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A PRECONCENTRATION TECHNIQUE FOR THE DETERMINATION 

OF TRACE ELEMENTS 

ANDREA JANE AMBROSE 

ABSTRACT 
A nove] preconcentration technique f o r the determination of trace metal 
impurities in f ine chemicals has been developed. The technique involved 
forming metal chelates in solution with Chrome Azurol S, and adsorbing 
them onto powdered activated carbon. A f t e r separation by f i l t r a t i on , the 
enriched carbon was made into a s l u r ry and analysed by ICP-AES. Ca, 
Cu, F e ( I I I ) , Mg, Mn and N i , were all successfully adsorbed onto the 
carbon from water with recoveries of 100, 96, 100, 98, 97 and 100% 
respectively. Cu was adsorbed from aqueous solutions of glucose (30%), 
sucrose (20%) and potassium nitrate (10%), with recoveries of 100, 96 and 
100% respectively. Adsorption equilibrium took less than f ive minutes. 
Mg was not adsorbed to any great extent in these media. 

Pur i ty of the sorbent phase was a problem. Making activated carbon f rom 
cellulose by air activation produced an activated carbon low in metals, 
but which was unable to adsorb Fe ( I I I ) from water. Surface areas of the 
cellulosic carbon and commercial activated carbon using the BET equation 
were 420m'^g~'' and 838m^g~ ^ respectively. Clean up of commercial 
activated carbon by HF/HCl was investigated. A reduction of metal 
content was seen but high levels of A l , Ca, Mg and Fe (89.4(j.gg~'' , 
l^O^igg^"* , 230ngg"'' and 54.8^gg"'' respectively) stiU remained. 
Although not satisfactory, this was used in subsequent experiments. 

Enriched carbon slurries were introduced to the plasma by flow injection 
as well as by continuous nebuLisation. In an attempt to reduce dispersion 
of the flow injected sample in the carrier stream, four spray chamber 
designs were investigated - a Scott double pass spray chamber (SDPSC), 
a single pass spray chamber (SPSC), a bulbous-ended spray chamber 
(BESC) and a reduced volume spray chamber (RVSC). Transport 
efficiencies on a 1% activated carbon s l u r r y were calculated as 0.91% f o r 
the RVSC, 0.66% f o r the BESC, 0.43% fo r the SPSC and 0.42% f o r the 
SDPSC. Simplex optimisation was used to optimise each spray chamber 
with regards to plasma operating conditions, fo r Cu and Mn. For each 
element, operating conditions were similar f o r each spray chamber. Using 
the optimised conditions, flow injection characteristics were investigated. 
There were only small differences in dispersion between each spray 
chamber. At higher carrier stream flow rates (4.5mlmin~•* ) the BESC 
had the best precision (3.1%,RSD), however, f u r t h e r work was carried 
out on the RVSC which yielded Fl peaks of a Gaussian shape. The 
val id i ty of the s l u r r y atomisation FI-ICP-AES approach was confirmed by 
the analysis of two CRM soils, SOI and S02. 

For continuous nebulisation of the carbon slurries an internal standard, 
Sc, was used successfully to correct f o r variations in sample delivery and 
viscosity effects . 

Trace metal impurities (Cd , Cu, Fe, Pb and Ni) in urea, sucrose and 
potassium chloride were determined by the preconcentration technique 
both with continuous nebulisation and FI of the s l u r r y into the ICP. The 
results showed quite good agreement with a l iqu id- l iqu id extraction 
procedure but RSDs were poor fo r the F I , but good with internal 
standardisation. 
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C H A P T E R 1 

INTRODUCTION 

1.1 INTRODUCTION 

1.1.1 The need for analysis of high purity substances 

One of the main tasks of analytical chemistry is the determination of trace 

metal impurities in a variety of matrices. Of great importance is the 

accurate determination of trace metal impurities in high pu r i t y materials. 

The chemical p u r i t y of a material often dictates its applicability in new 

^ fields of science and engineering ( 1 ) . Trace impurities in materials, such 

as semi-conductors and glasses, have a profound effect upon their 

electrical, magnetic, mechanical, nuclear and optical properties ( 2 ) . In 

response to the need fo r trace impur i ty determinations, multi-element 

methods of analysis have been developed. However, the analysis of pure 

substances not only demands sensitive analytical instrumentation but also 

imposes stringent controls upon methodology including the cleanliness of 

all chemical operations and reagent p u r i t y . Thus, a need has been 

generated to determine levels of trace metal impurities in standards and 

reagents below routine detection limits to ensure analytical grade chemicals 

do not introduce errors into analytical procedures. Of ten , these 

impurities are in themselves, present at ve ry low levels and are below the 

relative detection Limits of the determination technique. These levels can 

only be measured i f a preconcentration step is included. Preconcentration 



is a process whereby the ratio of the amount of a particular element is 

increased relative to that of the original matr ix . The chemical techniques 

used i n preconcentration not only provide enrichment factors bu t also, 

in many cases, analjrte isolation which can increase the sensi t ivi ty of the 

instrumentation used. 

1.2 METHODS OF PRECONCENTRATION 

There are numerous methods of preconcentration techniques used today 

and these have been reviewed extensively by Minczewski ( 3 ) , Leyden and 

Wegscheider (4) and Tolg et a l 4 5 ) . 

Perhaps the simplest method of preconcentration of ions from solution is 

evaporation of the solvent. However, i t does su f fe r from a number of 

disadvantages. Fractionsd crystallisation can lead to a microscopically 

inhomogeneous residue, matrix effects may be amplified ra ther than 

minimised, introduction of contamination throughout the procedure, 

possibil i ty of the formation of acid-insoluble residues containing the 

desired trace elements, and the technique is ve ry time consuming, 

especially i f large preconcentration factors are required. 

Precipitation is one of the oldest chemical techniques f o r the separation 

and concentration of ions. Precipitation methods are satisfactory f o r 

macro-separations although the precipitates are often contaminated wi th 

fore ign ions. 

One of the most widely used techniques of preconcentration is l i qu id - l iqu id 

- 2 



extraction. I t is quick and can be highly specific with careful choice of 

chelating agents. There are practical limits however to the pre-

concentration factors that can be reasonably achieved by batch extraction 

owing to the ini t ial solubili ty of solvents in the aqueous phase. Also, 

significant portions of the organic solvent may adhere to the walls of the 

vessel, requi r ing repeated washings, thus decreasing the concentration 

factor attainable. There may also be the formation of emulsions which are 

d i f f i c u l t to separate. 

Preconcentration onto ion-exchange resins is one of the most favourable 

methods. Ions of interest may be measured direct ly on a solid resin using 

X- ray spectrometry, neutron activation or isotopic dilution techniques, or 

by elution f rom the solid phase and analysis of eluent. Ion-exchange 

resins operate on an ion-association basis. They do not perform well i n , 

f o r example, seawater, where sodium ions compete well compared to the 

less abundant transition metal ions, and so swamp the exchange sites. 

Chelating ion-exchange resins may be useful i f alkali metal ions are not of 

interest . These resins contain functional groups that chelate with 

predominantly transition metal ions. For example, the commercially 

avEiilable Chelex-100 resin contains an iminodiacetic acid functional group, 

attached to an insoluble backbone. This resin has been used in seawater 

analysis (6,7) with success. However, the resin will not remove metals 

held in organic and inorganic colloids which can be present even af te r 

u l t r a f i l t r a t ion . Also, there are samples such as seawater, or i ron and 

calcium-rich freshwater in which major elements occupy the ion exchange 

sites thereby excluding the trace elements. To overcome th is , masking 

agents or manipulation of pH must be applied. 



Van Berkel e t a l , (8) have cr i t ica l ly examined the use of Chelex-100 in the 

enrichment of artificiEil seawater f o r analjrte preconcentration and matrix 

separation. They concluded that at a given l iquid flow rate, p H , column 

washing conditions and amounts of resin are the most cr i t ical parameters 

and that these experimental conditions under which enrichment procedures 

have to be carried out , are much more important than had been generally 

assumed. They also noted that ionogenically bound trace elements are 

extremely susceptible to matrix ef fects . However, wi th careful 

optimisation they were able to quantitatively recover Cd, Co, Cu, Pb and 

Zn f rom ar t i f ic ia l seawater. 

The selective chelation of certain trace elements and essential exclusion 

of the alkali and alkaline earth elements can be achieved by va ry ing the 

chelating agent upon the solid support . For example, chelating groups 

have been immobilised on siliceous surfaces to produce a var ie ty of amine 

and dithiocarbamate-modified gels (9 ,10) . 

A major limitation to immobilised chelating materials is that generally they 

have a low exchange capacity- Also, there is some concern that leaching 

of the metal chelate f rom the support may occur, as i t is not attached b y 

a chemical bond. For a more detailed discussion, reviews b y IVIurthy et 

al (11) and Marina et al (12) , are recommended. 

Activated carbon can be used as a collector material in trace analysis. 

Due to i ts special character, insoluble compounds, as weU as soluble metal 

chelate complexes can be enriched (13) . 



1.3 ACTIVATED CARBON 

Activated carbon is made by the carbonisation and activation of material 

r ich in carbon, generally of vegetable o r ig in . When the s tar t ing material 

is pyrolysed in the absence of £iir the majority of non-carbonaceous 

material is removed in the form of gaseous products . Following th is , the 

activation process takes place which involves passing, usually, steam or 

carbon dioxide at 700-1100"C over the carbonised intermediate product . 

This removes t a r r y carbonisation products from the spaces between the 

elementary microcrystallites and causes their partial destruction. 

This activation step may be ehminated i f suitable substances, which 

restr ic t tar formation, are added to the s ta r t ing material before 

carbonisation (14) . The activation process increases the porosity and 

therefore surface area of the resul t ing carbon. 

1.3.1 Mechanisms of adsorptioD 

The sorption process is caused and influenced by various physical and 

chemical properties of the adsorbent and the substance adsorbed. I t is 

these physical and chemical properties that have made activated carbon an 

ideal adsorbent. 

The s tructure of activated carbon consists of elementary crystallites which 

is similar to graphite in two dimensions. These are composed of several 

planar layers formed by carbon hexagons. Unhke graphite, the planar 

layers are arranged at d i f fe ren t angles to a perpendicular axis passing 



through them and they overlap in an i r regular manner. This is called a 

turbostrat ic s t ructure (Figure 1.1). Between the spaces of the individual 

microcrystallites are pores. Pores in activated carbon are classified into 

three groups 1) Micropores (effect ive radi i less than 1.8-2nm) 2) 

Mesopores (2-lOOnm) and 3) Macropores (100-2000nm). 

Conventional types of activated carbon have a tridisperse s t ructure , that 

is , consisting of all three classes of pores. Adsorbate molecules can 

penetrate into the pores of small dimensions located deep within the carbon 

suf f ic ien t ly rapidly because of the presence of larger pores. The 

adsorption properties of conventional types of activated carbon exhibit 

practically no selectivity to the adsorbate molecules of d i f ferent sizes. 

Activated carbon is therefore used as a universal adsorbent with a large 

capacity. The chemical s t ructure of activated carbon can effect its 

selectivity. Certain atoms and functional groups present on the surface 

of activated carbon can contribute to the chemical adsorption of certain 

substances. 

Work has shown that when appropriate chelating reagents are used wi th 

activated carbon, quantitative recovery rates can be obtained fo r a 

variety of elements, even in the presence of high electrolyte 

concentrations. Despite its wide use however, the mechanisms of 

adsorption onto activated carbon are not f u l l y understood. 

Conclusions on adsorption processes have been made by Piperaki et al 

(15). Their work on the adsorption of nickel and its amino acid complexes 

onto activated carbon resulted in the fol lowing suggestions: 

- 6 



FIGURE 1.1 

SCHEMATIC REPRESENTATION OF NON-GRAPHITISING STRUCTURE OF 

ACTIVATED CARBON 



1) The sorption of metal chelates is affected by the complexing ligands. 

However, there are cases when the metal ion i tself binds to the 

activated carbon without the presence of a complexing l igand. Some 

elements are reduced by the carbon out of the complex into their 

elemental state. Adsorbed gold is an example of this and cannot in 

general be separated f rom the carbon b y simple elution wi th acid. 

2) When the complexing agent has aromatic r ings in i ts s t ruc ture , P i -

orbital overlap interaction between the complexing agent and the 

activated carbon surface may occur. This has the effect of 

increasing the adsorption energy (16) . 

3) The sorption is affected by the presence of hydrophil ic or 

hydrophobic groups i n the complexing molecule. The more soluble 

the chelating reagent and i ts complexes the more the sorption 

capacity decreases. Hydrophobic propert ies , caused b y , f o r 

example elongation of aiialiphatic chsun on the reagent resulted in an 

increase in sorpt ion. 

4) Quantitative adsorption on activated carbon can only be relied upon 

when the molecule of the chelating reagent is such that the centres 

f o r b inding on carbon and those f o r b ind ing the meted ion are so 

spatially separated that the orbitals have minimsd mutual interact ion. 

Piperaki et al cite Jackwerth (17) who found that i n phenanthroline 

chelates the electrons of the nitrogen atoms which bind the metal 

ions du r ing adsorption are affected to such an extent b y the 
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interaction of the Pi-orbitals of the planar aromatic r i n g system wi th 

those of the carbon, that the chelate b ind ing is disturbed and the 

metal ion is forced out of the complex when in an equil ibrium 

situation. 

Despite the f indings of this work , there are s t i l l cases where water-

soluble, charged complexes are adsorbed. Ryan and Murthy (18) found 

that i n addition to Pi-electron interaction between graphit ic planes and the 

ligand molecule, non-specific adsorption i n the electrical double layer 

(whose nature depends upon the surface oxygen groups on the activated 

carbon and the nature of the electrolyte in solution) is at least par t ia l ly 

responsible f o r the adsorption of charged complexes ( 1 1 , 12, 14, 19). 

A wide range of neutral chelates containing ligands such as dithizone (20, 

21) sodium diethyldithiocarbomate (20, 22, 23) dithiophosphoric-acid-O, 

0-diethylester (24, 25), 8-hydroxyquinol (16, 26) and potassium xantho-

genate (27) have been adsorbed onto activated carbon. 

Work b y Jones and Schwedt (28) has shown the chelating dye Chrome 

Azurol S (CAS) (Figure 1.2) gave a stable coating on resin material which 

was ve ry resistant to oxidation and hydrolysis even i n s t rong alksdi 

solution. Recently, CAS metal complexes have been adsorbed onto 

activated carbon and analysed by flow injection ICP-AES-slurry 

atomisation (29) wi th quantitative recoveries. 



FIGURE 1.2 

STRUCTURE OF CAS MOLECULE 

HO 

CO-.H HO^C 

SO^H 

CH 

2'', 6"- Dichloro-4»-hydroxy-3,3 '-dimethyl-3"sulfo-fuchson9-5,5 ' 

dicarboxylic acid (Chrome Azurol 5 ) 
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1.4 ANALYSIS OF SORBENT 

Generally the technique of sorption is performed either by f i l t r a t i o n , 

column or batch mode. Filtration and column operation can sometimes be 

time consuming, especially when t reat ing a large volume of sample. I t is 

vi tal fo r maximum trace recoveries that suf f ic ien t ly slow flow rates are 

used, or the f i l t r a t ion step repeated unt i l the sorption equilibrium is 

established. Batch extraction offers the attraction that large sample 

volumes may be used. 

In all of the above methods the sorbent may be desorbed with an 

appropriate eluent. This can however introduce contamination via the 

reagents used. As mentioned earlier, some elements are reduced to their 

elemental form and so cannot be desorbed by commonly available eluents 

and are therefore not detected in the f inal determination. 

Direct analysis of the sorbent overcomes these problems. The material 

may be analysed using techniques such as neutron activation analysis 

(NAA) (16, 30) and X-ray fluorescence spectrometry (XRF) (16). 

The direct introduction of solid materials into an atomizer is another 

approach. Gilbert (31) reported the f i r s t experiments on the direct 

atomisation of solids by flame photometry. Using a soil suspension in 1:1 

glycerol-isoprenol he observed emission lines f o r the major elements. 

Investigations into the advantages and possibilities of direct analysis of 

solids has been reviewed by Langmyhr (32) . He concluded that the 

problems of sample inhomogeneity, repetition of microweighings and slow 
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rates of analysis prevented the technique f rom being widely used. Van 

Loon (33) in another review dealt with direct trace elemental analysis of 

solids by atomic emission, atomic fluorescence and atomic cL,fc>oc>,-^^r.̂ =.-». 

In recent years the technique of " s lu r ry atomisation" has received much 

attention. S lu r ry atomisation involves the introduction of aqueous 

suspensions of solid particles into an atom source. I t has been applied to 

several techniques, including flame atomic absorption spectrometry (34 -

41) electrothermal spectrometry (ETAS) (37, 42-50), direct current plasma 

emission spectrometry (DCP-AES) (51-53) induct ively coupled plasma 

atomic emission spectrometry (ICP-AES) (37, 54-64) and induct ively 

coupled plasma mass spectrometry (ICP-MS) (65, 66). In t roducing 

slurries into the ICP was f i r s t suggested by Greenfield et al (67) . Fuller 

et a l , (37) showed that f o r successful s l u r r y atomisation in the ICP i t is 

necessary to have a h igh solids nebuUser and that atomisation eff ic iency 

is dependent upon sample transport eff ic iency, particle size of s l u r r y , 

atomisation temperature and sample matrix. More recently work has shown 

that injector tube diameter has a major influence upon the particle size 

reaching the plasma; smaller diameter injector tubes exclude larger 

particles and thereby lower the signal obtsuned (68) . 

I n the past few years, the role of sample introduction into the plasma has 

come under scru t iny and has been recognised as being the "Achilles heel" 

of the ICP (69) . Analytical precision is determined by the stabil i ty of the 

analyte signal which is affected b y the s tab i l i ty of the aerosol t ransport 

rates, and the sensi t ivi ty of the system by the transport ef f ic iency. 

Therefore, i t is desirable that the sample introduction system, consisting 
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conventionally of a nebuliser to produce an aerosol and a spray chamber 

to remove the larger droplets which cause instabil i ty of the plasma, 

produces a stable aerosol stream of small droplets and a high eff iciency 

(70). Sharp (71 , 72) has reviewed the mechanisms of operation and 

operating characteristics of pneumatic nebulisers and spray chambers used 

fo r analytical atomic spectrometry fo r solution analysis. Based on f indings 

in the l i terature he has suggested new designs f o r sample introduction 

systems. Using the simplex optimisation rout ine, original ly described by 

Spendley et al (73) , torches (74, 75) and nebuUsers (76) have been 

designed and optimised fo r solution analysis (77) . This optimisation 

method has silso been successfully applied to the determination of trace 

metals in coal slurries (57, 58) and i t was thought that simplex 

optimisation may help in developing sample introduction systems f o r 

s lurr ies . 

1.5 D I S C R E T E SAMPLING METHODS 

The conventional method of sample introduction f o r ICP-AES is based upon 

the continuous nebuUsation of a f lowing carrier stream which produces a 

steady state signal. By the very nature of preconcentration, of ten only 

a small volume of sample is available f o r analysis. Obviously, run on a 

continuous mode, the sample would be consumed very quickly and 

sequential multi-element analysis would not be possible. Hence there is 

a need fo r methods of sample introduction that do not depend upon large 

volumes of sample. A number of potentially suitable sampling techniques 

may be used. For example, the direct sample insertion device (DSID) 

whereby a graphite rod is inserted into the t ip of a conventional sample 
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introduct ion tube in the centre of an ICP torch (78-82). Electrothermal 

vaporisation ICP-AES (83) is another microsampling approach that has 

been used. Laser ablation has become more f requent ly applied recently 

and has been used to volatilise micro-samples f o r subsequent analysis b y 

ICP-AES (84, 85). 

One of the most promising techniques of discrete sample introduction is b y 

flow inject ion, wi th nearly 1000 papers (86) published since i ts inception 

in 1975 b y Ruzicka and Hansen (87) . Flow injection (FX) involves a range 

of techniques whereby a discrete sample volume is injected into a 

continuously f lowing carr ier stream. The sample is dispersed in the 

carr ier stream to some extent and this is a funct ion of volume injected, 

tube dimensions and flow rate. Applications to atomic spectrometry 

represent a f rac t ion of FI papers and this part icular f ie ld has been 

reviewed by Tyson (88) . Surpr is ingly few of these publications re fer to 

plasma spectrometry, although such application has been demonstrated 

(86, 89-92). Many discrete sampling techniques used in ICP-AES cause 

air entrainment, which results i n ins tabi l i ty of the plasma. Flow injection 

is par t icular ly useful as entrainment does not occur when using this 

technique. 

