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ABSTRACT  

A MULTI-PROXY STUDY OF THE PALAEOCENE – EOCENE THERMAL MAXIMUM IN 

NORTHERN SPAIN, HAYLEY RACHAEL MANNERS 

At the boundary between the Paleocene and Eocene epochs (ca. 56 Ma) a significant 

global warming event, termed the Paleocene-Eocene Thermal Maximum (PETM), 

occurred.  Records of this event are characterised by a negative carbon isotope 

excursion (CIE) which has been associated with the release of thousands of petagrams 

of isotopically light carbon into the ocean-atmosphere system, initiating changes in the 

carbon cycle, the climate system, ocean chemistry and the marine and continental 

ecosystems.  The amount of isotopically light carbon that was required to cause the 

event, its source and the rapidity of its release are, however, are still debated.  This 

study uses 13CTOC, 13Cn-alkane, 13CCARB and palynological data to evaluate the PETM CIE 

in terms of the magnitude of the CIE in both continental and marine settings, rapidity 

of release and drawdown of carbon, and mobilisation of different organic matter (OM) 

pools as a response to the climate change.  The sections studied span a continental to 

marine transect in northern Spain.  This represents the first organic geochemical study 

of these PETM sections, one of the first comparisons of CIE magnitude between 

continental and marine sections within the same sediment routing system, and one of 

the first comparisons of the same OM proxies within different depositional 

environments.  The data suggest that different OM pools were mobilised in response 

to the PETM, with reworking of older material, soil residence times, and 

contemporaneous vegetation all contributing.  CIE profile shapes predominantly 

suggest a rapid onset and recovery from the event.  The magnitude of the CIE was also 

assessed.  The current resolution of the data suggests that the differences between 

continental and marine CIE magnitudes could be minimal within a single sediment 

routing system, perhaps establishing a realistic CIE magnitude for the PETM, for use in 

future modelling scenarios. 
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1 INTRODUCTION 

1.1 RATIONALE 

During the early Palaeogene, carbon cycle perturbations in the form of the 

catastrophic release of large quantities of carbon into the atmosphere occurred, 

causing several abrupt transient global hyperthermal events to take place (Zachos et 

al. 2001; 2008).  The Palaeocene/Eocene boundary interval (ca. 56 Ma) is characterised 

by one such hyperthermal event which is termed the Palaeocene – Eocene Thermal 

Maximum (PETM).  This event lasted between 120 – 220 ka (Farley and Eltgroth 2003; 

Rohl et al. 2003, 2007; Aziz et al. 2008; Murphy et al. 2010) and is considered the most 

dramatic and rapid global warming event of the Cenozoic (Dunkley Jones et al. 2010).  

The PETM is recorded in sediments from environments as disparate as terrestrial soils 

and the deep ocean (Bowen et al. 2004; Zachos et al. 2005; McInerney and Wing 

2011).  To date, sedimentary records from more than 165 locations have been studied 

in relation to this event (McInerney and Wing 2011).  Current research is driven by the 

need to constrain the rate, rapidity, and magnitude of isotopically light carbon 

released, and the mechanisms of carbon release at the onset and drawdown at the 

termination of the event (Dickens 1995, 2003, 2011; Svensen et al. 2004, 2007; Zachos 

et al. 2008; Zeebe et al. 2009; Bowen and Zachos 2010; Cui et al. 2011; DeConto et al. 

2012).   

 

In this study the magnitude of the carbon isotope excursion (CIE) associated with the 

PETM is compared between different depositional environments, and profile shape is 

assessed in terms of modes of release and potential sequestration mechanisms.  

Studies of this type may be beneficial in understanding future climate scenarios, given 
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the current rate of CO2 release.  Understanding past climate events like the PETM may 

hold the key in determining potential CO2 impact on the Earth’s climate in the next few 

centuries (Zeebe et al. 2011).  By studying sedimentary records of the PETM, a better 

understanding of the Earth system response to such climatic upheaval can be 

formulated.   

 

1.2 AIMS AND OBJECTIVES 

This study has three principle work packages (WPs), which were designed to be 

independent publications.  The aims and objectives of each theme are outlined below. 

 

Work Package 1: Assessment of the CIE using bulk parameters (Chapter 2). 

Aims:   

1) Study the magnitude and profile shape of PETM CIEs in northern Spain, and 

compare these between sections within a linked sediment routing system.   

2) Evaluate local sedimentary system response to such climatic perturbations. 

Objectives and outputs: 

To achieve these aims, six sections in northern Spain were chosen for this study.  Bulk 

total organic carbon (TOC) isotope analysis (13CTOC) was conducted and the magnitude 

of the CIE calculated and compared at sites across the region.   The onset and recovery 

of all isotope records were compared to sedimentary features that had previously 

been linked to the PETM interval, and conclusions drawn as to how the 

sedimentological system responded to the changing hydrology in the region. 
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Work Package 2: Evaluation of marine and terrestrial CIEs recorded at a single marine 

section (Chapter 3). 

Aims: 

1) Evaluate the magnitude of the CIE as recorded by marine and terrestrial proxies 

at a single marine section (i.e., Zumaia). 

2) Assess likely controls on both magnitude and profile shape of the CIE 

associated with the PETM at this marine section. 

Objectives and outputs: 

To achieve these aims, compound specific carbon isotope analysis of n-alkanes derived 

from leaf waxes and bulk carbonate isotopes were measured at the marine section of 

Zumaia, in order to provide a continental CIE and a marine CIE, respectively.  Likely 

controls on the CIE magnitude and profile shape were assessed using n-alkane proxy 

measurements (carbon preference index; CPI, and odd over even predominance; OEP) 

and palynological data.  This enabled an evaluation of source inputs into the 

environment and reworking was evaluated via palynological data.  Previously 

published data were also used (e.g., kaolinite data at the Zumaia section; Schmitz and 

Pujalte 2003) to elucidate reworking and changing source inputs. 

 

Work Package 3: Evaluation of terrestrial CIEs within a linked sediment routing system 

(chapter 4). 

Aims: 

1) Compare the magnitude and profile shape of the CIE in the terrestrial and 

marine realms, as recorded between sections within a linked sediment routing 

system.   
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2) Evaluate how regional sedimentary systems respond to such climatic 

perturbations. 

3) Determine whether a change in plant community coincident with the onset of 

the CIE could be identified, thereby testing the relevance of the theory 

commonly termed the “plant community change hypothesis” (Smith et al. 

2007).  

Objectives and outputs: 

To achieve these aims, compound specific isotope analysis of n-alkanes were 

measured at the continental section of Claret and compared to the n-alkane isotope 

data generated for the Zumaia section, thus allowing the magnitude of the CIE to be 

compared regionally within one linked sediment routing system.  Comparison of the 

CIE onset using both bulk TOC and n-alkane isotope records, combined with CPI, OEP 

and palynological data, allowed evaluation of how different pools of organic matter 

were mobilised in relation to the onset of the CIE.  The onset and recovery of all 

isotope excursions were compared to sedimentary features that had previously been 

linked to the PETM interval, enabling conclusions to be drawn as to how the 

sedimentological system responded to changing hydrology in the region.  Finally, the 

relative contributions of different palynomorph taxa throughout the Claret and Zumaia 

sections were compared in combination with the average chain length of extracted n-

alkanes, to determine if a plant community change was recorded in association with 

the PETM CIE onset.   
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1.3 BACKGROUND 

Current trends in the Earth’s climate suggest that it is gradually moving away from the 

ice-house world of the last ~34 Ma and into a greenhouse state, a situation which may 

be exacerbated by the continued release of carbon derived from anthropogenic 

activity.  Studies of palaeoclimate where carbon was rapidly injected into the 

atmosphere are, therefore, important for understanding the consequences of 

anthropogenic related carbon emissions in the near future.  The PETM is thought to be 

the most appropriate analogue of the Cenozoic for the rapid injection of carbon into 

the climate system, and provides insight into how the Earth system responds to rapid 

carbon cycle perturbation (Dunkley Jones et al. 2010).  The nature of this event which 

was, in effect, a greenhouse gas forced period of global warming superimposed upon 

an already warm world compared to today, has made it the focus of intensive research 

over the past two decades. It is now clear that this rapid climate perturbation is 

coincident with biotic extinctions, migrations and turnover, significant shifts in the 

global hydrological cycle and major transient changes in ocean chemistry (Kennett and 

Stott 1991; Dickens et al. 1995; Schmitz and Pujalte 2003, 2007; Svensen et al. 2004; 

Zachos et al. 2005; Wing et al. 2005; Bowen et al. 2006; Lopez-Martinez 2006; Nunes 

and Norris 2006; Smith et al. 2006; Sluijs et al. 2007; Sluijs and Brinkhuis 2009).  Global 

surface temperatures are estimated to have risen by ca. 5 C in less than 10,000 years, 

and by up to 9 C at high latitudes (Kennett and Stott 1991; Zachos et al. 2006; Tripati 

and Elderfield 2004; Sluijs et al. 2007; Dunkley Jones et al. 2010), making this one of 

the most extreme and transient warming events in the geological record.  An ocean 

acidification event occurred alongside the PETM (Zachos et al. 2005; Gibbs et al. 2010) 

which was attributed to the release of substantial amounts of carbon to the 
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atmosphere.   This carbon was then dissolved and permanently sequestered in the 

Earth’s oceans via silicate weathering, as indicated by a prominent clay layer in the 

oceanic sedimentological record which is suggestive of a shoaling of the carbonate 

compensation depth (CCD; Zachos et al. 2005).  Carbon release and subsequent global 

warming throughout the PETM was also the cause of the most severe benthic 

foraminiferal extinction seen in the past 90 Ma, resulting in the loss of 35 – 50 % of 

deep sea benthic foraminiferal species (Thomas et al. 1998; Bowen et al. 2006).  

Changes in mammalian taxonomic diversity (Clyde and Gingerich 1998) and transient 

body size reductions occurred (Gingerich 2003), whilst floras extended northwards up 

to ca. 1500 km during the PETM (Wing et al. 2005).  This transient period of extreme 

change coincided with the appearance of modern orders of mammals (i.e., primates) 

and the mammalian dispersal event (MDE), where large mammals migrated from Asia 

to North America (Smith et al. 2006; Beard 2008). 

 

The PETM was first documented by Kennett and Stott (1991).  Since then, more than 

165 PETM sites have been discovered and studied worldwide, ranging from the 

Southern Ocean to Asia, Europe, America, Africa and the Arctic.  The Palaeocene-

Eocene (P/E) boundary has been defined by the placement of a Global Boundary 

Stratotype Section and Point (GSSP) in the Dababiya Quarry section of Egypt (Aubry et 

al. 2007).  The age of the boundary has recently been estimated as 56.011 – 56.293 Ma 

using radiometric dates derived from marine ash layers and orbital tuning of marine 

sediments (Westerhold et al. 2009).  The onset of the PETM is characterised by a 

negative CIE (Kennett and Stott 1991; Koch et al. 1992) and a dramatic shoaling of the 

carbonate compensation depth (Zachos et al. 2005), both of which document the 
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large-scale input of isotopically light carbon (as methane or carbon dioxide) to the 

ocean-atmosphere system (Zeebe et al. 2009).  Reliable quantification of the amount 

and source of the released carbon to the atmosphere is one of the major outstanding 

issues, with current estimates ranging from 1,500 Gt to 12,000 Gt of carbon (Dickens 

1995, 2003, 2011; Bice and Marotzke 2002; Panchuk et al. 2008; Zeebe et al. 2009; Cui 

et al. 2011).  Accurate estimation of carbon release is further complicated by a 

difference in the magnitude of the CIE recorded in different environments: e.g., 4.7 ± 

1.5‰ CIE from terrestrial records and 2.8 ± 1.3‰ CIE from marine records (McInerney 

and Wing 2011; Figure 1.1).  Two hypotheses proposed to explain this difference are 

the “marine modification”, and “plant community change” hypotheses (Smith et al. 

2007).  The “marine modification” hypothesis suggests that carbonate dissolution and 

poor carbonate preservation due to ocean acidification may have reduced the 

recorded CIE in many marine sections, especially in the deep sea.  However, even the 

most complete marine records do not record a CIE much in excess of 4 ‰ (Zachos et 

al. 2007).  The “plant community change” hypothesis proposes that the magnitude of 

the CIE is greater in the terrestrial realm as a result of major changes in floral 

composition during the PETM from mixed angiosperm (flowering plants)/gymnosperm 

(conifers) flora to a predominantly angiosperm flora (Smith et al. 2007; Schouten et al. 

2007).  This North America and Arctic Ocean derived plant community change 

hypothesis also predicts that the magnitude and pattern of amplification of CIEs will 

vary regionally depending on the extent of the replacement of gymnosperms by 

angiosperms during the PETM (Smith et al. 2007).  Recently, however, it has been 

shown that angiosperms produce, on average, around 200 times more n-alkanes than 

gymnosperms (Diefendorf et al. 2011), with the latter sometimes synthesising no n-
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alkanes at all.  This suggests that the n-alkane record would almost entirely comprise 

an angiosperm 13C signal and, therefore, that even if a change in the plant community 

was observed it would be unlikely to significantly affect 13Cn-alkane values.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1. Graphic illustration of the difference in magnitude of the recorded CIE as 
measured in the marine and terrestrial realm.  Modified from Bowen et al. (2004). 

a) Marine record from Acarinina ( = Southern ocean,   = Pacific Ocean)  

b) Terrestrial paleosol carbonate record ( = Northern Spain, = China, = USA)  
c) Temperature anomalies between the two marine sites  
d) Discrepancy in CIE observed in the marine ( ) and terrestrial records ( )  

 

1.4 SOURCES AND MECHANISMS OF CARBON RELEASE 

Although a large carbon release at the PETM is accepted, the source and mass of the 

carbon are still debated.  Because different sources of carbon have different 13C 

signatures, differential loadings of carbon would be required to cause the same 

magnitude CIE. 

 
One of the most widely accepted theories of carbon release remains via the release of 

methane or gas hydrates and its subsequent oxidation to carbon dioxide (Dickens et al. 

1995).  Methane hydrates consist of methane molecules enclosed in a matrix of water, 
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forming a structure similar to ice.  They are stable in deep-sea sediments, but can be 

easily destabilised.  Several mechanisms have been proposed for this including 

cometary impact (Kent et al. 2003; Cramer and Kent 2005), slope failure, or increasing 

ocean temperature caused by changes in ocean circulation, specifically, a switch in the 

location of deep water formation from the South Atlantic to the North Atlantic 

(Kennett and Stott 1991; Bice and Marotzke 2002; Nunes and Norris 2006).  Cometary 

impact remains a controversial theory, suggested as a result of the presence of 

magnetic nanoparticle material in kaolinite-rich shelf sediments on the Atlantic Coastal 

Plain (Kent et al. 2003).  Researchers have since challenged this theory, suggesting that 

the magnetic material was of biogenic origin, produced by magnetotactic bacteria,  

and that its presence reflected environmental changes rather than a cometary impact 

(Kopp et al. 2007; Lippert and Zachos 2007).   

 

Present day known methane hydrate reserves are located around North America and 

Greenland (Dickens et al. 1997).  It has been suggested that if PETM methane hydrate 

reservoirs were similarly located, a switch in deep water formation from the Southern 

Hemisphere to the Northern Hemisphere (e.g., as evidenced by Nunes and Norris 

2006), could have caused the temperature increase necessary to destabilise and 

release the methane hydrates (Bice and Marotzke 2002; Thomas et al. 2003).  This 

change in oceanic circulation is suggested to have been driven by either increased 

ocean temperatures, decreasing the pole-to-equator sea surface temperature 

gradients, or by changes in continental freshwater run-off (Thomas et al. 2003; Nunes 

and Norris 2006).  Applying this scenario to the present day suggests that future global 

warming could again affect ocean circulation, which in turn could trigger another 
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release of methane hydrates, accelerating the warming caused by anthropogenic 

activities (Thomas et al. 2003; Bowen et al. 2006).   

 

If the terrestrial CIE magnitude is an accurate representation of the change recorded in 

the entire ocean-atmosphere carbon reservoir, then marine gas hydrates could only be 

solely responsible for the PETM if the climate sensitivity to CO2 around the PETM was 

much higher than currently assumed (Pagani et al. 2006).  However, current debates 

suggest that gas hydrates could not be the only source of carbon causing the PETM, 

owing to the required magnitude of carbon release exceeding the estimated amount 

of carbon stored in gas hydrate reservoirs at the time of the event (Higgins and Schrag 

2006).  Furthermore, no direct physical evidence has been found for the release of 

large volumes of methane hydrates (Dickens 2004).   

 

“Contemporary opinion” is that methane hydrates are unlikely to be the sole source of 

carbon responsible for the PETM climate change but may be partially responsible in 

combination with other sources.  Consequently, other sources have been hypothesised 

as the source of the released carbon, including thermogenic methane as a direct 

source of the 13C-depleted carbon by means of sill emplacement (Svensen et al. 2004; 

2010). Injection of magma into organic-rich sediments may have caused the explosive 

release of large quantities of thermogenic methane to the ocean/atmosphere system 

(Svensen et al. 2004; Bowen et al. 2006).  Seismic data from the Norwegian Sea 

indicate the presence of sills and associated hydrothermal vent complexes, which have 

been dated radiometrically to have been emplaced approximately synchronous with 

the PETM (Svensen et al. 2010).  It is estimated that a 5000 km3 dolerite could 
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generate between 125 – 450 Gt carbon if intruded as a 100 m thick sill, with 1 – 3 wt% 

total organic carbon transferred to carbon gas (Svensen et al. 2004; Svensen et al. 

2007).  This indicates that methane could have potentially been produced in significant 

enough quantities by means of sill emplacement to have caused the CIE associated 

with the PETM.  However, thermogenic methane as a potential source of the released 

carbon has been challenged due to the rate of release required; it has been estimated 

that a 100-fold increase in the rate of volcanic outgassing would be needed to cause 

the release of the amount of carbon required over the period of time estimated, which 

is geologically improbable (Dickens et al. 1995; Dunkley Jones et al. 2010; Dickens et al. 

2011). 

 

Another suggested source of carbon to initiate the PETM is the burning of extensive 

peat and coal deposited through the Palaeocene, via extensive wildfires (Kurtz et al. 

2003).  Evidence to support this theory came from carbon and sulphur stable isotope 

records, coincident with the onset of the PETM, in which a peak in organic carbon 

burial was accompanied by remarkably low pyrite sulphur burial rates.  Kurtz et al. 

(2003) suggested that this may reflect organic burial being dominated by terrestrial 

environments, where sulphate was limited in supply.  Coals of Palaeocene age were 

suggested as a potential source of the carbon, due to the volumes of coal being 

sufficient to account for the required burial of organic carbon coupled with their low 

sulphur content, consistent with the high organic carbon/pyrite sulphur burial ratios 

recorded.  Mechanisms to initiate the proposed wildfires included increasing 

atmospheric O2, dryer climates, and/or uplift of coal basins (Kurtz et al. 2003).  

However, no increase in combustion by-products, such as soot and graphitic black 
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carbon, was observed in PETM cores from the Atlantic or the Pacific (Moore and Kurtz 

2008), and the by-products recorded appeared to be sourced from contemporaneous 

(P/E boundary) biomass, not geologically old carbon.  Furthermore, Higgins and Schrag 

(2006) suggested that in order for wildfire burning to cause the carbon release 

estimated for the PETM interval, it would require an order of magnitude increase in 

the amount of carbon stored in peat and all the known peatlands to burn 

simultaneously. Moore and Kurtz (2008) suggested that these data refuted, but could 

not completely rule out, biomass burning as the sole cause for the PETM event, 

although it may have made a contribution to the carbon release. 

 

Tectonically-driven isolation of an inland sea (epicontinental seaway) by means of 

volcanism or continental collision has also been suggested as a potential source and 

mechanism of release of the necessary carbon to cause the PETM.   Epicontinental 

seaway isolation would have led to desiccation and oxidation of organic matter and 

would have removed a large source of moisture for the continental interior, 

subsequently resulting in further desiccation and oxidation of adjacent terrestrial 

wetlands (Higgins and Schrag 2006).  However, although vast areas of central Asia 

were covered by shallow seaways in the Palaeocene-Eocene, there is no evidence that 

any dried up at a time coincident with the PETM (Gavrilov et al. 2003). 

 

Finally, DeConto et al. (2012) suggested that the rapid thawing of permafrost deposits 

may have been responsible for the release of carbon at the P/E boundary.  During the 

Palaeogene Antarctica did not support a large ice cap and may, therefore, have stored 

vast quantities of carbon as permafrost and peat (McInerney and Wing 2011).   
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DeConto et al. (2012) used an astronomically calibrated PETM record to show that the 

hyperthermal events were occurring during high eccentricity and obliquity orbits, and 

suggested that orbitally-triggered decomposition of soil organic carbon in the Arctic 

and Antarctic terrestrial permafrost may have had the potential to release large 

quantities of carbon into the ocean-atmosphere system.  Furthermore, they suggested 

that following peak-warming, replenishment of permafrost carbon stocks may have 

contributed to the rapid recovery from the event.  This hypothesis was also applied to 

subsequent early Eocene hyperthermals, suggesting that this carbon would provide a 

sensitive reservoir for the next hyperthermal.  Whilst this hypothesis provides a 

reasonable explanation for both onset and termination of the PETM event, the 

termination would need to be in combination with another mechanism.  DeConto et 

al. (2012) suggested that the extent of permafrost recovery after each hyperthermal 

would have declined resulting in a successively smaller carbon pool for each 

hyperthermal and thus a smaller hyperthermal event.  

 

Whether any one of these proposed sources of carbon is solely responsible for the 

carbon release to cause the PETM, or a combination of sources, is still debated.  Mass 

balance calculations, models and further PETM records may help to constrain the size 

of the magnitude of the CIE associated with the PETM, which in turn may help to 

identify more likely sources of the carbon (Figure 1.2). 

 

 

 
 
 
 



INTRODUCTION 

14 
CHAPTER 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2. Mass balance estimates of mass of carbon released from different sources 
of carbon, over a range of absolute values for the CIE, as discussed in the text. 
Modified from McInerney and Wing (2011). 
 
 

1.5 RECOVERY FROM THE PETM 

How the Earth climate system recovered from the PETM warming event is still not well 

understood and alternative hypotheses have been proposed.  The recovery period is 

estimated to have lasted ca. 83 Ka (Murphy et al. 2010) and reflects natural carbon 

sequestration and negative feedbacks that brought about termination of the event.  

Three mechanisms have been proposed to account for the drawdown of CO2 at the 

termination of the event.  Kelly et al. (2005, 2010) and Torfstein et al. (2010) proposed 

enhanced silicate weathering and runoff from land as a recovery mechanism.  They 

suggest that this resulted in increased carbonate precipitation and preservation in the 

ocean.  Evidence for this theory came from increased coccolithophore blooms and 



INTRODUCTION 

15 
CHAPTER 1 

kaolinite abundance (Kelly et al. 2005), which together were suggested to reflect a 

transient climate state and enhanced continental weathering and carbonate 

precipitation.  Silicate weathering is, however, a slow process, and due to the relatively 

short timescales of recovery, Bowen and Zachos (2010) suggested that a process that 

preferentially sequestered 13C-depleted carbon would likely be required.   

 

An alternative explanation proposed an increase in the intensity of the marine 

biological pump, resulting in increased CO2 fixation and subsequent sequestration of 

carbon via burial in marine sedimentary organic matter (Bains et al. 2000).  Evidence 

for this theory derived from increased accumulation rates of biogenic barium, 

indicative of export palaeoproductivity.  However, this idea was refuted by Torfstein et 

al. (2010), who argued that increased export production occurred ca. 70 ka after the 

onset of the CIE, implying that it could not be responsible for rapid removal of excess 

carbon from the atmosphere.   

 

Finally, increased carbon storage in the terrestrial biosphere was suggested as a 

potential recovery mechanism from the PETM interval (Beerling 2000; Bowen and 

Zachos 2010).  Rates of carbon isotope change in well-dated marine and terrestrial 

sediments spanning the PETM were constrained, resulting in a calculated rate of 

recovery that was an order of magnitude more rapid that that expected for carbon 

drawdown from silicate weathering alone (Bowen and Zachos 2010).  This led to the 

hypothesis that regrowth of terrestrial biospheric carbon stocks that were released at 

the onset of the event may have occurred, because to recover from the PETM on such 
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a rapid timescale it was estimated that 2,000 Pg of carbon had to be sequestered in 30 

– 40 ka (Bowen and Zachos 2010). 

Research based on the mode of recovery from the PETM interval is still relatively new, 

and as such all three mechanisms discussed herein are considered plausible.  It is likely, 

as with the source of the carbon released to cause the event, that recovery occurred 

by means of several mechanisms.  However, further work is needed to determine 

which mechanisms are most plausible, and thus to understand better how the Earth 

system responds to climate change.   

 

This study aims to address three important debates associated with the PETM.   

1) The magnitude of PETM CIEs in northern Spain is evaluated through the 

comparison of continental and marine CIEs within a linked sediment routing 

system.   

 

2) The profile shape of the different CIE records is assessed, with inferences 

drawn on the rate and rapidity of release and drawdown of carbon.  

 

3) Evaluation of how the sediment system responds locally to such climatic 

perturbations is achieved through the comparison of features in the 

sedimentary record, in relation to the onset and recovery from the CIE. 
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1.6 NORTHERN SPAIN 

The sections studied in this research represent a series of well-known PETM sections in 

northern Spain, spanning continental to marine depositional environments within the 

same depositional system (Schmitz et al. 2001).  These sections are unique in providing 

a series of expanded and accessible PETM sedimentary successions.  The PETM has 

already been located by carbonate 13C stratigraphy in most of the sections (Schmitz et 

al. 1997, 2001; Schmitz and Pujalte 2003, 2007) and many bio-, magneto- chemo- and 

lithostratigraphic studies have been conducted across the region identifying the PETM 

(Canudo and Molina 1992; Canudo et al. 1995; Schmitz et al. 1997; Baceta et al. 2000; 

Schmitz et al. 2001; Domingo et al. 2009).   

 

The data presented in this study represents the first organic geochemical data for the 

Zumaia, Ermua Campo and Esplugafreda sections and the first compound specific 

organic geochemical data for all of the sections.  The study area is one of only a limited 

number of places worldwide where comparisons of marine and terrestrial CIEs within 

the same sediment routing system and indeed within one section (Zumaia) can be 

made. 
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2 MAGNITUDE AND PROFILE OF ORGANIC CARBON ISOTOPE RECORDS FROM THE PETM: 

EVIDENCE FROM NORTHERN SPAIN 

ABSTRACT 

The Palaeocene – Eocene Thermal Maximum (PETM), a hyperthermal event that 

occurred ca. 56 Ma, has been attributed to the release of substantial amounts of 

carbon, affecting the atmosphere, biosphere and the oceans.  Current issues with 

respect to our understanding of the PETM include the amount of carbon released, the 

duration of carbon release, and the mechanism(s) of release, all of which are related to 

the magnitude and profile of the associated Carbon Isotope Excursion (CIE).  High-

resolution organic carbon profiles (13C) of six PETM sections in northern Spain are 

presented that span a transect from continental to marine environments.  These data 

represent the highest-resolution isotope records for these sections and allow a 

comparison of the magnitude of the excursion, the shape of the vertical 13C profile 

during the PETM episode, and the relative timing of the onset of the excursion across a 

linked sediment routing system.  Previous studies using carbonate 13C data have 

suggested that the continental Claret Conglomerate, found in this region, formed 

synchronously with a marine, clay-rich, siliciclastic unit, with these key lithological 

changes interpreted to be driven by increased seasonal rainfall-runoff in the warmer 

PETM climate.  The data presented here suggest that deposition of these units did not 

immediately follow the CIE onset, indicating that there may be a temporal lag between 

the onset of the PETM warming and the response of the depositional systems in 

northern Spain.  No systematic variation in the magnitude of the CIE between different 

depositional environments was found; the marine CIE magnitudes are at the higher
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 end of those previously described (3.7 ±1.4‰), and the continental ranges are lower 

(3.1 ±1.3‰).   

 

2.1 INTRODUCTION 

The Palaeocene – Eocene Thermal Maximum (PETM; ca. 56 Ma) is the most dramatic 

and rapid global warming event of the Cenozoic Era, with global surface temperatures 

estimated to have risen by 5 – 9°C in less than 10,000 years (Dickens et al. 1995; 

Thomas et al. 2002; Wing et al. 2005; Zachos et al. 2005; Rohl et al. 2007; Sluijs et al. 

2007; Zeebe et al. 2009; Dunkley Jones et al. 2010). Geological and geochemical 

evidence indicate that this warming was driven by a major perturbation to the global 

carbon cycle, with the release of several thousand gigatons of isotopically light carbon 

as methane or carbon dioxide to the ocean-atmosphere system (Dickens et al. 1995, 

1997, 2011; Panchuk et al. 2008; Zeebe et al. 2009; Cui et al. 2011).  

 

One of the major unresolved questions surrounding the PETM is the precise magnitude 

of the carbon release.  Current estimates range from 1,500 Gt to 12,000 Gt of carbon 

(Dickens 1995, 2003, 2011; Panchuk et al. 2008; Zeebe et al. 2009; Cui et al. 2011), 

depending on the carbon source and its isotopic composition.  A key constraint on 

estimates of the PETM carbon cycle perturbation is the magnitude of the 

accompanying negative Carbon Isotope Excursion (CIE), which, at the resolution of 

current data, is recorded simultaneously in environments as disparate as continental 

soils and deep ocean sediments (Koch et al. 1992; Bowen et al. 2004; Zachos et al. 

2005). There is, however, a discrepancy in the magnitude of the recorded negative CIE 
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between continental and marine sediments, with the continental CIE consistently 

recorded as around 2 to 4‰ greater than the marine CIE shift (continental CIE ~3 to 

7‰; marine CIE ~2.5 to 5.5‰; Pagani et al. 2006; Smith et al. 2007; Zachos et al. 2007; 

Handley et al. 2008; Bowen and Zachos, 2010; McInerney and Wing 2011). Carbonate 

dissolution and poor preservation may have dampened the CIE recorded in many 

marine sections, especially in the deep sea (Zachos et al. 2005; McCarren et al. 2008), 

although the most complete marine records do not record a CIE much in excess of 4‰ 

(Zachos et al. 2007).  In contrast, amplification of the CIE in the continental realm has 

been attributed to increased moisture availability (Beerling, 1996; Bowen et al. 2004; 

Ward et al. 2005) allowing continental plants to increase 13C discrimination (Bowen et 

al, 2004), temperature effects on carbon isotope fractionation (Edwards et al. 2000); 

and possible changes in soil productivity and organic matter turnover rates (Bowen et 

al. 2004).  An additional problem is that many previous studies comparing continental 

and marine sections are at a low resolution, an issue that is exacerbated when records 

derive from sections located in different basins (Koch et al. 1992; Schmitz and Pujalte 

2003; Bowen et al. 2004; Wing et al. 2005; Pagani et al. 2006; Handley et al. 2011; 

Bowen and Zachos 2010; Tipple et al. 2011).  Another un-resolved issue is the 

variability in the PETM isotopic profiles.  The overall structure of (presumably) 

complete profiles is defined by three phases: initiation, alternate semi-stable state, 

and recovery (Bowen et al. 2006).  However, not all sections exhibit the semi-stable 

state.    
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Differences among sites are typically interpreted with respect to how rapidly carbon 

was added to, and removed from, the ocean-atmosphere reservoir.  For example, from 

studies of carbonate 13C values, Zachos et al. (2008) showed that at several South 

Atlantic ODP sites a rapid PETM onset occurred, followed by a gradual recovery that 

they attributed to silicate weathering feedback (Zachos et al. 2005, 2008).  This is 

considered the classical model, and is exemplified by a triangular-shaped CIE profile 

(Figure 2.1 (1)).  In contrast, well-dated marine bulk-carbonate and terrestrial soil-

nodule carbonate 13C records from ODP Site 690 and Polecat Bench respectively, 

imply both a rapid release and drawdown of carbon at the onset and termination of 

the PETM (Bowen and Zachos 2010), with an expanded alternate semi-stable state, 

leading to a box-shaped CIE profile (Figure 2.1 (2)).  Bowen and Zachos (2010) 

considered that this rapid recovery was inconsistent with the expected ~100 kyr 

response time of the silicate weathering feedback and, instead, explained it by the 

rapid re-growth of biospheric carbon stocks that may have been released at the onset 

of the event.  Furthermore, a semi-stable state may suggest continued release of 13C-

depleted carbon during the event; an idea also proposed by Zeebe et al. (2009), who 

hypothesised that to maintain the negative body of the CIE, pulsed releases of carbon 

throughout the CIE may be necessary.  Currently there is no consensus on whether one 

profile is a better reflection of the CIE associated with the PETM, or whether other 

factors, such as sedimentation rates and/or decompaction, may be biasing all recorded 

shapes (McInerney and Wing 2011).  
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Figure 2.1. Exemplar CIE profile shapes illustrating: 1) the triangular profile (Zachos et 
al. 2008), and 2) the box profile (Bowen and Zachos 2010).  The data used to generate 
the profiles is for illustrative purposes only.  Methods for calculating CIE magnitude are 
shown on the triangular profile (1).  Previous studies have subtracted the pre-CIE 

average (a) from the CIE average (b).  This study subtracts the most positive 13CTOC 

value immediately prior to the negative 13CTOC shift (c), from the most negative 13CTOC 
value at the base of the CIE (d).  
 

This study presents a series of high-resolution 13C profiles from organic matter in six 

well-known PETM sections in northern Spain, spanning continental to marine 

depositional environments.  This provides an opportunity to track changes in the 

recorded CIE across various palaeoenvironments.  Previous stable isotope studies in 

northern Spain have presented either low-resolution soil nodule carbonate or bulk 

marine carbonate 13C excursions from the same sections (Schmitz and Pujalte, 2003, 

2007), or organic carbon 13C excursions from individual sections (Domingo et al. 2009; 

Storme et al. 2012). The CIE magnitudes and profiles across this continental to marine 

transect are compared, providing new insights into the depositional control on the 

recorded CIE and the sedimentological response to the PETM warming episode. 
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2.2 SAMPLE LOCATIONS AND METHODOLOGY 

2.2.1 GEOLOGICAL SETTING  

The Tremp-Graus and Basque-Cantabrian basins of northern Spain are unique in 

providing a series of expanded and accessible PETM sedimentary sections that span 

the continental to marine realms within the same depositional system (Schmitz et al. 

2001).  The PETM has already been located by carbonate 13C stratigraphy in most of 

the sections (Schmitz et al. 1997, 2001; Schmitz and Pujalte 2003, 2007), which are, 

from east to west (Figure 2.2.), the continental sections of Claret (N 042°09´14.1”, E 

000°51´58.4”), Tendrui (N 042°10´07.2”, E 000°51´25.3”), and Esplugafreda (N 

042°14´47.3”, E 000°45´22.7”), the transitional mixed shallow marine and continental 

deposits of Campo (N 042°23´24.5”, E 000°23´50.2”), and the marine sections of Ermua 

(N 043°10´44.1”, W 002°29´49.1”) and Zumaia (N 043°18´4.5”, W 002°15´31.2”).  

Figure 2.2. Palaeogeographic reconstruction and location map (redrawn from Schmitz 
et al. 2003).  Numbers on map represent studied sections, which are: 1) Zumaia, 2) 
Ermua, 3) Campo, 4) Esplugafreda, 5) Tendrui and 6) Claret. 
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The lithological logs produced in this study (Figure 2.3.) are similar to those published 

previously for all sections (Schmitz et al. 1997, 2001; Schmitz and Pujalte 2003, 2007; 

Domingo et al. 2009).  The continental sections have been correlated predominantly 

using fossil mammal sites comprising, for example, dental remains of the condylarth 

genus Paschatherium found at Claret and Tendrui.  These are dated as late Palaeocene 

and occurring before the mammalian dispersal event (MDE), placing the sections close 

to the Palaeocene – Eocene boundary (Lopez-Martinez and Pelaez-Campomanes 1999; 

Lopez-Martinez et al. 2006; Domingo et al. 2009).  In addition to fossil sites, 

chemostratigraphic features such as the CIE and lithostratigraphic marker horizons 

such as the Claret Conglomerate and Alveolina Beds have been used in correlation 

(Molina et al. 2000; Pujalte et al. 2000a; Schmitz and Pujalte 2007).  The Alveolina Beds 

are a prominent marker bed in the Ilerdian representing a shallow marine environment 

associated with a basin-wide transgression in the early Eocene (Molina et al. 2000).  

