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Abstract 

This paper provides a systematic review on the application of Machine Learning (ML) in thermal 

comfort studies to highlight the latest methods and findings and provide an agenda for future 

studies. Reviewed studies were investigated to highlight ML applications, parameters, methods, 

performance and challenges. The results show that 62% of reviewed studies focused on developing 

group-based comfort models, while 35% focused on personal comfort models (PCMs) which 

account for individual differences and present high prediction accuracy. ML models could 

outperform PMV and adaptive models with up to 35.9% and 31% higher accuracy and PCMs could 

outperform PMV models with up to 74% higher accuracy. Applying ML-based control schemas 

reduced thermal comfort-related energy consumption in buildings up to 58.5%, while improving 

indoor quality up to 90% and reducing CO2 levels up to 24%. Using physiological parameters 

improved the prediction accuracy of PCMs up to 97%. Future studies are recommended to further 

investigate PCMs, determine the optimum sample size and consider both fitting and error metrics 

for model evaluation. This study introduces data collection, thermal comfort indices, time scale, 

sample size, feature selection, model selection, and real world application as the remaining 

challenges in the application of ML in thermal comfort studies.  
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Nomenclature 

List of abbreviations 

Term Explanation Term Explanation 

Ab AdaBoost ML Machine Learning  

AC Air-conditioned  MPC Model Predictive Control 

AE Average Error MRT Mean Radiant Temperature 

AI Artificial Intelligence  MSE Mean Squared Error 

ANN Artificial Neural Network NB Naive Bayes  

AUC 

(ROC) 

Area Under the Receiver Operating 

Characteristics 

NV Naturally Ventilated  

BM Bayesian Method PCM Personal Comfort Model 

BNN Bayesian Neural Network PCS Personal Comfort System  

CNN Convolutional Neural Networks PET Physiological Equivalent 

Temperature 

DT Decision Tree PMV Predicted Mean Vote 

DL Deep Learning PPD Predicted Percentage Dissatisfied 

ELM Extreme Learning Machine  PSO Particle Swarm Optimization 

ENL Ensemble Learning  r Correlation Coefficient  

ET* Effective Temperature R Regression Method  

FLS Fuzzy Logic System  R2 Coefficient of Determination 

FOM Firefly Optimization Method  RF Random Forest  

GA Gaussian Method RL Reinforcement Learning  

GNB Gaussian Naïve Bayes RMSE Root Mean Square Error 

GP Genetic Programming  RNN Recurrent Neural Network 

HVAC Heating, Ventilation, and Air Conditioning  ROC Receiver Operating Characteristics 

IAQ Indoor Air Quality SET Standard Effective Temperature 

IEQ Indoor Environment Quality  SSE Sum of Squares for Residuals 

IoT Internet of Things SVM Support Vector Machine  

KNN K-Nearest Neighbors TBM Tree-based Method 

LDA Linear Discriminant Analysis TCV Thermal Comfort Vote 

LoR Logistic Regression  TPV Thermal Preference Vote 

LVQ Learning Vector Quantization TSV Thermal Sensation Vote 

MAE Mean Absolute Error   
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1. Introduction 

1.1 Research Background 

People spend more than 80% of their time in indoor spaces [1], which highlights the importance 

of Indoor Environmental Quality (IEQ), especially during the COVID-19 lockdown and longer 

indoor stays. Thermal comfort as one of the essential elements of IEQ is defined as “the condition 

of mind expressing satisfaction with the thermal environment” [2]. To investigate thermal comfort, 

the two main approaches of Predicted Mean Vote-Percentage of Dissatisfied (PMV-PPD) and the 

adaptive approach have been implemented for a long time. 

     The Fanger’s PMV-PPD model, which stems from a set of experiments in controlled climate 

chambers is based on thermal equilibrium equations between human body and its environment. 

