. 

Shapiro et a/. (2003) ob ta in the fo l lowing equat ions for use in analys ing condi t ions for 

temperature-dr iven cascades: 

/II - I c - I s - 2 ^ Jj-^ j j j f ^ ( 2 1 ) 

10 
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Ap = Pc - P. = P-r- - a— 2.2 
\ d 2 dz J 2Hs 

where subscripts s and c refer t o shelf and offshore regions respectively, Hg is the depth 

o f the shelf, He is the f inal depth of the offshore mixed layer, a and P/p are the thermal 

expansion and sal inity con t rac t ion coeff ic ients respectively. 

The use o f these equat ions assumes 

• The heat fluxes are the same across the she l f /o f fshore regions 

• There is in i t ia l ly a un i fo rm mixed layer o f depth Hg , the dep th o f the shelf 

• The temperature gradient below the mixed depth is cons tan t 

• There is no hor izontal advect ion 

Shapiro et al. (2003) f ind good agreement between observed values o f A T and Ap in 

Rockall Trough and values calculated using Equat ions 2 . 1 , and 2.2, suppor t ing their use 

when s tudy ing dense water cascading in this region as well as g iv ing fu r ther support t o 

the idea tha t temperature is the driver o f cascading here. 

Ivanov et al. (2004) define a parameter r (Equat ion 2.3) , wh ich increases over the life-

cycle o f the cascade. In the early stages a cascade has large r, wh ich reduces in value 

as the cascade matures. 

r = (2 .3) 

PA - PD 

where the subscripts A, C, and D refer t o di f ferent parts o f the cascade: A is the po in t 

o f max imum density on the sloping b o t t o m . C is the locat ion on the b o t t o m of the local 

density m in imum between A and B (where B is the depth level w i t h the same density 

as the cascading water ) . D is at the same depth as A but in the amb ien t water. Th is 

arrangement is i l lustrated in Figure 2.2 (adapted f rom Ivanov e t al. ( 2004 ) ) . 

Ivanov et al. (2004) also define a parameter h, the dimensionless th ickness o f the cascade, 

as 

11 
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Isopycnals 
Sea floor 

Figure 2.2 Location of reference points within dense water cascade. Adapted from Ivanov 
et al. (2004) 

(2 .4) 

where He is the thickness o f the layer o f dense water at the po in t A (dep th | Z ^ | ) 

Analys ing data f rom a cascade o f f Rockal l Bank in January 1967, Ivanov et ai (2004) 

found t ha t h. — 1, showing tha t product ion o f dense water had s tar ted. In add i t ion , a 

relat ively large value o f r indicates the cascade, in i t ia ted by surface coo l ing , is in its early 

stages. 

2.3 Remote Sensing 

One o f the aims o f th is study was to examine remotely-sensed Sea Surface Tempera ture 

( S S T ) data in order t o invest igate how variable the surface cold water pa tch is. Previous 

work has established tha t the cold water over Rockal l Bank can be seen in satel l i te data 

( M o h n and W h i t e , 2007) but the annual var iabi l i ty has not yet been s tud ied . Satel l i te 

data are useful as they are available over a w ide spat ial area and tempora l l y on t imescales 

f rom mon th l y t o daily composi te pictures. Th i s al lows a more d i rect compar ison between 

di f ferent dates than is o f ten the case w i t h in s i tu da ta , wh ich are typ ica l ly patchy in bo th 

t ime and space. The l imi ta t ions of using satel l i te data include the l im i ted date range. 

12 
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as the technology is relat ively recent. It is also only possible t o measure the surface 
temperature . 

T h e data analysed by M o h n and W h i t e (2007) were Advanced Very High Resolut ion 

Radiometer ( A V H R R ) data . The AVHRR sensor measures infrared radiat ion in the range 

1 0 - 1 2 / ^ m which correlates well w i t h ocean tempera tu re (Robinson, 1997) . T h e major 

disadvantage o f AVHRR is tha t clouds are no t t ransparent t o infrared, so wi l l cause gaps 

and errors in the data. T h e spatial resolut ion obta ined is around 1 k m , or 4 k m in low 

resolut ion mode. 

SST may also be est imated by microwave radiometry . Because the wavelengths used are 

relatively long ( 1 . 5 - 3 0 0 m m ) , microwaves are not scat tered by clouds (Robinson, 1997) 

and therefore are able t o provide greater coverage o f the ocean than the AVHRR me thod . 

However, i t should be noted tha t raindrops are large enough to scatter microwaves ( M a u l , 

1985) . Due t o the weaker signal in th is wavelength range the sensor needs a wider field 

o f view, and therefore the spatial resolut ion is no t as high as tha t o f A V H R R (Robinson, 

1997). 

For bo th data types, the raw satel l i te data must be cal ibrated and corrected using es­

t imates o f parameters such as atmospher ic absorpt ion ( M a u l , 1985) and assumpt ions 

for the link between tempera tu re and the level o f infrared or microwave radiat ion emi t ­

ted. 

2.4 Modelling 

2.4.1 P O L C O M S 

The main focus o f this study is numerical model l ing o f the Rockal l Bank. T h e model 

used here is the Proudman Oceanographic Laboratory Coastal Ocean Mode l l i ng System 

( P O L C O M S ) . P O L C O M S is a three-dimensional model wh ich has been developed over 

many years (e.g. James. 1986. 1996; Ho l t and James, 1999) . It has been val idated for 

various parts o f the wor ld ocean such as the Black Sea (Enr iquez, 2005) , the Persian 

13 
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Gulf (Nat iona l Centre for Ocean Forecast ing, 2008) , and t he European cont inenta l shelf 
(Ho l t and James. 2 0 0 1 , 2006) . It is also used operat ional ly by the U K Me t Of f ice for 
the European Shelf area, w i t h a nested high resolut ion Nor th Sea g r id . It has not yet 
been applied t o the Rockal l Bank area. P O L C O M S is designed t o be able t o cope w i th 
regions o f steep bathymetry , comb in ing shelf areas w i t h deeper ocean. Th is is clearly a 
useful feature when model l ing the Rockal l Bank a rea—the depth o f the model domain 
used in this study ranged f rom j us t over 100 m depth t o a lmost 2800 m. Notab le features 
of P O L C O M S , which wi l l be explained in more detai l in Chapter 3, include: 

• The advect ion scheme used is the Piecewise Parabol ic M e t h o d ( P P M ) . Th is 

method has good feature-preserving propert ies, mak ing i t an ideal choice for mod ­

el l ing barocl inic features such as f ronts (Ho l t and James. 2 0 0 1 , and references 

there in) . 

• Unlike many shelf-sea models such as P O M and N E M O Shelf, which use the 

Arakawa (1972) C gr id , P O L C O M S uses the B gr id . Th is gr id is more common ly 

used in deep water models, bu t is useful here as i t does no t require the Coriol is 

te rm to be averaged. Th i s makes it sui table for the s tudy o f hor izontal density 

gradients, and it prevents the dispersion of f ron ts wh ich may otherwise occur. 

The minor disadvantage o f using the B gr id is t ha t i t does require the averaging 

o f veloci ty components for the con t inu i t y and scalar equat ions. 

• P O L C O M S uses the modi f ied a-coord ina te system o f Song and Haidvogel (1994) . 

Th is system allows high vert ical resolut ion t o be main ta ined at the surface and at 

the b o t t o m , even in regions o f steep topography. 

2.4.2 Modelling of Rockall Bank 

An area focussing on Rockall Bank and Porcupine Bank has been previously model led 

( M o h n and W h i t e , 2007) using the S-coordinate Pr im i t i ve Equat ion Mode l ( S P E M ) . 

Mohn and W h i t e (2007) model led a highly idealised case, ini t ial ised f r o m late spr ing/ear ly 

summer hydrographic condi t ions and featur ing no w ind or seasonal forc ing, in order t o 

model the d is t r ibut ion o f Chlorophyl l over the two Banks. Tracers were released t o map 

14 
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the retent ion o f particles over the Banks. The results included a residual ant i -cyclonic 
c i rcu lat ion around Rockall Bank centred on the 500 m isobath and w i t h a speed up t o 
2 0 c m s " * . The tracer results showed tha t a large propor t ion o f part ic les were retained 
by Rockall Bank, w i t h 6 0 % of the in i t ia l concent ra t ion over the Bank remain ing after 
90 days. 

New and Smythe -Wr igh t (2001) used a model based on the M i a m i Isopycnic Coordinate 

Ocean Model ( M I C O M ) to model the A t l an t i c ocean, inc lud ing Rockal l Bank, w i th a gr id 

resolut ion o f 1 /3° . They use an isopycnic mode l , where the vert ical layers are s i tuated on 

levels o f constant density, in order t o t rack movement o f d i f ferent water masses. Unl ike 

the s imulat ions o f M o h n and W h i t e (2007) , New and S m y t h e - W r i g h t (2001) include 

bo th w ind and heat f lux forc ing w i th in their model . The data used are c l imato logical 

means. New and Smy the -Wr igh t (2001) f ind tha t , due to the discret isat ion o f the 

isopycnal levels, the model s igni f icant ly overest imates the depth of t h e mixed layer in 

the Rockall T rough. Whereas observat ions typical ly pu t the depth o f the mixed layer at 

600m or similar (e.g. Meincke. 1986) , the New and Smy the -Wr igh t (2001) model predicts 

a mixed layer o f 1200-1300m depth . In cont rast t o previous observat ions and model l ing, 

the results o f New and Smy the -Wr igh t (2001) (which represent spr ing condi t ions) show 

a cyclonic c i rculat ion in the upper water around Rockall Bank. However, they conclude 

t ha t overall the model results are consistent w i t h observat ions. New e t ai (2001) use 

the same model as well as a z-coordinate model based on G F D L - M O M (Geophysical 

Fluid Dynamics Laboratory Modu lar Ocean Mode l ) and a a -coo rd ina te model based on 

S P E M and model the same At lan t i c g r id . T h e z and a models prov ide a more realistic 

m ix ing depth , and New et ai (2001) conclude t ha t overall the results f r o m the three 

di f ferent models are in broad agreement w i t h observat ions. 
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Chapter 3 

Methodology 

3.1 Introduction 

The methodo logy used in this study can be d iv ided in to four main areas: 

• Processing and analysing remotely-sensed sea surface tempera tu re data 

• Produc ing data input files for the model runs 

• The P O L C O M S model 

• Processing the model ou tpu t 

Th is chapter describes ful ly the methods and mater ia ls used in each o f these areas in 

tu rn . 

3.2 S S T Satellite Data 

There were two main publ icly available sources o f remote ly sensed SST wh ich were con­

sidered for th is work: microwave data f rom REMSS (Remote Sensing Systems, 2003) and 

infra-red data f rom N A S A ( N A S A Physical Oceanography Dis t r ibu ted Ac t i ve Archive, 

2003) . Infra-red data were available as A V H R R data which have a high spat ial resolut ion 

o f approx imate ly 4 k m . The disadvantage o f these data is t h a t A V H R R is affected by 

cloud cover, wh ich is prevalent in this region especially du r ing win ter . Mic rowave data 
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have the advantage o f being unaffected by c loud cover, bu t were avai lable at a s igni f i ­

cant ly lower resolut ion o f around 25 k m . I t was decided t h a t the A V H R R data were most 

suitable for th is study. Th is was due t o the higher resolut ion, and also the microwave 

data displayed more short t imescale var ia t ion f rom d iurna l surface warm ing wh ich would 

mask changes in the dense water fo rmat ion . 

Version 5 AVHRR data were obtained f rom N A S A ( N A S A Physical Oceanography Dis­

t r ibu ted Ac t i ve Archive, 2003) . M a t l a b was used in the processing o f the satel l i te da ta , 

and detai ls o f the rout ines t ha t were w r i t t en and used for th is work are found in Append ix 

A. 

AVHRR month ly composi tes were downloaded for the per iod October 1992 to December 

2003, providing a long t ime series o f data cover ing 10 winters . The data are provided 

as integers which need to be converted t o tempera tu re °C . T h e conversion used was 

provided by an in fo rmat ion file f rom the same source as the data and is per formed 

as 

SST = 0 . 0 7 5 D - 3.0 (3 .1) 

where SST is the new value in ' 'C and D is the or iginal integer value. Bad da ta ( i .e. 

those affected by clouds) were then masked by ignor ing all values less than 7*'C. Th is 

value was chosen, af ter inspect ing images o f the unmasked data , as a value which would 

not remove real data points f rom the Bank area but wou ld remove a large amoun t o f 

the c loud-af fected data. Bo th ascending (day - t ime) and descending (n i gh t - t ime ) data 

were processed, and then combined together by t ak ing the average o f the two da ta sets 

so as t o fi l l in some o f the gaps tha t were caused by the clouds. Th i s averaging was 

performed af ter the conversion t o °C ment ioned above. I t is these combined data t h a t 

are used in th is study. When using day t ime data i t is necessary t o be careful t h a t d iurnal 

warming o f the sea surface is no t adversely a f fec t ing the results. F rom inspect ing the 

two di f ferent data sets here i t was felt t h a t th is was no t a problem in th is case, and bo th 

day and n ight data were suitable t o be combined in th is way. 

Images were produced for each m o n t h , and the data analysed using visual inspect ion o f 
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the plots as well as Ma t l ab rout ines t o quan t i f y tempera tu re differences. T h e results 

wi l l be presented in Chapter 4 w i t h some representat ive images. The ful l set o f images 

produced can be found in Append ix ?? on the a t tached C D . 

Weekly (8-day) compos i te AVHRR data were also in i t ia l ly downloaded and processed in 

the same way. However, i t was decided not t o use these data in the f inal analysis as the 

cloud cover was so extensive in these shorter composi tes t ha t not enough useful data 

could be gathered. 

3.3 Model input Data Processing 

In order t o run in its simplest f o rm , P O L C O M S requires bathymetry , complete in i t ia l 

temperature and sal inity fields and, w i t h open boundaries as we have here, boundary 

temperature and sal inity data t o cover the length o f the run. The in i t ia l density and 

boundary density are three-dimensional f ields, and data are required for every gr id po in t 

at every depth level in the model doma in . Add i t i ona l files needed for a full run are 

t idal const i tuent da ta , wind speeds, and meteorological data to calculate the heat fluxes 

(these are atmospher ic pressure, relat ive humidi ty , air t empera tu re , and c loud cover) . As 

discussed in §3.4.2 below, the heat f lux rout ines also require the la t i tude and long i tude 

coordinates o f each po in t . Full runs are conducted f rom a warm star t , using the o u t p u t 

o f a 'geostrophic ad jus tment ' spin-up run (where the only fo rc ing comes f rom the in i t ia l 

density f ield) as the input ; this provides ini t ial currents t h a t are compat ib le w i t h the 

init ial density s t ruc ture . 

The major i ty o f the data processing was conducted using M a t l a b , and various rout ines 

were wr i t ten (Append ix A ) t o au toma te the steps descr ibed here. Visual summaries o f 

the data processing methods are out l ined in the f low charts o f Figures 3.7 t o 3.13. 

3.3.1 Bathymetry 

The ba thymet ry o f the Rockal l Bank area was obta ined f rom the Nat iona l Oceanic and 

Atmospher ic Admin is t ra t ion ( N O A A ) Nat ional Geophysical Da ta Center ( N G D C ) Geo-

18 



CHAPTER 3. METHODOLOGY 

physical Data System (GEODAS)"Design-a-grid" website (National Geophysical Data 

Center; NOAA. 2005). The bathymetry is from the E T 0 P 0 2 2 minute database and 

has a resolution of 2 minutes in both longitude and latitude which corresponds to a 

latitudinal resolution of around 4 km and a longitudinal resolution of around 2 km. 

The bathymetry in this area (see Figure 2.1 in the literature review) is very steep in 

places and is also very rough. Steep bathymetry can be problematical in numerical 

modelling due to two main causes of error in the calculation of the horizontal pressure 

gradient: First, truncation errors can arise due to the subtraction of terms that are similar 

in magnitude. This is especially important in topography-following coordinate models 

and may be alleviated by careful choice in the method of calculation. §3.4.1 on page 44 

provides more details. The second source of error is the "hydrostatic inconsistency". This 

arises if the following condition is not met (Haney, 1991). leading to a non-convergent 

solution: 

o^SD 
Sx < 6a (3.2) 

where D is the ocean depth and 6D the variation in depth across the grid box, and 6x 

is the horizontal grid size, a is the terrain-following vertical coordinate and is related to 

the standard z coordinate by the relation = ^ and varies between 0 at the surface and 

-1 at the sea bed. When Equation 3.2 is satisfied it guarantees that a given sigma level 

that is above another will remain above it within the space of a horizontal grid point 

(Haney. 1991). This second source of error can be reduced by reducing the topography 

gradient, generally by smoothing the data (Computational Science Education Project, 

1995). 

In addition to smoothing the bathymetry, it was decided to rotate the grid so that it is 

aligned with the main axis of the Bank. This also allows the domain to be cropped closer 

to the bank without including a large area of the Rockall Trough, thus decreasing the 

grid size and therefore the computing power needed. The equations of motion remain 

the same. 

The rotation of the grid was achieved by multiplying each pair of latitude/longitude 
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coordinates by the rotation matrix L, giving a new pair of coordinates in the new rotated 

system: 
I 

cos(^) sin(i9) 

-s in ( i9 ) cos(^) 

L = (3.3) 

where 6 is the angle of rotation, in this case 26° . The transformation was performed as 

follows: 

1. The coordinate of the south western point of the domain (25 °W, 50 °N) was 

first subtracted from the coordinates of each point (meaning the origin is now 

the centre of rotation), and the position vector then multiplied by L to give the 

position in the new coordinate system. These new coordinates X and Y are related 

to the longitude x and latitude y by X = {x -h 25)cos(26°) -\- {y - 50)s in(26°) 

and Y = -{x + 25)s in(26^) + (y - 50)cos(26°) (note that here longitude x is 

negative as all points are west of 0° ) . 

2. Using the Matlab function griddata the bathymetry was linearly interpolated from 

the previous points onto a uniform grid in the new coordinate system. The grid size 

used was chosen such that the resolution of the domain (in terms of grid points) 

would remain approximately at its original size, as shown in Figure 3.1. Figure 3.2 

shows the bathymetry after being rotated. We can see that the southern edge of 

the Bank is now aligned in the X direction. 

3. The rotated bathymetry was then smoothed, using a moving average, and cropped 

in Surfer. This smoothing method filters the data by taking the average of all the 

points within a specified ellipse radius of a grid point. In this case the value 0.2 

was used for both the semi-major and semi-minor axis. The grid was at the same 

time cropped closer to the bank, and the new grid size changed to 150x55 points, 

corresponding to a grid resolution of approximately 4km in the X direction and 

6km in the Y direction. The limits used were: X 6-15, Y 0.25-3.5 

The resulting bathymetry file was then used both as the input for the model runs and 

for calculating the position of the s-coordinate levels in creating the temperature and 

salinity files. POLCOMS also requires a mask file, which in this case is simply an array 
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of ones, as there is no land in the final cropped domain. The position of the cropped 

region that was used is shown by the box in Figure 3.3; the final grid after rotation and 

smoothing is shown in Figure 3.4. 

<5y 

o 
26' 

CO 

c 
"tfj 

in 

CO 
eg 
(/) 
8 

CO 
CO 

5 

451 cos(26°) 361 sin(26°) 

-564 

Figure 3.1 Diagram illustrating the calculation of size of the rotated domain. The dashed box 
represents the original coordinate system, and the solid box the new coordinate 
system, with the dashed domain rotated into it. The numbers represent the number 
of grid points. 

3.3.2 Initial Temperature and Salinity 

POLCOMS requires a complete initial temperature and salinity field, with data for every 

grid point at every depth level (in s-coordinates). The World Ocean Atlas 2001 (Boyer 

et a/., 2005) WOA2001 was chosen as the source as it has good spatial coverage and the 

model requires data for every point in the domain. Unfortunately WOA2001 monthly 

climatology data are available only to a depth of 1500 m whereas the deepest part of 

the model domain is 2780 m. The data were therefore supplemented with the WOA2001 

seasonal climatology, downloaded from the same source, which are available to 5500 m 

depth. The data were allocated by taking December, January, and February as Winter; 

March, April, and May as Spring; June, July, and August as Summer; September, 

October, and November as Autumn. 

The input data for the model were created with the following method, modelled on the 

21 



CHAPTER 3. METHODOLOGY 

5 10 
N e w X coordinate 

15 

Figure 3.2 Bathymetry after rotation; contours every 200m Note that the origin of the new 
coordinate system is at the SW corner of the data. Recall that the new X and Y 
coordinates are related to longitude x and latitude y by X = {x-\- 25) cos(26°) + 
{y - 50) sin(26'*) and Y = -{x + 25) sin(26°) + {y - 50) cos(26^). 

-20 -15 
Longitude °W 

10 

Figure 3.3 Location of the area which was smoothed and used as the model domain; contours 
every 200 m. Although the domain that was extracted is rectangular in the new 
coordinates, it does not appear exactly square when plotted against latitude and 
longitude. 
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60 80 
i grid point 

Figure 3.4 The final bathymetry used for the model runs; contours every 100 m. The model 
grid is not shown for clarity, but there are 150 i points and 55 j points. 

procedure used in previous work using POLCOMS (Enriquez, 2005): 

1. The temperature and salinity data for the relevant month(s) are fitted to the 

rotated domain using the same method as described for the bathymetry above. 

2. The rotated data are interpolated in Surfer using a point kriging method (Cressie, 

1993) to fill in any gaps. This method of interpolation is part of the least squares 

family, and gives good results here. 

3. This process is repeated for the seasonal data files, though with only the necessary 

depth levels extracted (1750m. 2000m, 2500m. and 3000m). Because data at 

these depths are sparse, these files are interpolated first and then fitted to the 

rotated grid. 

4. The interpolated, gridded files are combined to provide data down to 3000 m depth 

over the entire domain. 

5. The 2 depth is calculated for each point in the model's XYs-coordinate domain as 

follows: the location of the s-levels are calculated and then these values (always 

between 0 and 1) are multiplied by the total depth at the grid point to find the 

depth of that s-level in the z coordinate space. 
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6. The temperature and salinity are linearly interpolated from their original z levels 

onto the new range of points which correspond to the s-coordinate levels. 

7. The monthly files are designed to represent the 15th of the month. The model 

runs in this study all begin on 1 November, so the initial temperature and salinity 

is created by linearly interpolating between the October and November data. 

3.3.3 Boundary Temperature and Salinity 

In order for the sponge relaxation scheme (see §3.4.1) to be used at the open boundaries 

it is necessary to provide the model with temperature and salinity data for the boundary 

zone (4 points wide) over the entire length of the run. The boundary zone data were 

extracted from the final monthly data files created in the initial temperature and salinity 

processing (ie the stage just before the data were interpolated to the model start t ime). 

These data were rearranged to follow the order of the boundary points, in a clockwise 

spiral, and were written to the file for the model. In order for the model to be able to 

correctly interpolate in time between the monthly data, an additional file was created 

which contains the t ime in days since the start of the run of each of the monthly data 

sets. The first data set must be from before the start of the run, in order to be able to 

interpolate to the model start time, and therefore the first t ime label is negative. 

3.3.4 Wind Speed 

NCEP/NCAR reanalysis wind data were downloaded from the Climatic Research Unit 

(CRU) at the University of East Anglia (UEA) (Harris. 2003) [2001/2002 data] and the 

NOAA Climate Diagnostics Center (CDC) (Kalnay et a!., 1996; Physical Sciences Divi­

sion NOAA/ESRL, 2007) [1950/1951, 1978/1979 data]. The resolution is approximately 

2° and data are available 4 times daily. The data from NOAA took the form of NetCDF 

files and the CSIRO NetCDF Matlab interface (Mansbridge et a/., 1997) was used to 

open these. 

As discussed in the bathymetry section above, it was necessary to f i t the data to the new 
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domain. However, this was slightly more complicated than with the scalar bathymetry 

and temperature/salinity data because wind is a vector. The original data take the form 

of meridional and zonal components, but for the rotated domain the components must 

instead be parallel and perpendicular to the new XY coordinate system. This is achieved 

in two stages: first f i t t ing the data to the new grid points and then rotating each pair 

of components to the new orientation. The methodology is as follows: 

1. First, as with the bathymetry data, the original coordinates of the wind data are 

multiplied by the rotation matrix described above. 

2. The data are then linearly interpolated (each component separately) onto the same 

grid points as the final smoothed bathymetry domain. 

3. This results in a data field in which the grid points are in the correct positions, but 

in which the components' directions are not those of the coordinate system. To 

calculate the components in the directions parallel to the new X and Y coordinates 

the wind vector for each point was multiplied by the rotation matrix L. Figure 3.5 

below and the following text demonstrates that this method does correctly give 

the new components of the same vector. 

Considering Figure 3.5 we see that the components of the wind vector W may be 

expressed in the old and new coordinate systems as follows: 

u — |W| cos<f) 
(3.4) 

V = |W| s in^ 

X = |W| cos(0 - 6*) 
(3.5) 

y=\W\s\n{<l)-e) 

Now, multiplying the original vector components u and v by the rotation matrix L 

(Equation 3.3) we get 
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(p u 

Figure 3.5 Conversion of vector components from one coordinate system to another, u and v 
are the original components of vector W ; x and y are the components in the new 
directions 

cos 9 sinO 

sin 6 cos 6 

ucos9 vs'm 6 

usin 6 -h vcosO 

(3.6) 

which gives (using Equation 3.4) 

x ' = | W | cos<;6cos^-h | W | sin sin ^ 

y'=-\W\ cos<?!)sin^-h | W | sm<i>cosO 

and thus 

x' = | W | cos{(l)-e) 

y' = \W\ s'm{(j)-e) 

We see then that x' and y' are identical to the expressions for x and y in Equation 3.5 and 

therefore the multiplication by the rotation matrix has correctly given the new component 
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pair. 

3.3.5 Tidal Constituents 

The tidal elevation and currents in the model are proscribed at the boundary points, 

and are calculated within POLCOMS from constituent data. These constituents must 

be given for every boundary point. In harmonic analysis the total tide is approximated 

by a finite (in this case there are 15) series of trigonometric curves. The data re­

quired to represent these 15 harmonic constituents are the amplitude and phase speed 

(i.e frequency), and these are required for elevation, u velocity, and v velocity in turn. 

