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a b s t r a c t 

Parkinson’s Disease (PD) is a common disorder of the central nervous system. The Unified Parkin- 
son’s Disease Rating Scale or UPDRS is commonly used to track PD symptom progression because 
it displays the presence and severity of symptoms. To model the relationship between speech sig- 
nal properties and UPDRS scores, this study develops a new method using Neuro-Fuzzy (ANFIS) 
and Optimized Learning Rate Learning Vector Quantization (OLVQ1). ANFIS is developed for dif- 
ferent Membership Functions (MFs). The method is evaluated using Parkinson’s telemonitoring 
dataset which includes a total of 5875 voice recordings from 42 individuals in the early stages 
of PD which comprises 28 men and 14 women. The dataset is comprised of 16 vocal features 
and Motor-UPDRS, and Total-UPDRS. The method is compared with other learning techniques. 
The results show that OLVQ1 combined with the ANFIS has provided the best results in predict- 
ing Motor-UPDRS and Total-UPDRS. The lowest Root Mean Square Error (RMSE) values (UPDRS 
(Total) = 0.5732; UPDRS (Motor) = 0.5645) and highest R-squared values (UPDRS (Total) = 0.9876; 
UPDRS (Motor) = 0.9911) are obtained by this method. The results are discussed and directions 
for future studies are presented. 

i. ANFIS and OLVQ1 are combined to predict UPDRS. 
ii. OLVQ1 is used for PD data segmentation. 

iii. ANFIS is developed for different MFs to predict Motor-UPDRS and Total-UPDRS. 

✩ Related research article: Zhang, Y. (2017). Can a smartphone diagnose Parkinson disease? A deep neural network method and telediagnosis 
system implementation. Parkinson’s disease, 2017 . 
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Specifications table 

Subject area: Neuroscience 
More specific subject area: Parkinson’s disease 
Name of your method: A Combined Method of Optimized Learning Vector Quantization and Neuro-Fuzzy Techniques 
Name and reference of original 
method: 

Tsanas, A., Little, M., McSharry, P., & Ramig, L. (2009). Accurate telemonitoring of Parkinson’s disease progression by 
non-invasive speech tests. Nature Precedings, 1-1. 

Resource availability: https://archive.ics.uci.edu/dataset/189/parkinsons + telemonitoring 

Method details 

Tracking the progression of Parkinson’s Disease (PD) remotely permits patients to be monitored without their physical presence 
in the clinic. Patients typically collect data at home using monitoring devices, which are then transmitted to the clinic via telephone 
or internet connections. The use of remote tracking techniques offers a promising solution for the management of a growing patient 
population, especially in situations where geographical constraints or limited resources make traditional clinic-based care challenging. 
The UPDRS is commonly used to track PD symptom progression because it displays the presence and severity of symptoms. It has 
been suggested to track the progression of PD symptoms by linking measures of PD dysphonia to the Motor-UPDRS and Total-UPDRS 
[ 1 , 2 ]. Machine learning algorithms have the potential to assist physicians in both diagnosing Parkinson’s disease and quantifying its 
progression by extracting valuable patterns from processed data [3] . To model the relationship between speech signal properties and 
UPDRS scores, various machine learning techniques have been employed such as Support Vector Machines (SVMs) [4–6] , Adaptive 
Neuro-Fuzzy Inference System [ 7 , 8 ], Support Vector Regression (SVR) [9] , Neural Networks [10–18] , and Gaussian Process Regression 
[19] . 

In contrast with the previous method for PD diagnosis which relies solely on supervised learning techniques, this study develops 
a new method using Adaptive Neuro-Fuzzy Inference System (ANFIS) and Optimized Learning Rate Learning Vector Quantization 
(OLVQ1). ANFIS models are developed for different Membership Functions (MFs) with a hybrid learning algorithm. The method 
is evaluated using Parkinson’s telemonitoring dataset which includes a total of 5875 voice recordings from 42 individuals in the 
early stages of PD which comprises 28 men and 14 women. The dataset is comprised of 16 vocal features and Motor-UPDRS, and 
Total-UPDRS. The method is compared with the Support Vector Regression (SVR), ANFIS, Gaussian Process Regression (GPR) and 
the combination of OLVQ1 with ANFIS for different Triangular MF, Trapezoidal MF, Generalized Bell MF, and Gaussian MF. 