Biostratigraphic correlations are discussed in further detail in Chapter 3 and Chapter 4 

and illustrated in Figure 3.2.  
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Figure 2.3. Lithological logs with proposed correlation points from the marine to 
continental realm (West to East), from Schmitz and Pujalte (2003), based upon carbon 
isotope stratigraphy and lithology.  Note different scales used for Zumaia and Campo.  
BEE = Benthic Extinction Event.  Numbered/lettered lines indicate proposed tie 
points/key lithological features: 1&2) Bottom and top of the marine Siliciclastic Unit 
(SU on figure), respectively (Schmitz et al. 2001).  Using isotope stratigraphy and 
lithology the Siliciclastic Unit has been suggested to experience a lateral change of 
facies towards a more detritic nature and can be linked to two sandstone beds at the 
transitional section of Campo (Schmitz and Pujalte 2003). 3) Bottom of the Claret 
Conglomerate (CC on figure: Schmitz and Pujalte 2007). 4) Alveolina Beds associated 
with a marine transgression throughout the entire terrestrial region (Molina et al. 
2000, 2003). a) Sandstone beds interpreted to be the distal equivalent of the Claret 
Conglomerate (Schmitz and Pujalte 2003). b) Continental interval of the Campo section 
(Schmitz and Pujalte 2003). 
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The marine sections of Zumaia (bathyal) and Ermua (base-of-slope-apron; Schmitz and 

Pujalte 2003) and the mixed marine/continental section at Campo, have been 

correlated to each other using biostratigraphic (Molina et al. 2000; Nuñez-Betelu et al. 

2000; Orue-Etxebarria et al. 2001), chemostratigraphic (Schmitz and Pujalte, 2003) and 

lithostratigraphic (Pujalte et al. 2000a; Schmitz and Pujalte 2007) methods.  Pujalte et 

al. (2000) constructed a shelf to basin tentative correlation in the Pyrénées using four 

main lithological tie points, whilst Molina et al. (2000) undertook a detailed bio- and 

chemostratigraphic study at Campo to identify the PETM.  Orue-Etxebarria et al. (2001) 

used these data and data from a palynological study by Nuñez-Betelu et al. (2000) to 

correlate Campo to the Benthic Extinction Event (BEE), recorded at Zumaia and Ermua, 

respectively (Schmitz et al. 1997; Schmitz and Pujalte 2007).  Further correlative 

studies have also been undertaken in this region linking basin, slope and mixed marine 

PETM settings (Orue-Etxebarria et al. 1996; Baceta et al. 2000; Molina et al. 2003).  

 

Correlation between the continental and marine sections in northern Spain has been 

achieved by Schmitz and Pujalte (2003) using a combination of all the bio-, litho- and 

chemostratigraphic techniques previously discussed (Figure 2.4.).  The Claret 

Conglomerate is a continental feature propagating westwards toward the marine 

sections, whilst the Alveolina Beds are a marine unit that transgresses eastwards, both 

of which can be seen at the transitional section of Campo (Molina et al. 2000, 2003; 

Schmitz and Pujalte, 2007).  Campo is, therefore, a fundamental section in this 

correlation, owing to its marine sediments immediately above and below the PETM, 

and the transition to continental deposition during the PETM (Molina et al. 2000; 
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Orue-Etxebarria et al. 2001; Schmitz and Pujalte 2003, Pujalte et al. 2009a).  Carbonate 


13C profiles have been used to further confirm correlation between sections (Schmitz 

et al. 2001; Schmitz and Pujalte 2003, 2007). 

 

2.2.2 METHODS 

All sections have been logged and 285 samples collected and analysed for organic 

carbon content and 13C (Table 2.1.).  Results for Claret and Tendrui were added to the 

previously published data of Domingo et al. (2009) to provide a total of 98 samples at 

Claret and 94 samples at Tendrui.  Sampling frequency varied according to the length 

and exposure of each section, with shorter sections (<25 m) ideally being sampled at 

30 cm resolution, whilst longer sections (>25 m) were sampled at 50 cm intervals 

where possible. 

Table 2.1. The 13CTOC data used for calculating the magnitude of the CIE in this study.  
Superscripted numbers in the case of Campo refer to the values taken for the CIE 
calculation as pre-CIE values vary depending on where the onset of the CIE is placed.  
Total number of samples means all samples from this study and those used from 
Domingo et al. (2009), upon which all statistical analysis has been conducted.  Number 

of samples indicates the new samples for which 13CTOC data has been generated in this 
study. 

Section 
Total 
no. of 

samples 

No. of 
samples 

this 
study 

Min. 


13C TOC 
(‰) 

Max. 


13C TOC 
(‰) 

CIE calculation 
values (‰) CIE 

magnitude 
Pre-CIE 

Body-
CIE 

Claret 98 20 –27.8 –21.7 –23.3 –26.8 3.5 

Tendrui 94 28 –26.7 –22.9 –24.7 –26.4 1.7 

Esplugafreda 80 80 –26.5 –21 –21.9 –26 4.1 

Campo 34 34 –28.9 –21.3 
–23.51 
/–26.22 

–28.3 2.11 – 4.82 

Ermua 46 46 –29.5 –22.4 –22.4 –27.2 4.8 

Zumaia 77 77 –28.4 –23.9 –24.3 –28.4 4.1 
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Whole rock samples were oven dried (30°C, 24 hours), crushed using a granite pestle 

and mortar and de-carbonated following the methodology of Domingo et al. (2009) 

using excess hydrochloric acid (10% v/v) until any visible sign of reaction had ceased.  

This was followed by repeated washing with deionised water until a neutral solution 

was obtained, then oven drying (30°C, 24 hours). Stable isotope analyses were 

conducted at the NERC Isotope Geosciences Laboratory. Total organic carbon (TOC) 

content was measured using a Carlo Erba 1500 elemental analyser with acetanilide 

used as the calibration standard. Replicate analyses indicated a precision of ±0.1% in 

well-mixed samples (1 Standard Deviation, SD).  For 13C analysis a Carlo Erba 1500 EA 

online coupled to a VG TripleTrap was used. This setup also included a secondary 

cryogenic trap in the mass spectrometer for samples with very low carbon content. 

The mean standard deviation on replicate 13C analyses of laboratory standard broccoli 

(BROC1) and soil (SOILB) was between 0.1 and 0.4‰.  The carbon isotope composition 

of the TOC within the samples is referred to as 13CTOC. 

 

Two different methods are commonly used for calculating CIE magnitude.  For 

example, in some instances, the average of 13CTOC values preceding the CIE are taken 

and subtracted from the average of 13CTOC values during the CIE (Domingo et al. 2009; 

Figure 2.1.).  This averaging approach inevitably leads to some smoothing of the peak 

CIE magnitude at the very start of the PETM, especially if there was a relatively rapid 

transient negative spike at the onset. Instead, here, a “maximum CIE” approach is used 

that identifies the most positive 13CTOC value immediately prior to the negative 13CTOC 

shift (Figure 2.1., point c), and the most negative 13CTOC value at the base of the PETM 
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(Figure 2.1., point d; Table 2.1.). This maximum CIE approach is appropriate for a 

comparison between sections which have varying degrees of noise superimposed on 

the CIE, most likely due to the inclusion and reworking of variable amounts of older, 

non-CIE related organic material. It assumes that this reworking most likely smooths 

and dampens the actual magnitude of the CIE.  However, caution must also be taken in 

using the maximum CIE approach, as it is possible that over-emphasis of CIE magnitude 

may occur as a result of including spikes in the CIE magnitude calculation.  Therefore, 

identifying differences in magnitude between disparate records may become 

challenging if the different methods are employed, i.e., observed differences in 

magnitude may be an artefact of the method used rather than a reflection of the 

environment of deposition. 

 

Regression analysis was used to assess whether there was a significant logarithmic 

correlation between13CTOC values and % weight of organic carbon (wt%TOC; Figure 

2.5) for the continental sections of Claret, Tendrui, and Esplugafreda. If correlation was 

not significant (95% confidence interval; low r2), it is tentatively assumed that 13CTOC 

values are independent of lithological change.  For all sections, wt%TOC remained low 

(generally <1% TOC); independence of wt%TOC and lithological change was assessed 

using the student’s t-test at the 95% confidence interval (Tables 6.1.1 – 6.1.6 of 

Appendix 1).    Where p < 0.05, a significant difference between wt%TOC and different 

lithologies may be observed, as discussed in the results, otherwise wt%TOC was 

considered independent of lithological change.  Comparison with carbonate records 

(where present) was also used to assess similarity, increasing confidence in the 13CTOC 
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records reflecting a primary signal and thus atmospheric CO2 values.  A t-test on each 

section, comparing 13CTOC values during the CIE to those before the CIE, determines if 

a significant shift in 13CTOC values occurred during the CIE (Table 2.2.). 

 

 
 
 
 
 
 
 

Figure 2.5. Regression analysis plots.  Cross plots showing correlations between 13CTOC 
and weight % organic carbon (Wt%TOC) for each continental section studied. 
 
 
Table 2.2. Associated statistical tests performed on the data (regression analysis and t-

tests) comparing 13C and wt%TOC.  For regression analysis, pre- and post-CIE values 
were combined, and CIE values were analysed separately to determine if a logarithmic 
relationship was observed in any of the sections. t-tests were conducted comparing 
only pre-CIE values to CIE values to determine if a statistically significant shift was 
recorded.  For this second analysis post-CIE values were ignored, as they do not return 
to pre-CIE values, and as such may bias the test. 
 

Section 
Data used for 

regression 
analysis 

R2 values 

comparing 13CTOC 
and wt%TOC 

Data used for 
comparison in 

t-tests 

t-test results 

for 13CTOC 
values 

Claret 
Pre/post CIE 0.57 

Pre/during CIE 
t = 12.32 

During CIE 0.01 p < 0.001 

Tendrui 
Pre/post CIE 0.04 

Pre/during CIE 
t = 10.36 

During CIE 0.01 p < 0.001 

Esplugafreda 
Pre/post CIE 0.005 

Pre/during CIE 
t = 7.08 

During CIE 0.0003 p < 0.001 

Campo 

Not calulcated due to the nature of 
the sections (continental-marine, or 

entirely marine). 

Pre/during CIE 
t = 3.67 

p < 0.001 

Ermua Pre/during CIE 
t = 13.70 

p < 0.001 

Zumaia Pre/during CIE 
t = 10.93 

p < 0.001 
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To define the magnitude of any CIE, the start, or onset, of the CIE in any given section 

must be determined.  The onset of the CIE in this study is defined by a negative isotope 

shift of at least ca. 2‰ to continuous values of< –25‰.  For Claret, Esplugafreda, 

Ermua, and Zumaia this resulted in an unambiguous identification of the CIE onset.  

However, Tendrui and Campo proved more challenging and, as such, to confirm that 

the shift observed was in fact the CIE associated with the PETM, the onset of the CIE in 

this study was compared to previously published data and lithological tie points (Figure 

2.3.).  Finally, a return to less negative values similar to those preceding the event, was 

used to determine the termination of the CIE.  The 13CTOC results for all 6 sections are 

presented in Figure 2.6. (continental sections) and Figure 2.7. (marine sections; also 

Tables 6.1.7 to 6.1.12 of Appendix 1).   

 

2.3 RESULTS 

The 13CTOC CIE magnitudes range between 1.7 to 4.8‰ among the six sections (Table 

2.1.).  The highest recorded 13CTOC CIE magnitude for the continental sections is that 

of Esplugafreda (4.1‰; Figure 2.6), whilst for the marine sections it is Ermua (4.8‰; 

Figure 2.7.).  Using the defined parameters for the CIE onset, combined with 

correlative data from previous studies (Schmitz and Pujalte 2003, 2007; Pujalte et al. 

2009a), a CIE magnitude of 2.1‰ at Campo is suggested (Figure 2.7.).  However, 

interpretation of the CIE onset at Campo was more difficult due to its stepped nature 

(Figure 2.7.), leading to a range of potential CIE magnitudes, depending on where the 

onset was placed (2.1 – 4.8‰).    Among the continental sections of Claret, Tendrui, 

and Esplugafreda the magnitude of the CIE varies, despite their proximity (Table 2.1.), 



MAGNITUDE AND PROFILE OF ORGANIC CARBON ISOTOPE RECORDS FROM THE PETM: EVIDENCE 

FROM NORTHERN SPAIN 

33 
CHAPTER 2 

but in the case of Claret and Tendrui, the onset of the excursion occurs prior to the 

deposition of the Claret Conglomerate, and the peak of the CIE occurs after 

conglomerate deposition (Figure 2.6).  Comparison between the marine sections 

illustrates variability in terms of the magnitude, onset, and shape of the CIE profiles 

(Figure 2.7.). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6. Continental 13CTOC data. Lithology and 13CTOC for the continental sections 
only. Grey boxes indicate inferred CIEs associated with the PETM; clear circles indicate 
previously published data (Domingo et al., 2009), filled diamonds indicate new data 
from this study.  See Figure 2.3 for lithological key. 
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Figure 2.7. Marine 13CTOC data. Lithology and 13CTOC for the marine and transitional 
sections only.  Grey boxes indicate inferred CIEs associated with the PETM.  SU = 
Siliciclastic Unit. See Figure 2.3 for lithological key and Figure 3.2 for biostratigraphical 
information.  Note different scales used throughout. 
 
Regression analysis was conducted to determine if a significant logarithmic correlation 

between 13CTOC and wt%TOC is present for the continental sections, in either pre- plus 

post- CIE sediments or CIE sediments.  For most of the sections a significant correlation 

was not observed (r2 ≤ 0.19, Table 2.2., Figure 2.5), although the pre- and post-CIE 

correlation coefficient for Claret is 0.57, indicating a possible logarithmic relationship 

between the 13CTOC and wt%TOC of the samples in this section.  A similar relationship 

has been observed by Wing et al. (2005), Wynn et al. (2005) and Wynn (2007), who 

suggested that a logarithmic relationship may imply further decomposition of organic 

matter after burial.  Care must be taken when interpreting results where such a 

logarithmic relationship is observed.  The dependence of wt%TOC on lithology was 

assessed using the students t-test. Results indicate that wt%TOC may be dependent on 

certain lithological types in the sections (Tables 6.1.1 to 6.1.6 of Appendix 1).  Although 
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statistically significant differences are observed between some pairs of lithologies, 

they do not necessarily correspond to the lithologies observed throughout the CIEs.  

Furthermore, those differences do not exhibit consistency among sections. This would 

be indicative of the independence of the wt%TOC and the sampled lithology.  Further 

statistical tests comparing pre-CIE to CIE 13CTOC values demonstrate that statistically 

significant differences occur between CIE 13CTOC values and those from before the CIE 

(Table 2.2.) in all sections.   The 13C CIE magnitudes are consistently higher in the 

marine sections than previously published data based on carbonates (Table 2.3.), 

whilst the opposite is true for continental sections; both methods however show no 

apparent relationship between magnitude of the CIE and depositional environment.  

This verifies the results of previous studies in this region using the 13C values of 

carbonates, which also illustrate no observable relationship between the magnitude of 

CIE and depositional environment (Schmitz et al. 1997, 2001; Molina et al. 2003, 

Schmitz and Pujalte 2003, 2007).  

Table 2.3. Comparison of 13CTOC CIE magnitude calculated using different methods and 

previously published 13C measured from carbonates. Method 1 refers to the method 
used in this study (see text for an explanation; termed “maximum CIE” approach); 
Method 2 refers to the method used in previous studies (termed “average CIE” 
approach. 1. Schmitz and Pujalte (2007); 2. Schmitz and Pujalte (2003); 3. Schmitz et al. 
(2001); 4. Schmitz et al. (1997). 

Section Setting 

Published CIE 
magnitudes 

for carbonate 
carbon  

(‰ VPDB) 

CIE magnitude 
calculation 

Difference 
Method 1 
(‰ VPDB) 

Method 2  
(‰ VPDB) 

Claret 

Continental 

6.0 – 7.01 3.5 1.9 1.6 

Tendrui 6.0 – 7.02 1.7 1.4 0.3 

Esplugafreda 6.0 – 7.02 4.1 2.0 2.1 

Campo Transitional - 2.1 – 4.8 1.0 – 2.9 1.5 

Ermua 
Marine 

5.03 4.8 3.8 1.0 

Zumaia 2.04 4.1 1.7 2.4 
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2.4 DISCUSSION 

2.4.1 MAGNITUDE OF CIE 

There is low but sufficient TOC (ca. 0.2 – 2%) within the sediments through all six 

sections to generate high-resolution isotope curves from which the PETM can be 

identified.  Differences in carbon sources or even changes in source(s) through the 

PETM in each section could contribute to the recorded differences in the magnitude of 

the CIE between sections.  Some will comprise of a mixture of marine and continental 

organic matter (i.e., Zumaia, Ermua and Campo) and some exclusively continental 

organic matter (i.e., Claret, Tendrui, and Esplugafreda).   It is widely known that 13C 

values can vary dramatically with changing sources due to differences in isotopic 

fractionation during initial photosynthetic fixation of carbon (O'Leary, 1981; Diefendorf 

et al. 2010), subsequent biochemical partitioning of carbon amongst different 

compound classes (Hayes 2001), and differential degradation of isotopically distinct 

compound classes (Lockheart et al. 1997).    To some extent, these issues can be 

negated in well-mixed sediments of varying provenance, although even in these 

settings the isotopic signature of sediments can be biased by organic matter 

degradation and selective preservation (Bowen et al. 2004; Magioncalda et al. 2004; 

Poole et al. 2004; Wynn et al. 2005; Smith et al. 2007).   

 

The magnitude of the 13CTOC CIE at Zumaia, Ermua, and Campo ranges from 2.1 to 

4.8‰, comparable to marine CIEs recorded elsewhere (2‰ to 5.5‰: Zachos et al. 

2005; Schmitz and Pujalte 2007; Bowen and Zachos 2010; McInerney and Wing 2011; 

Tipple et al. 2011).  Schmitz et al. (2001) measured a ca. 5‰ excursion in carbonate 
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
13C values at Ermua, whilst here a 13CTOC excursion of 4.8‰ is reported.  However, at 

Zumaia, only a 1.5 to 2‰ excursion is recorded by bulk carbonate (Schmitz et al. 

1997), whilst the 13CTOC excursion is 4.1‰. 

 

Calculation of the magnitude of the CIE at Campo is more difficult, possibly due to the 

potential for alternating continental and marine organic matter sources before, during, 

and after the CIE interval.  Several studies have suggested that Campo was located in a 

shallow marine setting before and after the CIE, but that continental deposition 

dominated during the CIE (Molina et al. 2000; Schmitz and Pujalte 2003).  Molina et al. 

(2003) attempted to identify the PETM CIE using carbonate 13C stratigraphy at 

Campo, but they concluded that diagenetic overprinting made this impossible.  

Schmitz and Pujalte, (2003) also attempted to identify the PETM CIE using soil 

carbonate 13C values.  However, no magnitude was calculated due to low sample 

resolution making determination of the CIE challenging, although they did tentatively 

identify the onset (Section 2.4.2).  Results from this study record a stepped nature of 

the onset, which means that the 2.1‰ estimate for the magnitude of the CIE is 

tentative at Campo. 

 

The three continental records (Claret, Tendrui, and Esplugafreda) show broadly similar 


13CTOC magnitudes (Figure 2.6., Table 2.1.).  Domingo et al. (2009) published the first 


13CTOC results for Claret and Tendrui, and demonstrated that in both cases the 

magnitude of the CIE was smaller and the onset occurred earlier than that previously 

recorded in soil carbonate nodules (carbonates 13C = 6-7‰) from the same and 
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neighbouring sections of the Pyrénées (Schmitz and Pujalte 2003, 2007).  Here, the 

magnitudes of the CIE are also smaller than that of carbonate 13C data (3.5‰ at 

Claret, 1.7‰ at Tendrui, and 4.1‰ at Esplugafreda), and other studies have also 

reported smaller PETM CIEs from 13CTOC than carbonate 13C (e.g. Smith et al. 2007). 

 

Studies of continental records will always be biased by changes in fractionation and 

reworking of organic matter, as well as changes in sedimentation rate, all of which can 

affect the magnitude and profile shape to varying degrees.  The greater the number of 

records available for comparison however, the better informed any conclusions 

pertaining to localised and global changes will be.  The data presented in this study add 

six new PETM records to this discussion and are derived entirely from sections from 

neighbouring basins within the same sediment routing system, therefore allowing 

more direct comparison of magnitudes.  So far the data from this transect suggest that 

for a given system, the difference between continental (average this study: 3.1 

±1.25‰, average other studies: 4.7 ± 1.5‰; McInerney and Wing 2011) and marine 

(average this study: 3.7 ±1.40‰, average other studies: 2.8 ±1.3‰ McInerney and 

Wing 2011) organic carbon CIEs could be minimal. 

 

2.4.2 ONSET AND RECOVERY FROM THE CIE 

The higher-resolution 13CTOC records presented in this study suggest differences in the 

timing of the CIE onset in the Iberian continental settings, compared to the carbonate 


13C data obtained by Schmitz and Pujalte, (2003, 2007), where lower-resolution 

analysis of soil carbonate nodules placed the onset of the CIE within, and above, the 
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Claret Conglomerate.  The discrepancy between the CIE onsets recorded here and 

those recorded in soil carbonate nodules may be due to sampling resolution, or the 

time taken for soil development, with the carbonate data recording the isotopic 

composition of local soil CO2, in turn reflecting plant respiration and fractionation 

(Cerling 1991).  Hence, it is expected that the isotopic composition of soil-nodule 

carbonate follows that of organic carbon causing a delay in the record of the CIE onset 

in carbonate nodules due to the more protracted time of soil formation.  The 

incorporation of CO2 with pre-CIE 13C values into the carbonate could result in a 

smoothed record and apparently later onset.   Furthermore, a paucity of carbonate 


13C data directly below the Claret Conglomerate may also mean that previous studies 

have not detected the true onset of the CIE.   

 

Sedimentological studies carried out by Schmitz and Pujalte (2003, 2007) indicated 

that the Claret Conglomerate formed as a series of alluvial megafans which, in 

conjunction with carbonate 13C data, were suggested to be induced by extreme 

hydrological changes related to the onset of the PETM (Schmitz and Pujalte, 2007).  

Here it is demonstrated that the onset of the 13CTOC CIE occurs prior to the deposition 

of the Claret Conglomerate in the Claret and Tendrui sections, and in the lower few 

metres of the Claret Conglomerate at Esplugafreda.  Because peak CIE values occur 

after the conglomerate deposition (Domingo et al. 2009), and the onset of the CIE has 

been suggested to occur in ca. 15kyr (Bowen et al. 2006), these revised records 

indicate a small time-lag (<15 kyr) in the response of the landscape and depositional 

system, to the climate perturbation (previously assumed to be coincident with onset of 
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the CIE).  This is in agreement with Domingo et al. (2009) who estimated a time-lag 

between the onset of the CIE and the deposition of the Claret Conglomerate of around 

4-9 kyr based on sedimentation rates calculated for the Claret and Tendrui sections.  

This time-lag is potentially seen in the comparison of the continental and continental-

marine records; the source of the Claret Conglomerate has been mapped and 

suggested to originate “more than 10 km to the north of the present day outcrops” 

(Schmitz and Pujalte, 2007; Figure 2.2.).  Comparing this to the CIE recorded at each 

section potentially shows how the onset of the CIE records this time-lag.  If deposition 

of the Claret Conglomerate is time transgressive then it would be expected that the 

stratigraphical lag recorded between the onset of the CIE and the Claret Conglomerate 

would vary between sections according to the distance from the source.  This appears 

to be the case for these sections (Figure 2.6); Esplugafreda is geographically nearest to 

the alluvial megafans suggested to be responsible for Claret Conglomerate deposition 

(Figure 2.2.), whilst the sections of Claret, Tendrui, and Campo are more distal.  

Consequently, Esplugafreda appears to have a briefer stratigraphic lag between the 

onset of the CIE and the deposition of the Claret Conglomerate than the time-lags at 

Claret, Tendrui and Campo.  However, scouring probably removed some of the 

underlying strata during conglomerate deposition, such that even this higher-

resolution record remains imperfect, complicating the comparison of any time-lag 

between the onset of the CIE and Claret Conglomerate deposition. 

 

Two sandstone beds separated by a marly interval occur at Campo ca. 6 m above the 

lithological change from marine to continental deposits; these beds have previously 
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been interpreted as the lateral equivalent of the Claret Conglomerate (Schmitz and 

Pujalte, 2007) and, specifically, progression of the megafan conglomeratic deposits 

into lower energy environments.  Pujalte et al. (2009) suggested that the Palaeocene – 

Eocene boundary coincides with the base of the sandstone beds, interpreted to be the 

lateral equivalent of the Claret Conglomerate, based upon extensive mapping of the 

area, biostratigraphy, and carbonate 13C data.  The 13CTOC data from this study 

support several different interpretations, due to the stepped nature of the profile.  

When, however, compared to Pujalte et al. (2009), the onset of the CIE as recorded 

by13CTOC occurs just below the sandstone units, at ca. 5m height (Figure 2.7.).  This 

suggests that this is analogous to the situation at Claret and Tendrui, where the onset 

of the CIE occurs prior to the Claret Conglomerate. 

 

Differences are also recorded in the timing of the onset of the CIE in the marine realm.  

Schmitz et al. (2001) concluded that the onset of the CIE at Zumaia, based upon a 

carbonate record, occurs simultaneously with the lithological change to siliciclastic 

deposits, directly above a thick limestone bed (ca. 0.75 m thick) and coincident with a 

marl bed (ca. 0.30 m thick), inferring that the sedimentological change was brought 

about by the PETM.  The onset of the CIE at Zumaia derived from 13CTOC values occurs 

at the top of the ca. 0.30 m marl unit coincident with the start of siliciclastic 

deposition.  This later onset suggests that the sedimentological changes may have 

occurred prior to the onset of the CIE.  
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At Ermua, however, the onset of the CIE occurs within the limestones below the 

lithological change to predominantly siliciclastic deposition (Figure 2.7.).  This 

contradicts the findings of Schmitz et al. (2001), who found the CIE onset occurred 

simultaneously with siliciclastic deposition.  However, Schmitz et al. (2001) also 

suggested that the carbonate isotope signals at Ermua had been diagenetically altered 

to a much greater extent than those of surrounding sections (e.g., Zumaia and 

Trabakua).  Previous studies have suggested that where diagenetic overprinting is 

observed, isotopic analyses on organic matter could give more reliable results (Molina 

et al. 2003), due to organic matter being more resistant to acidic degradation than 

carbonate material.  The onset of the CIEs at Ermua and Zumaia, therefore, both 

appear to be rapid, but occur at different lithological horizons, which is contrary to 

that shown by Schmitz et al. (2001).  If the onset of the CIE associated with the PETM is 

assumed to be globally synchronous, this indicates that the lithological beds previously 

used to correlate between sections may in fact be diachronous events within the study 

area, and as such a time transgressive element may have to be considered.  

Alternatively, it may reflect limitations for the TOC-derived 13C records; for example, 

the apparently later CIE at Zumaia could be a consequence of organic matter source 

mixing associated with the sedimentological changes.  Further analysis of 13Cn-alkanes 

may also help to constrain the differences recorded in 13CTOC at these sections. 

 

Recovery from the CIE in the Claret and Tendrui sections has been linked to the 

occurrence of a gypsum layer, suggesting a return to drier conditions and intense 

evaporation rates towards the end of the PETM (Domingo et al. 2009).  However, a 
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comparison of CIE recovery in relation to the stratigraphic framework for other 

sections is lacking.  A marker bed associated with a marine transgressive event in the 

early Eocene, known as the Alveolina Beds, occurs in all continental and continental-

marine sections (Claret, Tendrui, Esplugafreda and Campo, respectively).  The 

diachronous nature of this transgression is recorded in the isotope records at each 

section.  Figure 2.2. illustrates section location in relation to the Bay of Biscay; the 

transgression occurred from a south-westerly direction across the region and, as such, 

the CIE recovery in relationship to this marker bed can be assessed.  As would be 

expected, the CIE recovery occurs much closer to the Alveolina Beds at sections 

geographically closer to the source of the transgression.  As such, Campo records the 

CIE recovery closest to the Alveolina Beds (ca, 2 m below), whilst the more distal 

sections of Claret, Tendrui, and Esplugafreda record the recovery from the CIE much 

further below the Alveolina Beds (ca. 20 to 25 m).   

 

Comparison can also be made between the CIE recovery and the top of the Siliciclastic 

Unit at Ermua and Zumaia.  Ermua is interpreted as a base-of-slope apron, whilst 

Zumaia is more bathyal in nature.  The Siliciclastic Unit is interpreted as the product of 

increased continental erosion coupled with reduced hydrodynamic energy of 

freshwater entering the ocean (Schmitz et al. 2001).  Ermua records the recovery 

almost coincident with the top of the Siliciclastic Unit, whilst at Zumaia recovery from 

the CIE occurs within the Siliciclastic Unit itself.  Schmitz and Pujalte (2003) showed an 

enhanced kaolinite influx in the Siliciclastic Unit at both sections (Section 3, Figure 3.8). 

This enhanced kaolinite signal closely parallels the CIE, terminating coincidentally with 
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the top of the Siliciclastic unit at Ermua but within the Siliciclastic Unit at Zumaia.  

Schmitz and Pujalte (2003) argued that the increase in kaolinite content reflects 

deeper physical continental erosion and thus, an enhancement of terrestrial runoff, 

consistent with other low and mid-latitude investigations (Schmitz and Pujalte, 2003; 

Handley et al. 2012; Stassen et al. 2012).  Therefore, these sections show a clear 

synchroneity between the lithological expression of the PETM and the CIE within these 

marine sections. 

 

For the continental sections and the continental-marine section at Campo, the 

presence and cause of a time-lag between the onset of the CIE and the 

sedimentological response has fundamental implications for how we decode the 

impact of abrupt climate forcing and the sedimentary record.  Assuming the near-

geologically instantaneous uptake of the atmospheric carbon isotopic signature by 

terrestrial vegetation, and the subsequent deposition of this vegetation in terrestrial 

sediments, there are two potential explanations for the time-lag between the recorded 

bulk organic CIE and the observed sedimentological response to warming in these 

sediments.  First, there was a genuine lag between the input of light carbon to the 

atmosphere and the expression of its full forcing effect on the climate system in terms 

of warming and hydrological change (Pagani et al. 2006; Secord et al. 2010; Rohling et 

al. 2012).  To account fully for the time-lags observed between the carbon isotope and 

sedimentological records in these sections, this would assume that the 

sedimentological response to changing hydrological regimes is near-instantaneous. 

Second, the observed time-lag is largely due to the timescales of response of sediment 
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source and routing systems to a shift in hydrological regime.  Given the relatively short 

timescales involved, of the order of 10 kyr or less, it is likely that some component of 

both these mechanisms is operating, and the deconvolution of each of these is 

challenging.  Indeed, the interesting constraint for future studies would be to 

understand the speed with which these alluvial fan sediment systems are responding 

to rapid climate change.  This study presents new and remarkably well-resolved 

constraints on the maximum response time of the systems of ~10 kyr, which should be 

a target for future sedimentological and geomorphological studies.   

 

2.4.3 CIE PROFILES  

The profiles recorded for each section vary with respect to the length of the CIE onset 

and recovery, and also to the general shape of the main body of the CIE.  All profiles 

are generally triangular-shaped (Figure 2.1 (1)) as presented by Zachos et al. (2008), or 

box-shaped (Figure 2.1 (2)) as proposed by Bowen and Zachos (2010), although it is 

accepted that the shape is most likely influenced by reworking and sediment mixing.  

The CIEs recorded at Zumaia and Campo are similar to those recorded by Zachos et al. 

(2008) from three deep-sea sections in the Southern Ocean, Central Pacific and South 

Atlantic.  Specifically, all records document a relatively rapid CIE onset, followed by a 

gradual return to pre-CIE 13C values (Figure 2.1 (1)).  In contrast, the sections of 

Claret, Tendrui (both continental), and Ermua (marine) are similar to those of Bowen 

and Zachos (2010), in that all achieve a semi-stable state following the rapid onset, 

before finally recording a relatively rapid return to pre-CIE 13C values (Figure 2.1 (2)).  

The Esplugafreda section is more difficult to interpret due to low sample resolution in 
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the recovery section of the CIE profile, although, data around the onset appear to 

follow the box profile of Bowen and Zachos (2010) in that a continued negative 

excursion is recorded post-onset. 

 

Sedimentation rates are important in determining the shapes of the CIE profiles; 

higher sedimentation rates may lead to the onset of the CIE appearing more gradually, 

and vice versa.  Such rates are notoriously challenging to determine for continental 

settings due to a lack of robust age control.  For the marine sections, Schmitz et al. 

(2001) apply different sedimentation rates to the Siliciclastic Unit at Zumaia and Ermua 

based on carbon isotope stratigraphy.  Their carbonate isotope results suggest the 

Siliciclastic Unit formed synchronously at both sections, and as such a much higher 

sedimentation rate is calculated for Ermua (Siliciclastic Unit thickness ca. 20m), than 

that for Zumaia (Siliciclastic Unit thickness ca. 5m).  The higher-resolution data 

presented here agree with the carbonate 13C data at Zumaia, but not at Ermua where 


13CTOC data suggest an earlier onset of the CIE, an observation in agreement with 

previous work (Orue-Etxebarria et al., 1996) where the base of the Siliciclastic Unit at 

Zumaia was correlated with the base of the slump deposit seen at Ermua using 

sequence stratigraphy.  This may suggest even higher sedimentation rates recorded at 

Ermua than previously calculated.   

 

In this study, the CIE at Zumaia and potentially Campo follow the classical profile, but 

all the other sections do not.  The fact that both profiles are present within the same 

and neighbouring basins clearly indicates that localised factors, such as changing 
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sedimentation rates, differential compaction, or depositional hiatuses in the record, 

are contributing to profile shape, likely in marine and terrestrial settings.   

 

2.5 CONCLUSIONS 


13CTOC and TOC data from six sections spanning a continental to marine transect 

through the PETM in northern Spain are presented.  These data represent the highest-

resolution 13C records for these sections to date, and the first organic data from four 

of the sections (Esplugafreda, Campo, Ermua and Zumaia).  Regression analyses 

indicate that 13CTOC values are independent of wt%TOC, suggesting that lithological 

changes have not impacted the isotopic records of the continental sections, and t-tests 

indicate the CIE is of statistically significant magnitude.  The magnitude of the CIE 

amongst the six sites is variable, ranging from 1.7 to 4.8‰, with no consistent 

relationship between magnitude and depositional environment.  The continental 

sections in this study record a greater CIE magnitude than the average recorded for 

marine sections globally, although there is no offset between the terrestrial and 

marine CIEs within this given depositional system.  Different CIE profile shapes are 

recorded for different sections, fitting both the triangular profile described by Zachos 

et al. (2008) and the box profile proposed by Bowen and Zachos (2010).  The variability 

in both CIE magnitude and shape, within a single terrestrial to continental margin 

depositional system, clearly demonstrates the significant effects that organic matter 

reworking and transport can have on the preserved carbon isotope signals.   
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The onset of the CIE appears to have occurred prior to the base of the Claret 

Conglomerate in most of the continental sections, whilst at the marine section of 

Ermua the CIE onset occurred prior to the base of the Siliciclastic Unit.  This is in 

contrast to previous studies which have placed the CIE above or coincident with 

lithological changes in both the continental and marine realms.  The data presented in 

this study, therefore, suggest that a lag occurred between the onset of the PETM and 

changes in the weathering/erosional regime, similar to findings of previous workers 

(e.g., Handley et al. 2012).   
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3 A MULTI-PROXY STUDY OF THE PETM AT THE ZUMAIA SECTION, SPAIN 

ABSTRACT 

The Palaeocene – Eocene Thermal Maximum (PETM) is thought to be the most 

appropriate analogue of the Cenozoic for rapid injection of carbon into the global 

climate system, and provides insight into how the Earth system responds to rapid 

carbon cycle perturbation.  However, debate continues over the amount, source and 

mechanisms of carbon release.  Here, data is presented for total organic carbon 

(13CTOC), bulk carbonate (13CCARB), and n-alkane (13Cn-alkane) 13C profiles across the 

PETM at the marine section of Zumaia, northern Spain.  This represents the first 13Cn-

alkane record for this section and the highest resolution 13CCARB record, allowing 

comparison of terrestrial and marine carbon isotope excursions (CIEs) within one 

section.  The bulk 13CTOC profile records a CIE magnitude of 4.1‰, whilst the 

terrestrial 13Cn-alkane profile records 5.5‰ and the marine 13CCARB values record 6.0‰.  

