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Abstract By combining an adiabatic approach based on a
‘locally monochromatic’ approximation with a local Hilbert
transform, it is demonstrated how vacuum birefringence in
the strong field regime can be calculated using a rate approach
suitable for Monte Carlo simulation codes. Results for the
flipping of the photon’s polarisation (helicity) are bench-
marked with evaluation of exact expressions in a circularly
(linearly) polarised plane wave of finite extent. For the cir-
cularly polarised case, the Heisenberg–Euler approach pre-
dicts a null result; an approximation similar to the ‘locally
constant’ form is presented, which recovers the correct low-
energy scaling. Example probabilities are given for typical
experimental parameters.

1 Introduction

A long-predicted phenomenon of quantum electrodynamics
is that a photon propagating through an intense electromag-
netic field can flip its polarisation state due to interaction with
the field through an intermediate electron-positron pair. The
analogy is often made of a quantum vacuum that is polaris-
able in a similar fashion to a nonlinear optical material: polar-
isation flipping is then a signal of ‘vacuum birefringence’.
If the intense polarising field is a plane wave, the intensity
parameter, ξ , acts as the coupling of the charges to the back-
ground. At low intensities, ξ � 1, the leading contribution
to vacuum birefringence is from four-photon scattering [1–
5]. In this regime, there is now evidence [6] from polari-
sation measurements of strongly magnetised neutron stars
that vacuum birefringence has been observed, and the STAR
collaboration has reported that angular modulation of the
linear Breit–Wheeler pair creation yield in ultra-peripheral

a e-mail: b.king@plymouth.ac.uk (corresponding author)
b e-mail: theinzl@plymouth.ac.uk
c e-mail: tom.blackburn@physics.gu.se

heavy-ion collision experiments can be interpreted as a con-
sequence of vacuum birefringence [7,8]. When ξ � O(1), a
perturbative approach is no longer sufficient to describe vac-
uum birefringence and all orders of the interaction between
the virtual pair and the background field must be taken into
account. If the strong field parameter χ � 1, an effective
approach based on the Heisenberg–Euler Lagrangian [9–11]
in which the fermionic fields have been integrated out, can
be used to calculate polarisation flipping. However, in the
region of strong fields, χ � O(1), such an effective approach
is no longer accurate as a significant proportion of the prob-
ability corresponds to the photon transforming into a real
electron-positron pair before annihilating back into a pho-
ton. This is the parameter regime of interest in the current
paper; propagators in fermion loops must be replaced by
those ‘dressed’ in the background field, describing the all-
order interaction with the charges, as described in the Furry
picture [12–18]. Such a parameter regime may be probed by
scattering experiments combining a conventionally acceler-
ated electron beam with high intensity lasers (such as at E320
[19] and LUXE [20,21]), or indeed in an ‘all-optical’ set-up
using laser-wakefield acceleration at the newest generation
of high-power lasers [22].

The standard approximation framework to describe strong-
field phenomena, based on the locally constant field approxi-
mation (LCFA) [23–26] is also known to fail at some point in
this regime; we will see this occurs at centre-of-mass energies
where pairs can be created by the linear Breit–Wheeler pro-
cess. In contrast, we will show that a locally monochromatic
approximation (LMA) [27] can be defined and remains accu-
rate over the full energy spectrum. (For more background, we
direct the reader to recent reviews of strong-field QED [28–
30] and vacuum polarisation in macroscopic fields [31,32].)