According to Fanger, the human thermal sensation can be determined by four environmental 

factors (air temperature, relative humidity, mean radiant temperature and air velocity) plus two 

personal ones (cloth insulation and metabolic rate) [3]. This model has been used by many 

researchers during the last fifty years and has been reviewed in many studies [4–6]. Based on the 

literature, several studies [7–12] have recognized the validity of PMV-PPD model, whether 

implicitly or explicitly. However, many studies [13–19] have mentioned the poor prediction power 

of this model. Cheung et al. [17] analyzed the accuracy of the PMV–PPD model using ASHRAE 

Global Thermal Comfort Database II. They reported that the accuracy of this model in predicting 

observed thermal sensations was only 34%. The PMV-PPD model is proven to be reliable in 

uniform controlled steady conditions. However, real building conditions are usually dynamic and 

non-uniform [18]. Therefore, a major problem with PMV-PPD model is its lack of accurate 

prediction in different contexts, especially in field studies and under uncontrolled conditions. It 

has been found that the tolerance band of PMV index can be higher than 1.0 unit for people 

exposed to the same environment [19]. Moreover, the PMV index applies to healthy adults and not 

to children, older or disabled individuals. Furthermore, measuring/calculating several factors, such 

as mean radiant temperature, cloth insulation and metabolic rate is difficult, which increases the 

complexity of the model.    

     On the other hand, thermal adaptive method relates occupants’ thermal sensations to outdoor 

air temperature by a linear regression equation. Thus, the main adaptive models are “black-boxes” 

based on a statistical analysis of field data [20]. The adaptive method originates from this 
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assumption that a human being is active in his/her thermal environment and plays a role in 

adjusting the environmental conditions. It accounts for physiological, behavioral and 

psychological adaptation, although only at an aggregation level [21]. Due to adopting this method 

in different locations and under various conditions, wider acceptable indoor temperature ranges 

based on adaptive models have been included in international and national standards and this 

approach towards thermal comfort is regarded as a significant contributor in achieving low energy 

building design and operation [22].  

     However reducing all the effective parameters to only one parameter (outdoor air temperature), 

may cause over-simplification and neglecting the complexities of human thermal perception. 

Moreover, the predictive equation is derived from data, meaning that an equation for data in one 

context might not work in another [23]. 

      Furthermore, both models are designed for predicting the average thermal state of a group and 

do not work for the assessment of individuals’ thermal conditions. Moreover, input parameters for 

both models are fixed, which makes it difficult to analyze the effects of other potential parameters 

on thermal perception. 

     During the last decade, with the development of computer science and especially Artificial 

Intelligence (AI), this knowledge has been adopted in different fields, such as buildings and 

thermal comfort. “AI” can subtly be defined as the ability of computers to develop intelligent 

qualities, similar to those of humans, and consequently perform tasks that could previously be 

performed by humans alone [24]. Machine Learning (ML), which is a subset of AI can solve non-

linear complex problems with big dimensions. In comparison with regression methods, ML has a 

much stronger performance in determining non-linear non-standard relations between independent 

and dependent variables [25]. 

     ML thermal comfort models can find the relationships between occupants’ thermal feedback 

and the affecting variables by themselves and without explicit knowledge of the physical effects 

of each factor (self-learning ability). Besides, these models can correct or adjust such comfort 

relationships by themselves, when applying to different contexts (self-correction ability) [26]. In 

comparison with PMV and adaptive models, ML models make it possible for the analyst to test 

different combinations of inputs and find the most effective parameter(s). Furthermore, ML can 

be adopted for both average-based models and Personal Comfort Models (PCMs). 
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1.2 Literature Review 

Due to the advantages of this new approach, the increasing application of ML in thermal comfort 

and building energy efficiency studies does not seem to be surprising. Aiming at addressing the 

current gaps involved in applying machine learning models to building energy efficiency, the 

review paper by Wang, et al. [27] identified several issues, such as non-uniform and divergent 

research objects, diverse ML algorithms, limited data collection techniques and resources, data 

structure non uniformity, technology-oriented research paradigms, inadequate model adaptability, 

and lack of user confidence [27]. Similarly, reviewing the latest ML applications in thermal 

comfort studies can assist the researchers to identify the main gaps and potential future study areas. 