To model the relationship between speech signal properties and UPDRS scores, this study develops a new method using ANFIS 
and OLVQ1. ANFIS is developed for different MFs. These techniques are introduced in the following sections. 

LVQ 

LVQ is an algorithm for supervised competitive neural network learning [20] . The LVQ network is illustrated in Fig. 1 . The network 
includes two layers: an input layer and a hidden layer with 𝐽 neurons. The input layer receives input examples and the hidden layer is 
considered as code vectors or prototypes. These prototype vectors, indicated by 𝑐1 ,..., 𝑐𝐽 , partition the input space into J distinct regions 
known as Voronoi cells. During the training phase, a training set, which is denoted by 𝐿 = {𝑥𝜇, 𝑦 } ∶ 𝜇 = 1 , 2 , … , 𝑀 , is iteratively 

Fig. 1. LVQ network. 
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given to the LVQ network. 𝑥𝜇 are the presented training instances . The LVQ algorithm initializes 𝑐𝑗 , 𝑗 = 1 , … , 𝐽 , by random selection 
of 𝐽 instances from the dataset in training set 𝐿 . In each iteration of the network training, the position of a prototype 𝑐𝑗 is adjusted 
based on its distances to 𝑥𝜇 . If a prototype 𝑐𝑗 and the input sample 𝑥𝜇 belong to the same class, the prototype moves towards 𝑥𝜇 . 
On the other hand, if they belong to different classes, the prototype moves in the opposite direction. This process of updating the 
prototype locations continues iteratively. 

In the classification stage, an instance 𝑥 is given the label of the class corresponding to its nearest prototype 𝑐𝑗∗ , where the nearest 
prototype can be defined in Eq. (1) as: 

𝑗∗ = 𝑎𝑟𝑔 mi n1 ≤ 𝑗≤ 𝐽 ‖𝑥 − 𝑐𝑗 ‖. (1) 

LVQ1 is the first developed LVQ network. In LVQ1, during each iteration 𝑡 and for each example 𝑥𝜇 , the first step involves 
calculating the distance between training instances 𝑥𝜇 and all prototypes 𝑐𝑗 . 

𝑑𝑗 = ‖𝑥 − 𝑐𝑗 ‖ (2) 

Accordingly, we can define the index of the winning prototype 𝑐𝑗∗ as: 

𝑗∗ = 𝑎𝑟𝑔 mi n1 ≤ 𝑗≤ 𝐽 𝑑𝑗 . (3) 

Then, we have: 

𝑐𝑗 ( 𝑡 + 1 ) =
⎧ ⎪ ⎨ ⎪ ⎩ 
𝑐𝑗 ( 𝑡) + η( 𝑡) 

(
𝑥𝜇 − 𝑐𝑗 ( 𝑡) 

)
𝑖𝑓 𝑐 𝑙𝑎𝑠𝑠

(
𝑐𝑗 
)
= 𝑐 𝑙𝑎𝑠𝑠

(
𝑥𝜇

)
, 𝑗 = 𝑗∗ 

𝑐𝑗 ( 𝑡) − η( 𝑡) 
(
𝑥𝜇 − 𝑐𝑗 ( 𝑡) 

)
𝑖𝑓 𝑐 𝑙𝑎𝑠𝑠

(
𝑐𝑗 
)
= 𝑐 𝑙𝑎𝑠𝑠

(
𝑥𝜇

)
, 𝑗 ≠ 𝑗∗ 

𝑐𝑗 ( 𝑡) , 𝑗 ≠ 𝑗∗ 
(4) 

If 𝑐𝑗∗ and 𝑥𝜇 share the same class, the winning neuron is adjusted towards 𝑥𝜇 . Conversely, if they belong to different classes, the 
winning neuron is pushed away. The adjustment of the winning neuron’s position is influenced by the global learning rate η( 𝑡 ) , which 
can either remain constant or decrease over time 𝑡 , with values ranging from 0 to 1. 