To illustrate the challenge in deriving a local approxima-
tion to photon polarisation flipping, consider the amplitude
for a flip from linear polarisation state |1〉 to |2〉 in a circularly-
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polarised background. If one defines photon helicity states
|±〉 = (|1〉 ± i |2〉)/√2, and rewrites the amplitude using
these states, the relationship follows, that:

Scp
12 = 〈1|Scp|2〉 = i

2

[
Scp

++ − Scp
−−

]
. (1)

i.e. the real part of the amplitude for polarisation flip from |1〉
to |2〉 in a circularly polarised background is related to the
imaginary part of the difference in ‘no flip’ amplitudes for a
photon in a helicity eigenstate. From the optical theorem, it
follows that:

2 ImScp
j j = Pcp

j→e+e− , (2)

wherePcp
j→e+e− is the probability of nonlinear Breit Wheeler

pair creation from a photon in polarisation state | j〉. There-
fore ReScp

12 can be calculated using well-established meth-
ods for pair creation e.g. the locally monochromatic approx-
imation itself. However, calculating ImScp

12 is challenging
because it involves the ‘off-shell’ contribution (i.e. the part
that does not correspond to real pair creation) from the
electron-positron propagator and converges very slowly in
the transverse momentum integral (it can be done analytically
in the locally constant case). Here we will demonstrate one
can use a ‘local’ once-subtracted Hilbert transform to relate
the imaginary i.e. difficult to calculate part of the amplitude
to the real i.e. straightforward to calculate part:

ImScp
12[ξ, η] = η

π
PV

∫
dη′ 1

η′
ReScp

12[ξ, η′]
η′ − η

, (3)

where PV is a principal value prescription, η is the energy
parameter to be defined and ξ = ξ(ϕ) is the local intensity
of the background in a way to be specified in the following.
Therefore, by just using the knowledge of Pcp

j→e+e−(ξ, η),
one can derive the full amplitude for polarisation flipping.
Here, we extend recent work on applying the Hilbert trans-
form within the locally constant field approximation [33],
which is insufficient for the entire parameter regime, to the
locally monochromatic approach. We will assess the suc-
cess of the approximation by comparing with calculations
for photons scattering off plane waves of finite longitudinal
extent [15,16]. In the current paper, we will apply the ideas
of Hilbert transforming to these plane-wave backgrounds of
finite duration and thereby extend the ideas suggested by Toll
in the 1950 s [34] for static constant crossed fields, to back-
grounds more relevant for upcoming and future experiments
[35–39].

2 Plane wave pulse background

We consider a photon of momentum � and polarisation ε�

scattering into a state with momentum �′ and polarisation
ε′
�′ in a plane wave background, as illustrated in the labelled

Fig. 1 Leading-order contribution to polarisation flipping

diagram in Fig. 1. The background is a = eA, where a =
a(ϕ), A is the vector potential, −e < 0 is the electron charge
(e > 0), and the phase ϕ = 	 · x with 	2 = 0. Due to
the special kinematics in a plane wave background, which
conserves transverse and lightfront momenta, if the photon
remains on-shell i.e. �2 = 0 and �′2 = 0, it follows that
� = �′.

The (unrenormalised) probability can be written as:

P =
∣∣∣∣

α

(4πη)2

∫
dφ dθ

dr⊥ds
s(1 − s)

(θ)T exp i

ϕx∫

ϕy

π̄2
�

2	 · l dφ

∣∣∣∣
2

,

(4)

whereT is the result of evaluating the fermion trace, s ∈ [0, 1]
is the lightfront momentum fraction of the virtual positron of
momentum q i.e. s = 	 · q/	 · �, the transverse momentum
variable r⊥ = [sp⊥ − (1− s)q⊥]/m where m is the electron
mass andp⊥ (q⊥) is the electron (positron) momentum trans-
verse to the wave-vector 			. The phase variables are the aver-
age, φ = (ϕx +ϕy)/2, and difference, θ = ϕx −ϕy , in phase
positions of each of the vertices. The momentum appearing
in the nonlinear exponent can be written π̄l = πp+π̃q where
the electron πp and positron π̃q kinetic momenta are the clas-
sical momenta solving the Lorentz equation in a plane wave,
i.e.,

πp = p − a + 	

(
p · a
	 · p − a2

2 	 · p
)

;

π̃q = q + a − 	

(
q · a
	 · q + a2

2 	 · q
)

. (5)