Flow injection is generally used as a solution based technique. However, 

success has been found in in t roducing slurries by flow inject ion. Indeed, 

more favourable dispersion characteristics of slurries may be advantageous 

compared wi th flow injection of solutions (64) . 
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1.6 OBJECTIVES OF THIS WORK 

The ini t ia l aim of this work was to preconcentrate trace metals f rom 

solutions of analytical grade reagents onto ion-exchange resins and 

analyse these by direct s l u r ry atomisation - ICP-AES. 

A number of parameters were studied as contr ibutory to the optimal 

performance of the technique. Of utmost importance was the choice of 

ion-exchange material. I t was thought that conventional ion-exchange 

resins would have limited use in preconcentrating trace metals f rom 

electrolytic solutions, owing to swamping of exchange sites. Therefore , 

use of the chelating res in , Chelex-100, was investigated. 

Owing to its extraordinary adsorptive propert ies, activated carbon 

appeared to be a promising material fo r preconcentration. The 

effectiveness of activated carbon in adsorbing trace metals, is great ly 

enhanced by the presence of a chelating agent. The use of activated 

carbon, in conjunction with Chrome Azurol S chelating dye, was evaluated 

and optimal conditions and mode of preconcentration researched. 

Conventionally, p r io r to analysis, the preconcentrated trace metal ions 

must either be eluted from the resin or the resin digested in s t rong acid. 

This is time consuming and Liable to introduce contamination via the 

reagents used. Watson and Moore (54) preconcentrated traces of noble 

metals onto ion-exchange resin and analysed the loaded material by direct 

s l u r r y atomisation - ICP-AES. An objective of this work was to f u r t h e r 

their research. Owing to the importance of particle size of s l u r r y , careful 
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attention was paid to preparation of s lur r ies , including methods of 

g r ind ing , g r ind ing time, and dispersal of s l u r r y . 

I t was envisaged that only small sample volumes would be generated by the 

preconcentration technique. I f the sample is continuously nebulised at 

normal uptake rates, at best, only single element determination is 

possible. I t was clear that discrete sampling of small volumes was 

requi red . Flow injection (F I ) of ' microvolumes of slurries was therefore 

performed. Optimal conditions were investigated including carrier stream 

flow rate and sample volume. 

The volume of the spray chamber has an effect upon the signal of the 

sample. A large chamber, f o r example a Scott double-pass, causes 

excessive dilution of the smEill volume of sample. Dif ferent designs and 

sizes of spray chamber were investigated, us ing simplex optimisation 

where appropriate. 

Real samples were analysed, comparing results obtained f rom F I (us ing 

sequential ICP) and continuous nebulisation (using simultaneous ICP) . 

For continuous s l u r r y nebulisation, internal standardisation was used to 

compensate f o r instrumental d r i f t and viscosity effects ar is ing f rom h igh 

concentrations of s l u r r y . 
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CHAPTER 2 

SORPTION EXPERIMENTS 

2.1 INTRODUCTION 

The obligation to determine concentrations of analytes below instrumental 

detection limits has made preconcentration procedures indispensible i n 

present day analytical chemistry. Ion exchange is a mature p r e 

concentration and separation technique applied in analytical chemistry. 

Conventional ion-exchange resins, formed from cross-linked styrene, 

d i v i n y l benzene or other matrices containing inorganic functional groups 

are of ten used. One of the major disadvantages of these, however, is i n 

the poor selectivity f o r heavy metals in solutions containing an excess of 

alkali or alkaline earth elements. The problem of concentrating a trace of 

one ion i n the presence of a large concentration of another, requires the 

use of a resin wi th an abnormally h igh selectivity coefficient f o r the trace 

ion wi th respect to the bulk constituent. Chelating resins are well suited 

to the problem, provided that the trace element forms a chelate and the 

bulk ion does not. Chelex-100 is the commercial name of a f requent ly used 

chelating resin wi th an iminodiacetic acid func t ion . There are numerous 

publications ( e . g . 6 , 7 ) repor t ing the anedytical applications of the res in , 

the majority of which are concerned wi th the preconcentration of t ransi t ion 

metals and a number of additional elements, f rom solutions of alkali and 

alkaline earth metals. 
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other absorbent phases have been investigated, some without any or with 

little chemical functionality on the surface. Activated carbon has been 

used in this capacity, as detailed in Chapter 1. 

Organic compounds are generally more effectively adsorbed onto activated 

carbon than inorganic solutes. The use of a chelate-forming reagent in 

solution enhances the efficiency and selectivity of activated carbon. A 

number of complexing agents have been used, but in this work Chrome 

Azurol S was investigated as a suitable reagent, 

2.1.1 Chrome Azurol S 

In analytical chemistry Chrome Azurol S (CAS) has been applied as a metal 

indicator and as a reagent for the photometric determination of metals. 

I t has been used by WiUard and Horton (93) as an indicator in the 

titration of fluoride with thorium. Theis (94) and Musil and Theis (95) 

employed the reagent in the chelatometric determination of aluminium, 

copper and zinc and for the detection of beryllium in weakly acidic 

solutions. Srivastava et al (96), observed that CAS formed very stable 

coloured chelates in aqueous solution with copper ( I I ) , beryllium ( I I ) , 

magnesium ( I I ) , cadmium ( I I ) , aluminium ( I I I ) , lanthanum ( I I I ) , cerium 

( I V ) , titanium ( I V ) , zirconium ( I V ) , uranium ( V I ) , iron ( I I I ) , cobalt ( I I ) , 

nickel ( I I ) and psdladium ( I I ) under specific experimental conditions. 

Figure 2.1 shows the probable structures for CAS in acid, neutral and 

alkaline media. 
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F I C U R E 2 . 1 

S T R U C T U R E S OF C A S IN A C I D I C , N E U T R A L AND A L K A L I N E U E D I A 

( i ) A c i d i c m e d i u m 

( i i ) N e u f r a l m e d i u m 

( i i i ) A l k a l i n e m e d i u m 
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Owing to the comparatively long distance between the two bidentate 

groups i t is considered improbable that both would be involved in complex 

formation. There is Little information on the type of complex CAS forms 

with metals. However, iron ( I I I ) forms a 1:1 chelate (97, 98), as does 

thorium (96). Nickel forms a 1:2 chelate (99). 

Following on from the work of Watson and Moore (54), whereby traces of 

noble metals were batch extracted onto ion-exchange resin and determined 

by direct injection of the loaded resin into an ICP, i t was thought that 

this technique could be applied to the determination of trace metals in 

analytical grade reagents. To evaluate fu l ly trace metal preconcentration 

by adsorption, three very different sorbent phases were investigated:-

1) ion-exchange resin 2) chelating resin and 3) activated carbon with 

CAS. 

2.2 EXPERIMENTAL 

Initial adsorption experiments were monitored using a flame atomic 

absorption spectrometer (IL 151, Thermo-Electron, Warrington, UK) and 

an air/acetylene flame. Table 2.1 shows the instrumental conditions that 

were used for each element determined. 

2.3 ADSORPTION OF COPPER ONTO CONVENTIONAL ION-EXCHANGE 

RESIN 
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TABLE 2.1 
ATOMIC ABSORPTION SPECTROMETER OPERATING CONDITIONS 

ELEMENT WAVELENGTH (nm) BANDPASS (nm) LAMP CURRENT (mA) 

CALCIUM 422.7 1 7 

COPPER 324.7 1 5 

IRON 248.3 0.3 8 

MAGNESIUM 285.2 1 3 

NICKEL 232 0.15 10 

MANGANESE 279.5 0.5 5 

Flame condit ions:air-acetylene,fuel lean,blue 
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2.3.1 Chemical reagents 

Dowex 50W-X8 (100-200 mesh) ion exchange resin (BDH Ltd . Poole, U . K . ) 

in H"" form was used throughout all the uptake experiments. 

All reagents used were of Aristar reagent grade (BDH Ltd . Poole, U . K . ) 

and all solutions were prepared with doubly distilled, deionised water. 

2.3.2 Stock Standard Solutions 

Stock 10,000 mg L""^ copper solution was prepared by the addition of 

copper metal (l.OOOg) to nitric acid (5ml) with heating until dissolution 

was complete. After dilution with water to lOOml, the solution was stored 

in an acid-washed polyethylene bottle. 

2.3.3 Sample preparation 

Four test solutions were prepared ;20% (m/v) sucrose solution; 30% (m/v) 

glucose solution; 10% (m/v) potassium nitrate solution and water. These 

were made up to 250ml in volume and spiked so that the overaD solution 

contained 1 ^gml""' copper. Each solution was adjusted to pH 5,5 using 

dilute ammonia and nitric acid solutions. Standards containing 

1 ^gml~-^ copper in each of the test solutions were prepared for 

cahbration. To each of the sample solutions, resin ( Ig) was added and 

agitated with a magnetic stirrer. At varying time intervals an aliquot 
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was drawn off and fOtered through a lOml syringe fit ted with a f i l ter pad. 

The filtrate was analysed using AAS. The reduction in the copper 

concentration was recorded and ratioed to the standard, to correct for 

instrumental d r i f t . 

2.3,4 Results and discussion 

Figure 2.2 a - d shows the copper adsorption profiles for each of the test 

elements. Adsorption of copper from sucrose, glucose and water was 

virtually complete and equilibrium took about th i r ty minutes, edthough 

this was reached more quickly in water. The relatively slow rate of 

exchange was probably due to the particle size of the resin. Small 

particle size favours rapid exchange because of a greater specific surface 

and hence more diffusion occurs per unit time per unit quantity of resin. 

Adsorption of copper onto the resin from potassium nitrate resulted in 

only 13% being exchanged. This was attributed to the large excess of 

potassium ions competing with the less abundant copper ions in solution. 

Owing to the more selective ability of chelating resins to preconcentrate 

trace metal ions from solutions of alkali and sdkaline earth metals, 

experiments using CheIex-100 were performed. Copper and magnesium 

were chosen as test elements as they represented strong and weakly 

chelated metals respectively. 
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FIGURE 2.2 
EXCHANGE OF 1|jg/ml COPPER ONTO DOWEX 50W-X8 RESIN 
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1 1 1 
20 25 30 

b)lO% POTASSIUM NITRATE 

1 
C3 

i 

0-8 

O 0-2 

i 

TIME (min) 
5 10 t5 

TIME (min) 

T 1 1 
20 25 30 

c)20% SUCROSE d)30% OJUCOSE 

20 25 30 
TIME (min) TIME (min) 

- 24 



2.4 ADSORPTION OF COPPER AND MAGNESIUM ONTO CHELEX-100 

RESIN. 

2.4.1 Chemical reagents 

Chelex-100 chelating resin (Biorad Laboratories, Richmond, VA, USA) was 

used throughout aU adsorption experiments. All reagents used were of 

Aristar reagent grade (BDH L t d . , Poole, UK) and all solutions were 

prepared with doubly distilled, deionised water. 

2.4.2 Stock Standards 

Copper standard as 2.3.2 was used. 

Magnesium standard (10,000 mgL""* ) was prepared by weighing out the 

equivalent of 1.000 g of magnesium or high puri ty MgO and transferred 

to a 100 ml volumetric flask. Deionised water (5 ml) and HNO:̂  (2.5 ml) 

were added and warmed until dissolution was complete. The solution was 

cooled and diluted to 100 ml with deionised water. This was stored in an 

acid-washed polyethylene bottle. 

2.4.3 Sample preparation 

Two sets of four test solutions were prepared, as detailed in section 

2.3.3. One set was spiked with l^tgml"'' copper and the other with 
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iM^ml"'' magnesium. The solutions spiked with copper were adjusted to 

pH 5.5 and those with magnesium to pH 10.0 using dilute ammonia. To 

each of the solutions Chelex-100 (1 g) in the H"*" form, was added and 

stirred with a magnetic stirrer. As before, aliquots were drawn of f , 

filtered and analysed by AAS, recording the reduction in signal for 

copper and magnesium. 

2.4.4 Results and discussion 

Figures 2.3 a-d show the copper adsorption and 2.4 a-d the magnesium 

adsorption profiles for each of the test solutions. 

Both copper and magnesium were adsorbed from all the solutions, 

including the potassium nitrate, with equlibrium being attsdned after 10-

20 minutes. The pH chosen for each element was dependent upon their 

ability to form chelates. For magnesium (a weakly chelated element) the 

pH had to be taken up to pH 10 for fuU adsorption to occur. This was 

so that the iminodiacetic acid function was sufficiently ionised to complex 

the magnesium. Copper on the other hand is strongly complexed by 

Chelex-100 and so the degree of ionisation required is less. 

The ultimate aim of the project was to preconcentrate trace metals from 

solutions onto a solid phase and analyse this by slurry atomisation F I -

ICP-AES. Although Chelex-100 looked promising as regards 

preconcentration, problems were encountered in introducing the loaded 
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FIGURE 2.3 
ADSORPTION OF lMg/ml COPPER ONTO CHELEX-100 RESIN 
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FIGURE 2.4 
ADSORPTION OF Ipg /m l MAGNESIUM ONTO CHELEX-100 RESIN 
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resin slurry into the ICP by F I , owing to blocking of FI VEdve. The 

slurry was not very stable and flocculated badly. 

As a result of this, attention was turned to the use of activated carbon 

because i t is easily ground and has excellent adsorptive properties as 

described earlier. Initied experiments were carried out using CAS-coated 

activated carbon beads. 

2.5 ADSORPTION OF METALS ONTO ACTIVATED CARBON COATED 

WITH CAS 

2.5.1 Chemical reagents 

Activated carbon beads (0.25 - 0.6mm diameter) (BDH L t d . , Poole, UK) 

were used. Chrome Azurol S was obtained from Eastman Kodak Company 

(Rochester, New York, USA). All other reagents were of analjrtical grade 

(BDH L t d . , Poole, UK) and all solutions were prepared with doubly 

distilled water. 

2.5.2 Coating procedure (100) 

About 50g of activated carbon was batch washed with five washings each 

of acetone and methanol, then thoroughly washed with deionised water. 

CAS (500mg) was dissolved in 80:20 water .-methanol and IM HNO^ (15ml) 

was added. This was agitated constantly until the CAS was adsorbed onto 
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the surface of the carbon which took approximately 10 minutes. The 

carbon was washed with a small amount of liVl HNO,^, to remove metal ions, 

then stored in dilute acetic acid at pH3.0. To exploit fuUy the chelating 

power of CAS, fair ly alkaUne conditions are necessary. As such, i t was 

important to prevent metal hydroxide formation. To prevent this an 

auxiliary complexing agent may be added to the sample before pH 

adjustment. However, the auxiliary complexing agent should be weaker 

than the CAS so that when the coated carbon is added to the solution, it 

competes successfully with the complexing agent and adsorbs the metals. 

Four auxiliary complexing agents were examined:- citric acid, tartaric 

acid, triethanolamine and lactic acid. Copper was used as a test element. 

2.5.3 Sample preparation 

To check that the activated carbon did not adsorb copper or reduce it to 

its elemental state on the surface of the carbon, two sets of water samples 

were spiked with 1 p-gmr"* of copper and adjusted to various pHs. To 

one set of solutions, uncoated activated carbon was added and to the 

other, CAS-coated activated carbon. These were agitated as before and 

the decrease in copper signal was recorded. 

Similar experiments were performed with the auxiliary complexing agents. 

Two sets of water samples were made up so that they contained an overall 

concentration of O.OIM auxiUary complexing agent and 1 ^xgrnr" copper. 

To one set, coated carbon was added and to the other, uncoated carbon. 

30 



All solutions were stirred and ahquots taken al fixed-time intervals, 

filtered and analysed for copper depletion. 

2.5.4 Results and discussion 

Figure 2.5a shows the adsorption profile of copper in solution without the 

presence of an auxiliary complexing agent onto uncoated carbon. At pH 

2.9 and 5.25 there is no adsorption, although at pH 9,0, the copper is 

beginning to adsorb to a slight extent. There appears to be a pH 

dependence upon the sorption of copper. As there was no adsorption in 

acid solutions, i t seems that i t is not the hydrate Cu"^"" cation, but rather 

the hydrolysed or partially hydrolysed product that is adsorbed onto 

activated carbon but only to a small extent. Figure 2.5b shows that 

copper is adsorbed onto the CAS-coated carbon to a much greater extent, 

with the optimum pH being at 5.25. There is little adsorption in very 

acidic and none in very alkaline conditions suggesting the CAS-Cu 

complex becomes weaker than the hydrolysed copper at higher pHs. 

Figure 2.6a shows the adsorption of copper from a solution containing 

COIM citric acid, onto CAS-coated carbon. The copper is not adsorbed 

to any great extent. It would appear that the citric acid complex is too 

strong a competitor for the copper compared to the CAS and so little 

copper is adsorbed from solution. However, the extent of adsorption of 

the copper-citrate complex onto the carbon is not great, only 15% after 1 

hour (Figure 2.6b). 
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RGURE 2.5a 
ADSORPTION OF Ipg/ml COPPER ONTO UNCOATED ACnVATED CARBON BEADS 
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ADSORmioN OF Ipg/ml COPPER ONTO CAS-COATED ACTIVATED CARBON BEADS 
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RGURE 2.6a 
ADSORPTION OF lug/ml COPPER ONTO GAS-COATED ACTIVATED CARBON 
BEADS FROM A 0.01M CITRIC ACID SOULITION 
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RGURE 2.6b 
ADSORPTION OF tpg/ml COPPER ONTO UNCOATED ACTIVATED CARBON BEADS 
FROM A 0.01M CITRIC ACID SOLUTION 
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The amount adsorbed at a given temperature and concentration of the bulk 

phase, depends upon the nature of the adsorbent and all the components 

of the solution (solutes and solvent) . Of most significance for this is the 

mutual Eiffinity of substances with similar polar i ty . One would expect 

activated carbon, being a non-polar adsorbent, to have the greatest 

a f f i n i t y fo r non-polar substances as opposed to polar ones. Abid ing by 

this ru le , the competitive adsorption of the solvent will be more marked 

the less its polari ty and therefore, the optimum condition for adsorption 

on activated carbon is the adsorption of non-polar solutes from polar 

solvents, f o r example, water. In view of the adsorption prof i le of the 

ci t r ic acid-copper complex this would seem a plausible explanation, owing 

to the polar nature of the complex. However, the CAS-copper complex is 

also polar and can be adsorbed onto the carbon. 

One possible explanation f o r the difference in adsorption of the CAS-

copper complex (Figure 2.5b) and the citrate-copper complex (Figure 

2.6b) onto the carbon, could be due to the microporous nature of the 

carbon acting as a f i l t e r , i . e . only allowing certain sized molecules to be 

adsorbed. Work carried out on the adsorption of dyes onto XAD-resin 

(100), found a similar phenomenon whereby only certain dyes were 

adsorbed by the resin, which has a microporous nature. Size of molecules 

was thought to be the reason f o r the d i f fe ren t adsorbances observed. I f 

this explanation is correct then i t would be expected that the other 

auxi l iary complexing agents would also be adsorbed to d i f fe ren t extents 

depending upon the size of molecule. 
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Figure 2.7a shows the adsorption of copper onto uncoated carbon f rom a 

O.OIM lactic acid solution. The CAS complexes the copper more s t rongly 

than the lactic acid at pH 5.25 and 10.5. At pH 1.6, no adsorption is 

observed and this is probably due to the CAS molecule not being i n i ts 

active fo rm. Figure 2.7b shows the adsorption of the lactic acid-copper 

complex onto the carbon wi th 80% being adsorbed i n 1 hour. 

The adsorption of copper onto CAS-coated carbon in the presence of O.OIM 

tartaric acid is shown in Figure 2.8a. Again , the CAS-copper complex is 

stronger than the tar trate complex at pH 5.25 and pH 10.5, although f u l l 

adsorption was not attained, suggesting that there is some interference 

in the presence of tar taric acid. The tartaric acid-copper complex is 

adsorbed by the activated carbon (Figure 2 .8b) , leaving about 20% of 

copper i n solution af te r 1 hour. 

Triethanolamine (TEA) was also investigated. The adsorption prof i le of 

copper onto CAS-coated carbon f rom a O.OIM TEA solution is i l lus t ra ted 

in Figure 2.9a. The CAS-copper complex is stronger than the TEA-

copper complex and so is adsorbed b y the carbon. TEA-copper complexes 

are adsorbed onto carbon i n the absence of CAS (Figure 2 .9b) , although 

about 50% remains in solution. 