This demonstrates that no obvious difference is recorded in the 13Cn-alkane (terrestrial) 

and 13CCARB (marine) CIE magnitudes at this site, contrary to observations reported 

between other widespread localities.  Unusually, a sharp 13C-enrichment is recorded in 

both 13Cn-alkane and 13CCARB values immediately following the onset of the CIE, which is 

interpreted as potentially reflecting a changing palaeohydrological regime and the 

associated reworking of ancient carbon in the system.  Palynological data are used to 

assess the extent of reworking and degradation, and also to determine the dominant 

palynomorph types throughout the section.  At the current data resolution, no shift in 

the dominant vegetation from mixed gymnosperm/angiosperm to purely angiosperm 

flora was detected at this locality, although transport bias has to be taken into account 

in this interpretation. 
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3.1 INTRODUCTION 

The PETM is characterised by a prominent negative carbon isotope excursion (CIE) in 

both marine and continental records and has been of interest to the scientific 

community since its discovery more than two decades ago (Kennett and Stott 1991).  

This interval was a hyperthermal event that is estimated to have lasted 120 – 220 ka 

(Farley and Eltgroth 2003; Rohl et al. 2003, 2007; Aziz et al. 2008; Murphy et al. 2010). 

It is postulated to be one of the most abrupt and extreme climate events documented 

in the geological record, with profound effects recorded in the atmosphere, biosphere 

and geosphere (Bowen et al. 2006).   Since its discovery, 165 PETM sections have been 

identified and studied worldwide (McInerney and Wing 2011).   

 

One of the major challenges in investigating the PETM is investigating the source and 

mechanism of release of the carbon responsible for the CIE.  Current suggestions 

include methane clathrate destabilisation (13C ~ –60‰; Dickens et al. 1995, 1997; 

Katz et al. 1999), burning of peat and coal deposits through wildfires (13C ~ –22‰; 

Kurtz et al. 2003), injection of magma into organic rich sediments leading to 

thermogenic methane release (13C ~ –30‰; Svensen et al. 2004, 2010; Westerhold et 

al. 2009), and permafrost thawing (13C ~ –30‰; DeConto et al. 2012).  Each source of 

carbon has a characteristic 13C signature, meaning that the requisite mass of each 

carbon source necessary to cause the CIE varies, but can be estimated (McInerney and 

Wing, 2011).  Currently, estimates range from 1,500 Gt to 12,000 Gt of carbon (Dickens 

et al. 1995; Dickens 2003, 2011; Panchuk et al. 2008; Zeebe et al. 2009; Cui et al. 

2011), dependant upon carbon source, isotopic composition and, crucially, the inferred 

magnitude of the CIE. 
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The Zumaia section, located in the Gipuzkoa Province, northern Spain, is one of the 

best known and most studied PETM sections worldwide (Canudo and Molina, 1992; 

Canudo et al. 1995; Schmitz et al. 1997, 2001; Baceta et al. 2000; Bernaola et al. 2006; 

Dinares-Turell et al. 2007; Alegret et al. 2009; Storme et al. 2012).  Numerous bio-, 

magneto- chemo- and lithostratigraphic studies have been conducted at Zumaia, 

identifying the PETM and associated impacts on the sedimentology, hydrology, and 

biology of the region during this time (Canudo and Molina 1992; Canudo et al. 1995; 

Schmitz et al. 1997; Baceta et al. 2000; Schmitz et al. 2001).  Previous studies have 

linked a Siliciclastic Unit found at Zumaia and in the surrounding region to the CIE 

associated with the PETM (Schmitz et al. 2001).  It was suggested that the Siliciclastic 

Unit reflects a change in the climate and hydrology toward a warmer and seasonally 

drier climate, leading to vegetational collapse and subsequent increased continental 

erosion.  Schmitz et al. (2001) used carbonate nodules to measure the CIE associated 

with the PETM, and suggested that the change to siliciclastic deposits was coincident 

with the onset of the CIE.  Manners et al. (2013) found through the measurement of 

bulk total organic carbon that a time-lag between CIE onset and siliciclastic deposition 

occurred, suggesting that whilst this sedimentological change was most likely a 

consequence of the PETM, a time-lag may have occurred between climatic change and 

sedimentological response (see also Chapter 2).  

 

This study presents high resolution 13C profiles of total organic carbon (TOC), n-

alkanes (C29 and C31), and new carbonate data from the Zumaia section, building upon 

the work of Manners et al. (2013) and Chapter 2.  Onset of the CIE in relation to the 

Siliciclastic Unit is assessed and compared to previous interpretations (Schmitz et al. 
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2001).  This is one of the few sections in the world where marine and terrigenous 

isotope profiles can be compared, both in terms of magnitude and profile shape.  The 

profiles do vary among the records, although mixed sources and reworking may also 

be controlling the structure to some extent; therefore, controls on the CIE are 

tentatively examined.  The terrigenous n-alkane 13C profile is evaluated in terms of 

potential reworking, extent of degradation of samples, and source changes using 

palynological and other n-alkane-specific proxy data such as average chain length (ACL; 

nC27 – 33), carbon preference index (CPI; nC27 – 33), and odd-over-even predominance 

(OEP; nC27, nC29 and nC31).    Vegetational change across the boundary is also assessed 

using palynological data and compared with other proxy data.  

 

3.2 SAMPLE LOCATIONS AND METHODOLOGY 

3.2.1 GEOLOGICAL SETTING  

 

 
 
 
 
 
 
 
 
 
Figure 3.1. A) Palaeogeographical map of western Europe; B) simplified geological map 
of the study region showing the most important Palaeocene outcrops and the location 
of the Zumaia beach section. Modified from Schmitz et al. (2011). 
 

The Zumaia section (N 043°18´4.5”, W 002°15´31.2”) is located on the Itzurun Beach in 

the Basque Basin of northern Spain (Figure 3.1).  It contains a biostratigraphically 
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complete and well-preserved record of the PETM (Figure 3.2; Schmitz and Pujalte 

2003; Bernaola et al. 2006; Alegret et al. 2009; Schmitz et al. 2011).   

 

High sedimentation rates are documented at this section during the PETM interval, 

resulting in it being recognised as one of the most expansive open marine sections of 

the Palaeocene (Schmitz et al. 2001; Bernaola et al. 2006).  Upper Palaeocene and 

lower Eocene deposits are thought to have been deposited in a middle or lower 

bathyal environment (Canudo et al. 1995) with sedimentation in an estimated 1000m 

water depth (Baceta et al. 2000).  The bulk of the P/E BI comprises hemipelagic 

limestone and marlstones (Figure 3.3) with a ca. 0.7 m thick limestone unit in the 

uppermost Palaeocene.  This limestone is capped by a ca. 30 cm thick marlstone bed, 

above which there is a ca. 4 m thick interval known as the Siliciclastic Unit composed of 

clay.  Above the Siliciclastic Unit (lowermost Eocene), a thick bed of marlstones (ca. 1 

m) is capped by hemipelagic limestones and marls, much like those recorded below 

the Siliciclastic Unit.   
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Figure 3.3. Zumaia section log produced in this study (left) compared to previously 
published logs (centre, Alegret et al. 2009; and right, Schmitz et al. 2001.  This 
lithological log is consistent with both Schmitz et al. (2001) and Alegret et al. (2009) 
and, as such, the start of the log is defined at the same lithological horizon (the base of 
the Siliciclastic Unit). 
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Figure 3.4. Lithological correlation for the Zumaia section to correlate samples 
collected during 2010 and 2011 field seasons. Dotted lines indicate same horizons on 
both logs. 
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3.3 METHODS 

In total, 135 samples were collected from the Zumaia section over two field seasons 

(79 in June 2010 collected by H.R.M and L.D., and 56 in June 2011 collected by H.R.M. 

and T.D.J.).  Sampling frequency varied between the two field seasons, with a mean 

sampling resolution of 30 cm in June 2010, and 20 cm in June 2011.  Logs created over 

the two field seasons were correlated to each other by means of a simple lithological 

correlation in order to place samples in the correct stratigraphic order.   Section 

heights were similar for both logs (Figure 3.4) with the only correlative marker bed (the 

Siliciclastic Unit) having a similar thickness in both instances.  Lithological correlation 

was, therefore, achieved by setting the base of the Siliciclastic Unit as 0 m and 

adjusting all sample heights for both logs relative to this datum. Sample heights for 

both field seasons were then combined and arranged in height order against the log 

created in 2011. Prior to any chemical treatment all whole rock samples were oven 

dried (30°C, 24 hours) and powdered using a granite pestle and mortar.  

 
3.3.1 TOTAL ORGANIC CARBON (TOC) AND TOTAL NITROGEN (TN): DETERMINATION OF WT% TOC, 

TN AND 
13CTOC 

Seventy-nine samples were powdered using a granite pestle and mortar. 

Decarbonation was conducted following the methodology of Domingo et al. (2009) 

using excess hydrochloric acid (10% v/v) until any visible sign of reaction had ceased.  

The sample was repeatedly washed with deionised water until a neutral solution was 

obtained, then oven dried (30°C, 24 hours).  Total organic carbon (TOC) and total 

nitrogen (TN) content were measured at the NERC Isotope Geosciences Laboratory 

(NIGL; Keyworth, Nottingham) using a Carlo Erba 1500 elemental analyser with 

acetanilide used as the calibration standard. Replicate analyses indicated a precision of 
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±0.1 wt% in well-mixed samples (1 Standard Deviation, SD).  Stable isotope 13CTOC 

analysis was also conducted at NIGL using a Carlo Erba 1500 EA online coupled to a VG 

TripleTrap.  This setup also included a secondary cryogenic trap in the mass 

spectrometer for samples with very low carbon content. The mean standard deviation 

on replicate 13CTOC analyses of laboratory standard broccoli (BROC1) and soil (SOILB) 

was between 0.1 and 0.4‰.  13CTOC are reported in standard ‰ notation relative to 

Vienna Pee Dee Belemnite (VPDB). 

 

3.3.2 CARBONATE (CARB): DETERMINATION OF WT% CARB, 13CCARB AND 
18OCARB 

One hundred and twenty samples were prepared for weight percent calcium 

carbonate (wt% CaCO3),13CCARB and 18OCARB determination and analysed at NIGL.  

Sample material was powdered using an agate pestle and mortar and enough sample 

to yield 10 mg carbonate was reacted with anhydrous phosphoric acid in vacuo 

overnight at a constant 25°C. Liberated CO2 was separated from water vapour under 

vacuum and collected for analysis. Measurements were made on a VG Optima mass 

spectrometer (standard reproducibility of < ±0.2‰).  13CCARB and 18OCARB values are 

reported in standard ‰ notation relative to the VPDB scale using a within-run 

laboratory standard calibrated against NBS standards.   

 

3.3.3 N-ALKANES: DETERMINATION OF CARBON PREFERENCE INDEX (CPI), ODD-OVER-EVEN 

PREDOMINANCE (OEP), AVERAGE CHAIN LENGTH (ACL) AND 
13CALKANE 

The total lipid extract (TLE) was extracted from pre-weighed (ca. 50 g) powdered 

samples via sonication.  For each sample, approximately 12.5 g of sediment was 

weighed into each of four 40 mL vials and each vial spiked with 0.25 µg 5-androstane 
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and 0.5 µg deuterated triacontane (C30D62).  Samples were sonicated for 15 minutes 

with DCM/acetone (2:1 v/v) and then centrifuged (2500 rpm, 2 min) to separate the 

supernatant from the sediment.  The supernatant was transferred to a round bottom 

flask (combining extracts) and the extraction process repeated twice more per sample, 

ensuring the sediment and organic solvent was thoroughly mixed each time.  The total 

extract was reduced to a minimal volume by rotary evaporation and the resultant TLE 

transferred to a pre-weighed 7 mL vial.  Residual solvent was removed under a stream 

of nitrogen assisted by gentle heating (40°C).  TLEs were air dried (2 hours) and re-

weighed to obtain TLE masses.  Separation of n-alkanes from the TLE was conducted 

using a proprietary technique used for the isolation of waxes from crude oil (T-SEP™; 

http://www.kat-lab.com/t-sep) to produce a de-waxed TLE and an n-alkane fraction 

 (see method development and Table 6.2.4 of appendix 2 for further information). 

 

The n-alkane fractions were analysed using gas chromatography-flame ionisation 

detection (GC-FID) to determine the relative peak areas of n-C25-33.  GC-FID was 

conducted using an Agilent 6890 gas chromatograph fitted with an autosampler (1 µL 

injection, splitless, inlet 300°C; constant flow mode, 1 mL min-1, helium carrier gas), a 

HP-5 column (25 m x 0.2 mm x 0.33 µm; Agilent Technologies UK Ltd., Cheshire, UK), 

the FID at 300°C and the oven programmed from 40 – 300°C at 10°C min-1, 10 min hold. 

An alternative oven programme was sometimes used (e.g., if screening a sample for 

compound specific isotope analysis) with the oven programmed from 40 – 300°C at 

20°C min-1, 10 min hold.  Solvent blanks and a C25 – C33 n-alkane standard were 

analysed daily to ensure satisfactory performance of the GC system (i.e., no 

contamination and acceptable chromatography).  The n-alkanes in sample extracts 
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were identified by retention time matching with peaks in the external standard.  

Carbon preference index (CPI = 2 x (C27 + C29 + C31)/ [C26 + 2 x (C28 + C30) + C32]; Eglinton 

and Hamilton 1967), odd-over-even predominance (OEP = (Cn-2 + 6 x Cn + Cn+2)/(4 x Cn-1 

+ Cn x Cn+1), with n being an odd integer; Scalan and Smith 1970) and average chain 

length (ACL = (27 x C27 + ... + 33 x C33)/ (C27 + ... + C33); Eglinton and Hamilton, 1967) 

values for n-alkanes within each sample were calculated using integrated peak data 

from the gas chromatograms. 

 


13Calkane measurements were conducted at the Bristol NERC Life Sciences Mass 

Spectrometry Facility using two gas chromatograph-combustion-isotope ratio mass 

spectrometers (GC-C-IRMS): an Agilent 6890 gas chromatograph with a CTC A200S 

autosampler coupled to a ThermoQuest DeltaPlusXL mass spectrometer via a Finnigan 

MAT GCCIII interface, and a ThermoElectron Trace 2000 gas chromatograph with a CTC 

GC Pal autosampler, coupled to a ThermoElectron Delta XP via a ThermoElectron GCCIII 

interface. In each case the gas chromatograph was fitted with an HP-1 capillary column 

(50 m x 0.32 mm x 0.17 µm; Agilent Technologies UK Ltd., Cheshire, UK) with helium as 

the carrier gas (constant flow).  The oven was programmed from 40 – 130°C at 10°C 

min-1, 130°C – 300°C at 4°C min-1, 20 min hold.  Dependent upon sample concentration, 

0.5 to 2 µL of sample was manually injected (inlet 300°C). Samples were analysed in 

either duplicate or triplicate relative to a reference gas and analytical precision was < 

±0.5‰ as measured by replicate analysis of a standard fatty acid methyl ester (FAME) 

mixture.  All values were quoted in standard ‰ notation relative to Vienna Pee Dee 

Belemnite (VPDB). 
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3.3.4 PALYNOLOGICAL ANALYSIS 

Palynological preparation of 25 samples was undertaken at the British Geological 

Survey, Keyworth.  Silicates were first dissolved by adding approximately 75 mL 

hydrofluoric acid to each sample and leaving the samples to stand for one week in a 

fume hood.  Where necessary, samples were sieved at 10 µm (with the < 10 µm 

fraction removed) and placed in warm hydrochloric acid to dissolve carbonate 

material. All samples were then sieved at 500 µm and the >500 µm fraction was 

removed.  Where minerals still remained, a heavy liquid separation was carried out to 

remove these. Samples were then washed in distilled or deionised water, dried, and 

mounted onto cover slips using PVA glue and cover slips mounted onto the slides with 

Elvacite. Pollen and spores were counted from prepared slides by scanning transects 

across the slide (Phillip Jardine: P.J., School of Geography, Earth and Environmental 

Sciences, University of Birmingham).  Where possible, 300 palynomorphs were 

counted per sample unless, (a) <300 palynomorphs were  evident on the slide, or (b) 

one pollen type entirely dominated the sample, in which case counting was continued 

until 200 palynomorphs of the non-dominant types had been counted (usually 

resulting in counts >300).   
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3.4 RESULTS 

Experimental data are presented in Tables 3.1 and 3.2, and Tables 6.2.4 – 6.2.8 of 

Appendix 2 and results are presented in Figures 3.4 – 3.7.   

 

3.4.1 BULK SEDIMENTARY PARAMETERS: TOC, TN, 13CTOC, 13CCARB AND 
18OCARB 

Total organic carbon (wt% TOC) and nitrogen (wt% N) content are low throughout the 

section, ranging from 0.1 to 0.6 wt% TOC, and 0.03 to 0.09 % N, respectively (Table 

6.2.4 of Appendix 6.2).  Carbon/nitrogen (C/N) ratios ranged from 1.5 – 6.5 throughout 

the section, indicating a predominantly algal source of total organic material (Meyers 

1994), although n-alkanes appear to show a higher-plant derived signal.  Notably, both 

wt% TOC and the C/N ratio increase suddenly between 9.6 – 10.3 m, coincident with 

the recorded increase in CPI and OEP (Figure 3.5). 

 

Wt% CaO was measured throughout the section (Figure 3.6); prior to the CIE onset 

indicated by carbonate isotopes, wt% CaO is variable, ranging from ca. 15 – 40%.  

Coincident with the CIE onset, wt% CaO decreases to ca. 0 – 5% and remains low (ca. 5 

– 10%) until 13.6 m where it recovers to 30 – 60%.  The decrease in wt% CaO is 

coincident with a deviation to positive 13CCARB and 18OCARB values in the middle of the 

CIE (Figure 3.6, Table 6.2.5), and could be interpreted in different ways.  Whilst this 

could be a dilution signal due to Siliciclastic Unit deposition, this would not explain the 

positive shift in the isotopes (Figure 3.6).  Alternatively, dissolution may be affecting 

the carbonate record, resulting in a decrease in wt% CaO.   This second explanation 

could also explain the deviation in carbonate isotope values, as 13CCARB and 18OCARB 

values may not be recording the primary carbonate signal, but instead a secondary 



A MULTI-PROXY STUDY OF THE PETM AT THE ZUMAIA SECTION, SPAIN 

63 
CHAPTER 3 

diagenetic overprint (figure 3.6 and Table 6.2.5 of Appendix 2). 13CCARB values below 

7.1 m fluctuate between -1.1 and +1.5 ‰, at which point they shift toward more 

depleted values, reaching a minimum of -6‰ at 7.7 m (13CCARB PETM CIE 6‰), slightly 

earlier than the most 13C-depleted values in the organic records.  Values then recover 

slightly to a maximum of -1.2‰, coincident with the return to more positive 13Cn-alkane 

values, before returning to more negative values at 10.5 m.  At 12.3 m, 13CCARB and 


18OCARB values begin to return to pre-CIE values (ranging from -0.3 to +1.1‰).   

 


18OCARB values record a similar CIE onset to 13CCARB values (Figure 3.6).  Below 7.1 m 

values range from -3.0 to -5.0‰, above which they become more 18O-depleted to a 

minimum of -5.6‰.  A shift to more positive values occurs between 7.6 – 10 m, after 

which a return to more negative values occurs. Like the 13CCARB measurements, 


18OCARB values also return to pre-PETM values at 12.3 m (ranging from -2.7 to -3.6‰).  

Sea surface temperatures were not calculated due to the 18O data deriving from bulk 

rock samples; caution is necessary when interpreting bulk rock temperatures as there 

are unknowns in respect to source, isotopic composition of seawater and the likely 

influence of diagenesis.   
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3.4.2 N-ALKANE ABUNDANCES AND DISTRIBUTIONS  

The n-alkane fractions of all samples were characterised by a homologous series of n-

alkanes, ranging from C25 to C33, with some samples having measurable quantities of n-

C22 to n-C35.  Concentrations of n-alkanes throughout the section were generally low, 

ranging from 2 – 806 ng g-1 dry sediment (Tables 6.2.6 and 6.2.7 of Appendix 2).  

However, n-alkane concentrations increase at the peak of the CIE, coincident with the 

increases recorded in OEP and CPI (Figure 3.5).  Increases in OEP and CPI were also 

measured at the onset of the CIE.  These increases at the CIE onset may further 

suggest enhanced terrestrial runoff during this period.  Conversely, where increases 

are recorded in OEP and CPI in the recovery phase of the CIE, no increase in n-alkane 

concentrations occurred (Figure 3.5). 

 

All sediments are dominated by odd-carbon numbered homologues (e.g., n-C29, n-C31 

and n-C33; Figure 3.7), a signature attributable to higher plant leaf wax n-alkanes 

(Eglinton and Hamilton 1967).  CPIs and OEPs (Section 3.3.3.; Table 3.1) were used to 

assess the preference of odd-carbon numbered n-alkanes in all samples and to 

evaluate sources and preservation of these compounds.  CPI and OEP values (n-C29 and 

n-C31) range from 0.9 – 8 (CPI) and 0.5 – 16 (OEP) throughout the section and the two 

parameters exhibit similar trends (Figure 3.5). OEP values for n-C29 and n-C31 are 

generally > 1 and are fairly consistent throughout the section, apart from three 

horizons at 8.4, 10 and 16.4 m, where dramatic increases in OEPs are observed (OEP = 

16.0, 10.3 and 4.9, respectively for n-C31).  The first horizon coincides with the onset of 

the CIE at this section, and the increase in OEP values at 16.4 m is coincident with the 

recovery from the CIE at 16.4 m.  The increase in OEP at 10 m is coincident with the 
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maximum negative 13CTOC and 13Cn-alkane values, during the body of the CIE.  CPI 

trends match those of OEPs, with most CPI values throughout the section ranging from 

1 – 2, however at the CIE onset, during the body (at the maximum negative 13CTOC and 


13Cn-alkane values) and at the recovery of the CIE, the CPI values increase significantly to 

5.6, 8.1 and 7.2, respectively. 

 

Table 3.1. Compound specific 13C measurements for n-C29 and n-C31 isolated from 

sediments at Zumaia, Northern Spain. ACL, OEP, and CPI were calculated as described 

in Section 3.3.3. and are plotted against the section log in Figure 3.5 and Figure 3.8. 

 

Sample 
Height 

(m) 


13Cn-alkane(‰ VPDB) 

ACL 
OEP 

CPI 
C29 C31 C27 C29 C31 

ZUM-BSU+8 2.40 -32.2 -32.8 29.7 0.8 0.8 0.7 0.8 

ZUM-BSU+17 5.10 -31.9 -33.0 29.6 2.3 6.2 3.6 4.2 

ZUM-BSU+23 6.90 -30.8 -30.3 29.1 1.1 1.5 1.2 1.3 

ZUM-SU+3 7.80 -29.1 -30.6 29.4 1.0 1.1 1.4 1.2 

ZUM-SU+5 8.10 -32.9 -32.3 29.6 1.2 2.4 2.5 1.9 

ZUM-SU+7 8.40 -33.1 -33.6 29.2 1.9 6.3 16.0 4.9 

ZUM-SU+10 8.85 -31.1 -32.8 29.0 1.0 1.2 1.5 1.2 

ZUM-SU+12 9.15 -31.1 -32.0 29.9 1.0 2.3 2.2 1.9 

ZUM-SU+14 9.45 -31.5 -32.6 29.6 1.0 3.7 3.6 2.4 

ZUM-SU+16 9.75 -34.1 -34.5 29.8 2.8 7.9 8.7 6.5 

ZUM-SU+18 10.05 -34.9 -35.5 30.1 3.8 8.0 10.3 8.1 

ZUM-SU+21 10.50 -35.1 -35.2 29.6 1.3 2.3 3.7 2.2 

ZUM-ASU+5 15.45 -34.0 -33.4 29.8 2.0 2.3 1.1 1.8 

ZUM-ASU+7 16.45 -32.2 -32.9 29.0 3.3 12.7 4.9 7.1 

ZUM-ASU+11 18.45 -30.5 -31.0 29.5 0.9 1.6 1.2 1.3 
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3.4.3 N-ALKANE δ13C VALUES 

Compound specific 13C values were measured for n-C29 and n-C31 n-alkanes which are 

interpreted to primarily derive from higher plant leaf waxes (CPI ranges from 0.9 to 

8.3; Table 3.1), although other potential sources are discussed in Section 3.5.1. 

Throughout most of the section, a slight offset in 13C values is recorded with n-C31 

recording more negative 13C values than n-C29 (Figure 3.6).  However, this trend is 

reversed for three samples (at 6.9 m, 8.1 m and 15.45 m, respectively), an observation 

that has also been reported by Handley et al. (2011).  Overall however, both records 

display similar trends throughout the section.  Values for 13Cn-alkane range from -29.1 to 

-35.1‰ for n-C29, and from -30.3 to -35.5‰ for n-C31 throughout the section, recording 

more negative 13C values from 7.8 m to 10.05 m.  This is interpreted to represent the 

onset of the CIE associated with the PETM, as confirmed by bulk 13CTOC (Figure 3.6).  

Below 7.8 m, values range from -29.1 to -32.2‰ for n-C29, and -30.6 to -32.8‰ for n-

C31.  At 7.8 m, all values start to shift toward more negative 13C values, reaching an 

initial minimum of -33.1‰ (n-C29), and -33.6‰ (n-C31) at 8.4 m; values then increase to 

-31.1‰ (n-C29), and -32.0‰ (n-C31) at 9.15 m, before becoming further depleted to -

34.9‰ (n-C29), and -35.5‰ (n-C31) at 10.05 m.  This negative excursion is interpreted 

as a two-step excursion into the PETM CIE (discussed further below) and the 

magnitude of the excursion is calculated to range between 5.8‰ (4‰ to first inflection 

for n-C29) and 5.2‰ (3‰ to first inflection for n-C31; see Manners et al. (2013) and 

Chapter 2 for magnitude calculation method). This averages to a PETM CIE magnitude 

value of 5.5‰ as recorded by n-alkanes.  Above 10.05 m, values remain 13C-depleted, 

and appear to recover from 16.45 – 18.45 m back to pre-CIE values (-30.5‰, n-C29 and 

-31.0‰, n-C31). 
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3.4.4 PALYNOLOGY 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Plate 1. Reworked (1-7) and primary (8-11) sporomorphs from the Zumaia section. (1-
4), trilete spores from sample ZUM-SU+3; (5 and 6), trilete spores from sample ZUM-
SU+5; 7, bisaccate pollen from sample ZUM-SU+6; (8 and 9), Alnipollenites and 
Periporopollenites pollen types from sample ZUM-SU+32; (10), Tricolpopollenites 
pollen from sample ZUMASU+3; (11), Triatriopollenites pollen from sample ZUM-BSU-
9; (12), bisaccate pollen from sample ZUM-ASU+7. The trilete spores (1-6) were 
produced by pteridophytes (ferns and mosses), the bisaccate pollen (7 and 12) by 
gymnosperms, and the remaining pollen types (8-11) by angiosperms. 
 
Plate 1 includes some examples of sporomorphs identified as part of this study.  

Palynomorph assemblages vary in preservation throughout the section, with reworking 

and degradation evident from 7.5 to 8.5 m based on the dominance of dark and 

degraded sporopmorhs and dinoflagellates cysts (lower Siliciclastic Unit; Plate 1).  

Throughout the rest of the section assemblages vary in abundance, with some samples 
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containing only very limited numbers of palynomorphs (<50; Table 6.2.8 of appendix 

2).  Palynomorphs, where present, comprise both terrestrial and marine groups in the 

form of terrestrial angiosperm, gymnosperm, and pteridophyte pollen and spores, and 

marine dinoflagellate cysts (Figure 3.8).  Below the Siliciclastic Unit, angiosperm 

species proportions remain relatively constant, ranging from 57 – 66% of total plant 

pollen and spores.  Gymnosperm species are more variable, ranging from 25 – 44%, 

whereas pteridophytes are consistently the lowest in abundance (0 – 8%).  During the 

Siliciclastic Unit, angiosperm abundance is more variable, ranging from 20 – 88%, with 

the peak abundance occurring at 8.7 m, just after the initial carbon isotope excursion 

recorded in both bulk and n-alkane 13C records (Figure 3.8).  Gymnosperm relative 

abundance ranges from 0 – 76%, and pteridophytes are again the lowest (0 – 13%).  

Above the Siliciclastic Unit, angiosperm relative abundance ranges from 8 – 58%, with 

a maximum occurring roughly coincident with recovery from the n-alkane CIE.  

Gymnosperm species relative abundance ranges from 42 – 92%, and pteridophytes are 

almost entirely absent (0 – 1% relative abundance).  Dinoflagellate cyst relative 

abundance also varies throughout the section, ranging from 0 – 81% of total marine 

and terrestrial palynomorphs, with peak dinoflagellate cyst abundances occurring just 

after the start of the Siliciclastic Unit, and slowly declining throughout the duration of 

the CIE.  Angiosperm ratios relative to total summed angiosperm and gymnosperm 

groups were calculated (Appendix 2, Table 6.2.8) to determine if any change in the 

dominant taxa was observed throughout the section.  Maximum angiosperm 

abundance was recorded coincident with the CIE onset at 8.7 m (Figure 3.8), although 

the total sporomorph count was just eight for this sample, meaning this result should 

be treated with caution.  
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3.5 DISCUSSION 

3.5.1 DEPOSITIONAL SETTING AND SOURCE INPUTS 

Biomarker proxy measurements (i.e., C/N ratios, n-alkane concentrations, OEPs and 

CPIs) and palynological evidence are used to assess source inputs of supposed 

terrigenous material to the section.  Typically, OEPs and CPIs > 4 are associated with 

fresh leaf waxes (Collister et al. 1994; McDuffee et al. 2004) whilst values < 4 indicate 

potential contributions from either marine or petroleum sources (Huang et al. 2000), 

or that the leaf waxes have been altered during burial (Kennicutt et al. 1987; Handley 

et al. 2011).  However, very low values (<1) are typically associated with thermally 

mature organic matter (Kennicutt et al. 1987).  The very high values at depths of 8.4, 

10 and 16.4 m (Figure 3.5), therefore, likely reflect a strong input of relatively fresh 

higher plant material. These horizons are associated with elevated concentrations of n-

alkanes, TOC contents and higher C/N ratios (Figure 3.5), all suggesting that there is an 

input of additional terrigenous organic matter into Zumaia sediments.  By extension, 

lower concentrations of n-alkanes with lower CPIs (and lower TOC contents and C/N 

ratios) throughout the rest of the section apparently represent a background 

contribution of n-alkanes from a different source.  This could be diagenetically altered 

terrestrial organic matter; i.e., plant material that has experienced more pronounced 

diagenetic alteration in soils via prolonged transport (e.g., Kennicutt et al. 1987; 

Handley et al. 2011).  Alternatively, given the very low CPIs (~1) in some sediments, the 

n-alkanes could even arise from reworked, thermally mature organic matter or marine 

organic matter.   However, whilst CPI and OEP are variable throughout the section, all 

samples are dominated by the n-alkanes C29 and C31, indicating that whilst OEP is 

variable, this is still a predominantly terrigenous signal, with lower molecular weight n-
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alkanes affecting the CPI and OEP to varying extents.  Also, by extension, the similar 

isotope profiles for C29 and C31 suggest that there is not a complex isotopic mixing 

biasing their profiles. 

 

Palynological data record an increase in abundance of terrestrial palynomorphs 

throughout the Siliciclastic Unit (Figure 3.8) in agreement with Schmitz et al. (2001), 

suggesting an influx of terrigenous material to the section throughout the event.  The 

grey boxes in Figure 3.8 illustrate corroded (7.9 – 8.4 m) or barren samples (14.5 m); 

some of these samples also showed evidence of reworking and degradation of the 

palynomorphs (7.9 – 8.4 m; Plate 1).  These reworked and degraded samples occur 

coincident with the onset of the CIE and an increase in kaolinite to the section (Schmitz 

and Pujalte 2003).   This kaolinite flux is interpreted to represent Mesozoic material 

and is suggested to reflect deeper continental erosion brought about by increased 

seasonality.  Schmitz and Pujalte (2003) suggested that this increased seasonality may 

have resulted in hotter and drier summers, preventing development of vegetation 

cover, followed by more intense rainy seasons, providing the necessary water for 

continental erosion.  Therefore, the impoverished vegetation and degraded soils may 

both have contributed to the shortage or lack of palynomorphs. 

 

There are, therefore, potentially multiple sources of organic matter deposited 

throughout this section.  CPI and OEP values indicate a mixture of fresh and potentially 

diagenetically altered terrigenous material, thermally mature organic matter and/or 

marine organic matter.  C/N ratios suggest a background of algal material within the 

sediments, and palynological data suggest an increase in terrestrial material 
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throughout the CIE, but that some samples may comprise reworked and degraded 

material.  A previous study (Schmitz and Pujalte 2003) also suggested a contribution of 

reworked Mesozoic material throughout the Siliciclastic Unit.  Interpretation of results 

is, therefore, tentative, although as previously discussed the high abundance of C29 and 

C31 n-alkanes, combined with the similarity of their isotopic profiles throughout the 

section may suggest a continuous fresh terrigenous input throughout. 

 

3.5.2 ISOTOPE PROFILES AND ENVIRONMENTAL CHANGE 

All isotope proxy records (13CTOC, 13CCARB, and 13Cn-alkane) document a rapid onset to 

the CIE at Zumaia, northern Spain. However, profile shape varies between isotope 

records (Figure 3.6), with 13CCARB (and potentially 13Cn-alkane, although this is less clear) 

illustrating a box-shaped profile (rapid onset, stable state, rapid recovery; Manners et 

al., (2013) and Chapter 2).  The 13CTOC profile records a triangular shape indicative of a 

slower recovery phase or possibly a change in the dominant organic matter source, 

whilst all other records appear to record a more box-shaped profile.  Factors such as 

re-working, mixing of sources, and potentially dissolution and dilution (carbonate 

records only) may be affecting records however, so profile shapes are compared 

tentatively.  Dissolution and/or dilution may be affecting the carbonate records 

between 7.8 – 10.5 m as a result of declining ocean pH during the PETM interval 

(Zachos et al. 2005; McCarren et al. 2008; McInerney and Wing, 2011).  This has been 

previously suggested by Alegret et al. (2009), who suggested a rapid shoaling of the 

carbonate compensation depth (CCD) is evidenced throughout the Siliciclastic Unit by 

partially corroded calcareous foraminiferal tests and decreased wt%CARB.  However, 

Alegret et al. (2009) also suggested that dilution is probably affecting wt%CARB in 
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combination with dissolution due to an increased influx of terrigenous material 

throughout the Siliciclastic Unit.  This is supported by the wt% CaO record produced in 

this study and also by Storme et al. (2012) who reported a dramatic decrease in the 

wt% CaCO3 throughout the PETM interval (Figure 3.6).  Variability in the carbonate 

carbon and oxygen isotope values prior to the onset of the CIE is interpreted to be due 

to noticeable lithological variability between background marl deposition and thin 

bands of glauconitic more cemented layers ca. 1-3cm thick.  In any case, isotopic 

values yielded by bulk rock analysis must be treated with caution whilst no 

petrographical, chemical and/or cathodoluminiscence studies are available for this 

study, since it has been proven that diagenesis may have obscured and even reset 

original isotopic values (Veizer, 1992; Mitchell et al., 1997; Stoll and Schrag, 2000; 

Rosales et al., 2001). In this respect, oxygen, and to a lesser extent carbon, isotopic 

signals are prone to differential diagenetic alteration related to changes in the 

lithology as already observed in the Zumaia section (Schmitz et al., 1997). 