We note that the nonlinear exponent in Eq. (4) is exactly the
nonlinear Breit–Wheeler exponent in a plane-wave [26], and
its complex conjugate is exactly the exponent in nonlinear
one-photon pair-annihilation [40]. The expression for T is
simplified if one writes photon polarisation vectors e� in a
lightfront basis, i.e. satisfying 	 · e� = 0:

e�, j = ε j − � · ε j

� · 	
	. (6)

where j ∈ {1, 2} and 	 · ε j = 0. The trace term can then be
written as:

T = −ε · ε′∗ (a − a′)2

s(1 − s)

+2(1 − 2s)2

s(1 − s)
(a · ε − s r · ε)

(
a′ · ε′∗ − s r · ε′∗)
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− 2

s(1 − s)

(
a · ε′∗ − s r · ε′∗) (

a′ · ε − s r · ε
)
, (7)

where the potential evaluated at the two vertices is written
as a = a(ϕx ) and a′ = a(ϕy). (A surface term of the form
of the derivative of the exponent has also been removed via
partial integration as is standard in plane-wave calculations.)
The transverse momentum integral in r⊥ can be performed
analytically and the final expression must be regularised to
remove the field-free divergence due to charge renormalisa-
tion. One finds the probability

P =
∣∣∣∣
α

η
[I (a) − I (0)]

∣∣∣∣
2

,

with:

I(a) = 1

8π

∫
dφ

dθ

θ
ds (θ) exp

{
i
iθ [μ(θ)]

2ηs(1 − s)

}

{
−εεε · εεε′∗

[
(a − a′)2

s(1 − s)
+ 8is(1 − s)η

θ

]

+2(1 − 2s)2

s(1 − s)
(a · εεε − 〈a〉 · εεε) (

a′ · εεε′∗ − 〈a〉 · εεε′∗)

− 2

s(1 − s)

(
a · εεε′∗ − 〈a〉 · εεε′∗) (

a′ · εεε − 〈a〉 · εεε)
}
,

(8)

where the normalised Kibble mass squared is:

μ(θ) = 1 − 〈a〉2 + 〈a2〉,
and the phase window average,

〈 f 〉 = θ−1
∫ φ+θ/2

φ−θ/2
f (x)dx

has been used. (For the ‘flip’ amplitude, where εεε′∗ · εεε = 0, it
was shown in [15,41] that the lightfront momentum integral
over s can also be performed to acquire an even more compact
expression.)

Here, we will be interested in the probability for polari-
sation flip, for which I(0) = 0. For the photon polarisation
in Eq. (6), we will use a linear polarisation basis of the form:
εεε j = (δ j1, δ j2, 0) in the lab frame for j ∈ {1, 2}. For the
helicity basis, we choose: εεε± = (εεε1 ± iεεε2)/

√
2.

We refer to the ‘amplitude’ as the quantity that occurs in
the probability as a square. For example the amplitude for
linear polarisation flip in a circularly polarised background,
Scp

12 is related to the flip probability via:

Pcp
12 =

[
Re

(
Scp

12

)]2 +
[
Im

(
Scp

12

)]2
.

(This simple relation follows as the collision is completely
elastic and the outgoing momentum integral is trivial.)

3 Circularly polarised background

This is an interesting background to consider, because
naïve application of the locally constant field approximation
(LCFA) and Heisenberg–Euler approaches would predict
that the vacuum is not birefringent in a circularly-polarised
background, when in fact it is. This is straightforward to
understand: there is a dependence on the helicity state of
a photon creating a pair via nonlinear Breit–Wheeler in a
circularly-polarised background, and therefore if we use the
Optical Theorem from Eq. (1), photon propagation in such a
background should be different for different helicities. It is
perhaps unsurprising that the LCFA and Heisenberg–Euler
approaches fail in a circularly-polarised background since
they are both based on constant field solutions and there-
fore cannot resolve how the background polarisation vector
rotates with phase.