As a conclusion to these experiments, the adsorption of copper f rom 

solutions containing various auxi l iary complexing agents onto CAS-coated 

activated carbon can be explained by the magnitude of their s tabi l i ty 
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nCURE 2.7a 
ADSORPTION OF Ipg/ml COPPER ONTO GAS-COATED ACTIVATED CARBON 
BEADS FROM A 0.01M LACTIC ACID SOLUTION 
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nCURE Z7b 
ADSORPTION OF lyg/ml COPPER OhfTG UNCOATED ACTIVATED CARBON BEADS 
FROM O.OIM U C n C ACID SOLUTION 
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nCURE 2.8a 
ADSORPTION OF Ipg/ml COPPER ONTO CAS-COATED ACTIVATED CARBON 
BEADS FROM 0.01M TARTARIC AOD SOLUTION 

^ 0-8H 

\ [/) 0-6 

V 
10 

0-4 H 

0-2 H 

1 1 1 \ 1 r — I 1 1 \ I 
10 15 20 25 30 35 40 45 50 55 60 TIME (min) 

Legend 
a pH 1.6 

• pH 2.75 

« e H 5 , 2 5 , 

O pH 10.5 

40 



nOURE 2.8b 
ADSORPTION OF Ipg/ml COPPER ONTO UNCOATED ACTIVATED CARBON BEADS 
FROM A O.OIM TARTARIC AOD SOLUTION 
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nCURE 2.9a 
ADSORPTION OF lug/ml COPPER ONTO CAS-COATED ACTIVATED CARBON 
BEADS FROM A O.OIM TEA SOLUTION 
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RGURE 2.9b 
ADSORPTION OF Ipg/ml COPPER ONTO UNCOATED ACTIVATED CARBON BEADS 
FROM 0.01M TRIETHANOLAMINE SOLUTION 
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constants 

When a complex is formed by the reaction 

M + L — • M L 2.1 

The equilibrium of the above reaction is defined by the expression 

K ^ . = [ML] 2.2 
[M] [ L ] 

where K , - r r . is the formation constant. In order to keep the equil ibrium 

equations in a simple fo rm, although consideration must be taken of the 

influence of all side reactions i n which M and L take place, a new constant 

is defined 

K ' = K „ , ^ - = FMLl 2.3 

The expression [M'J denotes the concentration not only of the free metal 

ion but also of all the metal in solution that has not reacted wi th the 

complexing agent. The term [L'J correspondingly, represents the 

44 



concentration of the free ligand as well as the concentrations of all species 

of the complexing agent not bound to the metal. K' is known as the 

conditional s tabi l i ty constant. I t is often convenient not to prime the 

constant i t se l f , but its qua l i fy ing subscripts . Thus , K,.^... indicates that 

the side reactions of the Ligand, but not the side reactions of the metal ion 

have been taken into account. K^.- indicates that the side reactions of 

the metal and the ligand have been taken into account. 

The conditional constant gives the relationship between the concentration 

of product formed [ M L ] ; the total concentration of uncomplexed metal 

[M ' ] and the total concentration of the uncomplexed reagent [ L ' ] . Table 

2.2 shows the s tabi l i ty constants f o r copper c i t ra te , lactate, tar t rate , TEA 

and CAS complexes. (101) In this work, the strongest copper complex 

was formed by ci t r ic acid and the weakest by TEA. This was shown in 

the adsorption profiles whereby the c i t r ic acid complex bound the copper 

more s t rongly than the CAS and thus prevented f u l l adsorption of the 

CAS-copper complex onto the carbon. However, CAS competed more 

successfully than TEA fo r the copper and so the CAS-copper complex was 

preferent ial ly adsorbed. From the results , i t would appear that the order 

of increasing abi l i ty to complex copper in the presence of CAS is 

citrate > tartrate > TEA > lactate 

CAS is less s t rongly complexing than the ci t rate , but more so than the 

tar t rate . These results f i t in well with the equilibrium constants where 

the ci t r ic acid-copper complex has a p K , value of 18.0 which is higher 
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T A B L E 2.2 

LOG EQUILIBRIUM CONSTANTS FOR COPPER COMPLEXES (101) 

Temp Medium Log e q u i l i b r i u m 
constant K, 

C i t r i c A c i d 

CAS 

TEA 

T a r t a r i c A c i d 

L a c t i c A c i d 

20 

25 

25 

20 

31 

O.IM NaClO. 

0.1 

0.1 

0.1 NaClO-* 

0.1 

18 

4.02 

3.9 

3.2 

2.55 
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than any of the other complexing agents studied. The weakest complexing 

agent examined was the lactic acid and this has the lowest pK^. value. 

More d i f f i c u l t to explain was the variation of adsorption of copper wi th 

d i f fe ren t complexing agents without the competing presence of CAS. Size 

of molecule is a possible answer, although without f u r t h e r information or 

actual size and configuration of molecules, no defini te conclusions can be 

drawn. 

2.6 ADSORPTION OF CAS-METAL COMPLEXES ONTO POWDERED 

A C T I V A T E D CARBON 

One of the major disadvantages of adsorbing metals onto the surface of 

CAS-coated activated carbon was the time required to reach equi l ibr ium. 

As wi th ion-exchange, small particle size enhances adsorption owing to 

the increase in specific surface. The particle size of the carbon beads 

was about 0.5mm diameter. I t was thought that equilibrium could be 

reached more rap id ly b y using activated carbon powder, whose part icle 

size is below lOOpjn. 

Owing to the d i f f icul t ies of competing auxi l iary complexing ligands i n the 

previous experiments, advantage could be seen i n adding CAS to the 

solutions, then adsorbing the preformed CAS-complexes onto the activated 

carbon. 
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2.6.1 Chemical reagents 

Activated carbon Darco G-60 (Ald r i ch Chemical Co . , GiUingham, Dorset, 

U K ) , was used throughout the experiments. 

2.6.2 Stock Standard Solutions 

Stock copper and magnesium standards as i n 2.3.2 and 2.4,1 were used. 

Stock calcium standard (10,000 p ^ l " - ^ ) was prepared by weighing the 

equivalent of l.OOOg of calcium as high p u r i t y CaCO^* and t rans fe r r ing i t 

to a 100ml volumetric f lask . Deionised water (5ml) and concentrated HNO^ 

(5ml) were added carefu l ly . A f t e r dissolution, the solution was di luted 

to 100ml wi th deionised water and stored in an acid washed polyethylene 

bott le. 

Stock i ron standard (10,000 ^gmF' ' ) was prepared by weighing out l.OOOg 

of h igh p u r i t y i ron sponge. This was t ransferred to a beaker and 

concentrated HCl (5ml) was added and heated to boi l ing un t i l the sponge 

had dissolved. This was cooled and t ransferred to a lOOml volumetric 

f lask , diluted wi th deionised water to 100ml and stored in a polyethylene 

bott le . 

Stock manganese (10,000njnr^ ) was prepared b y weighing out the 

equivalent of l.OOOg of manganese as high p u r i t y MnO, concentrated HNO3 
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(5mls) was added and a f te r dissolution the solution t ransferred to a 100ml 

volumetric f lask and made up to 100ml with deionised water. The solution 

was stored in an acid washed polyethylene bott le . 

Nickel standard (10,000^Lgmr"'-) was prepared by weighing out l.OOOg of 

high p u r i t y nickel powder. This was t ransferred to a lOOml volumetric 

flask where concentrated HNOr* (2ml) was added and the solution warmed 

unt i l dissolution was complete. The solution was cooled and di luted to 

100ml with deionised water and stored i n an acid-washed polyethylene 

bott le. 

2.6.3 Sample preparation 

Six water samples (250mls) were spiked wi th I p g m l " ' ' of each of the test 

elements (Ca, Cu, Fe, Mg, Mn and N i ) . CAS (lOmg) was added and the 

pH of the solutions were adjusted according to predetermined optimum pH 

conditions. Activated carbon (0.5g) was added and s t i r r ed , t ak ing 

ahquots at time intervEils, f i l t e red and the f i l t r a t e analysed 

b y AAS. Reduction i n element signal was again recorded. Two sets of 

glucose (30%), sucrose (20%) and potassium nitrate (10%) solutions were 

prepared and spiked wi th Cu and Mg (1 ^gml" ' '*) . As above, CAS (lOmg) 

was added to form the complexes i n solution, activated carbon was 

introduced and s t i r r ed and f i l t e red aliquots of the solution drawn o f f and 

analysed by AAS. 
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2 .6 .4 Resul ts a n d d i scuss ion 

F igure 2.10 a - f show the adso rp t ion o f test elements f r o m water onto the 

c a r b o n . T h e most s t r i k i n g f e a t u r e is r a p i d i t y o f a d s o r p t i o n , w i t h 

e q u i l i b r i u m b e i n g reached i n 2-5 minutes o r q u i c k e r . I t was f o u n d i n a 

l a t e r e x p e r i m e n t , tha t the presence o f CAS was not r e q u i r e d to e f f e c t 

copper adso rp t i on onto the ca rbon . T h a t th i s was not seen ear l i e r i n the 

exper iments u s i n g ac t i va t ed ca rbon beads, sugges ted tha t a ) the p a r t i c l e 

size of the carbon is c r i t i c a l - the smaller the size the h i g h e r the 

a d s o r b a b i l i t y r e s u l t i n g f r o m the l a r g e r s p e c i f i c s u r f a c e , and b ) the 

su r face c h e m i s t r y of the carbon is i m p o r t a n t . The beads were sphe r i ca l 

and h a r d and i t was be l ieved tha t t h e y were o f po lymer i c o r i g i n . T h e 

powder was m a n u f a c t u r e d f r o m animal and p lan t mate r ia l . The d i f f e r e n t 

o r i g i n s o f the ca rbon cou ld have a f f e c t e d the s u r f a c e c h e m i s t r y , t h u s 

adso rbab i l i t i e s . The re is evidence to s u p p o r t the t h e o r y that C u ^ " " is 

r educed b y the ca rbon to C u ° w h i c h plates on to the s u r f a c e . A d s o r p t i o n 

of copper f r o m glucose , sucrose , and potass ium n i t r a t e solut ions is shown 

i n F igu re 2 . 1 1 , a-c . A d s o r p t i o n is v e r y r a p i d , even i n sucrose , w h i c h at 

20% is qu i t e v i s cous . The adso rp t i on o f magnesium f r o m the test so lu t ions 

can be seen f r o m F i g u r e 2 .12 , a-c. I t i s i n t e r e s t i n g to note tha t b e f o r e 

the a d d i t i o n o f e x t r a CAS and ac t iva ted c a r b o n , the degree of a d s o r p t i o n 

i n each so lu t ion is s imi la r . T h i s sugges ts tha t the CAS was not 

complex ing the magnesium, b u t r a t h e r the ion-exchange g r o u p i n the CAS 

molecule was e x e r t i n g an e f f e c t . T h i s was seen when an e x t r a lOmg o f 

CAS was added to the so lu t ions . I n a l l cases, the adso rp t ion o f copper 
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FIGURE 2.10 
ADSORPTION OF METALS ONTO POWDERED ACTIVATED CARBON 
USING CAS CHELATING DYE 
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FIGURE 2.10 cont. 
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FIGURE 2.11 
ADSORPTION OF lMg/ml COPPER ONTO ACTIVATED 
CARBON USING CAS CHELATING DYE 
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FIGURE 2.12 
ADSORPTION OF Ipg /ml MAGNESIUM ONTO ACTIVATED 
CARBON USING CAS CHELATING DYE 

a)lO% POTASSaJM NfTRATE (pHll) b)20% SUCROSE (pHll) 

T1IC Cmirg 
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c)30% GULiCOSE (pHll). 

x= addition of further lOmg cas 

y.= addition of further 0.5g activated 
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inc reased . A d d i t i o n o f more ac t iva ted carbon also increased the 

adso rp t i on of magnesium. A possible exp lana t ion of t h i s was tha t the 

su r f ace o f the ca rbon was sa tu ra t ed a n d could not p h y s i c a l l y adso rb a n y 

more magnesium. With the use of a more a p p r o p r i a t e complex ing agent i t 

is t h o u g h t tha t adso rp t i on of magnesium onto ac t i va t ed carbon could be 

ach ieved . 

2.7 CONCLUSIONS 

T h i s chap te r has shown the f e a s i b i l i t y of a d s o r b i n g metal ions f r o m 

so lu t ion onto a sol id s u p p o r t . The use of convent iona l ion-exchange 

res ins is l imi ted i n th i s w o r k o w i n g to an i n a b i l i t y to exchange metal i o n s , 

such as copper , i n the presence o f an excess of a lkah o r a lka l ine e a r t h 

metals. One o f the main aims o f the w o r k was to p reconcen t ra te metal ions 

f r o m e l e c t r o l y t i c so lu t ions and so ion-exchange res ins would be o f l i t t l e 

use i n th i s area. 

The che l a t i ng r e s i n , Chelex-100, was able to adsorb b o t h copper and 

magnesium f r o m 10% potassium n i t r a t e . However , problems w i t h sample 

i n t r o d u c t i o n i n t o the ICP c u r t a i l e d i t s use. 

Powdered ac t iva ted c a r b o n , i n the presence o f CAS che l a t i ng dye was 

f o u n d to be the most p r o m i s i n g ma te r i a l . The h i g h a d s o r b a b i l i t y o f 

ac t iva ted ca rbon gave impress ive e q u i l i b r a t i o n t imes. Ca, C u , Fe, M g , 

Mn and Ni were a l l adsorbed s u c c e s s f u l l y i n aqueous so lu t ions , a l t h o u g h 
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magnesium i n concen t ra ted sucrose , glucose and potassium n i t r a t e 

so lu t ions was n o t . I n o r d e r to adso rb magnesium, a d i f f e r e n t c h e l a t i n g 

reagent wou ld need to be u sed . 
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CHAPTER 3 

DEVELOPMENT OF O P T I M I S A T I O N STUDIES FOR FLOW I N J E C T I O N -

SLURRY A T O M I S A T I O N 

3 .1 I N T R O D U C T I O N 

I n d u c t i v e l y coupled plasma atomic emission s p e c t r o m e t r y ( I C P - A E S ) has 

become a valuable tool f o r the de te rmina t ion o f major and minor 

cons t i tuen t s in a range o f samples. T h i s plasma source p rov ides a wide 

dynamic w o r k i n g concen t ra t ion range and is r e l a t i v e l y f r e e f r o m chemical 

i n t e r f e r e n c e s . These a t t r i b u t e s combine to enhance the scope and 

v e r s a t i l i t y o f the technique w i t h respect to the number o f analytes tha t 

can be measured and the number o f sample matrices tha t can be ana lysed . 

3 .1 .2 Sample i n t r o d u c t i o n i n t o the ICP 

The f i r s t stage i n ICP analys is is the i n t r o d u c t i o n o f the sample i n t o the 

plasma. I n p r i n c i p l e , the sample can be i n the s o l i d , l i q u i d o r gaseous 

s ta te . L i q u i d samples a re g e n e r a l l y p r e f e r r e d , o w i n g to homogenei ty , 

s t andard i sa t ion and h a n d l i n g cons ide ra t ions . However , many samples 

occur n a t u r a l l y i n the soUd f o r m and p r a c t i c a l advantages can be rea l i sed 

i f sol id samples are i n t r o d u c e d d i r e c t l y i n t o the plasma, w i t h o u t p r e -

t rea tment or convers ion to a l i q u i d . For example, samples may be 

analysed i n t h e i r n a t u r a l s t a te ; contaminat ion f r o m reagents is min imised ; 

d i l u t i o n e r r o r s are r e d u c e d ; sample t r a n s f e r losses a r i s i n g f r o m e x t r a 

sampl ing h a n d l i n g steps are avoided and reagent and manpower costs are 

- 57 



r e d u c e d , A number o f methods may be used to i n t r o d u c e solids d i r e c t l y 

i n t o the I C P . However , many of these f o r example, mechanical ag i t a t i on 

of powders (67 , 102, 103) , f l u i d i s e d bed chambers (104) , and d i r e c t 

i n s e r t i o n i n t o the plasma on a g r a p h i t e r o d ( 7 8 ) , s u f f e r problems a r i s i n g 

f r o m d e n s i t y d i f f e r e n c e s of components w i t h i n the sample, l e ad ing to 

segregat ion and inhomogene i ty . For a more deta i led discussion on va r ious 

sohd sample i n t r o d u c t i o n methods, re fe rences 105 and 106 a re 

recommended. 

3 .1 .3 S l u r r y sample i n t r o d u c t i o n i n t o the ICP 

T h i s w o r k i n t r o d u c e d sohd samples i n t o the ICP i n the f o r m of s l u r r i e s . 

Work has shown (see Chapte r 1) tha t the p a r t i c l e size d i s t r i b u t i o n o f the 

s l u r r y is a v i t a l f a c t o r . I f the d i s t r i b u t i o n inc ludes a s i g n i f i c a n t f r a c t i o n 

o v e r Slim i n d iameter , a t omi sa t i on / t r an spo r t e f f i c i e n c y is g r e a t l y a f f e c t e d . 

T h e r e f o r e , i t was necessary to reduce the p a r t i c l e size to below Spji i , and 

p r e f e r a b l y lower , b y a su i table g r i n d i n g p r o c e d u r e . E f f e c t i v e d i spe r sa l 

of the s l u r r y is an e q u a l l y impor t an t c r i t e r i o n i n s l u r r y a tomisa t ion . A 

s l u r r y incorpora tes a s o l i d , genera l ly a p o w d e r , i n t o a l i q u i d medium. 

The powder becomes d i f f i c u l t to d isperse i f i t s su r f ace is l y o p h o b i c . A 

d i s p e r s i n g agent is added t h e r e f o r e , to wet the s u r f a c e o f the l y o p h o b i c 

ma te r i a l , t h u s r e n d e r i n g i t l y o p h i l i c . 

3 .1 .4 Aeroso l gene ra t ion 

H a v i n g p r e p a r e d a s l u r r y w i t h p a r t i c l e size below 8|JJTI, the nex t stage i n 

the analys is is i t s i n t r o d u c t i o n i n t o the plasma source as an aerosol . T h i s 
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is e f f e c t e d b y the use of a nebuhser wh ich conve r t s a so lu t ion o r s l u r r y , 

i n t o a f i n e mis t . The B a b i n g t o n - t y p e nebu l i se r is the p r e f e r r e d device f o r 

s l u r r y nebu l i s a t i on . The nebu l i se r used i n t h i s w o r k , the so cal led 

'Ebdon Nebu l i s e r ' , ( F i g u r e 3 .1) r e p o r t e d b y Ebdon and Cave ( 7 6 ) , is a 

V - g r o o v e v a r i a n t o f the geometry o f the B a b i n g t o n - t y p e . U n l i k e the 

Meinhard nebu l i se r wh ich is suscept ib le to b l o c k i n g , the Ebdon nebu l i s e r 

is completely unb lockab l e . The nebuUser is c o n s t r u c t e d i n Ke l -F o r PTFE 

and has two channels d r i l l e d a long i t s l e n g t h e n d i n g i n o r i f i . The sample 

is pumped a long the u p p e r channel (1.2mm diameter ) and gas t h r o u g h the 

lower one. As the sample emerges f r o m the nebu l i se r b l o c k , i t r u n s down 

the V - g r o o v e and ove r the gas o r i f i c e (0.2mm d i a m e t e r ) . The h i g h 

v e l o c i t y gas sha t t e r s the sample i n t o d r o p l e t s , w h i c h are then c a r r i e d 

t h r o u g h the s p r a y chamber and i n t o the plasma. 

A l l pneumatic nebuhsers p roduce p r i m a r y aerosols w i t h b road d r o p l e t size 

d i s t r i b u t i o n s . I f these large d rop le t s reached the plasma i t wou ld cause 

i n s t a b i l i t y and so i t is necessary to remove these u s i n g a s p r a y chamber 

as a separa tor o r f i l t e r i n g dev ice . I t is i m p o r t a n t to note tha t the f i n a l 

state of the aerosol as i t enters the plasma, is not j u s t a f u n c t i o n o f the 

s p r a y chamber , b u t also o f the t o r c h i n j e c t o r and aerosol deUve ry t u b e . 