Reviewing the study contexts and ML models clarifies which contexts and models require more 

investigation. For example, Luo et al. [28] compared the performance of different ML algorithms 

and suggested that factors such as building type, building operation mode, and climate conditions 

were not among the top factors. However, these factors can affect occupants’ thermal perception 

and require more investigation. Another related area that can be studied is the application of ML 

models in Personal Comfort Models (PCMs) and Personal Comfort Systems (PCSs). For example, 

Shan et al. [29] mentioned that an individual has its unique thermoregulation mode and thermal 

stress response, so it is necessary to establish PCMs for independent analyzes and predictions. 

Ngarambe et al. [24] reviewed 37 papers between 2005-2019 to investigate AI-based thermal 

comfort predictive models, the energy implications of AI-based thermal comfort controls, ML 

methods and algorithms for thermal comfort modelling, PMV models and PCMs. Their conclusion 

suggested that tuning, model optimization techniques, deployment of comfort models in building 

control systems and quantifying the benefits of AI-based comfort control systems should be further 

studied [24]. However, they mostly focused on air temperature and relative humidity and 

overlooked other parameters. Previous review papers, such as [24], [30–33] (Table 1) suggest that 

ML methods were mostly focused on introducing algorithms and the overall process without 

emphasizing essential issues, such as determination of sample size, time scale, target parameter, 

validation methods and performance metrics. Thus, there still is a need for a more comprehensive 

and detailed review of ML applications in thermal comfort studies.  
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Table 1. Summary of recent review papers. 

Paper Year   Number of 

Reviewed 

Papers 

Years of 

Reviewed 

Papers 

Objective(s)  Recommendations 

[24] 2020 37 2005-2019 - Focusing on thermal comfort predictive 

models  

and their deployment in building control 

systems; 

- Discussing research gaps and potential 

future research directions. 

Gaps and future research directions: 

- Lack of AI-based modeling in residential buildings and non-

waking occupants; 

- Lack of sufficient amount of data in datasets; 

- High dependency on “supervised learning” methods; 

- Lack of generalization, transparency, and deterministic 

conclusions; 

- Tuning, parameters, and model optimization techniques; 

- Deployment of comfort models in building control systems; 

- Quantifying the benefits of AI-based comfort control systems. 

[30] 2021 45 2005-2019 - Reviewing the analytical models and 

identifying the corresponding input 

variables;  

- Discussing application in models based 

on Artificial Neural Network (ANN) 

and Reinforcement Learning (RL).  

Research gaps:  

- Lack of spatial configuration of buildings, such as room 

dimension, ceiling height, and total surface area to adjust control 

system or to incorporate into modeling; 

- Overlooking the linked effects of air temperature, air velocity, 

surface temperature, and mean radiant temperature; 

- Not investigating the prevalence of indoor air pollutants. 

[31] 2020 105 2010-2020 - Summarizing recent occupant-centric 

thermal comfort practices following a 

framework with three themes: sensing, 

predicting, and controlling. 

Challenges of occupant centric thermal comfort solutions: 

- Sensing technology; 

- Predicting model; 

- Controlling strategy. 
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[32] 2020 NA NA - Describing the fundamentals of an 

intelligent entity (rational agent) and 

components of its problem-solving 

process (i.e., search algorithms, logic 

inference, and machine learning); 

- Discussing the current application of 

intelligent personal thermal comfort 

systems in buildings;  

- Describing future directions for enabling 

the application of fully automated 

systems to provide comfort more 

efficiently. 

Future directions: 

- A need for improvements in intelligent system methods to 

autonomously address the dynamic personal thermal comfort 

preferences of occupants in buildings.  

- A need for more complex control algorithms, so the intelligent 

system is better equipped to manage the equally complex data 

inputs from all personal thermal comfort profiles in the occupied 

space and deliver a suitable thermal environment.  

[33] 2019 33 1997-2018 - Providing a comprehensive review of RL 

being implemented for occupant comfort 

control; 

- Analyzing the application of RL for 

comfort control in multi-agent 

environments; 

- Highlighting the potential of RL as a 

sustainable forerunner for occupant 

centric building operation in the 

evolving smart city. 