A circularly-polarised background is relevant to experi-
ments since it is the linear polarisation of photons that flip in
this background, which is the easier polarisation state to mea-
sure in experiment (compared to helicity states). For exam-
ple, the glueX experiment has measured the linear polarisa-
tion of ∼ O(10) GeV photons to a sensitivity ∼ O(1)% level
using the linear trident process [42], and there have been sug-
gestions for measuring the linear polarisation of GeV pho-
tons using pair polarimetry [43] through the Bethe-Heitler
process.

How naïve application of the LCFA fails is not com-
pletely trivial. Let us define the circularly-polarised plane
wave background using the potential:

aμ(ϕ) = mξg(ϕ)√
2

[
ε
μ
−eiϕ + ε

μ
+e−iϕ

]
, (9)

where g(ϕ) is only non-zero for ϕ ∈ [0,�]. Plugging this
into Eq. (8) for the polarisation flip |1〉 → |2〉, and expanding
in θ in the usual way, one acquires a final integral of the form:

Icp,lcfa(1)
12 =

∫
dφds

F(φ)

z

[
Gi′(z) + iAi′(z)

]

F(φ) =
[
g2(φ) − g′2(φ)

]
sin 2φ + 2g(φ)g′(φ) cos 2φ

g2(φ) + g′2(φ)

z =
[
ξηs(1 − s)

√
g2(φ) + g′2(φ)

]−2/3

, (10)

where Ai and Gi are the Airy and Scorer functions respec-
tively [44]. The integral is not identically zero, but is very
close to it in all physically interesting cases. For example, one
expects g′(φ)/g(φ) ∼ 1/� where � � 1 is the phase dura-
tion of the pulse. In the limit of g′(φ)/g(φ) → 0, the inte-
gral is identically zero because the remaining φ-dependent
term, sin 2φ, is integrated over an integer number of cycles.
Another way of showing the LCFA fails in a circularly-
polarised background is to consider the arguments in the
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introduction: the probability of pair-creation from a photon
in a helicity eigenstate in a circularly-polarised background
is practically independent of its helicity in the LCFA (but not
the LMA) [45]. Therefore, by combining Eqs. (1) and (2) we
see that the amplitude must also be effectively zero.

However, it is actually possible to derive an LCFA-like
rate for a circularly polarised background, by using the next
highest term in the θ expansion. This turns out to be free of
oscillating phase factors. We find that:

Icp,lcfa(2)
12 = −η

6

∫
dφds z f (s)

[
Ai(z) + i

(
Gi(z) − 1

π z

)]

(11)

where f (s) = 1 − 2s(1 − s). The weak-field limit, χ � 1,
of the probability then becomes:

Pcp,lcfa(2)
12 =

[
2α

315πη

(
η

∫
χ2(φ)dφ

)]2

. (12)

(The 1/η flux factor has been deliberately retained to empha-
sise the appearance of η in the numerator.) We refer to the
result as ‘LCFA-like’ because it is not an integral over the
rate in a locally constant field, but it is assuming a short phase
formation length.

To show how the Heisenberg–Euler approach fails, recall
that the weak-field Lagrangian can be written [46]:

Lwf = c2,0S
2 + c0,2P

2, (13)

with S = −FμνFμν/4 and P = −F̃μνFμν/4 and c2,0, c0,2

being constant. The scattering amplitude is then given by
S = −i

∫
d4xLwf. One finds the leading contribution to the

two electromagnetic invariants is of the form:

S ∼ ε · ε+ ε′ ∗ · ε− + ε · ε− ε′ ∗ · ε+;
P ∼ (εεε ∧ εεε+)3

(
εεε′ ∗ ∧ εεε−

)
3 + (εεε ∧ εεε−)3

(
εεε′ ∗ ∧ εεε+

)
3 (14)

i.e. for ε = ε1 and ε′ = ε2, these invariants are insensi-
tive to flipping the helicity of the background ε± → ε∓.
This means that the Heisenberg–Euler approach would pre-
dict that Scp

++ = Scp
−−, from which it would follow that

Scp
12 = Scp

21 = 0, which, we will see, is incorrect. This
also follows from the arguments given in Affleck [47]. The
prediction that the vacuum is monorefringent in a circularly
polarised wave is likely rectified when derivative corrections
are included [48–50]; the analysis of the LCFA suggests that
all orders of derivative corrections would be required for
an accurate prediction. Indeed, from Eq. (12) we find that
the low-energy scaling is ∼ η4ξ4, whereas for Heisenberg–
Euler, the low-energy scaling is with ∼ η2ξ4 [15].