POLCOMS requires these constituent parameters for each boundary grid point. 

The necessary tidal data (Flather, 1981) were obtained, with the permission of Roger 

Flather, from Proudman Oceanography Laboratory. Because the velocity components 

are meridional/zonal components it was necessary to rotate them so that they are instead 

the parallel and perpendicular components of the new rotated grid system. This was 

done in the same way as the wind data treatment described above (though note that in 

the case of the tidal data it is not necessary to fit the data to the grid first as the data 

were provided already on the correct boundary points). The elevation boundary points 

are b (scalar variable) points, as with the temperature and salinity points. Because the 

four sides of the border are treated separately rather than as a continuous circle, the four 

corner points are each included in two boundaries and so the total number of boundary 

points is four greater than it was for the outer temperature points. The number of 

elevation boundary points is therefore simply 2 ( / 4 - m ) where I and m are the number of 

horizontal points in the model grid. The velocity boundary points must be proscribed 

on u (vector) points, which are displaced half a grid square to the south west of the b 

points. In addition, there is an extra row and column of points to the north and west 

respectively (meaning that the u boundary points are all outside the b points), giving a 

total of 2(/ + 1 + m. -h 1) points. The order of the boundaries is the same as for the 

elevation points. This arrangement is shown in Figure 3.6. 
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Figure 3.6 Arrangement of tidal boundary points. Black crosses are elevation boundary 
points, grey crosses are velocity boundary points. Note that there are 11 elevation 
points and 12 velocity points on each side 

3.3.6 Atmospheric Variables 

There are four additional variables required for POLCOMS to calculate the incoming 

solar radiation and outgoing longwave radiation which in turn are used in the calculation 

of heat flux These are: atmospheric pressure, air temperature, relative humidity, and 

percentage cloud cover. Six hourly data for all these variables were downloaded from 

NOAA CDC (Kalnay eta/.. 1996: Physical Sciences Division NOAA ESRL. 2007). These 

were available as NetCDF files and the CSIRO NetCDF Matlab interface (Mansbridge 

et a/.. 1997) was used to read the data. 

The data were fitted to the rotated grid in the same manner as the other scalar variables 

The air temperature data were originally in K and were converted to C before being 

written to the model input files. The air pressure data units were Pa. and this was 

converted to mb within the model code by dividing by 100 after the data were read 

in 

The heat flux calculation also requires the latitude and longitude of each grid point in 

order to estimate the position of the sun For reasons described later in the modelling 

section (^^3.4.2) these values are also provided by external files. To calculate these values, 

the new XY coordinate of each point was multiplied by the rotation matrix as described 

above, but with the angle set to - 26 . and the coordinates of the SW point were added: 
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this has the effect of performing a 'backwards' rotation and provides the latitude and 

longitude of each point. 

3.3.7 Precipitation Rate 

6-hourly precipitation data were downloaded from NOAA CDC (Kalnay et a/., 1996; 

Physical Sciences Division NOAA/ESRL, 2007) and were fitted to the rotated grid in 

the same way as the other input data. Again the CSIRO interface (Mansbridge et a/., 

1997) was used to open the NetCDF files. Before being written to the file for the model, 

the data were divided by 1000 to convert the units from mms~^ to m s " ^ 

3.3.8 Summary Flow Charts for Data Preprocessing 

Figures 3.7 to 3.13 are flow charts summarising the data preprocessing procedures that 

were described in this Chapter. Initial data and the subsequent manipulated data are 

shown as rectangular boxes, and processes are shown in diamond boxes. Each chart 

ends with the model files being written and then sent to the model. More details of the 

particular Matlab routines that were used for each step are found in Appendix A. 
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Figure 3.7 Flow chart summarising the bathymetry data processing. 
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Figure 3.8 Flow chart summarising the initial temperature and salinity data processing. 
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Figure 3.9 Flow chart summarising the boundary temperature and salinity data processing. 
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Figure 3.10 Flow chart summarising the surface wind data processing. 
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Figure 3.11 Flow chart summarising the tidal data processing. 
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Figure 3.12 Flow chart summarising the data processing for the meteorological data for the 
heat flux calculations. 
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Figure 3.13 Flow chart summarising the precipitation data processing. 
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3.4 Numerical Modelling 

3.4.1 Model Description 

Introduction 

The model chosen for this work was the Proudman Oceanographic Laboratory Coastal 

Ocean Modelling System. POLCOMS (Holt and James. 2001; POL. 2005). It was 

chosen due to key features such as the choice of coordinates, advection scheme, and 

horizontal pressure gradient which make it particularly suitable for modelling areas with 

steep bathymetry or large horizontal density gradients. This section will fully describe 

the equations and methods used by each physical aspect of the model. 

Coordinate System and grid 

POLCOMS uses a spherical polar coordinate system comprising x (x direction) and (j) (y 

direction) in the horizontal and a in the vertical. The spacing of the a levels is allowed 

to vary in the horizontal in a way based on the general coordinate system used by Song 

and Haidvogel (1994). The transformation used is as follows: 

h 

= Sf, h < K (3.7) 

where are evenly spaced levels between —1 and 0, h is the total depth at the point, 

and he is a critical water depth. In this study 300 m was used as the critical depth, so at 

points where the total water depth was less than this evenly spaced vertical levels were 

used. C{Sk) is a set of curves which give the deviation from standard a levels and is 

defined as: 
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smhieS^ ^ t a n h [ ^ ( S , + 0 . 5 ) ] - t a n h ( Q . 5 ^ ) 
C(bk) - ( I - L^)—r-r77^ + ^ Trr—TTTT^ (3-8) sinh(^) 2tanh(0.5l9) 

B is a bottom control parameter, which takes a value between 0 and 1; ^ is a surface 

control parameter which has the range 0-20. As 0 approaches 0 the coordinate system 

becomes the standard a system (Song and Haidvogel, 1994). In this case we are using 

values B = I and ^ = 8 with 24 levels which gives good resolution at both the surface and 

bottom. Figure 3.14 shows an example from the domain used in this study, illustrating 

the arrangement of s-levels. We can see from this Figure that the vertical levels are closest 

together at the surface and near the bottom, and that they follow the terrain. 

-500 

-1000 

•1500h 

-2000 h 

-2500 
20 30 

j point 

Figure 3.14 Example arrangement of vertical s-levels 

In the horizontal the model grid is arranged as an Arakawa (1972) B grid and therefore 

both velocity components are calculated on points (u-points) located to the southwest of 

the elevation points {b-points). This arrangement is illustrated in Figure 3.15. Because 

the u-points are shifted in the horizontal, they also require slightly different vertical level 

positions. These are calculated from the s-levels at the surrounding b-points. The B 

grid was chosen during the development of the model as it was found to give superior 

results (compared to the C grid) when modelling large horizontal density variations such 

as fronts (James, 1986). This is because the C grid requires the Coriolis terms to be 

averaged over four velocity points. The density feature preserving property of the B grid 
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is clearly an advantage when seeking to model dense water over Rockall Bank. 

Model Equations 

Equation of State 

The density is calculated using an approximation to the full UNESCO equation of 

state: 

p(T,S.7;) = p ( T , 5 , 0 ) - h p ' ( T , S.,p) (3.9) 

where p{T, S. 0) is taken from the UNESCO equation and p'{T, S.p) is calculated using 

the following equation (following Mellor (1991)): 

p ' (T ,5 .p ) = 10^5 (1-0.2J) (3.10) 

where 

c = 1449.2 + 1.34 ( 5 - 35) + 4.55T - 0.045^'^ + O.O0S21p + 15 x l O ' V (3.11) 

Figure 3.15 The Arakawa B grid arrangement. Circles are elevation points ('b-points') and 
crosses are velocity points ('u-points'). 
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The buoyancy is defined similarly asb = 60 + 6' where bo is the 'potential ' buoyancy, given 

by Equation 3.12, and b' represents the variation of compressibility due to temperature 

and salinity, and is given by Equation 3.13. 

bo = ^{po-p{T„S.O)) (3.12) 
Po 

b'=^ ( ^ ( Z ) - p') (3.13) 
Po 

PQ is a reference density, here 1027 kgm"^, Z is the depth of the water column excluding 

sea surface elevation (equal to aH) and /? is defined as -0.004564Z. 

Finally, the hydrostatic pressure is 

P=Pa+Po ('ip + K - gz) + 0.002282^^^ (3.14) 

where Pa is atmospheric pressure, ip = H bda. and ^ 's the sea surface eleva­

tion. 

Equations of Motion 

POLCOMS solves the equations of motion with the incompressible, hydrostatic, and 

Boussinesq approximations. These approximations are defined as follows (e.g. Griffies, 

2004; Pond and Pickard. 1983; Dyke, 2001): 

Incompressibility The volume of a water packet does not change. This is a good 

approximation for most circumstances as changes in density with time are small 

compared to the magnitude of the density. 

Hydrostatic The water column is in hydrostatic balance, i.e. the vertical pressure 

gradient is calculated from the buoyancy alone. This approximation is valid when 

the horizontal scale is larger than the vertical scale, which is the case in this 

research. 
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Boussinesq The Boussinesq approximation is also dependent on density differences in 

time being small. The effect of this approximation is that a water parcel's mass, 

and therefore the momentum, is not affected by changes in the density. 

The equations are also time split into baroclinic and barotropic modes by splitting the 

u and V velocity components into depth varying and depth independent parts. So u 

becomes u{x, <t>, t) + Wr(x', 4): t); similarly, v becomes v + Vr-

The depth mean equations of motion are: 

du 
= f v - (7icos<A)' + H-'[Fs- FB\ + NLB^ (3.15) 

dt 
= - f u - /?-' + [Gs - GB] + NLB^ (3.16) 

where R is the radius of the Earth, F 5 and Gs sre surface stress components and and 

QB are bottom stress components. NLB^ and NLB^^ are the depth mean non linear 

and buoyancy terms, defined by 

NLB^ = -L(u) + — ^ - n.,. da (3.17) 

da (3.18) 

where Yl^ = {Rcos<P)-'^ and = R ' ' ^ 

The depth-varying equations are: 
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^ = -L{u) + fv. + ^ ^ ^ ^ - n , + D{u) - //-' [Fs - Fs\ - NLB, (3.19) 

^ = -L{v) - fxir - - + D{v) - / / - • \Gs - GB] - NLB, (3.20) 

The advection terms L{u) and L{v) are 

^, , a da V da ^da v 

w here 

cos(/> / vdcr 
h \ Jo J d(t>\ Jo J 

(3.22) 

Turbulence Closure 

The version of POLCOMS initially used in this study implemented a Mellor-Yamada-

Galperin (Mellor and Yamada, 1974; Galperin et ai, 1988) turbulence scheme, and this 

was replaced with GOTM (General Ocean Turbulence Model) which POLCOMS has 

recently been made compatible with. GOTM (2006) is a one-dimensional water column 

model which can be coupled to 3D models and allows one of several types of turbulence 

schemes to be chosen; this study has used the k-e type scheme with a dynamic dissipation 

rate equation for the length scale. These options have previously been found to work 

well with POLCOMS (Jason Holt, personal communication). 

The fundamental difference between the two types of turbulence closure scheme is in 

the calculation of the mixing length L (Burchard et a!., 1998). This is a length scale 

that relates to the largest turbulent eddies in the system. Both Mellor-Yamada and k-e 

schemes use the relation L = ( c ^ ) ^ ^ . k is the turbulent kinetic energy, and e is its 

dissipation rate. L is the mixing length, a length scale that describes the largest turbulent 
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eddies (Burchard et ai, 1998). 

Mellor-Yamada type schemes use an algebraic equation for L and use this to calculate 

e whereas conversely k-e models use a transport equation to calculate € and use this 

to calculate L. (Burchard et a/.. 1998; Burchard, 2001). is a constant which acts as 

a stability function. Stability functions correct for the effects of stratification and tend 

to damp or enhance turbulent mixing in stratified or unstratified conditions respectively 

(Burchard et a/.. 1998). 

Advection 

The advection scheme used in POLCOMS is the Piecewise Parabolic Method or PPM 

(Colella and Woodward, 1984). PPM works by assuming that the value of the variable a 

at the beginning of the time step is the grid box average value a, and that this variable is 

distributed parabolically across the grid box. The parabolas are then defined according 

to Equation 3.23. 

a(//) =ai + 7/[aft - + a6( l - //)] (3.23) 

a6 = 6a - 3(ai , + a^) 

where ?; is a coordinate across the width of the grid box, which varies from 0 to 1. and 

ciR are the values at the left and right edge of the box respectively and are estimated 

from a polynomial fit. The parabolas are integrated in an upwind sense to calculate 

the advective flux, and this is split into separate calculations in the u and v directions. 

The advection order is alternated on successive timesteps, so that on odd timesteps u 

advection is performed first and on even timesteps v advection is performed first. 

Points near boundaries are treated slightly differently as there are not enough neighbour­

ing points to calculate the parameters of the parabola. Instead, the variable is reduced 
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to a constant value across the box at or next to boundaries, and to a linear slope in the 

next boxes away from the boundary. 

James (1996) found that the PPM performs well in simulations of features such as fronts, 

which makes it particularly suitable in this study. 

Horizontal Pressure Gradient 

One of the main limitations of using a cr-coordinate model is that the horizontal pressure 

gradient is not easily represented accurately, particularly in regions of steep topography 

(Haney, 1991; Mellor et a/., 1994; Griffies, 2004). The problem arises because the 

horizontal pressure gradient is by definition perpendicular to the z direction, whereas 

the a surfaces are generally not. The traditional approach is to consider the horizontal 

pressure gradient as the sum of two terms (Griffies, 2004): 

V , / ; ^ V^ /^ -hp^/V^z (3.24) 

where V^p is the true horizontal pressure gradient, and V^^p is the pressure gradient along 

the a surfaces. The second term on the right hand side is the so called "correction term" 

and includes the slope of the a levels with respect to z, V ^ z . Where the topography is 

steep the two terms are of equal magnitude but have opposite signs, so should cancel 

each other out; in reality this often leads to large truncation errors which in turn can 

drive spurious currents (Haney, 1991; Holt and James, 2001). 

In order to reduce this error. P 0 L C 0 M 5 takes a different approach where the pressure 

is estimated at the four corners of the horizontal plane which has a u grid point as the 

centre (and the corners on the surrounding b columns). This was found to give improved 

results when the thermocline is flat, or sloping in the opposite direction to the a levels 

(Holt and James, 2001). The pressure gradients on these edges are calculated as follows. 

Figure 3.16 illustrates the arrangement of points. 

A horizontal plane around the current u grid point is used, which meets the surrounding 

b columns at points q (where ^ is 1 . . . 4 ) . The nearest a level above each of these b 
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+ 
X 

o 

b gr id point 
u gr id point 

K 
q 

Figure 3.16 Arrangement of points used to calculate the horizontal pressure gradient. The 
solid vertical lines are b columns and the dashed vertical line is the u column. 
Note that the diagram is shown from the side for clarity, and the u column is 
in fact centred between four b columns (as illustrated by Figure 3.15). The 
horizontal line is the surface on which the pressure gradient is calculated and it 
passes through the u point and meets the b columns at points q. marked by solid 
circles. Open circles show the nearest b points above this horizontal surface. 

column points is identified and labelled kq). The fractional distance between the points 

q and kg is then 

Ok, -
(3.25) 

The pressure at points k^ and /ĉ  — 1 is known and the buoyancy b is assumed to vary 

linearly between a levels; therefore the pressure (f) at q can be estimated using the 

following Equation (Holt and James, 2001): 
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(3.26) 

However, at the surface level (A: = N — 1) there is no point k + I and the following 

equation must be used instead. 

(3.27) 

The pressure gradients along the four edges of the plane are then 

(3.28) 

and the resultant velocity changes are 

(3.29) 

(3.30) 

Temperature and Salinity Boundary Condition 

The temperature and salinity at the open boundaries (which in this case is the entire 

boundary) are relaxed to climatological data using a sponge relaxation layer. This is a 

region around the boundary, 4 grid points wide in this case, in which the model temper­

ature and salinity are adjusted using climatological values as shown in Equation 3.31. 

This has the effect that across the relaxation layer, from the outside to the inside, the 
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temperature/salinity value becomes progressively closer to the model solution. 

T = r xTb-\-{l-r)T (3.31) 

where r is the relaxation parameter which varies linearly from 1 on the outermost points 

to 0 on the interior points which are not part of the relaxation zone. T is the temperature 

(or salinity) from the model solution and is the boundary climatological value. 

Tides 

The tidal elevation and depth mean velocity are proscribed on the border points, where 

a flux/radiation condition is used to allow waves to escape. Up to 15 tidal harmonic 

constituents may be used, in any combination. The constituents that may be used are 

Q l . 0 1 , P I . S I , K l . 2N2, MU2, N2. NU2. M2. L2, T2. S2. K2. M4. The change 

in elevation (zc) and the change in velocity in the u (uc) and v (vc) directions are 

calculated using the following equation: 

15 

^^c = ^ ( - V i „ cos(a„ t ) + A '2„ sin(a„0) (3.32) 

where A' here stands for the elevation (^c) or velocity component {uc or vc) as the 

case may be. n is the constituent number, an is the angular speed of the constituent, 

and t is the time (GMT). Xi^ and are the amplitudes of the constituents which 

have been adjusted for nodal corrections. These corrections to the lunar constituents are 

necessary to take account of the changes in the moon's orbital plane inclination which 

has a cycle of 18.6 years and therefore cannot be represented by harmonic analysis of a 

year's data (Pugh, 1987). 

Heat Flux 

Heat fluxes are forced at the surface from meteorological data using the bulk formulae 

of Elliott and Clarke (1991), following Gill (1982). The total heat loss from the surface. 
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Qt, is the sum of the outgoing longwave radiation hi, the sensible heat flux s^, and the 

evaporative heat flux s^e- These are calculated using Equations 3.33 to 3.40. The heat 

flux into the sea surface due to solar radiation, Qin, is calculated using Equations 3.41 

to 3.44. The variables and constants used in all these equations are listed in Table 3.1. 

The heat budget is also influenced by the temperature boundary condition. 

Table 3.1 Terms used in the heat flux equations 

SYMBOL NAME VALUE 
transmission coefficient 0.76 

c cloud cover from data 
Cc cloud cover coefficient 0.4 
Ch Stanton number 1.45 X 10-3 
Cp specific heat of air 1004J A:*;-' A ' " * 
d declination of sun Equation 3.44 

Co vapour pressure of water Equation 3.38 
saturated vapour pressure of water Equation 3.37 
emissivity of sea surface 0.985 

hi outgoing longwave radiation Equation 3.34 
It latent heat of water 2.5 X 10*̂  - 2.3 X W t s 

P atmospheric pressure from data 
Qa specific humidity of air at air T Equation 3.40 
Qin heat flux into surface Equation 3.41 

Qi heat loss from surface Equation 3.33 
Qs radiation available to the surface (if no clouds) Equation 3.42 
Qw specific humidity of air at sea surface T Equation 3.39 
rh relative humidity of air from data 
Sc solar constant 1368 Wni' 
Sk sensible heat flux Equation 3.35 

evaporative heat flux Equation 3.36 
snh sine of sun's altitude angle Equation 3.43 

t time since 00:00 1st January from model time 
ta air temperature from data 
ts sea surface temperature from within model 
xu wind speed from data 
a sea surface albedo 0.4 

P reference seawater density 
Pa air density 1.2b kgm-^ 
a Stephan's constant 5.67 X 10-** Wm.-'^K-'^ 
<t> latitude from grid 
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qi = hi^Sk + sue (3.33) 

hi = emo {{is + 273.15)') (0.39 - 0 .05v/ i ; ) ( l - O.ec^) (3.34) 

Sk = ChpCplv(ts - ta) (3.35) 

Ske = CePW {qw " Qa) U (3.36) 

0.7859 4-0.03477A, . 
^ ^ ^ - " ^ - ^ 1^0 .Q04m. (̂ -̂ ^^ 

ea =rf,e^ (3.38) 

0.62e, 
p - O.SSe,, 

0.626, 

p - o.asca 

(3.39) 

(3.40) 

Qin = 95 (1 - c X Cc - O.SSc^) X (1 - a ) (3.41) 

<7s = X sn/?. (3.42) 

snh = — cos <p cos d cos [ H -s i n^s i nd (3.43) 
/ 

/ 2 7 r ( £ - 171.5) X 2 4 \ ^« , 

^ = 365.24 x 24 j ^ ^^ ' ^ ^ ^ ' ^ ^ 
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These inward and outward heat fluxes are kept separate within the model and their 

effects on the ocean surface are calculated separately. The cooling at the surface from 

the outward heat flux is applied to the top box only, using Equation 3.45. 

7^+1 = T P + ^ X (3.45) 

where T''''^* is the new temperature and the old one; qi is the heat flux leaving the 

surface as calculated in Equation 3.33; Cp is the specific heat of water (3986 Jkg~^ K~^)\ 

p is a reference density of seawater (1027 fc^rn"^); A i is the timestep length; A z is the 

depth of the surface grid box. Note that qi here is negative, so the effect is a decrease 

in temperature. 

The incoming solar radiation is allowed to penetrate down the water column and heat it 

according to Equation 3.46. 

T^+i = T^- + g X X (e^^^ - e^^>->) (3.46) 

where again T^'^^ is the new temperature and the old one for a given depth level; 

qin is the incoming heat flux from Equation 3.41; Cp and p are the specific heat and 

density as above; A i is again the timestep length; A z is the distance between the depth 

levels k and k-1; A is the transmissivity; and 2^.-1 are the depths of levels k and k-1 

respectively. POLCOMS allows the water column transmissivity to be set either as a 

constant or as a function of water depth. In this work the constant value of 0.154 is 

used. 

Wind Stress 

The data input into the model is in the form of wind speed components. The wind stress 

is then calculated inside POLCOMS using (following Smith and Banke (1975)): 

Ti = — (0.63 -h 0.0661K) X l^'^Wm (3.47) 
P 
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where ui is the u or v wind speed component, r, is the corresponding stress component, 

W is the scalar wind speed, Pa is the air density (taken to be 1.25 kgm~^), and p is the 

water density. 

Salt Input 

There are no rivers in the domain used in this study, so the only freshwater input is from 

the precipitation/evaporation balance. The precipitation rate is read in from external 

data, and, the evaporation rate is calculated within POLCOMS using 

E ^ ' - ^ U i ^ - C . ) (3.48) 

where E is the evaporation rate, Cg is the Dalton number (1.5 x 10"^) , and all other 

terms are as defined in Table 3.1. 

The salinity is then adjusted on the surface level only, using 

where 5''"'"* is the new adjusted salinity, the old salinity value, ep is the net salt 

flux (evaporation — precipitation), and A t and A z are the time and vertical space step 

lengths respectively. 

3.4.2 Changes Made to the Model Code 

Before any of the model runs could be conducted it was first necessary to alter the 

model code so that it could run on a Windows desktop computer, and also so that it 

was compatible with the Rockall Bank domain and set up. This section describes the 

major changes made to the model. With such a large, sophisticated model there were a 

large number of minor amendments and not every change can be listed here: a complete 

list may be found in Appendix B. There were also some changes that were only necessary 

for particular model runs, and these are outlined in Chapters 5 and 6 where the individual 
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runs are described. 

• The modelling studies in this thesis were conducted with the most up to date 

version of the model available at the time, version 6.2. This was obtained from 

POL direct in its original form, which was designed for use on parallel UNIX 

machines. Previous work using an older version of the model (Enriquez, 2005) 

had required lengthy work to convert to code to a form that could be used in 

Windows. However in this study the use of a more powerful compiler significantly 

simplified this process as it allowed the C preprocessing commands to be used. 

• As described fully in §3.3.1. the model domain used was a rotated box which was 

not therefore congruent with latitude and longitude lines. In order to ensure that 

this compatible with the POLCOMS code it was advised that the f-plane approx­

imation be used rather than the /3-plane (Jason Holt, personal communication). 

As noted by Shapiro and Hill (1997) the f-plane is sufficient when analysing dense 

water cascading. This simplification was enabled by defining the parameter FLAT 

in the preprocessor. 

• The existing routine for dealing with the temperature and salinity at the open 

boundaries ( b o s t . f o r ) had been written for a specific domain. This therefore 

needed to be changed so that it worked for the Rockall Bank domain where the 

boundary is completely open, with no coastline. The existing indexing method 

did not work correctly as it had been written such that each "ring" within the 

boundary relaxation zone contains the same number of points. In reality the inner 

rings are smaller as illustrated by Figure 3.17. 

This discrepancy led to the indices in the corners being overwritten and the indexing 

was therefore not continuous. The routine was rewritten such that that the indices 

of the boundary zone points go around correctly in a spiral; every point then has a 

unique index and the indices increased in a series with no gaps. This arrangement 

is shown in Figure 3.18 where the arrows indicate the clockwise spiral. The value 

of the index is also shown for selected points. 

Additionally, the original routine could only be used for short runs as it read in 
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Solid line: NB points 

Dashed line: NB — 4 points 

Dotted line: NB - 8 points 

Figure 3.17 Illustration of how the number of grid points in each 'ring' of the relaxation zone 
varies. Note that the number of points on the outer edge NB = 2{L + M) - 4 
where L and M are the grid dimensions 

L+M i 
T - > —^ I i 
T T i I i 
T T T i I I 
T T T i I I 
T T T All ndices zero in inner domain I I I 
T T T I I I 
T T T I I I 
T T T END I I 
L-f2 T T <- ^ - I 
L+1 

^ 
^ NB 

- f l NB 
L *- <- 3 2 1 

Figure 3.18 Example of boundary zone indexing for relaxation zone width 3. L and M are 
the horizontal dimensions of the grid; NB is the number of points on in the outer 
edge lie 2(L+M) - 4). 

boundary data for 'last month' , 'this month' and 'next month' only, and then 

interpolated to the current t ime. Therefore once the model reached the latter half 

of 'next month' there were no data to perform an accurate interpolation. This 

was rewritten so that new data are read in each month as necessary for as long 

as the run continues. For clarity this was saved in a new routine b o s t l o n g . The 

new version of this routine may be found in Appendix C. 

o As discussed in §3.4.1 Version 6.2 of POLCOMS contains the facility to introduce 

a new turbulence scheme, from the General Ocean Turbulence Model GOTM, 

instead of the original Mellor-Yamada-Galperin level 2.5 scheme. This was enabled 

by downloading the GOTM code (GOTM, 2006), incorporating the relevant files 

into POLCOMS, and selecting the GOTM preprocessor setting. 
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• A new version of the routine to read in meteorological data ( m e t s e t . c k o . f o r ) was 

written so that it was fully compatible with the type and format of data available 

for this study. Modelled on the existing routine ( m e t s e t . f o r ) it reads in variables 

every six hours, and linearly interpolates them to find the appropriate values for 

the current time. 