The add i t i on o f a s p r a y chamber aerosol d e l i v e r y system to the nebuhse r , 

has a number o f e f f e c t s : 

( i ) the aerosol p a r t i c l e size d i s t r i b u t i o n is m o d i f i e d ; 

( i i ) the aerosol concen t ra t ion is decreased; 

( t i i ) the phase e q u i h b r i u m of the aerosol is mod i f i ed towards the 

establ ishment of thermal e q u i h b r i u m ; 
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FIGURE 3.1 
SCHEMATIC DIAGRAM OF EBDON NEBULISER 
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( i v ) the charge e q u i l i b r i u m is m o d i f i e d ; 

( v ) the t u r b u l e n c e tha t is associated w i t h the nebul i sa t ion process , and 

conver s ion o f the i n e r t i a l e n e r g y i n t o heat , is r e d u c e d . These e f f e c t s a re 

accounted f o r b y a number of processes , f o r example, r ecombina t ion , 

i n e r t i a l impac t ion , evapo ra t i on , c h a r g i n g / d i s c h a r g i n g and the decay of 

t u r b u l e n c e and these processes are g r e a t l y a f f e c t e d b y the geomet ry o f 

the s p r a y chamber. For con t inuous , s teady state nebul i sa t ion of t y p i c a l 

nebuUser up take rates (1-2 mlmin""* ) , and i n j e c t o r gas f low rates (0 .5 -

1.5 Lmin""* ) , the t r a n s p o r t e f f i c i e n c y o f nebul i sa t ion is about 1-2%. T h i s 

means tha t on ly 10-40MJmin~'' of ac tua l ana ly t e , gets to the plasma. I n 

f l o w i n j e c t i o n ( F I ) sample volumes of f o r example 200-300|jJ are i n j e c t e d 

i n t o a f l o w i n g c a r r i e r s t ream. A t the t r a n s p o r t e f f i c i e n c y ra te s p e c i f i e d 

above, on ly 2 - 6 | i l reaches the plasma ( 1 0 7 ) , i t is ev iden t t h e r e f o r e , tha t 

the power o f de tec t ion achievable w i t h such nebul i sa t ion systems is 

h m i t e d . 

The aim of t h i s s t u d y was to i n t r o d u c e small volumes of s l u r r i e s (<500MJ) 

i n t o the I C P b y F I . I t was t h o u g h t t ha t th i s wou ld be most s u c c e s s f u l l y 

achieved b y r e d u c t i o n o f the s p r a y chamber vo lume, hence d i spe r s ion of 

sample, and t h e r e f o r e y i e l d i n g b e t t e r s e n s i t i v i t y . I t was i m p o r t a n t 

however , w i t h th i s a im, tha t the ove ra l l ob jec t ive of the s p r a y chamber , 

o f p r o d u c i n g a s table aerosol s t ream o f small d r o p l e t s , w i t h a n a r r o w 

pa r t i c l e size d i s t r i b u t i o n , was main ta ined . 

3.2 EXPERIMENTAL 

The plasma emission spect rometer used was a sequent ia l compute r -
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c o n t r o l l e d , f u l l y i n t e g r a t e d ICP (Plasmakon S35, K o n t r o n S p e k t r a l a n a l y t i k , 

E c h i n g , F R G ) . The plasma o p e r a t i n g condi t ions were as f o l l o w s : power 

(ne t f o r w a r d ) , 1.5kW; c a r r i e r gas f l o w r a t e , l .SLmin""* ; ou te r gas f l o w 

r a t e , ISLmin""* ; and in te rmedia te gas f l o w r a t e , 0 . 4 L m i n ~ ^ . T h i s 

i n s t r u m e n t incorpora tes a data acqu i s i t i on sys tem w h i c h does not have a 

d i r e c t analogue to d i g i t a l c o n v e r t e r ( A D C ) between the p h o t o m u l t i p l i e r 

tube (PMT) and the computer . I n s t e a d , a system of vol tage to f r e q u e n c y 

convers ion is used w h e r e b y the PMT is gated ( t ime base r egu la t ed ) b y the 

compute r . Such a system o f f e r s clear advantages f o r F I as th i s more 

r a p i d data r e a d i n g f a c i l i t y , compared w i t h normal A D C , means t h a t 

sampl ing ra te problems associated w i t h ADCs used i n F I work are no t 

encoun te red . 

A Min ipu l s p e r i s t a l t i c p u m p , ( G i l s o n , L u t o n , Beds . U K ) toge ther w i t h a 

s i x - p o r t s w i t c h i n g va lve ( P . S . A n a l y t i c a l , Sevenoaks, K e n t , U K ) and 

0.8mm i . d PTFE t u b i n g fo rmed the basis of the F I m a n i f o l d . A v a r i e t y o f 

PTFE i n j e c t i o n loops (100-500|xl) and connec t i ng tube l eng ths were u s e d . 

The sample was supphed to the nebuhser v ia the p e r i s t a l t i c p u m p . T h e 

sample was i n t r o d u c e d in to the plasma i n the f o r m of an aerosol w h i c h was 

p r o d u c e d b y a h igh-soUds PTFE nebu l i se r (Ebdon nebuUser P . S . 

A n a l y t i c a l ) . The aerosol was c a r r i e d i n t o a s p r a y chamber. I n i t i a l 

s t ud ie s , p e r f o r m e d w i t h a convent iona l Scott double-pass s p r a y chamber , 

were d i s a p p o i n t i n g . Presumably the l a rge volume of t h i s s p r a y chamber 

caused excessive d i l u t i o n o f m i c r o l i t r e - s i z e d samples w i t h the c a r r i e r 

s t r eam. A n in -house des igned s p r a y chamber ( F i g u r e 3 .2 ) was examined 

f o r use i n F I . 
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FIGURE 3.2 

DIAGRAM OF BULBOUS-ENDED SPRAY CHAMBER 

TO ICP 
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Par t i c l e size d i s t r i b u t i o n s were measured u s i n g a Cou l t e r Coun te r T A I I 

m u l t i - c h a n n e l p a r t i c l e ana lyser ( C o u l t e r Elec t ronic L t d . , L u t o n , B e d s . , 

U K ) . T h e i n s t r u m e n t can measure e l e c t r o n i c a l l y , the volume o f p a r t i c l e s 

i n the size range f r o m 0.6-800^un. T h i s is achieved b y measur ing the 

change i n p o t e n t i a l d i f f e r e n c e as pa r t i c l e s suspended i n an e l e c t r o l y t e , 

are sucked t h r o u g h a small o r i f i c e . T h i s is poss ib le , s ince as the p a r t i c l e 

t r ave r ses the o r i f i c e , i t a l t e r s the res is tance o f the f l o w of c u r r e n t across 

the sec t ion . T h e i n s t r u m e n t operates at cons tant c u r r e n t , hence the 

change i n p o t e n t i a l is also p r o p o r t i o n a l to vo lume. Coul te r e l e c t r o l y t e 

( I so ton I I ) was used f o r p a r t i c l e size measurements and a 140^im o r i f i c e 

t ube f o r aD the de te rmina t ions . 

3 . 2 . 1 Reagents 

For p r e l i m i n a r y expe r imen t s , Dowex 50W-X8 (100-200 mesh) ion -exchange 

r e s i n ( B D H L t d . , Poole, Dorse t , U K ) was u s e d . Va l ida t i on exper imen t s 

were c a r r i e d ou t u s i n g two C e r t i f i e d Reference Mate r ia l (CRM) so i l s , SOI 

and S02 ( C A N M E T , Ot tawa , O n t a r i o , Canada) . 

A l l reagents were o f ana ly t i ca l g rade ( B D H L t d . ) and a l l so lu t ions 

p r e p a r e d w i t h d o u b l y d i s t i l l e d , de ionised wa te r . 

3 . 2 .2 Sample preparation 

3 . 2 , 2 . 1 Ion-exchange r e s i n s l u r r y preparation 

Ion-exchange r e s i n ( I g ) was weighed i n t o a p o l y p r o p y l e n e s c r ew- topped 
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bo t t l e and lOg of p o l y a c r y l l c spheres (Glen C r e s t o n , Stanmore, Midd lesex , 

U K ) were added . T h i s was shaken f o r a p e r i o d u n t i l the p a r t i c l e size o f 

the s l u r r y was below Sj im, t y p i c a l l y 2-4 h o u r s . T h e s l u r r y and g r i n d i n g 

medium were separated and washed t h r o u g h a B u c h n e r f u n n e l , i n t o a 

ca l ib ra t ed f l a s k . Copper was then added to a to ta l concen t ra t ion o f 

20^gml -^ . 

A n aqueous 20^^111""*^ copper so lu t ion was EIISO p r e p a r e d . 

3 . 2 . 2 . 2 Cert i f ied Reference Material preparation 

The comminution method chosen i n v o l v e d s h a k i n g a k n o w n amount o f 

r e fe rence soi l w i t h t e t r a sod ium py rophospha t e d i spe r san t so lu t ion 

( o v e r a l l concen t ra t ion o f d i spe r san t 1% m / v ) and z i rcon ia g r i n d i n g medium 

( i n the r a t i o o f 1:10 sample: g r i n d i n g medium (108) i n a sealed 

p o l y p r o p y l e n e bo t t l e f o r 3 h o u r s ( 5 3 ) . The spheres were washed a n d 

removed f r o m the so lu t i on and made u p to the r e q u i r e d vo lume. Pa r t i c l e 

size d i s t r i b u t i o n s are shown i n F igu re s 3.3 and 3 . 4 . 

3.3 R E S U L T S AND D I S C U S S I O N 

B e f o r e a n y analyses were p e r f o r m e d , the c o n t r o l l i n g parameters were 

i n v e s t i g a t e d . Var iab les s t u d i e d i n c l u d e d s p r a y chamber d e s i g n , sample 

i n j e c t i o n volume and c a r r i e r s t ream f l o w r a t e . 
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FIGURE 3.3 
PARTICLE SIZE DISTRIBUTION OF SOI AFTER GRINDING 
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FIGURE 3.4 
PARTICLE SIZE DISTRIBUTION OF S02 AFTER GRINDING 
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3.3.1 Spray chamber design 

Preliminary experiments were performed using a conventional Scott 

double-pass spray chamber (SDPSC). However, as mentioned earher this 

caused excessive dispersion. The spray chamber was replaced by a 

single-pass design (SPSC). Problems were encountered with the formation 

of condensation at the base of the injector tube, causing instabi l i ty of 

the plasma. 

The spray chamber that was chosen (Figure 3.2) was the bulbous-ended 

spray chamber (BESC) which was longer than the straight through 

var ie ty . As the s l u r r y emerged from the nebuliser some of the larger 

particles impacted on the adjacent glass surfaces. The larger particles 

should be eliminated by the bends in the chamber and go to dra in . In the 

SDPSC, particles that have negotiated the reverse direction between the 

inner and outer tubes travel back along the spray chaimber, where 

gravitational forces and impaction may cause more particles to drop out . 

With the spray chamber shown in Figure 3.2, the particles do not have to 

travel along a second chamber but enter d i rec t ly into the injector tube. 

Although the volume of the BESC was s l igh t ly higher than the SDPSC, 

120 and 110ml respectively, the BESC offered an easier route f o r the 

particles to t rave l , hence the 50% increase in sensi t ivi ty observed. 

3.3.2 Sample injection volume 

An ion-exchange resin (10% m/v) spiked wi th 20 jigml""* of copper was 

used in this experiment. Figure 3.5 compares the response for the copper 
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FIGURE 3.5 
EFFECT OF VARYING INJECTION VOLUME ON SIGNAL 
FOR A 20Mgmr COPPER SOLUTION AND A RESIN SLURRY 
SPIKED WITH THE SAME CONCENTRATION OF COPPER 
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-spiked ground resin and an aqueous sample with the same concentration, 

wi th increasing injection volume. The s l u r r y signal tended to be s l ight ly 

higher than the aqueous response and i t is thought that this was due to 

the s l u r r y being a two phase system, thereby reducing dispersion. As 

can be seen from the graph, the signal increased with increasing injection 

volume. This was not unexpected because dispersion at smaller volumes 

is increased and so the sample is more 'di lute ' when i t reaches the plasma. 

Previous work showed that with a Scott double-pass spray chamber a SOOyd 

injection volume gave a response 75% of that obtEuned by continuous 

nebulisation. The bulbous-ended spray chamber alleviated this problem, 

so that signals from continuous and discrete nebulisation were comparable 

at sample volumes of SOOixl and above. This was par t icular ly advantageous 

as i t meant that standards could be either nebulised continuously or 

introduced by F I . 

3.3.3 Carrier stream flow rate 

The carr ier stream used in this experiment was doubly-dis t i l led, deionised 

water. The flow rate was controlled by a peristaltic pump with variable 

speed settings. The effect of increasing the pump flow rate on the signal 

was to sharpen up the peak characteristics. Peak height was not affected 

greatly in either spray chamber. A flow rate of S.Smlmin""* was chosen 

as this gave a peak with good sensi t ivi ty and symmetry. The high carr ier 

stream flow rate also increases sample throughput . 
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3.3.4 Analysis of slurries of Certified Reference Materials 

To validate the FI s l u r ry atomisation ICP-AES technique two slurries of 

CRM soils S02 and S02 were prepared, 0.1% m/v fo r minor element 

determinations and 5% m/v fo r trace elements. Results obtained b y FI 

s l u r r y atomisation using conventional aqueous standards fo r calibration 

are shown in Table 3 . 1 . I t can be seen that the technique offered 

excellent agreement with cert i f ied values f o r all six elements studied. 

Typically the precision was around the 2% (relative) level, which is similar 

to that obtained with this instrumentation fo r aqueous solutions. 

In conclusion to this set of experiments, F l - s l u r r y atomisation ICP-AES 

has proved to be a viable analytical technique. A new design of spray 

chamber o f f e r i n g excellent characteristics f o r FI-ICP-AES has been 

developed. Overall , the technique combines many of the advantages of FI 

with the greater sample throughput and other advantages of s l u r r y 

atomisation. The application of FI to slurries is as convenient as to 

solutions and no major instrumental modifications are required. Indeed, 

the more favourable dispersion characteristics of slurries may be 

advantageous compared wi th FI of solutions. 

From the results i t appeared that reduction of spray chamber volume led 

to an increase in sens i t iv i ty . However, i t was not clear as to whether 

this was due to a reduction in dispersion of the sample in the carr ier 

stream, or to the d i f ferent geometric design of the chamber, which may 

have altered the emergent particle size dis t r ibut ion and transport 

eff iciency of the system. Thus a need was identif ied to investigate the 
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T A B L E 3.1 

DETERMINATION OF ELEMENTS IN CRM SOILS S02 AND S02 USING F I 
SLURRY ATOMISATION ICP-AES 

S o i l Element/ Experimental r e s u l t * C e r t i f i e d Value 
Concentration 
Units 

SOI 

802 

Ca/% 1.75 + 0.02 1.8 + 0.07 

Fe/% 5.9 + 0.13 6.0 + 0.13 

Mg/% 2.25 + 0.17 2.31 + 0.003 

Mn/% 0.089 + 0.001 0.089 + 0.003 

Cu /ugg" 59.0 + 0.1 61.0 + 3.0 

V/ugg"' 132.0 + 5.0 139.0 + 8.0 

Ca/% 1.95 + 0.11 1.96 + 0.1 

Fe/% 5.3 + 0.16 5.56 + 0.16 

Mg/% 0.54 + 0.02 0.54 + 0.03 

Mn/% 0.068 + 0.012 0.072 + 0.002 

Cu /ugg" 8.0 + 0.1 7.0 + 1.0 

v / ^ g g " 60.0 + 5.0 64.0 + 10.0 

* Means of s i x r e p l i c a t e determinations ± 2 standard deviations 
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effect of spray chamber design upon analytical performance. The 

performance of various nebuliser/spray chamber configurations may be 

part ial ly assessed by measurement of the particle size dis t r ibut ion of the 

emergent sample and the transport eff ic iency of the system. 

Four spray chambers were assessed fo r their emergent particle size 

distributions and transport eff iciencies:- a Scott double-pass spray 

chamber (SDPSC), a single-pass (SPSC), the bulbous ended chamber 

(BESC) used in the previous experiments, and a smaller version of the 

BESC, the reduced volume spray chamber (RVSC) and are shown in 

Figure 3.6, 3.7 and 3.8 respectively. The BESC is i l lustrated in Figure 

3.2. Numerous techniques have been employed to trap aqueous aerosols, 

such as momentum transfer methods (110, 111), collection on membrane 

f i l te rs (112-114) or on U-tubes packed wi th silica gel fo r aqueous sprays 

and activated carbon f o r organic sprays (115). Cascade impaction is 

another method that may be used (113, 116, 117) and this approach was 

used in this s tudy, fo r the collection of aerosol particles and calculation 

of transport eff ic iency. 

3.4 EXPERIMENTAL 

The cascade impactor used in this work was of the Andersen stack sampler 

type (Figure 3 .9) . A mark I I I Andersen stack sampler (Andersen 

Samplers I n c . , Atlanta, Georgia, USA) was positioned above the exit point 

of a 1.8mm i . d . capillary injector , which was connected to each of the 

spray chambers under investigation. Slurries (SOOmls) of 1% m/v 

activated carbon were used in all experiments, having been previously 
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FIGURE 3.6 
DIAGRAM OF SCOTT DOUBLE-PASS SPRAY CHAMBER 
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FIGURE 3.7 
DIAGRAM OF SINGLE-PASS SPRAY CHAMBER 

TO PLASMA 

TO DRAIN 

NEBULISER 

75 -



FIGURE 3.8 
DIAGRAM OF REDUCED-VOLUME SPRAY CHAMBER 
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FIGURE 3.9 
THE ANDERSEN STACK SAMPLER 
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ground by the bottle and bead method described earlier. A l l s lurries were 

dispersed in 1% Triton-XlOO (BDH L t d . , Poole, Dorset, U K ) . These were 

supplied to a 'mini-Ebdon' nebuliser (Figure 3.10) (P.S. Anedytical) via 

a peristaltic pump at 2mlmin~'' . I n order to evaluate the SPSC and the 

RVSC, i t was necessary to reduce the size of the Ebdon nebuliser, which 

was physically too large to f i t . The nebuhser and gas flow rate was 

O-eLmin""^ and isokinetic sampling was performed according to the 

fol lowing equation: 

Q<, = Q.. d„= /d . .=^ 3.1 

where Q „ . is the rate at which the aerosol is drawn into the stack 

( L m i n " ' ' ) , Q,,., the rate of the gas ca r ry ing the sample (Lmin""^) , d « , 

the diameter of the cascade impactor inlet nozzle (mm) and d:^, the 

diEimeter of the injector tube from which the sample is issued (mm). A l l 

the solid material collected af te r consumption of all the sample, was 

weighed and transport efficiencies were calculated b y the summation of the 

s l u r r y mEisses obtained f rom each of the impactor stages, rat ioing to the 

s l u r r y s ta r t ing weights, pre-nebulisation and mul t ip lying by 100. Particle 

size distr ibutions of the total post-nebulisation s l u r r y were carried out 

using a Coulter Counter. 

A 3.7 X 1 0 " ^ laboratory compressor f i t t e d wi th an in- l ine calibrated f low 

meter was used to draw air through the cascade impactor. 
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FIGURE 3,10 
SCHEMATIC DIAGRAM OF MINI-EBDON NEBULISER 
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3.5 RESULTS AND DISCUSSION 

The particle size distributions of 1% activated carbon slurries, emerging 

from four different spray chamber arrangements are shown in Figure 3.11. 

At first glance, it would appear that large particles are transported 

through the nebuliser system in the cases of the SDPSC and R V S C . In 

the case of the SDPSC, the whole of the distribution is not shown, and 

perhaps only half has been represented. The Coulter Counter measures 

the percentage of total volume within each size band. The tube used in 

this experiment was 140MJn, whose lower Limit is 2.52Mjn. It calculates % 

Total volume as though the whole distribution, above 2 .52|jLra, is shown. 

The larger particles therefore are more pronounced than they would have 

been had the full distribution been observed. 

Larger particles were observed with the R V S C . In this case, more of the 

whole distribution was viewed and so it is probable that some larger 

particles did reach the exit of the injector tube. This was not unexpected 

as the volume of the chamber was only 30ml. 

The SPSC chamber was effective at filtering out the larger particles with 

the distribution being below about 5pjn. With the chamber being small, 

and only single pass, one would have expected the facilitation of large 

particle transfer. However, the constriction in the structure before it 

enters the injector tube causes the larger particles to impact on the 

surface. 

The BESC had a particle size cut-off of 8|jjn. This chamber was just a 
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FIGURE 3.11 
EFFECT OF SPRAY CHAMBER DESIGN UPON PARTICLE SIZE DISTRIBUTION OF 
A 1% ACTIVATED CARBON SLURRY EMERGING FROM A 1.8mm ID INJECTOR TUBE 
(Carrier gas flow rate: 0.63Lmin';Sample uptake rate: Zmlmin"^) 
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larger version of the RVSC, but this obviously had a profound effect 

upon particle size d is t r ibu t ion . 

Mass transport efficiencies were calculated and the results are shown in 

Table 3.2. The most effective spray chamber at t ransport ing mass was 

the RVSC. This was encouraging, as i t was thought that its small volume 

hence reduced dispersion of sample, would be ideal f o r use i n F I . 