 

The profile of the n-alkane CIE records a shift to more positive 13C values shortly after 

the onset of the CIE (Figure 3.6).  This could suggest that pulses of carbon to the 

atmosphere may have occurred throughout the onset and duration of the CIE, which is 

also potentially seen in the Southern Ocean (ODP Site 690, Bains et al. 1999), Polecat 

Bench, (Bowen et al. 2001, 2006; Bains et al. 2003), and in the South Atlantic (IODP site 

1263, Zachos et al. 2005), but more likely this is a result of a local environmental 

perturbation.  Garel et al. (2013) reported a return to more positive values as recorded 

by 13Cn-alkane data at the Vasterival Section, France, after the onset of the CIE 

associated with the PETM.  They explained this in combination with their palynological 
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data as a potential reflection of a change in vegetation to more gymnosperm-

dominated vegetation at this point.  However, this mechanism cannot be used to 

explain the return to more positive values recorded here as there is no dramatic 

change recorded in the relative abundance of gymnosperm pollen associated with the 

more positive 13Cn-alkane values. Furthermore, Diefendorf et al. (2011) reported that, in 

modern plants, angiosperms produce on average ca. 200 times more n-alkanes than 

gymnosperms, with the latter sometimes synthesising no n-alkanes at all, indicating 

that the n-alkane record would almost entirely comprise an angiosperm 13C signal.  

This suggests that even if a change in plant community was observed, it would be 

unlikely to significantly affect recorded 13C values.  However this study only implicates 

modern plants, and in areas where gymnosperms were the dominant species you 

would still expect to see n-alkanes in the sediment, potentially suggesting that PETM 

flora did not exhibit such a differential between species. 

 

Kraus et al. (2013) suggest that major drying occurred throughout the body of the 

PETM interval in Wyoming, as evidenced by yellow-brown palaeosols.  Other evidence 

for this drying throughout the body of the PETM has been identified in Wyoming, 

Tanzania, and the Arctic using deuterium isotopes, biomarkers, and mineralogy (Pagani 

et al. 2006; Smith et al. 2007; Handley et al. 2012).  Potential evidence for this is also 

seen in northern Spain, where yellow palaeosols have been logged at the Claret 

section just above the Claret Conglomerate (Schmitz and Pujalte 2007; Domingo et al. 

2009), which has been suggested to have been deposited <15 kyr after the CIE onset 

(Manners et al. 2013 and Chapter 2).  Increased humidity has previously been linked to 

more depleted 13C values (ca. 2‰), and it has been suggested that this could 
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potentially amplify the magnitude of the CIE (Bowen et al. 2004; Smith and Freeman 

2006).  Conversely, reduced water availability associated with low precipitation has 

been correlated with higher 13C values (e.g., Meinzer et al. 1992).  It follows 

therefore, that aridity, which has been documented later in the body of the CIE in both 

the USA (Wing et al. 2005; Kraus and Riggins 2007; Secord et al. 2010) and (potentially) 

at terrestrial sections in Spain (Domingo et al. 2009) could affect 13Cn-alkane values.  

This would result in a shift to more positive 13Cn-alkane values, and could therefore 

indicate that the positive shift recorded directly after the CIE onset at Zumaia is in fact 

a response to increased aridity during this period, and is a reflection of changes in the 

terrestrial palaeohydrological regime.   However, Schmitz and Pujalte (2003) suggest 

that PETM soils reflect seasonally wetter, but generally drier conditions, and that the 

development of vast braid plains or megafans at the P-E boundary in the Pyrenees is 

consistent with model predictions of increased intra-annual humidity gradients and 

associated seasonal flash floods in the subtropics in a strengthened greenhouse 

situation (Houghton et al. 2001).  Therefore, D analyses would be needed to further 

elucidate the palaeohydrology during this period.  Finally, Tipple et al. (2011) also 

documented a positive shift in n-alkane, TOC and carbonate 13C records just after the 

CIE onset, which was attributed to a subtle enrichment of surface and deep-ocean 

carbon pools, associated with the initial input of 13C-depleted CO2 (Zeebe et al. 2009).   

 

Reworking is most likely playing a role in the structure of the n-alkane CIE profile.  If 

reworked organic matter, including n-alkanes, was washed into the basin, this could 

cause a return to more positive 13C values, reflecting the reworked 13C pool.  As 

discussed in Section 3.5.1, Schmitz and Pujalte (2003) suggested that reworked 
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Mesozoic material was washed into the basin coincident with the beginning of 

siliciclastic deposition.  However, the positive shift in 13Cn-alkane values coincides with a 

gradual decrease in kaolinite abundance, indicating less physical erosion and less 

influence of terrestrial material.  This also coincides with a drop in CPI and OEP values 

(to < 4) which may in turn signify a greater marine influence.  This may suggest that the 

positive shift in 
13Cn-alkane values is actually related to changes in the 

palaeohydrological regime rather than to reworking.  Again, therefore, D analyses 

may be crucial in resolving these questions. 

 
Table 3.2. CIE magnitudes calculated from the different records in this study, and 
previous studies at Zumaia (1 Storme et al. 2012, 2 Schmitz et al. 1997). 

Data 
CIE magnitude (‰ VPDB) 

This Study Other studies 


13CTOC 4.1 5.01 


13Cn-alkane 5.5 N/A 


13Ccarbonate 6.0 2.02 

 

The magnitude of the 13C CIE recorded in the three isotope records presented 

(13CTOC, 13Cn-alkane, 
13CCARB) is variable, ranging from 4 – 6‰ between records (Table 

3.2).  Reworking and mixed sources are potentially contributing to all three records 

however, and as such the comparisons made here are only tentative.  The mixed 

source 13CTOC records a magnitude of 4.1 ‰, whilst the terrestrial 13Cn-alkane record 

suggests a magnitude of 5.5‰ and the marine bulk carbonate records a CIE of ca. 6‰.  

Previous studies for this section have yielded a magnitude of 5‰ from 13CTOC (Storme 

et al. 2012), and 2‰ from bulk carbonates (Schmitz et al. 1997).  The former is 

consistent with the results presented here but the latter is not and the much lower 


13CCARB excursion reported by Schmitz et al. (1997) is thought to be an artefact of the 
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much lower resolution of that study.  According to the results presented here, both 

terrestrial and marine proxies show large CIEs, which indicates that for the Zumaia 

section, no offset between the terrestrial and marine CIEs is recorded, in contrast to 

comparisons at other settings (Bowen et al. 2004; Pagani et al. 2006; Smith et al. 2007; 

Zachos et al. 2007; Handley et al. 2008; Bowen and Zachos 2010; McInerney and Wing 

2011; Tipple et al. 2011). The mean terrestrial CIE reported globally is -4.7 ± 1.5‰, 

whilst the mean marine CIE reported globally is -2.8 ± 1.3‰ (McInerney and Wing 

2011), making both the terrestrial and marine CIE magnitudes reported here at the 

higher end of previous estimates (Table 3.2).  This previous work also indicates that 

continental sections record larger CIE magnitudes than marine sections; however 

those data predominantly compare sections from different global localities (Koch et al. 

1992; Bowen et al. 2004; Wing et al. 2005; Pagani et al. 2006; Schouten et al. 2007; 

Smith et al. 2007; Handley et al. 2008; Bowen and Zachos 2010; McInerney and Wing 

2011; Tipple et al. 2011). Manners et al. (2013) suggested that differences between 

marine and terrestrial CIE magnitudes could, in fact, be minimal within a single 

sediment routing system (see also Chapter 2).  This study tentatively builds upon this 

interpretation, as at the current resolution of the data, whilst taking into account that 

mixed sources and reworking may be affecting the recorded CIE magnitudes, no 

obvious difference in the 13Cn-alkane and 13CCARB records is observed at the Zumaia 

section.  This may suggest that the northern Spanish sections do not exhibit the same 

continental to marine magnitude differences recorded at other, more widespread, 

localities (Koch et al. 1992; Bowen and Zachos 2010; Tipple et al. 2011), and that the 

difference in marine and terrestrial magnitudes recorded elsewhere might be a local, 

rather than global phenomenon, especially when a range as varied as 2 to 7‰ is 
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recorded globally for CIE magnitude (Kennett and Stott 1991; Koch et al. 1992; Zachos 

et al. 2003, 2005, 2008; Magioncalda et al. 2004; Schouten et al. 2007; Smith et al. 

2007; Handley et al. 2008, 2011; Bowen and Zachos 2010; McInerney and Wing 2011).   

 

The size of CIE magnitudes recorded in this study has implications regarding carbon 

source and mechanisms of release.  When estimating the mass of carbon released, the 

need for an estimate of the magnitude of the CIE is implicit.  McInerney and Wing 

(2011), estimated that the release of carbon necessary to cause a 4.6‰ CIE would be 

4,300 Pg C for methane Clathrates, 10,000 Pg C for thermogenic methane or 

permafrost, and 15,400 Pg C for wildfires or epicontinental seas.  Whilst the need to be 

cautious of reworking and changing source inputs throughout the section is accepted, 

the fact that all three CIE magnitudes measured here are large (average 5.2‰), may 

indicate that greater amounts of carbon release would be required to account for the 

observed CIE. Dickens et al. (2003, 2011), suggest that methane clathrate release from 

slope failure or venting could account for the release of 2,000 to 3,000 Gt C during the 

PETM interval. As this estimate is lower than that required to explain a 4.6‰ CIE, this 

mechanism could not be entirely responsible for the carbon release associated with 

the event.  This conclusion was also reached by Zeebe et al. (2009), who suggested 

that methane clathrates accounted for some of the carbon release observed, but other 

mechanisms “hithero unknown” had to be invoked to account for larger recorded CIE 

magnitudes. 
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3.5.3 TIMING OF EXCURSIONS 

The onset of the CIE recorded in the 13CTOC, 13CCARB and 13Cn-alkane records appear to 

be temporally offset, with the 13CCARB profile recording the earliest onset, and the 


13Cn-alkane profile recording the latest onset. This apparent lag between n-alkane and 

bulk records was also documented by Tipple et al. (2011) who suggested it reflected 

the long residence time of soil organic carbon.  They argue that the time taken for leaf-

wax production, transportation, and deposition in marine settings is variable between 

days and years (Conte and Weber, 2002), and that n-alkanes can be anywhere 

between 500 – 4000 yr older than the marine sediments in which they are deposited 

(Smittenberg et al. 2004).  A sedimentary mixture incorporating n-alkanes deposited 

synchronously with the PETM and later-sourced n-alkanes would therefore represent 

the mean reservoir storage time of n-alkanes in soils, leading to a lag time before n-

alkanes record the CIE associated with the PETM.  This provides a plausible explanation 

for the lag in 13Cn-alkanes following CIE onset compared to CIE onset measured using 


13CTOC and 13CCARB.  Furthermore, the 13CCARB record reflects a marine signal, and as 

such is being deposited in-situ, whilst the 13CTOC profile reflects a mixed terrestrial and 

marine signal.  The temporal offset between the three records therefore likely reflects 

the transport time of terrestrial material deposition, with the carbonate profile 

recording the actual onset of the PETM CIE. 

 

The 13CTOC onset at the Zumaia section has been discussed previously in terms of 

sedimentology and inferred hydrological change associated with the PETM (Manners 

et al. 2013 and also Chapter 2).  Schmitz et al. (2001) placed the onset of the CIE 

associated with the PETM at Zumaia as occurring simultaneously with the lithological 
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change to siliciclastic deposits, thus inferring the change in lithology to be related to 

the PETM.  All three records presented in this study suggest a later CIE onset, providing 

further evidence that the sedimentological changes observed may have occurred prior 

to the onset of the CIE.  Pujalte et al. (2014) suggest that evidence for an increased 

hydrological cycle is seen at the Claret section and in the surrounding terrestrial region 

just prior to the deposition of the Claret Conglomerate in the form of an incised valley.  

If this is the case, then the onset of the siliciclastic unit at Zumaia may be a reflection 

of sediment deposition from this incision, rather than directly linked to the Claret 

Conglomerate deposition.  Kaolinite concentrations begin to increase dramatically 

coincident with the start of the siliciclastic Unit (Figure 3.8), and prior to the onset of 

the CIE in all 13C records, suggesting deeper continental erosion, potentially caused by 

an increased hydrological cycle prior to the onset of the CIE. This precursor event to 

the CIE may be linked to similar events found at New Jersey and Wyoming, where 

evidence for warming and environmental change prior to the PETM has been found 

(Sluijs et al. 2007; Secord et al.2010). Sluijs et al. (2007) report that environmental 

change and surface-ocean warming preceded the PETM, evidenced by the high 

occurrence of the dinoflagellate cyst Apectodinium and the TEX86 palaeothermometer, 

respectively.  Secord et al. (2010) recorded a similar warming of about 5 °C prior to the 

PETM in the continental realm based on oxygen isotopes in mammal teeth. 

 

Palynological data were used to determine reworking and reliability of the data 

throughout the section, and also to assess whether a change in the dominant 

vegetation was recorded here, as previously observed (Smith et al. 2007).  Abundances 

of the different groups of palynomorphs remains fairly constant throughout the PETM 
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interval, with gymnosperm pollen (in particular, bisaccate pollen) dominating the 

species identified. However, bisaccate pollen is known to be dispersed more widely 

than other pollen groups due to the structure of the pollen grains containing air-sacs, 

making them more susceptible to aeolian and fluvial transport. Therefore, the inferred 

dominance of gymnosperm species may be an artefact (Heusser 1988; Traverse 1988).  

To assess if a shift in the dominant flora occurred coincident with the PETM, the ratio 

of angiosperm pollen relative to total angiosperm and gymnosperm palynomorphs was 

calculated throughout the section.  These data suggest that a shift to a more 

angiosperm-dominated population may be observed coincident with the onset of the 

CIE at 8.7 m.  However, only one data point suggests this, and the pollen count for this 

sample was low (eight grains).  Consequently, it is tentatively inferred that no shift in 

the dominant group of pollen is recorded throughout the CIE at Zumaia. This would 

lead us to conclude that the plant community change that has been previously 

suggested to have occurred coincident with the onset of the PETM (Smith et al. 2007) 

does not appear to be recorded at this locality during the PETM, potentially due to 

poor preservation.   

 

3.6 CONCLUSIONS 

Marine bulk carbonate and higher-plant derived n-alkane 13C data are presented in a 

high resolution isotope study of the Zumaia section in Northern Spain, and compared 

with 13CTOC data. This data represents the first organic geochemical data for the 

Zumaia section, and is one of only a limited number of comparisons of marine and 

terrestrial CIEs within the same section.  The CIE magnitude between terrestrial and 

marine records is similar, suggesting that previously reported differences in magnitude 
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between the two environments is not expressed at this locality.  Profile shape is 

assessed, and the potential for the n-alkane 13C record reflecting changes in the 

palaeohydrological regime is presented.  The onset of the CIE appears to occur after 

the start of deposition of the Siliciclastic Unit, possibly suggesting that evidence for an 

increased hydrological cycle during the period preceding the PETM may have brought 

about sedimentological changes through deeper continental erosion.  No palynological 

evidence was found to support the plant community change hypothesis affecting 13C 

values, and thereby an offset between the continental and marine records at this 

locality. 
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4 EVALUATION OF CIES WITHIN A LINKED SEDIMENT ROUTING SYSTEM: COMPARISON 

OF THE CLARET AND ZUMAIA SECTIONS 

ABSTRACT 

The Palaeocene – Eocene Thermal Maximum (PETM), a hyperthermal event that 

occurred ca. 56 Ma, is associated with the release of substantial amounts of 

isotopically light carbon into the atmosphere and oceans, with questions as to the rate, 

rapidity, and amount of carbon released to cause the climatic perturbation debated.  

Here, total organic carbon and n-alkane 13C profiles across the PETM boundary at the 

terrestrial section of Claret, northern Spain are presented.  This represents the first 


13Cn-alkane record for this section, allowing examination of both the profile and 

magnitude of the CIE as expressed by leaf waxes at this locality.  The 13C bulk total 

organic carbon (TOC) profile records a CIE magnitude of 3.5‰, whilst the 13Cn-alkane 

profile records a CIE of 4.1‰. A larger excursion expressed by n-alkanes than 

terrestrial TOC is apparent in global compilations, although this is one of the first 

studies where this is examined in the same section.  The CIE onset as recorded by 


13C29 and 13C31 appear to be temporally offset, with 13C31 recording an earlier onset 

than that of 13C29 data.  This suggests a different, slow-responding source of organic 

matter recorded by the 13C29 data, as evidenced by OEP and CPI data.  Profile shape is 

similar for both n-alkane records, although TOC data record a different profile, 

suggesting a longer body to the CIE.  This has been interpreted to correspond to 

reworked organic matter affecting the profile shape.  Palynological data suggest there 

may have been a change from a predominantly gymnosperm to an angiosperm flora 

coincident with the onset of the CIE, but the magnitude of the CIE here (4.1‰) 

compared with the global terrestrial average (4.7 ± 1.5‰) and the marine CIE recorded 
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at the nearby section of Zumaia (6‰,13CCARB; within the same sediment routing 

system), suggests that this did not affect the magnitude of the terrestrial CIE.  

Stratigraphic differences between the onset of the CIE and sedimentological features, 

including the Claret Conglomerate, indicate that a time-lag is present between the 

onset of climatic change and sediment response within this system. 

 

4.1 INTRODUCTION 

The Palaeocene-Eocene Thermal Maximum (PETM) is a hyperthermal event that 

commenced at the Palaeocene-Eocene boundary (ca. 56 Ma).  It has been described as 

the most prominent global warming event of the Cenozoic (Thomas et al. 2002).  

Temperature increases of 5 – 9 °C have been modelled within the first 10 kyr of the 

onset of the event, which is characterised by a near-synchronous negative carbon 

isotope excursion (CIE) of between 2.5 to 7 ‰, recorded in both marine and 

continental environments (Pagani et al. 2006; Smith et al. 2007; Zachos et al. 2007; 

Handley et al. 2008; Bowen and Zachos 2010; Manners et al. 2013).  The variation in 

CIE magnitude is most dramatic when comparing marine (2.5 to 5.5‰) and continental 

(3 to 7‰) CIEs, which is suggested to reflect environmental bias between the different 

realms (Bowen et al. 2004; Zachos et al. 2005; Smith et al. 2007; McInerney and Wing 

2011).  Typically, continental n-alkane CIEs are argued to be larger than marine CIE 

magnitudes (McInerney and Wing 2011).  Previous attempts to explain this apparent 

discrepancy have included potential reduction of the CIE magnitude in marine 

environments by carbonate dissolution or poor preservation (Zachos et al. 2005; 

McCarren et al. 2008), or amplification of the CIE in continental environments 

attributed to changes in higher plant carbon isotope fractionation (Bowen et al. 2004; 
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Smith et al. 2007; Handley et al. 2011).  Specifically, it has been suggested that changes 

in plant assemblage from a mixed angiosperm/gymnosperm to a purely angiosperm 

flora could have affected continental CIE magnitudes (Smith et al. 2007).  Angiosperms 

generally exhibit greater 13C-discrimination during photosynthetic uptake than 

gymnosperms by 2.5 – 6 ‰ (Chikaraishi and Naraoka 2003; Smith et al. 2007; 

Diefendorf et al. 2010).  This idea has recently been challenged, because deciduous 

angiosperms are now known to produce up to 200 times more n-alkanes than 

deciduous gymnosperms, indicating that the biomarker record would largely reflect an 

angiosperm signal (Diefendorf et al. 2011).  Furthermore, whilst a plant community 

change may be applicable to the Bighorn Basin, it is less likely to affect areas with 

probable minimal gymnosperm contributions prior to the CIE (e.g., Tanzania; Handley 

et al. 2011).  To assess whether a plant community change could have affected 

continental CIE magnitudes, further continental sections need to be studied.  Currently 

this has only been investigated in Wyoming (Smith et al. 2007) and the Arctic 

(Schouten et al. 2007).  Comparison of local terrestrial and marine CIE magnitudes 

should also help to elucidate differences recorded in CIE magnitude between 

continental and marine records. 

 

The Claret section (Figure 4.1) is a continental section spanning the P/E boundary that 

is located in the Catalonia Region of northern Spain.  A previous low-resolution study 

has identified the PETM CIE using soil carbonate nodules (Schmitz and Pujalte 2007) 

and at higher resolution using 13CTOC (Domingo et al. 2009; Manners et al. 2013).  An 

extensive conglomeratic unit, the Claret Conglomerate, is present throughout the 

northern Spanish terrestrial PETM sites.  Previously this was interpreted to have 
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formed during the onset of the PETM and was thought to reflect a dramatic change in 

the hydrological cycle coincident with the CIE onset (Schmitz and Pujalte 2007).  Based 

on this evidence, it was thought that the hydrological response to the PETM was 

extremely rapid, with an almost equally instantaneous sedimentological response, 

providing some insight into both climate and sediment dynamics at the beginning of 

the event.  Domingo et al. (2009), and then Manners et al. (2013), challenged this 

hypothesis, suggesting that based on sedimentation rates estimated for the body of 

the organic CIE there was a time-lag of <15 kyr between CIE onset and conglomerate 

deposition (see also Chapter 2).  They inferred that a time-lag must have occurred – 

either between climate change and sedimentological response, or between CIE onset 

and climatic change (with the sedimentological response being near-instantaneous).  

However, this time-lag between CIE onset and conglomerate deposition has previously 

only been recorded by 13CTOC records, which may be biased by organic matter source 

mixing.  Compound specific carbon isotope analysis allows evaluation of the recorded 

lag-time from a single-source (e.g. higher plant-derived13Cn-alkane data), removing the 

bias associated with the 13CTOC record. 

 

This study presents high resolution 13C profiles of TOC and n-alkane data spanning the 

PETM interval from the continental section of Claret, building upon the earlier work of 

Manners et al. (2013) and Chapter 2.  Onset of the CIE, in relation to the Claret 

Conglomerate, is assessed and compared to previous interpretations (Schmitz and 

Pujalte 2007; Manners et al. 2013).  Profile shape of the 13CTOC and 13Cn-alkane records 

are evaluated in terms of potential reworking, extent of degradation of samples, and 

source changes using palynological and other n-alkane-specific proxy data such as 



EVALUATION OF TERRESTRIAL CIES WITHIN A LINKED SEDIMENT ROUTING SYSTEM 

91 
CHAPTER 4 

average chain length (ACL; nC27 – 33), carbon preference index (CPI; nC27 – 33), and odd-

over-even predominance (OEP; nC27, n-C29 and n-C31).  Palynological data are also 

assessed in relation to the changes in plant community linked to the event, in the 

context of comparing CIE magnitudes and the profiles obtained for the different 

isotopic datasets.  The magnitude of the CIE recorded is also compared to TOC 

(13CTOC), n-alkane (13Cn-alkane) and carbonate (13CCARB) data from the marine section 

of Zumaia (300 km distance), which is within the same sediment routing system, 

allowing variations between marine and continental CIEs to be assessed. 

 

4.2 SAMPLE LOCATIONS AND METHODOLOGY 

4.2.1 GEOLOGICAL SETTING  

The Claret section (N 042°09´14.1”, E 000°51´58.4”) is located in the Tremp Basin in 

south central Pyreneés, ca. 5 km from the town of Tremp (Figure 4.1).  One of several 

terrestrial PETM sections in this region, it is widely known for its marine Ilerdian 

deposits, associated with a marine transgression in the early Eocene (Schmitz and 

Pujalte 2003).  PETM deposits in this region belong to the Tremp Group and have been 

dated using litho-, bio-, and chemostratigraphic techniques (Lopez-Martinez and 

Pelaez-Campomanes 1999; Schmitz and Pujalte 2003, 2007; Lopez-Martinez et al. 

2006; Domingo et al. 2009).  A conglomeratic unit in the middle of the section, known 

as the Claret Conglomerate, has previously been linked to the PETM using 13CTOC and 


13CCARB data (Schmitz and Pujalte 2007; Domingo et al. 2009; Manners et al. 2013) and 

is considered to have formed <15 kyr after the CIE onset associated with the PETM, as 

defined by sedimentation rates estimated for the body of the CIE (Manners et al. 2013 

and also Chapter 2).  Deposits in the region comprise mainly yellow, grey, and red clays 
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containing microfossils and palynomorphs (Galbrun et al. 1993; Schmitz and Pujalte 

2003; Domingo et al. 2009) indicative of a transitional environment, although the 

section was entirely terrestrial throughout the PETM interval (Schmitz and Pujalte 

2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. A) Geographic study area, B) General study area, highlighting the terrestrial 
section of Claret, and the marine section of Zumaia, C) Palaeogeographical map of the 
study region.  showing the most important Palaeocene outcrops and the location of 
the Claret section. Modified from Schmitz and Pujalte (2007). 
 

4.3 METHODS 

In total, 165 samples were collected from the Claret section over several field seasons.  

Two logs were created over the field seasons which were correlated to each other in 
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order to place samples in the correct stratigraphic order (see Appendix 3, Table 6.3.1, 

Figures 6.3.1 and 6.3.2).  Sampling frequency varied between the field seasons, with a 

mean sampling resolution of 70 cm for L.D. and 110 cm for R.D (see Appendix 3 for 

lithological correlation of the logs), which is corrected for and considered in the 

analysis.  Prior to any chemical treatment all of the whole rock samples were oven 

dried (30°C, 24 hours).   

 

4.3.1 TOTAL ORGANIC CARBON (TOC): DETERMINATION OF WT% TOC AND 
13CTOC 

Ninety-eight samples were powdered using a granite pestle and mortar. 

Decarbonation was conducted following the methodology of Domingo et al. (2009) 

using excess hydrochloric acid (10%, v/v) until any visible sign of reaction had ceased.  

Samples were neutralised by repeated washing with deionised water and oven dried 

(30°C, 24 hours).  Total organic carbon (TOC), total nitrogen (TN) and stable isotope 

analyses were conducted at the NERC Isotope Geosciences Laboratory (NIGL).  A full 

description of the methodology can be found in Manners et al. (2013) and Chapter 2, 

Section 2.2.2. 

 

4.3.2 N-ALKANES: DETERMINATION OF CARBON PREFERENCE INDEX (CPI), ODD-OVER-EVEN 

PREDOMINANCE (OEP), AVERAGE CHAIN LENGTH (ACL) AND 
13CALKANE 

The total lipid extract (TLE) was extracted from pre-weighed (ca. 50 g), powdered 

samples via sonication. n-alkanes were then separated from the TLE using a 

proprietary technique used for the isolation of waxes from crude oil (T-SEP™; 

http://www.kat-lab.com/t-sep) to produce a de-waxed TLE and an n-alkane fraction 

(see Chapter 3, Section 3.3.3 for full method). 
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Fractions containing n-alkanes were initially analysed using gas chromatography-flame 

ionisation detection (GC-FID) to determine the relative peak areas of n-C25-33.  Carbon 

preference index (CPI = 2 x (C27 + C29 + C31)/ [C26 + 2 x (C28 + C30) + C32]; Eglinton and 

Hamilton 1967), odd-over-even predominance (OEP = (Cn-2 + 6 x Cn + Cn+2)/(4 x Cn-1 + Cn 

x Cn+1), with n being an odd integer; Scalan and Smith 1970) and average chain length 

(ACL = (27 x C27 + ... + 33 x C33)/ (C27 + ... + C33); Eglinton and Hamilton, 1967) for n-

alkanes were calculated.




13Cn-alkane measurements were conducted at the Natural Environmental Research 

Council (NERC) Bristol Life Sciences Mass Spectrometry Facility using gas 

chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS).  Samples 

were analysed in either duplicate or triplicate relative to a reference gas, and analytical 

precision was < ±0.5‰ as measured by replicate analysis of a standard fatty acid 

methyl ester (FAME) mixture.  All values are quoted in standard ‰ notation relative to 

Vienna Pee Dee Belemnite (VPDB).   

 

4.3.3 PALYNOLOGICAL ANALYSIS 

Palynological samples (25) were prepared at the British Geological Survey, Keyworth.  

Silicates were first dissolved by adding approximately 75 mL hydrofluoric acid to each 

sample and leaving the samples to stand for one week in a fume hood.  Where 

necessary, samples were sieved at 10 µm (with the < 10 µm fraction removed) and 

placed in warm hydrochloric acid to dissolve carbonate material. All samples were then 

sieved at 500 µm and the >500 µm fraction was removed.  Where minerals still 

remained, a heavy liquid separation was carried out to remove them. Samples were 
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then washed in distilled and deionised water, dried, and mounted onto cover slips 

using PVA glue and cover slips mounted onto the slides with Elvacite®. Pollen and 

spores were counted from prepared slides by Dr Phil Jardine (P.J., School of 

Geography, Earth and Environmental Sciences, University of Birmingham) by scanning 

transects across the slide.  Where possible, 300 palynomorphs were counted per 

sample unless, (a) <300 palynomorphs were  evident on the slide, or (b) one pollen 

type entirely dominated the sample, in which case counting was continued until 200 

palynomorphs of the non-dominant types had been counted (usually resulting in 

counts >300).   

 

4.4 RESULTS 

Experimental data are presented in Table 4.1, and Tables 6.3.2 – 6.3.5 of Appendix 3.  

Results are summarised in Figures 4.2 – 4.5.   

 
4.4.1 BULK SEDIMENTARY PARAMETERS 

Total organic carbon (wt% TOC) and nitrogen content (wt% N; where quantifiable) are 

low throughout the section, ranging from 0.1 – 2.1 wt% TOC, and 0.07 – 0.2 % wt% N, 

respectively (Table 6.3.2 of Appendix 3).  Wt% TOC and 13CTOC results for the Claret 

section were first published in Manners et al. (2013) and are discussed below with the 

additional data from this current study (see also Chapter 2). 

 
4.4.2 N-ALKANE ABUNDANCES AND DISTRIBUTIONS  

The n-alkane fractions obtained from all samples were characterised by a homologous 

series of n-alkanes typically ranging from n-C25 to n-C33, with some samples having 

measurable quantities of n-alkanes up to n-C36.  Concentrations of n-alkanes 



EVALUATION OF TERRESTRIAL CIES WITHIN A LINKED SEDIMENT ROUTING SYSTEM 

96 
CHAPTER 4 

throughout the section were generally low, ranging from 0.5 – 30 ng g-1 sediment 

(Tables 6.3.3 and 6.3.4 of Appendix 3).  However, n-alkane concentrations increase at 

the onset of the CIE by a factor of two (Figure 4.2e).  Increases in n-alkane 

concentration are also recorded in the recovery phase of the CIE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 4.2. Geochemical parameters measured throughout the Claret section. A) 13Cn-

alkane and 13CTOC values, B) wt% TOC, C) odd-over-even predominance (OEP), D) carbon 
preference index (CPI), E) n-alkane concentrations (ng g-1 dry sediment). The grey box 
indicates the PETM CIE interval. 
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Figure 4.3. Partial gas-chromatograms of the n-alkane fractions for representative 
sediments demonstrating the odd-over-even predominance displayed. (A) pre-PETM, 
(B) during-PETM, (C) post-PETM: ● n-alkanes, with numbers indicating the number of 
carbon atoms. 
 

All sediment n-alkane distributions are dominated by odd-carbon numbered 

homologues (e.g. n-C29, n-C31 and n-C33; Figure 4.3), a signature attributable to higher 

plant leaf wax n-alkanes (Eglinton and Hamilton 1967).  OEPs and CPIs (Section 3.3.3.; 

Table 4.1) were used to assess the preference of odd-carbon numbered n-alkanes in all 

samples and to evaluate sources of these compounds.  OEP and CPI values (Cn = 29 and 

31) range from 0.3 – 6.7 (OEP) and 0.7 – 5.0 (CPI), throughout the section and the two 

parameters exhibit similar trends (Figure 4.2).  OEP values for n-C29 and n-C31 are 

generally > 1, although they remain consistently low (ranging from 1 – 2) throughout 

the section apart from at key points described below.  Coincident with the onset of the 
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CIE and the aforementioned increase in n-alkane concentrations, a dramatic increase 

in OEP is observed at 16.8 to 17.6m (n-C31 OEP = 5.5).  Another increase in OEPs is 

coincident with the recovery from the CIE at 51.4 m (n-C31 OEP = 6.7), and again 

corresponds to an increase in n-alkane concentrations.  CPI trends match those of the 

OEP, and most values throughout the section ranged from 1 – 2; however at the CIE 

onset and recovery the CPIs increased to 3.3 and 5, respectively.   

 
Table 4.1. Isotope data and associated proxy measurements for the n-alkanes.  

Compound specific 13C was measured using n-C29 and n-C31. ACL, OEP, and CPI were 
calculated using the methodologies described in Section 3.3.3.  Hyphenated boxes in 
isotope data indicate uncertainty regarding isotope measurement due to obvious 
coelution of the measured n-alkane using GC-C-IRMS, so no measurement is reported. 
 

Sample 
Height 

(m) 


13Cn-alkane (‰ 

VPDB) ACL 
OEP 

CPI CIE 
n-C29 n-C31 n-C27 n-C29 n-C31 

CLA-I-12 62.7 -26.1 -26.7 29.5 2.7 0.9 0.3 0.7 

P
o

st
- 

CLA-I-22 59.8 -31.4 -29.1 28.5 1.0 1.2 1.5 1.2 

CLA-5,-8 56.9 -32.0 -29.3 29.2 2.0 2.9 3.9 3.0 

CLA-5,-13 51.4 -28.4 -29.0 30.0 2.8 4.2 6.7 5.0 

D
u

ri
n

g-
 

CLA-6,+12 42.1 -30.3 -31.4 29.4 1.6 1.9 2.3 2.0 

CLA-I-39 40.9 -33.8 -34.6 29.0 1.4 2.3 2.8 2.2 

CLA-I-41 39.6 -34.4 -35.6 28.7 1.2 2.9 3.8 2.5 

CLA-6,+5 35.2 -32.7 -34.1 29.3 1.1 1.2 1.6 1.3 

CLA-6,+3 33.2 -30.7 -32.1 29.3 2.1 2.0 1.2 1.6 

CLA-I-60 32.0 -32.3 -33.8 28.8 0.9 1.3 1.5 1.3 

CLA-I-64 30.3 -30.9 -32.5 28.4 1.0 1.5 1.9 1.4 

CLA-I-70 21.5 -32.3 -33.2 28.5 2.1 2.3 1.2 1.8 

CLA-I-73 18.2 -30.7 - 28.2 1.0 1.2 1.3 1.2 

CLA-MAR´10-13 17.6 -29.4 - 29.9 1.4 2.7 5.5 3.3 

CLA-MAR´10-12 16.8 -28.7 -32.2 30.2 1.4 2.5 4.3 3.0 

CLA-I-74 15.9 -28.9 -30.2 28.7 1.5 1.7 2.5 1.9 

CLA-MAR’10-9 14.4 -29.4 -28.7 - - - - - 

P
re

- 

CLA-I-78 11.5 -28.7 -29.1 28.7 1.0 0.7 0.9 0.9 

CLA-I-81 8.8 -27.6 -28.5 28.1 1.0 1.0 1.1 1.1 
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4.4.3 N-ALKANE δ13C VALUES 

The 13C values were determined for n-C29 and n-C31 n-alkanes, which are interpreted 

based on CPI values ranging from 0.9 – 8.1 (Table 4.1) to be primarily derived from 

higher plant leaf waxes (other potential sources are recognised and discussed in 

Section 4.5.1). Throughout most of the section, n-C31 is depleted in 13C by 

approximately 1.2‰ relative to n-C29.  However, this trend is reversed for three 

samples (at 14.4, 56.9 and 59.8 m); this reversal in the depletion of some samples has 

also been reported in Tanzania by Handley et al. (2011), and is also recorded at the 

Zumaia section (Chapter 3, Section 3.4.3).  Overall, however, both records display 

similar trends throughout the section.  The 13Cn-alkane values range from -26.1 to -

34.4‰ for n-C29, and -26.7 to -35.6‰ for n-C31 with the most depleted 13C values 

occurring at 14.4 m (n-C31) and 16.8 m (n-C29).  This negative shift in n-C29 and n-C31 


13C values is interpreted to represent the onset of the CIE associated with the PETM 

and is also recorded by bulk 13CTOC (Figure 4.2).  The CIE onset recorded by 13C29 and 


13C31, however, appears to be temporally offset, with n-C31 recording an earlier CIE 

onset, and n-C29 and 13CTOC data recording a coincident later onset.  Prior to the CIE 

onset, values range from -27.6 to -29.4‰ for n-C29, and -28.5 to -29.1‰ for n-C31.  At 

the CIE onset (16.8 m for n-C29 and 14.4 m for n-C31), all values start to shift toward 

more 13C-depleted values, reaching a minimum of -30.7‰ for n-C29, and -32.2‰ for n-

C31.  The magnitude of the excursion is calculated as 3.6‰ for n-C29, and 4.5‰ for n-C31 

(see Manners et al. 2013 and Chapter 2 for magnitude calculation method).  Above 

this, 13C values remain low, recovering back to near pre-CIE values between 42.1 – 

51.4 m. 
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4.4.4 PALYNOLOGY 

Palynomorph assemblages (Plate 1) vary in their degree of preservation throughout 

the section, with reworking and degradation evident from 31 – 36 m based on the 

dominance of dark and degraded sporomorphs and dinoflagellate cysts.   