• As briefly mentioned previously, it was necessary for the model to read in the 

latitude and longitude of each grid point. The latitude is needed by the heat 

flux routine h e a t i n to calculate the declination of the sun; due to the use of the 

rotated domain the latitude was not calculated correctly by the model because the 

calculation assumed that the grid lies on lines of constant latitude and longitude. 

Therefore to ensure that accurate values were used, the code was altered so that 

the latitude at each point is taken from an external data file. 

• The solar radiation calculation also needs the time in order to estimate the position 

of the sun. In the original code the same time (GMT) was used for every point 

in the grid. This was rewritten to use the local apparent time at each individual 

grid point instead, allowing a higher accuracy in the heat flux calculation. The 

correction used was to add 4 minutes of time per degree of longitude. In this 

case the domain is west of 0 ° so the effect is a subtraction of 4 minutes per 

degree. An approximation to the equation of time was then applied. The equation 

of time is the difference between local solar time and clock time (i.e. mean solar 

time) which is caused principally due to the non-circular nature of the Earth's orbit 

and the ti l t of the Earth's rotation axis. The approximation to the equation of 

time was obtained from Wikipedia (2008). This is a simple approximation which 

nevertheless reproduces well the shape and magnitude of the real curve. The total 

adjustment made to the time is given by 

Ti = T„ , - I- — [ 4 X /o / i -h9.87s in(2 i?) - 7.53cos(5) - l.bsm{B)] 

384 
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where Ti is the local apparent time in hours, Tm is the global model time, Ion is 

the longitude of the point, and N is the Julian day number. As with the latitude 

mentioned above, a file of longitude values needs to read in to this modified 

subroutine. 

• A bug in the code meant that it was not possible to reset the model time to zero 

when starting from a warm start (which we wished to do here). This was because 

the option - r e s e t t m (which should reset the t ime) was triggering the response to 

option - r e s e t which resets the whole system. This was solved by changing the 

code so that it looks for - t m r e s e t instead of - r e s e t t m to reset the time. 

• New preprocessor commands were added so that the full meteorological forcing 

is enabled by simply including ROCKALLFULL in the preprocessor options. Setting 

this option automatically selects the flat Earth setting and turns on the tides, heat 

flux, salt flux, and wind. The corresponding option ROCKALLGA was added for the 

'spin-up' runs which do not include forcing other than the density distribution. 

Both options also enable the ROCKALLBC setting which was written in to include 

the settings for the open boundary 

• The outputs from the model were all handled by subroutine data_out rather than 

t idemeanout . The code in this routine was changed regularly depending on which 

outputs were needed for the particular run. A previous study introduced a routine 

to estimate the mean kinetic energy of the basin (Enriquez, 2005) which used a 

basin volume specific to the Black Sea; this was updated so that it estimated the 

volume from the topography. 

3.5 Model Data Post-Processing 

Because the output from the model is in binary files (with the exception of the kinetic 

energy output) it needed to be processed into a more easily useable form before it could 

be analysed. Matlab routines were written to automate this process (see the list in 

Appendix A) and the main steps common to all the model runs are as follows: 
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1. Read the data (temperature, salinity, u, v) from binary files into Matlab 

2. Linearly interpolate from s-levels back to z-levels 

3. Save both s and z level data as Matlab files so they can be used later 

4. The CSIRO SEAWATER Toolkit (Morgan, 1993) function sw.pden was used to 

calculate the potential density GQ from the temperature and salinity data (on both 

s- and z-levels) 

The kinetic energy output is more simple to deal with as the model output are plain text 

ASCII files, so these need no processing other than being read and plotted. 

Some additional processing was necessary for some of the runs. The 'geostrophic' runs 

were validated by comparing the model currents to those calculated from the density 

distribution. These were calculated using 

V=^- ^ ' - ^ (3.51) 

where A(I>. and A ^ . ^ j are the geopotential anomalies at the sea surface at two points, 

/ is the coriolis parameter, and L. is the distance between the points i and 1. The 

geopotential anomaly is calculated using the following equation, which is integrated up 

the water column from the reference level to the surface. 

A<^ = p,gS{z^ - z^) (3.52) 

where is a reference density, taken as 1000 kgm"^ ; 6 is the specific volume anomaly 

averaged between the two depths and z^. 

As this method gives only the component of velocity that is perpendicular to the transect 

of points, transects in both the x and y directions were used. The reference level in each 

case was the deepest level common to all points in the transect. As the geostrophic 

method can calculate only relative velocities (relative to the assumed zero-motion level), 

the velocity from the model at the reference level depth was subtracted from the sur­

face velocity to provide a relative velocity that can be compared to the geostrophic 
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calculations. Again Matlab routines were written to automate the process. 

With all the data extracted into more readable forms, routines were then written to 

generate maps and cross-sections automatically. 
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Chapter 4 

Satellite SST Data Analysis 

4.1 Introduction 

In order to complement and validate the model results, satellite sea surface temperature 

(SST) data from the Pathfinder AVHRR dataset were analysed. Monthly composite data 

were used and the study period was October 1992 to December 2003, providing a long 

time series for analysis. This builds upon the work of Mohn and White (2007) who used 

similar data over the period 1998-2004 and showed that the cold water over Rockall 

Bank can be seen in AVHRR satellite data. Where Mohn and White (2007) used the 

data to produce monthly average climatologies, this study looks instead at the annual 

variation. This chapter first describes the typical results that are seen each year, before 

looking more deeply into the variation between different winters. 

4.2 Typical Picture 

Upon examination images of the sea surface temperature (note that the full set can 

be found in Appendix D), a regular front could be seen during the winter and spring 

months. The front is aligned with the southern slope of Rockall Bank, typically lying 

along the 400 m contour. This front breaks down during the summer, reforming the 

following winter. This feature is typically present from November or December to April 

or May, but during the sample period it started as early as October and finished as 
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late as June on some occasions. The typical temperature difference reached was around 

1.0-1.5°C. 

Figures 4.1 and 4.2 show two illustrative examples of a cold front that appears to be 

aligned with Rockall Bank. We can see the edge of the front (indicated by the arrows) 

aligned with the contours of the Bank. Away from this edge the cold water extends 

North and there is no further link with the bathymetry of the Bank apparent. We 

can also see in these, and the following. Figures that in general the clouds have been 

successfully minimised. The white areas are those points which were identified as clouds 

and removed. There are still some cloudy patches evident as anomalous colours, but 

their effect on the data has been reduced. 

A distinct cold 'patch' over just the Bank summit itself is seen less often, usually between 

January and March but sometimes in December or April. The smallest patches tended 

to lie within the 100 m contour, with the larger ones lying within the 400 m contour. 

Figures 4.3 and 4.4 show two examples of distinct cold patches (indicated by the ar­

rows). We can see that these differ from the front images in that there is warmer water 

immediately to the North, and the colder water lies entirely within the Bank area. 

These results compare well with those of Mohn and White (2007) who collated similar 

data for the period 1998-2003 and produced monthly SST climatologies. Mohn and 

White (2007) found that the cold core over the Bank was most pronounced between 

December and March and weakens in the summer before reforming in autumn. They 

also find that the cold water is typically found within the 300 m contour. 
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Figure 4.1 AVHRR Sea Surface Temperature for December 1992, showing a temperature front 
between the Bank and Trough (indicated by the arrow). Bathymetry contours for 
100, 250, 500, 1000. 1500, 2000 and 3000m are shown 
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Figure 4.2 AVHRR Sea Surface Temperature for February 1994. showing a temperature front 
between the Bank and Trough (indicated by the arrow). Bathymetry contours for 
100. 250, 500. 1000. 1500. 2000 and 3000m are shown. 
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Figure 4.3 AVHRR Sea Surface Temperature for January 1997. showing a distinct cold water 
patch (indicated by the arrow). Bathymetry contours for 100, 250, 500. 1000. 
1500. 2000 and 3000m are shown. 
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Figure 4.4 AVHRR Sea Surface Temperature for March 2002, showing a distinct cold water 
patch (indicated by the arrow). Bathymetry contours for 100, 250. 500. 1000. 
1500. 2000 and 3000m are shown. 
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4.3 Annual Variation 

This research expands on the findings of Mohn and White (2007) by looking at the inter-

annual variation of the surface cold water. The temperature difference was analysed by 

extracting data from two small areas - a "box" over the top of the Bank (B) , and an 

equal-sized box at the same latitude over a deeper area to the west of the Bank ( 0 ) . 

The location of these boxes is shown in Figure 4.5. 

Longitude W 

Figure 4.5 Location of the two boxes in which the satellite SST data were analysed: 'Bank 
box' B and 'non-Bank box' O. Bathymetry contours are every 200m. 

The median temperature of all points within each box was then calculated and labelled 

TB and To for boxes B and O respectively. The median was used rather than the mean 

in order to reduce the effect of any remaining bad quality data points. Figure 4.6 shows 

TB (black line) and TQ (grey line) over the 10 year period. We see that the temperature 

of both boxes displays a seasonal cycle as would be expected. We also see that the Bank 

temperature TB is consistently cooler than To during the winter. During the summer, 

in contrast, the temperature of the box B is the around the same as. or warmer than, 

that of box O. 

We also see from Figure 4.6 that the temperature difference between the two areas is 

not the same each year. This is illustrated more clearly by Figure 4.7 which displays the 

difference between TB and To- We see the seasonal variation, with the values alternating 
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between positive and negative. We also see that the magnitude of the winter temperature 

difference varies between less than 0.5 °C in the winter of 1993/1994, to almost 1.5 °C in 

1997. In most cases the largest temperature difference was seen in January, whereas the 

lowest temperatures were reached slightly later in February or March. In 1995/1996 and 

2000/2001 the largest temperature difference was reached later in February or March. In 

1993/1994 ,where there was only a small difference between TB and To. the temperature 

difference is almost constant between October and April. 
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Figure 4.6 Time series of mean temperatures (black line) and TQ (grey line) 
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Figure 4.7 Time series of SST difference between the Bank box B and the non-Bank box O. 
Negative values indicate the Bank box is cooler than the non-Bank box. 

The images for each month over the 10 year study period were inspected and identifying 

characteristics were tracked; the presence of a cold front between the Bank and Trough, 

and the presence of a distinct cold patch over the bank itself. These results of these 
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observations are summarised in Table 4.1. Although this is by its nature a subjective 

measurement, it does provide a useful and simple method of comparison. 

Table 4.1 Characteristics of monthly AVHRR data over 10 years. F indicates the front between 
the Bank and Trough is present, but there is no distinct cold patch; C indicates the 
cold patch is present; X indicates the data are too patchy to judge. 

Month 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 
Jan F F F C C F C F F C C 
Feb F C C F C X C F F C c 
Mar C C X F C C F F F C c 
Apr C F F F - F F F F C F 
May F F - - - F - F F - -
Jun - F - - - - F - - - -
Jul - - - - - - - - - - -
Aug - - - - - - - - - - -
Sep - - - - F - F F - - -
Oct F - - - - - - F F - - -
Nov F F F - F F F - F - F -
Dec F F C F C F F F F C F F 

We can see from Table 4.1 that there is a lot of variation in the duration over which a front 

or cold patch could be seen, and in the month in which it starts. These observations were 

used with the temperature parameters TB and To to produce more quantitative analysis 

of these differences in duration. Each year was considered to run from August to August 

such that any front/cold patch seen later in the autumn is considered to be part of the 

next year. Where a cold patch was identified, this was counted also as a continuation of 

the front, and only the first and last months observed were used meaning that gaps are 

ignored. For example the season 1998/1999 was considered to have a front duration of 

8 months (November 1998-June 1999). and a cold patch duration of 2 months (January 

1999-February 1999). The temperature difference between TB and To for the months of 

October-April each year were then picked out and averaged (arithmetic mean) to provide 

a single parameter Tw that can be compared between the different years. The estimated 

duration of the front and cold patch are compared to the season's mean temperature 

difference T^ in Figure 4.8. The results for the total duration of the front and/or cold 

patch (Figure 4.8A) are counterintuitive and appear to suggest an inverse relationship 

with a larger magnitude Tw generally being seen in years with a shorter duration of 

front/cold patch. However, there is one outlying point which does not fit this pattern 
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at all, corresponding to the 1995/1996 season. There is a more clear, and positive, 

correlation when we look at the duration of the cold patch alone (Figure 4.8B). A line 

has been fitted to Figure 4.8B which is given by y = -0.0614A" - 0.315, where X is 

duration of the front/cold patch in months, and Y is the mean temperature difference 

T\\f. This gives an r̂  value of 0.47. If we look only at those years in which a cold patch 

was identified, removing 1999/2000 and 2000/2001, (Figure 4.8C) the r̂  value increases 

to 0.81 (line given by Y = -0.107A^ - 0.170). These results indicate a link between the 

degree of cooling and the duration of the cold patch (in years when it is present), with a 

larger temperature difference tending to occur when the cold patch was seen for longer. 

This does not, however, explain the presence of the two years which featured no cold 

patch but a relatively large temperature difference (1999/2000 and 2000/2001). 
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Figure 4.8 A: Observed total duration of the front and/or cold patch (both F and C in 
Table 4.1) against the Oct-Apr mean temperature difference between the Bank 
and non-Bank boxes 
B: Observed duration of the cold patch only (C in Table 4.1) against the Oct-Apr 
mean temperature difference between the Bank and non-Bank boxes 
C: Observed duration of the cold patch only (C in Table 4.1) against the Oct-Apr 
mean temperature difference between the Bank and non-Bank boxes, with the two 
years featuring no cold patch removed. 
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The observed durations of the front and cold patch are compared in Figure 4.9, that is 

the duration of the cold patch alone is compared to the total duration of any temperature 

feature aligned with the Bank. As suggested by the opposite trends of Figures 4.8A and 

4.8B there appears to be an inverse relationship between the duration of the two states. 

The line fitted to Figure 4.9 is given by V = -0.695A' ' + 7.02 where X is the duration 

of the front and/or cold patch, and Y is the duration of only the cold patch. This 

gives an r̂  value of 0.56. The outlying point at (5,1) is the same year, 1995/1996. as 

the main outlying point from Figure 4.8A, and the r̂  value would be 0.9 without this 

year. The two years which did not fit well into the temperature difference/cold patch 

duration pattern (1999/2000 and 2000/2001) do appear to fit well with the correlation 

here. Care must be taken in interpreting this Figure as it is not clear whether the front 

and cold patch are truly linked, or whether the front is instead a separate underlying 

condition. If the two phenomena are related then these data suggest that the system 

can vary between two extreme conditions: from a long-lasting period featuring mainly 

a front but no distinct cold patch, to a shorter but more intense period featuring where 

the cold patch is seen over the whole period (and anything in between). The link with 

Tw suggests that it is primarily the winter temperature difference that determines which 

state will occur. 
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Figure 4.9 Observed total duration of the front and/or cold patch (F and C in Table 4.1) 
against observed duration of the cold patch alone (C in Table 4.1) 
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4.4 Summary 

The AVHRR SST data show that the cold water patch over Rockall Bank can be seen 

regularly with either a distinct cold patch or a temperature front seen at the Bank every 

year over the studied period. This is in broad agreement with previous findings (Mohn 

and White, 2007). Although cold water is visible in some form every winter, its duration 

and the temperature difference vary significantly from year to year. A distinct cold patch 

was present from anything from 0 to 5 months, while the total duration of either a front 

or cold patch varied from 5 to 9 months. 

The winter mean temperature difference between the two sample boxes, T\v, varied from 

0.25 °C to 0.75 and the cold patch is generally seen for longer in winters where the 

mean temperature difference between the Bank and adjacent areas is largest. There 

were however two years, 1999/2000 and 2000/2001, in which there was a relatively large 

temperature difference, but no cold patch was identified. 

Counterintuitively there appears to be an inverse link between the duration of the separate 

cold patch and the total duration of either a front or cold patch. The distinct cold 

patch is most likely to be seen in years where the overall timescale for the presence of a 

surface temperature signal is shorter. Although this is not conclusive it is nevertheless an 

interesting result, which warrants further investigation in order to determine the cause of 

this apparent link. One year in particular, 1995/1996, does not fit well into this pattern 

and at this stage there is no obvious reason for this. 

67 



CHAPTER 5. SENSITIVITY STUDY 

Chapter 5 

Sensitivity Study 

Before the full modelling runs were begun, a number of simplified runs labelled T 1 - T 9 

were done in order to test the sensitivity to the different types of forcing and to check 

that each element was working correctly. This chapter describes each of these runs with 

brief descriptions of any necessary changes made to the model code. The complete 

details of all changes may be found in Appendix B. The results of each run will also be 

outlined in each section. 

Each run was started at 1st November 2001, although they continue for different lengths 

of time. The main properties of the runs are summarised in Table 5.1 below. 

Table 5.1 Summary of the preliminary model runs 

RUN BATHYMETRY REAL T5 TIDES WIND HEAT SALT DURATION 
T l - - - - - - 1 month 
T2 / - - - - - 1 month 
T3 / / - - - - 3-8 months 

There are several variations of T3, using different settings not outlined in this table. 
T4 / - - - - 1 month 
T5 / - - - - 3 months 
T6 / - - - - 3 months 
T7 / - - - - 1 month 
T8 / / - - - 3 months 
T9 / / - - - 3 months 
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5.1 Run T l 

The first experiment—Tl—is the simplest and comprises a flat box with constant depth 

1000m. a homogeneous initial temperature and salinity field with values 15 C and 35 

respectively, and no meteorological forcing. This month long run is to check that no 

spurious currents are produced by the model. The model was run with all settings such 

as meteorological forcing switched off. though open boundaries are used. 

As this run included no forcing at all there were no significant currents generated. 

Figures 5.1 and 5.2 show the surface velocity (which is representative of the results) 

after 24 hours and then the end at 720 hours respectively. At the first output time. 

24 hours into the run, the maximum current speed is of the order 2 x l 0 " * ^ m s ~ ' . By 

the end of the run. a month later, this has increased only to 2 x 1 0 ^ ' ^ms '^ Although 

the correct solution would be zero currents, the velocities here are so extremely small 

that we can deduce that the model is not generating spurious currents. We can see 

from the structure of the velocity field in Figures 5.1 and 5.2 that there is no pattern to 

these tiny currents: they have the appearance of computer noise Both the temperature 

and salinity remain unchanged from their original values (15 C and 35) at all points 

throughout this run. 
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Figure 5.1 Tl: Surface velocity ms ' after 24 hours. Bathymetry contours are also shown 
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Figure 5.2 Tl: Surface velocity ms ' after 30 days Bathymetry contours are also shown. 

5.2 Run T2 

Next, in run T2. the Rockall Bank bathymetry was introduced in order to see what effect 

this has on the model and to check that the grid does not cause the model to become 

unstable, especially in regions with steep slopes As with T l there is no other forcing 

and the initial temperature and salinity field is homogeneous Therefore we would again 

expect to see no significant currents produced. The code used is exactly the same as in 

T l . as only the bathymetry input file needs to be changed 

As with T l the temperature and salinity fields remained constant at all times. The 

introduction of the steep bathymetry did cause stronger currents to be generated than 

in T l , but these were still small at under 1 mms ' by the end of the month-long run. 

These currents are initially induced in areas where the bathymetry is steepest and over 

time they split into several eddies. Figure 5.3 shows the surface currents early in the 

run. after 24 hours, and we can see that the strongest currents are along the slope at 

the bottom of the image. In Figure 5.4, showing the surface currents after one month 

(the end of the run), we see that numerous eddies have formed from the original current 

although the magnitude has not changed over the course of the run. These currents 
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are also almost constant with depth as illustrated by Figures 5.5 and 5.6 which show 

the currents at 900 m. We can see that they are very similar to the surface currents in 

Figures 5.3 and 5.4. From these results we conclude that although the bathymetry does 

have some impact on the model, the currents that are generated are small enough to be 

ignored. 

60 80 100 
i grid point 

Figure 5.3 T2: Surface velocity ms ' after 24 hours. Note that the strongest currents occur 
where the bathymetry is steepest. Bathymetry contours are also shown. 
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Figure 5.4 72. Surface velocity ms ' after 30 days. The current along the South of the bank 
area has degenerated into different eddies. Bathymetry contours are also shown. 
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Figure 5.5 T2: Velocity ms ^ at 900m after 24 hours. Bathymetry contours are also shown. 
The large white areas are where the water depth is less than 900m 
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Figure 5.6 T2: Velocity ms ' at 900m after 30 days. Bathymetry contours are also shown 
The large white areas are where the water depth is less than 900m. 

5.3 Run T3 

The T3 series of runs all introduce forcing in the form of the initial density distribution 

by using the Rockall Bank bathymetry and temperature and salinity. They each use 

slightly different other settings. The first in this series. T3. is identical to T2 except that 

the climatological temperature and salinity initial input is used The function of this run 

is to check that the model is stable with a realistic density distribution. T3 was run for 

the same length as the longest expected full runs (1st November-30th June) in order 

to ensure that the model would remain stable over the life of the full runs. These runs 

allow us to confirm that the steep bathymetry is not causing errors in the generation of 

the horizontal pressure gradient, as discussed in ^3.4.1 earlier on page 44. The other 

reason for these runs is to provide initial currents for the full model runs later. 

The kinetic energy per unit volume is shown in Figure 5.7. We see that it initially appears 

to stabilise at around 250 hours, but then rises further in a large peak between 500 and 

1000 hours. This corresponds to an increasing current speed in a small area over the 

shallowest part of the bank Figure 5.8 shows an example of the surface velocity during 

this time. There is a clear area of increased velocity over the Bank, on the right hand 
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side of the image. 

The kinetic energy then begins to decrease again, returning to approximately the same 

value as before the peak at around 1800 hours (mid January). This increased current over 

the Bank also dissipates during this time. From this point there are no further extreme 

changes in kinetic energy, although it does not remain constant. In order to use T3 as a 

warm start condition for the full runs it is necessary to wait for the currents to 'spin up'. 

However, in the time that this takes the density distribution also would be significantly 

deformed; this makes it less than ideal for use as a warm start file because the resulting 

currents would not be compatible with the initial density. This is illustrated by Figure 5.9 

which shows the how the surface temperature has changed after 75 days (after the peak 

in kinetic energy that we saw earlier). We see that the surface temperature has in general 

cooled down significantly. Run T3A was subsequently created to provide a more suitable 

run to provide initial currents to the full runs, as it allows the currents to spin up but 

without losing the initial density field. Therefore the currents generated by this run will 

be more suitable for starting the full runs, as they will be consistent with the full runs' 

initial density pattern. 
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Figure 5.7 T3: Kinetic energy per unit volume 
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Figure 5.8 T3: Surface velocity ms ̂  at 60 days, during the kinetic energy peak. Bathymetry 
contours are also shown. Note the high velocity just over the shallowest part of 
the Bank. 
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Figure 5.9 T3: Comparison of initial surface temperature C and model output from 75 days. 
There has clearly been significant alteration 
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5.3.1 T3A 

T3A is similar to T3 in that the only forcing is provided by the density distribution, 

but with the added restriction that the temperature and salinity were forced to remain 

unaltered over the duration of the run by resetting them to their original values at 

the end of each baroclinic timestep. As the output data are written slightly before the 

temperature and salinity are reset, for simplicity, there are some small differences between 

the initial temperature and the outputs. These differences are extremely small however, 

and may be ignored. This is illustrated by Figure 5.10 which, similarly to Figure 5.9, 

shows the surface temperature at the end of run T3A compared to the temperature at 

the start. This is representative of the other depth levels. We see that the temperature 

is virtually unchanged. 
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Figure 5.10 T3A: Comparison of initial temperature (at all points of the domain) °C and 
model output from 92 days. Although this plot only shows the surface tempera­
ture, this is representative of other levels. 

The kinetic energy per unit volume in this run is significantly more settled than it was in 

T3. Figure 5.11 shows the kinetic energy from run T3A, and we see that after the initial 

'spin up' it settles down relatively quickly and begins to converge around a constant 

value after around 250 hours. A checkpoint file after 500 hours of this run was used to 

provide initial currents to the full runs described in the next chapter. 
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Figure 5.11 T3A: Kinetic energy per unit volume 

5.3.2 T3C 

Run T3C uses identical code and input files to T3, but the timesteps are changed from 

200 s and 20 s to 100 s and 10s in order to check that this does not have a significant 

effect on the model results. The ideal timestep to use is one that does not use too much 

computer power, but is in a range where the results are not dependent on the timestep 

used. 

The kinetic energy results of T3C are almost identical to T3 such that when the two 

are plotted together the lines cannot be distinguished. This indicates that the 200s/20s 

timesteps are suitable, as it is quicker to run than lOOs/ lOs but they are within a range 

where the results do not change when the timesteps are changed. These timesteps are 

also compatible with the Courant-Friedrichs-Lewy (CFL) condition. This is a necessary, 

but not sufficient, condition for model stability (Dyke, 2001) and is given by: 

C = c ^ < l 
A x 

(5.1) 

where C is the Courant number, c is the fastest expected wave speed, and At and Aa: 

are the time and space step lengths. In other words, this condition states that the grid 
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size must be sufficiently large (or the timestep sufficiently small) such that waves cannot 

pass across a grid square quicker than the timestep. 

We have a barotropic timestep of 20s and the minimum horizontal grid spacing is ap­

proximately 4500 m. The fastest barotropic waves would be generated by the tide which 

behaves as a shallow water wave with speed c = yfgh. Wi th maximum depth approx­

imately 2800 m this gives the maximum possible barotropic wave speed as 165 ms~*. 