Major challenges and Research gaps:  

- Lack of studies including comfort factors such as indoor air 

quality and lighting in comparison to thermal comfort; 

- Lack of incorporating occupancy patterns and/or occupant 

feedback into the control loop which are crucial for occupant-

centric building operation; 
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1.3 Aim and Objectives  

This paper aims to highlight the application of ML to thermal comfort studies and identify its 

related methods, performance and challenges by reviewing the most recent research studies in this 

area. More specifically, the objectives of the study are:  

• Introducing the main applications of ML models in thermal comfort studies.  

• Investigating ML practices in thermal comfort studies with a focus on sample sizes, tools, 

algorithms, generalization test methods and performance metrics.  

• Specifying the main input and output parameters of ML models.  

• Examining the performance of ML models in comparison with conventional models and their 

impact on the indoor thermal environment.  

• Highlighting the main challenges of ML models in thermal comfort studies to provide an 

agenda for future studies.  

 

2. Selection of Studies  

Reviewed studies were selected from 2016-2021 for two main reasons; first, this study aims to 

highlight the most recent applications, methods, tools and findings in this area; second, the number 

of studies addressing thermal comfort using ML models has increased exponentially since 2016 

[31]. The process of selecting papers is illustrated in Fig. 1. Firstly, two sets of keywords were 

provided, for thermal comfort and machine learning. Secondly, 15 combinations of thermal 

comfort and machine learning related terms (such as thermal comfort/machine learning, thermal 

comfort/artificial intelligence, thermal comfort/data-driven, Heating, Ventilation, and Air 

Conditioning (HVAC) control/machine learning, HVAC control/artificial intelligence, and HVAC 

control/data-driven) were searched on “Google Scholar”, “Science Direct”, “Research Gate”, and 

“Scopus” online databases. Using the sorted by relevance mode, 246 of the most relevant search 

results published from 2016 to 2021 were listed. Thirdly, titles, keywords, and abstracts of the 

listed papers were reviewed. Here, 137 papers that had addressed only thermal comfort or machine 

learning issues were eliminated, leaving a total of 109 papers. Finally, papers that met all the below 

criteria were included in the review: 

• Being written in English;  

• Being directly related to both thermal comfort and machine learning/artifical intelligence;  



9 
 

• Having clarified the main comfort analysis approach, whether group-based models or PCMs. 

• Having clarified the source of data, whether it is existing data (such as ASHRAE databases) or 

specifically measured (field/climate chamber) or generated  data (from simulation); 

• Having provided a clear description of the methodology, in terms of data collection, input and 

target parameters, and algorithm(s); 

• Being published by building physics-related journals (such as Building and Environment, 

Energy & Buildings, Renewable and Sustainable Energy Reviews) or conferences (such as 

IEEE International Conference on Automation Science and Engineering, IEEE International 

Conference on Smart Grid and Smart Cities, and Windsor Conference).  

     As a result, a total number of 60 papers published from 2016 to 2021 were selected for the 

review to conduct an in-depth study. Fig. 2 illustrates a word cloud of titles and keywords of the 

selected papers. 

 

Fig. 1. The process of selecting studies. 
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Fig. 2. A word cloud (with a maximum of 200 words) of titles and keywords of the reviewed papers. 

 

3. An Overview of Reviewed studies  

Reviewed studies are investigated in terms of their context and data to provide a more 

comprehensive overview of their frequency and distribution.  

Fig. 3 illustrates the number of reviewed studies in each year which shows a generally increasing 

trend. The reason for the drop in 2021 can be related to the time of the last online search on August 

5th 2021.  

 

Fig. 3. The distribution of the selected papers from 2016 to 2021.  

 

3.1 Study Context 

The reviewed papers were classified based on their investigated seasons, regions, building types 

and operation modes. Since ASHRAE datasets were collected from various regions worldwide and 

during various seasons, papers using these databases covered various contexts, except reference 
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[34] for the Mediterranean and subtropical climate, reference [35] in Singapore and reference [36] 

in North America.  