Optimized learning rate LVQ1 or OLVQ1 is an enhanced variation of LVQ1 that incorporates individual learning rates η𝑗 ( 𝑡 ) for 
each prototype 𝑐𝑗 ( 𝑡 ) in the learning rule, rather than utilizing a global learning rate 𝜂(t). OLVQ1 aims to expedite the convergence 
process. The local learning rate η𝑗 ( 𝑡 ) is defined as: 

ηj ( t) = min 
( ηj ( t − 1 ) 
s( t) ηj ( t − 1 ) + 1 

, η max 

) 

(5) 

The initial learning rate, denoted as η𝑗 (0) , is used as the starting point for each prototype’s learning rate. The value of 𝑠 ( 𝑡 ) is 
determined based on the class membership of 𝑐𝑗 and 𝑥 , with 𝑠 ( 𝑡 ) equal to 1 if they belong to the same class, and 𝑠 ( 𝑡 ) equal to -1 
otherwise. It is important to note that the learning rate η𝑗 ( 𝑡 ) has the potential to increase. To prevent uncontrolled growth, an upper 
bound η max , which falls within the range of 0 to 1, is defined for each η𝑗 ( 𝑡 ) . 

ANFIS 

In this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) [21] is employed to predict the Total- and Motor-UPDRS 
using a set of speech signals (dysphonia measures). ANFIS combines fuzzy logic and neural network methodologies and is commonly 
utilized in prediction tasks, particularly in the domain of tourism and hospitality. By establishing mappings between input and output 
variables, ANFIS generates optimal membership functions that enable accurate predictions based on a set of fuzzy rules. ANFIS offers 
various types of Membership Functions (MF), including Triangular MF, Trapezoidal MF, Generalized Bell MF, and Gaussian MF. This 
research employs all of these MFs in ANFIS modeling to predict the UPDRS score. ANFIS is structured into five distinct layers which 
is illustrated in Fig. 2 . 

Data analysis and results 

The Parkinson’s telemonitoring dataset was developed through a collaboration between Athanasios Tsanas and Max Little from 

the University of Oxford, along with 10 medical centers in the US and Intel Corporation. It was designed to work in conjunction with 
the AHTD telemonitoring device, specifically created for recording speech signals from individuals with Parkinson’s disease (PD) 
[1] . This dataset became available on the UCI Machine Learning Archive in October 2009. The dataset includes recordings from 42 
individuals in the early stages of PD which comprises 28 men and 14 women. There were a total of 5875 voice recordings because 
each patient contributed approximately 200 voice recordings, making the total number of voice recordings 5875. The recordings 
were made with the patients maintaining the vowel sound /a/ while the recordings were being made. The dataset is comprised of 26 
attributes, which include a variety of information such as the subject’s number, age, gender, time interval from baseline recruitment 
data, motor-UPDRS, total-UPDRS, and 16 biomedical voice measures, also known as vocal features. In addition, the Parkinson’s 
telemonitoring dataset includes 16 vocal features (see Table 1 ). The vocal characteristics include a wide variety of measurements 
such as jitter, shimmer, HNR, and NHR. 

The scores on the Motor-UPDRS and the Total-UPDRS (as two outputs of the dataset) have been evaluated at the beginning of 
the trial, after three months, and after six months of treatment. Voice recordings, on the other hand, were collected on a weekly 
basis. The Motor-UPDRS scores and the total-UPDRS scores were linearly interpolated so that we could ensure that our data were 

3



W.A. Zogaan, M. Nilashi, H. Ahmadi et al. MethodsX 12 (2024) 102553

Fig. 2. Flowchart of five-layer ANFIS model. 

consistent. The baseline, three-month, and six-month UPDRS scores are presented in Table 1 of the original research publication. 
Additionally, corresponding feature labels and concise explanations for each measurement are included in this table. Further- 
more, some fundamental statistics regarding the dataset are provided in Table 1 . This dataset has been widely used by researchers 
[ 1 , 22–24 ] in the field of Parkinson’s disease to develop algorithms for the early detection and monitoring of PD symptoms based on 
vocal characteristics. 

The data were clustered using LVQ. The results of data clustering are shown in Table 2 . Nine clusters were generated from the 
Parkinson’s telemonitoring dataset. The clusters are visualized in Fig. 3 using different principal components generated by principal 
components analysis. 

Method evaluation 

The experiment was conducted using Microsoft Windows 10 Pro on a laptop equipped with an Intel(R) Core(TM) i7-6700HQ CPU 

running at 2.60 GHz, with four cores and eight logical processors. To prevent overfitting, a 10-fold cross-validation approach was 
employed during the training of the LVQ and ANFIS models. The method is evaluated using two metrics: RMSE and R2 . The formulas 
for these metrics are presented in Eqs. (6) and (7) . 