In contrast, an LMA does capture vacuum birefringence in
circularly polarised backgrounds. This is because it includes
the ‘fast’ timescale of the carrier frequency exactly, and only
locally expands the ‘slow’ timescale carrier envelope. The

LMA can be derived from Eq. (4) inserting Eq. (7) and spec-
ifying to the current case. The key point is that the nonlinear
exponent, which prescribes the kinematics, can be written as

exp

[
i
∫ ϕx

ϕy

π̄2
�

2	 · l dφ

]
= exp

{
i

[
θ(1 + r⊥ 2 + ξ2〈g2〉)

2ηs(1 − s)

]}

× exp
{
i z̄

[
sin(ϕy + φ0) − sin(ϕx + φ0)

]}
(15)

where r⊥ = r(cos φ0,− sin φ0), z̄ = ξgr/[ηs(1 − s)] and
the fast timescale is rewritten as a sum over integer harmonics
using a Jacobi-Anger expansion e.g.:

e−i z̄ sin(ϕ+φ0) =
∞∑

n=−∞
Jn(z̄)e

−in(ϕ−φ0),

with Jn(z̄) a Bessel function of the first kind. In this Fourier-
transformed version, the phase integral can be performed ana-
lytically and swapped for the harmonic sum, which is often
simpler to compute (more details can be found in [27]). A
direct calculation of the LMA from Eq. (4) faces the obstacle
of the (θ) term which ensures ϕy > ϕx . A consequence is
that the r⊥ integral no longer yields a simple delta-function as
it does in first-order tree-level processes, but rather a principal
value part, which is slowly convergent. Instead, we use the
strategy explained in the introduction combining Eqs. (1) and
(2) with the LMA rate for photon-polarised nonlinear Breit–
Wheeler pair-creation available from [45,51]. The Hilbert
transform to calculate the imaginary part of the amplitude
from this is performed once, over a range of η for fixed ξ

to create a reference table, which is then called and inte-
grated locally over the pulse envelope whenever required. In
other words, ImScp

12[ξ, η] is a numerical function generated
from a logarithmic interpolation of the Hilbert transform of
the LMA for pair-creation. Here, we use the once-subtracted
form from Eq. (3); explicit details for the numerical method
can be found in [33].

We compare the LMA and LCFA-like approximations for
the probability of linear polarisation flipping in a circularly
polarised background with a calculation of the direct plane-
wave result in Eq. (8). The envelope function is chosen to
be:

g(φ) = sin2
(

φ

2N

)
; 0 < φ < 2πN , (16)

and g(φ) = 0 otherwise. In Fig. 2 the predicted probability is
compared for ξ = 1 and N = 4. We note that, although the
virtual and real pair contributions vary significantly, the total
curve remains rather smooth over the range ofη. Although the
number of cycles, N is not very large, there is good agreement
with the low-energy, weak-field as well as the high-energy
limit, and the changing of sign of the virtual part is also
well-captured by the LMA. In general, the accuracy of the
‘virtual part’, which is generated from the Hilbert transform,
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Fig. 2 Probability of linear polarisationflipping in a 4-cycle circularly
polarised background with sine-squared envelope at ξ = 1. Solid lines
are the plane-wave result Eq. (8), long dashed lines are the LMA and
short dashed lines are the LCFA-like approximation. The asymptotic
χ → 0 behaviour of the LCFA-like result is indicated (here, κ =
(2α/105)2). The edges of the harmonic ranges, n, for pair creation are
indicated

is affected by the number of data points and range of ener-
gies integrated over (see e.g. [33]). In contast, the LCFA-like
approximation misses the harmonic structure, and becomes
inaccurate for energies beyond the threshold for linear Breit–
Wheeler.