Using Equation 5.1 we therefore obtain a Courant number C=0.7 which satisfies the 

condition. 

5.3.3 T3D 

Similarly to T3C, run T3D also changes the timesteps, but this time they are increased 

to see if further computing power can be saved. Initially 250s and 25 s were tried. 

Although this still satisfies the CFL condition, with Courant number 0.9. the increased 

timestep caused the model to crash after only a few minutes. 220 s and 22 s were then 

used instead and the model completed the 3 month run. 

However, although the model ran without crashing with these larger timesteps, the results 

show that it is not behaving stably. Comparing the kinetic energy to that of T3 (with 

timesteps 200 s and 20 s) there is little difference for the first 500 hours, but after this 

point they diverge with the kinetic energy from T3D continually increasing (Figure 5.12). 

This shows that T3D is unstable and the timesteps used were too large. 

From the results of T3C and T3D we deduce that the timesteps of 200 s and 20 s are 

around the maximum values that will produce stable results. In this regard they are ideal 

timesteps to use as they use the least computing time possible without sacrificing the 

stability of the model. 
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Figure 5.12 T5>4; Mean kinetic energy per unit volume for T3D (solid) compared to T3 
(dashed) 

5.4 Run T4 

Run T4 goes back to the homogeneous temperature and salinity field of run T2 (with the 

Rockall Bank bathymetry) and introduces tides. This run is to check that the barotropic 

tide is introduced correctly. The only changes made to the code from T l were: 

• Tides are switched on (using the preprocessor) 

• The velocity and temperature/salinity data are outputted every hour rather than 

every 24 hours. Additionally, sea surface elevation is outputted. 

As with previous runs starting from homogeneous initial temperature and salinity, they 

remained constant across the domain. The sea surface elevation at two points, one on 

the Bank and one away from it, is illustrated in Figures 5.14 and 5.15. The location of 

these points is shown by Figure 5.13. We see from these Figures that there is a clear 

semidiurnal tidal signal in both areas, with a frequency of 12 hours. We also see evidence 

of the diurnal tide in the differing amplitude of the two daily semi-diurnal peaks. This 

is especially prominent at point B. In Figure 5.15 we see a significant difference in the 

magnitude of the two daily semi-diurnal tides, especially the low tide. Figure 5.14 for 
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point A shows a similar pattern, but the difference is smaller and the high tide shows litt le 

diurnal variation during spring tides. This is at odds with previous results (Huthnance, 

1974) which found that the diurnal tide was stronger on the western side of the Bank 

(close to point A) than at stations on top of the Bank (close to point B) . 

Similar patterns are seen in the velocity components as illustrated by Figures 5.16 and 

5.17 which show the v component of surface velocity at the same points at the elevation 

Figures (plots of the u component are very similar in nature). We again see that both 

Figures show a semi-diurnal signal with a diurnal contribution, but the diurnal signal 

is even more marked at point B (Figure 5.17) than it was in the sea surface elevation 

(Figure 5.15). 

Because this run uses a homogeneous temperature and salinity field only the barotropic 

tide is present. Therefore, the currents are almost constant with depth. Figure 5.18 

shows an example velocity profile for point A over a 24 hour period. The velocity is 

always constant down to around 900-1000 m at which point it begins to deviate due to 

the influence of the sea bed. This contrasts with the example from the shallower point 

B shown in Figure 5.19 where the influence of the sea bed can be seen in much of the 

water column (although the currents are still relatively similar with depth). 

60 80 100 
i grid point 

Figure 5.13 T4: Location of the points for which data are plotted 
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Figure 5.14 74. Sea surface elevation m at point A. 

100 200 300 400 500 600 700 
Time hours 

Figure 5.15 T"4. Sea surface elevation m at point B 
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Figure 5.16 74. Surface v velocity ms ' at point A. 
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Figure 5.17 74. Surface v velocity ms ' at point B 
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Figure 5.18 T4: Velocity ms~* profiles at point A over a tidal cycle. Darker lines are earlier 
profiles; lighter lines are later. 
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Figure 5.19 T4: Velocity ms * profiles at point B over a tidal cycle. Darker lines are earlier 
profiles: lighter lines are later. 
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5.5 Run T5 

T 5 includes wind forcing with the Rockall Bank bathymetry and homogeneous den­

sity distribution. The duration was 3 months. T h e changes made over the T l code 

were: 

• T h e wind forcing switched on, but heat fluxes remain off. T h e preprocessor is used 

for both of these tasks. 

• Outputs every 6 hours 

The temperature and salinity distribution remained constant for the entire run, and so 

the currents were generated by entirely the wind (excluding the very small bathymetry-

induced currents we saw in run T 2 ) . 

Figure 5.21 shows a representative example of the velocity distribution with depth. Th is 

example is from the end of the model run, 31 January, from the point located at the 

dot in Figure 5.20. We see in Figure 5.21 that the highest currents are found near 

the surface, and the current speed then decreases with depth. We can also see that 

the direction of the near surface current changes in a clockwise direction as the depth 

increases. Th is Ekman spiral pattern is what we would expect from currents that are 

generated by surface wind (Pond and Pickard, 1983). 

The kinetic energy output indicates that the magnitude of the currents is related to 

the wind speed. This is more clearly seen in the kinetic energy of the surface level. 

Figure 5.22 shows the mean kinetic energy per unit volume of the basin, the kinetic 

energy per unit volume of just the surface layer, and the mean wind speed throughout 

the length of the run. We can see that when there are peaks in the wind speed there 

are also peaks in the kinetic energy, and that the kinetic energy of the surface layer is 

more sensitive than that of the basin as a whole. T h e correlation coefficient between 

the wind speed and surface kinetic energy is 0.45. Th is is lower than might be expected, 

primarily due to oscillations in the kinetic energy signal with frequency of around 16.5 

hours. Nevertheless it is a positive correlation and the author believes it shows a link 

between the wind speed and surface kinetic energy. 
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Figure 5.20 T5: Location of the example point used for Figure 5.21. 
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Figure 5.21 T5: An example velocity ms~' profile illustrating the Ekman spiral. 
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Figure 5.22 75; Kinetic energy per unit volume compared to the mean wind speed. The thick black line is the wind speed, the thinner line is surface kinetic 
energy and the grey line is mean kinetic energy over the entire basin. 
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5.6 Run T6 

This run incorporates the surface heat flux, still with homogeneous initial temperature. 

The changes to the code to achieve this were: 

• Heat flux switched on, using the preprocessor. 

• As the heat flux calculation requires wind speed, it was necessary to also select 

the wind forcing option in the preprocessor to ensure that the wind data are read 

in. The code was modified so that the wind data are used only in the heat flux 

calculation, and do not directly generate currents as it did in run T 5 . 

• Similarly the air pressure is also read in but only used in the heat calculation. 

The salinity remained constant throughout the entire run, whilst the temperature distri­

bution was of course modified by the surface heat flux. The surface water begins to cool 

almost immediately. Figure 5.23 shows the surface temperature after only 8 days (i.e. 

8 November). We can see that already the water over the Bank is starting to become 

cooler than the water in surrounding areas. Th is cold patch continues to grow and cool 

until the coldest part is approximately 13 ° C , compared to the initial 15°C. This state 

is reached after around 6 weeks, in mid-late December. Figure 5.24 shows an example 

from 22 December, by which time the cold water has reached 13 °C , and we can see 

that the cold water is centred over the shallowest area of the Bank. 

In the remainder of the run the water does not then get any colder than this, but it 

remains present for the whole duration. Figure 5.25 shows the surface temperature at 

the end of the run. 31 January, and by comparing it to Figure 5.24 we see that the 

general pattern is the same. The water has not cooled further. Although the cold patch 

remains present for the duration of the run it does of course move around. The water 

circulates anti-cyclonically around the top of the Bank, in accordance with observations 

and theory (e.g. Ellett et al., 1986; Huthnance, 1986). 

Of course, cooling and subsequent dense water formation at the surface ensures that the 

water column remains well mixed, in order to maintain stability. An example temperature 

cross-section is shown in Figure 5.27. We can see that the water column over Rockall 
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Bank is relatively cold, and is well mixed f r o m surface t o b o t t o m . T h e locat ion of this 

cross-section is indicated by the hor izonta l l ine on Figure 5.26. 

The currents induced in the model have typ ica l values o f 0 .1-0 .4 ms w i t h isolated 

areas reaching 0.8 ms ~ ' . even in the deeper water. These values are reasonable, a l though 

larger than observations f rom Rockall Bank. W e would not however expect realistic 

currents to be generated in this run as the density d is t r ibu t ion is no t real ist ic. Examples 

of the instantaneous currents are shown in Figures 5.28 and 5.29 wh ich show the final 

veloci ty ( i .e. on 31 January) at the surface and at 500 m respectively. 

20 4C 60 80 100 120 140 
i grid point 

Figure 5.23 T6: Surface temperature 'C at 8 November. The cold patch is starting to form. 

Sections o f potent ia l density rr„ show a clear area o f denser water over the t op of the 

bank corresponding to the colder tempera tu re . T h e tempera ture di f ference was up t o 

2 C. which led t o a density difference o f up t o 0.3 kgm ^ The po ten t ia l density o f the 

b o t t o m layer (which fol lows the topog raphy ) is the most relevant here as th is gives an 

indicat ion o f whether the dense water can escape f rom the bank. F igure 5.30 shows 

the potent ia l density along the b o t t o m s-level early in the fo rmat ion o f the cold patch. 

25 days in to the run. A l though the dense water is no t yet ful ly fo rmed it is already 

denser than the b o t t o m water elsewhere in the doma in . Th is is due t o this run being 

init ial ised w i th a homogeneous density s t ruc ture . As soon as the densi ty over the Bank 
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Figure 5.24 76. Surface temperature °C on 22 December. The cold patch is fully developed. 
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Figure 5.25 76. Surface temperature C on 31 January. 
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Figure 5.26 T6: Location of the cross-sections. The horizontal line is j=25 (used to produce 
Figure 5.27) and the vertical line is i=130 (used to produce Figure 5 34). 
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Figure 5.27 76. Temperature C along the section j=25 on 30 January. 
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Figure 5.28 76. Surface velocity ms ' on 31 January. 
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Figure 5.29 T6: Velocity ms ^ at 500m depth, on 31 January. 
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began to increase it was already denser than the deepest water t ha t we star ted w i t h . 

Therefore we would expect tha t th is water wi l l be able t o sink if it reaches the slope. 

As t ime progresses the cold area grows larger, and numerous "arms" f o rm as shown in 

Figure 5 .31 . On frequent occasions there is evidence of cascading as these arms pro t rude 

fur ther down the slope. One such example is shown in f igure 5.33. Th i s is a close up of 

the b o t t o m potent ia l density for an area on the nor th east slope o f the Bank over a series 

o f 4 days ( the locat ion o f the selected area is shown by the box in F igure 5 32) We can 

clearly see tha t an area of dense water crosses the ba thymet ry con tours and protrudes 

down the slope. Another example is shown in the cross-section of Figure 5 34 W e can 

clearly see an area of dense water ex tend ing down the slope. Note t ha t the locat ion of 

this section is shown by the vert ical line in Figure 5.26. 

These cascading events are common ly seen in this area as well as on the southern slope 

of the bank. These are the steepest slopes, and we do not see any cascading in this run 

on the shallower slope to the nor th nor th west 
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Figure 5.30 76. Potential density rr kgm~ ^ along the bottom s-level at 25 days. 
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Figure 5.31 T6: Potential density a kgm ^ along the bottom s-level at 48 days showing the 
protruding "arms". 
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Figure 5.32 T6: Location of the close up area used in Figure 5.33. 

93 



CHAPTER 5. SENSITIVITY STUDY 

Day 47 

Day 49 

120 130 140 

26 2£ 

26 2 

26 15 

26 1 

26 05 

120 130 140 

Figure 5.33 T6 Potential density o A///// V ' along the bottom s-level from days 47-50 
showing plume moving downslope. Note that the water is shallowest on the left 
hand side, and then deepens to the right as indicated by the contour lines. 
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Figure 5.34 T6: Potential density kgm ^ along the section i=130 on 30 January Note the 
cold water can be seen from the surface to the bank. There is an area of dense 
water extending down the slope of the bank. 
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5.7 Run T7 

Run T 7 is the final run w i t h homogeneous ini t ia l tempera tu re and sal inity, and includes 

evaporat ion-precip i tat ion balance as the only forcing. Simi lar ly t o T 6 . the w ind speed 

and meteorological variables sti l l need to be read in as they are needed to calculate 

the evaporat ion rate ( the prec ip i ta t ion rate is provided separately) . T h e code changes 

were: 

• Bo th wind and meteorological variables are read in, bu t are used only in the 

calculat ion of the evaporat ion rate. T h e heat fluxes are set t o zero. 

Init ial ly there is a general f reshening over much o f the domain ( i l lus t ra ted by Figure 5.35). 

As t ime progresses this changes. Figure 5.36 shows the surface sal in i ty a f ter 12 days. We 

see the salinity has returned near t o its in i t ia l value 35 over a wide part of the domain , 

and in the shallowest area over the Bank it is s l ight ly more saline. Later at the end of 

the run after 30 days, the water over the Bank has become more saline sti l l and the 

rest o f the domain is simi lar t o the star t value. T h e sal ini ty changes involved are small 

however, w i th differences o f up t o 0.1 PSU only. 
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Figure 5.35 77. Surface salinity at 5 days. General freshening can be seen. 
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Figure 5.36 77. Surface salinity at 12 days. Water over the bank is becoming more saline. 

35 15 

35 05 

34 95 

34 85 

20 40 60 80 100 120 140 
i grid point 

Figure 5.37 77. Surface salinity at 30 days. 
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Because the salinity change is small t he ef fect on density, and therefore c i rcu la t ion, is 

also smal l . The currents generated by the vary ing sal inity reached a m a x i m u m of only 

0 .01-0 .02 ms \ and in most areas were even smaller than this. Figures 5.38 and 5.39 

show the instantaneous veloci ty at the surface and at 900m respectively at the end of 

the run. We see t ha t the largest currents are seen on the left hand side, adjacent t o the 

slope and on top o f the Bank. 
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Figure 5.38 T7: Surface velocity ms ^ at 30 days. 
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Figure 5.39 77 Velocity ms ' at 500m depth, at 30 days. 

5.8 Run T8 

This run is similar t o T 4 as it includes the t ides, but i t also adds the real in i t ia l density 

d is t r ibut ion which means tha t it includes the barocl in ic t ide. Therefore the code used is 

the same as T 4 . w i t h jus t di f ferent tempera tu re and sal in i ty input files. As the barocl inic 

t ide moves more slowly than the barotropic th is run was longer than T 4 and was run for 

3 months. 

We see a similar pat tern t o run T 4 . w i th a clear semi-d iurnal signal present at bo th 

sample points, and a stronger diurnal mod i f i ca t ion on t o p of the Bank. Figures 5.40 

and 5.41 show the sea surface elevation over the dura t ion of the run for two example 

points. The locat ion o f these sample points are the same as the T 4 p lots above, and 

are shown in Figure 5.13. We see by compar ing these to Figures 5.14 and 5.15 t ha t the 

sea surface elevation is a lmost identical to tha t o f run T 4 . 

The veloci ty on the other hand does show some sl ight dif ferences. Figures 5.42 and 

5.43 show the v component of surface ve loc i ty at the same two po in ts These may 

be compared w i t h Figures 5.16 and 5.17 for T 4 . W e see tha t overall t he behaviour is 

very similar. A t bo th points A and B there is a s t rong semi-diurnal signal, w i t h d iurnal 
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Figure 5.40 T4: Sea surface elevation m at point A. 
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Figure 5.41 T4: Sea surface elevation m at point B. 
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modi f i ca t ion . Again the d iurnal signal is strongest at po in t B. T h e magn i tude of the 

veloci ty is similar t o T 4 at po in t B. but at po in t A i t is higher in th is run w i t h a max imum 

of around 0.25 ms ' rather than 0.15 ms T h e magn i tude dur ing the neap periods is 

similar however, so we see a more ext reme spr ing /neap di f ference at po in t A in th is run 

T 8 than we did in T 4 . 
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Figure 5.42 T8: Surface v velocity ms ' at point A 
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Figure 5.43 T8: Surface v velocity ms ' at point B 
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W i t h the addi t ion o f the non-homogeneous density f ie ld, the cur rents are no longer 

constant w i t h dep th . Figures 5.44 and 5.45 show u veloci ty profi les at t h e same sample 

points as previous Figures. By compar ing t o Figures 5.18 and 5.19 we see t h a t at bo th 

sample points the magn i tude o f the u ve loc i ty is very similar t o t ha t in T 4 . 

In Figure 5.45, f rom the point over the Bank , shows tha t the veloci ty is always d isrupted 

at around 50 m: this is the depth o f the thermoc l ine . Th is re lat ionship is i l lust rated by 

Figure 5.46 which shows the u veloci ty and tempera tu re profiles at th is po in t for a single 

representative t ime. W e clearly see t ha t the change in veloci ty at around 50 m coincides 

w i th the change in temperature . 
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Figure 5.44 T8: u velocity ms" * profiles at point A over a tidal cycle. Darker lines are earlier 
profiles: lighter lines are later. 
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Figure 5.45 T8: u velocity ms~^ profiles at point B over a tidal cycle. Darker lines are earlier 
profiles: ligf}ter lines are later. 
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Figure 5.46 T8: Temperature and u velocity profiles at point B 
T8: Tempera tu re *C (dashed l ine) and u veloci ty ms~* (sol id l ine) profiles at po in t B 
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5.9 Run T9 

The f inal run in th is series, T 9 , includes bo th real in i t ia l t empera tu re and sal inity and the 

surface heat f lux in order t o check t ha t the cold water patch could fo rm successfully w i t h 

the realistic in i t ia l density f ie ld. Th i s run uses the same code as T 6 b u t w i t h d i f ferent 

input files. Ini t ia l ly T 9 was run for 3 months , as w i t h T 6 , bu t the results suggested t h a t 

a longer t ime was needed for the dense water t o f o rm . It was subsequent ly rerun for 8 

months (1st N o v e m b e r - 3 0 t h June) . 

Similarly t o run T 6 , the sal inity remained unchanged and the tempera tu re was al tered 

due t o the surface heat f lux. However, in th is case the di f ference between the water 

temperature and the air tempera ture is smaller. Th i s has led t o a less d ramat i c coo l ing 

of the water over the bank, a l though i t does st i l l become colder and therefore denser 

than the adjacent water. It also takes longer for the tempera tu re di f ference to appear. 

This is i l lustrated by Figure 5.47 which shows the surface tempera tu re on 22 December. 

Th is is the same t ime as Figure 5.24 for run T 6 (no te t ha t d i f ferent colour scales have 

been used). We can see t ha t in T 6 there is a fu l ly fo rmed surface cold patch over the 

Bank. In T 9 however, there is no sign at all o f the cold water patch un t i l around ten 

days later. The water cont inues t o cool unt i l i t reaches i ts m i n i m u m tempera tu re in 

early March . Th is is s igni f icant ly later than in T 6 , where the m i n i m u m tempera tu re was 

reached in late December. Figure 5.48 shows an i l lust rat ive example f rom 1 March where 

the surface cold patch is now ful ly formed in T 9 . T h e m a x i m u m tempera tu re di f ference 

between the surface water over the Bank and over t he water on the le f t hand side o f 

the image is again around 2 ° C , similar t o T 6 . However, in th is T 9 the water t o the t op 

r ight is much more similar in tempera tu re t o the water over the Bank. T h e surface cold 

water in T 9 begins t o disappear around late Apr i l as spr ing arrives and surface wa rm ing 

takes place. By mid May the cold water is no longer visible f r om the surface. 

The density s t ruc ture is rather d i f ferent t o tha t o f T 6 due to the non-homogeneous in i t ia l 

temperature d is t r ibu t ion . In run T 6 , the water a t dep th had the same poten t ia l density 

as the surface water, so only a small amoun t o f coo l ing was necessary t o make the water 

over the bank denser than the deep water. Th is meant t h a t the cool water f r o m the 
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Figure 5.47 79. Surface temperature C on 22 December. The cold patch has not yet 
formed. 
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Figure 5.48 79. Surface temperature °C on 1 March. The cold patch is now fully developed 
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bank would be able t o sink a s igni f icant distance. In T 9 on the o ther hand, the cold 

water over Rockall Bank sti l l becomes denser than the sur rounding shal low waters but 

the cool ing is not severe enough to make i ts density greater than the deep water. Where 

T 6 had a max imum density di f ference o f 0.3 kgm \ in T 9 the colder water on t op of the 

Bank is only 0 1 kgm ^ denser than the immed ia te sur rounding water and is less dense 

than the very deep water. Therefore th is water wi l l not be able t o sink as far. Figure 5.49 

shows an example cross section of po tent ia l density on 1 Apr i l , at wh ich t ime there is a 

marked cold water co lumn. T h e locat ion o f th is section is shown in by the vert ical line 

on Figure 5.26. Figure 5.50 shows the po ten t ia l density on the b o t t o m s ieve! at the 

same t ime. W e can see f rom these f igures t ha t a l though the potent ia l density over the 

top of the bank is relatively h igh, i t is not higher than tha t o f the water over much o f 

the slope. Consequently we do not see any evidence o f dense water cascading in these 

results. 
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Figure 5.49 T9: Cross section of potential density rr kgm on 1 April, along the section 
i=130. 

Towards the end o f the run the warm ing weather leads to the surface s t ra t i f i ca t ion 

return ing, bu t the dense water remains under the surface warm water unt i l t he end. 

Figure 5.51 shows a cross-section o f density at the end o f the run. T h e locat ion o f th is 

section is shown by the vert ical line on Figure 5.26. W e can see t ha t there is a layer 
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of warm, low density, water w i th in the upper 50 -100 m. Below th is there is a dome of 

water over the Bank w i th very s l ight ly increased density compared to t he surrounding 

water. 
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Figure 5.50 T9: Potential density a kgm ^ along the bottom s-level on 1 April. 
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Figure 5.51 T9: Cross section of potential density n kgm ^ on 30 June (the end of the run), 
along the section i=130. 
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Chapter 6 

Full Model Runs 

6.1 Introduction 

Following sat isfactory results f r om the simpler prel iminary runs, the next stage was 

to conduct full s imulat ions representing d i f ferent c l imato log ica l cond i t ions in order t o 

provide in format ion abou t the sensit iv i ty o f the fo rma t ion o f dense water t o atmospher ic 

condi t ions. 

Three years were chosen t o be model led: 1 9 5 0 / 1 9 5 1 . 1978 /1979 , and 2 0 0 1 / 2 0 0 2 , w i th 

model runs labelled F1950. F1978. and F2001 respectively. The prel iminary runs (see 

Chapter 5 ) t h a t required meteorological inpu t used the data f rom 2 0 0 1 / 2 0 0 2 . 

The mean air tempera tu re and w ind speed for the w in te r per iod N o v e m b e r - M a r c h 

were compared to long te rm mean values (ca lcu lated using da ta f r o m 1968-1996) 

f rom N C E P / N C A R reanalysis data (Physical Sciences Division N O A A / E S R L , 2007) . 

Figure 6.1 shows the deviat ion f rom the c l imat ic mean o f the win ter air tempera tu re 

of 2001 /2002 . W e see t ha t the air tempera tu re over th is per iod was around 1.0-1.5 °C 

warmer compared to the 1968-1996 mean. Figure 6.2 shows the w ind speed anomaly 

for the same per iod. Over a wider area there is a rather complex p ic ture, w i t h some 

parts having higher than average winds and o ther parts lower than average. However, 

over Rockall Bank i tsel f ( in the t op r ight o f the image) we see t h a t the w ind speed was 

not s igni f icant ly d i f ferent t o the average. 
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Figure 6.1 Air temperature anomaly " C of winter 2001/2002. Mean November-March values 
compared to climatological means from 1968-1996. 
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Figure 6.2 Wind speed anomaly ms ' of winter 2001/2002. Mean November-March values 
compared to climatological means from 1968-1996. 
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The other two years t ha t were model led were selected due to their lower than average 

air temperature over the win ter per iod. Th is provides a compar ison to the warm win ter 

case, al lowing us t o invest igate the effect t ha t var iat ion in air t empera tu re has upon the 

format ion of dense water. T h e winters o f 1950 1951 and 1978 /1979 were chosen; these 

winters bo th have similar mean air temperatures, w i t h values approx imate ly 0.5 t o I'̂ ^C 

colder than the long t e r m mean. Figures 6 3 and 6.4 show the air t empera tu re anomalies 

for these two years, i l lus t ra t ing the simi lar i ty in tempera tu re over Rockal l Bank. 

A l though the air tempera tu re was similar, these two winters featured d i f ferent wind speed 

trends Figure 6.5 shows the w ind speed anomaly of the win ter o f 1 9 5 0 / 1 9 5 1 . W e see 

that the mean win ter w ind speed in this year was l - 2 m s ' lower t han the c l imat ic mean. 

As a percentage o f the mean speed th is is around 1 0 - 1 5 % lower. In 1978 /1979 on the 

other hand, the w ind speed was higher by around 1 - 1 . 5 m s " ' or 10%. Th i s is i l lustrated 

by Figure 6.6. 

-20 -18 
Longitude 

Figure 6.3 Air temperature anomaly C of winter 1950/1951. Mean November-March values 
compared to climatological means from 1968-1996 

Together, these three di f ferent s imulat ions wi l l a l low us t o deduce the impact tha t chang­

ing air temperature and wind speed have on the fo rmat ion and cascading of dense water 

at Rockall Bank. 
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a 
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Figure 6.4 Air temperature anomaly C of winter 1978/1979 Mean November-March values 
compared to climatological means from 1968-1996. 
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Figure 6.5 Wind speed anomaly ms ^ of winter 1950/1951. Mean November-March values 
compared to climatological means from 1968-1996. 
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Figure 6.6 Wind speed anomaly ms ' of winter 1978/1979. Mean November-March values 
compared to climatological means from 1968-1996. 