     Seven papers ([18], [25], [37], [38], [39], [40], [41]) studied all seasons and one paper [42] 

mentioned that a period of 10 months was investigated. On the other hand, some studies ([30], 

[43], [44], [45], [39], [46], [47], [48], [49], [50]) did not clarify their studied seasons. Kim et al. 

[51] presented an overall framework for occupant-centric environmental control that could explain 

the reason for not mentioning the season(s). Sajjadian et al. [52] also introduced a framework and 

did not mention their studied seasons. Fig. 4 shows the frequencies of investigated seasons among 

the reviewed papers. It can be observed that summer or cooling season was the most studied time 

of year. Future studies are recommended to focus on other seasons, especially winter, which could 

require noticeable heating demands in cold climates.  

 

Fig. 4. The frequency of the determined investigated seasons. 

 

     Fig. 5 illustrates the distribution of the investigated locations, based on ASHRAE global 

database I and II [53], ASHRAE RP-884 [54] and other reviewed papers. After excluding studies 

that did not define their investigated regions or used ASHRAE databases, it was observed that far 

eastern areas (mostly Singapore and China) accounted for around 51% of the studied regions. 

Therefore, the reason for summer being the most studied season is the fact that most of the studies 

were conducted in hot and humid climate zones with high cooling demands. The next frequently 

studied regions were European countries (mostly Italy), followed by North America/USA, which 

accounted for around 25% and 20% of the investigated regions, respectively. On the other hand, 

although regions, such as Russia, Southern America, Africa and the Middle East can be exposed 

to severe climatic conditions, Fig. 5 shows a lack of studies on these areas, which is recommended 

to be addressed in future studies. 
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Fig. 5. The distribution of investigated regions on the world map. 

 

     To identify the most frequent building type, the study has eliminated studies on outdoor areas 

([55–58]), one paper that studied all working and living spaces through the day [40], and papers 

that used ASHRAE databases with various building types ([26], [28], [59], [60], [34], [61], [62], 

[63], [35]). Results suggest that offices were the most investigated buildings, accounting for about 

54% of the studied cases, followed by residentials (including dormitories, care-homes, houses and 

apartments), educational spaces, and lecture theatres, which accounted for around 27%, 14%, and 

4% of the cases, respectively. Since thermal conditions can affect learning abilities and students’ 

performance, further studies are recommended to focus on educational contexts. Another building 

type that can be focused on for future studies is hospitals and medical centres. Providing thermal 

comfort in hospitals can be a real challenge due to the variety of activities and different thermal 

sensations of patients, personnel and visitors. Moreover, the thermal quality of open public spaces 

can influence residents’ outdoor life [57], therefore, another potential area for future studies is 

outdoor thermal comfort. 
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Fig. 6. The frequency of the operation modes of the investigated buildings. 

 

     As illustrated in Fig. 6, the most investigated building operation mode was HVAC, with around 

66% of the specified cases. In some cases ([51], [37], [64], [41], [42], [65]) HVAC systems came 

along with control options such as desk fans, thermostats or other PCSs, which allowed occupants 

to adjust their environment and improve their thermal conditions. In some other cases (such as 

[66], [67]), the main heating/cooling/ventilation strategy was using PCSs. This review suggests 

that naturally ventilated buildings need further investigating to provide adequate fresh air through 

well-designed openings, especially with the outburst of COVID-19.  

 

3.2 Data Collection 

There are some publicly accessible thermal comfort datasets, such as ASHRAE global thermal 

comfort database II, the scales project, Langevin Longitudinal dataset, ERA5-Heat, and Winter 

Thermal Comfort and health for the elderly that can be used, which contain 107584, 8226, 678621, 

not mentioned, and 424 records, respectively [68]. Therefore, some studies used existing data from 

ASHRAE databases ([26], [28], [59], [60], [34], [61], [62], [63], [35]) while others collected data 

for their specific studies. Another noticeable point is the use of new technologies and online 

methods for data collection, which was adopted by several studies, such as [51], [37], [38], [67], 

[45]. With the development of sensors and Internet of Things (IoT), this strategy can be the subject 

of more in-depth investigations. However, some studies ([69], [70], [59], [58]) used simulation 

approach to generate data for their models. A detailed description of the collected input and output 

parameters is presented in section 4.3. 