However, f rom Figure 3.11, i t appeared that the chamber did not remove 

the larger droplets which would cause instabil i ty in the plasma. At the 

other extreme, the SDPSC and SPSC were eff icient at removing such 

droplets and this was reflected by the low transport efficiencies of 0.42 

and 0.45% respectively. Smaller particles obviously have less mass than 

larger particles, and so, in order to achieve higher transport efficiencies, 

proport ionally more particles have to be collected. I t is f o r this reason 

that the RVSC was so ef f ic ient , at 0.91% - larger particles having more 

mass, were collected. 

Earlier in the chapter i t was stated that the ideal spray chamber would 

produce a stable aerosol stream of small droplets with narrow particle size 

d is t r ibu t ion , as well as increasing the mass transport eff ic iency. The 

BESC most closely f u l f i l l e d these cr i te r ia . The mass transfer eff ic iency 

was higher than the SDPSC and SPSC, at 0.66%. The emergent particle 

size dis t r ibut ion was less than 8pjn, unUke that of the RVSC, whose high 

eff iciency was, in par t , a result of large emergent particles. The BESC 

appeared to have conditioned the aerosol adequately, i . e . removal of 

larger droplets, as well as increasing the eff iciency over the SDPSC and 

SPSC. From observation of the BESC nebuhsation system, the aerosol 
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TABLE 3.2 
TRANSPORT EFFICIENCIES FOR DIFFERENT SPRAY CHAMBERS 

SPRAY CHAMBER TYPE %TRANSPORT EFFICIENCY 

SDPSC 0 .42 

S P S C 0 .45 

BESC 0 .65 

RVSC 0.91 

%TRANSPORT ErnCIENCY= 
Total m o s s of slurry (solid) collected In impac ior 
Total m o s s ot slurry (solid) entering the nebuMser 

X 100 
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underwent recirculation in the bulbous-end in a cyclonic manner. The 

larger particles went to d ra in , whilst the smaller particles remained in the 

argon stream and thence were transported to the plasma. 

3.6 CONCLUSIONS 

The aim of this work was to introduce small volumes of slurries into the 

ICP by F I . Previously, FI had only been applied to aqueous samples. 

This work showed that F I of slurries is a viable analytical technique. 

Excellent results were obtained f rom Cert i f ied Reference Material soils, 

SOI and 502, thus validating the technique. 

The objective of the project was to preconcentrate trace metals f rom 

analytical grade reagents, whose levels are generally, below lOngml""^. 

As well as using a powerful preconcentration technique, the determination 

step needs to be sensitive. Using the SDPSC sensi t ivi ty f o r FI was not 

ve ry good, owing to the excessive dispersion of sample in the carr ier 

stream and also poor transport eff ic iency. Of the f o u r spray chambers 

examined, the BESC was the most effect ive at producing a stable aerosol 

stream of small droplets and reducing dispersion, whilst increasing the 

overall t ransport eff ic iency of the system. Thus i t was seen that 

geometry of spray chsimber has a marked effect upon emergent particle 

size d is t r ibut ion and mass transport eff ic iency. 
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CHAPTER 4 

SIMPLEX OPTIMISATION OF SPRAY CHAMBERS 

4.1 INTRODUCTION 

Optimisation is concerned with adjus t ing the controllable variables in a 

given situation, so as to achieve the best possible result . 

There are a number of optimisation methods that may be used, many of 

which involve computation (118). One such method is that of simplex 

optimisation which optimises all the operating parameters simultaneously. 

A simplex is a geometric f igure defined by a number of points equal to one 

more than the number of dimensions of the space. A simplex in two 

dimensions is a tr iangle, in three, a tetrahedron. The series can be 

extended to higher dimensions, but these simplexes are not easily 

visualised. 

Spendley et al (73) , f i r s t developed the method which was then improved 

by Nelder and Mead (119) to include a variable step-size, thereby 

accelerating optimisation, improving precision and correct identif ication of 

optima. Yarbro and Deming (120) advocated the use of a large in i t ia l 

simplex, in order that factor space be thoroughly explored. The f igure 

of merit used fo r this investigation was that of net signal to background 

(SBR), identif ied by Greenfield and Burns (121) as the cr i ter ion wi th 

which d i f fe ren t plasmas would be d i rec t ly comparable independently of the 
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spectrometer used. SBR is regarded as a funct ion of f i ve interrelated 

variables: power, height of observation, and flows of outer, intermediate 

and injector gases. The most significant effects on an analyte signal are 

produced by variations in forward power, observation height and injector 

gas flow rate. These three factors interact in a complex manner and their 

combined effects are d i f fe ren t fo r d i f fe ren t spectral lines. The outer and 

intermediate gas flows have relatively small effects on spectral line 

intensities and their influence can be understood and adjusted almost 

independently of the other factors . 

Ebdon et al (77) , were the f i r s t workers to apply the simplex routine f o r 

use in the ICP and since, has become a popular technique f o r ICP 

optimisation studies. The technique of simplex optimisation is clearly 

useful in the tuning-up of an instrument, but also has application in the 

design and test ing of novel sample introduction systems, including torch 

configurations. A number of workers have used the simplex routine in 

this way (75, 122-124). 

The aim of this work was to use the simplex routine f o r optimisation of the 

four spray chambers discussed in Chapter 3 and assess their usefulness 

fo r Fl applications. In order to compare di rect ly each spray chamber, 

with meaningful resul ts , i t is necessary that the operating conditions have 

been optimised. I f one set of runn ing conditions were set f o r all the 

spray chambers, direct comparison would not be va l id , as i t is unl ikely 

that each system would be running at the maximum of its capabilities. 

I t was hoped that the conditions given by the simplex fo r each spray 
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chamber might provide information on spray chamber design. This was 

achieved by Ebdon and Cave (76) , who compared two spray chambers, a 

Scott double-pass and a cyclone with the same nebuliser and torch 

assembly fo r both. The results showed that the cyclone chamber required 

a much larger and powerful plasma at optimum conditions. From th is , they 

concluded that the solvent loading was greater in the cyclone design, 

which caused cooling of the plasma and reduction in the atomisation and 

excitation propert ies. In order to maintain the SBR, greater power was 

required. The application of simplex optimisation in this diagnostic 

approach, is clearly of great benefi t , especially in the development of 

novel sample introduction systems. 

4.2 SIMPLEX OPTIMISATION OF SPRAY CHAMBERS 

4.2 .1 Experimental 

The ICP used in this work was a Kontron Plasmakon S-35 (Kontron 

Spektralanalytik, Eching, West Germany). The sample was introduced to 

the plasma in the form of an aerosol which was produced by the 'Min i -

Ebdon' nebuliser (P.S. Analyt ical ) , via a peristaltic pump. The aerosol 

was carried into the spray chamber under investigation and thence 

through a 3mm i . d . central injector tube of the torch and into the plasma. 

The ICP torch (of the larger Greenfield type) was mounted centrally in a 

f o u r - t u r n copper induction coil , which was water-cooled. A radio 

frequency ( r f ) generator supplied power (maximum 3.5kW) to the coi l . 

The generator was crystal-controlled and operated at a frequency of 

27.12MHz. 
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The simplex program, based upon Nelder and Meads modified version, 

was wr i t t en i n BASIC f o r the Apple l i e micro computer (125). The 

simplex program terminated when the responses of al l the vertices of the 

current simplex were wi th in an operator-determined relative standard 

deviation. The degree of precision on the response factor used i n this 

s tudy was 3%. 

Net signed to background ratio (SBR) was used as the f igure of merit . 

The influences of the r f power coupled into the plasma, the injector gas 

flow rate and the observation height on the intensities of various spectral 

lines are cr i t ical to SBR. These three parameters were optimised, whilst 

the nebuUser uptake rate , coolant and plasma gas flow rates were kept 

constant. Tables 4.1 and 4.2 show the plasma runn ing conditions and the 

boundary conditions of the plasma respectively. Barnes (126) noted that 

emission intensities f o r ion lines are more susceptible to changes i n power 

and injector gas f low rate and atom lines show greater variations in spatial 

distr ibutions in emission signal above the r f coi l . This can result in 

di f f icul t ies when best possible results are required f o r the simultaneous 

use of an ion and atom lines. I t was f o r this reason that an ion Mn 

(257.60nm) and atom line (Cu 324.75nm) were chosen f o r optimisation 

procedures. 

Optimisation studies were carried out on solutions containing 5|jLgml"''- of 

copper or manganese. 

The operating conditions f o r each spray chamber (Scott double-pass spray 

chamber [SDPSC], single pass spray chamber [SPSC]] , Bulbous-ended 
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T A B L E 4.1 

PLASMA RUNNING CONDITIONS 

Outer gas flow rate (Lmin""*^) 18 

Intermediate gas flow rate (Lmin""^) 0.5 

Nebuliser uptake rate (mlmin"^ ) 0.7 
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T A B L E 4.2 

BOUNDARY CONDITIONS FOR SIMPLEX OPTIMISATION 

Power* (kW) 1 - 1 . 7 

Height** (mm) 0 - 6 0 

Injector gas (Lmin""*) 0.5 - 1.5 

* net fo rward power 

*• measured above the load coil 
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spray chamber [BESC] and reduced volume spray chamber [ R V S C ] ) , were 

optimised b y the simplex procedure f o r Cu and Mn separately. Once the 

optimum conditions had been f o u n d , a set of univariate searches were 

performed, i n which two of the optimised parameters were held constant 

and the t h i r d varied as SBR was measured. This confirmed whether the 

simplex had ident i f ied the optimal conditions and also gave insight on the 

influence of each parameter on the performance of the plasma. 

4.2.2 Results and discussion 

The optimum values obtained f o r the carr ier gas f low rate, power and 

observation height above the load coi l , are given i n Tables 4.3 and 4.4 f o r 

copper and manganese respectively. 

Figures 4.1 - 4.6 show separately the univariate searches f o r SBR versus 

carr ier gas f low rate, power and observation height f o r each spray 

chamber f o r copper and manganese lines. Optimum conditions selected b y 

the simplex are shown b y the two parallel lines. 

4 .2 .2 .1 Effect of different parameters 

a) Carrier Gas Flow rate 

For copper, the SBRs increased wi th a rise in carr ier gas flow rate. The 

RVSC, SDPSC and BESC had best responses at the maximum work ing 

capacity of the nebuliser, i . e . LSLmin""* . I t was found that the 

nebuliser was s l ight ly blocked wi th PTFE swarf which prevented the f low 

rate f u r t h e r being increased. This was removed, and so i t was possible. 
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T A B L E 4.3 

E F F E C T OF SPRAY CHAMBER T Y P E UPON OPTIMUM OPERATING 
CONDITIONS FOR THE DETERMINATION OF COPPER USING THE 
324.75mn ATOM LINE 

PARAMETER SPRAY CHAMBER TYPE 

RVSC SDPSC SPSC BESC 

Injector gas flow/Lmin"* 1.4 1.5 1.5 1.5 

Power/kW 1.2 1-1 1.2 1.0 

Observation height above 
load coil/mm 28 32 27 30 

Net signal C/S 10324 7394 10333 8612 

Background C/S 647 485 720 479 

SBR 12.6 14.3 14.3 16.8 
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T A B L E 4.4 

E F F E C T OF SPRAY CHAMBER T Y P E UPON OPTIMUM OPERATING 
CONDITIONS FOR THE DETERMINATION OF MANGANESE USING T H E 
257.6iim ION LINE 

PARAMETER SPRAY CHAMBER TYPE 

RVSC SDPSC SPSC BESC 

Injector gas flow/Lmin'* 1.0 1.0 1.1 1.0 

Power/kW 1.1 1.0 1.1 1.1 

Observation height above 
load coil/mm 13 15 16 14 

Net signal C/S 43739 44825 44921 56281 

Background C/S 1156 1452 1280 1752 

SBR 36.8 30.3 34.6 31.2 
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UNIVARIATE SEARCH SHOWING EFFECT OF CARRIER GAS FLOW RATE 
UPON NORMALISED SBR USING THE Cu(l) 324.75nm LINE FOR: 

a)RVSC b)SDPSC 

0 0-2 0-4 ( X 0-8 I 
CAREER GAS FIDW RATE (^rrirf^ 

f T 1 1 1 1 1 1 

0 0-2 0-4 0-B 0-8 1 V2 M 1-6 
ORRIER GAS FUOW RATE (Lmin-^ 

c)SPSC d)BE2C 

T r 
0 0-2 0-4 0^ O-a 11 -2 V4 1-6 
CARRIER GAS FUOW RATE <^n^ 

0 0-2 0-4 0-5 0-8 1 2̂ V4 1-6 
CASmR GAS FlJDW RATE (LmnO 
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UNIVARIATE SEARCH SHOWING EFFECT OF POWER UPON NORMALISED SBR 
USING THE Cu(l) 324.75nm LINE FOR: 

3)RVSC b)SDPSC 

POWER (kW) POWER (l<W) 

c)SPSC d)BESC 

POWER (kW) 

T 1 1 1 r 
M 1 VI 1-2 V3 M IS 1-6 

POWER (1<W) 
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UNIVARIATE SEARCH SHOWING EFFECT OF OBSERVATION HEIGHT ABOVE 
LOAD COIL UPON NORMALISED SBR USING THE CuO) 324.75nm LINE FOR: 

o)RVSC b)SDPSC 

(75 Ĉ 6 

HDOrr (mm) HQGKT (mm) 

c)SPSC d)BESC 

HEIGHT (mm) HDGHT (mm) 
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UNIVARIATE SEARCH SHOWING EFFECT OF CARRIER GAS FLOW RATE 
UPON NORMALISED SBR USING THE Mn(ll) 257 .60nm LINE FOR: 

a)RVSC b)SOPSC 

T T 1 1 1 i 1 

0 0-2 0-4 OS O S 1 V2 V4 1-6 
CAf^ER GAS FU3W RATE (Lmin") 

- 9 — P - ^ - T r 
0 0-2 0-4 0-6 0-8 1 2̂ 
CARRIER GAS FLOW RATE (Lmin-0 

c)SPSC d)BE5C 

•9—^—I—I ' I ' I — I 1 
0 0-2 0-4 0^ 0-8 1 V2 V4 1-6 
CARRIER GAS FUDW RATE (bnlnO 

0 0-2 0-4 0-6 
CARRIER GAS FU)W RATE (Lmin") 
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UNIVARIATE SEARCH SHOWING EFFECT OF POWER UPON NORMALISED SBR 
USING THE Mn(ll) 257 .60nm LINE FOR: 

a)RVSC b)SOPSC 

POWER (kW) POWER 0<W) 

c)SPSC d)BESC 

T 1 1 r 1 

09 1 M V2 1*3 1-4 V5 f6 
POWER (kW) POWER (l<W) 
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UNIVARIATE SEARCH SHOWING EFFECT OF OBSERVATION HEIGHT ABOVE 
LOAD COIL UPON NORMALISED SBR USING THE Mn(ll) 257 .60nm LINE FOR: 

a)RVSC b)SDPSC 

HDOfT (mm) 

o-f r"-^-! 1 — f — f 
0 10 20 30 40 50 60 

HQGKT (mm) 

c)SPSC d)BESC 

0 K) 20 30 40 50 60 
HDGHT (mm) HBGKT (mm) 
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in the optimisation of the SPSC to increase the flow rate to 1.6Lmin~ ̂  . 

It was then possible to see the maximu-^for carrier gas flow-rate in the 

SPSC. For manganese, the flow rate was lower, at between 0.95 and 

l . lLmin""" for all the chambers. 

Very low carrier gas flow rates are inadequate to 'punch' the plasma and 

so the analyte does not penetrate the viewing zone. The effect of 

increasing the carrier gas flow rate results in a decrease of temperature 

in the observation zone and also markedly modifies the structure and 

appearance of the ICP, thus rendering excitation conditions unsuitable for 

analytical purposes. At high carrier gas flow rates, the initial radiation 

zone (IRZ) is pushed up into the normal analytical zone (NAZ) where 

there are serious effects from easily ionised elements (EIEs). This is what 

is seen when the spectral lines (both hard and soft) pass through a 

maxima, the latter being more affected. 

b) Power 

The simplex routine did not always identify the optimal power, for example 

the BESC with Mn. This was probably due to the simplex being on the 

edge of a plateau, with the optimum not well defined. It had been 

expected that the spray chambers with higher transport efficiencies would 

require higher power in order to maintEiin the SBRs, from a cooler plasma. 

This was not found, and in ail cases, the simplex identified lower powers. 

This was because the background increased more rapidly with increased 

power than the net signal, therefore the highest SBRs were found at the 

lower end of the power range where the background was reduced. 

However, there was a lower practical limit, dictated by plasma stability. 
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This requirement for stability demands a small sacrifice from the SBRs. 

Adding more solvent to the plasma will require increasing the r f power so 

that the plasma does not extinguish. This is an important factor in the 

flow injection application. In order to increase sample throughput and 

improve peak shape, the carrier stream flow rate needs to be quite high 

(in this work 4-5. Smlmin""*). It is evident therefore, that the power has 

to be increased to prevent plasma instability. 

c) Observation height 

There was some variation in observation height between the different 

spray chambers, although this was probably not significant, with the 

difference between average values only being 3 and 2mm for copper and 

manganese respectively. The average optimum height for the RVSC was 

slightly lower for copper at 28mm as opposed to the SDPSC which had the 

highest average value of 32mm. In general, the ranges of the simplex 

were fair ly close to one another. However, the RVSC had a wide optimal 

range from 16 - 35mm above the load coil for copper. For the vertex 

having an observation height of 16mm, the power was lower than the other 

vertices. The background was very much reduced, hence giving the 

higher SBR. 

Overall, spray chamber design seemed to have only a small effect upon the 

optimum operating conditions of the plasma for each element. However, 

response was different for each spray chamber. The BESC had the 

highest SBR for copper and the RVSC for manganese. It is important to 

remember, that SBRs are highly dependent upon the background. For 

example, although the BESC had the highest SBR for copper, the SPSC 
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had the highest net counts. Similarly for manganese, the RVSC had the 

best SBR, but the lowest net signal. In this case, the BESC had the 

highest net signal, over 10,000 c/s better than the other chambers, but 

the background was elevated, thus reducing the SBR. 

With regards to noise, the RVSC was noisy compared with the other spray 

chambers. This was probably a combination of two effects:- particle size 

reaching the plasma and pump noise. The work in Chapter 3 showed that 

the particle size transported through the sample introduction system was 

greater for the RVSC than for any of the other chambers. The SDPSC 

and the BESC transported particles less than 8|JLm and consequently were 

less noisy than the RVSC. 

The second effect was due to pump noise. The RVSC and SPSC did not 

dampen the noise from the peristaltic pump and cycling of the signal was 

observed. The SDPSC and BESC, because of their greater volume, were 

able to dampen this noise. 

4.3 EFFECT OF SPRAY CHAMBER DESIGN UPON FI 

CHARACTERISTICS 

Having optimised each spray chamber, it was possible to evaluate and 

compare their use for FI applications. The main considerations were 

sensitivity, washout time, peak shape and reproducibility. 
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4.3.1 Experimental 

The TCP used in this study was a Plasmakon S-35, (Kontron 

Spektralanalytik, Eching, West Germany). The plasma operating 

conditions depended upon spray chamber design and were those selected 

by the simplex optimisation. The outer gas and intermediate gas were 

fixed at 18 and O.SLmin"'' respectively. The basis of the flow injection 

manifold has been described in Section 3.2. A lOOpJ PTFE loop was used 

throughout. The sample was supplied to the nebuliser via a peristaltic 

pump at O.Tmlmin"" . This rate was chosen so that i t was easier to 

evaluate peak shape. 

4.3.2 Reagents 

A standard solution containing Spiral" manganese was used for the FI 

work. 

4.3.3 Results and discussion 

Figures 4.7-4.10 show typical FI peaks for lOOpJ of Sp-gmT'' manganese. 

The RVSC is the most sensitive, as i t was for continuous flow, followed 

by the BESC. SDPSC and SPSC. The SPSC was noticeably noisier than 

the other chambers, especially when the carrier stream flow rate was 

increased. 