The ful l runs were all init ial ised f rom a warm star t f i le, wh ich provides an in i t ia l current 

d is t r ibut ion tha t is compat ib le w i t h the density. A checkpoin t fi le f rom run T 3 A (^^5.3.1) 

at 500 hours was used. T 3 A was the 'geostrophic spin-up" run t ha t forced tempera tu re 

and sal inity to be kept constant , so tha t the resul t ing currents ma tch t he in i t ia l density 

d is t r ibut ion. The ou tpu t f rom 500 hours was used as this was af ter t he in i t ia l spin up 

peak and the model had stabilised by th is po in t (see Figure 5.11 on page 77) . Because 

the density field is taken f rom c l imat ic da ta , each o f the d i f ferent years uses the same 

init ial condi t ions but w i t h the atmospher ic forc ing for t ha t part icular year. T h e dura t ion 

of each run was f rom 1 November to 30 June. T h e rest o f this chapter out l ines brief 

results f rom the model runs. More in depth and quan t i ta t i ve analysis wi l l be conducted 

in Chapter 8. 

6.2 F2001 

Because F2001 used the same meteorological data as the test run T 9 . in many respects 

the fo rmat ion o f the cold water here was similar. As w i t h T 9 there was a relatively 

small density difference between the water over the bank and the sur round ing water In 
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fact F2001 reached a s l ight ly lower density than T 9 and the density di f ference was less 

than 0.1 k g m ~ ^ . T h e dense water can be seen f o rm ing over the Bank f r o m around late 

January/ear ly February and is at i ts densest du r ing March . These t im ings are simi lar t o 

the results o f T 9 where we saw the dense water f o rm ing in January, reaching i ts m a x i m u m 

in March . Figure 6.8 is a representative cross-section o f the density d is t r ibu t ion dur ing 

the peak density t ime . The locat ion of th is sect ion, and subsequent ones in th is Chapter , 

is shown in Figure 6.7. We see in the cross-section t h a t there is a wel l mixed co lumn 

of dense water over the top o f the Bank, and the density is the same as the density at 

around 700 m in the surrounding deep water . Figure 6.9 shows the density a long the 

b o t t o m s level at the same t ime and clearly shows the dense water patch located over 

the shallowest part of t he Bank. 

60 80 
1 grid point 

Figure 6.7 Location of the Chapter 6 cross-sections 

F2001 dif fers s igni f icant ly t o T 9 in its behaviour later in the spr ing as the weather is 

warming. In run T 9 the dense water over the bank remained in place un t i l the end o f 

the run (a l though the density difference was great ly reduced) . By cont ras t , in F2001 

the dense water gradual ly disappears and becomes less dense, and by m i d - M a y it has 

disappeared. Figure 6.10 shows the b o t t o m density on 13 May and we can see t h a t 

there is no cold water patch present any more. A l t h o u g h the water over the Bank is 

now closer in density t o the surrounding water , we do st i l l see a di f ference between the 
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Figure 6.8 F2001: Cross section of potential density rrf, kgm ^ on 15 March 2002. along the 

section i=125. 

Density contour lines are every 0.02kgm ^ from 27.1 to 27.9. The colours highlight 

the range 27.3-27.5 kgm-^. 
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Figure 6.9 F2001: Potential density kgm ^ along the bottom s-level on 15 March 2002. 

Bathymetry contour lines are every 100m. The colours highlight the range 27.3-

27.5kgm-^. 
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Bank and the deeper ocean: the summer surface s t ra t i f i ca t ion is present over the deeper 

water f rom late Apr i l , but the water co lumn over the t o p of the Bank is sti l l relat ively 

well mixed in mid May. Th is is i l lustrated by Figure 6.11 wh ich shows s t ra t i f i ca t ion over 

the deeper areas but not over the Bank 
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Figure 6.10 F2001: Potential density rro kgm ^ along the bottom s-level on 13 May 2002. 

showing the cold patch is no longer present 

Density contour lines are every 0.02 kgm ^ from 27.1 to 27.9 The colours high­

light the range 27.3-27.5kgm'^. 

The water over the t o p of the Bank then quick ly becomes less dense than in the sur­

rounding areas. The shal low surface s t ra t i f i ca t ion is formed over the Bank at the start 

of June, and the relatively low density water then remains on t op o f the Bank unt i l t he 

end o f the run at the end o f June. A l though th is water is less dense than the water at 

similar depths in the surrounding areas it is st i l l heavier t han the surface water above 

the s t ra t i f i ca t ion. Figure 6.12 is a cross sect ion o f the density at the end o f the run 

which i l lustrates this reversal. Compare this t o Figure 5.51 on page 106 showing the 

same cross-section f rom run T 9 , where the dense water remains underneath the surface 

st rat i f icat ion. 
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Figure 6.11 F2001: Cross section of potential density rro kgm ^ on 13 May 2002. along the 
section i=125. 
Density contour lines are every 0.02 kgm ^ from 27.1 to 27.9 The colours high­
light the range 27.2-27.5kgrn''^. 
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Figure 6.12 F2001: Cross section of potential density rr,, kgm ^ at the end of the run (30 
June 2001), along the section i=125. 
Density contour lines are every 0.05 kgm ^ from 26.5 to 27.9 and the colour scale 
has the same limits, (note that this is a different colour scale to the other F2001 
figures) 
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6.3 F1950 

The dense water forms more quickly in run F1950 than in F2001 and is first visible from 

mid December. The peak period is during February and March through to the first half 

of April. The typical density difference between the Bank and deeper areas during this 

time is 0.2-0.3 kgm ^ compared to just 0.1 kgm ^ for F2001. Figure 6.13 is an example 

cross-section of the density. This is from 15 March and may be compared to Figure 6.8 

for F2001 (note the difference colour scales). We see that the density over the Bank is 

higher in F1950, but the density over the rest of the ocean is similar. Therefore we see 

a greater density difference in F1950. Figure 6.14 is the bottom density from the same 

time period. Although we can see the density over the Bank is higher than it was in 

F2001 (shown in Figure 6.9). it is still lower than the water further down the slope. 
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Figure 6.13 F1950: Cross section of potential density no kgm '' on 15 March 1951. along 
the section i=125. 
Density contour lines are every 0.02 kgm ^ from 27.1 to 27.9 The colours high­
light the range 27 3-27.7kgm'^. 

This dense water is much more persistent in this run than it was in F2001. Figures 6 15 

and 6.16 from mid-May show that there is still a relatively strong density difference. 

This is in contrast to F2001 where the dense water had already disappeared by this time 

(shown in Figures 6.11 and 6.10). We do see from Figures 6.15 and 6.16 that the water 
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Figure 6.14 F1950: Potential density no kgm ^ along the bottom s-level on 15 March 1951 
Bathymetry contour lines are every 100m The colours highlight the range 27.3-
27.7 kgm-^. 

column over the top of the Bank is still relatively well mixed at this stage, which we also 

saw in F2001. The surface water surrounding the Bank has begun to become stratified, 

though this is weaker than it was at the same time in run F2001. 

Whereas the dense water completely disappeared by mid-May in F2001. in F1950 there 

was still some trace of the dense water over the Bank even at the end of the run at the 

end of June. However, there were also areas where the water is less dense than in the 

open ocean Figure 6.17 shows this complex density distribution on the bottom s-level 

at the end of the run on 30 June. The two least dense patches (the dark blue areas) 

correspond to the shallowest parts of the Bank and to the immediate north we see a 

denser patch. Figure 6.18 is an example cross-section from the same point in time which 

shows the vertical extent of these features. We see from Figure 6.18 that the surface 

stratification has now formed over the Bank, although the water beneath is still well 

mixed as it was in F2001. 
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Figure 6.15 F1950: Cross section of potential density rr,, kgm ^ on 13 May 1951. along the 
section i=125. 
Density contour lines are every 0.02kgm ^ from 27.1 to 27.9. The colours high­
light the range 27.3-27.7 kgm ^. 
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Figure 6.16 F1950: Potential density rr^ kgm ^ along the bottom s-level on 13 May 1951. 
Bathymetry contour lines are every 100m. The colours highlight the range 27.3-
27.7 kgm-^. 

118 



CHAPTER 6. FULL MODEL RUNS 

27 65 

27 55 

27 45 

27 35 

60 80 100 120 
I grid point 

Figure 6.17 F1950: Potential density (TO kgm~^ at the end of the run (30 June 1951). on the 
bottom s-level. 
Bathymetry contour lines are every 100 m. The colours highlight the range 27.3-
27.7 kgm-^. 
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Figure 6.18 F1950: Cross section of potential density kgm ^ at the end of the run (30 
June 1951). along the section i=125. 
Density contour lines are every 0.02 kgm ^ from 27.1 to 27.9 The colours high­
light the range 27.2-27.5kgm~ \ (note that this is a different colour scale to the 
other F1950 figures) 
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6.4 F1978 

Run F1978 tells a similar story to F1950. The dense water over the Bank forms slightly 

later, around mid to late December and is at its strongest from mid February-mid 

April which is similar to F1950. Again the typical density difference between the Bank 

and surrounding ocean is around 0.2-0.3 k g m " * but F1978 eventually reaches a higher 

density than F1950. Figures 6.19 and 6.20 show examples of the density distribution 

during March, which may be compared to Figures 6.13 and 6.14 for F1950. We see that 

overall the density structure is similar, but by this stage the maximum density over the 

Bank is F1978 is somewhat higher than in F1950. In addition the s-level section shows 

that the horizontal extent of this densest water is greater at this stage than it was in 

F1950 
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Figure 6.19 F1978: Cross section of potential density CJH kgm ^ on 15 March 1979. along 
the section i=125. 
Density contour lines are every 0.02kgm-^ from 27.1 to 27.9. The colours high­
light the range 27.3-27.7kgm'^. 

As we saw in F1950 the dense water remains present throughout the entire run. Figures 6.21 

and 6.22 show the density distribution in May and we see very similar results to those 

of F1950. By comparing these Figures to Figures 6.15 and 6.16 we see that the density 

magnitude is now the same as it was in F1950. However, there is less surface strati-

120 



CHAPTER 6 FULL MODEL RUNS 

27 65 

27 55 

27 45 

27 35 

60 80 1 00 
I grid point 

120 140 

Figure 6.20 F1978: Potential density af, kgm ^ along the bottom s-level on 15 March 1979 
Bathymetry contour lines are every 100 m The colours highlight the range 27.3-
27.7 kgm-^. 

fication evident in F1978. The water column over the top of the Bank in particular is 

slightly more well mixed in this run. 

Finally, the pattern of both high and low density areas over the Bank in the latter part 

of the run that we saw in F1950 is also present here. Figures 6.24 and 6.23 show that 

the final density distribution is similar to F1950. In particular we see the remaining area 

of dense water in the same location as it was in run F1950. but in this run the density 

has remained slightly higher. Additionally, the water column over the Bank in F1978 is 

slightly more well mixed than in F1950 Although it is generally highly stratified over the 

Bank. Figure 6.24 shows a small area, indicated by the arrow, where the stratification 

appears to break down. 
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Figure 6.21 F1978: Cross section of potential density rr^ kgm' ^ on 13 May 1979. along the 
section i=125. 
Density contour lines are every 0.02kgm '' from 27.1 to 27.9. The colours high­
light the range 27.3-27.7 kgm . 
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Figure 6.22 F1978: Potential density ao kgm~ ̂  along the bottom s-level on 13 May 1979. 
Bathymetry contour lines are every 100 m. The colours highlight the range 27.3-
27.7 kgm-^. 
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Figure 6.23 F1978: Potential density CTQ kgm' '' at the end of the run (30 June 1979). on the 
bottom s-level. 
Bathymetry contour lines are every 100 m. The colours highlight the range 27 3-
27.7 kgm-^. 
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Figure 6.24 F1978: Cross section of potential density a„ kgm ^ at the end of the run (30 
June 1979). along the section i=125. The arrow indicates less highly stratified 
area 
Density contour lines are every 0.02 kgm'^ from 27.1 to 27.9. The colours high­
light the range 27.2-27.5 kgm ^ (note that this is a different colour scale to the 
other F1978 figures) 

123 



CHAPTER 6. FULL MODEL RUNS 

6.5 Mixed Layer Depth and Stratification 

The t iming and degree of stratification of the water column also varies between the 

three modelled years. In order to provide representative data that can be compared, 

mean density profiles were created for representative 'Bank' and 'Ocean'. The location 

of these is shown in Figure 6.25. 

Longi tude *Vv 

Figure 6.25 Location of the areas sampled to analyse changes in stratification 

The method used is as follows, and is repeated for both boxes and for each day of the 

model runs: 

1. For each grid point separately, the density is linearly interpolated in the vertical to 

a single set of depth levels 

2. For each new depth level the mean density across all the grid points within the 

box is calculated. Where the level is deeper than some of the points in the box, 

the mean value is taken only from those profiles that reach this depth. 

Vertical profiles were then plotted for the duration of the runs in order to compare 

the stratification behaviour in the different model years. Illustrative figures are found 

together on pages 127 to 135. 

We begin by discussing the deeper ocean box. On day one, at the start of November. 
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all three years show almost identical density profiles (Figure 6.26: 1 November). There 

is a shallow mixed layer to 50 m and below this the density increases to the bottom at 

nearly 1400 m. As time progresses the surface density in each year begins to increase, 

with F1978 and F1950 increasing more quickly than F2001. At the same time the mixed 

layer depth starts to deepen, again at a faster rate in the two colder years. By the 

middle of November the mixed layer has already doubled to 100m in F1978 and F1950 

(Figure 6.27: 15 November) whereas in F2001 it does not reach 100m until the beginning 

of December (Figure 6.28: 1 December). The density profile of the deeper water below 

the mixed layer remains very similar in all three years. This pattern continues as t ime 

progresses such that by the middle of February the mixed layer depth in F1950 and 

F1978 has reached 500m compared to 300m in F2001 (Figure 6.29: 8 February). As 

the mixed layer depth continues to increase, reaching 700 m by early March in F1978 

and F1950 (Figure 6.30: 6 March), the density of the deeper waters begins to show 

variation between the different years. The mixed layer in F1978 and F1950 is now at its 

maximum depth and as F2001 catches up, reaching 700 m in early April (Figure 6.32: 9 

April), the deep water profiles converge and are again very similar in all three years. This 

maximum mixing depth of 700 m is consistent with observations (e.g. Meincke, 1986; 

New and Smythe-Wright, 2001). Meanwhile, before the deep mixed layer had reached 

700 m F2001 was starting to show intermittent signs of the surface shallow stratification 

in late March (Figure 6.31: 27 March). This is much earlier than is the case in F1950 and 

F1978 where we do not see this until the beginning of May, with F1978 (Figure 6.34: 6 

May) following several days after F1950 (Figure 6.33: 1 May). Once the surface warming 

begins to take effect we see the surface density decrease again, while the water below the 

shallow stratification remains reasonably well mixed to 700 m. The seasonal pycnocline 

deepens from this point until the end of the runs at the end of June, at which point it is 

at approximately 100m (Figure 6.35: 30 June). Although there were differences in the 

stratification between the warm and cool years, there was not a significant difference in 

the maximum density reached. 

Moving on to the Bank box next we see that all three years again begin with weak 

stratification, being well mixed down to 40 or 50 m (Figure 6.36: 1 November). Straight 
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away from the beginning of the runs the surface density starts to increase, and the mixing 

depth increases. F1950 and F1978 increase in density more quickly than F2001 as we 

have seen previously in the initial analysis. The upper density quickly becomes equal to 

the deeper density, leading to the entire water column becoming well mixed by the end 

of November in runs F1950 and F1978 (Figure 6.37: 30 November). The water column 

in run F2001 is still weakly stratified around 100 m at this stage, and does not become 

fully mixed until late December (Figure 6.38: 28 December). From early December until 

June the upper 150 m in F1978 and F1950 appears to become slightly more dense than 

the deeper water, leading to an apparently unstable water column (Figures 6.38-6.43). 

This is likely to be an artefact due to the method of averaging the density profile across 

the area of the box. Figure 6.44 shows that the grid points which have a water depth 

greater than 150 m are dominated by areas with relatively lower density. In mid-April 

the density begins to decrease again as the summer warming begins to take effect, and 

shortly after this we begin to see restratification starting in F2001 (Figure 6.39: 20 

April). As with the ocean box the two colder years do not begin to restratify near the 

surface until later on, with F1978 again being slightly later (Figure 6.41: 24 May) than 

F1950 (Figure 6.40: 14 May) in the mid to late May. As the surface density continues 

to decrease in all three years, the pycnocline deepens until it reaches around 50 m in 

F2001 and 25 m in F1978 and F1950 at the end of May (Figure 6.42: 30 May). By the 

end of the run at the end of June the F2001 pycnocline has reduced to around 75 m, 

and F1950 and F1978 to 30-40 m (Figure 6.43: 30 June). Both F1950 and F1978 show 

a continual gradient of density down to the pycnocline, but F1978 has a shallow mixed 

layer from the surface to 20 m. F1950 and F1978 are very similar to each other below 

50 m whereas F2001 is less dense. 
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Mean Density Profiles 
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Figure 6.26 Mean density profiles OQ kgm~^ for the full model runs from the 'ocean box' on 
1 November. Black: F2001. Red: F1950, Blue: F1978. 
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Figure 6.27 Mean density profiles ae kgm'"^ for the full model runs from the 'ocean box' on 
15 November. Black: F2001, Red: F1950, Blue: F1978. 
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Figure 6.28 Mean density profiles ag kgm'"^ for the full model runs from the 'ocean box' on 
1 December. Black: F2001, Red: F1950. Blue: F1978. 
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Figure 6.29 Mean density profiles OQ kgm~^ for the full model runs from the 'ocean box' on 
8 February. Black: F2001, Red: F1950, Blue: F1978. 
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6 March 
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Figure 6.30 Mean density profiles ag kgm'"^ for the full model runs from the 'ocean box' on 
6 March. Black: F2001, Red: F1950. Blue: F1978. 
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Figure 6.31 Mean density profiles ao kgm ^ for the full model runs from the 'ocean box' on 
27 March. Black: F2001, Red: F1950, Blue: F1978. 
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9 April 
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Figure 6.32 Mean density profiles OQ kgm~^ for the full model runs from the 'ocean box' on 
9 April. Black: F2001, Red: F1950, Blue: F1978. 
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Figure 6.33 Mean density profiles ao kgm~^ for the full model runs from the 'ocean box' on 
1 May Black: F2001. Red: F1950, Blue: F1978. 
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Figure 6.34 Mean density profiles OQ kgrvT^ for the full model runs from the 'ocean box' on 
6 May. Black: F2001. Red: F1950, Blue: F1978. 
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Figure 6.35 Mean density profiles GQ kgm~^ for the full model runs from the 'ocean box' on 
30 June. Black: F2001. Red: F1950. Blue: F1978. 
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Figure 6.36 Mean density profiles OQ kgm for the full model runs from the 'bank box' on 1 
November. Black: F2001, Red: F1950, Blue: F1978. 
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Figure 6.37 Mean density profiles GQ kgm ^ for the full model runs from the 'bank box' on 
30 November. Black: F2001. Red: F1950. Blue: F1978. 
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Figure 6.38 Mean density profiles ao kgm ^ for the full model runs from the 'bank box' on 
28 December. Black: F2001. Red: F1950, Blue: F1978. 
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Figure 6.39 Mean density profiles GQ kgm ^ for the full model runs from the 'bank box' on 
April. Black: F2001, Red: F1950. Blue: F1978. 
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Figure 6.40 Mean density profiles ao kgm ^ for the full model runs from the 'bank box' on 
14 May. Black: F2001, Red: F1950. Blue: F1978. 
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Figure 6.41 Mean density profiles ao kgm ^ for the full model runs from the 'bank box' on 
24 May. Black: F2001, Red: F1950. Blue: F1978. 
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Figure 6.42 Mean density profiles no kgm ^ for the full model runs from the 'bank box' on 
30 May Black: F2001. Red: F1950. Blue: F1978. 
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Figure 6.43 Mean density profiles kgm * for the full model runs from the 'bank box' on 
30 June. Black: F2001, Red: F1950, Blue: F1978. 
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Figure 6.44 Density profiles CXQ kgm ^ for all points within the 'Bank box' from 2 January 
1979. 
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Chapter 7 

Model Validation 

7.1 Comparison of model to satellite S S T 

The surface temperature from run F2001 was compared to the satellite data described 

in Chapter 4 in order to validate the model results. The model results were averaged 

over the month for January, February, and March so that they may be compared to 

the monthly composite AVHRR data. Figures 7.1 to 7.3 show these comparisons, with 

model temperature on the left and satellite temperature on the right. In general we 

see a good agreement between the model and observational results. The cold patch is 

well represented in February and March, although it is less strong in the January model 

results than the satellite data indicate. The model temperature is slightly underestimated 

compared to the satellite SST by up to around 0.5°C in the South of the domain. A 

likely reason for this discrepancy is the use of climatological data to provide the initial 

and boundary temperature and salinity structure. Figure 7.4 shows the WOAOl March 

surface temperature as an example. Comparing this to Figure 7.3 we see that the 2001 

SST from the satellite data is warmer than the climatic mean from WOAOl , and the 

model results fit well with this mean (with the addition of the cold patch). 

137 



CHAPTER 7. MODEL VALIDATION 

•20 18 -16 -14 -12 
Longitude 

•20 -18 -16 
Longitude *W 

Figure 7.1 F2001: January sea surface temperature C from the model and from satellite 
data. 
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Figure 7.2 F2001: February sea surface temperature C from the model and from satellite 
data. 
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Figure 7.3 F2001: March sea surface temperature C from the model and from satellite data 
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Figure 7.4 March sea surface temperature C from the WOAOl data set. 

7.2 Geostrophic Currents 

Recall from Chapter 5 that the preliminary run T3 included no forcing other than the den­

sity variation and the rotation of the Earth. In other words T3 is effectively a geostrophic 

run and as such we expect the induced currents to be geostrophic. Geostrophic currents 

were estimated from the density distribution using the method described in ^^3.5 (page 

55) and were then compared to the currents generated by the model The locations of 

the sections that were used are shown in Figure 7.7. The model results fit well with the 

expected velocity distribution, with the pattern and magnitudes of the currents from the 

model being similar to those calculated from the density fields There is some deviation 

from the geostrophic currents in the vicinity of the bank, where the bed is very shallow 

and we cannot therefore expect the geostrophic calculation to produce accurate results. 

This is illustrated by Figures 7 5 and 7.6 where the reference level is only 150 m The 

influence of the bank can be seen in the shallowest area from around / = 105 to i = 135. 

Nevertheless the currents in the other areas, away from the top of the Bank, fit well with 

the expected currents 

Figure 7.8 shows the velocity along the same section but at a single t ime, the end of 

the run. We see that the model velocity fits well again except in the area over the 

bank Similar results are seen along other sections such as those shown in Figures 7.9 
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Figure 7.5 Geostrophic surface v component HIS • calculated from the density distribution 
of run T3 for the section j=30 over the length of the model run The section 
runs from i=10 to i=150. meaning the calculated velocity is equivalent to the v 
component 
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Figure 7.6 V component of surface velocity ms~^ from model run T3 for the section j=30 
over the length of the model run. Note that the effect of the shallow bank can be 
seen between i=105 and i=135. 
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I gnd point 

Figure 7.7 Location of the sections used in the calculation of geostrophic currents. The 
vertical line is section i=30 and the horizontal lines are j=5 (bottom) and j=30 
(top). Bathymetry contours are every 100m. 

(section j = 5 ) and 7.10 (section i=30) . The section j = 6 shows more deviation from the 

geostrophic currents, although the general structure is clearly related. As Figure 7.7 

shows, most of this section is very close to the steep slope. The largest deviations from 

the geostrophic currents are seen in the vicinity of the Bank 
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Figure 7.8 Model output v velocity and calculated geostrophic v velocity ins~^ from run T3 
for the section j=30 at 30 June. The solid line is the velocity calculated from the 
geostrophic equation, the dashed line is the velocity from the model. 
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Figure 7.9 Model output v velocity and calculated geostrophic v velocity ms~^ from run T3 
for the section j=5 at 30 June. The solid line is the velocity calculated from the 
geostrophic equation, the dashed line is the velocity from the model. 
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Figure 7.10 Model output v velocity and calculated geostrophic v velocity nis~^ from run T3 
for the section i=30 at 30 June. The solid line is the velocity calculated from the 
geostrophic equation, the dashed line is the velocity from the model. 

7.3 Time Averaged Currents 

Time averaged depth mean (0-500 m) currents for the geostrophic run T3 were calcu­

lated over a two month period from late March to late May. This period was chosen as 

it was after the large kinetic energy peak and corresponds to a relatively settled period 

(approximately 3500-4900 hours on Figure 5.7). The resulting velocity field is shown 
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in Figure 7.11. There is a clear anti-cyclonic circulation around the Bank in accordance 

with previous studies (e.g. Ellett eta/. , 1986; Huthnance. 1986; Mohn and White, 2007). 

The typical magnitude of the main current around the Bank is 10-20cms~^^ again in 

agreement with the literature (e.g. Mohn and White, 2007). The flow on top of the 

centre of the Bank, in the shallowest area, is less than 5cms~' in magnitude and also 

does not follow the direction of the main flow. The results of this run. which did not 

include any tidal forcing, indicate that a Taylor column process alone is enough to set 

up an anti-cyclonic flow, without requiring the added influence of the tidal rectification 

noted by Huthnance (1974). Figure 7.11 also shows a persistent clockwise eddy located 

in the top left corner. 

As discussed previously in Chapter 3, sigma-coordinate models are susceptible to errors 

in the calculation of the horizontal pressure gradient (Haney, 1991; Mellor et a/., 1994; 

Griffies, 2004). The results of the geostrophic run, as well as Run T 2 in which the 

bathymetry was used with no other forcing, show that the approach taken in POLCOMS 

has reduced this problem and the steep topography has not generated significant spurious 

currents. 
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Figure 7.11 Depth mean currents ms"* (top 500m) averaged over a two month period from 
run T3. Note that not all grid points have been plotted for clarity. 

Similar analysis was conducted for the full model runs (Figure 7.12), using a four week 

period so as to include a whole number of spring/neap tidal cycles. 