𝑹 𝑴 𝑺 𝑬 =

√ √ √ √ √ 

∑𝐍 
𝐢 =1 

(
𝐀𝐜𝐭𝐮𝐚𝐥 𝐎𝐢 − ̂𝐏𝐫 𝐞𝐝𝐢𝐜𝐭 𝐞𝐝 𝐎 𝐢 

)2 

𝐍 

(6) 
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Table 1 

Parkinson’s telemonitoring dataset for method evaluation. 

Variable Feature Min Max Mean SD 

F1 MDVP:Jitter (%) 8E-4 0.1 0.006 0.006 
F2 MDVP:Jitter (Abs) 2E-6 4E-4 4E-5 3E-5 
F3 MDVP:Jitter:RAP 3E-4 0.057 0.003 0.003 
F4 MDVP:Jitter:PPQ5 4E-4 0.069 0.003 0.004 
F5 Jitter:DDP 10E-4 0.173 0.009 0.009 
F6 MDVP:Shimmer 0.003 0.269 0.034 0.026 
F7 MDVP:Shimmer (dB) 0.026 2.107 0.311 0.230 
F8 Shimmer:APQ3 0.002 0.163 0.017 0.013 
F9 Shimmer:APQ5 0.002 0.167 0.020 0.017 
F10 Shimmer:APQ11 0.003 0.276 0.028 0.020 
F11 Shimmer:DDA 0.005 0.488 0.052 0.040 
F12 NHR 3E-4 0.749 0.032 0.060 
F13 HNR 1.659 37.875 21.679 4.291 
F14 RPDE 0.151 0.966 0.541 0.101 
F15 DFA 0.514 0.866 0.653 0.071 
F16 PPE 0.022 0.732 0.220 0.092 
- Motor-UPDRS (baseline) 6 36 19.42 8.12 
- Motor-UPDRS (after three months) 6 38 21.69 9.18 
- Motor-UPDRS (after six months) 5 41 29.57 9.17 
- Total-UPDRS (baseline) 8 54 26.39 10.8 
- Total-UPDRS (after three months) 7 55 29.36 11.82 
- Total-UPDRS (after six months) 7 54 29.57 11.92 

Table 2 

Cluster centroids. 

Attribute LVQ-Cluster 1 
(556) 

LVQ-C2 (432) LVQ- Cluster 3 
(583) 

LVQ- Cluster 4 
(633) 

LVQ- Cluster 5 
(264) 

LVQ- Cluster 6 
(987) 

LVQ- Cluster 7 
(995) 

LVQ- Cluster 8 
(601) 

LVQ- Cluster 9 
(824) 

F1 0.015079 0.002467 0.003661 0.004125 0.003126 0.004865 0.006724 0.008359 0.005603 
F2 0.000101 0.000013 0.000024 0.000028 0.000019 0.000034 0.000053 0.000066 0.000041 
F3 0.007791 0.001107 0.001668 0.001924 0.001424 0.002274 0.003234 0.004177 0.002671 
F4 0.009122 0.001199 0.001802 0.002079 0.001565 0.002445 0.003486 0.004368 0.002882 
F5 0.023372 0.003320 0.005005 0.005774 0.004272 0.006821 0.009702 0.012532 0.008012 
F6 0.085802 0.013397 0.019529 0.022005 0.016389 0.026308 0.037145 0.046450 0.031529 
F7 0.773610 0.124829 0.181396 0.204896 0.151977 0.241459 0.339030 0.423592 0.287655 
F8 0.042726 0.006358 0.009511 0.010851 0.007907 0.013172 0.019048 0.024264 0.016079 
F9 0.052953 0.007381 0.011043 0.012665 0.009304 0.015284 0.021987 0.027507 0.018582 
F10 0.066007 0.010789 0.016089 0.018300 0.013637 0.021838 0.030289 0.037422 0.025904 
F11 0.128179 0.019074 0.028532 0.032554 0.023722 0.039517 0.057145 0.072793 0.048236 
F12 0.142446 0.007027 0.012584 0.014355 0.009695 0.018030 0.027624 0.039345 0.022522 
F13 13.049545 29.022574 25.433160 24.203379 26.684591 22.778716 19.727566 17.828852 21.303484 
F14 0.666227 0.421046 0.479681 0.495495 0.446748 0.525615 0.581591 0.611050 0.549623 
F15 0.677777 0.598035 0.628642 0.636257 0.611311 0.647959 0.677550 0.689234 0.660225 
F16 0.358831 0.112652 0.154981 0.173169 0.135406 0.197310 0.253635 0.294498 0.220981 