When χ is increased above χ ≈ 1, we notice the contri-
bution from creation of real pairs becomes a significant part
of the probability for polarisation flipping and the virtual
part changes sign close to where pair creation is a maximum.
When the energy parameter is further increased past the point
where the threshold for pair creation is already reached by a
single laser photon (n = 1), i.e. by the linear Breit–Wheeler
process, the importance of real pair creation then falls again.
If the energy parameter is raised still further, eventually pair
creation becomes important again.

4 Linearly polarised background

The benefit of considering this background is that the plane-
wave results can be compared to the LCFA and Heisenberg–
Euler approximations. One can thus identify at what point
they deviate from the exact result and where a more accurate
approximation, such as the LMA, would be required.

We define a linearly-polarised plane-wave pulse through
the potential:

aμ(ϕ) = mξg(ϕ)ε
μ
1 cos ϕ, (17)

with the envelope g(ϕ) given by the sine-squared shape used
in the previous section in Eq. (16).

The LCFA for polarisation flipping [12,13,15] can be writ-
ten as:

Slp,lcfa
+− = − α

2η

∫
dφ

∫ 1

0
ds

Gi′ [z(φ)] − iAi′ [z(φ)]

z(φ)
; (18)

where z(φ) = [s(1 − s)χ(φ)]−2/3 is a redefinition in this
section of the Airy function argument for a linearly polarised
background used in Eq. (10) for a circularly polarised back-
ground and the potential a = mξ f(φ), for which one has
χ(φ) = ξη[f ′(φ) · f ′(φ)]1/2. A quick sanity check can be
made, by combining the arguments in Eqs. (1) and (2) for a
linearly-polarised background to show that:

ImSlp,lcfa
+− = 1

4

(
Plp

1→e+e− − Plp
2→e+e−

)
, (19)

and comparing with literature values for pair-creation in the
LCFA from a polarised photon [26].

To arrive at the Heisenberg–Euler result, one need only
perform a small-χ expansion of Eq. 18. Noting the asymp-
totic relation for x → ∞ [52]

Gi′(x) ∼ − 1

πx2

∞∑
n=0

(3n)!
3nn! (1 + 3n)x−3n,

it follows that for small χ :

Slp,lcfa
+− ≈ α

2πη

∞∑
n=0

(3n)!
3nn! (1 + 3n)B2n+3,2n+3

∫
dφχ2(n+1)(φ),

(20)

where B is the Beta function (Bx,y = �(x)�(y)/�(x +
y)) and � is the gamma function [53]). The leading-order
term gives the weak-field Heisenberg–Euler (HE) result for
a plane-wave background [15,36]:

Slp,HE
+− = − α

60πη

∫
dφχ2(φ). (21)

Note that the n ≥ 1 terms from Eq. (20) cannot be repro-
duced by the weak-field Heisenberg–Euler approach without
derivative corrections. Consider the incoming photons to be
part of a beam with an intensity parameter ξp. Then one finds
that the electromagnetic invariants are symmetric in ‘probe’
and background parameters, e.g. S has the form:

S ∼
(
ξ

	

m

)
·
(

ξp
�

m

)
= χξp. (22)

This is because both probe and background are plane waves
so the invariants S and P vanish identically for each com-
ponent independently and only the cross-terms of probe and
background survive. To generate higher powers of χ in this
approach would require higher powers of the invariants S and
P , and the incoming ‘probe’ field would enter as a higher
power, which is clearly not the case in Eq. (20). This makes
sense: in the plane-wave calculation the probe field is quan-
tised and treated perturbatively, with only the leading order
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Fig. 3 Probability of helicity flipping in a 4-cycle linearly polarised
background with sine-squared envelope at ξ = 1 (top); ξ = 2.5
(middle) and ξ = 10 (bottom). In the bottom plot, long-dashed lines
are the LMA, and short-dashed lines are the LCFA. (Plotting scheme
as in Fig. 2, with the full kinematic region of linear Breit–Wheeler,
2 < η < 2(1 + ξ2/2), being highlighted.)

term appearing in the interaction with the classical back-
ground included to all orders (in ξ ). Contrast this with the
Heisenberg–Euler approach, in which the probe enters in the
same way as the background F = Fprobe + Fbackground with
the requirement that the invariants S and P be ‘slowly vary-
ing’ [54].