We see from Figure 7.12 that the main features are similar to those of the geostrophic 
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Figure 7.12 Depth mean currents ms'^ (top 500m) averaged over a 4 week period from run 
F2001 (A), F1950 (B), F1978 (C). Note that not all grid points have been plotted 
for clarity. 
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run T3. We see a broadly anti-cyclonic circulation around much of the Bank with similar 

magnitudes of 10 -20cms"^ This is true particularly of run F2001. whereas F1950 and 

F1978 show a weaker circulation. In all three cases the anti-cyclonic nature of the flow 

breaks down along the bottom part of the domain. 

The eddy that was seen in the top left corner of Figure 7.11 has, in the full runs, expanded 

to run down the entire left edge of the domain. At first glance we might assume that 

the open boundary was not behaving correctly here, causing water to be trapped along a 

perceived coastline. However, we do see flow going across this boundary in some areas, 

especially when looking at the instantaneous currents. Figure 7.13 shows an example of 

the surface velocity from run F2001 at a time within the period that was averaged. This 

counter current was not seen in the runs that did not include tides, so is presumably 

due to interaction between the tidal currents and the steep slope. It has previously been 

noted that there is strong tidal amplification in this area (Huthnance, 1974). 
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Figure 7.13 Instantaneous surface currents ms~^ from 9 April of run F2001. Note that not 
all grid points have been plotted for clarity. 

7.4 Summary 

In general the model results agree well with existing data and measurements. The sea 

surface temperature is slightly underestimated for the year 2001. but f its well with the 

climatological data that were used for initialisation and boundary forcing. This indicates 
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that for future work it may be desirable to assimilate real data measurements with the 

climatological field in the boundary forcing. 

The circulation is predominantly anti-cyclonic around Rockall Bank, consistent with 

previous work (e.g. Ellett et aL, 1986; Huthnance. 1986; Mohn and White. 2007). and 

agrees well in geostrophic runs with the currents that would be expected from the density 

distribution. 

The currents along the southern flank of the Bank do not fit so well with observed 

data. 

146 



CHAPTERS. DISCUSSION 

Chapter 8 

Discussion 

8.1 Annual Variation in Dense Water Formation 

The principal a im o f th is research was to fi l l in some gaps in our knowledge o f the 

dense water format ion at Rockall Bank by establ ishing how much it varies when the 

meteorological condi t ions change. W e saw in Chapter 6 t ha t there were signi f icant 

differences between the 'coo l ' and 'wa rm ' s imulated years in the t i m i n g and degree of 

the fo rmat ion o f dense water over Rockal l Bank . In order t o qua l i ta t i ve ly compare 

these results, two density parameters were ca lcu lated: one for a sample area on t op o f 

the Bank, and one over the deeper ocean. T h e locat ion o f these sample areas is the 

same as those used in the s t ra t i f i ca t ion analysis in Chapter 6 and they are i l lustrated by 

Figure 6.25. The density parameter was produced by tak ing the m a x i m u m density value 

found w i th in the t o p 500 m o f the water co lumn in each o f these t w o locat ions. These 

two parameters, wh ich we label as and ao for the Bank and ocean boxes respectively, 

may then be used to compare the evo lu t ion o f the dense water in the three d i f ferent 

model runs. Figure 8.1 shows a compar ison o f C T B and ao in two o f the runs: F2001 and 

F1978. W e wi l l begin by look ing a t the di f ference in the Bank density parameter GB in 

2001 and 1978, indicated by the lines w i t h markers. 

We see f rom Figure 8.1 tha t the peak Bank density a s in F1978 is much higher than 

in F2001—reach ing 2 7 . 4 5 k g m ^ ^ in F2001 and 2 7 . 6 8 k g m ' ^ in F1978. Th is leads to a 

typical difference between GB and ao o f 0 .2 -0 .3 k g m " ^ in F1978 compared to only 0.1 
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Figure 8.1 Maximum density ag kgni~'^ value found in the top 500 m of sample areas over 
the Bank (lines with markers) and offshore (without markers) in F2001 (solid lines) 
and F1978 (dashed lines). The areas sampled are shown in Figure 6.25. 

kgm~^ in F2001 whi le the m a x i m u m dif ference reached is 0.36 k g m ~ ^ in F1978 and only 

0.14 k g m " " ' in F2001 . It is no t jus t the s t rength o f the density di f ference t h a t varies: there 

is also s igni f icant var iat ion in the dura t ion o f the densest water between t h e two years. In 

F2001 GB value begins t o increase at the star t o f February before reaching i ts m a x i m u m 

value in m id -March . It then immediate ly begins t o decrease again, un t i l i t levels o f f in 

the second half o f Apr i l . In F1978, on the other hand, a s starts t o increase much earlier 

in mid-December , and the rate o f increase is quicker than in F2001 . T h e peak value 

is reached in m id -March , similarly t o F2001 . a jg then decreases at a steady rate which 

cont inues unt i l the run finishes at the end o f June. A t the end of the run the value in 

F2001 is lower than it was at the star t , whereas in F1978 then f inal (JB value is a lmost 

0.1 k g m ~ ^ higher than the in i t ia l value. These marked differences in the evo lu t ion o f the 

density s t ruc ture may be a t t r i bu ted t o the d i f ferent meteorological cond i t ions as bo th 

runs were init ial ised f rom the same state, and receive the same boundary tempera tu re 

forcing. 

We can compare the F2001 results w i th the tempera tu re series for 2 0 0 1 / 2 0 0 2 f rom the 
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satel l i te data analysed earlier. As listed in Tab le 4 .1 a surface cold water patch was 

observed over the Bank f rom December -Apr i l inclusive du r ing the w in te r o f 2 0 0 1 / 2 0 0 2 . 

This correlates w i t h the decreasing GB value in Apr i l o f the F2001 model run. However, 

the dense water d id not fo rm as early as December in the mode l . It can be seen beg inn ing 

to fo rm at the star t o f January, bu t only begins t o s t rengthen in February. 

Looking now to the model results f r om the area over the deep ocean (F igure 8 . 1 , lines 

w i thou t markers) the results are very d i f ferent : there is a lmost no di f ference in the 

behaviour o f the density parameter ao in the two model led years. Th is indicates t ha t 

meteorological changes are not enough on thei r own t o produce the large var ia t ion in 

the dense water fo rmat ion seen over Rockal l Bank. In o ther words, the topography o f 

the Bank hugely ampli f ies the effect o f the increased heat f lux and is crucia l in a l lowing 

dense water to fo rm, and therefore cascade, in th is area. Another feature t ha t we see in 

the ao da ta is a s t rong apparent spr ing-neap t ida l signal f r om November unt i l around 

early February. Th is is l ikely due to vert ical movemen t o f the pycnocl ine caused by the 

tides. W e saw in Chapter 5 tha t there is a s t rong spr ing-neap t ida l signal in th is area o f 

the model doma in . Th is modi f icat ion o f the ao value disappears af ter February, wh ich is 

around the t ime tha t the mixed layer depth o f th is box reaches 500 m (see Figure 6.29 for 

example) . Th is is the max imum depth t ha t was used in the ca lcu lat ion o f ao- Therefore, 

as the mixed layer starts t o become deeper than th is, the t ida l movement is no longer 

able t o mod i f y the density in the upper 500 m. and we see the t ida l signal disappear f rom 

the ao values. 

The s t rong dif ference in the effect o f chang ing meteoro logy on the Bank and ocean 

densities is conf i rmed by the 5 5 T data t h a t were analysed in Chapter 4. Recall t ha t 

a similar analysis was conducted, in wh ich the median tempera tu re was calculated for 

two sample boxes. Again there was one box over the Bank, and one over the deeper 

ocean. The i r locat ion is shown in Figure 4.5 and we label the tempera tu re parameters 

produced TB and To respectively. Figure 8.2 shows TB and To for two example years: 

1993 /1994 and 1996 /1997 . W e see a similar pa t te rn t o t h a t o f the density parameters, 

namely t h a t the temperature over the Bank TB is more susceptible t o change than the 

temperature over the deep ocean To- Therefore we see var iabi l i ty in the tempera tu re 
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difference between the Bank and ocean areas. T h e effect here is no t as ex t reme as in the 

model results, perhaps because there was not such a large dif ference in meteorological 

condi t ions as there was between 1978 and 2 0 0 1 . A l ternat ive ly , th is could be an ef fect o f 

using satel l i te sea surface tempera ture data wh ich can only measure the very surface o f 

the water, wh ich is susceptible t o short t ime scale solar and w ind hea t i ng /coo l i ng . 

14 

7 

Month 

Figure 8.2 Mean 5ST°C from the AVHRR sample areas over the Bank (lines with markers) 
and offshore (without markers) in 1993/1994 (solid lines) and 1996/1997 (dashed 
lines). The areas sampled are shown in Figure 4.5. 

The dif ference in density d is t r ibut ion between the t w o model led cold years. F1950 and 

F1978 is much smaller than it was between F1978 and F2001 . Figure 8.3 shows GB 

and Go in F1978 and F1950; we see there is much more s imi lar i ty between these years 

than there is in Figure 8.1 and bo th o f the cold years have typical density dif ferences o f 

0 .2-0.3 k g m " ^ . Nevertheless there are some var iat ions. T h e m a x i m u m densi ty di f ference 

reached in F1950 is 0.32 k g m " ^ . s l ight ly lower t han F1978's 0.36 k g m " ^ and there are 

also some differences in the t im ing and evo lu t ion o f the dense water. T h e density over 

the Bank, OB, in F1950 begins t o increase s l ight ly earlier than it does in F 1 9 7 8 — t h e 

first half o f December rather than the second h a l f — b u t the rate o f increase is slower. 
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Th is leads to GB in F1978 over tak ing F1950 at the s ta r t o f January. Whereas OB in 

F1978 reaches i ts peak (27.68 k g m " ^ ) in m id -Ma rch , F1950 reaches its m a x i m u m value 

(27.63 k g m " ^ ) earlier, in late February. It remains around th is level unt i l m id -Apr i l when 

it begins t o decrease. Conversely, in F1978 GB begins t o decrease immediate ly af ter 

reaching the peak value. T h e rate o f decrease is s l ight ly quicker in F1950, such t h a t the 

final value o f GB is s l ight ly higher in F1978 (by 0.03 k g m ~ ^ ) . In bo th s imulat ions GB is 

higher at the end than it was at the star t . 
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Figure 8.3 Maximum density OQ kgm~^ over the Bank (lines with markers) and offshore 
(without markers) in F1950 (solid lines) and F1978 (dashed lines). The areas 
sampled are shown In Figure 6.25. 

8.2 Cascading 

Al though there are clear areas of dense water fo rmed, t o vary ing degrees, in each o f the 

full runs, we do not see the degree o f cascading t ha t was present in the prel iminary run T 6 . 

In F2001 part icularly, where the density di f ference between the Bank and deep sea areas 

was smaller, there is no evidence a t all of the dense water cascading downslope. Instead, 

the water remains on t op o f the Bank and circulates ant i -cyc lonica l ly un t i l i t disappears 
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due t o warming in the spring. Th is is similar t o the behaviour o f the prel iminary run 

T 9 , which featured the in i t ia l density d is t r ibu t ion and the 2 0 0 1 / 2 0 0 2 heat f lux bu t no 

other forc ing, and also showed no cascading. Aga in th is impl ies t h a t i t is the surface 

heat f lux and resul t ing dense water t ha t is most impo r tan t , and add ing w ind and t ida l 

forcing does not increase the water 's abi l i ty t o cascade. Th i s suppor ts the val id i ty o f the 

hypotheses used in the reduced-physics models o f Symonds and Gardiner-Garden (1994) 

and Shapiro and Hil l ( 1997) . 

F1950 and F1978 on the other hand do show some signs o f cascading. However, th is 

is not as f requent as i t was in T 6 . In addi t ion whereas T 6 showed water cascading 

down bo th the southern and nor th eastern slopes o f the Bank, in F1950 and F1978 

water appears only t o move down the southern slope. Figure 8.4 shows the density for 

a selected area along the southern slope o f the Bank for selected days f r o m F1978. W e 

see t ha t in i t ia l ly there is no dense water over the Bank; by January dense water has 

started to accumulate and later in February and March we see a ' t ongue ' o f dense water 

prot rud ing downslope. 

Dense water cascades have been observed at Rockall Bank, so i t is perhaps surpr is ing 

tha t we do not see clear examples in the s imulat ions conduc ted in th is study. Th is could 

be due to the part icular years chosen, or l im i ta t ions o f the model parametr iza t ion o f 

processes such as internal wave mix ing . Nevertheless, the model results here provide a 

useful comparison between di f ferent w in ter condi t ions. 
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Figure 8.4 Bottom density for selected days of F1978. Shaded contours are potential density 
OQ kgm~^. Bathymetry contours (solid lines) every 100m are also shown. A: 15 
November 1978, B: 3 January 1978, C: 14 February 1979. D: 19 March 1979. 

8.3 Summary 

By compar ing the results o f the three s imulat ions F 2 0 0 1 , F1978 and F1950 we deduce 

tha t the dense water fo rmat ion a t Rockall Bank is ext remely suscept ible t o changes 

in w in ter air temperature . T h e topography o f the area great ly ampl i f ies the ef fect o f 

the changing heat f lux and w i t h only around a 2 ° C di f ference in mean air tempera tu re 

we saw a three-fold increase in the di f ference between the t w o densi ty parameters as 

and (Jo- It is therefore likely t ha t c l imate change wi l l have a s igni f icant impact on th is 

system. In part icular, cascading d id not occur at all when the air tempera tu re was high 

and not much dense water was fo rmed. A reduct ion in dense water cascading here 

would have bo th physical and biological impl icat ions. Cascading adds t o the vent i la t ion 

of deeper water, and faci l i tates shelf-ocean exchange (Shapi ro et ai, 2003) . Fur ther 

research in this area to establish the relat ive size o f the con t r i bu t i on f r o m cascading t o 

these processes is needed in order t o ful ly understand the potent ia l effects o f any fu tu re 
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reduct ion in dense water fo rmat ion . 

On the other hand, the di f ference in mean w in te r w ind speed between 1978 (relat ively 

high w ind ) and 1950 (relat ively low w i n d ) does not appear t o have a s igni f icant inf luence 

on the amoun t or t im ing o f the dense water fo rma t ion . 
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Chapter 9 

Conclusions 

This study has used bo th numerical model l ing and analysis o f remotely-sensed sea surface 

temperature data t o invest igate the fo rmat ion o f co ld , dense water over Rockall Bank. 

Previous work has found evidence o f this water fo rmat ion ( M o h n and W h i t e , 2007) and 

its subsequent cascading (Shapiro e t a/., 2003; Ivanov et a/., 2004) , bu t l i t t le is known 

about the var iabi l i ty o f these processes here. The a im o f this research was to bui ld 

upon these previous results and add to our knowledge o f the fo rma t ion and cascading 

o f dense water at Rockall Bank by invest igat ing its var iat ion and sensi t iv i ty t o changing 

c l imatology. Satel l i te data were used to provide a long t ime-series o f surface tempera tu re 

so t ha t the annual var iat ion could be studied. Secondly, the P 0 L C 0 M 5 mode l was used 

to fu l ly s imulate dense water fo rmat ion in a number o f sample years, a l lowing us t o 

determine the con t r ibu t ion f rom changing air tempera tu re and w ind speed. 

Simpler in i t ia l model runs demonst ra ted t h a t the model was behaving reasonably. T h e 

results o f these ini t ia l runs showed t h a t the model set up is capable o f accurate ly repro­

ducing the ant i -cyclonic c i rcu lat ion around the Bank, as well as a l low ing the fo rmat ion 

and cascading of dense water. When ful l a tmospher ic and t ida l forc ing were later in t ro ­

duced the results were reasonable. There does appear t o be some in terac t ion between 

the ba thymet ry and the t ide a long the steep slope close to the lef t hand edge o f the 

model doma in . In all three ful l s imulat ions the mixed layer dep th reached 700m in the 

deep water area, in agreement w i t h previous f indings (e.g. Meincke, 1986) . 

The years chosen for the ful l s imulat ions were 1 9 5 0 / 1 9 5 1 , 1978 /1979 , and 2001 /2002 
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( labelled F1950. F1978 and F2001 respect ively) . T h e w in te r o f 2 0 0 1 / 2 0 0 2 was 1.0-

1.5 °C warmer than the c l imatological mean and was selected to be model led as a sample 

"warm year" . By cont rast the win ter air t empera tu re in bo th 1 9 5 0 / 1 9 5 1 and 1978 /1979 

was 0 .5 -1 .0 °C cooler than the c l imato log ica l mean. Bo th were chosen t o be model led 

as "cool years" as they have di f ferent w ind speed anomal ies, so a compar ison o f these 

two s imulat ions would h ighl ight the con t r ibu t ion t o dense water fo rmat ion t ha t the w ind 

mix ing and coo l ing has. 1950 /1951 had lower than average winds (by 1 0 - 1 5 % ) , and 

1978 /1979 higher than average (by around 1 0 % ) . 

The results o f bo th the satel l i te SST data and the model runs showed tha t there is 

s igni f icant var iat ion in the fo rmat ion o f cold water over Rockal l Bank in d i f ferent years. 

The SST analysis found t ha t cold water l inked w i t h Rockal l Bank could be seen every 

year across the 1992-2004 study per iod, in accordance w i t h previous work ( M o h n and 

Wh i te , 2007) . There were two modes ident i f ied: a f r on t corresponding t o the southern 

edge o f the Bank, and a more d is t inct cold patch located over the Bank . There was 

signi f icant annual var iat ion in the length o f t ime t h a t these features cou ld be seen in 

the data , w i t h the presence of the d is t inc t cold patch vary ing f rom 0 t o 5 months in 

dura t ion . Analysis o f the tempera tu re di f ference between two sample areas—one on 

top o f the Bank, one over deeper wa te r—showed a clear correlat ion between the mean 

temperature dif ference dur ing the w in te r and the dura t ion o f the cold water pa tch . Less 

intu i t ive ly there was also an inverse correlat ion between the mean tempera tu re di f ference 

and the to ta l dura t ion of the f ron t and cold patch combined. W e therefore also saw 

an inverse correlat ion between the to ta l du ra t ion o f the f ron t and cold patch, and the 

durat ion o f the cold patch alone. Current ly we do no t have an explanat ion as t o why 

the tempera tu re difference and f ron t dura t ion are l inked in th is coun te r in tu i t i ve way and 

fur ther research would be required in order to fu l ly understand these results. 

The results o f the ful l model runs showed t h a t a decrease in air t empera tu re has a 

signi f icant ly larger effect on the Bank 's density than it does on the deeper ocean. In 

other words, the topography o f Rockal l Bank great ly ampl i f ies the effect o f the increased 

surface heat f lux, and the Bank-ocean density di f ference was up to three t imes greater 

in runs F1950 and F1978 than in F2001 . Add i t iona l l y the dense water lasted longer in 
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F1950 and F1978. In F2001 the dense water comple te ly disappears by m i d - M a y and is 

replaced by water t ha t is less dense than in the sur round ing areas. By cont ras t , in bo th 

F1950 and F1978 there is st i l l some trace o f dense water remain ing at t h e end o f June. 

The simi lar i ty o f runs F1978 and F1950 suggests t ha t dense water fo rmat ion at Rockal l 

Bank is much more sensitive t o winter air t empera tu re t han w ind speed. 

A large amoun t o f cascading was seen in a s imple run wh ich included surface heat 

f lux, but a homogeneous ini t ia l density d i s t r i bu t ion . W h e n the more realistic density 

d is t r ibut ion was in t roduced th is cascading was inh ib i ted and the dense water t ook longer 

t o fo rm. Th is was also the case in the ful l run F 2 0 0 1 . F1950 and F1978 d id show 

some downslope f low o f dense water, a l though th is was far less o f ten than in the in i t ia l 

test run. T h e s igni f icant reduct ion in dense water f o rma t i on , and subsequent loss o f 

cascading, in the warmer year suggests t h a t c l imate change could potent ia l ly have a 

large effect on th is system. Dense water cascades are impo r tan t for the vent i la t ion o f 

intermediate waters, and for shelf-ocean exchange (Shapi ro et a/.. 2003) and therefore 

the var iabi l i ty o f cascading is impor tan t . Addi t iona l ly , the cold water over Rockall Bank 

is associated w i t h high product iv i ty ( M o h n and W h i t e , 2007) and therefore any change 

in the fo rmat ion o f dense water fo l lowing chang ing c l imate could have a s igni f icant 

impl icat ions for the local ecosystem. 

It should be noted t ha t the model s imulat ions conducted here all s tar ted w i t h t he same 

c l imat ic in i t ia l density d is t r ibu t ion , in order t o invest igate only the differences caused 

by the meteorology. Further research wou ld be needed t o elucidate the detai ls o f wha t 

would happen if changing sea tempera ture were also inc luded. 
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The main conclusions of th is s tudy are as fo l lows: 

• The P O L C O M S model was successfully appl ied t o the Rockal l Bank area. 

• Dense water is fo rmed ( t o vary ing degrees) on t o p o f the Bank each year. T h e 

durat ion o f the cold water patch is l inked to the magn i tude o f t he tempera tu re 

difference between the Bank and open ocean over the w in ter . In add i t ion , where 

the cold water is not observed for a lengthy per iod, there tends to be a more 

long-l ived SST f ron t associated w i t h the Bank. 

• The topography o f Rockal l Bank great ly ampl i f ies the effect o f changes in meteo­

rology on the fo rmat ion o f dense water. T h e dense water fo rma t ion is much more 

sensitive t o air tempera tu re than w ind speed, w i t h around a 2 ° C air t empera tu re 

difference leading to a three-fold increase in the density di f ference between Bank 

and ocean. 

• Despite dense water being formed there was no evidence o f cascading in the warm 

year o f 2001 /2002 . There was l imi ted evidence in the two cool years 1 9 5 0 / 1 9 5 1 

and 1978 /1979 . 

• The large var iabi l i ty in the fo rmat ion and cascading o f dense water under d i f ferent 

meteorological condi t ions suggests t ha t c l imate change could have a major im ­

pact on the Rockall Bank system, bo th in te rms o f the ven t i la t ion and shelf-sea 

exchange, and on the local ecosystem. 
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Appendix A 
Matlab Routines used for data pre-
and post-processing 

This Append ix contains a list o f the M a t l a b rout ines, and the associated variables and 
arrays, used in the data pre-processing and in processing the model o u t p u t . Those 
routines which perform the processes in the f low charts in Figures 3.7 t o 3.13 are h igh­
l ighted. 

2 files are used in several folders: 

d a y n o 2 d a t e . m Calculates the day number f rom the date ( d / m / y ) 

d a t e 2 d a y n o . m Calculates the date ( in the fo rm o f a s t r ing, and integers for d a y / m o n t h / y e a r ) 
f rom the day number (and year - leap years) 

Satellite SST Data Processing 

Routines 

Note: Files w i th Night at the end process n igh t - t ime data , files w i t h o u t process day- t ime 
data. Files w i t h Combined in the name use an average o f the two—these are the ones 
used here. 

R l _ E x t r a c t . m Reads in the data for the ent i re per iod O c t 1992-Dec 2003. Uses the 
equat ion f rom JPL t o convert f r om thei r uni ts in to °C. Replaces all values less than 
2.5 w i t h NaN . Also calculates a mean for each m o n t h over the 10 years. Then 
saves the data, one file per m o n t h . 

R 4 _ P l o t . m Plots normal f igures for each m o n t h 

R 4 _ P l o t _ a n o m a l y . m Plots di f ference between mean and actua l SST for each mon th 

R 4 _ P l o t _ c o l o u r s . m P lot each m o n t h but w i t h "s t r ipy" colour scale t o t ry and enhance 
the contrast . 

R S . a n a l y s e . m Calculate mean and median SST for boxes over the bank and over ocean 
for each mon th . Save in co lumns t o be p lo t ted in Grapher. nb Grapher f i le needs 
manual adding o f more co lumns - da te f o rma t etc. 

W l - E x t r a c t S S T . m Ext racts the weekly files t ha t were downloaded, does same calcu­
lat ions as Rl.Extract and saves and plots data 
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Variables 

S S T T h e SST for the part icular m o n t h . 500x1000x10 or 500x1000x11 ( O c t / N o v / D e c 
have an extra year t o get the whole o f t h a t w i n t e r ) . Th is is a large area - don ' t 
p lot the whole lot . 

m e a n S S T mean SST for the part icular m o n t h over the 1 0 / 1 1 years. 500x1000. 

w e e k l y S S T weekly data 500x1000x4 as only dowloaded 4 weeks' w o r t h as t r ia l 

lat la t i tude values: 46.13 to 68.07 

Ion long i tude values: -26.22 t o 17.69 

Bathymetry 

Routines 

R l N . E x t r a c t b a t . m Reads data f rom G E O D A S 

R 2 N - S a v e b a t . m saves R b a t l N as a .dat f i le w i t h 3 co lumns - Ion, la t , and dep th . 

R 4 . R e d o d o m a i n . m Rotates the domain (uses R b a t l N ) by mu l t i p l y i ng the coordinates 
by a ro ta t ion matr ix . Changes the or igin o f the coords t o the S W po in t o f the 
domain [min (RlonlM), m i n ( R l a t N ) ] . so t ha t the ro ta t ion is abou t th is po in t . Then 
uses gr iddata t o in terpolate t o the new coords. — this performs step "Fit to 
rotated grid" in flow chart Figure 3.7. 

R S S a v e R o t b a t . m Saves ro ta ted bathy as an ascii f i le t o be read i n to Surfer and 
c ropped / i n te rpo la ted /smoo thed 

Now open the file in surfer and gr id using mov ing average t o smoo th t h e data . — this 
performs step "Smooth in Surfer using moving average" in flow chart Figure 3.7. 

R 6 E x t r a c t R o t a t e d S m o o t h e d B a t . m Reads the smoothed ro ta ted bathy f rom surfer 

R T C r e a t e M o d e l F i l e s . m Creates ascii fi les o f bathy and mask in correct f o rma t for 
model input . — this performs steps "Write bathymetry file" and "Write mask 
file" in flow chart Figure 3.7. 