The SPSC chamber gave the best peak shape, with regard to rise and fall 

time. The washout time (at O-Tmlmin""^ carrier stream flow rate) was 
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FIGURE 4 . 7 
TYPICAL Fl PEAKS OBTAINED FROM A SPSC (100^1 
INJECTION VOLUME) USING OPTIMISED CONDITIONS 
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FIGURE 4 . 8 
TYPICAL Fl PEAKS OBTAINED FROM A RVSC ( 1 0 0 M I 
INJECTION VOLUME) USING OPTIMISED CONDITIONS 
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FIGURE 4 . 9 
TYPICAL Fl PEAKS OBTAINED FROM A BESC ( 1 0 0 | i l 
INJECTION VOLUME) USING OPTIMISED CONDITIONS 
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F I G U R E 4 . 1 0 
T Y P I C A L F I P E A K S O B T A I N E D F R O M A S D P S C ( I O O M I 

I N J E C T I O N V O L U M E ) U S I N G O P T I M I S E D C O N D I T I O N S 

T I M E ( S ) 
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51s. The SDPSC also gave good peak shape and a corresponding washout 

time of 57s. The RVSC and BESC had washout times of 64 and 75s 

respectively. These results were a little surprising as i t was expected 

that the BESC and RVSC would have quicker washout times owing to their 

lower volumes. However, it was noted visually that the aerosol underwent 

recirculation in these two spray cheimbers, probably because of the 

bulbous end which had the combined effect of dropping the pressure in 

the chamber, and diverting the spray into a cyclone. These two factors 

evidently increased the residence time in the spray chambers, hence the 

longer washout times. 

In an analysis, the carrier stream flow rate was set to be higher in order 

to -sharpen' peak shape as well as increasing sample throughput. RSDs 

(30) were calculated for each spray chamber with a carrier stream flow of 

4.5mlmin'"^ and a sample injection volume of lOOnJ. The results showed 

that the BESC gave the best RSD of 3.1%, followed by the SDPSC, 4.1%, 

RVSC, 5.2% and the SPSC at 13.2%. The high RSD for the SPSC chamber 

was caused by droplet formation at the upturn part of the chamber. In 

a continuous mode, cycling of the signal, caused by the inability of the 

chamber to dampen the pump noise, was observed. 

4.4 CONCLUSIONS 

This work has shown that the design of the four spray chambers under 

examination, effected the optimum plasma running conditions for a given 

element. Despite the different transport efficiencies observed in Chapter 

3, only slight variations were seen between the chambers, although SBRs 
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were affected. 

Using the optimised conditions, a series of flow injections were performed. 

The best peak shape (defined by washout time) was given by the SPSC 

chamber. However, at higher carrier stream flow rates the chamber 

produced results which were much noisier. The BESC was the most 

reproducible system and sdong with RVSC was more favourable with regard 

to FI apphcations. 
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CHAPTER 5 

DETERMINATION OF TRACE METAL IMPURITIES IN FINE CHEMICALS BY 

PRECONCENTRATION SLURRY ATOMISATION-ICP-AES 

5.1 INTRODUCTION 

The determination of trace or ultratrace levels of metal ions in fine 

chemicals is often preceded by a preconcentration step so that analyte 

concentrations are increased to levels that are easily and reliably 

measured. This work used the technique of sorption whereby trace metal 

impurities were adsorbed onto activated carbon as metal chelates of 

Chrome Azurol S (CAS). 

5.1.2 Purification of sorbent 

In sorption preconcentration, the purity of the sorbent is undoubtedly the 

most important criterion for trace analysis. Commercial activated carbon 

originates from plant or animal matter and therefore always contains a 

percentage of minerals and hence metals. Activated carbon low in metal 

content can be obtained from carbonising polyvinyUdene chloride (127) or 

cellulose (23). Unfortunately, these carbons are not commercially 

available. An alternative is to treat commercial activated carbon with 

hydrofluoric and hydrochloric acids which can reduce the metal content 

five-fold (128). 
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5.1.3 Modes of analysis 

The technique used in this work involved analysing the enriched carbon 

by slurry atomisation-ICP-AES. The analysis may be performed in either 

a discrete or continuous mode, depending upon (i) volume of sample 

available ( i i) number of elements to be analysed and (ii i) type of 

spectrometer used. i . e . , sequential or simultaneous reader. If only a 

small volume of sample is available, a number of elements need to be 

determined and the ICP is sequential, flow injection may be used 

(discussed in Chapter 3). However, i f the ICP spectrometer is a 

simultaneous instrument i t may be possible to analyse the slurry by 

continuous aspiration without excessive sample consumption. 

When concentrated slurries are used i t is often necessary to compensate 

for transport effects which result from variations in sample uptake rate 

or nebuUsation efficiency, caused by the viscosity of the slurry, or 

solvent-loading. Ebdon and Collier (59) suggested the use of an internal 

standard to correct for viscosity variations arising from differing slurry 

concentrations (above 10% m/v). 

5.1.4 Internal standardisation 

Internal standards have been used widely in quantitative analytical 

emission spectroscopy and it was the introduction of internal 

standardisation by Gerlach (129) that elevated classical AES to a method 

for quantitative rather than qualitative analysis. The procedure involves 

adding identical concentrations of one or more elements to the samples and 
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standards in order to correct for variations in the analyte response 

arising from the adverse effects associated with the constituents in the 

sample matrix, or from instrumental factors. A ratio is calculated between 

the intensity of the analyte emission line and that of a line of the internal 

standard element added to the sample. Guidelines have been proposed for 

matching the physical properties of the analyte and reference elements so 

that this ratio is not sensitive to variations of the experimental parameters 

(130, 131). The analyte/internal standard element pair is based upon 

ionisation energy, excitation energy and partition function of the 

elements. Myers and Tracy (132) showed that by careful choice of 

operating conditions, all emission signals can be highly correlated with 

each other, independent of differences in physical properties and 

therefore a single internal standard element may be used to improve 

analytical performance. They found that carrier gas flow rate and viewing 

height are the two most important factors affecting the correlation between 

analyte emission signals. However, Ramsey and Thompson (133, 134) have 

shown, using principle components analysis, that accounting for all the 

variance encountered in ICP analysis is not possible using only one 

internal standard. By selecting two internal standard element Lines, one 

an atom line of low excitation potential, the other an ion Une of high 

combined excitation and ionisation potential and using them to correct the 

responses of all the analytes to forward power and sample uptake rate, 

then the total variance of routine ICP-AES was reduced by 70%. 

Several criteria must be met before an internal standard may successfully 

compensate for non-random instrumental variability and these have been 

discussed by Wallace (135). In brief, the internal standard must not 
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spectrally overlap any desired analyte emission lines; it should not contain 

the elements being analysed and it must covary with the elements being 

analysed. The element scandium has regularly been employed as an 

internal standard (132, 136, 137). It is relatively rare and thus unlikely 

to occur in most samples and has a comparatively simple ICP spectrum. 

5.2 EXPERIMENTAL 

Two plasma spectrometers were used in this work - a sequential 

(Plasmakon S-35, Kontron, described in Chapters 3 and 4) and a 

5 . . . n ^ i v , , - c . - . o instrument (Spectroflame-ICP, Spectro Analytical Instruments 

GmbH, Kleve, FRG). The RF generator is crystal stabilised, has a 

maximum power output of 2.5kW and operates at a frequency of 27.12MHz. 

The complete sample introduction system, consisting of torch (Fassel 

type), spray chamber, nebuhser, argon humidifier and safety trap is 

mounted on a removable plate. Sample introduction is accomplished with 

an integrated peristaltic pump. Through the use of fibre optics to 

transmit the light from the plasma to the optic, the instrument can be 

equipped with up to five individual optical systems, including a mono-

chromator. An internal computer is used to operate and monitor the entire 

system. For both plasmas, a mini-Ebdon nebuliser (P.S. Analytical) was 

used with the reduced volume spray chamber (see Chapter 3). Operating 

conditions for the sequential plasma are as reported in Chapter 4 

(optimised conditions). The simultaneous plasma operating conditions are 

shown in Table 5.1. 

For the determination of surface areas of activated carbon, the nitrogen 
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TABLE 5.1 

R T M T T T . T A M m T I S PLASMA RUNNING CONDITIONS 

Outer gas flow/Lmin** 15.0 

Intermediate gas flow/Lmin"* 1.5 

Carri e r gas flow/Lmin'' 1.6 

Power/kW 1.0 

Sample uptake rate 1.6mlmin~' 
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sorption balance was used. The balance can determine surface areas 

within the range 0.2 - 1000 m'^g"'* using samples of 0.25g. The weighing 

part is contained within the balance head and is connected by a multi-way 

cable to the electrical control cabinet ( C . I . Microforce Balance Mark 2, 

C . l . Electronics, Salisbury, Wiltshire) and has a I g capacity. The head 

unit contains an electronic bridge circuit maintained in continuous balance 

by a servo system. The balance arm carries a shutter interposed between 

a lamp and a pair of silicon photocells. When the arm is central the cells 

have equal resistance and therefore, no bridge current flows. If the arm 

is displaced slightly, there is a change in the relative illumination of the 

photocells, thus causing a bridge current. The current passes through 

a movement coil and equilibrium is rapidly restored. Thus, the head unit 

electromagnetically balances the torque produced by the sample weight. 

The vacuum head has B24 glass fittings and is designed to work at 

pressures down to 1.33 x 10 'Pa. The generated weight-proportional 

current is monitored by the CI mark 2 analogue control unit with fine 

electrical weight ranges, selected by direct switching. Stabilised power 

supply and zero adjustment are provided. 

5.3 PREPARATION OF HIGH PURITY ACTIVATED CARBON FROM 

CELLULOSE 

5.3.1 Procedure 

The activated carbon was prepared by carbonising cellulose 

("Mikrokristallin", E. Merck, Darmstadt, FRG) (23). Approximately 8.5g 

of cellulose was placed in a 25ml quartz beaker covered with a platinum top 
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and carbonised in an oven at 800*̂ C for 20 minutes. After cooling, the 

carbonised cellulose (approximately Ig) was ground to a fine powder and 

stored in a clean polyethylene bottle. 

The purity of the carbon was checked by preparing a 1% slurry (w/v) 

dispersed in 1% Triton X-100 (BDH L t d . , Poole, Dorset, UK) and analysis 

by ICP-AES (Plasmakon 5.35) 

Adsorption experiments were monitored using a flame atomic absorption 

spectrometer (IL 151, Thermo-Electron, Warrington, UK) and an air-

acetylene flame. 

5.3.1 Procedure for measuring surface area 

The sample was placed in an aluminium foil bucket suspended from the 

balance with a fine pyrex fibre (27cm long). This enabled the sample to 

be at least 15cm below the level of the liquid nitrogen, contained in a 

Dewar flask. This kept the temperature to within ± 0 .1°C . 

The balance head was coupled by the taps and glass tubing to a two-stage 

pump, which allowed the pressure to be reduced to 1.33 x 10~^Pa, and 

to a nitrogen reservoir and gauges. The nitrogen pressure was measured 

by mercury manometers. 

The cold trap was immersed in a Dewar flask of Liquid nitrogen. This 

aided outgassing of the sample and reduced the effects of thermal 

transpiration. 
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The system was evacuated and the seunple degassed at room temperature. 

True SEimple weight ( i .e . less adsorbed moisture and volatiles) was noted, 

the balance zero set and the balance unit containing the sample, immersed 

in liquid nitrogen. A pressure of 4000-6670Pa (30-50mmHg) of nitrogen 

was introduced and the system allowed to attain equilibrium (approximately 

30 minutes), when the nitrogen pressure and uptake were recorded. Six 

or seven readings were taken in the BET (138) range of 0.05 to 0.30 

relative pressure). Thereafter, pressures of 9330-10,660Pa (70-80mmHg) 

of nitrogen were introduced, giving readings up to the mEudmum relative 

pressure available (0.96 - arbitrary units). Measurement of surface area 

by gas sorption rests on the determination of the monolayer capacity 

(X„. ) - This work estimated surface areas from the BET equation using 

sorption of 77k. Discussion and derivation of the BET is given by Lowell 

(139) and Allen (140). The equation was used in the form 

p = + (c-1) ^ . . . . 5.1 
X (p^, - p) X„.c Xr^c p.^ 

Where X is the amount (g) sorbed per gram adsorbent at equilibrium 

pressure p , the saturated vapour pressure of the adsorbate and c is 

a constant. Thus the plot of p versus p should give a 
X ( p J - p) Po 

straight line of slope (c - 1) and intercept 1_ 
X™C Xrr.^ 
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5.3.2 Results ernd discussion 

The activated carbon produced from the cellulose by air activation was 

tested for copper and iron and were below that of the water blank for a 

1% slurry. The adsorptive property of the carbon was tested and Figure 

5.1 shows the adsorption profile of l[Lgm\~'' Fe solution containing lOmg 

CAS at pH3. Very little adsorption was observed, 91% being unadsorbed. 

It was thought that this was a function of surface area. Using the BET 

equation, the surface areas of the cellulosic carbon and a commercial 

activated carbon were calculated. The cellulosic carbon had a surface 

area of 420m'^g~'' , whereas the commercial carbon was nearly double that 

at 834m'^g~'' . The air activation process used in this work was evidently 

inadequate to produce a carbon with high surface area. Equipment 

necessary for making high surface area activated carbon was unavailable 

and therefore the clean-up of commercial activated carbon was 

investigated. 

5.4 GRINDING AND CLEAN-UP OF COMMERCIAL ACTIVATED CARBON 

5.4.1 Procedure 

A batch of activated carbon (Darco G-60, Aldrich Chemical Co., 

GilUngham, Dorset, UK) was ground prior to the clean-up procedure. 

Activated carbon was placed in a 125ml polyethylene screw-top bottle and 

zirconia beads (Glen Creston, Middlesex, UK) were added in the ratio of 

1:10. A 1% Triton-XlOO solution was added until the beads were just 

covered. 
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(The bottle had to be shaken until all the carbon had been 

wetted). The bottle was then sealed tightly and inserted into a raicroniser 

mill (McCrone Research Associates L t d . , London, UK) and ground for 4 

hours. The beads were separated from the carbon slurry using a Buchner 

funnel and the carbon dried in the oven at 105"C. This material was 

stored in a clean polythene bottle. 

For the clean-up procedure, about 15-20g of the ground carbon was 

placed in a polyethylene beaker. Hydrofluoric acid (40%) (AnalaR, BDH 

Ltd . , Poole, Dorset, UK), was added and stirred with a plastic rod until 

the carbon was completely covered. This was then left for about 1 hour 

with occasional st irr ing. The HF was discarded and more HF was added 

as before. This procedure was repeated 4 times. The carbon was washed 

with doubly distilled, deionised water until the pH of the solution rose to 

between pH4 and pH5. The carbon was transferred to a vacuum fi l ter 

where HCI (IM) was passed through the f i l ter "cake" to remove any metals 

that may be insoluble in the fluoride form, for example, Ca and Mg, but 

soluble as the chJoride. This was washed with some water, the carbon 

dried at 105"C in an oven and stored in a clean, acid-washed polyethylene 

bottle. 

5.4.2 Results and discussion 

To test for metal content, a 1% slurry was prepared in 1% Triton-XlOO and 

analysed by simultaneous ICP-AES. The results are shown in Table 5.2. 

High levels of calcium, aluminium, magnesium, iron and potassium still 

remained even after the intensive HF/HCl treatment. Previous analysis 
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DETERMINATION OF METALS IN HYDROFLUORIC ACID/HYDROCHLORIC 
ACID-WASHED CAS-COATED ACTIVATED CARBON 

ELEMENT WAVELENGTH (nm) CONCENTRATION(in the solid) pg/g 

Sc 361.36 0.13 

Ca 393.37 170 

Zr 339.2 2.15 

Al 309.27 88.4 

Mg 279.55 229.8 

Mn 257.61 0.67 

Co 238.89 0.48 

Zn 213.86 0.33 

Cu 324.75 0.51 

Cr 267.72 0.39 

Fe 259.94 54.8 

NI 231.6 0.78 

Cd 226.5 0.23 

Pb 220.35 2.89 

K 766.49 318 

Li 670.78 1.82 

Na 589.59 430 

Bo 455.4 • 2.41 

Sr 407.77 2.93 
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of the untreated carbon showed the iron to be present at over 400M.gg~ ^ 

in the solid so there had been some decrease. However, other elements 

of interest were not present at unacceptably high levels. Although not 

entirely satisfactory, owing to the unavailability of a pure activated 

carbon commercially, it was necessary to use this carbon prepared as 

above for the preconcentration of trace metal impurities from fine 

chemicals. Before any analyses were performed on the cleaned carbon, 

(by simultaneous ICP) the possible use of an internal standard was 

investigated. 

5.5 EFFECT OF ACTIVATED CARBON SLURRY UPON THE 

RECOVERY OF ELEMENTS WITH AND WITHOUT SCANDIUM 

INTERNAL STANDARD 

5.5.1 Procedure 

Two sets of 1 and 5% activated carbon slurries were prepared. The 

carbon used was that described in section 5.4. To each slurry (4 in 

total), Ba, Cd, Cu, Co, Or, Mn, Ni, Pb, Sr and Zn (from a mixed 

standard) wtfv added so that the overall concentration in the final slurry 

was lOM-gmr"" of each element. To all the slurries, 20rag of CAS was 

added. To one set of slurries, scandium was added to an overall 

concentration of 10|xgmr^ . The slurries were made up to volume (100ml) 

in 1% Triton X-100 solution. Prior to analysis, the slurries were placed 

in an ultrasonic bath for 20 minutes to break up any aggregates and 

during analysis by simultaneous ICP-AES, the slurries were constantly 

stirred with a magnetic stirrer. 
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5.5.2 Results and discussion 

Table 5.3 shows the effect of slurry concentration upon the recovery of 

10 elements (at lOjxml"^) with and without Sc internal standard. 

The results show that as the concentration of slurry was increased from 

1% to 5% there was a degradation in recoveries for the slurries not 

containing the internal standard. This was presumably caused by 

transport effects arising from the viscosity of the 5% slurry. The slurries 

containing the internal standard showed a marked improvement in 

recoveries over those containing no Sc. For some elements there was a 

reduction in recovery for the 5% slurry, compared with 1% slurry, for 

example, Zn, Ba and Sr. For Co, Cr, Ni and Pb, the internal standard 

over-compensated and gave recoveries over 100%. 

The 1% slurries with and without Sc have similar precision. However, the 

precision for the 5% slurry containing the internal standard was better 

than the slurry without internal standard. I t is important to note that the 

precision at the 1% level is good with or without internal standard, 

although there is an improvement with the Sc. For the 5% slurry only the 

use of an interned standard yields conventional (^ 2%) precision for ICP-

AES. 

From Table 5.3, i t does not appear necessary to use an internal standard 

for a 1% slurry, except for Mn, Sr and Zn. The precision between the 

two sets of data are comparable. However, advantages can be seen from 

using an internal standard with the 5% slurry, where recoveries are closer 
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TABLE 5,3 

EFFECT OF ACTIVATED CARBON SLURRY CONCENTRATION (WITH AND 
V?TTHQUT SC INTERNAL STANDARD) UPON RECOVERY 

ELEMENT 1% 5% 

A B A B 

Mn 94.1 + 0.9 98.3 + 0.7 86.5 + 3.1 96.3 + 0.5 

Co 98.9 + 1.2 99.8 + 1.1 92.0 + 3.0 102.6 + 0.8 

Zn 94.1 + 0.8 98.1 + 1.5 82.8 + 3.1 93.5 + 1.0 

Cu 98.3 + 1.2 99.6 + 0.2 89.7 + 4.1 98.7 + 0.2 

Cr 99.4 + 1.6 99.9 + 0.5 94.6 + 3.0 103.6 + 0.9 

Ni 98.4 + 1.2 99.6 + 0.8 92.1 + 3.8 102.0 + 0.7 

Cd 94.5 + 0.9 98.4 + 0.7 85.8 + 3.3 98.2 + 0.3 

Pb 97.7 + 0.8 98.3 + 1.9 87.1 + 2.5 101.0 + 2.3 

Ba 98.2 + 1.2 100.1 + 1.2 89.6 4.8 96.0 + 0.8 

Sr 93.4 + 1.2 99.1 + 1.4 83.8 + 4.4 90.3 + 0.9 

A = No Sc int e r n a l standard 

B. = With Sc int e r n a l standard (lOngml"') 
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to 100% than those without the Sc. 

There is however a difference in the degree of internal standard 

compensation. Thompson and Houk (141) and Marshall et al (137) were 

able to explain differences in compensation from examination of ionisation 

and excitation potentials, which allowed the categorisation of hard and soft 

lines (142), (atomic lines of elements with low to medium first ionisation 

potential are termed "soft" and atomic and ionic Unes of elements with high 

f i rs t ionisation potential, as well as lines of doubly ionised atoms, are 

termed "hard"). Table 5.4 shows excitation and ionisation potentials for 

the elements studied. From Table 5.3 it can be seen that Pb was best 

compensated by the Sc, followed by Cu, Cd, Ni, Co, Cr, Mn, Ba and Sr. 