We compare the LMA for the probability of helicity flip-
ping in a linearly polarised background with a calculation
of the direct plane-wave result in the top two plots of Fig. 3
(for ξ = 1 and ξ = 2.5 respectively). Comparing the two fig-

ures, one sees that the weak-field Heisenberg–Euler approach
agrees well with the low-χ limit of the full plane-wave result,
but clearly and crucially does not include the nonlinearity
associated with the strong-field interaction. The LCFA agrees
with the exact result when the energy parameter is lower than
the threshold for linear Breit–Wheeler.

At energies around and above the first harmonic, the
LCFA has the wrong scaling. To see this, one must take into
account that the full kinematic range of linear Breit–Wheeler
in a pulse must include the fact that ξ(φ) varies between
0 < ξ(φ) < ξ , giving the range 2 < η < 2(1+ξ2). This fail-
ure of the LCFA is consistent with its well-known limitations
in describing nonlinear Compton scattering [24,25,55] and
nonlinear Breit–Wheeler pair-creation [56,57] for parame-
ters where the process can proceed by the linear, perturbative
channel. The inapplicability of the LCFA for describing vac-
uum polarisation in the high energy limit was also pointed
out in papers studying the Ritus–Narozhny conjecture at high
energy [58,59]: here, we see at which point the LCFA begins
to diverge from the exact result. In contrast, the LMA has the
correct scaling in both the low- and high-energy limit, and
captures oscillation of the rate around the lower harmonic
positions, as well as anomalous dispersion in the virtual con-
tribution.

Since the LMA has been benchmarked favourably with
the plane-wave calculation, in the bottom plot of Fig. 3, we
compare the LMA with the LCFA for ξ = 10, where a
direct plane-wave calculation would be numerically time-
consuming. We notice that harmonic structure is pushed to
very high energy parameters and that, although the LCFA
agrees very well with the LMA for the contribution from
real pairs, it does not exactly reproduce the sign change in
the virtual part. We also notice the LCFA begins to diverge
from the LMA again in the kinematic range for the linear
Breit–Wheeler process, but towards end of the range, where,
at this large value of ξ , the flip probability is actually higher
than at the high-energy end of the kinematic range.

5 Discussion

A natural question is how to correctly include strong-field
photon polarisation flipping in Monte Carlo simulations.
Some approaches [36,60] employ a vacuum refractive index;
the real part is used to describe polarisation flip and the
imaginary part is used to describe a depletion in the photon
number (photon ‘absorption’ through real pair creation). This
approach works in the low energy regime because although
the contribution from virtual pairs to polarisation flipping is
power-law suppressed, the contribution from real pair cre-
ation, because of the mass gap, is exponentially suppressed.
So in this case, it is a good approximation that only vir-
tual pairs contribute to polarisation flipping and real pairs to
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Fig. 4 For helicity flipping in a head-on collision with a linearly-
polarised plane-wave background. R is the ratio of the contribution
to due to real pair creation compared to virtual pairs. (The curves were
calculated using the LCFA.)

photon depletion. However, it is clear that both the real and
imaginary parts contribute to polarisation flip when χ � 1,
and so the refractive index approach is not applicable here.
It is also clear that when sufficient pairs are created, the pair
plasma would generate a current that significantly modifies
the photon wavefunction beyond including just a vacuum
refractive index (see e.g. [61]). To estimate the parameters
where the contribution to photon helicity flipping from real
pair creation is significant, we can use the LCFA to com-
pare the ratio at high ξ . In Fig. 4 we see that at ξ = 20, as
has been achieved at e.g. Astra-Gemini [62] and is planned
for e.g. the LUXE experiment [20,21], already at 4 GeV, the
contribution from real pairs is 10%, and at 15 GeV 100% of
the contribution from real pairs.