 

Plate 1. Reworked (1-6) and primary (7-11) palynomorphs from the Claret section. 1 – 
3, dinoflagellate cysts from samples CLA-6+1 and CLA-6+3; 4 – 6, reworked spores from 
samples CLA-6+1, CLA-6+3 and CLA-6+6; 7, bisaccate pollen from sample CLA-3-8; 8, 
Tetracolporopollenites pollen type from sample CLA-3-8; 9, Plicapollis pollen from 
sample CLA-5-5; 10, 11, Platycaryapollenites and Subtriporopollenites pollen types 
from sample CLA-5-15.  The biaccate pollen was produced by Gymnosperms (7) and 
the remaining pollen types (8 – 11) by Angiosperms. 
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Figure 4.4. Relative abundance of groups of major palynomorphs (angiosperms, 
gymnosperms, and pteridophytes), expressed as percentages of the total spore and 
pollen counts.  Total pollen is expressed as a percentage of the total palynomorphs 
(plant pollen + dinoflagellate cysts), giving % terrestrial relative to marine 
palynomorphs.  The light grey box indicates the recorded CIE and the dark grey boxes 
illustrate barren (13.4, 53.3 – 55.3, and 57.2 m) or reworked samples (31.2 – 36.2 m); 
some of these samples also showed evidence of degradation of the palynomorphs 
(31.2 – 36.2 m).  The key for the lithological log can be found in Figure 4.2. 
 

Throughout the rest of the section assemblages vary in abundance with some samples 

containing only very limited numbers of palynomorphs (<50; Table 6.3.5 of Appendix 

3).  Angiosperm, gymnosperm, and pteridophyte pollen and spores were recorded 

throughout the section (Figure 4.4) with dinoflagellate cysts also found in the 
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reworked interval.  At the base of the section (13.4 – 16.6m) gymnosperm species are 

the dominant pollen (ranging from 82 – 91% of the sample), whilst angiosperm 

proportions constitute only 9 – 16% of the total plant pollen and pteridophytes are 

consistently the lowest in abundance (0 – 2%).  Coincident with the CIE onset (17.2 – 

18.7m), angiosperm and gymnosperm proportions reverse, with angiosperm species 

reaching 96% of the total palynomorphs counted (gymnosperms, 4%).  Throughout the 

body of the CIE (18.7 – 51.4m) the angiosperm proportion gradually decreases, albeit 

with high variability from 24 – 77%.  Gymnosperm proportions are also variable, 

ranging from 22 – 72%, whilst pteridophyte proportion is consistently low (0 – 4.7%).  

After the CIE, angiosperm proportions gradually increase again (maximum 94%), whilst 

gymnosperm species decrease in abundance (minimum 4 %).  The shaded boxes in 

Figure 4.4 illustrate barren (13.4, 53.3 – 55.3, and 57.2 m) or reworked samples (31.2 – 

36.2 m); some of these samples also showed evidence of degradation of the 

palynomorphs (31.2 – 36.2 m; Plate 1).  Dinoflagellate cysts were also found in some 

samples (31.2 – 36.2 and 49.5 – 51.4 m) indicating reworking of older, marine material. 

 

4.5 DISCUSSION 

4.5.1 DEPOSITIONAL SETTING AND SOURCE INPUTS 

Source inputs of terrigenous material at Claret were assessed using biomarker proxy 

measurements and palynological evidence.  Contributions from either fresh leaf waxes 

or those altered during burial, petroleum sources, and thermally mature organic 

matter can be elucidated via CPI and OEP measurements (Kennicutt et al. 1987; 

Collister et al. 1994; Huang et al. 2000; McDuffee et al. 2004; Handley et al. 2011).  

Fresh leaf waxes typically have OEPs and CPIs > 4 (Collister et al. 1994; McDuffee et al. 
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2004) whilst values < 4 may indicate potential contributions from either marine or 

petroleum sources (Huang et al. 2000), or that the leaf waxes have been altered during 

burial (Kennicutt et al. 1987; Handley et al. 2011) and very low values (<1) are typically 

associated with thermally mature organic matter (Kennicutt et al. 1987).  Throughout 

the section relatively low CPI and OEP values are recorded, although high CPI and OEP 

values are recorded at depths of 15.9 – 16.8 m, and 51.4 m, which likely reflect a 

strong input of relatively fresh higher plant material.  These horizons are associated 

with elevated concentrations of n-alkanes suggesting that there is an input of 

additional terrigenous organic matter into the Claret sediments.  By extension, 

therefore, lower concentrations of n-alkanes with lower CPIs throughout the rest of 

the section likely represent a background contribution of n-alkanes from diagenetically 

altered or reworked, thermally mature organic matter.  Whilst a mix of sources may be 

contributing to the n-alkane signal at Claret, all samples are dominated by n-C29 and n-

C31 n-alkanes, indicating that whilst OEP is variable, this is still a predominantly 

terrigenous signal, with lower molecular weight n-alkanes always being subordinate.  

As such, the change in CPI values is interpreted as predominantly a switch between 

degraded soil-associated terrestrial organic matter and relative fresh organic matter 

derived directly from plants.   
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Figure 4.5. 13CTOC, 13C29 and 13C31 data (A) compared to  CPI  (B) and relative 
proportions of n-C31 and n-C29 concentration throughout the Claret section (C), 
illustrating the dramatic increase in n-C31 (deemed indicative of contemporaneous 

vegetation) coincident with the onset of the CIE as recorded by 13C29 and 13CTOC. The 
light grey indicates the recorded CIE whilst the dark grey box highlights the onset of 
the CIE, which is discussed in Section 4.5.1 (this section). 
 

Likely source inputs were also assessed by comparing the isotope (13C29, 13C31 and 


13CTOC) profiles.  The onset of the CIE as recorded by 13C31 occurs earlier and is of 

greater magnitude than that of the 13C29 and bulk TOC profiles.  By comparing the 

relative concentration of n-C31 to n-C29, ACL, CPI and OEP parameters, an evaluation of 
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source inputs was made (Figure 4.5).  The n-alkane signature prior to the CIE onset, 

reflected in the C31/C29 ratio, likely reflects a mixture of contemporaneous (high CPI) 

and reworked material (low CPI). Then, coincident with the CIE as recorded by n-C29 

and bulk TOC, a pulse of fresh organic matter (potentially plants) results in increased n-

alkane concentrations and OEPs, with a distribution shift to a more n-C31 dominated 

source.  This shift from n-C29 to n-C31 dominance is proposed not to be a shift in 

vegetation (as it does not match the pollen record) but is instead driven by this change 

in the source of organic matter. During the transition interval between the n-C31 and n-

C29 CIE onset, a brief mixing of old (lots n-C29 and bulk TOC with pre-CIE 13C values) 

and contemporaneous soil (n-C31 that is 13C-depleted) occurs.  This would therefore 

suggest that n-C31 is recording the true onset to the PETM CIE, with the other records 

delayed by mixing of older organic matter. 

 

The marked increase in OEP and CPI values at 15.9 – 16.8 m coincides with the onset of 

the CIE at Claret, and possibly reflects a change of sediment source or increased 

deposition of fresh leaf waxes at this point, prior to deposition of the Claret 

Conglomerate.  Similar profiles have been recorded at the Zumaia section in a 

completely marine environment, where OEP, CPI, and n-alkane concentration all 

increase coincident with CIE onset (Chapter 3, Section 3.4.2).  This may suggest that 

the change in sediment source or increased deposition of fresh material at this time 

was seen across the region, spanning both terrestrial and marine realms.  A similar 

increase in CPI, OEP and TOC content is recorded coincident with recovery from the 

CIE, again similar to Zumaia (Chapter 3, Section 3.4.2).   

4.5.2 TIMING OF EXCURSIONS 
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Due to the terrigenous nature of this section, all organic matter should be terrestrial in 

origin.  However, CPI and OEP values indicate a mixture of fresh and potentially 

diagenetically altered terrigenous material.  Palynological data suggest input of 

terrestrial material throughout the CIE remains fairly constant, but that some samples 

may contain reworked and degraded material (31.2 – 36.2 m).  Interpretation of 

results is therefore tentative, although as previously discussed the high abundance of 

C29 and C31 n-alkanes may suggest a contemporaneous terrigenous input throughout.   

 

Increases in CPI, OEP and n-alkane concentrations, interpreted to represent a change 

in sediment source/increased input of fresh organic matter, are recorded coincident 

with CIE onset and recovery, both of which occur relatively rapidly at this section.  

However, the onset of the CIE as recorded by 13CTOC and 13C29 records appear to be 

temporally offset from that of the 13C31 record, with CIE onset occurring earlier in the 

n-C31 record.  It is suggested that the n-C31 profile documents the true onset of the CIE 

as recorded by fresh vegetation, whilst the bulk TOC and n-C29 records are biased by 

incorporation of a slow-responding source of organic matter, such as soil material 

gradually incorporating CIE-associated vegetation (Section 4.5.1).  This has been 

reported before, suggesting that n-alkanes may record a time-lag relative to other 

isotope records due to a long residence time of soil organic carbon (Tipple et al. 2011).  

The TOC record may also be affected by older reworked organic matter; a smaller 

magnitude of CIE is recorded for the 13CTOC data, and within the reworked interval 


13C values shift to more positive values.  Incorporation of reworked organic matter 

into the 13CTOC record could also explain the later recovery recorded in the 13CTOC 

profile than that of the 13Cn-alkane profile.  If the 13C29 record represents a time-lag due 
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to soil organic matter, then as this record eventually incorporates CIE-associated 

vegetation it should match the 13C31 profile, both in terms of profile shape and 

recovery.  This is apparent in the n-alkane records (Figure 4.2), with recovery occurring 

earlier than that of the 13CTOC record.  It is suggested, therefore, that these records 

document how different pools of organic matter are being mobilised in response to 

the major changes at the PETM.   

 

The 13CTOC onset at the Claret section has been discussed previously (Manners et al. 

2013 and Chapter 2) in terms of sedimentology and inferred hydrological change 

associated with the PETM.  Schmitz and Pujalte (2007) placed the onset of the CIE 

associated with the PETM at Claret as occurring almost simultaneously with deposition 

of the base of the Claret Conglomerate.  This was inferred to reflect the dramatic near-

instantaneous response of the sediment routing system to climate and hydrological 

change associated with the PETM.    Domingo et al. (2009) and Manners et al. (2013) 

suggested that a time-lag (<15 kyr) between CIE onset and conglomeratic deposition 

occurred.  Due to the short timescales involved, this lag-time was deemed likely to 

comprise components of two mechanisms that could have occurred.  First, there was a 

genuine lag between the input of light carbon to the atmosphere and the expression of 

its full forcing effect on the climate system in terms of warming and hydrological 

change (Pagani et al. 2006; Secord et al. 2010; Rohling et al. 2012).  This lag between 

carbon injection and hydrological change would suggest that the sedimentological 

response to changing hydrological regimes is near-instantaneous due to the relatively 

short timescale between CIE onset and Claret Conglomerate deposition. Second, 

carbon injection and hydrological change are near-instantaneous, and the observed 
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time-lag is largely due to the timescales of response of the eroding hinterland and 

sediment transport to a shift in the hydrological regime.  This study suggests that there 

was an immediate sedimentological response to the PETM, reflected in the isotope 

records and biomarker ratios discussed previously.  The Claret Conglomerate must 

therefore represent a more slowly developing sedimentological response.  This is 

remarkably similar to observations at the nearby marine Zumaia section, where 

increases in OEP and CPI also occur coincidentally with the onset and, potentially, 

recovery of the CIE associated with the PETM (Chapter 3, Section 3.5.1).  This is 

important because it suggests that changes in fresh soil versus degraded terrestrial 

organic matter inputs in response to the PETM appear to be consistent over an entire 

routing system (continental to marine).  

 

Evaluation of the sedimentology at the Claret section with respect to the body of the 

CIE demonstrates that peak negative values are recorded long after deposition of the 

Claret Conglomerate.  Normal or background sedimentation resumes before the CIE 

recovery, suggesting that the sedimentological change is not linearly correlated to the 

CIE (i.e., CO2 or higher temperature).  Instead, this may suggest that at least some of 

the sedimentological change is a non-linear geomorphological response to the climate 

perturbation.  The warming represents a deviation from steady state which brings 

about a dramatic change in the erosional/sedimentological regime.  However, 

equilibrium between climate and geomorphology is then restored, as erosion in the 

absence of tectonic uplift is a finite process within the timeframe discussed.  This 

absence of tectonic uplift is demonstrated by Pujalte et al. (2014), who suggest that 
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the Palaeocene – Eocene interval is a period of tectonic quiescence, as illustrated by 

the absence of angular unconformities and growth structures within the succession. 

 

4.5.3 ISOTOPE PROFILES AND ENVIRONMENTAL CHANGE 

All isotope records (13CTOC and 13Cn-alkane) document rapid depletion of 13C values 

between 14.4 – 16.8 m, suggesting a rapid onset to the PETM CIE at Claret.   In all 

instances a box-shaped profile is observed, as originally suggested by Bowen and 

Zachos (2010) to indicate a rapid onset and recovery from the event (Figure 4.2).  

However, factors such as re-working, changing source input and compaction have 

likely occurred, dictating caution in interpretation of profile shapes (e.g., Manners et 

al. 2013 and Chapter 2).   

 

Bowen et al. (2010) suggested that, for a box-shaped profile, the rapid recovery from 

the CIE associated with the PETM may be explained by the rapid re-growth of 

biospheric carbon stocks (i.e. living biomass, soils and peats) that may have been 

released at the onset of the event.  If this theory is invoked here, palynological 

evidence and ACL may be reflecting a transient change in vegetation at the onset of 

the event (whilst taking caution with ACL, other authors have demonstrated its use in 

plant community identification e.g., Eglinton and Hamilton 1967; Collister et al. 1994; 

Chikaraishi and Naraoka 2003; Jeng 2006; Sachse et al. 2006).  However, this cannot be 

unequivocally demonstrated at the end of the event due to barren palynological 

samples at these horizons.  Comparison of the isotopic profile shapes of 13CTOC and 


13Cn-alkane at the Claret section to that recorded at Zumaia provides additional 

evidence for the box-shaped profile in northern Spain (Chapter 3, Section 3.5.2).  



EVALUATION OF TERRESTRIAL CIES WITHIN A LINKED SEDIMENT ROUTING SYSTEM 

110 
CHAPTER 4 

Whilst factors such as reworking must be considered in the interpretation of profile 

shape in this region, 13CTOC and 13Cn-alkane at Claret, and 13Cn-alkane and 13CCARB at 

Zumaia all record a more box-shaped profile, adding substantial evidence to the 

argument of Bowen and Zachos (2010), that a rapid onset and recovery from the PETM 

occurred. 

Table 4.2. CIE magnitudes calculated from the different records in this study, and 
compared with those from the Zumaia section (marine). 
 

Section Data 
CIE magnitude 

(‰ VPDB) 

Claret 


13CTOC 3.5 


13Cn-alkane 3.6 - 4.5 

Zumaia 


13CTOC 4.1 


13Cn-alkane 5.5 


13Ccarbonate 6.0 

 

The magnitude of the CIE recorded by all three isotope records presented for the 

Claret section is similar, ranging from 3.5 – 4.5 ‰ (Table 4.2).  However, as discussed 

previously, the smaller CIE magnitude recorded by 13CTOC data (3.5 ‰) may be 

reflecting incorporation of older or more thermally mature organic matter.  

Furthermore, whilst the 13C29 data initially records a smaller CIE magnitude than that 

of the 13C31 data, (13C29: 3.6‰, 13C31: 4.5‰), eventually these records converge, 

suggesting the gradual incorporation of CIE-associated vegetation in the n-C29 record.  

A study by Schmitz and Pujalte (2007) yielded a larger CIE magnitude of 6 – 7 ‰ from 

soil carbonate nodules for this section.  Similar differences in magnitude have 

previously been recorded between TOC and carbonate profiles (e.g., Smith et al. 2007), 

which has been attributed to soil carbonates incorporating carbon isotopic signatures 

of a mixture of atmospheric and respired CO2, resulting in amplification of the CIE 



EVALUATION OF TERRESTRIAL CIES WITHIN A LINKED SEDIMENT ROUTING SYSTEM 

111 
CHAPTER 4 

using soil carbonates due to the greater contribution of organic carbon to nodule 

formation during the PETM (Cerling 1984; Bowen et al. 2004; Domingo et al. 2009).  

Furthermore, the low resolution of the study by Schmitz and Pujalte (2007) may have 

hindered effective interpretation of their measured CIE magnitude.   

 

Comparing the magnitude of the CIE recorded in 13CTOC and 13Cn-alkane at Claret to that 

measured in 13CTOC, 13Cn-alkane, and 13CCARB data from Zumaia (Chapter 3, Section 

3.5.2) illustrates that the CIE magnitude appears similar between different depositional 

environments.  Both the terrestrial organic and marine carbonate CIEs are large, 

indicating that no offset in CIE magnitude is recorded when comparing the terrestrial 

Claret and marine Zumaia records, in contrast to comparisons in other settings across 

the globe (Bowen et al. 2004; Pagani et al. 2006; Smith et al. 2007; Zachos et al. 2007; 

Handley et al. 2008; Bowen and Zachos 2010; McInerney and Wing 2011; Tipple et al. 

2011).  Previous work indicates that continental sections record larger CIE magnitudes 

than marine sections; however these datasets predominantly compare sections from 

different global localities, using analysis of different proxies (Koch et al. 1992; Bowen 

et al. 2004; Wing et al. 2005; Pagani et al. 2006; Schouten et al. 2007; Smith et al. 

2007; Handley et al. 2008; Bowen and Zachos 2010; McInerney and Wing 2011; Tipple 

et al. 2011). Manners et al. (2013) suggested that differences between marine and 

terrestrial CIE magnitudes could, in fact, be minimal within a single sediment routing 

system (see also Chapter 2).  Comparing the magnitudes of CIE at both Claret and 

Zumaia builds upon this interpretation.  At the current resolution of the data, no 

obvious difference in the 13CTOC, 13Cn-alkane and 13CCARB records is observed.  This may 

suggest that the northern Spanish sections do not exhibit the same continental to 
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marine magnitude differences recorded at other global localities (Koch et al. 1992; 

Bowen and Zachos 2010; Tipple et al. 2011).  Furthermore, the use of different proxies 

to measure the PETM CIE makes direct comparison of the CIE magnitude from global 

marine and terrestrial records challenging.  Here, for the first time, records derived 

from organic matter are used to compare the CIE magnitude within the same sediment 

routing system. 

 

In studies where a difference in magnitude between terrestrial and marine CIEs has 

been recorded, a change in the plant community from mixed 

gymnosperm/angiosperm to purely angiosperm flora has been invoked as a potential 

mechanism for causing an artificially high CIE magnitude in terrestrial records (Smith et 

al. 2007).  This has been disputed by Diefendorf et al. (2011), who reported that 

angiosperms produce, on average, ca. 200 times more n-alkanes than gymnosperms, 

with the latter sometimes synthesising no n-alkanes at all.  In such cases the n-alkane 

record should almost entirely comprise an angiosperm 13C signal.  However this study 

only implicates modern plants, and in areas where gymnosperms were the dominant 

species you would still expect to see n-alkanes in the sediment, potentially suggesting 

that PETM flora did not exhibit such a differential between species.  In this study, a 

peak in angiosperm pollen abundance is recorded coincident with the onset of the CIE.  

This peak also coincides with an increase in the ACL of the n-alkanes, which has 

previously been inferred to reflect a change in the dominant vegetation present, 

specifically from gymnosperm to angiosperm flora, in agreement with the 

palynological data (Smith et al. 2007).  An increase in ACL has also been measured 

across the PETM in sediments from across the world (Arctic, Schouten et al. 2007; New 
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Zealand, Kaiho et al. 1996; South Atlantic, Hasegawa et al. 2006).  However, ACL data 

must be treated with caution as it is known that in modern systems ACL can also 

increase with increasing temperature and precipitation (Sachse et al. 2006), and that 

values vary widely for different taxa (Collister et al., 1994; Chikaraishi and Naraoka, 

2003; Bi et al., 2005; Sachse et al., 2006).  Therefore, whilst cautiously interpreting ACL 

data independent of other parameters, in combination with palynological data this 

would suggest that a change in the plant community occurred coincident with the 

onset of the PETM at this location.  The magnitude of the terrestrial CIE (4.1 ‰) is in 

line with the global average (4.7 ± 1.5‰; McInerney and Wing 2011) and does not 

appear to be affected by the change in dominant vegetation at this locality.   

 

4.6 CONCLUSIONS 

The data presented in this study illustrate how different pools of organic matter are 

being mobilised in response to the major changes at the PETM, suggesting a complex 

mix of reworking of older material, input of relatively fresh terrigenous material, and 

soil organic matter incorporation causing lags in recording the PETM CIE onset.    

Furthermore, this study suggests that there was an immediate sedimentological 

response to the PETM, reflected in the isotope profiles and biomarker ratios, but that a 

time-lag between CIE onset and deposition of a massive conglomeratic unit (Claret 

Conglomerate) occurred.  This unit has previously been suggested to reflect dramatic 

changes in the hydrological cycle associated with the PETM, but is now thought to 

represent a more slowly developing sedimentological response.  More evidence to 

support the box-shaped profile suggested by Bowen and Zachos (2010) is presented, 

which could in turn have implications for interpretations of how recovery from the 



EVALUATION OF TERRESTRIAL CIES WITHIN A LINKED SEDIMENT ROUTING SYSTEM 

114 
CHAPTER 4 

PETM occurred.  Evidence for a change in vegetation from predominantly gymnosperm 

to angiosperm flora is recorded coincident with the onset of the CIE by both 

palynological and ACL data.  However, the terrestrial CIE (4.1‰) does not record a 

larger magnitude CIE than the marine CIE magnitudes recorded by 13CTOC (4.1‰), 


13Cn-alkane (5.5‰) and 13CCARB (6‰) at the nearby marine section of Zumaia, 

suggesting that if a change in plant community did occur in northern Spain, it does not 

bias the magnitude of the recorded CIE.  Furthermore, this may suggest that 

differences between marine and terrestrial CIE magnitudes could in fact be minimal 

within a single sediment routing system.   
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5 SYNOPSIS 

5.1 OVERVIEW 

The aims of this research were to: 

 Evaluate the magnitude of the recorded PETM CIE in both continental and 

marine settings within a linked routing system, to determine if a difference in 

magnitude was recorded between the two realms. (WP1) 

 Evaluate the magnitude of the CIE as recorded by marine and terrestrial proxies 

at a single marine section (i.e., Zumaia; WP2). 

 Assess likely controls on both magnitude and profile shape of the CIE 

associated with the PETM (WP2 and WP3). 

 Review how the sediment system responds locally and regionally to such 

climatic perturbations (WP1 and WP3). 

 Determine whether a change in the plant community was observed coincident 

with the onset of the PETM in northern Spain (WP3). 

 

To achieve these aims, 13CTOC was measured at six sections (Claret, Tendrui, 

Esplugafreda, Campo, Ermua and Zumaia), with further work conducted on the two 

end-member sections (Claret; terrestrial and Zumaia; marine).  Statistical t-tests were 

used to determine whether a significant shift in 13CTOC values was recorded, and thus 

the CIE associated with the PETM rather than, for example, a change in lithology or 

source input.  This investigation suggests that no systematic variation between 

magnitude and depositional environment was recorded for the northern Spanish 

sections.  This potentially indicates that globally recorded differences in CIE magnitude 

between marine and terrestrial environments may not be expressed within a linked 
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sediment routing system.  However, due to the complicated nature of bulk TOC 

records and the mixed organic matter pool they reflect, this hypothesis needs further 

verification.  Compound specific isotope analysis was conducted on higher plant-

derived long chain n-alkanes (C25-C33) in order to minimise the effects of multiple 

organic matter sources on the recorded CIE.  The continental section of Claret and the 

marine section of Zumaia were chosen for this work to assess the magnitude of the CIE 

in terrestrial and marine settings.  Bulk carbonate analysis was also conducted at 

Zumaia, to provide a marine CIE record.  The n-alkane record for Zumaia produced a 

greater CIE magnitude (5.5 ‰) than that for Claret (4.1 ‰), whilst the bulk carbonate 

profile recorded a greater CIE magnitude (6.0 ‰) than both n-alkane records.  The 

terrestrial-sourced CIE magnitudes were within the range reported globally for 

terrestrial sections (4.7 ± 1.5 ‰; McInerney and Wing 2011), whilst the marine-

sourced CIE was much greater than the average reported for marine successions (2.8 ± 

1.3‰; McInerney and Wing 2011).  Whilst limitations of the bulk carbonate record 

must be accepted, this suggests that the difference previously observed in CIE 

magnitude between the marine and terrestrial realm is not recorded in northern Spain.  

This data may imply that the wide range of CIE magnitudes recorded globally are in 

fact limited by local variations.  However, to further confirm this interpretation ideally 

all sites would be compared using one proxy, a single method of calculating CIE 

magnitude and error bars accounted for (both instrumental and environmental). 

 

Palynological data (Claret and Zumaia only) were used to determine source inputs of 

material to these sections, assess potential reworking, and determine whether a 

change in the plant community occurred coincident with the onset of the CIE (Smith et 
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al. 2007).  These data were accompanied by n-alkane proxy data such as OEP, CPI, n-

alkane concentrations and ACL.  It is concluded that a continuous source of relatively-

fresh higher plant material was deposited at both sections throughout the event, 

although other potential sources of organic matter may also be contributing to the 

record.  This other material could be diagenetically altered terrigenous material, 

thermally mature organic matter, or marine organic matter (Zumaia only).  The 

potential for mixing of differentially sourced organic matter in northern Spain 

complicates inferences on the magnitude and profile shape of the CIE.   

 

To assess whether a change in the plant community occurred coincident with the 

onset of the PETM, the relative abundance of gymnosperm, angiosperm and 

pteridophyte pollen was compared throughout both sections.  In the Zumaia section, 

no clear evidence for a switch from a mixed angiosperm/gymnosperm to a 

predominantly angiosperm population was recorded.  However, the dominant 

gymnosperm pollen in the samples was bisaccate pollen, which disperses more widely 

than other pollen groups due to air sacs within their structure.  This makes them 

predisposed to aeolian and fluvial transport (Heusser 1988; Traverse 1988).  Therefore, 

the recorded dominance of gymnosperm pollen at the Zumaia section may be an 

artefact of transport bias, thus affecting the pollen record at this location.  This 

potential bias of the marine record may be confirmed by comparison with the Claret 

section, where a vegetation change is recorded.  A vegetation change coincident with 

the CIE has previously been suggested to affect continental CIE magnitude (Smith et al. 

2007), recording a greater CIE due to increased plant 13C fractionation.  Here, a shift 

in the dominant vegetation occurs coincident with the CIE onset, but CIE magnitude 
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does not appear to be affected.  This suggests that, for this region, whilst a change in 

the plant community occurred, it does not influence the magnitude of the CIE.  

 

CIE profile shape was investigated for 13CTOC, 13CCARB and 13Cn-alkane records, to assess 

likely mechanisms of carbon release and drawdown at both the onset and termination 

of the event.  Bulk TOC profiles recorded both triangular and box-shaped profiles, 

suggesting that mixing organic matter sources, reworking and sedimentation rates may 

be controlling the profile shape in northern Spain, as it is unlikely that different 

mechanisms of carbon release are operating within a single sediment routing system.  

At Claret, both the bulk TOC and n-alkane isotope data suggest a box shaped profile, 

whilst at Zumaia, carbonate and (potentially) n-alkane data suggest a box shaped 

profile, whilst TOC data record a triangular shaped profile.  Ultimately, most records 

suggest a box-shaped profile, providing some support for the hypothesis of Bowen and 

Zachos (2010) that both onset and recovery from the PETM period were rapid.   The 

profile shape of the n-alkane record at Zumaia documents a shift to more positive 13C 

values just after the onset of the CIE.  This has also been reported in Italy (Tipple et al. 

2011), France (Garel et al. 2013), and Wyoming (Kraus et al. 2013), and is attributed to 

aridity, vegetation change and subtle enrichment in surface- and deep-ocean carbon 

pools associated with the initial input of 13C-depleted CO2 (Tipple et al. 2011; Garel et 

al. 2013; Kraus et al. 2013).  In the Zumaia section, however, it is suggested that this 

may reflect changes in the palaeohydrological regime, as the positive shift coincides 

with a gradual decrease in kaolinite abundance (Schmitz and Pujalte 2003), indicating 

less physical erosion and less influence of terrestrial material.  Synchronously, a drop in 

CPI and OEP values may reflect a stronger marine influence to the signal. 
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Finally, the onset of the CIE and its relationship with the sedimentological response of 

the landscape was assessed.  Comparing the onset of the CIE, as recorded by bulk TOC, 

suggested that there may be a time-lag between the onset of the PETM and changes in 

the weathering/erosional regime.  This is similar to the findings of Handley et al. 

(2012).  The Claret Conglomerate, a prominent marker bed in the terrestrial 

successions in northern Spain, has been suggested to have been deposited as a result 

of extreme hydrological changes related to the onset of the PETM (Schmitz and Pujalte 

2007).  Bulk TOC and n-alkane data from this study suggest that a small time-lag (< 15 

kyr) between the response of the landscape and depositional system to the climate 

perturbation may have occurred.  This is contrary to the interpretation of the bulk TOC 

and n-alkane data recorded in the Zumaia section, where sedimentological change 

appears to occur prior to the CIE onset.  A change to siliciclastic deposition at Zumaia 

has previously been suggested to be coincident with CIE onset, reflecting the same 

dramatic hydrological change as in the terrestrial realm.  Deposition of the Claret 

Conglomerate and the Siliciclastic Unit were, therefore, suggested to occur 

synchronously. Pujalte et al. (2014) suggest that an incised valley is seen at the Claret 

section directly below the Claret Conglomerate.  If this is the case, then the onset of 

the siliciclastic unit at Zumaia may be a reflection of sediment deposition from this 

incision, rather than directly linked to the Claret Conglomerate deposition. This would 

suggest, therefore, that deposition of the Claret Conglomerate (which occurred after 

CIE onset) and the Siliciclastic Unit was not synchronous and, in fact, that 

sedimentological change in relation to dramatic climatic events may be more 

complicated than previously thought in this region. 
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5.2 FURTHER WORK 

This research has identified several key topics that warrant further investigation.   

1) Terrestrial plant biomarker D analysis to determine palaeohydrological 

changes.  An area of significant interest is the determination of the changes in the 

hydrological cycle in this region.  This work could help to constrain the timing of 

hydrological response to climatic upheaval, and subsequently could be linked to 

proposed time-lags in the response of the sediment routing system.  The hydrogen 

isotopic composition (D) of lipid biomarkers derived from terrestrial plants can be 

used to examine both global and local hydrological patterns.  Global latitudinal 

moisture transport and localised relative humidity changes can be evaluated.  The 

PETM sections studied in this research represent an ideal setting from which to 

generate further D records as, so far, only five PETM D records have been 

established (the Arctic – Pagani et al., 2006; Wyoming – Smith et al., 2007; Tanzania – 

Handley et al., 2008, 2012; Italy – Tipple et al., 2011; New Zealand – Handley et al., 

2011).  This work would, therefore, provide further insight into both regional and 

global hydrological cycle patterns.  The sections studied throughout this research 

comprise multiple sites from a single depositional system; this would therefore allow 

the first evaluation of the integrity of D records, as most previous records derive from 

marginal settings, where lipid biomarkers have been transported, and thus potentially 

altered before burial.  Furthermore, this would add a suite of new PETM D records, to 

compare global changes in hydrology throughout the PETM interval. 
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2) Evaluation of sea surface temperature (SST), mean annual air temperature 

(MAT), and organic matter input to the marine realm using glycerol dialkyl glycerol 

tetraethers (GDGTs).  Whilst a number of studies detailing the sedimentology, 

palaeontology, and inorganic chemostratigraphy (e.g., Schmitz et al. 1997, 2001; 

Schmitz and Pujalte 2003, 2007) have been conducted at all the sections described in 

this research, the present study was the first to investigate any organic geochemical 

parameters for these sections.  Extending the organic geochemical investigation of 

these sections would enable assessment of palaeoenvironmental parameters such as 

SST, MAT, input of soil organic matter to marine environments, and soil pH during the 

PETM.  All of these parameters can be explored using a group of biomarker proxy 

compounds; GDGTS (Schouten et al. 2013).  The palaeothermometer, TEX86 (tetraether 

index of 86 carbon atoms), has been used to reconstruct Palaeogene SST globally 

(Brinkhuis et al. 2006; Sluijs et al. 2006, 2007, 2008a; Zachos et al. 2006; Pearson et al. 

2007; Sangiorgi et al. 2008a; Bijl et al. 2009) and should be used, specifically for the 

Zumaia section, to reconstruct SST changes within the northeast Atlantic Ocean.  This 

would be the first study of its kind in this region and would allow further 

understanding of oceanic change during the PETM interval. The input of soil organic 

matter to the marine environment could also be evaluated at the Zumaia section using 

the branched isoprenoid tetraether (BIT) index.  The BIT index has been used 

previously to suggest elevated sea levels during the PETM (Sluijs et al. 2008b) and 

reconstruct changes in soil organic matter input to the Arctic Ocean (Brinkhuis et al. 

2006; Sluijs et al. 2006, 2008a; Sangiorgi et al. 2008a,b).  Data obtained from such 

studies might constrain what is controlling the shape and magnitude of the CIE at the 

Zumaia section, and may shed light on the positive shift in n-alkane isotope values just 
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after the onset of the CIE.  Finally, methylation of branched tetraethers)/cyclisation of 

branched tetraethers (MBT/CBT) indices could be used to reconstruct MAT and soil pH, 

respectively at the Claret section.  This proxy is considered to reflect soil temperature 

better than air temperature, but a correlation has been demonstrated for these two 

parameters (Schouten et al. 2013).  MBT/CBT has been used to reconstruct MAT 

throughout geological time (e.g., Weijers et al. 2007a,b; Schouten et al. 2008) and 

could be attempted at Zumaia to provide the first organic geochemical record of 

palaeotemperature throughout the PETM interval at this section. 

 

3) Biomarker analysis to assess plant community change, mixing ratios of 

organic matter sources, and thermal maturity of the sediments.  Palynological 

evidence suggests that a shift in the dominant vegetation occurred coincident with the 

onset of the PETM at the Claret section.  However, transport biases can affect relative 

palynomorph proportions, distorting the record.  The relative proportion of biomarker 

compounds specific to angiosperms and gymnosperms could be assessed throughout 

the section to evaluate the vegetational shift as recorded by palynomorphs.  This could 

be extended to Zumaia, where palynomorph transport biases would most greatly 

affect the record, whilst biomarker proportions should remain relatively unaffected.  

Specifically, compounds such as simonellite and dehyroabietane (specific to 

gymnosperm taxa) and triterpenoids such as oleanane (specific to angiosperm taxa) 

could be used, and have previously been used to test the plant community change 

hypothesis previously (Schouten et al. 2007). 
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The distribution of hydrocarbon biomarkers can reflect thermal maturity, depositional 

environment, and lithology (Peters et al. 2005).  The thermal maturity of sediments 

could be assessed using the homohopane isomerisation ratio (22R to 22S) for the C31 

homohopane.  This could be useful in determining source inputs to the section, as CPI 

and OEP values indicate that some of the Zumaia section may have a thermally mature 

input of organic matter.  These mixing ratios could be used to further evaluate the 

likely controls on CIE profile and magnitude. 

 

4) Species specific 13C at Zumaia to further assess the marine CIE and compare 

with terrestrial records. This and previous studies (Schmitz et al. 1997) have generated 

bulk carbonate carbon isotope records for the Zumaia section, identifying the CIE 

associated with the PETM at this location.  However, bulk records are known to be 

difficult to deconvolute and single-source records are preferred.  Currently, as far as 

can be ascertained, no species specific 13C marine records, from analysis of either 

foraminifera or planktonic species, have been attempted at the Zumaia section.  