𝐑2 = 1 −

∑𝐍 
𝐢 =1 

(
𝐀𝐜𝐭𝐮𝐚𝐥 𝐎𝐢 − ̂𝐏𝐫 𝐞𝐝𝐢𝐜𝐭 𝐞𝐝 𝐎 𝐢 

)2 

∑𝐍 
𝐢 =1 

(
𝐀𝐜𝐭𝐮𝐚𝐥 𝐎𝐢 − 𝐀𝐜𝐭𝐮𝐚𝐥 𝐎𝐢 

)2 (7) 

where 𝐍 is the number of instances in the LVQ cluster, 𝐀𝐜𝐭𝐮𝐚𝐥 𝐎𝐢 denotes the Total- and Motor-UPDRS, ̂𝐏𝐫 𝐞𝐝𝐢𝐜𝐭 𝐞𝐝 𝐒𝐟 i denotes the 
predicted Total- and Motor-UPDRS, 𝐀𝐜𝐭𝐮𝐚𝐥 𝐎i is the mean value of 𝐀𝐜𝐭𝐮𝐚𝐥 𝐎 . 

The data was divided into 10 equal parts, where nine parts were used for training the model and the remaining part was used 
for testing. For example, the RMSE was calculated for each fold. This process was repeated for all ten folds. By averaging the RMSE 
values across all folds, an estimate of the model’s overall performance was obtained. The nine models were evaluated based on their 
RMSE and correlation coefficients. A higher value of R2 indicates a better fit of the model. Conversely, lower values of RMSE indicate 
superior performance by the predictor. ANFIS was performed on the clusters to construct the prediction models. Different membership 
functions were used in ANFIS (i.e., Triangular MF, Trapezoidal MF, Generalized Bell MF, and Gaussian MF). An example of Gaussian 
MF is presented in Fig. 4 . For each variable three membership functions were considered. The RMSE and R-squared values were 
obtained for each model and the average values were calculated for methods comparisons. In Fig. 5 , we present the training times in 
200 epochs for different MFs in all clusters. The 3D visualization of some relationships between inputs and outputs in ANFIS models 
are showing in Fig. 6 . 
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Fig. 3. The visualization of clusters. 

Fig. 4. Gaussian MFs. 

The results of the method evaluation are presented in Table 3 . We present the results for Motor-UPDRS and the Total-UPDRS for 
RMSE and R2 . We perform the method evaluation for different methods, SVR, ANFIS, Gaussian Process Regression (GPR) and the 
combination of OLVQ1 with ANFIS for different Triangular MF, Trapezoidal MF, Generalized Bell MF, and Gaussian MF. The results 
show that OLVQ1 combined with the ANFIS has provided the best results in predicting Motor-UPDRS and Total-UPDRS. In addition, in 
relation to Trapezoidal MF, Generalized Bell MF, and Triangular MF, Gaussian MF provides the best results. The lowest RMSE values 
(UPDRS (Total) = 0.5732; UPDRS (Motor) = 0.5645) and highest R-squared values (UPDRS (Total) = 0.9876; UPDRS (Motor) = 0.9911) 
are obtained by this method. This evaluation was also performed for the LVQ1 + ANFIS method which used Gaussian MF. The results 
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Fig. 5. Training times in 200 epochs for different MFs in all clusters. 

Table 3 

Method evaluation. 