This appears to follow a general trend of decreasing 'difficulty of 

excitation' (Ip + Ep or Ep) with the exception of copper. Scandium has 

a summed potential of lO.leV. I t was expected that elements with an 

energy sum nearer to that of Sc would be compensated for best. Marshall 

et al, (137) found that using an Sc internal standard, compensation was 

better for Cu I , a soft Une, than for Mn I I , a hard line. They claimed 

that this corresponded to the summed potentials of Cu I and Sc I I being 

marginally closer than Mn I I and Sc I I . However, the data used was 

misleading in that they reported that the sum of excitation and ionisation 

potential for Mn I I was 20.45eV, Cu I , 11.53eV and Sc, 15.71eV. This 

was incorrect as the ionisation potentials quoted for Mn and Sc were 

second and not f i rs t ionisation potentials. They also summed the 

ionisation and excitation potential for Cu, which is an atomic hne. 
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TABLE 5.4 
EXCITATION AND lONISATION POTENTIALS 

ELEMENT WAVELENGTH (nm) lONISATION POTENTIAL (eV) EXCITATION POTENTIAL (eV) ENERGY SUM (eV) 

Sc( l l ) 361.36 6.54 3.56 10.1 

Mn(ll) 257.61 7.43 4.81 12.24 

Co(ll) 238.89 7.86 6.24 14.1 

Zn(0 213.86 — 5.8 5.8 

Cu(l) 324.75 — 3.8 3.8 

Cr(l l) 267.72 6.76 6.15 12.91 

Nl(l!) 231.6 7.63 6.39 14.02 

Cd(ll) 226.5 8.99 9.27 16.26 

Pb(n) 220.35 7.41 7.37 14.71 

Ba(ll) 455.4 5.21 2.72 7.93 

Sr(l l) 407.77 5.69 3.04 8.73 
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It was difficult to explain some of the effects observed in this work when 

using the Sc internal standard. For example, it was not known why Cul 

was compensated for better than, for example, Mn I I , whose summed 

potential was nearer to that of Sc. Also, only one viewing height was 

used and this may not have been optimal for the elements studied. The 

results do indicate a general improvement, for the 5% slurry, in recoveries 

of all the elements compared to those without the internal standard. Also, 

the variation of the data for the 5% slurry with internal standard, is not 

that great, with most of the results, with the exception of Zn and Sr, 

lying within 5% of the fu l l recovery. 

5.6 EFFECT OF RUNNING TIME UPON RECOVERY. WITH AND 

WITHOUT INTERNAL STANDARDISATION 

5.6.1 Procedure 

A set of 2% w/v slurries were prepared as in section 5.5.1. One of the 

slurries was spiked so that the overall slurry contained lOfxgml"^ Sc. 

Both slurries were placed in an ultrasonic bath for 20 minutes and during 

the analysis were stirred constantly with a magnetic stirrer. 

5.6.2 Results and discussion 

Table 5.5 shows the results obtained for the 2% w/v slurries, run 

continuously over 8 minutes. The recoveries of elements in the slurry 

containing no Sc show a rapid drop after only 8 minutes running time. 
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TABLE 5.5 

RECOVERIES FOR A 2% M/V SLURRY AFTER 8 MINUTES RUNNING TIME 

Recovery % 

Analyte* No I S With I S * * 

85.6±2.5 97.0±0.6 

85.4 ± 2.8 100.7 ± 0.5 
Mn 

Co 

Zn 

Cu 

Cr 

Ni 

Cd 85.0 ± 2.1 96.8 ± 0.5 

Pb 79.4 ± 4.2 99.9 ± 2.7 

Ba 87.2+5.2 97.0 ± 1.3 

Sr 86.6 ± 5.4 92.5 ± 1.4 

82.6 ± 3.0 95.6 ± 0.90 

86.6 ± 3.0 98.4 ± 0.3 

86.6 ± 2.1 101.2 ± 1.5 

84.4 ± 2.0 100.3 ± 0.8 

* = A l l analyte elements were added so as to give 
lOiigml" f i n a l concentration 

* = Internal standard, lO^gmr'Sc 
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One of the problems of using activated carbon is that i t tends to block or 

semi-block the pump tubing quite easily and this explains why the 

recoveries are poor for the slurry without Sc addition. However, using 

the internal standard, the variation in sample deUvery was compensated. 

5.7 DETERMINATION OF METALS IN UREA. SUCROSE AND 

POTASSIUM CHLORIDE 

Having established the usefulness of Sc as an internal standard for the 

spiked activated carbon slurry work, this procedure was used to 

determine trace metal impurities in three fine chemicals, using the 

technique of adsorption of CAS-metal chelates onto activated carbon, 

followed by slurry atomisation ICP-AES. As Ba and Sr are not easily 

complexed by the CAS chelating dye, these elements were not determined 

in this experiment. 

5.7.1 Procedure 

5.7.1.1 Urea 

AnalaR Urea (BDH L t d . , Poole, Dorset, UK) (200g) was dissolved in 

doubly distilled, deionised water to make a 40% solution. CAS (lOmg) and 

activated carbon (0.25g) was added and the pH adjusted to 3 using dilute 

HNO^. The pH was gradually increased up to pHlO using dilute NH^, the 

solution being stirred constantly. The carbon was separated from the 

solution by filtration under reduced pressure and the loaded f i l ter dried 

in an oven at 105"C. The dried carbon was then made into a 1.25% m/v 
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s l u r r y ( 0 . 2 5 g i n t o 20mls) i n 1% T r i t o n X-100 so lu t ion and s p i k e d w i t h 

0.2|j.gmr^ Sc. 

5 . 7 . 1 . 2 Sucrose 

AnalaR sucrose (lOOg) was d i sso lved to make a 20% solu t ion and was 

t r ea ted i n the same way as the u r e a , except i t was s p i k e d w i t h 

0.25M.gmr^ Sc. 

5 .7 .1 .3 Potassium Ch lo r ide 

A 20% AnalaR potassium ch lo r ide so lu t ion was p r e p a r e d as i n 5 . 7 . 1 . 1 , b u t 

s p i k e d w i t h SfxgmJ"^ Sc. 

A n exper imenta l b l ank was p r e p a r e d i n the same way as the o t h e r 

so lu t ions and sp iked w i t h O-SM-gmn"" Sc. A n e f f o r t was made to match the 

Sc and ana ly te element concentrations i n the ratio of 1 : 1 . Expected values 

of elements were ascertEiined f r o m analyses p e r f o r m e d on the samples u s i n g 

l i q u i d - l i q u i d e x t r a c t i o n w i t h de te rmina t ion b y I C P - A E S . 

5 .7 .2 Resul t s a n d d i scuss ion 

Tables 5.6 to 5.8 show the r e su l t s f o r u rea , sucrose and potass ium 

c h l o r i d e . T h e r e is a s t r i k i n g d i f f e r e n c e between the r e su l t s obta ined u s i n g 

i n t e r n a ] s t a n d a r d and those w i t h o u t , the l a t t e r , gene ra l ly b e i n g much 

lower i n v a l u e . T h i s was not unexpec ted due to problems i n the sample 
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T A B L E 5.6 

A N A L Y S I S OF UREA 

ELEMENT 

Cu 

Fe 

CONCENTRATION FOUND/^gml'' 

WITH I S * WITHOUT I S EXTRACTION' 

0.012 ± 0.0003 0.006 + 0.0002 <0.1 

0.102 ± 0.001 0.081 ± 0.005 <0.2 

Pb 0.050 ± 0.002 0.009 ± 0.0008 <0.1 

*. = Internal Standard, Sc at 0.2 Mgml" 

** = Liquid-liquid extraction 
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T A B L E 5.7 

A N A L Y S I S OF SUCROSE 

ELEMENT 

Cu 

Fe 

Pb 

CONCENTRATION FOUND/Mgml"* 

WITH I S * WITHOUT I S EXTRACTION' 

0.045 ± 0.002 0.016 ± 0.001 0.03 

0.350 ± 0.01 0.260 ± 0.038 0.02 

0.193 ± 0.041 0.014 ± 0.008 0.002 

Cd 0.016 ± 0.004 0.00046 + 0.00041 0.014 

Ni 0.052 ± 0.012 0.006 ± 0.001 0.031 

Internal Standard, Sc at 0.25 ̂ lgml"' 

Liquid-liquid extraction 
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T A B L E 5.8 

A N A L Y S I S OF POTASSIUM CHLORIDE 

ELEMENT 

Cu 

CONCENTRATION FOUND/lagml'* 

WITH IS* WITHOUT IS EXTRACTION' 

0.046 ± 0.001 0.024 ± 0.0007 0.1 Fe 0.400 ± 0.01 0.330 ± 0.02 0.4 

Pb 0.317 + 0.04 0.087 ± 0.012 1.0 

* = Internal Standard, Sc at 5 \igml' 

** = Liquid-liquid extraction 
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T A B L E 5.9 

DETERMINATION OF COPPER AND IRON (uginr"-)IN UREA. SUCROSE 
AND POTASSIUM CHLORIDE 

SAMPLE ELEMENT FI-SLURRY 
ATOMISATION-ICP-AES 

IS 

Urea Cu 

Fe 

0.016 ± 0.003 

0.17 ± 0.04 

0.012 ± 0.0003 

0.102 ± 0.001 

Sucrose Cu 

Fe 

0.05 ± 0.01 

0.53 ± 0.12 

0.045 + 0.002 

0.35 ± 0.01 

KCI Cu 

Fe 

0.044 ± 0.006 

0.39 ± 0.06 

0.046 ± 0.001 

0.40 ± 0.01 
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i n v o l v i n g the s o r p t i o n o f t race metal i m p u r i t i e s as chelates o f C A S , o n t o 

a c t i v a t e d c a r b o n , a n d ana lys i s o f t he c a r b o n b y s l u r r y a tomisa t ion - ICP-

A E S . A c t i v a t e d c a r b o n , cleaned b y an H F / H C l p r o c e d u r e was u s e d , 

a l t h o u g h th i s was no t e n t i r e l y s a t i s f a c t o r y o w i n g to h i g h levels o f Ca, A l , 

M g and Fe even a f t e r t r ea tmen t . The use fu lness o f an i n t e r n a l s t a n d a r d 

i n compensat ing f o r sample d e l i v e r y problems and v i s c o s i t y e f f e c t s was 

shown . 

The re su l t s ob ta ined b y F l - s l u r r y a tomisa t ion- ICP-AES showed good 

agreement w i t h those ob ta ined b y cont inuous nebu l i sa t ion w i t h an i n t e r n a l 

s t a n d a r d , a l t h o u g h the p r ec i s ion o f F I peak h e i g h t measurement was a 

p r o b l e m . However , i t i s envisaged t h a t r e f inemen t o f t he data c a p t u r e 

system could a l levia te s u c h p rob lems . 
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CHAPTER 6 

CONCLUSIONS A N D SUGGESTIONS FOR FUTURE WORK 

6 . 1 CONCLUSIONS 

T h e aim of t h i s w o r k was to develop a p r econcen t r a t i on technique f o r the 

de te rmina t ion of t race metal impur i t i e s i n f i n e chemicals . The method 

chosen was based upon a d s o r b i n g metal ions onto the su r face of a s o l i d , 

fo l lowed b y d i r e c t analys is b y s l u r r y a tomisa t ion - ICP-AES. A number o f 

parameters were impor t an t i n the development of the methodology. F i r s t 

and foremost was the select ion o f a su i table s o r b e n t . Convent iona l i o n -

exchange res ins were i n v e s t i g a t e d , b u t f a i l e d to p reconcen t ra te metals 

f r o m s t r o n g e l e c t r o l y t i c so lu t ions such as 10% potass ium n i t r a t e . T h e 

c h e l a t i n g r e s i n Chelex-100 looked most p r o m i s i n g o w i n g to i t s a b i l i t y to 

p reconcen t ra te metals f r o m 10% potassium n i t r a t e s o l u t i o n , i n c l u d i n g 

magnesium, a weak ly chelated metal . However , i n the f i n a l de te rmina t ion 

t e c h n i q u e , problems were encountered i n i n t r o d u c i n g the g r o u n d r e s in 

i n t o the TCP, due to the Chelex r e s in caus ing blockage of the f l o w 

i n j e c t i o n ( F l ) v a l v e . The most p r o m i s i n g so rben t phase i n v e s t i g a t e d was 

a c t i v a t e d c a r b o n . Metal chelates o f Chrome A z u r o l S ( C A S ) , were f o r m e d 

i n the tes t so lu t ions and powdered ac t i va t ed ca rbon a d d e d . O w i n g to i t s 

e x t r a o r d i n a r y a d s o r b a b i l i t y , the ca rbon adsorbed the metal chelates . T h e 

major a t t r a c t i o n of u s i n g ac t iva ted ca rbon as a so rben t was r a p i d i t y o f 

a d s o r p t i o n , w i t h e q u i l i b r a t i o n times of less than f i v e minutes . The 

ac t iva ted ca rbon was able to adsorb the CAS-metal complexes f r o m 10% 

potassium n i t r a t e s o l u t i o n , a l t h o u g h i t was unable to adsorb magnesium 
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f r o m such media. 

A major d isadvantage i n the use o f ac t iva ted ca rbon was the l eve l o f 

i m p u r i t i e s . P u r i t y o f the sol id phase i n the s o r p t i o n process is p r o b a b l y 

the most impor t an t f a c t o r . Commercial a c t i va t ed ca rbon or ig ina tes f r o m 

p lan t s or animals , w h i c h , b y t h e i r v e r y n a t u r e , conta in a percentage o f 

minera l mat te r and t h e r e f o r e , the metal content is v e r y h i g h . A c t i v a t e d 

c a r b o n , w h i c h had low metal con t en t , was ob ta ined b y a i r - a c t i v a t i o n o f 

cel lulose, w h i c h p r o d u c e d a ca rbon w i t h low metal con t en t . Despi te i t s 

p u r i t y , however , the adso rp t i ve p r o p e r t i e s o f the ca rbon were v e r y much 

r e d u c e d . T h i s was a t t r i b u t e d to a lower su r face area t h a n the commercial 

ca rbons . The su r face areas of the cel lulosic ca rbon and a commercial 

ac t iva ted carbon were calcula ted u s i n g the BET equa t i on , f r o m n i t r o g e n 

adso rp t ion da ta . I t was f o u n d tha t the cel lulosic ca rbon had a su r f ace 

area of 420m'^g~ '' , whereas the commercial ca rbon was n e a r l y double tha t 

at SaSm^'g- ^ . 

P u r i f i c a t i o n of commercial ac t iva ted ca rbon was i nves t i ga t ed u s i n g 

successive washings of H F , fo l lowed b y t rea tment w i t h H C l . T h i s r educed 

the metal content c o n s i d e r a b l y , a l t h o u g h h i g h levels of some elements 

remained. T h e p r o c e d u r e developed f o r the p r econcen t r a t i on t echn ique 

i n v o l v e d a d d i n g CAS to the sample s o l u t i o n , to f o r m the metal chela tes , 

a d d i n g ac t iva ted carbon and a d j u s t i n g the p H f r o m 3 to 10 w i t h d i l u t e 

ammonia s o l u t i o n . The solu t ions were cons t an t l y ag i t a ted to accelerate the 

adso rp t i on process . The adso rp t i on s tep gene ra l l y took less t h a n ten 

minutes . The en r i ched carbon was separated f r o m the b u l k so lu t ion b y 

f i l t r a t i o n u n d e r reduced p r e s s u r e . The 'cake' was d r i e d in an oven at 
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105"C and made u p to wha tever volume was r e q u i r e d i n 1% T r i t o n - X l O O 

s o l u t i o n . 

Flow i n j e c t i o n ( F I ) was used as a method of i n t r o d u c i n g the e n r i c h e d 

ca rbon s l u r r y i n t o the I C P . Sample volumes o f lOOpJ were i n j ec t ed i n t o a 

c a r r i e r s t ream o f wa t e r . Th i s w o r k was the f i r s t to p e r f o r m F I o f 

s l u r r i e s . T h e t echn ique was va l ida ted b y the analys is o f two C e r t i f i e d 

Reference iWaterial so i l s , SOI and S02. Excel lent agreement was ach ieved 

w i t h the c e r t i f i e d va lues . No b l o c k i n g o f the F I va lve was obse rved and 

indeed i t appeared tha t the d i spe r s ion charac te r i s t i c s of the s l u r r y i n the 

c a r r i e r s t ream were b e t t e r than w i t h F I of aqueous samples. T h i s was 

t h o u g h t to be because the s l u r r y is a two-phase sys tem, t h e r e b y r e d u c i n g 

d i s p e r s i o n . 

I n o r d e r to reduce d i spe rs ion f u r t h e r w i t h i n the s p r a y chamber , the 

i n v e s t i g a t i o n of smaller volume s p r a y chambers f o r F I was p e r f o r m e d . I t 

was hoped tha t r e d u c i n g the volume of the s p r a y chamber would also lead 

to more f a v o u r a b l e t r a n s p o r t e f f i c i e n c y , r e s u l t i n g i n b e t t e r s e n s i t i v i t y f o r 

small sample volumes. Four s p r a y chamber designs were i n v e s t i g a t e d : -

A Scot t double pass s p r a y chamber ( S D P S C ) ; a s ingle pass s p r a y chamber 

(SPSC) ; a bu lbous - ended s p r a y chamber (BESC) and a reduced volume 

s p r a y chamber ( R V S C ) . U s i n g a cascade impac to r to collect pa r t i c l e s o f 

a 1% s l u r r y , e m e r g i n g f r o m a 1.8mm i n j e c t o r , t r a n s p o r t e f f i c i enc ie s were 

ca lcu la ted . T h e most e f f i c i e n t chamber was the RVSC w i t h a t r a n s p o r t 

e f f i c i e n c y o f 0.91%. T h e SDPSC had the lowest e f f i c i e n c y o f 0.42%, 

a d d i t i o n a l l y i t f a i l e d to remove l a r g e r par t i c les w h i c h can cause i n s t a b i l i t y 

of the plasma. However , the BESC looked p r o m i s i n g w i t h a t r a n s p o r t 
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e f f i c i e n c y of 0.66%. I t also al lowed o n l y pa r t i c l es below Syuri i n t o the 

plasma. 

So tha t each s p r a y chamber cou ld be d i r e c t l y compared w i t h r ega rds to 

s e n s i t i v i t y , r e p r o d u c i b i l i t y and F I c h a r a c t e r i s t i c s , i t was necessary to 

optimise plasma r u n n i n g condi t ions f o r each s p r a y chamber. T h i s was 

achieved u s i n g the Simplex opt imisa t ion r o u t i n e . Each s p r a y chamber was 

opt imised f o r copper and manganese. Resul ts showed tha t f o r each 

element, the re was l i t t l e d i f f e r e n c e i n o p e r a t i n g cond i t i ons . For coppe r , 

the best s e n s i t i v i t y was obta ined w i t h the BESC and f o r manganese w i t h 

the RVSC. The BESC, at h i g h c a r r i e r s t ream f l o w ra t e s , y ie lded the bes t 

RSD of 3 .1%. A t low c a r r i e r s t ream f l o w r a t e s , the SPSC gave the bes t 

peak shape, i . e . shor t e s t r i se and f a l l t ime . However , at h i g h e r f l o w 

rates the SPSC was no i sy w i t h r ega rds to s i g n a l . Good peak shape was 

achieved f r o m b o t h the BESC and the R V S C . U n d e r the opt imised 

cond i t i ons , o n l y v e r y small d i f f e r e n c e s were seen in d i spe r s ion 

charac te r i s t i c s w h i c h was s u r p r i s i n g o w i n g to the d i f f e r e n c e s i n s p r a y 

chamber volumes. The s p r a y chamber chosen f o r f u r t h e r analyses was the 

smallest chamber - the RVSC. O w i n g to the size of the s p r a y chamber , 

a smaller v e r s i o n o f the Ebdon nebuhser was c o n s t r u c t e d , so tha t i t cou ld 

f i t i n t o the s p r a y chamber . 

Cont inuous nebu l i sa t ion o f s l u r r i e s was also p e r f o r m e d . O w i n g to sample 

d e l i v e r y p rob lems , f o r example, b l o c k i n g o r s e m i - b l o c k i n g o f sample 

d e h v e r y t u b i n g , v i s c o s i t y e f f ec t s and va r i a t ions i n nebul i sa t ion e f f i c i e n c y , 

an i n t e r n a l s t a n d a r d was used to compensate f o r these e f f e c t s . The use 

of scandium was i n v e s t i g a t e d . The re was a d e f i n i t e degrada t ion i n 
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recover ies f o r a l l the elements s t u d i e d , w i t h i n c r e a s i n g s l u r r y 

concen t ra t ion w i t h o u t i n t e r n a l s t a n d a r d i s a t i o n . With i n t e r n a l s t a n d a r d 

i s a t i o n , however , t h i s was co r r ec t ed f o r , and g r e a t e r recover ies were 

ob ta ined . The i n t e r n a l s t a n d a r d also c o r r e c t e d f o r s h o r t - t e r m va r i a t i ons 

i n sample d e l i v e r y w i t h c o r r e s p o n d i n g l y b e t t e r RSDs. 