Schmitz et al. (1997) suggested that, due to poor preservation of foraminifera 

throughout the Palaeocene, bulk samples may give more meaningful 13C values than 

a species specific record at this site.  However, recent and on-going developmental 

work is leading towards the capability to analyse 13C of dinoflagellate cysts (Appy 

Sluijs, pers. comm., 07/13).  The palynological data produced in this study has shown 

dinoflagellate cysts to be well preserved throughout the PETM interval.   Therefore, 

perhaps in the near-future, the 13C of dinoflagellate cysts could be measured to 

generate a more accurate marine CIE.  This would aid comparison to terrestrial records 

both at the Zumaia section, and throughout the region. 
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5) Increased resolution of 13Cn-alkane data.  To evaluate changes in profile shape 

more accurately throughout both Zumaia and Claret, the resolution of the n-alkane 

isotope data could be increased.  Furthermore, 13Cn-alkane records could be established 

for the four intermediate sections of Tendrui, Esplugafreda, Campo and Ermua, in 

order to assess CIE magnitude differences across the region, and evaluate 

sedimentological response to climatic upheaval. 

 

5.3 PUBLICATIONS 

This study has already led to the publication of preliminary 13CTOC data comparing the 

magnitude, profile shape and onset of the CIE throughout a linked sediment routing 

system in the journal Earth and Planetary Science Letters (Manners et al. 2013).  

Further publications are planned continuing this work with evaluation of the terrestrial 

(Claret) and marine (Zumaia) end-member sections.  The Zumaia section is one of the 

first studies where the marine and terrestrial CIE have been measured using different 

proxies at one location, allowing direct comparison of CIE magnitude between the 

realms and assessment of controls on the CIE profiles.  Following on from this a paper 

on the Claret data will compare the terrestrial CIE magnitude as measured by n-

alkanes across the sediment routing system between Claret and Zumaia, and will 

evaluate whether a plant community change occurred in northern Spain, along with its 

effects on CIE magnitude.  
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6 APPENDICES 

6.1 APPENDIX 1: ADDITIONAL DATA FOR CHAPTER 2 

This appendix provides supplementary information for Chapter 2.  Further information 

regarding geological setting, methods, and field localities is presented.  Results tables 

for the statistical analysis of lithology and wt%TOC, and absolute 13CTOC values 

measured via isotope ratio mass spectrometry are provided for all sections discussed.  

 

PALAEOGEOGRAPHICAL RECONSTRUCTION 

The Pyrénées 

The Pyrénées are an E-W oriented mountain belt situated between Spain and France, 

largely controlled through the Cenozoic by the interaction between the European and 

Iberian plates (Baceta et al. 2011). At the beginning of the Cenozoic, the Pyrénéan 

embayment mostly comprised (hemi)pelagic and turbidite sediments, surrounded 

predominantly by shallow marine carbonate platform systems, which in turn were 

bordered by continental alluvial plains (Pujalte et al. 2000a; Schmitz and Pujalte 2003).  

The early Palaeogene was part of a longer-term relatively quiet phase with respect to 

tectonism in the area and this, combined with rising sea levels globally, reduced 

terrigenous supply, and favourable climates led to an overall transgression, resulting in 

enhanced carbonate sedimentation across the shallow areas  bordering the Pyrénéan 

embayment (Pujalte et al. 2000a; 2000b; Baceta et al. 2011 ).  The sections studied in 

this area are all within the Tremp-Graus Basin, which developed as a piggy-back basin 

of the Ebro Basin and is characterised by upper Palaeocene-lower Eocene continental 
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and platform deposits (Gibbons et al. 2002).  These deposits are well exposed across 

the region. 

 

The Basque region 

The Basque Basin, situated in the western Pyrénées, extends from the city of Bilbao to 

near the border between Spain and France.  Initially the basin was created in early 

Triassic times (ca. 250 Ma) as a result of the break-up of Pangaea, when the northern 

margin of the Iberian Peninsula was stretched and began to sink (Pujalte 2003).  

Throughout the next 200 Myr the basin was in-filled and during the Cretaceous to 

lower Palaeogene became uplifted and inverted forming the Pyrénéan mountain belt 

(Gibbons et al. 2002; Pujalte 2003).  During the Palaeogene the Basque Basin had 

become an area of intermediate water depth of E-W orientation which opened 

westwards into the Bay of Biscay.  A wide variety of Palaeogene-Neogene sedimentary 

rocks are found in the region, ranging from alluvial conglomerates to deep water 

marine hemipelagites (Pujalte et al. 2000b; Schmitz and Pujalte 2003, 2007; Baceta et 

al. 2011).  The outer part of the basin comprised shallow carbonate platform-shelves, 

whilst the central part received sediments from density flows and hemipelagic material 

(Bernaola et al. 2006).  The sections studied in this area are both within the Basque 

Basin, and represent some of the most expanded and continuous marine PETM 

sections now uplifted and exposed (Schmitz et al. 2001). 
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INDIVIDUAL LOGS, DESCRIPTIONS AND FIELD PHOTOGRAPHS FOR CHAPTER 2 

This section provides individual logs, desrciptions and field photographs for each 

section studied throughout this research. 

 

TERRESTRIAL AND MIXED SECTION DESCRIPTIONS 

Claret 

The Claret Section is a composite section located in the Catalonia province, near the 

city of Tremp, south-central Pyrénées, Spain.  The dip of the beds in this region is 

variable between 30 - 40°, in a south-easterly direction (145° SE), and accessibility is 

easy due to its proximity to the road C-1311.  This section belongs to the upper part of 

the Tremp Formation (Unit 4 as proposed by Galbrun et al. 1993), ending with the 

marine Ilerdian Alveolina Beds.  It comprises mainly yellow, grey, and red clays 

containing microfossils and palynomorphs (Galbrun et al. 1993; Schmitz and Pujalte 

2003; Domingo et al. 2009), indicating a transitional environment, although the section 

was entirely terrestrial throughout the PETM interval.  Exposure of the section is good, 

and digging back to fresh material is easy due to low (if any) vegetation cover. 

 
Tendrui 

The Tendrui section is located in Catalonia Province, ca. 3 km from the Claret section. 

The beds dip in a north-westerly direction (10° dip, 320° NW), and accessibility to the 

section is again easy, although due to the site being situated on private land, 

permissions must be sought prior to sampling.  Vegetation covers more of this section, 

but can be easily removed to dig back to fresh material.  This section is thicker than 

that of Claret, but again comprises mostly yellow, grey, and red clays, with the Claret 

Conglomerate and Alveolina Beds exposed.   
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Esplugafreda 

The Esplugafreda section is located ca. 12 km from the Claret and Tendrui sections in 

the province of Aragón, is the last of the continental sections studied.  The dip of the 

beds here is 28 - 32°, in a southerly direction (166° SSE -196° SSW).  Sedimentologically 

it is similar to both Claret and Tendrui, in that both the Alveolina Beds and the Claret 

Conglomerate are recorded, and the succession comprises red, yellow and grey clays 

with abundant palaeosol horizons.  These palaeosol horizons contain abundant 

centimetre-sized soil carbonate nodules and gypsum indicating a semi-arid to arid 

palaeoenvironment.  Accessibility to the section is relatively easy from a side road off 

the N-230.  Exposure is varied, with parts of the section being more densely covered in 

vegetation.  It is, however, still possible to sample fresh material by composing a 

composite section. 

 
Campo 

The Campo section is located ca. 30 km from Esplugafreda, just outside the town of 

Campo in the province of Aragón.  The dip of the beds is 35-45°, in a southwesterly 

direction (225°).  Accessibility to this section is easy from a side road off the N-260.  

Exposure is good with little or no vegetation cover.  The campo section consists of 

yellow and grey clays and marls, topped by the Alveolina Beds observed at all 

continental sections associate with an Ilerdian transgression.  During the early 

Palaeogene, Campo was a continental shoreline section, and as such alternated 

between subaerial exposure and submergence by shallow seas; although over the 

Paleocene/Eocene boundary Campo was entirely continental (Molina et al. 2000; 

Orue-Etxebarria et al. 2001; Pujalte et al. 2009a).    
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Figure A6.1.1. The Claret Conglomerate, a prominent marker bed linked to the onset 
of the CIE associated with the PETM (Schmitz and Pujalte 2007).  This unit has been 
interpreted to form from a series of alluvial megafans induced by extreme hydrological 
changes related to the onset of the PETM over a period of 10 kyr or less (Schmitz and 
Pujalte 2007).   
 
 
 
 

 

 

 

 

 

 
 
Figure A6.1.2. The gypsum layers found at all three continental sections, above the 
Claret Conglomerate (unit “d” in Figure A6.1.6.).  At Claret and Tendrui these horizons 
are more prominent (ca. 1 – 2 m).  These horizons have previously been suggested to 
be the result of a more arid palaeoenvironment and therefore intense evaporation 
rates (Domingo et al. 2009). 
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Figure A6.1.3. The Esplugafreda section. a) Claret Conglomerate, b) lower sandstone 
bed, c) Paleocene red clays. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A6.1.4. The sandstone bed (unit “d”, Figure A6.1.8.) interpreted to be the distal 
equivalent of the Claret Conglomerate (Pujalte et al. 2009b). 
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Figure A6.1.5. The Claret section: A) The Claret section up to and including the Claret 
Conglomerate including a) the sandstone channel below the Claret Conglomerate and 
b) the Claret Conglomerate, B) image showing gypsum and the surrounding sediment 
c) gypsum beds associated with the recovery of the CIE at this section, C) the top of the 
section, including d) the Alveolina Beds (limestone).  The bone represents the location 
of fossil mammal sites found by Domingo et al. (2009). 
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Figure A6.1.6. The Tendrui section: A) The bottom of the section, up to the Claret 
Conglomerate including a) Clays below the Claret Conglomerate and b) the Claret 
conglomerate, B) the middle of the section including c) sandy clays above the Claret 
Conglomerate and d) gypsum beds associated with the recovery of the CIE at this 
section, C) the top of the section including the gypsum beds from d) and e) clays above 
the gypsum beds. The bone represents the location of fossil mammal sites found by 
Domingo et al. (2009). 
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Figure A6.1.7. The Esplugafreda section: A) The bottom of the section, up to the Claret 
Conglomerate, including a) red clays below the Claret Conglomerate and b) the Claret 
Conglomerate, B) the middle of the section including the Claret Conglomerate and c) 
clay containing carbonate nodules above the Claret Conglomerate, C) The top of the 
section including d) red clays and e) the Alveolina Beds (sandstone). 
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Figure A6.1.8. The Campo section: a) thick limestone bed at the bottom of the section, 
b&c) continental clays associated with a sea-level lowstand (Molina et al. 2000; 
Schmitz and Pujalte 2003; Pujalte et al. 2009a), d) sandstone beds interpreted to be 
the distal equivalent of the Claret Conglomerate (Schmitz and Pujalte 2007), e) marly 
sandstone above the distal equivalent of the Claret Conglomerate, f) marl beds, g) 
thick limestone bed below the Alveolina Beds, h) the Alveolina Beds (limestone). 

 

MARINE SECTION DESCRIPTIONS 

Ermua 

The Ermua section is located in the Basque country in the northwestern part of the 

Pyrénées.  This is a road section very close to the AP-8 road, so accessibility is easy.  

Part of the section is, however, covered with dense vegetation (ca. 11 – 21 m) making 

sampling extremely challenging.  The dip of the beds is 56°, in a south-easterly 

direction (112° ESE).  During the late Cretaceous to early Eocene, the Basque Basin was 



APPENDIX 1 

135 
APPENDICES 

at intermediate water depth, with the Ermua section located at the base of the slope.  

The section comprises limestone and marl couplets in the lower part of the section, 

which progresses to sandstones and marls with interbedded turbidites (referred to as 

the Siliciclastic Unit; Schmitz et al. 2001). The top of the section comprises massive 

limestone and marl beds, with a characteristic black limestone bed capping where 

sampling was finished (ca. 1 m thick; unit “c”).  

 

Zumaia 

The Zumaia section is located in the Basque country, ca. 25 km from Ermua, on the 

modern-day shoreline of Itzurun beach.  This is the most renowned of all the sections, 

and was considered for the global stratotype section and point for the 

Paleocene/Eocene boundary (Aubry et al. 2007).  The dip of the beds is 70°, in a south-

easterly direction (100° ESE).  Essentially continuous sea-cliff outcrop deposits from 

lower Santonian to lower Eocene can be found along the coast of the Gipuzkoa 

Province halfway between Bilbao and Santander.  During the early Palaeogene, the 

section of Zumaia was bathyal in nature, with a palaeo-depth of ca. 1000m (Baceta et 

al. 2000). Later compression led to uplift of these deep-water deposits, resulting in 

their present exposure on Itzurun Beach.  Accessibility to the section is good, and 

vegetation cover low, resulting in good exposure and ease of sampling.  Specifically, 

the part of the section studied outcrops adjacently to the pedestrian road leading from 

the town to the beach.  The section studied comprises hemipelagic limestones and 

marls, followed by thicker limestone and marl units just below the contact with the 

Siliciclastic Unit, which in this case comprises entirely marls. Above this, the section 

contains more massive limestone deposits with the occasional marl beds. 
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Figure A6.1.9. Location map of the Ermua section modified from Schmitz et al. (2001) 
highlighting the Siliciclastic Unit.  The Ermua section is easily accessible from the town 
of Ermua. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A6.1.10. The Ermua section: A) limestone and marl beds below the Siliciclastic 
Unit, b) upper exposed portion of the Siliciclastic Unit, c) massive black limestone bed 
at the top of the Siliciclastic unit. 
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Figure A6.1.11. The Zumaia section: A) limestone and marl beds below the Siliciclastic 
Unit, b) the Siliciclastic Unit, c) limestone and marl beds above the Siliciclastic Unit. 
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ANALYTICAL AND STATISTICAL RESULTS FOR CHAPTER 2 

This section provides statistical and analytical data discussed in chapter 2. 

Statistical data tables 
 
Table A6.1.1. Statistical comparison of lithology and wt%TOC for the section to Claret 
determine whether wt%TOC is influenced by lithological change. Where p < 0.05, a 
significant difference between wt%TOC and lithology may be observed (highlighted in 
grey). 
 

Lithology 
Range 

wt%TOC 
Mean 

wt%TOC 
Clay 

Clay 
with 

gypsum 
Gypsum Conglomerate 

Clay 0.1 to 0.9 0.4 - 
t = -1.8 t = -5.1 t = 0.55 

p = 0.09 p = 0.00 p = 0.58 

Clay with 
gypsum 

0.1 to 2.1 0.6 - - 
t = -0.75 t = 0.89 

p = 0.46 p = 0.39 

Gypsum 0.3 to 1.1 0.8 - - - 
t = 2.7 

p = 0.035 

Conglomerate 0.2 to 0.5 0.3 - - - - 

 
Table A6.1.2. Statistical comparison of lithology and wt%TOC for the Tendrui section to 
determine whether wt%TOC is influenced by lithological change. Where p < 0.05, a 
significant difference between wt%TOC and lithology may be observed (highlighted in 
grey).   
 

Lithology 
Range 
wt% 
TOC 

Mean 
wt% 
TOC 

Clay 
Clay 
with 

gypsum 
Gypsum Conglomerate Limestone 

Clay 
0.1 to 

1.7 
0.2 - 

t = 1.2 t = -0.87 t = -1.6 t = -3.5 

p = 0.25 p = 0.54 p = 0.12 p = 0.001 

Clay with 
gypsum 

0.06 to 
0.3 

0.2 - - 
t = -1.0 t = -6.8 t = -2.2 

p = 0.49 p = 0.000 p = 0.28 

Gypsum 
0.2 to 

0.9 
0.5 - - - 

t = 0.3 t = -0.4 

p = 0.83 p = 0.75 

Conglomerate 
0.4 to 

0.5 
0.4 - - - - 

t = -1.1 

p = 0.47 

Limestone 
0.4 to 

0.9 
0.7 - - - - - 
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Table A6.1.3. Statistical comparison of lithology and wt%TOC for the Esplugafreda 
section to determine whether wt%TOC is influenced by lithological change. Where p < 
0.05, a significant difference between wt%TOC and lithology may be observed 
(highlighted in grey).  
 

Lithology 
Range 

wt%TOC 
Mean 

wt%TOC 
Clay Conglomerate Sandstone 

Clay 0.06 to 0.4 0.2 - 
t = -2.2 t = -1.9 

p = 0.28 p = 0.06 

Conglomerate 0.5 to 1.0 0.7 - - 
t = 2.3 

p = 0.09 

Sandstone 0.1 to 0.5 0.2 - - - 

 
Table A6.1.4. Statistical comparison of lithology and wt%TOC for the Campo section to 
determine whether wt%TOC is influenced by lithological change. Where p < 0.05, a 
significant difference between wt%TOC and lithology may be observed (highlighted in 
grey).  
 

Lithology 
Range 

wt%TOC 
Mean 

wt%TOC 
Clay Limestone Sandstone Marl 

Clay 
0.1 to 

1.4 
0.5 - 

t = -2.8 t = 0.45 t = 1.8 

p = 0.012 p = 0.66 p = 0.079 

Limestone 
0.3 to 

2.3 
1.3 - - 

t = 2.2 t = 2.6 

p = 0.062 p = 0.084 

Sandstone 
0.3 to 

1.3 
0.4 - - - 

t = 1.2 

p = 0.26 

Marl 
0.1 to 

0.4 
0.2 - - - - 

 
Table A6.1.5. Statistical comparison of lithology and wt%TOC for the Ermua section to 
determine whether wt%TOC is influenced by lithological change. Where p < 0.05, a 
significant difference between wt%TOC and lithology may be observed (highlighted in 
grey). 
 

Lithology 
Range 

wt%TOC 
Mean 

wt%TOC 
Limestone Marl Siliciclastics 

Limestone 0.2 0.2 - 
t = -0.34 t = -0.91 

p = 0.79 p = 0.37 

Marl 0.1 to 0.2 0.2 - - 
t = -0.83 

p = 0.41 

Siliciclastics 0.1 to 1.4 0.4 - - - 
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Table A6.1.6. Statistical comparison of lithology and wt%TOC for the Zumaia section to 
determine whether wt%TOC is influenced by lithological change. Where p < 0.05, a 
significant difference between wt%TOC and lithology may be observed (highlighted in 
grey). 
 

Lithology 
Range 

wt%TOC 
Mean 

wt%TOC 
Limestone Marl Siliciclastics 

Limestone 0.1 to 0.5 0.3 - 
t = 1.62 t = 4.1 

p = 0.11 p = 0.000 

Marl 0.1 to 0.3 0.2 - - 
t = 2.2 

p = 0.036 

Siliciclastics 0.1 to 0.3 0.2 - - - 

 
Table captions and tables for analytical data 
 

Table A6.1.7. The 13CTOC results for the Claret section, produced from the analysis of 
TOC in sediment samples.  Thicker lines above or below rows indicate interpreted CIE 
for the section, and the cells highlighted in grey are maximum and minimum values 
used to calculate CIE magnitude. 
 

Table A6.1.8. The 13CTOC results for the Tendrui section, produced from the analysis of 
TOC in sediment samples. Thicker lines above or below rows indicate interpreted CIE 
for the section, and the cells highlighted in grey are maximum and minimum values 
used to calculate CIE magnitude. 
 

Table A6.1.9. The 13CTOC results for the Esplugafreda section, produced from the 
analysis of TOC in sediment samples.  Thicker lines above or below rows indicate 
interpreted CIE for the section, and the cells highlighted in grey are maximum and 
minimum values used to calculate CIE magnitude.  Superscripted numbers indicate 
range of values used to calculate CIE magnitude. 
 

Table A6.1.10. The 13CTOC results for the Campo section, produced from the analysis of 
TOC in sediment samples.  Thicker lines above or below rows indicate interpreted CIE 
for the section, and the cells highlighted in grey are maximum and minimum values 
used to calculate CIE magnitude. 
 

Table A6.1.11. The 13CTOC results for the Ermua section, produced from the analysis of 
TOC in sediment samples.  Thicker lines above or below rows indicate interpreted CIE 
for the section, and the cells highlighted in grey are maximum and minimum values 
used to calculate CIE magnitude. 
 

Table A6.1.12. The 13CTOC results for the Zumaia section, produced from the analysis 
of TOC in sediment samples.  Thicker lines above or below rows indicate interpreted 
CIE for the section, and the cells highlighted in grey are maximum and minimum values 
used to calculate CIE magnitude.  
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Table A6.1.7. 

Sample Height (m) 


13CTOC (‰ 
VPDB) 

wt%C Sample 
Depth 

(m) 


13CTOC (‰ 
VPDB) 

wt%C 

CLA-I+30 63.41 -23.1 0.9 CLA-I-56 33.80 -26.6 0.4 

CLA-I+15 63.34 -23.0 0.5 CLA-I-57 33.61 -26.1 0.2 

CLA-I-0 63.23 -23.4 0.3 CLA-I-58 33.00 -26.9 0.4 

CLA-I-10 63.13 -23.3 1.0 CLA-I-59 32.25 -27.2 0.3 

CLA-I-11 62.89 -21.7 2.1 CLA-I-60 31.97 -25.9 0.3 

CLA-I-12 62.65 -22.7 0.9 CLA-I-62 31.62 -25.6 0.2 

CLA-I-13 62.40 -22.3 2.0 CLA-I-63 30.97 -25.0 0.3 

CLA-I-14 62.18 -22.1 0.9 CLA-I-64 30.29 -26.6 0.4 

CLA-I-15 61.92 -22.3 1.0 CLA-I-65 28.10 -26.7 0.3 

CLA-I-16 61.60 -22.7 0.8 CLA-I-66 27.75 -26.1 0.2 

CLA-I-17 61.34 -23.7 0.4 CLA-I-69 27.45 -25.8 0.2 

CLA-I-18 61.09 -23.8 0.3 CLA-I-67 27.19 -26.1 0.3 

CLA-I-19 60.87 -25.1 0.4 CLA-I-68 26.70 -26.9 0.3 

CLA-I-20 60.72 -26.1 0.3 CLA-I-61 25.78 -25.8 0.3 

CLA-I-21 60.43 -23.4 0.4 CLA-I-70 21.48 -25.4 0.2 

CLA-I-22 59.81 -24.0 0.4 CLA-I-71 20.80 -26.1 0.2 

CLA-I-23 58.74 -24.3 0.2 CLA-I-72 20.19 -26.0 0.2 

CLA-I-24 57.70 -24.5 0.1 CLA-MAR´10-15 20.0 -25.4 0.3 

CLA-I-25 56.75 -25.3 0.2 CLA-MAR´10-14 18.4 -24.6 0.5 

CLA-I-26 54.69 -22.3 0.5 CLA-I-73 18.18 -26.8 0.3 

CLA-I-27 54.42 -23.8 0.8 CLA-MAR´10-13 17.6 -24.3 0.5 

CLA-I-28 54.18 -26.4 1.1 CLA-MAR´10-12 16.8 -23.3 0.5 

CLA-I-29 52.24 -27.8 0.4 CLA-MAR´10-11 16 -24.0 0.4 

CLA-I-30 51.80 -25.7 0.1 CLA-I-74 15.93 -23.3 0.3 

CLA-I-31 50.23 -26.2 0.2 CLA-MAR´10-10 15.2 -23.6 0.5 

CLA-I-32 49.32 -26.0 0.2 CLA-I-75 14.80 -23.4 0.9 

CLA-I-33 48.56 -24.8 0.1 CLA-MAR´10-9 14.4 -23.5 0.6 

CLA-I-34 47.50 -26.7 0.9 CLA-I-76 14.25 -23.5 0.4 

CLA-I-35 46.80 -26.4 0.3 CLA-MAR´10-8 13.6 -23.6 0.4 

CLA-I-36 43.79 -25.9 0.3 CLA-I-77 13.31 -23.2 0.4 

CLA-I-37 41.80 -25.8 0.2 CLA-MAR´10-7 12.8 -23.9 0.7 

CLA-I-38 41.27 -26.1 0.2 CLA-MAR´10-6 12 -23.5 0.7 

CLA-I-39 40.87 -26.0 0.4 CLA-I-78 11.50 -23.8 0.6 

CLA-I-40 40.25 -26.0 0.1 CLA-MAR´10-5 11.4 -23.5 0.6 

CLA-I-41 39.61 -26.0 0.2 CLA-MAR´10-4 10.8 -23.2 0.7 

CLA-I-42 39.25 -26.2 0.5 CLA-I-79 10.27 -23.1 0.3 

CLA-I-43 38.54 -26.2 0.2 CLA-MAR´10-3 10.2 -23.8 0.5 

CLA-I-44 38.00 -25.6 0.2 CLA-I-80 9.80 -23.6 0.6 

CLA-I-45 37.62 -25.8 0.2 CLA-MAR´10-2 9.6 -23.4 0.5 

CLA-I-46 37.35 -25.6 0.2 CLA-MAR´10-1 9 -23.8 0.5 

CLA-I-47 37.00 -25.8 0.2 CLA-I-81 8.75 -23.7 0.4 

CLA-I-48 36.60 -25.6 0.2 CLA-I-82 7.37 -23.9 0.8 

CLA-I-49 36.25 -25.6 0.2 CLA-I-83 3.10 -23.4 0.3 

CLA-I-50 35.80 -25.8 0.2 CLA-MAR´10 YAC-0 3 -24.5 0.3 

CLA-I-51 35.50 -26.1 0.2 CLA-MAR´10 YAC-1 2.4 -25.6 0.3 

CLA-I-52 35.18 -26.0 0.3 CLA-MAR´10 YAC-2 1.8 -26.0 0.1 

CLA-I-53 34.62 -26.1 0.3 CLA-MAR´10 YAC-3 1.2 -25.2 0.2 

CLA-I-54 34.37 -26.1 0.3 CLA-MAR´10 YAC-4 0.6 -25.5 0.2 

CLA-I-55 34.11 -26.6 0.5 CLA-I-84 0.00 -23.9 0.3 
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Table A6.1.8. 

Sample 
Height 

(m) 


13CTOC (‰ 
VPDB) 

wt%C Sample 
Height 

(m) 


13CTOC (‰ 
VPDB) 

wt%C 

TEN-V+9 92.20 -23.9 0.9 TEN-V-34 12.52 -25.5 0.1 
TEN-V+8 90.33 -23.3 1.7 TEN-V-35 12.19 -24.8 0.1 
TEN-V+7 89.11 -23.6 0.4 TEN-V-36 11.55 -25.5 0.1 
TEN-V+6 77.89 -24.1 0.4 TEN-V-37 11.00 -23.9 0.2 
TEN-V+5 74.10 -23.0 0.6 TEN-V-38 10.89 -25.4 0.2 
TEN-V+4 70.98 -25.0 0.2 TEN-V-39 10.02 -25.0 0.2 
TEN-V+3 66.80 -24.7 0.2 TEN-V-40 9.85 -25.7 0.2 

TEN-V+2 65.80 -23.9 0.2 TEN-MAR´10+5 9.815 -24.2 0.2 
TEN-V+1 63.98 -26.1 0.9 TEN-V-41 9.11 -24.3 0.1 
TEN-V-0 63.19 -26.5 0.1 TEN-V-42 8.90 -24.8 0.1 
TEN-V-1 62.72 -26.7 0.2 TEN-MAR´10+4 8.666 -24.3 0.2 
TEN-V-2 61.53 -26.6 0.1 TEN-V-43 8.51 -24.0 0.1 
TEN-V-3 59.48 -25.9 0.1 TEN-V-44 8.00 -24.3 0.1 
TEN-V-4 56.77 -26.6 0.1 TEN-V-45 7.77 -25.0 0.1 

TEN-V-5a 53.61 -26.1 0.2 TEN-MAR´10+3 7.517 -23.4 0.2 
TEN-V-5b 52.75 -26.2 0.1 TEN-V-46 6.83 -24.7 0.1 
TEN-V-6a 51.70 -26.4 0.1 TEN-MAR´10+2 6.368 -24.1 0.2 
TEN-V-6b 49.11 -26.6 0.1 TEN-V-47 5.43 -24.3 0.1 
TEN-V-7 45.36 -25.9 0.1 TEN-MAR´10+1 5.219 -24.6 0.2 

TEN-V-7b 45.36 -26.6 0.1 TEN-V-48 4.63 -24.3 0.1 
TEN-V-8 43.48 -26.3 0.1 TEN-MAR´10-1 4.07 -24.4 0.2 
TEN-V-9 39.61 -26.2 0.1 TEN-V-49 3.71 -24.0 0.1 

TEN-V-10 35.18 -26.1 0.2 TEN-MAR´10-2 3.67 -25.5 0.2 
TEN-V-11 32.00 -26.0 0.3 TEN-MAR´10-3 3.27 -24.8 0.2 

TEN-V-12b 30.81 -26.3 0.1 TEN-MAR´10-4 2.87 -25.2 0.2 
TEN-V-12a 30.81 -26.5 0.2 TEN-MAR´10-5 2.47 -25.0 0.2 
TEN-V-13 29.36 -26.1 0.4 TEN-V-50 2.29 -23.6 0.1 
TEN-V-14 28.47 -25.6 0.5 TEN-MAR´10-6 2.07 -24.9 0.1 
TEN-V-15 25.57 -25.7 0.2 TEN-MAR´10-7 1.67 -25.4 0.2 
TEN-V-16 24.00 -26.4 0.2 TEN-V-51 1.35 -23.0 0.1 
TEN-V-17 22.80 -25.5 0.2 TEN-MAR´10-8 1.27 -24.6 0.1 
TEN-V-18 22.09 -25.2 0.2 TEN-MAR´10-9 0.87 -24.6 0.2 
TEN-V-19 21.47 -24.7 0.1 TEN-V-52 0.50 -23.7 0.1 

TEN-V-20 20.88 -25.0 0.2 TEN-MAR´10-10 0.47 -25.1 0.2 
TEN-V-21 20.25 -24.6 0.2 TEN-MAR´10-11 0.07 -22.9 0.2 
TEN-V-22 19.80 -24.6 0.2 TEN-MAR´10-12 -0.33 -23.9 0.2 
TEN-V-23 19.57 -24.7 0.2 TEN-MAR´10-13 -0.93 -24.2 0.2 
TEN-V-24 19.06 -25.1 0.2 TEN-MAR´10-14 -1.53 -23.8 0.2 
TEN-V-25 18.48 -24.4 0.2 TEN-MAR´10-15 -2.13 -23.4 0.3 
TEN-V-26 17.90 -26.0 0.3 TEN-MAR´10-16 -2.73 -23.3 0.2 
TEN-V-27 17.20 -25.5 0.2 TEN-MAR´10-17 -3.33 -24.7 0.1 
TEN-V-28 16.41 -25.0 0.2 TEN-MAR´10-18 -3.93 -24.9 0.2 
TEN-V-29 15.70 -24.4 0.2 TEN-MAR´10-19 -4.53 -24.3 0.2 
TEN-V-30 15.00 -25.3 0.2 TEN-MAR´10-20 -5.13 -25.3 0.2 
TEN-V-31 14.25 -24.6 0.1 TEN-MAR´10-21 -6.93 -26.1 0.3 
TEN-V-32 13.78 -24.8 0.2 TEN-MAR´10-22 -7.73 -25.1 0.2 
TEN-V-33 13.16 -24.9 0.2 TEN-MAR´10-23 -8.53 -25.1 0.3 
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Table A6.1.9. 

Sample 
Height 

(m) 


13CTOC (‰ 
VPDB) 

wt%C Sample 
Height 

(m) 


13CTOC (‰ 
VPDB) 

wt%C 

ESP-IL-0 66.21 -22.3 0.5 ESP-MAR´10-5 19.37 -23.6 0.3 

ESP-IL-1 65.50 -22.0 0.4 ESP-MAR´10-6 19.07 -23.4 0.3 

ESP-IL-2 64.71 -22.3 0.1 ESP-3 18.86 -24.8 0.2 

ESP-IL-3 63.93 -22.3 0.1 ESP-MAR´10-7 18.77 -22.9 0.2 

ESP-IL-4 63.14 -22.3 0.1 ESP-MAR´10-8 18.47 -23.9 0.3 

ESP-IL-5 62.29 -21.1 0.2 ESP-MAR´10-9 18.17 -24.5 0.2 

ESP-IL-6 61.57 -21.6 0.1 ESP-4 18.14 -22.1 0.2 

ESP-IL-7 60.71 -22.1 0.1 ESP-MAR´10-10 17.87 -23.5 0.2 

ESP-IL-8 59.93 -21.7 0.1 ESP-MAR´10-11 17.57 -23.3 0.2 

ESP-IL-9 59.14 -21.8 0.1 ESP-5 17.29 -22.2 0.2 

ESP-IL-10 58.29 -21.1 0.1 ESP-MAR´10-12 17.27 -23.6 0.2 

ESP-IL-11 57.50 -21.5 0.1 ESP-MAR´10-13 16.97 -24.0 0.2 

ESP-IL-12 56.64 -21.5 0.1 ESP-MAR´10-14 16.67 -24.6 0.2 

ESP-IL-13 55.86 -21.1 0.1 ESP-6 16.43 -21.2 0.2 

ESP-IL-14 55.00 -21.4 0.1 ESP-MAR´10-15 16.27 -25.0 0.2 

ESP-IL-15 54.14 -21.4 0.1 ESP-MAR´10-16 15.87 -24.5 0.2 

ESP-IL-16 53.36 -21.6 0.1 ESP-7 15.71 -21.2 0.1 

ESP-IL-17 52.57 -21.4 0.1 ESP-MAR´10-17 15.47 -24.4 0.2 

ESP-IL-18 51.68 -21.6 0.1 ESP-8 14.86 -21.9 0.1 

ESP-IL-19 50.75 -21.3 0.1 ESP-9 14.07 -21.9 0.1 

ESP-IL-20 50.00 -21.0 0.1 ESP-10 13.29 -22.2 0.1 

ESP-IL-21 49.07 -21.0 0.1 ESP-11 12.57 -21.9 0.1 

ESP-IL-22 48.28 -21.5 0.1 ESP-12 11.86 -21.9 0.1 

ESP-IL-23 47.57 -21.9 0.1 ESP-13 11.00 -21.7 0.1 

ESP-IL-24 46.71 -21.9 0.1 ESP-14 10.29 -21.6 0.2 

ESP-IL-25 45.93 -22.4 0.1 ESP-15 9.43 -21.8 0.2 

ESP-IL-26 45.14 -22.0 0.1 ESP-16 8.86 -21.7 0.3 

ESP-IL-27 44.57 -22.3 0.1 ESP-17 7.71 -21.9 0.2 

ROJO+2 39.00 -24.2 0.2 ESP-18 6.86 -21.7 0.2 

ROJO+1 37.43 -23.4 0.1 ESP-19 6.11 -21.9 0.2 

ESP+9 32.14 -26.3 0.2 ESP-20 5.29 -21.8 0.2 

ESP+8 31.36 -26.5 0.1 ESP-21 2.00 -22.7 0.1 

ESP+7 30.50 -26.2 0.1 ESP-22 1.14 -22.7 0.1 

ESP+6 29.71 -26.2 0.1 
   

 
ESP+5 29.04 -25.9 0.1 

   
 

ESP+4 28.07 -25.1 0.1 
   

 
ESP+3 27.43 -25.8 0.1 

   
 

ESP+2 26.57 -25.4 0.1 
   

 
ESP+1 25.71 -25.7 0.2 

   
 

CC+2 24.50 -24.7 0.5 
   

 
CC+1 22.71 -26.0 1.0 

   
 

ESP-1 20.57 -23.2 0.3 
   

 
ESP-MAR´10-1 20.57 -24.2 0.3 

   
 

ESP-MAR´10-2 20.27 -23.4 0.3 
   

 
ESP-MAR´10-3 19.97 -23.4 0.3 

   
 

ESP-2 19.86 -21.9 0.2 
   

 
ESP-MAR´10-4 19.67 -23.9 0.3 
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Table A6.1.10. 