R l O C r e a t e L a t A r r a y . m Makes a file con ta in ing the la t i tude at each po in t , as needed 
for heat f lux calculat ion in mode l . Order o f points as normal ( b u t only 1 level). 
— this performs steps "Calculate latitude and longitude of each grid point" and 
"Write files" in flow chart Figure 3.12. 

Variables 

R b a t l N 361 x 451 array. Grid is R I a t N and R I o n N 

R I a t N 361 length vector. 50IM t o 62N . Steps sti l l 2 mins 

R I o n N As R Ion 

R b a t R o t a t e d Bathy ( R b a t l N ) ro ta ted to new coords R X c o o r d and R Y c o o r d 
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s m o o t h b a t R o t Ba thy which was ro ta ted then smoo thed in surfer. 55 x 150. Uses s X 
and s Y 

s X Rota ted x coords o f s m o o t h b a t R o t . 150 po in ts f r om 6 to 15 

s Y Rota ted y coords o f s m o o t h b a t R o t . 55 po in ts f r om 0.25 to 3.5 

R o t M a t r i x The ro ta t ion mat r ix used in R 4 t o ro ta te t he ba thymet ry 

newx M a t r i x o f the x coordinate o f each g r idpo in t o f R b a t l l M in new, ro ta ted , coords 

newy As newx bu t y coords 

R X c o o r d New X coordinates to f i t the ba thyme t r y t o a regular gr id . 564 po in ts f rom 
m i n ( n e w x ) t o max (newx) 

R Y c o o r d 522 points f rom m i n ( n e w y ) t o m a x ( n e w y ) nb: The lengths of these chosen 
so that total area of bathy data remains at approx 361 x 451 (Pythagoras) 

Initial Temperature and salinity 

Original files were read in w i t h the for t ran rout ine ReadWOA01.exe wh ich saved the 
ou tpu ts as ascii files (1 per m o n t h ) to read in to M a t l a b . 

Routines 

R l _ R e a d D a t a . m Reads in the data files and saves the tempera tu re and sal in i ty as 4d 
arrays ( Ion, lat. level, m o n t h ) 

R 3 _ R o t a t e . m Rotates and interpolates t e m p and sa l t o the model doma in and saves 
as r o t t e m p and rotsa l — this performs step "Fit to rotated grid in Matlab" for 
the monthly files in flow chart Figure 3.8. 

R 4 _ S u r f o u t . m Creates ascii files for t and s for in te rpo la t ion in to Surfer ( in preparat ion 
for conver t ing t o scoords - need all gaps f i l led) . Creates a file per m o n t h , w i t h 
co lumns: Ion, lat, 24 t columns (surface f i r s t ) , 24 s co lumns (surface f i rs t ) 

Now open the files in surfer and gr id using kr igg ing, 150x55 gr id points. — this performs 
step "Interpolate in Surfer using krigging" for the monthly files in flow chart Figure 
3.8. 

R 5 _ S u r f i n . m Reads the files in terpolated in Surfer back in , and stores as t e m i n t e r p 
and sa l in terp 

R 6 a - R e a d S e a s o n a l s . m In order t o conver t t o the scoords, we need a few levels deeper 
than the 1500m of the month ly ts f i les. So use the seasonal data wh ich go to 
deeper levels. Open the files and saves t hem in ascii fo rmat for open ing in surfer. 
— this performs step "Fit to rotated grid in Matlab" for the seasonal files in flow 
chart Figure 3.8. 

Now open the files in surfer and gr id using k r igg ing , 120x120 grid points . — this 
performs step Interpolate in Surfer using krigging" for the seasonal files in flow 
chart Figure 3.8. 
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R 6 b - R e a d S e a s o n a l s . m .grd files are read back and then ro ta ted as w i t h o ther da ta , 
and the ro ta ted seasonal ts then stored as s e a s t e m p and s e a s s a l — this performs 
step "Fit to rotated grid in Matlab" for the seasonal files in flow chart Figure 3.8. 

R 7 J n t e r s c o o r d l . m Th i s calculates the z dep th a t each po in t on each scoord level and 
stores in array z z z S — this performs step "Calculate position of s levels" in flow 
chart Figure 3.8. 

R 8 . l n t e r s c o o r d 2 . m Uses t e m i n t e r p and sa l in te rp , and s e a s t e m p / s e a s s a l for deeper 
levels. Vert ica l ly interpolates the ts data f rom z coords t o scoords (ie in terpolates 
t o the depths in z z z 3 ) . A lso reverses the ts array so t ha t now i t starts a t the 
b o t t o m level. New scoord T and S arrays have 22 levels only at th is stage — this 
performs steps "Combine monthly and seasonal data" and "Linearly interpolate 
data from z to s levels" in flow chart Figure 3.8. 

R 9 _ w t s . m Interpolates in t ime t o the star t o f the model run. Then wr i tes the in i t ia l 
T S fi le for the model (s tar t ing in S W corner, does all t ( b o t t o m f i rs t ) then all sal 
— this performs steps "Linearly interpolate in time for desired start points" and 
"Write TS file" in flow chart Figure 3.8. 

Variables 

t e m p The f irst tempera ture array. Size 120x120x24x12 (ie 120 Ion and lat po in ts . 24 
depth levels, 12 months ) T o p - b o t t o m 

sal As tern but sal ini ty T o p - b o t t o m nb temp and sal are also used as the names of the 
initial arrays for the seasonal files in R 6 (but not saved) 

W O A I o n -29.875 to -0.125 120 po in ts 

W O A I a t 40.125 N to 69.875 120 points 

ro t tem t emp ro ta ted to the model bathy (so 150x55, use s X / s Y ) . T o p - b o t t o m 

rotsal Rotated sal. Detai ls as r o t t e m 

temin te rp In terpolated (kr ig ing) r o t t e m p in surfer t o ensure there is someth ing at each 
po in t so t ha t we can interpolate t o scoords next. St i l l coords s X / s Y T o p - b o t t o m 

sal interp As t emin te rp 

s e a s t e m p The t emp f rom the S E A S O N A L files (wh ich go deeper) . On ly levels 25-
28 are saved, as these are the ones we need t o add t o the mon th l y data (wh ich 
have levels 1-24). Is ro ta ted t o s X / s Y . Dimensions: Y .X , level, season. Size 
55x150x4x4. Note t ha t seasons go W i n t e r ( l ) , Spr ing (2 ) , Summer (3 ) , A u t u m n ( 4 ) 
T o p ' - b o t t o m 

z z z 3 T h e depth ( in z coords) o f each scoord level for each xy point . Uses same code 
as mode l . 24 levels. B o t t o m - T o p 

s e a s A vector de termin ing which of the seasonal data t o use w i t h wh ich m o n t h . 

temi2 t e m i n t e r p (and s e a s t e m p for deeper da ta ) in terpo la ted f rom z coords t o 22 
evenly spaced s coords ( the z depth in z z z 3 ) . Has 22 levels, ie 2 fewer than used 
in the model . B o t t o m - T o p 

sal i2 As t e m i 2 
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t e m 3 The final tempera tu re array. t e m i 2 in terpo la ted t o correct t ime. Th i s is t he array 
wr i t t en t o the f i le for the mode l . B o t t o m - T o p 

sal3 As t e m 3 

Boundary Temperature and Salinity 

Routines 

B o u n d a r y T S l . m Use the re-wr i t ten indexing in the model code. Th is uses the index 
ou tpu t i b o i n d e x . m a t t o pick ou t the relevant po in ts in the T S arrays. Clockwise 
f rom SE. An addi t ional opt ion for longer runs wh ich use new version o f bost 
(bost long) also wr i tes a file conta in ing the t imes re lat ing t o each set o f values. 
— this performs steps "Use index of boundary points to extract boundary zone 
data", "Write TS file" and "Write file with time (days since start of run) for each 
monthly dataset" in flow chart Figure 3.9. 

T l - 5 b o u n d a r y . m Create files for specific model runs. 

Variables 
t e m p b o u n d T h e array o f boundary tempera tu re values, s ta r t ing in the SE corner and 

going clockwise. In B o u n d a r y T S l . m , the size is 1576x22x12 for the 1576 po in ts 
in the relaxat ion zone, 22 depth levels and 12 months . 

sa lbound As t e m p b o u n d bu t sal inity 

ibonew T h e array o f index values w i th in the relaxat ion zone 

Wind 

Routines 

Note tha t there are two data sources as the or iginal source ( C R U . U E A ) does no t go 
back as far as 1950. 

R l - R e a d D a t a . a s c i i . m Reads in the CRU u and v files (one per year, w i th 6 hour ly 
da ta ) . Stores each w ind component as an array 97x48x1460 — 97 Ion po in ts , 48 
lat points. 3 6 5 * 4 t ime steps ( = 6 hour ly) 

R l _ e x t r a c t N e t C D F . m Reads in the N O A A netcd f u and v files (one per year, w i t h 
6 hourly da ta ) using the N e t C D F tools f rom CSIRO. Because d i rectory needs t o 
be changed t o where the CSIRO files are, need t o have ful l d i rectory paths for 
opening and saving heat files - check t h e m ! . Stores each w ind componen t as an 
array 97x48x1460 — 97 Ion points, 48 lat po ints , 3 6 5 * 4 t ime steps ( = 6 hour l y ) 

R4a_RotateSpeed5.m Uses same method as the bathy ro ta t ion ( R 4 _ R e d o D o m a i n . m ) 
t o f i t the w ind t o the same rotated doma in . No te t ha t this ro ta t ion actua l ly ro­
tates the C O O R D I N A T E S . W e also need t o ro ta te the direct ions o f the w ind stress 
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componen t , f rom zona l /mer id iona l t o the new X / Y d i rect ions. So th is requires the 
w ind vectors t o be ro ta ted also (as w i t h the boundary t ida l da ta ) — this performs 
the steps "Fit to rotated grid in Matlab" and "Rotate wind vectors to find com­
ponents in rotated system" for the data obtained from CRU in flow chart Figure 
3.10. 

R 4 _ R o t a t e N e t C D F n e w . m As above but for the N e t C D F fi les — this performs the 
steps "Fit to rotated grid in Matlab" and "Rotate wind vectors to find components 
in rotated system" for the data obtained from NOAA in flow chart Figure 3.10. 

R S a . C r e a t e M o d e l F i l e S p e e d s . m Wr i tes data f i le. Every th ing for the run is one big 
file - U then V components for each t ime step in t u rn — this performs the step 
"Write wind file" for the data obtained from CRU in flow chart Figure 3.10. 

F 1 9 5 0 w i n d s p e e d n e w . m e t c Files tai lored t o specif ic model runs. — this performs 
the step "Write wind file" for the data obtained from NOAA in flow chart Figure 
3.10. 

Variables 

uwind The u componen t as read in by R l _ R e a d D a t a _ a s c i i . m . or R l . e x t r a c t N e t C D F . i 
For ascii: 97x48x1460 array coords N C E P I o n / N C E P I a t . For ne tCDF : 10x14x2920 
(2 years per f i le) , coords L O N and L A T 

vwind As above bu t the v component 

urot The u componen t f i t ted to model gr id , and in the new u d i rect ion for the g r id . 
150x55 points. Coordinates sX and sY. 

vrot As above but the v component 

N C E P m a s k A land mask read in f rom the mask fi le ( R 3 takes o u t po in ts 27:34lon and 
35:44 la t ) 

N C E P I o n The long i tude points o f the data . From 9 0 W t o 90E, approx every 1.9° ( R 4 
takes ou t points 35:44 and names th is N C E P I o n ) 

N C E P I a t T h e la t i tude points . From 0.9524S to 88 .5N , approx every 1.9*' ( R 4 takes 
ou t points 27:34 and names this N C E P I a t 

L O N netcdf longi tude. 14 points. 330E to 354.375E 

L A T netcdf la t i tude. 10 points, 63.8079N t o 46 .6658N 

Heat Flux Variables 

Routines 

R l . E x t r a c t N e t C D F d a t a . m Reads the N e t C D F fo rmat heat f lux files using the N e t C D F 
tools f rom CSIRO. Because directory needs t o be changed t o where the CSIRO 
files are, need t o have ful l d i rectory paths for open ing and saving heat files - check 
t h e m ! Ext racts Ion, lat, t ime and data for each variable ( a i r t emp , p ressure , 
re lh, c l o u d ) . The variable names in files are found w i t h ncdump.exe nb there are 
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two sl ight ly d i f ferent versions o f this rout ine - on ly di f ference is d i f ferent f i lename 
formats for the input files. 

R 2 . R o t a t e . m Combines the 4 f luxes in to the t o ta l heat f lux, and then rotates and 
interpolates t o the model bathy (coords s X / s Y ) . this performs the step "Fit to 
rotated grid in Matlab" in flow chart Figure 3.12. 

R 3 - C r e a t e M o d e l F i l e . m Wr i tes the fi le for the mode l . A l l t imesteps in one fi le. A r ­
ranged same way as bathy etc, s ta r t ing in S W corner and go ing a long rows this 
performs the steps "Convert air temperature from K to C" and 'Write Files' in 
flow chart Figure 3.12. 

ffindstarttime.m The t ime in the N e t C D F file is "hours since 00:00 1 / 1 / 1 " . Th i s 
rout ine f inds the date o f some t imestep 

s t o r e t i m e s . m Calculates the date o f every t imestep (and wh ich o f the 4 daily datasets 
it is) and stores in a s t ruc tura l array c u m u l a t i v e . Uses d a y n o 2 d a t e . m 

Variables 

a i r temp A i r tempera tu re array 

pressure Surface pressure 

relh Relative humid i ty 

cloud To ta l c loud cover 

T I M E T i m e in hours o f each data file 

L O N Or ig inal longi tude o f the data 

L A T Or ig inal la t i tude 

ai r temprot A i r tempera tu re ro ta ted t o coords s X and s Y 

pressrot Surface pressure, ro ta ted 

relhrot Relative humidi ty , ro ta ted 

cloudrot Tota l c loud cover, ro ta ted 

Tidal Constituents 

Routines 

R l - R e a d l n D a t a . m Reads in the t idal cons t i tuent data (hcosg and hsing for zet, u and 
v) f rom Sarah. Rotates the current vectors so t h a t the componen ts are a long the 
new xy direct ions instead o f l o n / l a t d i rect ions. Then wr i tes the f i le for the mode l 

— 2 l , 2 2 . u l , u 2 , v l , v 2 for each o f the 15 const i tuents . In order o f the boundaries 
— S N W E . Note t ha t the sigma values for the 15 const i tuents mus t be pasted in 
at the beginning o f the file This performs the steps "Rotate current vectors to 
find components in rotated system" and "Write tide data file" in flow chart Figure 
3.11. Step "Add phase speeds to start of data file" is performed manually. 
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Variables 

hcosgz . hs ingz T h e elevations. Size is 410x15 for the 410 boundary points (each 
boundary done separately, so corners each in bo th their boundar ies) and 15 t ida l 
const i tuents . The boundary order is S N W E . 

h c o s g u , hs ingu The u current . As h c o s g z / h s i n g z , except t h a t there are 414 po in ts 
instead o f 410 as these values are on the U boundaries, wh ich are each an extra 
gr idpo in t long. 

hcosgv , hsingv As above but v current 

h c o s g u l e t c As h c o s g u etc, bu t rotated so t ha t the veloci ty componen ts are a long 
the s X and s Y d i rect ions instead on zonal and mer id ional 

Post-processing of Model Results 

Routines 

Used for all runs: 

E x t r a c t K E . m Plots the K E o u t p u t 

R l _ r e a d . U V T S b i n _ L o n g . m Reads in T S U V binary f i le, in terpolates t o z coords (set 
the levels in Load^zzz3.mas-batL.m) and saves s and z level da ta . Saves in one 
file per o u t p u t t imestep. I t calls Load-Zzz3^mas.batL.m and frScoord.toZ.3d.m. 

R 3 - P l o t . m Does hor izonta l sect ion plots = can do s or z levels. Lots o f variables -
uncomment the one you want . Saves au tomat ica l l y ( bu t check names) 

R 3 - p l o t s e c t i o n plots ver t ical cross sections. Uncommen t the one you want . Saves 
automat ical ly . 

Used for some runs: 

R4_densi ty Calculates density using SEAWATER Toolkit 

R4_plotdensi ty .m p lot density sections and plots. Saves automat ica l ly . 

R S - g e o s t r o p h i c Calculates geostrophic veloci ty a long a sect ion tha t you specify and 
plots against t ime . Does same for model o u t p u t 

R 5 - g e o s t r o p h i c - s i n g l e t i m e Calculates geostrophic ve loc i ty for a part icular ou tpu t t imestep 
and plots against the model veloci ty 

R l - R e a d _ z e t a b i n . m Read elevation f rom the t ida l test runs 

R2_f requenc ies .m p lo t elevation over t ime for a part icular po in t 

R2_f requenc ies_v .m p lo t veloc i ty components over t i m e for a part icular po in t 

plotprof i les.m p lo t veloc i ty profiles w i t h depth 

R S - C o m p a r e K E a n d W i n d . m compare KE w i t h w ind speed in the w ind test run 

R G - e k m a n . m p lo t veloc i ty w i t h depth for a po in t t o show the Ekman spiral 

Read_hea t f lux .m read in heat f lux binary files f rom runs t ha t ou tpu t t h e m 
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R4_plot_p lume.m P lot subplots showing movement o f p lume i f one is ident i f ied. 

Variables 

t tempera ture on s levels 

t ze t tempera tu re on z levels 

s tempera ture on s levels 

s z e t tempera ture on z levels 

u tempera ture on s levels 

uzet tempera tu re on z levels 

V tempera ture on s levels 

vze t tempera ture on z levels 

p t h e t a s potent ia l density on s levels 

p t h e t a z potent ia l density on z levels 

s i g m a s density on s levels f rom a di f ferent too lbox 

s i g m a z density on z levels f rom a di f ferent too lbox 

s v a n s specific vo lume anomaly on s levels ( for geostrophic ca lcu la t ion) 

svanz specific vo lume anomaly on z levels ( for geostrophic ca lcu la t ion) 
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Appendix B 
List of All Changes Made to the 
Model Code 

This Append ix details the changes made t o the P O L C O M S code t o enable its use in th is 
study. Many changes are common t o all t he runs whereas some are unique t o part icular 
runs; the run wi l l be named where th is is the case. Sections are organised according to 
the file name. Note tha t the l ine numbers refer t o the i r posi t ion in t he version o f the 
code used for the ful l runs, except where otherwise noted. In order t o use the code files 
w i th the Windows system, the file extensions were f irst changed f r o m . f t o . f o r . 

advpbv.for 

• l ine 917: added the i . j t o w r i t e ( l u d b g , f r ) ' d s ( k - l ) \ d s ( k - l , i J ) t o fix 
bug 

• line 1053: added the i J to w r i t e ( l u d b g , f r ) ' s i g o ( k + l ) ' , s i g o ( k + l , i » j ) 
t o fix bug 

• line 1054: added the i , j t o w r i t e ( l u d b g . f r ) ' s i g o 3 ( k + l ) ' , s i g o 3 ( k a , i , j ) 
t o fix bug 

bcalc.for 

• l ines 196-198 : commented r e a l + 8 d i ( n , 1 - m h a l o : i e s u b + m h a l o , l - m h a l o : j e s u b + m h a l t 
and replaced w i th 
r e a l * 8 , a l l o c a t a b l e , d i m e n s i o n ( : , : . : ) d i 
a l l o c a t e ( d i ( n , 1 - m h a l o : i e s u b + m h a l o , 1 - m h a l o : j e s u b + m h a l o ) ) 

bSd.for 

• line 32: added i n t e g e r : a v c o u n t . Th is was designed t o be used in t he 
ou tpu t rout ine t i d e m e a n o u t a l though the f inal model runs used d a t a . o u t instead 
for all ou tpu t . 
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• line 109: added real*8, a l l o c a t a b l e , dimensionC: ,:) l a t g r i d , 
longrid. These new variables store the la t i tude and long i tude o f each po in t , 
and are used in the heat f lux calculat ions 

• line 151: added & , prh. Th i s new variable stores the a tmospher ic pressure so 
t h a t i t is only used in the heat f lux ca lcu la t ion. 

• R u n s T 6 / T 7 / T 9 only line 151: added ,wes, wns because these runs required 
the use o f new arrays t o ensure t h a t the w ind data were only used in heatin or 
s a l t f l u x 

• line 155: added & , e v , s f l s t , h l s t o r , skstor, skestor. These extra var i ­

ables were used to o u t p u t heat f lux and evaporat ion data . Used ma in ly in debug­

g ing. 

• R u n T 3 A only line 178: added r e a l * 8 , a l l o c a t a b l e , dimensionC:,:,:) 
t o l d , s o l d as these variables are used t o keep the constant tempera tu re /sa l i n i t y 

• lines 189-190: # i f d e f METOFFICE was commented ou t and # i f d e f HEATOUT 
added. Th is allows heat fluxes to be o u t p u t t e d by speci fy ing HEATOUT as a pre­
processor op t ion . 

• lines 199-200: added r e a l * 8 , a l l o c a t a b l e , dimensionC:,:,:,:) 
& :: aaold, a k o l d , q s q o l d , s a l o l d , tmpold, uold, void, alold. These 
were original ly used in o u t p u t t i n g da ta , bu t no t used for f inal runs. 

b3dalloc.for 

• lines 357-412 ; added a l locat ion o f variables a a o l d , a k o l d , q s q o l d , s a l o l d , 
t m p o l d , u o l d , v o i d , a l o l d . See above. 

• lines 4 3 0 - 4 3 1 : # i f d e f METOFFICE was commen ted ou t and # i f d e f HEATOUT 
added. Th is allows heat f luxes to be o u t p u t t e d by speci fy ing HEATOUT as a pre­
processor op t ion . 

• lines 756-769 : added a l locat ion for variables l a t g r i d , l o n g r i d . See above. 

• lines 1044-1055: added a l locat ion for variables e v , s f l s t wh ich were used when 
test ing prec ip i ta t ion /evapora t ion rout ine. 

• lines 1075-1105: added a l locat ion for variables p r h , h l s t o r , s k s t o r , s k e s t o r . 

See above. 

• R u n s T 6 / T 7 / T 9 only lines 1080-1092 : added al locat ion for variables w e s . wns 
because these runs required the use o f new arrays t o ensure t h a t the w ind data 
were only used in h e a t i n or s a l t f l u x 

• lines 1929-1930: c a l l a b o r t C) was commented and replaced w i t h s t o p as the 
former command caused the compi ler t o s top 
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bSdgrid.for 

• lines 250-256: lines i u c o a s t d , j ) = l and ipexubCi, j ) = l were placed inside a 
n e w # i f d e f ROCKALLBC loop and new lines iucoast ( i , j )=0 and ipexubCi, j ) = 0 
were used if ROCKALLBC was not t o be used. Due t o problems w i t h the original 
code when used w i t h a Black Sea doma in . 

b3dinit.for 

• lines 250-256: c a l l m e t s e t replaced w i t h c a l l m e t s e t . c k o and placed in 
# i f d e f ROCKALLBC loop. As th is s tudy used a purpose-bui l t f i le t o read in met 
data . 

bSdrun.for 

• l ine 4: added # i n c l u d e "param.h" 

• R u n T 3 A only lines 468-469: added told=tmp and sold=sal t o store the 
tempera tu re and salinity 

• R u n T 3 A only lines 953-954: added tmp=told and s a l = s o l d t o reset temper ­
ature and sal inity t o previous values 

baroc.for 

• lines 9 3 - 9 7 : commented i f ( s a l f l u x ) t h e n and corresponding e n d i f as 
there was another logical variable I s a l t f l u x and it was not necessary t o use 
b o t h . 

barot.for 

• lines 62-77: commented 
r e a l * 8 dub(l-mhalo:iesub+mhalo,1-mhalo:jesub+mhalo) 
r e a l * 8 dvb(1-mhalo:iesub+mhalo,1-mhalo:jesub+mhalo) 
r e a l * 8 fuc(1-mhalo:iesub+mhalo,1-mhalo:jesub+mhalo) 
r e a l * 8 fvc(l-mhalo:iesub+mhalo,1-mhalo:jesub+mhalo) 
r e a l * 8 dz(8,1-mhalo:iesub+mhalo,1-mhalo:jesub+mhalo) 
r e a l * 8 hsz(l-mhalo:iesub+mhalo,1-mhalo:jesub+mhalo) 
integer imask(8,1-mhalo:iesub+mhalo,1-mhalo:jesub+mhalo) 
integer ipexb_temp(l-mhalo: iesub+mhalo, 1-mhalo: jesub+mhalo) 

and added 
r e a l + 8 , allocatable,dimension (:,:) dub,dvb.fuc,fvc,hsz 
r e a l * 8 , allocatable,dimension (:,:,:) dz 
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i n t e g e r , a l l o c a t a b l e , d i m e n s i o n ( : , : , : ) i m a s k 
i n t e g e r , a l l o c a t a b l e , d i m e n s i o n ( : , : ) i p e x b _ t e m p 

• lines 1194-1195: added missing bracket t o end o f l ine 1194 and missing + to 
beginn ing o f l ine 1195 

bost.for 

There were very substant ia l changes made t o th is rout ine as the indexing method did 
not work correct ly, and there is a lmost no or ig inal code left uncommented . For the f inal 
runs, a new rout ine b o s t l o n g was used instead. 

bostlong.for 

This was a new rout ine wr i t t en for this study. It includes all the changes made to b o s t 
w i th the addi t ion o f a new a lgor i thm for reading in data which allows longer runs t o be 
conducted. As this does not contain commen ted old code i t is much clearer t o fo l low 
than b o s t . 

boundarycon.h 

This f i le defines which tempera ture and sal in i ty boundary rout ine is t o be used. T h e runs 
in this s tudy used the opt ion # d e f i n e T S _ b o u n d a r y _ c o n d i t i o n b o s t l o n g . 

data.out.for 

This rout ine was altered for each run depend ing on the ou tpu ts required. 