The use o f Sc as an i n t e r n a l s t anda rd was app l i ed i n the de te rmina t ion o f 

t race metal impur i t i e s i n u rea , sucrose and potassium ch lor ide b y the p r e 

concen t ra t ion on ac t iva ted c a r b o n - s l u r r y a tomisa t ion- ICP-AES method 

de sc r i bed . Flow i n j e c t i o n was also p e r f o r m e d on the same s l u r r i e s f o r 

compar ison . For copper and i r o n there was genera l agreement f o r F I and 

cont inuous nebu l i sa t ion u s i n g the i n t e r n a l s t a n d a r d . The RSDs however 

f o r the F I were poor b u t wou ld p r o b a b l y improve w i t h modern i n t e g r a t i o n 

r o u t i n e s . 

Th i s w o r k has shown tha t a v iable t echn ique f o r the de te rmina t ion o f t race 

metal i m p u r i t i e s i n f i n e chemicals, has been s u c c e s s f u l l y deve loped . 

6.2 FUTURE WORK 

I f the t echn ique o f a d s o r p t i o n o f metal chelates on to ac t iva ted ca rbon is 

to become more than a research p r o j e c t , i t i s necessary to f i n d an 

ac t i va t ed ca rbon w i t h low metal c o n t e n t . T h i s i s a l l the more i m p o r t a n t 

when the so rben t mater ia l is analysed i t s e l f . A l t h o u g h c l ean -up o f 

commercial a c t i va t ed carbon w i t h H F / H C l reduces the metal c o n t e n t , the 

presence of Ca, M g , A l and Fe s t i l l r e m a i n i n g , excludes i t f r o m 

d e t e r m i n i n g these elements. U n t i l such a time when ana ly t i ca l g rade 
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a c t i v a t e d carbon i s m a n u f a c t u r e d , more w o r k is r e q u i r e d i n the c l ean -up 

process . A n a l t e r n a t i v e wou ld be to make ac t iva ted carbon f r o m i o n -

exchange r e s in beads o r some o t h e r ma te r i a l , low i n metal con t en t . T h i s 

wou ld r e q u i r e ex tens ive w o r k on o p t i m i s i n g the a c t i v a t i o n p rocess , to 

ob ta in a h i g h l y ac t iva ted material w i t h su r f ace areas in excess o f 

SOOm^g-" . 

I n Chap te r 2, i t was seen tha t ac t i va t ed ca rbon adsorbed complexed metals 

to d i f f e r i n g degrees , depend ing upon complex ing agent used. A t p re sen t 

the mechanisms of adso rp t ion are s t i l l not ce r t a in and more w o r k i n 

e l u c i d a t i n g these mechanisms is r e q u i r e d , as th i s w i l l g ive i n s i g h t as to 

w h y some complexes are adsorbed and o the r s n o t . With th i s i n f o r m a t i o n 

i t wou ld be possible to use a v a r i e t y o f complex ing agents i n one s o l u t i o n , 

i n o r d e r to ob ta in maximum adso rp t i on o f a w i d e r range of elements. For 

example, i t would be u s e f u l to be able to adsorb b a r i u m or s t r o n t i u m onto 

ac t iva ted carbon as these metals are p re sen t i n f i n e chemicals. Chrome 

A z u r o l S is not a s t r o n g enough c h e l a t i n g agent to chelate them and an 

a l t e r n a t i v e agent is r e q u i r e d , f o r example E D T A . 

Sample i n t r o d u c t i o n s t i l l remains the "Ach i l l e s Heel" (69) o f plasma 

s p e c t r o m e t r y w i t h t y p i c a l t r a n s p o r t e f f i c i enc i e s o f 0.5 - 2%, more w o r k 

needs to be c a r r i e d ou t on the nebu l i sa t ion sys tem ( t h i s i nc ludes the 

nebu l i s e r , s p r a y chamber and i n j e c t o r t u b e ) . The ideal nebu l i sa t ion 

system w o u l d , w i t h h i g h e r e f f i c i e n c y , p r o d u c e a s table aerosol s t ream o f 

small d r o p l e t s w i t h na r row pa r t i c l e size d i s t r i b u t i o n and a h i g h t r a n s p o r t 

r a t e . A number o f sys tems, f o r example the f r i t nebu l i se r , u l t r a son ic 

nebu l i se r and t h e r m o s p r a y , have been i n v e s t i g a t e d as possible so lu t ions 
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to t h i s p r o b l e m . These however , a r e so lu t ion-based systems and a re 

t h e r e f o r e no t r e a d i l y appl icable f o r s l u r r y w o r k . F r i t nebu l i sa t ion c o u l d 

be adapted to s l u r r y w o r k , a l t h o u g h segrega t ion o f p a r t i c l e size due to 

g r a v i t y , may be a p r o b l e m . 

O f t e n o n l y small volumes o f sample are avai lable f o r ana lys i s , as was the 

case i n t h i s w o r k . Flow i n j e c t i o n was used as a method o f sample 

i n t r o d u c t i o n w i t h success . Howeve r , t he r e were problems r e l a t ed to 

s e n s i t i v i t y . S e n s i t i v i t y i n F I can be increased b y r e d u c i n g the d i spe r s ion 

o f the sample w i t h the c a r r i e r s t r eam. T h e major area tha t d i s p e r s i o n 

takes p lace , is i n the s p r a y chamber . I t i s envisaged t h a t r e d u c i n g t h e 

res idence time i n the s p r a y chamber w i l l r educe d i spe r s ion and hence 

increase s e n s i t i v i t y . Work is r e q u i r e d to p roduce a chamber w i t h a s h o r t 

res idence t ime b u t s t i l l meet ing the c r i t e r i a o f an ideal nebu l i s a t ion 

sys tem. The chamber also needs to be able to dampen p r e s su re pulses 

f r o m the p e r i s t a l t i c p u m p s u p p l y i n g t he c a r r i e r s t r eam. 

A b e t t e r data h a n d l i n g system i s r e q u i r e d f o r F I so t h a t peak h e i g h t s a n d 

areas are au tomat ica l ly ca lcu la ted . 
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Direct Atomic Spectrometric Analysis by Slurry Atomisation 
Part 8.^ Flow Injection Inductively Coupled Plasma Atomic Emission 
Spectrometryt 
Andrea J . Ambrose, Les Ebdon,* Michael E. Foulkes and Philip Jones 
Department of Environmental Sciences, Plymouth Polytechnic, Drake Circus, Plymouth, Devon 
PL4 8AA, UK 

The analysis of slurries by flow injection inductively coupled plasma atomic emission spectrometry {Fl-
ICP-AES) was investigated and the optimum spray chamber design, sample injection volume, carrier stream 
flow-rate and injector diameter were determined. Particular advantages were obtained by using a novel 
low-volume spray chamber. A 500-^1 injection gave a sensitivity equivalent to that of continuous nebulisation. 
A torch injector tube of 3 mm internal diameter was the optimum. The analytical potential of the optimum 
arrangement was demonstrated by the analysis of Certified Reference Material soils SOI and S 0 2 (CANMET) 
for Ca, Fe, Mg, Mn, Cu and V. Excellent agreement with certified values and acceptable precision (2% relative) 
were obtained. 

K e y w o r d s : Slurry atomisation; flow injection; inductively coupled plasma; atomic emission spectrometry; 
soil analysis 

Conventionally, sample iniroduction into the inductively 
coupled plasma (ICP) is based on the continuous nebulisation 
of a flowing carrier stream which produces a steady-stale 
signal. When there is an adequate amount of sample this does 
not pose a problem; however, often only a small volume of 
sample is available for analysis. Hence there is a need for 
methods of sample introduction that do not depend on large 
volumes of sample. A number of potentially suitable discrete 
sampling techniques are available, e.g., the direct sample 
insertion device (DSID) , whereby a graphite rod, loaded with 
a microlitre volume of sample, is inserted into the tip of a 
conventional sample introduction tube in the centre of an ICP 
torch.'-* Electrothermal vaporisation ICP atomic emission 
spectrometry (AES)^ is another microsampling approach that 
has been used. Laser ablation has become more frequently 
applied recently and has been used to volatilise micro-samples 
for subsequent analysis by I C P - A E S . * ' Unfortunately, the 
technique is difficult to calibrate and sample inhomogeneity 
may lead to poor precision. 

One of the most promising methods for discrete sample 
iniroduction is flow injection (FI) . Nearly 1000 papers have 
been published on FI^ since its inception in 1975 by Ruzicka 
and Hansen.9 Flow injection includes a range of techniques 
whereby a discrete sample volume is injected into a continu
ously flowing carrier stream. The sample is dispersed in the 
carrier stream to some extent. Dispersion is a function of 
volume injected, tube dimensions and flow-rate. Applications 
to atomic spectrometry represent a significant fraction of F l 
papers and this field has recently been reviewed by Tyson.'o 
Surprisingly few of these* publications refer to plasma spec
trometry, although such application has been demonstrated." 
Many discrete sampling techniques used in I C P - A E S cause air 
entrainment, which results in instability of the plasma. Flow 
injection is particularly useful as entrainment does not occur 
when using this technique. 

Previous papers in this series have shown the advantages of 
slurry atomisation plasma spectrometry,'2-16 principally as 
regards enhanced speed and accuracy of analysis by eliminat
ing tedious sample preparation stages. Just as sample volumes 
may be limited in aqueous solution analysis, so also may the 
solid samples used to prepare the suspensions or slurries 
employed in this method. Hence FI may be as useful in slurry 

• For Part 7, see reference 16. 
t Presented ai ihe Fourth Biennial Naiional Aiomic Spectroscopy 

Symposium (BNASS). York. UK. 29lh June-Isi July, 1988. 
t To whom correspondence should be addressed. 

atomisation as in solution atomisation. This study was 
designed to illustrate the applicability of FI to slurry atomisa
tion I C P - A E S . 

Experimental 
The plasma emission spectrometer used was a sequential 
computer-controlled, fully integrated ICP (Plasmakon S-35, 
Kontron Spekiralanalytik, Eching, F R G ) . The plasma operat
ing conditions were as follows: power (net forward), 1.5 kW; 
carrier gas flow-rate, 1.5 1 min-'; outer gas fiow-rate, 15 
1 min-'; and intermediate gas flow-rate, 0.4 I min-'. This 
instrument incorporates a data acquisition system which does 
not have a direct analogue to digital converter ( A D C ) 
between the photomuliiplier tube (PMT) and the computer. 
Instead, a system of voltage to frequency conversion is used 
whereby the PMT is gated (time base regulated) by the 
computer. Such a system offers clear advantages for F l as this 
more rapid data reading facility, compared with-a normal 
A D C , means that sampling rale problems associated with 
A DCs used in FI work were not encountered. A Minipuls, 
peristaltic pump (Gilson, Luton, Bedfordshire, U K ) together 
with a six-port switching valve (P.S. Analytical, Orpington, 
Kent, U K ) and 0.8 mm i.d. P T F E tubing formed the basis of 
the FI manifold^ 

A variety of P T F E injection loop volumes (100-500 nl) and 
connecting tube lengths were used. The sample was supplied 
to the nebuliser via .the- peristaltic pump. The sample was 
introduced into the plasma in the form of an aerosol which was 
produced by a high-solids P T F E nebuliser (Ebdon nebuliser; 
P.S. Analytical). The aerosol was carried into an in-house 
designed spray chamber (Fig. 1). Initial studies performed 
with a conventional Scott double-pass spray chamber were 
disappointing. Presumably the large volume of this chamber 
caused excessive dilution of micro lit re-sized samples with the 
carrier stream. Hence the spray chamber shown was designed 
in an attempt to combine minimal spray chamber volume with 
convenience of use and to avoid designs which introduced 
excessive noise. 

Particle size measurements were performed using the 
electrical sensing zone technique (Coulter Counter T A l l ; 
Coulter Electronics, Luton, Bedfordshire, U K ) . 

Reagents 

For the preliminary experiments, Dowex 50W-X8 (lCK>-200 
mesh) ion-exchange resin ( B D H , Poole, Dorset, U K ) was 
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To ICP 
Nebutiser 

Fig. I . Reduced-volume sproy chamber 

used. Validation experiments were carried out using two 
Certified Reference Material (CRM) soils, SOI and S02 
( C A N M E T , Ottawa, Ontario, Canada). 

All reagents were of analytical-reagent grade (BDH) and all 
solutions were prepared with doubly distilled, de-ionised 
water. 

Sample Preparation 

Ion-exchange resin slurry preparation 
Ion-exchange resin (I g) was weighed into a 50-ml poly
propylene screw-topped bottle and 10 g of polyacrylic spheres 
(Glen Cresion, Stanmore, Middlesex, U K ) were added. This 
was then shaken for a period until the particle size of the slurry 
was below 8 nm, typically 2-4 h. The slurry and grinding 
medium were separated and washed through a Biichner funnel 
into a calibrated flask. Copper was then added to a total 
concentration of 20 ng ml- ' . 

An aqueous 20 îg ml-* copper solution was also prepared. 

Certified Reference Material preparation ^ 
The comminution method chosen involved shaking a known 
amount of reference soil with tetrasodium pyrophosphate 
dispersant solution (over-all concentration of dispersant 1% 
m/V) and zirconia grinding medium (10 g) in a sealed 
polypropylene bottle for 3 h . " The spheres were washed and 
removed from the solution and made up to the required 
volume. Particle size distributions of the soils are shown in 
Figs. 2 and 3. 

Results and Discussion 

Before any analyses were performed, the controlling para
meters were investigated. Variables studied included spray 
chamber design, sample injection volume, carrier stream 
flow-rate and injector lube size. 

-1 

Spray Chamber Design 

Preliminary experiments were performed using a conventional 
Scott double-pass spray chamber. However, as mentioned 
eariier, this caused excessive dispersion. The spray chamber 
was replaced with.a single-pass design. Problems were 
encountered with the formation of condensation at the base of 
the injector tube, causing instability of the plasma. This was 
attributed to the spray not being conditioned, i.e., larger 
droplets were reaching the injector tube. 

The spray chamber chosen (Fig. 1) was longer than the 
straight-through variety with a bulbous end. As the slurry 
emerged from the nebuliser some of the larger particles 
impacted on the adjacent glass surfaces. The larger particles 
should be eliminated by the bends in the chamber and go to 
drain. In the Scott double-pass spray chamber, particles that 

2.52 4.00 6.56 10.08 16.00 25.40 40.30 
3.17 5.04 8.00 12.70 20.16 32.00 50.80 

Mean particle size / j im 

Fig. 2. Particle size distribution of SOl after grinding 

Fig. 3. 

2.52 4.00 6.56 10.08 16.00 25.40 40.30 
3.17 5.04 8.00 12.70 20.16 32.00 50.80 

Mean particle size/^m 

Particle size distribution of S02 after grinding 

have negotiated the reverse direction between the inner and 
outer lubes travel back along the spray chamber, where 
gravitational forces and impaction may cause more particles to 
drop out. With the spray chamber shown in Fig. 1, the 
particles do not have to travel along a second chamber but 
enter directly into the injector tube. The spray chamber was 
found to have a 50% better sensitivity than the Scott 
double-pass design. 

Sample Injection Volume 

An ion-exchange resin slurry 
Hg ml - ' of copper was used 

(10% m/V) containing 20 
in this experiment. Fig. 4 

compares the response for the copper-spiked ground resin and 
an aqueous sample with the same concentration, with an 
increasing injection volume. The slurr>' response tended to be 
slightly higher than the aqueous response and it is thought that 
this was due to the slurry being a two-phase system, thereby 
reducing dispersion. As can be seen from the graph, the signal 
increased with increasing injection volume. This was not 
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Fig. 4. Graph showing the effect of var\ing m)cclion volume on 
signal for ( A ) a 10 | ig ml ' copper solution and (B) a resin slurr> 
spiked with the same concentration of copper 
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5.0 5.5 

F I R . 5 . Effect of carrier stream flow-rate on peak height and shape, 
("upper. HI ^g ml injection. Numbers on peaks are peak 
WK tns at half-height (mm) 

unexpected because dispersion at smaller volumes is increased 
and so the sample is more "dilute" when it reaches the plasma. 

Previous work showed that with a typical Scott double-pass 
spray chamber a 500-\L\ injection gave a response 75% of that 
obtained by continuous nebulisation. The spray chamber 
shown in Fig. 1 alleviated this problem, so that the signals 
from continuous and discrete nebulisation were comparable to 
sample volumes of 50() ^l and above. This was particu
larly advantageous as it meant that standards could be either 
nebulised continuously or introduced by F I . 

Carrier Stream How-rate 

The carrier stream used in this experiment was doubly 
distilled, de-ionised water. The flow-rate was controlled by a 
peristaltic pump with variable speed settings. Fig. 5 shows the 
effect of increasing the pump flow-rate on the signal. As the 
carrier stream flow-rate was increased the peak height signal 
increased slightly. At low carrier stream flow-rates the 
nebuliser is starved and therefore operates more efficiently 
than at higher flow-rates when the nebuliser is flooded. A 
flow-rate of 5.5 ml min - ' w as chosen as this gave a peak with 
good sensitivity and symmetry (Fig. 5). 

Effecl of Torch Injector Size 

Two torch injector tubes with internal diameters of 1.5 and 3 
mm were investigated. The difference in response obtained 
using these two injectors is shown in Fig. 6. As can be seen, the 
3 mm injector tube gives a much higher response than the 1.5 
mm tube for a 1% soil slurry containing 10 ng m h ' of Ca. 
Previous work"* has shown that injector tube diameter has a 
major influence on the particle size of the slurry reaching the 
plasma; smaller diameter injection tubes exclude larger slurry 
particles and thereby lower the signal obtained. Unfortu
nately, with the 3 mm i.d. injector tube, the noise increases. 

^ 60 000 

1.5 mm 

20000 

Time s 
Fij{. 6. Effect of torch injector tube diameter on signal for ( A ) 
continuous and (B) discrete sampling for a 1°.. soil slurr\ (1(1 ̂ g ml ' 
C .11 

Table 1. Determination of elements in C R M soils SOI and S02 using 
FI slurrv atomisation ICP-AES 

Soil Element Experimental result* Certified value 

SOI . . . . C a . % 1.75 ± 0 . 0 2 1.8 ± 0 . 0 7 
F c . % 5.9 ± 0 . 1 3 6.0 ± 0 . 1 3 
\\^. • 2 . 2 5 ± 0 . 1 7 2.31 ± 0 . 0 0 3 
M n , % 0.089 ± 0 . 0 0 1 0.089 ± 0.003 
Cu/ugg 59 ± 0.084 6 1 + 3 
V/jigg-' 132 ± 5 139 ± 8 

S02 . . . Ca, % 1 . 9 5 ± 0 . 1 1 l . % ± 0 . 1 
Fe, % 5 . 3 ± 0 . I 6 5.56 ± 0 . 1 6 
Mg. % 0.54 ± 0.02 0.54 ± 0.03 
M n , % 0.068 ± 0 . 0 1 2 0.072 ± 0.002 
Cu/ngg- 8.0 ± 0.08 7 ± 1 
v/^gg-• 60 ± 5 6 4 ± 10 

* Means of six replicate determinations ± 2 standard deviations 

Analysis of Slurries of Certified Reference Materials 

To validate the FI slurry atomisation I C P - A E S technique two 
slurries of C R M soils SOI and S02 were prepared, 0.1% m/V 
for minor element determinations and 5% m/V for trace 
elements. Results obtained by FI slurry atomisation using 
conventional aqueous standards for calibration are shown in 
Table I . It can be seen that the technique offers excellent 
agreement with certified values for all six elements studied. 
Typically the precision was around the 2% (relative) level, 
which is similar to that obtained with this instrumentation for 
aqueous solutions. 

Conclusions 
Flow injection slurry atomisation I C P - A E S has been shown to 
be a viable analytical technique. A new design of spray 
chamber offering excellent characteristics for F I - I C P - A E S has 
been developed. Overall the technique combines many of the 
advantages of FI with the greater sample throughput and other 
advantages of slurry atomisation. The application of FI to 
slurries is as convenient as to solutions and no major 
instrumental modifications are required. Indeed, the more 
favourable dispersion characteristics of slurries may be 
advantageous compared with FI of solutions. 
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