Sample Height (m) 


13CTOC (‰ 
VPDB) 

wt%C 

CPE+20 13.08 -23.6 2.2 
CPE+19 12.47 -21.3 1.4 

CPE-MAR´10+11 12.2 -24.9 0.2 
CPE+18 11.81 -25.0 0.1 
CPE+17 11.21 -25.9 0.3 

CPE+16 10.63 -25.5 0.2 
CPE-MAR´10+10 10.33 -26.7 0.2 

CPE+15 10.02 -26.0 0.1 
CPE-MAR´10+9 9.73 -26.4 0.2 

CPE+14 9.42 -26.2 0.1 
CPE-MAR´10+8 9.23 -26.6 0.2 

CPE+13 8.92 -26.4 0.3 
CPE-MAR´10+7 8.63 -26.5 0.2 

CPE+12 8.34 -27.3 0.4 
CPE+11 7.75 -26.5 0.4 
CPE+10 6.94 -28.0 1.3 
CPE+9 6.66 -27.9 0.6 

CPE-MAR´10+6 6.36 -28.9 1.1 
CPE+8 5.94 -28.5 0.9 

CPE-MAR´10+5 5.76 -28.7 0.8 
CPE+7 5.31 -28.3 0.8 

CPE-MAR´10+4 5.06 -26.4 0.2 
CPE+6 4.69 -26.2 0.1 

CPE-MAR´10+3 4.51 -26.4 0.2 
CPE+5 3.94 -26.4 0.1 
CPE+4 3.33 -26.4 0.1 
CPE+3 2.78 -27.9 0.4 
CPE+2 2.23 -25.1 0.2 

CPE-MAR´10+2 1.75 -25.2 0.3 
CPE+1 1.60 -24.9 0.2 

CPE-MAR´10+1 1.25 -26.6 0.5 
CPE-A 1.09 -25.4 0.9 
CPE-0 0.94 -23.5 1.4 
CPE-3 0.55 -23.4 1.1 
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Table A6.1.11. 

Sample Name Height (m) 


13CTOC (‰ 
VPDB) 

wt%C 

ERM-ASU+12 45 -22.6 0.6 
ERM-ASU+11 44 -26.7 0.2 
ERM-ASU+10 43 -26.6 0.4 
ERM-ASU+9 42 -27.5 0.5 
ERM-ASU+8 41 -27.7 0.2 
ERM-ASU+7 40 -28.7 0.3 
ERM-ASU+6 39 -28.7 0.3 
ERM-ASU+5 38 -29.0 0.2 
ERM-ASU+4 37 -29.2 0.3 
ERM-ASU+3 36 -29.2 0.2 
ERM-ASU+2 35 -29.3 0.2 
ERM-ASU+1 34 -29.0 0.4 
ERM-ASU+0 33 -28.8 0.3 
ERM-SU+18 32 -28.3 0.3 
ERM-SU+17 31 -28.2 0.2 
ERM-SU+16 30 -28.9 0.3 
ERM-SU+15 29 -28.5 1.1 
ERM-SU+14 28 -29.1 0.2 
ERM-SU+13 27 -28.7 0.2 
ERM-SU+12 26 -29.5 0.2 
ERM-SU+11 25 -28.6 0.2 
ERM-SU+10 24 -28.8 0.2 
ERM-SU+9 23 -28.0 0.3 
ERM-SU+8 22 -27.0 0.59 
ERM-SU+7 21 -27.9 0.1 
ERM-SU+6 20 -27.5 0.7 
ERM-SU+5 19 -27.9 0.4 
ERM-SU+4 18 -27.1 0.2 
ERM-SU+3 17 -24.5 0.2 
ERM-SU+2 16 -26.9 1.4 
ERM-SU+1 15 -27.2 1.4 
ERM-SU+0 14 -22.4 0.1 

ERM-BSU+15 13 -24.2 0.2 
ERM-BSU+14 12 -24.2 0.1 
ERM-BSU+13 11 -24.2 0.2 
ERM-BSU+12 10 -24.0 0.2 
ERM-BSU+11 9 -24.8 0.2 
ERM-BSU+10 8 -24.3 0.3 
ERM-BSU+9 7 -23.7 0.3 
ERM-BSU+8 6 -23.5 0.2 
ERM-BSU+7 5 -24.1 0.3 
ERM-BSU+6 4 -23.8 0.1 
ERM-BSU+5 3 -24.1 0.2 
ERM-BSU+4 2 -23.4 0.1 
ERM-BSU+3 1 -23.6 0.1 
ERM-BSU+2 0 -22.8 0.1 
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Table A6.1.12. 

Sample 
Height 

(m) 


13CTOC (‰ 
VPDB) 

wt%C Sample  
Height 

(m) 


13CTOC (‰ 
VPDB) 

wt%C 

ZUM-ASU+18 21.95 -25.7 0.3 ZUM-SU+9 8.70 -26.5 0.3 
ZUM-ASU+17 21.45 -25.3 0.4 ZUM-SU+8 8.55 -27.4 0.1 
ZUM-ASU+16 20.95 -25.7 0.3 ZUM-SU+7 8.40 -28.4 0.2 
ZUM-ASU+15 20.45 -25.7 0.3 ZUM-SU+6 8.25 -28.2 0.2 
ZUM-ASU+14 19.95 -25.7 0.5 ZUM-SU+5 8.10 -27.8 0.1 
ZUM-ASU+13 19.45 -25.6 0.3 ZUM-SU+4 7.95 -27.6 0.1 
ZUM-ASU+12 18.95 -26.3 0.2 ZUM-SU+3 7.80 -26.7 0.1 
ZUM-ASU+11 18.45 -26.3 0.2 ZUM-SU+2 7.65 -25.5 0.1 
ZUM-ASU+10 17.95 -25.8 0.3 ZUM-SU+1 7.50 -24.3 0.2 

ZUM-ASU+9 17.45 -26.1 0.3 ZUM-SU+0 7.35 -25.0 0.1 
ZUM-ASU+8 16.95 -25.9 0.3 ZUM-BSU+24 7.20 -25.9 0.3 
ZUM-ASU+7 16.45 -25.6 0.3 ZUM-BSU+23 6.90 -24.8 0.3 
ZUM-ASU+6 15.95 -25.0 0.3 ZUM-BSU+22 6.60 -25.0 0.3 
ZUM-ASU+5 15.45 -24.8 0.3 ZUM-BSU+21 6.30 -25.3 0.3 
ZUM-ASU+4 14.95 -25.7 0.3 ZUM-BSU+20 6.00 -25.4 0.3 
ZUM-ASU+3 14.45 -25.5 0.3 ZUM-BSU+19 5.70 -25.1 0.1 

ZUM-ASU+2 13.95 -25.1 0.2 ZUM-BSU+18 5.40 -25.2 0.3 
ZUM-ASU+1 13.45 -25.7 0.2 ZUM-BSU+17 5.10 -25.7 0.2 
ZUM-ASU+0 12.95 -26.2 0.2 ZUM-BSU+16 4.80 -25.7 0.2 
ZUM-SU+34 12.45 -26.0 0.1 ZUM-BSU+15 4.50 -24.3 0.2 
ZUM-SU+33 12.30 -26.0 0.1 ZUM-BSU+14 4.20 -25.0 0.2 
ZUM-SU+32 12.15 -26.1 0.1 ZUM-BSU+13 3.90 -25.0 0.2 
ZUM-SU+31 12.00 -26.5 0.2 ZUM-BSU+12 3.60 -25.1 0.3 
ZUM-SU+30 11.85 -26.2 0.2 ZUM-BSU+11 3.30 -24.0 0.1 
ZUM-SU+29 11.70 -26.0 0.2 ZUM-BSU+10 3.00 -24.4 0.2 
ZUM-SU+28 11.55 -25.7 0.1 ZUM-BSU+9 2.70 -25.0 0.3 
ZUM-SU+27 11.40 -27.1 0.2 ZUM-BSU+8 2.40 -24.6 0.3 
ZUM-SU+26 11.25 -26.9 0.2 ZUM-BSU+7 2.10 -24.5 0.2 
ZUM-SU+25 11.10 -26.6 0.2 ZUM-BSU+6 1.80 -24.6 0.3 
ZUM-SU+24 10.95 -26.5 0.2 ZUM-BSU+5 1.50 -23.8 0.2 
ZUM-SU+23 10.80 -25.6 0.2 ZUM-BSU+4 1.20 -24.8 0.3 
ZUM-SU+22 10.65 -26.6 0.2 ZUM-BSU+3 0.90 -23.9 0.3 
ZUM-SU+21 10.50 -26.6 0.2 ZUM-BSU+2 0.60 -24.4 0.2 
ZUM-SU+20 10.35 -26.2 0.3 ZUM-BSU+1 0.30 -24.4 0.2 
ZUM-SU+19 10.20 -26.7 0.3 ZUM-BSU+0 0.00 -24.5 0.3 
ZUM-SU+16 9.75 -26.0 0.3 

    ZUM-SU+15 9.60 -27.3 0.2 
    ZUM-SU+14 9.45 -27.1 0.2 
    ZUM-SU+13 9.30 -27.1 0.2 
    ZUM-SU+12 9.15 -27.5 0.2 
    ZUM-SU+11 9.00 -27.6 0.3 
    ZUM-SU+10 8.85 -27.6 0.1 
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6.2 APPENDIX 2: ADDITIONAL DATA FOR CHAPTER 3 

This appendix provides supplementary information for Chapter 3.  Method 

development and result tables for n-alkane isolation method development, n-alkane 

concentrations, carbonate isotopes, and palynological assemblages are provided for all 

data discussed.  

 

METHOD DEVELOPMENT 

Prior to extraction of the TLE and subsequent separation of n-alkanes using T-SEP™, 

several methods were investigated to ensure efficient and effective methods were 

employed. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 6.2.1. Flow chart detailing all the geological and geochemical methods used 
during this research, from sample collection to compound identification. 
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6.2.1.1 Reference Sediment (CLA-4) 

Operator reproducibility, analytical precision, and method efficiency were all 

investigated prior to extraction and analysis of collected samples.  In order to do this a 

reference sediment (referred to as CLA-4) was used.  This was prepared by crushing 

and homogenising a bulk quantity of sediment from the Claret section.  An equimolar 

C25 to C33 n-alkane standard was spiked into the reference sediment each time it was 

used to check that n-alkanes could be adequately recovered from the sample.  To 

make the equimolar C25-33 n-alkane standard, individual n-alkanes were each weighed 

into separate vials and diluted to 0.1 mg mL-1.  The equimolar standard was then 

prepared by dispensing appropriate volumes of each individual n-alkane based on the 

ratio of their relative molecular mass (RMM) to that of tritriacontane (Table 6.2.1.).  

The final number of moles of each n-alkane (2.16x10-7) was calculated using Equation 

6.2.1.  

 

Quantification of analytes was achieved by integrating the peak areas of the analytes 

and the internal standard in either the gas chromatogram from the GC-FID, or the total 

ion chromatogram (TIC) obtained using GC-MS, and dividing the analyte peak area by 

the peak area of the internal standard, and multiplying by the mass of internal standard 

(Equation 6.2.2.). 
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Table 6.2.1. Data for preparation of the equimolar n-alkane standard. 
 

n-alkane RMM 

relative 
volume of 0.1 

mg mL-1 
solution (mL) 

Mass of n-
alkane added 

(mg) 

number of 
moles of n-

alkane 

C25 352 0.759 0.0759 2.16E-07 

C26 366 0.789 0.0789 2.16E-07 

C27 380 0.819 0.0819 2.16E-07 

C28 394 0.849 0.0849 2.16E-07 

C29 408 0.879 0.0879 2.16E-07 

C30 422 0.909 0.0909 2.16E-07 

C31 436 0.940 0.0940 2.16E-07 

C32 450 0.970 0.0970 2.16E-07 

C33 464 1.000 0.1000 2.16E-07 

Total volume 
(mL) 

7.914   

 

                 
        

                                 
                 

Equation 6.2.1. 

 

          
        

         
                                                           

Equation 6.2.2. 
Where M = mass (µg), A= peak area integral 
 
 
6.2.1.2 Lipid extraction procedures 

Soxhlet and sonication extraction were investigated for extracting the total lipid 

extract (TLE).    For the Soxhlet method, pre-weighed powdered samples were placed 

in pre-extracted cellulose thimbles and extracted under reflux using a Soxhlet 

apparatus (Figure 6.2.2.) for 8 hours with dichloromethane/acetone (DCM/acetone, 

2:1 v/v).  After extraction the solvent was reduced to a minimal volume by rotary 

evaporation and the resultant TLE transferred to a pre-weighed 7 mL vial.  Residual 
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solvent was removed under a stream of nitrogen, assisted by gentle heating (40°C; 

blow-down).  TLEs were air dried (2 hours) and re-weighed to obtain TLE masses.  

Lipids were also extracted from pre-weighed (ca. 50 g) powdered samples via 

sonication.  For each sample, approximately 12.5 g of sediment was weighed into each 

of four 40 mL labelled vials and each vial spiked with 50 µL 0.005 mg mL-1 5-

androstane and 50 µL 0.01 mg mL-1 deuterated triacontane (C30D62).  Samples were 

sonicated for 15 minutes with DCM/acetone (2:1 v/v) and then centrifuged (2500 rpm, 

2 min) to separate the supernatant from the sediment.  The supernatant was 

transferred to a round bottom flask (combining extracts) and the extraction process 

repeated twice more per sample, ensuring the sediment and organic solvent was 

thoroughly mixed each time.  The total extract was reduced to a minimal volume by 

rotary evaporation and the resultant TLE transferred to a pre-weighed 7 mL vial.  

Residual solvent was removed under a stream of nitrogen assisted by gentle heating 

(40°C; blow-down).  TLEs were air dried (2 hours) and re-weighed to obtain TLE 

masses.  

 

Initially, a procedural blank and the reference sediment (CLA-4, spiked with the 

equimolar n-alkane standard) were extracted using the Soxhlet apparatus.  This 

resulted in efficient extraction of n-alkanes from CLA-4, although a procedural blank 

indicated that contamination was being introduced (Figure 6.2.3.).  Introduction of 

contaminants could have occurred in a number of ways and a series of tests to check 

methods and equipment used to extract the TLE from a sample were investigated in 

order to determine the source of contamination (Table 6.2.2.). 
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Figure 6.2.2. Schematic of Soxhlet extraction 1) round bottom flask, 2) soxhlet 
apparatus, 3) condenser (arrows indicate water direction, 4) cellulose thimble, 5) 
siphon tube, 6) heating mantle. 
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Figure 6.2.3. Gas chromatograms comparing TLEs of Soxhlet extraction a) CLA-4 spiked 
reference sediment, b) procedural blank, c) Whatman thimble, d) FisherBrand thimble. 
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Table 6.2.2. Methodological and equipment tests investigated to determine the source 
of contamination in the procedural blanks. 

 

All tests were conducted in the order listed in Table 6.2.2., so that contamination 

issues could be eliminated in a methodical fashion.  After ruling out all other 

equipment as the source of contamination, the thimbles used for Soxhlet extraction 

were investigated.  Two different brands of soxhlet thimble (double thickness 

cellulose, 41 mm x 123 mm, Whatman Ltd., London, UK, and single thickness cellulose, 

41 mm x 123 mm, Thermo Fisher Scientific Inc. Loughborough, UK) were tested.  

Contamination was found to leach from both thimbles (Figure 6.2.3.) after pre-

extraction (8 hours), and it was, therefore, decided to proceed with sonication 

Test 
Potential 

contamination 
source 

Method employed Result Action taken 

Solvent Solvent  
Solvent blanks 

analysed 
Solvents clean None 

Micro-
syringe 

Cross 
contamination from 

previous use 

Solvent rinses 
collected into 

different vials and 
analysed 

Syringes clean None 

Glassware 
Cross 

contamination from 
previous use 

Solvent rinses 
collected into 

different vials and 
analysed 

Glassware had 
low level 

contamination 

Solvent rinsing 
until clean 

Large 
Solvent 
volume 

Solvent at low levels 
ca. 150 mL of solvents 
rotary evaporated and 

analysed 
Solvents clean None 

Pipettes 
De-fatted cotton 

wool  
Solvents drawn up at 

different speeds 

Some 
methods 

introduced 
contamination 

Method of 
pipette use 
evaluated 

Blow-
down 

needles 
Contact with vials  

Needles sonicated and 
solvent analysed 

Contamination 
observed 

Routine 
cleaning of 

needles 
employed 

Soxhlet 
thimbles 

Thimble 
Soxhlet extraction of 

thimble, solvent 
analysed 

Contamination 
observed 

Sonication 
used instead 
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extraction.  The Soxhlet and sonication methods produced comparable results for 

extraction efficiency, as evidenced by the CLA-4 sediment, but sonication appeared to 

produce no contamination from the outset (Figure 6.2.4.) and was quicker as thimbles 

would need to be pre-extracted prior to use for sample extraction for an extended 

period of time (>8 hours) to ensure no contamination was introduced to the samples. 

 

 
Figure 6.2.4. Gas chromatograms for TLEs obtained using sonication extraction a) CLA-
4 spiked reference sediment, b) procedural blank. UCM = unresolved complex mixture. 
 

 
6.2.1.3 n-alkane separation procedures 

Six different separation techniques were investigated for the purification of n-alkanes 

from the TLE for compound specific isotope analysis (Table 6.2.3.).  These included 

adsorption chromatography using silica, alumina, argentatious silica, urea adduction, a 

proprietary T-SEP™ technique and urea adduction combined with T-SEP™.    

a)  

b) 
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Table 6.2.3. Methods investigated for n-alkane separation from the TLE. 
 

Method Sample used Result 

Silica  
chromatography 

CLA-4 reference 
sediment  

Poor n-alkane separation from 
apolar unresolved complex mixture 

(UCM) 

Procedural blank No contamination 

Alumina 
chromatography 

CLA-4 reference 
sediment 

Poor n-alkane separation from 
apolar UCM 

Procedural blank No contamination 

Silver ion SPE 

CLA-4 reference 
sediment 

Good n-alkane separation from 
apolar UCM 

Procedural blank No contamination 

ZUM-ASU+4 sample 
Poor n-alkane separation from 

apolar UCM 

Urea adduction 

CLA-4 reference 
sediment 

Good n-alkane separation from 
apolar UCM, but overlap with DCM 

fraction 

Procedural blank No contamination 

T-SEP™ 

CLA-4 reference 
sediment  

Good n-alkane separation from 
apolar UCM for CLA-4  

Procedural blank No contamination 

ZUM-ASU+4 sample 
Good n-alkane separation from 

apolar UCM ZUM-ASU+4 

Urea adduction-
TSEP™ 

CLA-4 reference 
sediment 

Good n-alkane separation from 
apolar UCM 

Procedural blank No contamination 

 
In each case a reference sediment spiked with C25 to C33 n-alkane standards was used 

to determine if; a) the n-alkane standards were recovered in a single fraction to 

eliminate chromatographic isotope fractionation; and b) the n-alkane fraction was 

sufficiently pure by GC-FID (i.e., co-eluting non-n-alkanes were adequately removed) 

for compound specific isotope analysis (CSIA) to be conducted.  Prior to any column 

chromatography, the column to be used was conditioned to remove any contamination 
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by eluting with solvents in reverse order; e.g., 3 column volumes of DCM followed by 3 

column volumes of n-hexane (used in most cases).  After each technique had been 

investigated using the reference sediment, a sample was then separated using this 

technique (if separation of the reference sediment was good).  In each case the same 

sample from the Zumaia section (ZUM-ASU+4) was used.  The results of this sample 

were then compared before proceeding with any separation procedure.  All the 

methods described were investigated due to the nature of the samples to extract and 

separate; total organic carbon content was low (generally < 1%), making separation of 

sufficient material for 13Cn-alkane and biomarker analysis of paramount importance.  

Therefore rigorous testing of each method was conducted. 

 

6.2.1.3.1 Silica column chromatography 

Initially silica column separation was attempted using a short glass pipette column 

packed with pre-extracted cotton wool (DCM, 24 hours) and activated (110°C) silica gel 

(SiO4).  Samples were transferred onto the silica column in minimal n-hexane with brief 

sonication (<2 min).  Apolar fractions (expected to contain n-alkanes) were eluted with 

3 column volumes of n-hexane and polar fractions eluted with 3 column volumes of 

DCM, each collected in separate 7mL vials, dried under blow-down (N2, 40°C), and 

derivatised where necessary (all polar fractions) prior to analysis.  GC analysis of 

samples from this separation showed that n-alkanes were eluted entirely in the hexane 

fraction, but that an unresolved complex mixture (UCM) of other apolar compounds 

were also present that would interfere with compound specific isotope analysis, 

making this method unsuitable for n-alkane purification on its own (Figure 6.2.5.).  
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Figure 6.2.5.  Gas chromatograms of fractions isolated from the TLE using silica column 
chromatography during method development a) procedural blank from silica column 
separation hexane fraction, b) DCM fraction, c) CLA-4 spiked reference sediment 
hexane fraction demonstrating n-alkane separation was not adequate for CSIA, d) DCM 
fraction (n-alkanes not present). UCM = unresolved complex mixture. 
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6.2.1.3.2 Alumina column chromatography 

Further separation of the UCM apolar compounds was then attempted via alumina 

column chromatography, using a short glass pipette column packed with pre-extracted 

cotton wool (DCM, 24 hours) and activated (110°C) alumina (Al2O3).  Samples were 

transferred onto the alumina column in minimal n-hexane with brief sonication (<2 

min).  Apolar fractions (expected to contain n-alkanes) were eluted with 3 column 

volumes of n-hexane and polar fractions eluted with 3 column volumes of DCM, each 

collected in separate 7mL vials, dried under blow-down (N2, 40°C), and derivatised 

where necessary (all polar fractions) prior to analysis.  GC analysis of samples from this 

separation showed that n-alkanes were eluted entirely in the hexane fraction, but that 

the UCM of other apolar compounds was still present, making this method also 

unsuitable for n-alkane purification on its own (Figure 6.2.7.). 

 

6.2.1.3.3 Silver ion solid phase extraction 

Argentatious or silver ion (Ag+) solid phase extraction (SPE) was investigated for the 

further purification of n-alkanes from the hexane extract obtained using alumina 

chromatography. Ag+ SPE, under normal phase conditions, separates compounds 

based upon their double bond equivalents (DBE; Equation 6.2.3).  DBE is a measure of 

hydrogen deficiency; the higher the degree of unsaturation, the greater a compound’s 

affinity for the stationary phase (Ag+; Figure 6.2.6.).   

 

        
  

 
                                              Equation 6.2.3. 

 
Where #C = the number of carbon atoms, and #H = the number of hydrogen atoms 
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Samples were transferred onto a Discovery® Ag-Ion SPE cartridge (750 mg/6 mL; 

Supelco (Sigma-Aldrich Co., Dorset, UK) in n-hexane with brief sonication (<2 min) and 

eluted with 3 column volumes of n-hexane (n-alkanes), and DCM (other apolar 

material). This appeared to produce reasonable results for the CLA-4 standard 

sediment, although when applied to the Zumaia test-sample (ZUM-ASU+4) the 

separation was not satisfactory for CSIA.  Because n-alkanes have DBE = 0, no retention 

to the stationary phase should occur.  This led to an investigation of the effect of using 

smaller solvent volumes to elute the different fractions, for example one column 

volume of each solvent.  This did not, however, improve resolution of n-alkanes from 

the UCM of other apolar compounds (Figure 6.2.8.). 

 

 

 

 

 
 
 
 
 
 
 
 
Figure 6.2.6. Schematic representation of the interaction mechanism of silver ion 
stationary phase with the double bond of an alkene. 
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Figure 6.2.7. Gas chromatograms of fractions isolated from the TLE using alumina 
column chromatography during method development a) Procedural blank produced 
from alumina column separation hexane fraction, b) DCM fraction, c) CLA-4 spiked 
reference sediment hexane fraction, d) DCM fraction. UCM = unresolved complex 
mixture. 
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Figure 6.2.8. Total ion chromatograms of fractions obtained during Ag+ SPE method 
development; a) Procedural blank from Ag+ SPE separation hexane fraction, b) DCM 
fraction c) CLA-4 spiked reference sediment hexane fraction demonstrating good n-
alkane separation, d) DCM fraction, e) Zumaia sample (ZUM-ASU+4) hexane fraction 
from Ag+ SPE separation, demonstrating poor n-alkane separation.  
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6.2.1.3.4 Urea adduction 

Urea adduction is commonly employed for n-alkane isolation (e.g., Ellis et al. 1998; 

Pearson and Eglinton 2000; Handley et al. 2008, 2011, 2012).  However, it is time 

consuming to prepare the reagents and the method does not always produce 

sufficiently clean n-alkane fractions (Pearson and Eglinton 2000; Xu et al. 2005).  Use of 

urea adduction was investigated to determine if suitable n-alkane separation could be 

achieved.  Urea forms crystalline complexes with straight-chain compounds (e.g., n-

alkanes), allowing separation from the TLE which comprises branched, cyclic, and 

aromatic compounds.   

 

Initially the urea was purified using recrystallisation.  Recrystallisation involved 

dissolving a sample in a solvent chosen specifically for its miscibility with respect to the 

product; the product will be insoluble at room temperature, but soluble upon heating 

in a suitable recrystallisation solvent.  After heating and dissolving of the sample, the 

solution was left to cool, forming purified crystals of the desired compound with the 

impurities remaining in solution.  Ether was chosen as the recrystallisation solvent; an 

aliquot of urea was added to a conical flask, and small amounts of hot ether were 

decanted into the conical flask over a hot water bath until the urea and any impurities 

were dissolved in a minimal volume of solvent.  Once the urea had dissolved, the 

conical flask was left to cool, forming purified urea crystals.  The crystals were 

removed from the solvent using Büchner vacuum filtration, and left to air dry before 

storage in a glass container.  For urea adduction to occur the urea has to be in liquid 

form, so urea saturated methanol was prepared.  Solubility of urea in methanol at 

room temperature is 0.2g g-1 urea/methanol, and amount of urea required per sample 
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for efficient separation is 5:1 v/v urea/sample.  The amount of urea required to 

separate a large batch of samples was determined by calculation of the average weight 

of a TLE (ca. 0.5 mg), determining a number of samples for separation (60) and 

calculating the amount of urea saturated methanol needed for processing.  To process 

ca. 60 samples, 150 mg of purified, dry, urea was transferred to a pre-weighed 7 mL 

vial.  The weight of methanol required to produce a saturated solution was calculated 

by dividing the weight of urea by the saturation weight of urea in methanol at room 

temperature, resulting in addition of 750 mg methanol. 

 

After reagent preparation, samples were weighed to determine the appropriate 

volume of urea saturated methanol required per sample to obtain a 5:1 v/v 

urea/sample mixture.  The urea solution was measured into a 7 mL vial, and the 

sample was introduced to the solution.  This mixture was left to stand (24 hours) for 

straight-chain compounds to bind to the urea, after which the sample was dried under 

blow-down (N2, 40°C) to remove excess methanol and produce the urea-complex 

crystals.  The crystals were rinsed with ether (3 mL) to remove any surface impurities, 

and dissolved in water (2 mL) to release the n-alkanes from the complex.  Liquid-liquid 

extraction was then conducted via addition of cyclohexane (2 mL), mixing the sample 

via shaking followed by vortex-mixing, and removing the cyclohexane (upper) layer 

containing the n-alkanes.  This process was repeated twice more to ensure maximum 

recovery.  Liquid extraction was then performed with DCM to extract compounds 

remaining in the water phase, and both fractions were analysed.  The urea adduction 

method was first investigated with the CLA-4 spiked reference sediment.  Good 

separation of n-alkanes from the apolar UCM was achieved, although n-alkane 
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abundance was low.  Analysis of the DCM fraction revealed n-alkanes in this fraction 

(Figure 6.2.9.), indicating that n-alkanes were poorly resolved from the urea-crystal 

complex. 

 Figure 6.2.9. Total ion chromatograms from urea adduction method development a) 
procedural blank from urea adduction b) CLA-4 = spiked reference sediment hexane 
fraction demonstrating good n-alkane separation, c) DCM fraction, d) zoomed portion 
of c) demonstrating n-alkanes in DCM fraction.  

a)   

b) 

c) 

d)  
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6.2.1.3.5 T-SEP 

All of the above separation procedures for n-alkane isolation were attempted on their 

own and in combination, but none could provide completely satisfactory n-alkane 

separation.  For this reason, T-SEP™ was investigated for separation of n-alkanes from 

the TLE.  The T-SEP™ technique was tested to determine its suitability to purify n-

alkanes from a TLE with little or no other compounds present and elute all n-alkanes 

into a single fraction to minimise carbon isotope fractionation.  The 13C values of n-

alkanes obtained in this manner were measured to determine whether the T-SEP™ 

process introduced any isotope bias.  Results from tests using a C25 – C33 n-alkane 

standard demonstrated that all n-alkanes were eluted in one fraction, and that whilst 

carbon isotope ratio was affected slightly it was always within the analytical error of 

the instrument (±0.5‰; Figure 6.2.10., Table 6.2.4.). 

 

Table 6.2.4. Compound Specific 13C isotope values as measured for a pure n-alkane 
standard sample and post T-SEP™ separation, demonstrating all values lie within 
instrumental error. 
 

C# 
δ13C (‰ VPDB) 

pre T-SEP™ 
δ13C (‰ VPDB) 

post T-SEP™ 
 δ13C 

27 -25.8 -25.3 0.5 

28 -26.9 -26.4 0.5 

29 -30.1 -29.9 0.2 

30 -32.8 -32.3 0.5 

31 -32.1 -31.7 0.4 

32 -28.9 -28.4 0.5 

33 -30.6 -30.5 0.1 
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Figure 6.2.10. Total ion chromatograms from T-SEP™ method development; a) 
Procedural blank from T-SEP™ separation hexane fraction, b) DCM fraction, c) CLA-4 
spiked reference sediment hexane fraction after T-SEP™ separation, demonstrating 
good n-alkane separation, d) DCM fraction, e) Zumaia sample (ZUM-ASU+4) after T-
SEP™ separation, demonstrating good n-alkane separation. Note the different GC oven 
programme used for 3).  

a)  

b) 

c) 

d) 

e) 
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6.2.1.3.6 Urea adduction combined with T-SEP  

An additional investigation was conducted combining urea adduction with the T-SEP™ 

procedure.  Samples were transferred onto a cartridge packed with urea saturated 

methanol in a matrix of cellulose.  T-SEP™ was then conducted to produce a de-waxed 

TLE and an n-alkane fraction.  Separation was comparable to using T-SEP™ 

independently, but T-SEP™ without urea adduction resulted in better recovery of the 

n-alkanes so it was decided to continue with T-SEP™ independent of urea adduction 

(Figure 6.2.11.). 

Figure 6.2.11. Gas chromatograms comparing T-SEP™ and urea adduction combined 
with T-SEP method development; a) Procedural blank from urea adduction-T-SEP™ 
separation, b) CLA-4 spiked reference sediment hexane fraction after T-SEP™ 
demonstrating good n-alkane separation, c) CLA-4 spiked reference sediment hexane 
fraction after T-SEP™ combined with urea adduction hexane fraction demonstrating 
reduced recovery in comparison with T-SEP™. 

a)  

b) 

c) 
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6.2.1.4 Internal standards 

Internal standards (deuterated triacontane and 5-androstane) were added to all 

samples prior to extraction for quantification purposes.  A calibration series was 

produced to determine a suitable concentration to spike into samples (Figure 6.2.12.), 

and certain concentrations were generated in triplicate to determine operator 

reproducibility.  Relative standard deviations (RSD; Equation 6.2.4.), calculated to 

estimate error associated with the measurements, were acceptable (<4%).  A linear 

response for the standards was recorded over at least two orders of magnitude (0.001 

to 0.1 mg mL-1).  Deuterated triacontane (C30D62) was added in known quantity (0.5 µg) 

for compound specific isotope analyses and was recovered in the T-SEP™ n-alkane 

fraction.   

     (
 

 ̅
)                                        Equation 6.2.4. 

Where σ = standard deviation and  x̄  = mean of the samples  

Figure 6.2.12. Calibration graph produced using GC-MS for the internal standard 5-
androstane, added for biomarker quantification (n = 3 at 0.001 mg mL-1, and n = 1 at 
0.005 and 0.1 mgmL-1). 
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5-androstane was added for biomarker quantification (Figure 6.2.13.).  A calibration 

series was produced to determine a suitable concentration to spike into samples 

(Figure 6.2.14.), and certain concentrations were generated in triplicate.  RSD 

calculated to estimate error associated with the measurement, was acceptable (<4%).  

5-androstane was added in known quantity (0.25 µg) and was recovered in the T-

SEP™ de-waxed TLE fraction. Semi-quantification of analytes was achieved by 

calculating response factors relative to the internal standard (Equation 6.2.2).   

 

 

 
 
 
 

Figure 6.2.13. Structure of 5-androstane internal standard spiked into samples prior 
to extraction for quantification purposes. 

 

Figure 6.2.14. Calibration graph produced using GC-MS for the internal standard 5-
androstane, added for biomarker quantification (n = 3 at 0.001 mg mL-1, and n = 1 at 
0.005 and 0.1 mgmL-1). 
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ANALYTICAL RESULTS TABLES FOR CHAPTER 3 
Table 6.2.4. Weight percent carbon (wt% C) and nitrogen (wt% N) determined in 

Zumaia sediment samples and calculated C/N ratios.  Further data relating to 13CTOC 
measurements can be found in the supplementary material of Manners et al. (2013) 
and Appendix 6.1.  Cells highlighted in grey represent samples within the CIE. 

Sample Height (m) %C %N C/N 
 

Sample Height (m) %C %N C/N 
ZUM-BSU+0 0.00 0.3 0.05 5.2 

 
ZUM-SU+15 9.60 0.2 0.07 2.3 

ZUM-BSU+1 0.30 0.2 0.08 2.7 
 

ZUM-SU+16 9.75 0.3 0.08 3.9 
ZUM-BSU+2 0.60 0.2 0.07 3.7 

 
ZUM-SU+17 9.90 0.5 0.09 5.6 

ZUM-BSU+3 0.90 0.3 0.07 3.8 
 

ZUM-SU+18 10.05 0.6 0.09 6.5 
ZUM-BSU+4 1.20 0.3 0.07 4.8 

 
ZUM-SU+19 10.20 0.3 0.07 3.7 

ZUM-BSU+5 1.50 0.2 0.07 3.6 
 

ZUM-SU+20 10.35 0.3 0.08 3.7 
ZUM-BSU+6 1.80 0.3 0.06 5.6 

 
ZUM-SU+21 10.50 0.2 0.07 2.5 

ZUM-BSU+7 2.10 0.2 0.07 3.0 
 

ZUM-SU+22 10.65 0.2 0.07 2.4 
ZUM-BSU+8 2.40 0.3 0.06 5.2 

 
ZUM-SU+23 10.80 0.2 0.07 3.4 

ZUM-BSU+9 2.70 0.3 0.06 5.1 
 

ZUM-SU+24 10.95 0.2 0.07 2.6 
ZUM-BSU+10 3.00 0.2 0.06 3.0 

 
ZUM-SU+25 11.10 0.2 0.07 2.5 

ZUM-BSU+11 3.30 0.1 0.03 4.0 
 

ZUM-SU+26 11.25 0.2 0.07 3.1 
ZUM-BSU+12 3.60 0.3 0.07 4.5 

 
ZUM-SU+27 11.40 0.2 0.07 2.4 

ZUM-BSU+13 3.90 0.2 0.07 2.9 
 

ZUM-SU+28 11.55 0.1 0.06 2.3 
ZUM-BSU+14 4.20 0.2 0.07 3.7 

 
ZUM-SU+29 11.70 0.2 0.07 3.1 

ZUM-BSU+15 4.50 0.2 0.04 4.9 
 

ZUM-SU+30 11.85 0.2 0.07 3.2 
ZUM-BSU+16 4.80 0.2 0.08 2.6 

 
ZUM-SU+31 12.00 0.2 0.06 2.5 

ZUM-BSU+17 5.10 0.2 0.07 2.9 
 

ZUM-SU+32 12.15 0.1 0.06 2.1 
ZUM-BSU+18 5.40 0.3 0.06 5.0 

 
ZUM-SU+33 12.30 0.1 0.06 2.2 

ZUM-BSU+19 5.70 0.1 0.07 1.9 
 

ZUM-SU+34 12.45 0.1 0.07 1.9 
ZUM-BSU+20 6.00 0.3 0.07 3.9 

 
ZUM-ASU+0 12.95 0.2 0.07 3.1 

ZUM-BSU+21 6.30 0.3 0.05 6.4 
 

ZUM-ASU+1 13.45 0.2 0.07 2.5 
ZUM-BSU+22 6.60 0.3 0.06 4.5 

 
ZUM-ASU+2 13.95 0.2 0.07 3.4 

ZUM-BSU+23 6.90 0.3 0.04 6.2 
 

ZUM-ASU+3 14.45 0.3 0.06 4.6 
ZUM-BSU+24 7.20 0.3 0.05 6.0 

 
ZUM-ASU+4 14.95 0.3 0.07 4.8 

ZUM-SU+0 7.35 0.1 0.07 1.9 
 

ZUM-ASU+5 15.45 0.3 0.08 3.9 
ZUM-SU+1 7.50 0.2 0.06 4.1 

 
ZUM-ASU+6 15.95 0.3 0.09 3.7 

ZUM-SU+2 7.65 0.1 0.07 1.5 
 

ZUM-ASU+7 16.45 0.3 0.05 5.0 
ZUM-SU+3 7.80 0.1 0.06 1.7 

 
ZUM-ASU+8 16.95 0.3 0.08 4.2 

ZUM-SU+4 7.95 0.1 0.06 2.0 
 

ZUM-ASU+9 17.45 0.3 0.05 5.0 
ZUM-SU+5 8.10 0.1 0.06 1.7 

 
ZUM-ASU+10 17.95 0.3 0.07 4.7 

ZUM-SU+6 8.25 0.2 0.05 3.8 
 

ZUM-ASU+11 18.45 0.2 0.07 3.0 
ZUM-SU+7 8.40 0.2 0.06 2.4 

 
ZUM-ASU+12 18.95 0.2 0.07 3.3 

ZUM-SU+8 8.55 0.1 0.07 2.2 
 

ZUM-ASU+13 19.45 0.3 0.06 4.7 
ZUM-SU+9 8.70 0.3 0.08 4.0 

 
ZUM-ASU+14 19.95 0.5 0.08 5.7 

ZUM-SU+10 8.85 0.1 0.06 2.4 
 

ZUM-ASU+15 20.45 0.3 0.06 4.3 
ZUM-SU+11 9.00 0.3 0.06 4.2 

 
ZUM-ASU+16 20.95 0.3 0.07 4.8 

ZUM-SU+12 9.15 0.2 0.07 3.6 
 

ZUM-ASU+17 21.45 0.4 0.07 5.6 
ZUM-SU+13 9.30 0.2 0.07 3.5 

 
ZUM-ASU+18 21.95 0.3 0.05 6.0 

ZUM-SU+14 9.45 0.2 0.07 2.8 
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Table 6.2.5. 13CCARB and 18OCARB isotope results from the Zumaia section.  Cells 
highlighted in light grey represent samples within the CIE, whilst cells highlighted in 
dark grey are maximum and minimum values used to calculate CIE magnitude.  Blank 
cells represent samples where insufficient carbonate was present for analysis.  Height 
is in metres relative to the base of the Siliciclastic Unit. 