• l ine 22: commented c a l l t i d e m e a n o u t _ c k o ( 3 6 , 3 7 , 3 8 ) as all o u t p u t s were han­
dled by d a t a _ o u t for the f inal runs 

• line 30: n a v t m = m o d ( i t i m t , 3 6 0 0 ) is a l tered depending on how o f ten ou tpu ts are 
required 

• l ines .30-47: main outputs are listed here 

• lines 53 -55 : c a l l z K E c o u n t ( 1 3 6 ) and c a l l z T S c o u n t ( 1 3 6 ) commented and 
replaced by c a l l KEout 

• lines 7 1 , 107, 116-118 : commented exist ing ou tpu t commands as we did not 
require these 
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endstep.for 

• l ine 46: added i h e a t = i h e a t - 1 so t h a t heat counter ( t o keep t rack o f when 
t o read in da ta ) is updated correct ly 

• lines 54—58: c a l l m e t s e t replaced w i t h c a l l m e t s e t . c k o and placed in # i f d e f 
ROCKALLBC loop. As th is study used a purpose-bu i l t fi le t o read in met data . 

filope.for 

• lines 6 0 - 6 1 : c a l l a b o r t ( ) was commented and replaced w i t h s t o p as the former 
command caused the compi ler t o s top 

heatin.for 

• line 66: added , i i t i m t , n t i m t t o def ine these variables 

• line 70: added & , t m l , B a r g , h l , s k , s k e . t m l and B a r g are used in the calcu­
lat ion o f the local t ime; h l , s k , s k e were used in debugging and t o ou tpu t heat 
f lux 

• lines 73,79: added r e a l * 8 , a l l o c a t a b l e , d i m e n s i o n C : , : ) q q s and 
a l l o c a t e ( q q s ( l , m ) ) . New variable q q s was used to store solar radiat ion data 
and used in debugging 

• l i nes92 -95 : added r e a d ( 1 1 6 , ' ( 5 f 9 . 4 ) O l a t g r i d and r e a d ( 1 1 7 , ' ( 5 f 9 . 4 ) O 
l o n g r i d and placed t hem inside # i f d e f FLAT loop - due t o ro ta ted domain we 
can ' t calculate l a t / l o n f rom the gr id coord inates, so they need t o be read f rom 
files 

• lines 124-126 : r l a t = a l a t l + ( j c g - l ) * d b e d placed inside # i f n d e f FLAT 
loop 

• lines 128-139 : added 
r l a t = l a t g r i d ( i , j ) 
I A d j u s t t i m e f r o m GMT t o l o c a l a p p a r e n t s o l a r t i m e 
I F i r s t l o n g i t u d e d i f f (1=4 m i n s ) 
t m l = t m + 4 * l o n g r i d ( i , j ) / 6 0 . 0 d 0 
•Then e q u a t i o n o f t i m e ( a p p r o x i m a t i o n ) / 6 0 f o r m i n s - > h r s 
B a r g = ( 2 * p i + ( j d a y - 8 1 ) ) / 3 6 4 . 0 d 0 
t m l = t m l + ( 9 . 8 7 * s i n ( 2 * B a r g ) - 7 . 8 3 * c o s ( B a r g ) - l . 5 * s i n ( B a r g ) ) / 6 0 . O d O 
I end 
and placed inside # i f n d e f FLAT loop. Th is adjusts the t ime t o local t ime for 
each po in t . 

• R u n s T 6 / T 9 only lines 141 -142 : uw = w e ( i , j ) and vw = w n ( i , j ) were re­
placed w i t h uw = w e s ( i , j ) and vw = w n s ( i , j ) because these runs required the 
use o f new arrays t o ensure tha t the w ind data were only used in h e a t i n 

• line 148: added p = p r h ( i , j ) so t ha t pressure is only used here 
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• line 155-156 : commented c a l l s o l r a d ( t m , r l a t , q s ) and replaced w i t h c a l l 
s o l r a d C t m l , r l a t , q s ) so t h a t solar rad ia t ion calculat ion uses the corrected 
t ime 

• l ine 159: added q q s ( i , j ) = q s so t h a t solar rad ia t ion can be o u t p u t t e d . Used in 
debugging. 

• l ine 164: commented c a l l h e a t l s C t s , t a , ww, r , c , p , q l ) and replaced 

w i t h c a l l h e a t l s C t s , t a , ww, r , c , p , q l , h i , s k , s k e ) used in debug­

ging-

horizdifTuse.for 

• lines 114-115 : commented cLhcc=0.2d0 and replaced w i th a h c c = a h c so t ha t i t is 
read f rom the parameters file 

hset.for 

l ines 172-180 : commented 
i f ( n e n s . g t . l ) t h e n 

w r i t e ( f i l b a t h , ' ( ' ' b a t h y m e t r y . ' \ i 3 . 3 , " . d a t ' ' ) ' ) myens 
e l s e 
f i l b a t h = ' b a t h y m e t r y . d a t ' 
e n d i f 
c l o s e ( 1 3 ) 
o p e n ( 1 3 , f i l e = f i l b a t h ) 
w r i t e ( 1 3 , ' ( 5 0 f 8 . 2 ) ' ) d e p t h 
c l o s e ( 1 3 ) 

as we did not need to ou tpu t the ba thymet ry t o a f i le. 

KEout.for 

Th is is a new rout ine, based on previous ones w r i t t e n for the Black Sea (Enr iquez, 2005) , 
which est imates the kinetic energy per uni t vo lume. 

metset-cko.for 

This is a new rout ine wr i t ten specif ical ly for the meteorological data used in th is study. 
It is based on m e t s e t . f o r bu t is simpler as i t conta ins only the opt ions and fo rmats we 
need. 

• R u n T 6 / T 7 / T 9 only required the w ind data t o be read in for t h e heat f luxes or 
salt f lux, but not be used anywhere else. T o achieve th is, the code for these runs 
was changed so tha t the w ind componen ts are read in to new arrays wes and wns. 
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out.for 

• lines 4 5 - 4 6 : commented a l l o c a t e C w o r k o u t C L , m , n - 2 ) ) and replaced w i th 
a l l o c a t e C w o r k o u t C L , m , n ) ) so t h a t all data are o u t p u t t e d . 

• lines 55 -56 : commented do k = l , n - 2 and replaced w i t h do k = l , n 

• lines 44 -45 : commented w o r k o u t Ci , j , k ) = w o r k 3 d ( k + l , i , j ) and replaced w i th 
w o r k o u t C i , j , k ) = w o r k 3 d C k , i , j ) 

param.h 

This file conta ins the main preprocessor set t ings. The fo l lowing opt ions were used in all 
runs: 

# d e f i n e NOGUI 
# d e f i n e SERIAL 
# d e f i n e SCOORD 
# d e f i n e SIMPLECASEI 
# d e f i n e PGRAD 
# d e f i n e PGRAD.SPLINE 
# d e f i n e READ_INITIAL_TS 
# d e f i n e MY25CBF 
# d e f i n e HORIZDIF 
# d e f i n e HORIZDIFTS 
# d e f i n e NOTIDE 
# d e f i n e GOTM 

# u n d e f UBC_CALC 
# u n d e f NO_CONVADJ 
# u n d e f MPICH 

In runs w i t h ful l forc ing, op t ion # i f d e f ROCKALLFULL was used wh ich has the effect o f 
also def in ing the fo l lowing opt ions: 

# d e f i n e ROCKALLBC 
# d e f i n e FLAT 
# u n d e f NOTIDE 
# d e f i n e READ_TIDECON 
# d e f i n e BULKMET 
# u n d e f NOHEAT 

# d e f i n e SALTFLUX 
# d e f i n e HEATOUT 

The geostrophic runs used t he op t i on # i f d e f ROCKALLGA wh ich causes on ly # d e f i n e 
FLAT and # d e f i n e ROCKALLBC to be used. Some runs had part icular needs which 
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required modifications to these two main settings: 

T 4 / T 8 These runs needed tides but no other forcing. Therefore option # i f d e f ROCKALLGA 
was enabled, with #undef NOTIDE and #def ine READ.TIDECON also added. 

T5 This run contained wind but no other meteorological forcing. Option # i f d e f 
ROCKALLGA was enabled, with #def ine BULKMET and #def ine NOHEAT also added. 
This ensured the wind data were read in, but the heat flux calculations were not 
done. 

T 6 / T 9 In contrast T6/T9 required the heat flux calculations, for which the wind data 
must be read in, but the wind must not be used to generate currents. Option 
# i f d e f ROCKALLGA was enabled, with #def ine BULKMET and #undef NOHEAT 
also added. Routines metset_cko, hea t in were altered so that the wind data 
were read into new arrays that were only used for the heat flux calculations. 

T7 This run was similar to T6 in that it required the wind speed and meteorological 
data in order to calculate the evaporation rate, but it was also necessary to stop 
the heat flux calculations. Option # i f def ROCKALLGA was enabled, with #def ine 
BULKMET and #undef NOHEAT. and SALTFLUX also added. Routines metset_cko, 
evap-prep were altered so that the data were read into new arrays that were only 
used for the salt flux calculations. 

param.for 

line 21; added in teger nob, n in . These variables are used by new b o s t . f o r 
and bos t long . fo r 

parmargs.for 

• lines 94-95: commented e l s e i f ( a r g v ( l : 10) . eq. ' - r e s e t t m ' ) then and re­
placed with e l s e i f ( a r g v ( l : 10) . eq. ' - t m r e s e t ' ) then as existing code had a 
bug which did not allow the time to be reset when starting from a warm start — 
placing - reset tm in the start options triggered the response for - rese t which 
resets the whole system. 

partit.for 

• lines 312-313: c a l l abort 0 was commented and replaced with stop as the 
former command caused the compiler to stop 

• lines 471-472: c a l l abort 0 was commented and replaced with stop as the 
former command caused the compiler to stop 
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pfinish.for 

• lines 109-110: c a l l abo r tO was commented and replaced with stop as the 
former command caused the compiler to stop 

pgrad.for 

• lines 30-35; 458-460; 695-703: commented rea l *8 d i ( n , 1-mhalo: iesub+mhalo, 1-mha 
and replaced with 
r e a l * 8 , a l l o c a t a b l e , d imens ionC: , : , : ) : : d i 
a l l oca te (di(n,1-mhalo: iesub+mhalo,1-mhalo: jesub+mhalo)) 

• lines 700-704: as above but variable bpp 

saltflux.for 

• line 24; added c a l l evap_prep to do the evaporation calculation 

• line 43: added s f l s t C i , j ) = s f l which allows salt flux to be stored for debugging 

• lines 123-126: commented 
Q W=(0 . 6 2 * E W ) / ( P R ( i , j ) - 0.38*EW) 
Q A=(0 . 6 2 + E A ) / ( P R ( i . j ) - 0 .38*EA) 
and replaced with 
Q W=(0 . 6 2 * E W ) / ( P r h ( i J ) - 0.38+EW) 
Q A = ( 0 . 6 2 + E A ) / ( P r h ( i , j ) - 0 .38*EA) 
as we used p r h to store atmospheric pressure. 

• Run T7 only lines 128-131: commented 
W S P = S Q R T ( W E ( i , j ) * * 2 + W N ( i , j ) • * 2 ) 
evap=CE*RHO*WSP*(qW - Q A ) / r o w 
and replaced with 
W S P s = S Q R T ( W e s ( i , j ) * * 2 + W n s ( i , j ) * * 2 ) 
evap=CE*RHO*WSPs*(QW - Q A ) / r o w 
because this run required the use of new arrays to ensure that the wind data were 
only used in s a l t f lux 

• line 134: added e v ( i , j ) = e v a p to store evaporation rate (used in debugging) 

setopenbc.for 

• lines 60-65: i f C i c g . e q . l .and. i p e x b ( i , j ) .ne. 0) i n c b ( i , j ) = l 
i f C i c g . e q . L .and. i p e x b ( i , j ) .ne. 0) i n c b ( i , j ) = l 
i f C j c g . e q . l .and. i p e x b ( i , j ) .ne. 0) i n c b ( i , j ) = l 
i f ( j c g . e q . m .and. i p e x b ( i , j ) .ne. 0) i n c b ( i , j ) = l 
were placed in # i f def ROCKALLBC loop as they caused problems when used with 
a Black Sea domain during other work. 
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tidbndrp2.for 

• lines 135-136: added w r i t e ( * , * ) ' r e a d n fac ' and w r i t e ( * , * ) n f a c for in fo rma­
t i on 

• lines 148-149: added w r i t e ( * , * ) ' read i i d a t e ' and w r i t e ( * , * ) i i d a t e for infor­
mat ion 

• lines 153-154: added w r i t e ( + , + ) ' r e a d i ndx ' and w r i t e ( * , * ) i n d x for in fo rma­
t ion 

• lines 174-175: commented do i = l , 1 5 and replaced w i t h do i= l .ncond so t h a t 
fewer than 15 const i tuents could be used if necessary 

• lines 178-179: commented mcond=15 and replaced w i t h mcond=ncond so t h a t 
fewer than 15 const i tuents could be used if necessary 

tidemeanout.for 

Note t ha t for the f inal runs th is rout ine was not used. 

• lines 23-24: commented # i f d e f METOFFICE and replaced w i t h # i f d e f HEATOUT 

• lines 91-92: commented # i f d e f METOFFICE and replaced w i t h # i f d e f HEATOUT 

• lines 128-129: commented # i f d e f METOFFICE and replaced w i t h # i f d e f HEATOUT 

• lines 255-256: commented # i f d e f METOFFICE and replaced w i t h # i f d e f HEATOUT 

• l ine 437: added # i f d e f HEATOUT 

• lines 521-522: commented # i f d e f METOFFICE and replaced w i t h # i f d e f HEATOUT 

tidemeanout_cko.for 

This was a new rout ine designed t o keep a runn ing average o f variables before o u t p u t t i n g 
them. In the final runs however, i t was not used. 
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Appendix C 
bostlong.for Code 

This is the new routine that was used to perform relaxation of temperature and salinity 
at the open boundary. It was based on the original POLCOMS file b e s t . f o r but 
substantial changes were made in order for it to work correctly with the domain used in 
this study. The underlying process remains the same, but the method of indexing the 
boundary points was altered, and the way in which files are read in had to be changed 
to allow longer model runs to be performed. 

module bostmodlong 

r e a l * 8 , a l l o c a t a b l e , dimensionC 
r e a l * 8 , a l l o c a t a b l e , dimensionC 
r e a l * 8 , a l l o c a t a b l e , dimensionC 
r e a l * 8 , a l l o c a t a b l e , dimensionC 
r e a l * 8 , a l l o c a t a b l e , dimensionC 
r e a l * 8 , a l l o c a t a b l e , dimensionC:) 
integer, a l l o c a t a b l e , dimensionC:), 

in t e g e r , a l l o c a t a b l e , dimensionC:) 
in t e g e r , a l l o c a t a b l e , dimensionC:, 

end 

botimel, botime2 !cko 
botmpl,botmp2 !cko 
bosall,bosal2 !cko 
botmp,bosal !cko 
work2d !cko 

s i g r C 
save 

) , d s i C : ) , d s i u C : ) !cko 
: i p o i n t , j p o i n t !cko 
boday !cko 
: uork2di !cko 

subroutine bostlong 

j t h boundary relaxation to climatology 
j t h s-coordinates or sigma coordinates 
j t h reads i n and sets climatological sal and temp at boundaries 
j t h climate values taken to represent values at 15th of month 
j t botime i s th i s time in days from 1st nov C=0) 

\#include "param.h" !cko 
use param 
use p a r a l l e l 
use b3d 
use bostmodlong 

! 
i m p l i c i t none 

!cko For a l l open boundary, nob = 2*1 + 2*m -4 
!cko The no of points in each of the concentric squares 

182 



APPENDIX C BOSTLONG.FOR CODE 

(starting at outer edge) i s then 
!cko nob - 8*(q-l) (q i s from l:niw) 
!cko The t o t a l no of points i n the relaxation zone i s then 
!cko niw*nob - 4*niu*(niu-1) 

!cko integer nob.nin 
integer i c , j c , i q , i b , i q l , i q 2 , k k , i p q . i c g , j c g , ipql 
integer i , j , k , k b , i p 
integer ipstor(niw),ntimt !cko 
real*8 days,pnt,r,bt,bs ,pt 
logic a l f i r s t 
save f i r s t 
data f i r s t /.true./ 

100 format(22f8.4) !cko Format for the boundary f i l e inputs 
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
cko Set up the allocations and indexing 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
i f ( f i r s t ) then 

f i r s t = . f a l s e , 
nob = 2*1 + 2*m - 4 
nin = n 

allocate (botmpl(nob*niu - (4*niw*(niw-l)),n-2)) 
allocate (botmp2(nob*niu - (4*niw*(niw-l)),n-2)) 
allocate (bosall(nob*niw - (4*niw*(niu-l)),n-2)) 
allocate (bosal2(nob*niw - (4*niw+(niu-1)),n-2)) 
allocate (botimel(1)) 
allocate (botime2(l)) 
allocate (work2d(L.m)) 
allocate (work2di(L,m)) 
allocate(ipoint(nob*niw - (4*niu*(niw-1)))) 
allocate(jpoint(nob*niw - (4*niu*(niw-1)))) 
allocate(boday(1)) 
boday=0 
allocate(sigr(nin),dsi(nin),dsiu(nin)) 

do k=l,nin-2 !cko 
do ipq=l,nob*niu - (4*niw*(niw-1)) !cko 

botmpl(ipq,k)=0. !cko 
botmp2(ipq,k)=0. !cko 
bosall(ipq,k)=0. !cko 
bosal2(ipq,k)=0. !cko 
enddo !cko 

enddo 

if(master) then 

!+***+•*+*+**•********•**+*+**++******••+*+•*****•***•************* 

! j t h set up indices and parameters 
! j t h iboindex(lm) holds index of niw*l..nob, clockwise round boundary 
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! j t h r e l f a c C l m ) hold r e l a x a t i o n f a c t o r 
! j t h i p o i n t holds i index of boundary point 
! j t h j p o i n t holds j index of boundary point 

do j=l,m 
do i = l , l 

work2dCi,j)=0.Od0 
uork2diCi,j)=0 

enddo 
enddo 

!cko Changed the indexing 
do iq=l,niw 

i p s t o r C i q ) = 0 
enddo 
do iq=l,niw 

! Southern Boundary 
j c = l 
i p = i p s t o r C i q ) 

do i c = l - C i q - l ) , 1 + C i q - l ) , - 1 
ip=ip+l 
i b = i c + C j c - l + C i q - l ) ) * l 
w o r k 2 d i C i c , j c + i q - l ) = i p + C n o b * C i q - l ) - 4 * C i q - 2 ) * C i q - l ) ) 
work2d Cic,jc+iq-l)=dbleCniw+l-iq)/dbleCniw) 

enddo 
i p s t o r C i q ) = i p 

Western Boundary 
i c = l 
i p = i p s t o r C i q ) 
do jc=2+Ciq-l),m-l -Ciq-1) 

ip=ip+l 
i b = i c + C i q - l ) + C j c - l ) * l 
work2diCic+iq-l,jc)=ip+Cnob*Ciq-1)-4+Ciq-2)+Ciq-1)) 
work2d Cic+iq-1,jc)=dbleCniw+l-iq)/dbleCniw) 

enddo 
i p s t o r C i q ) = i p 

Northern Boundary 
jc=m 
i p = i p s t o r C i q ) 
do i c = l + C i q - l ) , 1 - C i q - l ) 

ip=ip+l 
i b = i c + C j c - l + C l - i q ) ) * l 
work2diCic,jc+l-iq)=ip+Cnob*Ciq-1)-4*Ciq-2)*Ciq-1)) 
work2d Cic,jc+l-iq)=dbleCniw+l-iq)/dbleCniw) 

enddo 
i p s t o r C i q ) = i p 

E a s t e r n Boundary 
i c = l 
i p = i p s t o r C i q ) 
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do jc=m-l - ( i q - 1 ) , 2 + ( i q - l ) , - 1 
ip=ip+l 
i b = i c + ( l - i q ) + ( j c - l ) * l 
w o rk2di(ic+l-iq,jc)=ip+(nob*(iq-l)-4*(iq-2)*(iq-l)) 
work2d (ic+l-iq.jc)=dble(niu+l-iq)/dble(niw) 

enddo 
ips t o r ( i q ) = i p 

enddo !iq=l:niw 

! j t h special treatment for corners 

! j t h southwest 

do i q l = l , n i u 
do iq2=l,niw 

work2d(iql,iq2)=max(dble(niw+1-iql)/ 
dble(niw),dble(niw+l-iq2)/dble(niw)) 

enddo 
enddo 

! j t h north west 

do iql=l,niw 
do iq2=l,niw 

i b = l + ( m - l ) * l + ( i q l - l ) - ( i q 2 - l ) * l 
work2d(iql,m-(iq2-l))=max(dble(niw+l-iql)/ 

dble(niu),dble(niu+l-iq2)/dble(niw)) 
enddo 

enddo 

!cko 
! North East 

do iql=l,niw 
do iq2=l,niw 

work2d(l-(iql-l),m-(iq2-l))=max(dble(niw+l-iql)/ 
dble(niw).dble(niw+l-iq2)/dble(niw)) 

enddo 
enddo 

! South East 
do iql=l,niw 
do iq2=l,niw 

work2d(l-(iql-l),iq2)=max(dble(niw+l-iql)/ 
dble(niw),dble(niw+l-iq2)/dble(niw)) 

enddo 
enddo 

!cko-

endif ! i f master 

c a l l d i s t (leadid,work2d,relfac,1) !cko v6.2 version 
c a l l d i s t (leadid,uork2di,iboindex,l) !cko v6.2 version 
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deallocate (work2d) !cko 
deallocate (work2di) !cko 

!cko=================—======== 
! Set up array of ib locations 

ipq=0 
do iq=l,niw 
do i p q l = l - ( i q - l ) , l + ( i q - l ) . - 1 !South 

ipq=ipq+l 
ipoint(ipq)=ipql 
j p o i n t ( i p q ) = l + ( i q - l ) 

enddo 
do ipql=2+(iq-l),m-l - (iq-1) 'West 

ipq=ipq+l 
ipoint(ipq)=l+(iq-1) 
jpoint(ipq)=ipql 

enddo 
do i p q l = l + ( i q - l ) , l - ( i q - l ) INorth 

ipq=ipq+l 
ipoint(ipq)=ipql 
jpoint(ipq)=m-(iq-1) 

enddo 
do ipql=m-l - ( i q - 1 ) , 2 + ( i q - l ) , - 1 !East 

ipq=ipq+l 
i p o i n t ( i p q ) = l - (iq-1) 
jpoint(ipq)=ipql 

enddo 
enddo 

!cko======================================= 
!Read i n data for f i r s t 2 months ('last month* and 'this month*) 

do ipq=l,niw*nob - 4*niw*(niw-1) !The t o t a l no of points in 
the relaxation zone 

read(81,100) (botmpl(ipq,k),k=l,nin-2) 
enddo 
do ipq=l,niu*nob - 4+niw*(niw-1) !The t o t a l no of points in 

the relaxation zone 
read(81,100) (bosall(ipq,k).k=l,nin-2) 

enddo 

do ipq=l,niu*nob - 4*niw*(niu-l) !The t o t a l no of points in 
the relaxation zone 

read(81,100) (botmp2(ipq,k),k=l,nin-2) 
enddo 
do ipq=l,niw*nob - 4*niw*(niu-l) !The t o t a l no of points i n 

the relaxation zone 
read(81,100) (bosal2(ipq,k),k=l,nin-2) 

enddo 

read(82,*) botimel 
read(82,*) botime2 

endif ! i f f i r s t 
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++^ 
I s i t time to read i n more data? 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
Add 1 to day counter every 24 hours 
i f CmodCtimt,86400.00).eq.O) then 

boday=boday+l 
end i f 
i f CbodayCl).eq.botime2Cl)) then ! I f we're a t the end of the second 

i n t e r p o l a t i o n time 
writeC*,*)'Reading more boundary data' 
!Swap a r r a y s 

botmpl=botmp2 
bosall=bosal2 
botimel=botime2 

!Read next data 
do ipq=l,niw*nob - 4*niw*Cniw-1) 'The t o t a l no of p o i n t s i n 

the r e l a x a t i o n zone 
readCSl,100) Cbotmp2Cipq,k),k=l,nin-2) 

enddo 
do ipq=l,niw*nob - 4*niw*Cniw-1) !The t o t a l no of p o i n t s i n 

the r e l a x a t i o n zone 
readCSl,100) Cbosal2Cipq,k),k=l,nin-2) 

enddo 
readC82,*) botime2 

endif 

a l l o c a t e CbotmpCniw*nob - 4*niw*Cniw-l),n-2)) !cko 
a l l o c a t e CbosalCniu*nob - 4*niu*Cniw-l),n-2)) !cko 

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
j t h i n t e r p o l a t e i n time 

i f CmodCtimt,3600.00).eq.O) then !cko 

days=modCtimt/86400.,365.) 
pnt=Cdays-botimelCl))/Cbotime2Cl)-botimelCl)) 

do ipq=l,niw*nob - 4*niw*Cniw-1) !cko 
i c g = ipointCipq) !cko 
j c g = j p o i n t C i p q ) !cko 

do k=l,n-2 

botmpCipq,k) = botmplCipq,k)*Cl.-pnt) & !cko 
+ botmp2Cipq,k)*pnt !cko 

bosalCipq,k) = b o s a l l C i p q , k ) * C l . - p n t ) & !cko 
+ bosal2Cipq,k)*pnt !cko 

enddo 
enddo 
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+++++++++++++++++++++++++++++++++++++++++++++++++++-
j t h relaxation 

do j=l,jesub 
do i=l,iesub 

i f ((ipexb(i.j).ne.O).and.(iboindex(i,j).ne.O)) then 
r = r e l f a c ( i , j ) 

do k=2,n-l 

bt=botmp(iboindex(i,j),k-l) 
bs=bosal(iboindex(i,j),k-l) 

t m p ( k , i , j ) = b t * r + ( l . - r ) * t m p ( k , i , j ) 
saKk.i, j ) = b s * r + ( l . - r ) * s a l ( k , i j ) 

enddo 

end i f 
enddo 

enddo 
endif !cko 

deallocate(botmp) !cko 
deallocate(bosal) !cko 
return 

end 
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