Method UPDRS RMSE R2 

SVR UPDRS (Total) 0.8781 0.8625 
UPDRS (Motor) 0.8656 0.8662 

GPR UPDRS (Total) 0.8621 0.8718 
UPDRS (Motor) 0.8568 0.8778 

ANFIS UPDRS (Total) 0.8469 0.8823 
UPDRS (Motor) 0.8396 0.8874 

OLVQ1 + ANFIS (Triangular MF) UPDRS (Total) 0.6188 0.9522 
UPDRS (Motor) 0.6124 0.9546 

OLVQ1 + ANFIS (Trapezoidal MF) UPDRS (Total) 0.6098 0.9621 
UPDRS (Motor) 0.6021 0.9689 

OLVQ1 + ANFIS (Generalized Bell MF) UPDRS (Total) 0.5986 0.9723 
UPDRS (Motor) 0.5875 0.9764 

OLVQ1 + ANFIS (Gaussian MF) UPDRS (Total) 0.5732 0.9876 
UPDRS (Motor) 0.5645 0.9911 

LVQ1 + ANFIS (Gaussian MF) UPDRS (Total) 0.7133 0.9412 
UPDRS (Motor) 0.7028 0.9481 

are close to the results of OLVQ1 + ANFIS with Triangular MF. Furthermore, when comparing the results of ANFIS and OLVQ1-ANFIS 
methods, there is a significant difference between the obtained accuracies, indicating that the use of OLVQ1 as a clustering technique 
is able to improve the efficiency of the ANFIS models in predicting Motor-UPDRS and the Total-UPDRS. 

The outcome of our evaluation on the dataset also demonstrated that the method which used GPR has performed better predictions 
for the Total-UPDRS and Motor-UPDRS. Overall, it is concluded that the optimized learning rate LVQ1 has a significant advantage 
compared to the LVQ1 combined with ANFIS in predicting UPDRS for tracking PD progression. Note that, the RBF (Radial Basis 
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Fig. 6. 3D visualization of relationship between inputs and outputs in ANFIS. 

Function) kernel was used in the SVR method. In addition, GPR used a squared exponential kernel for constructing the prediction 
models. ANFIS was trained for 200 epochs and with the use of a hybrid learning approach for all models. 

Conclusion 

Parkinson’s disease is a disorder that affects the central nervous system that, over time, reduces a person’s mobility and negatively 
impacts their overall quality of life. The diagnosis of PD at an early stage is of the utmost significance since it permits rapid medical 
intervention. The method developed by machine learning plays a critical part in this process. They help the creation of diagnostic 
instruments that are non-invasive and cost-effective. For PD detection, machine learning algorithms are able to build reliable predic- 
tive models because they can analyze a wide variety of data kinds such as medical records, brain scans, and voice samples. These 
models provide assistance to medical professionals in spotting minor shifts in symptoms, which in turn makes it easier to initiate early 
intervention and develop individualized treatment programs. This research has aimed to develop a new method based on machine 
learning techniques for PD diagnosis. The method was developed using OLVQ1 and ANFIS machine learning techniques and evalu- 
ated using the Parkinson’s telemonitoring dataset. Using LVQ, nine clusters were detected from the PD data. The ANFIS models were 
constructed on each cluster of LVQ to predict Motor-UPDRS and the Total-UPDRS. We performed several comparisons between this 
method and the LVQ1 + ANFIS, SVR, ANFIS, and GPR, as well as the combination of OLVQ1 and ANFIS. According to the findings, the 
combination of the OLVQ1 and the ANFIS yielded the best results in predicting the Motor-UPDRS and the Total-UPDRS. In addition, 
the Gaussian MF obtained the best results with the smallest RMSE values (UPDRS (Total) = 0.5732; UPDRS (Motor) = 0.5645) and the 
highest R-squared values (UPDRS (Total) = 0.9876; UPDRS (Motor) = 0.9911) compared to the other MFs. This work includes several 
limitations which can be taken into account in developing new methods for PD diagnosis. First, this study has developed the method 
without the use of feature selection methods. They can be effective in investigating the relationship between vocal features and 
Motor-UPDRS and Total-UPDRS. In addition, feature selection can be an important phase of developing ANFIS models as when the 
number of features increases, there may be difficulty in the appropriate construction of prediction models by ANFIS. Second, ANFIS 
can be extended for incremental learning which can significantly increase the efficacy of the proposed method. Third, our method 
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can be extended for ensemble learning. Ensemble learning techniques have demonstrated to be more stable in relation to individual 
learning techniques. Finally, this study found that the combination of clustering and prediction learning techniques can be effective 
in modeling predictive approaches for PD diagnosis, therefore, the clustering methods can be optimized and used in the proposed 
method for better data clustering. 
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