To experimentally verify strong field vacuum birefrin-
gence, one would ideally combine a partially polarised
narrow-band source of high-energy photons with a high
intensity laser and a sensitive gamma polarimeter. Exam-
ples of such photon sources include inverse Compton scat-
tering and coherent bremsstrahlung; both of these have been
suggested to be used in the LUXE experiment [20,33]. To
give an indication of the required sensitivity for experiment,
in Fig. 5 we plot the flip probability for a head-on collision
of a photon with a circularly or linearly polarised optical
plane-wave pulse at various photon energies. The relation-
ship between the full-width-at-half-maximum pulse dura-
tion, T , the number of cycles N , and the wavelength is:
T [fs] ≈ Nλ[nm]/800; in Fig. 5, N = 32 and λ = 800 nm,
resulting in T ≈ 32 fs. For N � 1, the flipping probability
scales approximately linearly with N . (The four energies cho-
sen, correspond to η ∈ {0.06, 0.12, 0.24, 0.48}; so a 10 GeV
photon colliding head-on with a frequency-doubled pulse of
wavelength λ = 400 nm, would have a flip probability on the
20 GeV line.)

One advantage of the LMA is that it predicts the correct
scaling of polarisation flipping at very high energies in con-
trast to the LCFA. At high values of the χ parameter, based

Fig. 5 The solid lines give the probability for a polarisation flip (left
plot) or helicity flip (right plot) for a head-on collision of a photon of
indicated energy with a 32-cycle pulse of wavelength 800 nm (1.55 eV)

and circular polarisation (left plot) and linear polarisation (right plot).
Dashed lines are the probability for pair creation. The results in a cir-
cularly polarised background are normalised to pulse energy so that
ξcp = ξ lp/

√
2. Lines with the same colour indicate the same photon

energy

on calculations of loop processes in constant crossed fields,
it has been conjectured [63,64] that the Furry expansion used
in strong-field QED breaks down, and calculations must be
performed to all orders in the fine-structure constant. Con-
sidering efforts to understand [58,65–69] and conceive of
experiments [70–75] to reach the corresponding parameter
regime of the Ritus–Narozhny conjecture of αχ2/3 ≈ 1, the
LMA could play a role in demarcating the parameter regime
that corresponds to probabilities scaling as conjectured, from
the regime where the standard QED scaling is restored.

To summarise, we verified that the tree level process
acquired when cutting a ‘no-flip’ loop (here: nonlinear Breit–
Wheeler), can be used to calculate the probability of the cor-
responding ‘flip’ loop process (here: photon polarisation flip-
ping). A local monochromatic approximation for the ‘flip’
probability can then be built from a local monochromatic
approximation of the tree-level process, and its local Hilbert
transform. The local monochromatic approximation captures
linear polarisation flipping in a circularly-polarised back-
ground where a naïve application of the locally constant field
approximation or the Heisenberg–Euler Lagrangian incor-
rectly predict zero birefringence. By including higher terms
in the interference phase expansion, an approximation sim-
ilar to the locally constant approach was derived and the
correct low-energy scaling recovered. The data for local
photon-polarised pair-creation rates in a linearly and circu-
larly polarised background was generated in a range of (ξ, η)

directly using the open-source Ptarmigan [76,77] simulation
code, which has been benchmarked with nonlinear Breit–
Wheeler [78] and Compton scattering [79] calculations in
a finite plane-wave background. The Hilbert-transform or
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Kramers–Kronig approach used in this work can be useful
in other areas: for example, it was recently used to calcu-
late the electric perimittivity of the vacuum [80] and given
recent interest in electron and positron spin flipping (see e.g.
[81–88]) a similar analysis to the current work could also be
applied to the electron mass operator
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