4. Machine Learning in Thermal Comfort Studies 

This section provides an overview of the reviewed papers, in terms of ML process, applications, 

input and output parameters, algorithms and assessment methods, performance and challenges.  
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4.1  Machine Learning Process in Thermal Comfort Studies 

Main practices of ML, namely, classification, regression, clustering, dimension reduction and 

learning in context have been adopted in the field of building performance [71]. As illustrated in 

Fig. 7, these practices are conducted by the means of three main methods including Supervised 

Learning, Unsupervised Learning, and Reinforcement Learning.  

 

Fig. 7. ML methods and algorithms. 

 

In general, the main process in thermal comfort studies that use ML models consists of 4 phases 

(Fig. 8): 

1. Problem Identification Phase: The first step of any scientific study is to determine research 

questions and objectives. In this phase, thermal comfort researchers state their prediction 

problem and describe whether they intend to build average-based models or PCMs. 
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Furthermore, thermal perception indices (prediction target) and potential predicting parameters 

(predictors) are determined, mostly due to the existing literature.    

2. Experimentation Phase: 

- Data Collection: Researchers can collect data from several sources, such as weather stations, 

environmental sensors, occupant questionnaires, operation of building systems, and contexts. 

Since ML models are data-driven methods and comfort data is multi-source, it is important to 

guarantee data quality. Improving sensing technology, developing multi-source data fusion 

methods, and optimizing data governance strategies are effective ways of solving data quality 

and collection problems [27]. 

- Data Preparation: When more than one data file is available, the process of merging data or 

data integration is conducted. Data cleansing, handling missing values, smoothing noisy data, 

identifying and removing outliers and resolving inconsistencies are also conducted if 

necessary. Moreover, data reduction including the reduction of datasets or/and dimension 

reduction (feature conditioning) can be done to improve the performance of models. 

- Splitting Data: Dataset is divided into train and test subsets. The training set is used to develop 

models while the test set is used to estimate the predictive performance and generalization 

ability of the initially developed models.  

- Model Construction: Linear Regression (LR), Logistic Regression (LoR), Artificial Neural 

Network (ANN), Support Vector Machine (SVM), Decision Tree (DT), K-Nearest Neighbors 

(KNN), Naive Bayes (NB) and Ensemble Learning algorithms, such as Random Forest (RF) 

and AdaBoost (Ab) are some examples of ML models that can be developed by the means of 

the training dataset. For each model, hyperparameters are tuned and the best performing 

combination of the hyperparameters is selected.  

- Model Validation: After training a model, validation is conducted to test generalization ability 

of the model. Good generalization performance of a trained model indicates that the model is 

not over-fitted to the specific training dataset and can be applied for other datasets as well. 

There is a variety of performance metrics, such as r, R2, accuracy, MAE, MSE, RMSE, and 

AUC (ROC) that researchers can use to evaluate ML models.     

3. Model Selection Phase: By comparing the performance of ML models, the best performing 

one(s) are selected. However, another issue to consider is their time and computational cost. A 

proper trade-off between the performance of a model and its cost makes it an efficient model.  
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4. Application Phase: ML models are applied to actual buildings to provide building occupants 

with thermal comfort. A ML-based Model Predictive Control (MPC) system can be 

implemented to control the air-conditioning and mechanical ventilation systems [72]. 

However, there are some considerations in this area. These schemes require data collection, 

transformation and storage technologies. The speed of data collection and transfer should be 

high to make MPC systems able to respond to occupants’ thermal requirements as soon as 

possible. Moreover, since these schemes should be able to handle big data, they require 

sufficient data storage space. Another issue is to monitor occupants with the least intrusion in 

their daily activities, which requires non-intrusive devices for data collection. In addition, 

repeatedly asking occupants about their thermal perception may distract them from their 

normal activities. It may even cause tedium and reduce the accuracy of responses. Thus, the 

time scale should be assigned in a way that provides a good prediction performance with the 

least number of repetitions. Furthermore, the performance of ML models in predicting different 

thermal perception metrics (such as TSV and TPV) should be compared and evaluated to 

identify the best describing metric as the target parameter.   