Sample Height (m) 
13C 

18O wt% CaO 

Zum-HR, -72 3.00 +0.3 -4.5 - 
Zum-HR, -70 3.08 +0.9 -3.6 36.8 
Zum-HR, -68 3.18 +0.5 -3.7 28.0 
Zum-HR, -66 3.27 -0.7 -5.0 - 
Zum-HR, -64 3.38 +1.1 -3.5 27.9 
Zum-HR, -62 3.48 +1.4 -3.3 34.6 
Zum-HR, -60 3.58 +0.9 -3.4 33.0 
Zum-HR, -58 3.68 +0.0 -4.9 26.3 
Zum-HR, -56 3.80 +0.8 -3.7 21.9 
Zum-HR, -54 3.89 +1.2 -3.5 33.1 
Zum-HR, -52 3.99 +0.5 -4.0 26.2 
Zum-HR, -50 4.09 +1.1 -3.5 30.1 
Zum-HR, -48 4.21 +0.9 -3.6 - 
Zum-HR, -46 4.31 +1.1 -3.2 38.7 
Zum-HR, -44 4.40 +1.1 -3.2 36.3 
Zum-HR, -42 4.50 -0.6 -4.9 32.2 
Zum-HR, -40 4.61 -1.1 -4.8 24.8 
Zum-HR, -38 4.68 +1.1 -3.4 34.9 
Zum-HR, -36 4.77 +1.1 -3.4 33.5 
Zum-HR, -34 4.87 +0.2 -4.8 28.1 
Zum-HR, -32 4.97 -0.1 -3.9 18.3 
Zum-HR, -30 5.07 +0.4 -4.4 29.0 
Zum-HR, -28 5.17 +1.1 -3.5 35.2 
Zum-HR, -26 5.27 +0.1 -3.9 18.7 
Zum-HR, -24 5.37 +0.6 -3.5 20.2 
Zum-HR, -22 5.47 +0.6 -3.9 28.5 
Zum-HR, -20 5.58 +0.9 -3.4 29.8 
Zum-HR, -18 5.67 +0.5 -3.9 27.8 
Zum-HR, -16 5.82 -0.9 -4.5 17.7 
Zum-HR, -14 5.95 +0.5 -3.6 22.7 
Zum-HR, -12 6.03 +0.5 -3.5 21.2 
Zum-HR, -10 6.13 +0.5 -3.4 - 
Zum-HR, -8 6.22 +0.4 -3.6 25.7 
Zum-HR, -6 6.48 +1.4 -3.1 52.7 
Zum-HR, -4 6.64 +1.5 -3.0 53.0 
Zum-HR, -2 6.82 +1.2 -3.1 41.2 
Zum-HR, 0 7.02 +0.7 -3.2 32.3 
Zum-HR, 2 7.12 +0.0 -3.5 27.3 
Zum-HR, 4 7.22 +0.1 -3.5 26.1 
Zum-HR, 6 7.32 -0.3 -3.6 27.7 
Zum-HR, 8 7.40 -3.6 -4.6 4.78 
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Table 6.2.5 continued 
 

Sample Height (m) 
13C 

18O wt% CaO 

Zum-HR, 10 7.48 -3.3 -5.0 1.0 
Zum-HR, 12 7.56 -3.8 -5.6 2.6 
Zum-HR, 14 7.65     0.8 
Zum-HR, 16 7.73 -6.0 -3.1 1.6 
Zum-HR, 18 7.81     0.7 
Zum-HR, 20 7.89 -4.2 -4.7 0.6 
Zum-HR, 22 7.97 -4.3 -3.1 1.1 
Zum-HR, 24 8.05     0.7 
Zum-HR, 26 8.13     0.6 
Zum-HR, 28 8.22 -2.3 -1.9 1.5 

Zum-HR, 30 8.30 -1.5 -3.4 5.5 
Zum-HR, 32 8.38 -1.5 -2.8 3.2 

Zum-HR, 34 8.46 -2.1 -1.9 2.6 
Zum-HR, 36 8.54 -3.2 -3.0 3.7 

Zum-HR, 38 8.62 -1.2 -2.7 7.7 
Zum-HR, 40 8.70 -2.4 -2.9 4.5 
Zum-HR, 42 8.79 -1.9 -2.8 6.4 
Zum-HR, 44 8.87 -2.0 -2.7 12.2 
Zum-HR, 46 8.95 -3.8 -4.1 6.8 
Zum-HR, 48 9.03 -2.5 -4.0 6.6 
Zum-HR, 50 9.11 -2.6 -4.1 7.6 

Zum-HR, 52 9.19 -3.0 -3.5 5.8 
Zum-HR, 54 9.27 -2.0 -2.0 5.0 
Zum-HR, 56 9.36 -2.8 -1.7 7.8 
Zum-HR, 58 9.44 -2.2 -2.2 4.3 
Zum-HR, 60 9.52 -4.5 -4.8 7.0 
Zum-HR, 62 9.60 -2.9 -4.9 5.9 
Zum-HR, 64 9.68 -4.8 -5.8 3.3 
Zum-HR, 66 9.76 -3.4 -5.0 6.6 
Zum-HR, 68 9.84 -3.8 -4.6 6.0 
Zum-HR, 70 9.92 -5.2 -5.2 9.5 

Zum-HR, 72 10.01 -5.3 -5.1 6.5 

Zum-HR, 74 10.09 -4.6 -4.2 3.1 

Zum-HR, 76 10.17 -4.0 -4.6 4.1 
Zum-HR, 78 10.25 -2.5 -4.5 9.4 
Zum-HR, 80 10.33 -2.3 -4.3 7.8 
Zum-HR, 82 10.41 -4.3 -4.3 6.2 
Zum-HR, 84 10.49 -2.4 -4.4 7.7 
Zum-HR, 86 10.58 -2.3 -4.4 7.9 
Zum-HR, 88 10.66 -3.5 -5.0 6.8 
Zum-HR, 90 10.74 -3.0 -4.2 4.9 
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Table 6.2.5 continued 

Sample Height (m) 
13C 

18O wt% CaO 

Zum-HR, 92 10.82 -3.1 -4.0 6.9 
Zum-HR, 94 10.90 -2.7 -4.5 8.9 
Zum-HR, 96 10.98 -2.3 -4.3 12.2 
Zum-HR, 98 11.06 -2.8 -3.9 14.7 

Zum-HR, 100 11.15 -2.0 -4.4 8.9 
Zum-HR, 102 11.23 -2.4 -4.2 11.2 
Zum-HR, 104 11.31 -2.0 -4.1 12.4 
Zum-HR, 106 11.39 -1.9 -3.8 14.1 

Zum-HR, 108 11.47 -0.3 -3.6 31.7 
Zum-HR, 110 11.55 0.0 -3.4 32.2 
Zum-HR, 112 11.63 0.0 -3.2 37.8 

Zum-HR, 114 11.72 0.3 -3.1 39.2 
Zum-HR, 116 11.80 0.4 -3.3 52.6 
Zum-HR, 118 11.88 0.5 -3.3 48.8 
Zum-HR, 120 11.96 0.5 -3.2 44.9 
Zum-HR, 122 12.04 0.5 -3.1 44.2 
Zum-HR, 124 12.12 -0.3 -3.0 42.1 
Zum-HR, 126 12.20 0.1 -2.7 48.2 
Zum-HR, 128 12.29 0.6 -3.0 43.8 
Zum-HR, 130 12.37 0.7 -3.3 45.0 
Zum-HR, 132 12.45 0.5 -3.1 47.3 
Zum-HR, 134 12.53 0.4 -3.2 37.8 

Zum-HR, 136 12.61 0.6 -3.2 48.2 
Zum-HR, 138 12.69 0.4 -3.3 41.2 
Zum-HR, 140 12.77 0.4 -2.8 33.2 

Zum-HR, 142 12.86 0.7 -3.2 51.2 
Zum-HR, 144 12.98 0.9 -3.4 47.8 
Zum-HR, 146 13.13 1.1 -3.0 51.2 
Zum-HR, 148 13.26 0.7 -3.2 51.4 

Zum-HR, 150 13.43 0.9 -3.2 48.4 
Zum-HR, 152 13.59 0.8 -2.8 41.9 
Zum-HR, 154 13.67 0.8 -3.1 38.7 
Zum-HR, 156 13.83 0.9 -3.3 35.2 

Zum-HR, 158 13.91 0.7 -2.8 48.4 
Zum-HR, 160 13.99 0.9 -3.2 - 
Zum-HR, 162 14.08 0.8 -3.2 30.9 
Zum-HR, 164 14.16 0.5 -3.3 23.5 
Zum-HR, 166 14.24 0.7 -5.3 28.4 
Zum-HR, 168 14.36 0.9 -3.0 50.2 
Zum-HR, 170 14.52 0.9 -2.9 35.0 
Zum-HR, 172 14.69 1.1 -3.0 50.5 
Zum-HR, 174 14.85 1.0 -3.1 4.9 
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6.3 APPENDIX 3: ADDITIONAL DATA FOR CHAPTER 4 

This appendix provides supplementary information for Chapter 4.  Results tables for 

C/N values, n-alkane concentrations, and palynological assemblages are provided for 

all data discussed. 

 

LITHOLOGICAL CORRELATION 

For this lithological correlation, the height of the base of each marker bed was 

measured and the gradient and intercept between these points calculated.  For 

example, the base of bed “1” (Figure 6.3.1) would be measured on both logs, relative 

to zero.  These values would then be plotted as xy co-ordinates, where y = data tied to 

the first log (Claret: L.D., July 2005), and x = data tied to the second log (Claret: R.D., 

June 2011).  The gradient and intercept were then calculated between the base of one 

marker bed and the next using the linear equation (y = mx + c). These data were used 

to normalise heights from Log 2 to Log 1 (Figure 6.3.1).  In total, 165 samples were 

collected for the Claret section over four field seasons (29 in July 2005 by Laura 

Domingo, L.D.; 51 in June 2007 by L.D.; 18 in March 2010 by L.D.; and 67 in June 2011 

by Hayley R. Manners, H.R.M., Tom Dunkley Jones, T.D.J. and Rob Duller, R.D.), with 

two logs created (June 2005 by L.D. and June 2011 by R.D.).  All samples collected prior 

to June 2011 were included on the log of L.D., and those collected in June 2011 were 

included on the log produced by R.D. Samples were collected by L.D. (< June 2010), 

H.R.M. and L.D. (June 2010), and H.R.M. and T.D.J. (June 2011).  Dotted lines indicate 

same horizons on both logs. Letters in Figure 6.2.3 indicate correlative beds as 

described in Table 6.3.1. The marker beds used for the Claret section were the base of 

the Alveolina Beds, the Claret Conglomerate, and the top of a conglomerate further 
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down the section (Table 6.3.1). Below the lower conglomerate (letter “a”; Figure 6.3.2) 

no tie points were recorded so samples were correlated to the lower conglomerate.  In 

addition to using marker beds, where information on sample heights relative to a 

marker bed was known, these were also incorporated.  For example, when a sample 

was known to have been taken 0.2 m below a marker bed, all heights were adjusted so 

that samples started at the stated height.   

 

ANALYTICAL DATA TABLES FOR CHAPTER 4 

Table 6.3.1. Lithological correlation data for the Claret section. Tie point height 1 = 

original log created in July 2005, tie point height 2 = most recent log created in June 

2011.  FAH = First Appearance Height (base) of the marker bed; LAH = Last Appearance 

Height (top) of the marker bed. CC = Claret Conglomerate; A. Limestone = Alveolina 

Limestone. Where no marker beds were present for correlation, the stratigraphically 

closest tie point was used instead. 

 

Lithology/ 
correlative 
beds used 

Tie 
point 
height 
1 (m) 

“FAH” 
1 

“LAH” 
1 

Tie 
point 
height 
2 (m) 

“FAH” 
2 

“LAH” 
2 

Gradient 
and 

intercept 

Letter on 
Figure 
6.3.2. 

CC upper to 
A. Limestone 

35 20.5 55.5 35 26.2 61.2 
m = -1.00 
c = -5.70 

c 

CC thickness 9.5 11 20.5 12 14.2 26.2 
m = 0.45 
c = 8.71 

b 

Lower 
conglomerate 

to CC lower 
base 

7 4 11 11.2 3 14.2 

m = 0.63 
c = 2.13 

a 

Lower 
conglomerate 

thickness 
4 0 4 3 0 3 

Clay to lower 
conglomerate 

Different sampling heights, no tie point   
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Table 6.3.2. Weight percent carbon (wt% C) and nitrogen (wt% N) determined in Claret 
sediment samples.  C/N ratios were calculated throughout the section where possible.  
Where %N was below the instrumental limit of detection, in around half the samples, 

the C/N ratio could not be calculated and is not shown here.  13CTOC data, and wt% C 
for the whole section can be found in the supplementary material of Manners et al. 
(2013) and Appendix 6.1. 
 

Sample 
Height 

(m) 
%C %N C/N Sample 

Height 
(m) 

%C %N C/N 

CLA-I-38 41.3 0.2 0.1 2.8 CLA-I-63 31.0 0.3 0.1 3.6 

CLA-I-39 40.9 0.4 0.1 3.6 CLA-I-64 30.3 0.4 0.1 3.4 

CLA-I-40 40.3 0.1 0.1 1.4 CLA-I-65 28.1 0.2 0.1 2.7 

CLA-I-41 39.6 0.2 0.1 1.7 CLA-I-66 27.8 0.2 0.1 2.6 

CLA-I-42 39.3 0.5 0.1 4.0 CLA-I-69 27.5 0.2 0.1 2.9 

CLA-I-43 38.5 0.2 0.1 2.0 CLA-I-67 27.2 0.2 0.1 3.1 

CLA-I-44 38.0 0.2 0.1 1.8 CLA-I-68 26.7 0.3 0.1 3.7 

CLA-I-45 37.6 0.2 0.1 1.9 CLA-I-61 25.8 0.3 0.1 3.2 

CLA-I-46 37.4 0.2 0.1 2.1 CLA-I-70 21.5 0.2 0.1 2.5 

CLA-I-47 37.0 0.2 0.1 2.2 CLA-I-71 20.8 0.2 0.1 2.2 

CLA-I-48 36.6 0.2 0.1 2.3 CLA-I-72 20.2 0.2 0.1 2.1 

CLA-I-49 36.3 0.2 0.1 2.5 CLA-I-73 18.2 0.3 0.1 4.4 

CLA-I-50 35.8 0.2 0.1 2.8 CLA-I-74 15.9 0.3 0.1 3.2 

CLA-I-51 35.5 0.2 0.1 2.8 CLA-I-75 14.8 0.9 0.1 11.1 

CLA-I-52 35.2 0.3 0.1 3.3 CLA-I-76 14.3 0.4 0.2 2.2 

CLA-I-53 34.6 0.3 0.1 3.9 CLA-I-77 13.3 0.3 0.2 1.5 

CLA-I-54 34.4 0.3 0.1 4.3 CLA-I-78 11.5 0.6 0.2 3.7 

CLA-I-55 34.1 0.5 0.1 6.0 CLA-I-79 10.3 0.3 0.2 2.1 

CLA-I-56 33.8 0.4 0.1 5.3 CLA-I-80 9.8 0.6 0.2 3.5 

CLA-I-57 33.6 0.2 0.1 3.0 CLA-I-81 8.8 0.4 0.2 2.4 

CLA-I-58 33.0 0.4 0.1 4.8 CLA-I-82 7.4 0.8 0.2 4.2 

CLA-I-59 32.3 0.3 0.1 3.4 CLA-I-83 3.1 0.3 0.2 1.5 

CLA-I-60 32.0 0.3 0.1 3.7 CLA-I-84 0.0 0.3 0.2 1.5 

CLA-I-62 31.6 0.2 0.1 2.4 
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Table 6.3.5. Total angiosperm, gymnosperm, pteridophyte, and dinoflagellate cyst 
assemblage counts in samples throughout the Claret section.   Ratios calculated are for 
comparison of marine and terrestrial and relative palynomorph assemblages 
throughout the section.  Cells highlighted in light grey represent samples within the 
CIE, and cells highlighted in dark grey indicate where samples were barren or showed 
evidence of reworking, including dinoflagellate cysts in some samples. 
 

Sample 
name 

Height 
(m) 

A
n

gi
o

sp
er

m
s 

G
ym

n
o

sp
er

m
s 

P
te

ri
d

o
p

h
yt

e
s 

Sp
o

ro
m

o
rp

h
 t

o
ta

l 

D
in

o
fl

ag
el

la
te

 c
ys

ts
 

A
n

gi
o

sp
er

m
 %

 o
f 

to
ta

l 

G
ym

n
o

sp
er

m
 %

 o
f 

to
ta

l 

P
te

ri
d

o
p

h
yt

e 
%

 o
f 

to
ta

l 

Sp
o

ro
m

o
rp

h
s 

%
 o

f 
to

ta
l 

p
al

yn
o

m
o

rp
h

s 
(t

o
ta

l 
p

o
lle

n
 F

ig
u

re
 4

) 

CLA-5-1 62.97 20 0 0 20 0 100 0 0 100 

CLA-5-4 60.08 117 5 2 124 0 94 4 2 100 

CLA-5-5 59.11 14 0 1 15 0 93 0 7 100 

CLA-5-6 58.15 7 3 2 12 0 58 25 17 100 

CLA-5-7 57.18 0 0 0 0 0 0 0 0 0 

CLA-5-8 56.22 17 24 3 44 0 39 55 7 100 

CLA-5-9 55.26 0 0 0 0 0 0 0 0 0 

CLA-5-11 53.33 0 0 0 0 0 0 0 0 0 

CLA-5-13 51.40 72 109 2 183 5 39 60 1 97 

CLA-5-15 49.47 102 56 2 160 2 64 35 1 99 

CLA-6+16 46.43 9 7 0 16 0 56 44 0 100 

CLA-6+14 44.13 20 61 4 85 0 24 72 5 100 

CLA-6+12 42.14 6 10 0 16 0 38 63 0 100 

CLA-6+9 39.15 2 1 0 3 0 67 33 0 100 

CLA-6+6 36.17 1 77 13 91 28 1 85 14 77 

CLA-6+3 33.18 - - - 150 36 0 0 0 81 

CLA-6+1 31.19 4 86 27 117 60 3 74 23 66 

CLA-3-1 18.74 122 35 2 159 0 77 22 1 100 

CLA-3-2 18.42 44 2 0 46 0 96 4 0 100 

CLA-3-3 17.17 24 71 0 95 0 25 75 0 100 

CLA-3-4 16.55 4 15 3 22 0 18 68 14 100 

CLA-3-5 15.92 10 49 1 60 0 17 82 2 100 

CLA-3-8 14.05 28 297 0 325 0 9 91 0 100 

CLA-3-9 13.42 0 0 0 0 0 0 0 0 0 

CLA-3-10 12.80 11 3 4 18 0 61 17 22 100 
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Figure 6.3.1. Schematic of graphical correlation employed.  A) Exemplar logs of the 
same section for correlation. Numbers indicate marker beds used for correlation, with 
dotted lines illustrating how these beds align in independent logs of the same section.  
Letters indicate base of beds used for calculation of gradient and intercept. B) 
Graphical correlation employed using letters from A).  
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Figure 6.3.2. Lithological correlation method employed for the Claret section to 
correlate samples.
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The Palaeocene – Eocene Thermal Maximum (PETM), a hyperthermal event 

that occurred ca. 56 Ma, has been attributed to the release of substantial amounts of 

isotopically light carbon. This release had a major impact on the atmosphere, biosphere, 

and hydrosphere.
 
The amount, duration and mechanism(s) of carbon release are a 

subject of considerable debate, since the magnitude and profile of the Carbon Isotope 

Excursion (CIE), associated with this event, differ between locations on a global scale. 

High resolution organic carbon isotope profiles (
13

CTOC) of six PETM sections in 

northern Spain are presented, spanning a 450 km transect from continental (Claret, 

Tendrui, and Esplugafreda sections) to marine (Campo, Zumaia, and Ermua sections) 

environments. These data represent the highest resolution 
13

CTOC records for these 

sections, and allow for comparison of the magnitude, profile shape, and relative timing 

of the onset of the CIE across a linked sediment routing system. Results indicate that no 

systematic variation in the magnitude of the CIE is recorded between the continental 

and marine realms, and profile shape varies between the sections. This contributes 



PUBLISHED ABSTRACTS 

232 
PUBLICATIONS 

additional understanding regarding the rate and timing of the PETM carbon release, and 

the mode and rapidity of carbon drawdown during the recovery phase.  

The continental section of Claret and the marine section of Zumaia have been 

analysed further using 
13

C values of higher plant-derived n-alkanes to resolve the 

magnitude, profile shape, and onset of the CIE in a localised system. The magnitude of 

the δ
13

Cn-alkane CIE is an agreement with the δ
13

CTOC records at both sections, and is 

similar between sections (Claret ~4‰, Zumaia ~5‰). This contradicts global records 

that suggest a difference in CIE magnitude between the continental organic carbon and 

marine carbonate carbon records (δ
13

C marine 2.5 - 4‰, δ
13

C terrestrial 6 - 8‰; Bains 

et al. 1999; Bowen et al. 2001; Schmitz and Pujalte 2003). This is particularly 

significant when considering that the global discrepancy between records is from sites 

as disparate as the Arctic (Schouten et al. 2007) and the South Atlantic ocean (Zachos et 

al. 2005) with potentially very different influences, whereas the data presented here is 

from within a linked sediment routing system. This data may therefore help to calibrate 

any perceived differences at other sections of the CIE associated with the PETM, which 

in turn would allow for more accurate models of future climate projections.   

Profile shape is important as different profile shapes have been observed 

globally and are intriguing as they may suggest different carbon drawdown methods 

being observed.  At Claret, both δ
13

CTOC and δ
13

Cn-alkane records suggest a box-shaped 

profile, however at Zumaia δ
13

CTOC data suggest a triangular shaped profile, whilst 

δ
13

Cn-alkane data records a box-shaped profile similar to that at Claret. In this localised 

setting, this cannot be explained by different carbon sequestration methods, so instead 

this is interpreted as sediment re-working and alternating continental and marine carbon 

sources, which may be biasing the marine record.  Palynological analyses is being 

conducted at Claret and Zumaia, and used to test this reworking hypothesis at Zumaia, 

both in terms of pollen assemblages throughout the sections, and reworking of older 

more thermally mature sediment being washed in, which may also have an effect on 

profile shape. 

Higher plant-derived biomarker analysis will serve to further test these results, 

which will provide the first data of this type in northern Spain, and could have 

implications for our understanding of the PETM. 
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The Palaeocene - Eocene Thermal Maximum (PETM), a hyperthermal event that 
occurred ca. 56 Ma, has been attributed to the release of substantial amounts of 
isotopically light carbon, affecting the atmosphere, biosphere, and hydrosphere. 
Debate concerning the amount, duration and mechanism(s) of carbon release are 
topical, with the magnitude and profile of the Carbon Isotope Excursion (CIE) 
associated with this event proving pivotal as different records occur globally. 
Continental records generally record a higher CIE magnitude than marine records 
(continental δ13C 6 - 8‰, marine δ13C 2.5 - 4‰)1,2,3. This difference was recently 
proposed to be due to a change in plant communities from mixed angiosperm 
(flowering plants)/gymnosperm (evergreen plants) flora to a predominantly 
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angiosperm flora4,5, believed to be coincident with the onset of the PETM, indicating 
that the continental realm may be recording an artificially large CIE due to a change in 
the plant isotopic fractionation pathway. High resolution organic carbon isotope 
profiles (δ13CTOC) of six PETM sections in northern Spain are presented that span a 
transect from continental (Claret, Tendrui, and Esplugafreda sections) to marine 
(Campo, Zumaia, and Ermua sections) environments. These data represent the highest 
resolution δ13CTOC records for these sections, and allow for comparison of the 
magnitude, profile shape, and relative timing of the onset of the CIE across a linked 
sediment routing system. Results indicate that no systematic variation in the 
magnitude of the CIE is recorded between the continental and marine realms, and 
profile shape varies across the sections, adding further data to debates around the rate 
and timing of the PETM carbon release and the mode and rapidity of carbon 
drawdown during the recovery phase. The continental section of Claret and the marine 
section of Zumaia have been further compared using δ13C values of higher plant-
derived n-alkanes to further constrain the magnitude, profile shape, and onset of the 
CIE in a localised system. Preliminary results for Claret suggest that the continental 
δ13CTOC records a lower magnitude excursion than δ13Cn-alkane data, where 
excursions of up to 8‰ are recorded - one of the largest continental excursions 
recorded to date. In comparison, there is good agreement between the δ13CTOC and 
δ13Cn-alkane records for the marine section of Zumaia, where an excursion of ca. 4‰ 
occurs in both proxies. The apparent enhancement in magnitude of the continental CIE 
is particularly significant, because unlike other sites4, there is no biomarker evidence 
for vegetation change, e.g. the average chain length of the n-alkanes, in either the 
Claret or Zumaia sections. Higher plant-derived biomarker and palynological analysis 
will serve to further test these results, which will provide the first data of this type in 
northern Spain, and could have implications for our understanding of the PETM. 
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The Palaeocene/Eocene Thermal Maximum 
(PETM) occurred approximately 55 Ma, lasting 
for 100 – 200 Kyr, initiating a period of global 
warming, biotic extinction, migration and 
turnover, and fundamental changes in the 
carbon and hydrological cycles

1. 
 Marine and 

terrestrial sediments record the event, however 
discrepancy between the carbon isotope 
excursion (CIE) measured in the two realms has 
been observed (δ

13
C marine 2.5 - 4‰, δ

13
C 

terrestrial 6 - 8‰)
2,3,4

.  Two hypotheses have 
recently been proposed for this discrepancy – 
the “marine modification” and the “plant 
community change” hypothesis

5
.  The plant 

community change hypothesis states that the 
magnitude of the CIE is greater in the terrestrial 
realm owing to major changes in floral 
composition during the PETM, from mixed 
angiosperm (flowering plants)/gymnosperm 
(conifers) flora to a predominantly angiosperm 
flora 

5,6
.  To date, evidence for the plant 

community change hypothesis has been 
observed in North America

5
 and the Arctic

6
.  

Presented here are preliminary results from 
eight sections in Northern Spain spanning the 
Palaeocene/Eocene boundary.  Sections from 
(East to West) Claret, Tendrui, Esplugafreda, 
and Berganuy represent the terrestrial realm; La 
Cinglera and Campo a shallow marine setting, 
and Zumaia and Ermua a deep marine 
environment.   
High resolution section sampling enabled the 
onset of the CIE at all sections to be assessed in 
more detail than previously reported. Total 
organic carbon (TOC) δ

13
C along this transect 

illustrate that the CIE associated with the PETM 

varies in magnitude between ca. 2 and 5‰; 
however there appears to be no correlation 
between magnitude and depositional 
environment.  Preliminary results from 
compound specific carbon isotope analysis of 
higher molecular weight n-alkanes at Claret 

follow a similar trend to TOC δ
13

C data at this 
site (see Fig.1).  However, the results suggest 
that the bulk δ

13
C records a lower magnitude 

excursion than the n-alkane data where 

excursions of up to 8‰ are being found. This 
apparent enhancement in the magnitude of CIE 
is particularly significant when results for 
average chain length (ACL) are considered, as 
thus far, no change in ACL has been recorded 
for the Claret section.  This could suggest that 
there is no appreciable reconfiguration of 
terrestrial higher plant biota coincident with the 
PETM at the Claret site, which would indicate 
that the plant community change is not 
responsible for overestimation of the CIE in the 
terrestrial realm. 
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The Palaeocene/Eocene Thermal Maximum (PETM) occurred approximately 55 Ma, 
lasting for 100 – 200 Kyr, initiating a period of global warming, biotic extinction, 
migration and turnover, and fundamental changes in the carbon and hydrological 
cycles1.  Marine and terrestrial sediments record the event, however discrepancy 
between the carbon isotope excursion (CIE) measured in the two realms has been 
observed (δ13C marine 2.5 - 4‰, δ13C terrestrial 6 - 8‰)2,3,4.  Two hypotheses have 
recently been proposed for this discrepancy – the “marine modification” and the “plant 
community change” hypothesis5.  The plant community change hypothesis states that 
the magnitude of the CIE is greater in the terrestrial realm owing to major changes in 
floral composition during the PETM from mixed angiosperm (flowering 
plants)/gymnosperm (conifers) flora, to a purely angiosperm flora 5,6.  To date, the plant 
community change hypothesis has been tested in North America and the Arctic.  
Presented here are preliminary results from eight sections in Northern Spain spanning 
the Palaeocene/Eocene boundary.  The sections from East to West are Claret, 
Tendrui, Esplugafreda, and Berganuy in the terrestrial realm, La Cinglera and Campo, 
which collectively represent a shallow marine setting, and Zumaia and Ermua, which 
are deep marine sections.   
 
Total organic carbon (TOC) δ13C along this transect illustrate that the CIE associated 
with the PETM varies in magnitude between ca. 2 and 5‰; however there appears to 
be no direct link between magnitude and depositional environment.  Furthermore, due 
to the high resolution nature of the δ13C data, the onset of the CIE at all sections can 
be assessed in more detail than could previously be achieved from the carbonate 
isotope record.  Preliminary results from compound specific carbon isotope analyses of 
higher molecular weight n-alkanes from all 8 sections appear to support the bulk δ13C 
data. However, the results suggest that the bulk δ13C records a lower magnitude 
excursion than the n-alkane data in the northern Spain PETM sections, as excursions 
of up to 8‰ are being found in the n-alkane δ13C data.  This apparent enhancement in 
the magnitude of CIE is particularly significant when considering the average chain 
length results, as thus far they record no observable change in those sections 
analysed. This could suggest that there is no appreciable reconfiguration of terrestrial 
higher plant biota coincident with the PETM across Northern Spain, indicating that plant 
community change is not responsible for overestimation of the CIE in the sections 
analysed.  
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The Palaeocene/Eocene Thermal Maximum (PETM) occurred approximately 55 Ma 

ago, lasting for 100 – 200 Kyr, initiating a period of global warming, biotic extinction 

and migration, and fundamental changes in the carbon and hydrological cycles (Bowen 

et al. 2006). During the PETM it is estimated that 4500 Gt of carbon was released into 

the environment, causing global temperature rises of up to 9°C (Bowen et al. 2006), 

comparable to that released if the entire fossil fuel resource base was burned (Smith et 

al. 2007), thus understanding this event is of significant topical importance. The most 

widely accepted theory as to how the event occurred remains the release of methane 

hydrates, which were subsequently oxidised to carbon dioxide. Marine and terrestrial 

sediments record the event, however discrepancy between the carbon isotope excursion 

(CIE) measured in the two realms has been observed (δ
13

C marine 2.5 to 4 ‰ 

difference, as compared to 6 to 8 ‰ difference for terrestrial δ
13

C).  Two hypotheses 

have recently been proposed for this discrepancy – the “marine modification” and the 

“plant community change” hypothesis (Smith et al. 2007). The plant community change 

hypothesis states that the true magnitude of the CIE is overestimated in the terrestrial 

realm owing to major changes in floral composition during the PETM from 

gymnosperms (conifers) to angiosperms (flowering plants) (Smith et al. 2007; Schouten 

et al. 2007). This hypothesis will be tested as angiosperms in the present day are known 

to be ca. 2.5 – 6 ‰ more depleted in 
13

C than conifers; if the same discrimination 

occurred in Palaeocene-Eocene vegetation then the records would be in agreement. To 

date, the plant community change hypothesis has been tested in North America and the 

Arctic. I will test the hypothesis across a terrestrial to marine transect in Northern Spain. 

A series of n-alkanes will be extracted and analysed, to measure the average chain 

length and δ
13

C, also biomarkers characteristic of the different types of flora during the 

event will be measured to determine whether a change in the dominant flora occurred.  
Bowen G. J., et al., 2006. Eos: Transactions of the American Geophysical Union, vol. 87: 165 – 169.  
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The Palaeocene/Eocene Thermal Maximum (PETM) occurred approximately 55 
Ma, lasting for 100 – 200 Kyr, initiating a period of global warming, biotic 
extinction and migration, and fundamental changes in the carbon and 
hydrological cycles 1. During the PETM it is estimated that 4500 Gt of carbon 
was released into the environment, causing global temperature rises of up to 

9C 1, comparable to that released if the entire fossil fuel resource base was 
burned 2, thus understanding this event is of significant topical importance.  The 
most widely accepted theory as to how the event occurred remains the release 
of methane hydrates, which were subsequently oxidised to carbon dioxide.  
Marine and terrestrial sediments record the event, however discrepancy 
between the carbon isotope excursion (CIE) measured in the two realms has 
been observed (δ13C marine 2.5 - 4 ‰, δ13C terrestrial 6 - 8 ‰).  Two 
hypotheses have recently been proposed for this discrepancy – the “marine 
modification” and the “plant community change” hypotheses 2.  The plant 
community change hypothesis states that the true magnitude of the CIE is 
overestimated in the terrestrial realm owing to major changes in floral 
composition during the PETM from gymnosperms (conifers) to angiosperms 
(flowering plants) 2, 3.  This hypothesis will be tested as angiosperms in the 
present day are known to be ca. 2.5 – 6 ‰ more depleted in 13C than conifers; if 
the same discrimination occurred in Palaeocene-Eocene vegetation then the 
records would be in agreement.  To date, the plant community change 
hypothesis has been tested in North America and the Arctic. I will test the 
hypothesis across a terrestrial to marine transect in Northern Spain. A series of 
n-alkanes will be extracted and analysed to measure the average chain length 
and δ13C, also biomarkers characteristic of the different types of flora during the 
event will be measured to determine whether a change in the dominant flora 
occurred. 
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