 

Fig. 8. ML process in thermal comfort studies. 
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4.2  ML Application  

The main study features  of the reviewed papers are categorized into six groups (Table 2).  

    Group-based models and PCMs:  Table 2 shows that around 62% of studies focused on 

developing comfort models for a group of people, while 35% focused on PCMs. However, both 

group-based and PCMs were developed and compared in the study by Alsaleem, et al. [43], with 

the results showing PCMs have higher accuracies compared to group-based models.   

     Comparison of ML models: A fundamental step in using ML is model selection, therefore, 26 

papers (such as [28], [29], [51]) addressed this issue and compared the performance of ML 

algorithms. Section 4.4 provides a review of ML models.     

     Optimized control of HVAC systems: To build a model for thermal comfort prediction, its 

application in the real world should be noticed as well. Thus, 13 papers (such as [44], [69], [73]) 

addressed this issue in terms of efficient control of HVAC systems, which can optimize energy 

consumption and improve the thermal environment. For example, Azuatalam et al. [69] used 

reinforcement learning with simulated data for PMV prediction in commercial spaces to develop 

a whole-building HVAC control and demand response model. Valladares et al. [70] aimed to 

optimize energy associated with thermal comfort and indoor air control via a deep reinforcement 

learning algorithm. Wang and Hong [59] applied reinforcement learning besides some supervised 

learning algorithms to predict the neutral operative temperature and neutral air temperature. 

Sajjadian et al. [52] adopted Fuzzy logic to predict the lower and upper bounds of the comfort zone 

in office spaces in an educational building.   

     Occupants’ behavior: An essential factor that affects both thermal comfort and energy 

consumption is occupants’ behavior. Considering that individuals’ behavior is complex, ML 

algorithms are beneficial due to their ability to deal with complex problems. Therefore, 13 papers 

(such as [37], [64], [66]) focused on monitoring or predicting occupants’ behavior. For example, 

Han et al. [74] adopted reinforcement learning for predicting occupants’ window opening/closing 

behavior in office spaces in China. In another study, Lee and Ham [75] monitored occupants’ 

behavior and studied the influence of activity-based metabolic rate on predicting personal thermal 

comfort using a wearable device and environmental sensors.   

     Feature selection: Using ML algorithms strongly depends on input features, therefore, around 

23% of the papers (such as [70], [76], [77]) explained their sensitivity analysis or feature selection 

process. 
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     Outdoor spaces: The use of ML in thermal comfort studies was not limited to indoor spaces. 

For example, Mladenović et al. [55] applied SVM and ANN algorithms to estimate thermal 

comfort, CO2 emission and economic growth in an open urban space in Serbia and used 

Physiological Equivalent Temperature (PET) as the thermal comfort metric. In another study, Liu 

et al. [56] used local skin temperatures and SVM to predict TSV in urban outdoor areas. Kariminia 

et al. [57] took a systematic ML approach to analyze visitors' thermal comfort via predicting TSV, 

PMV, PET and Mean Radiant Temperature (MRT) in a public urban space in Iran. Eslamirad et 

al. [58] applied supervised machine learning to offer algorithms that help to identify the optimum 

morphology of green sidewalks to provide a higher outdoor thermal comfort and decrease errors 

in results.   

     Studying thermal comfort in relationship with other comfort aspects can provide a more 

comprehensive viewpoint. Thus, Pigliautile et al. [78] aimed at producing a multi-purpose comfort 

perception schema, i.e. considering thermal, visual, acoustic, and air quality comfort spheres under 

dynamic environmental conditions. 
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Table 2. The overall schema of the reviewed papers.  

Paper Developing models 

for a group  

Developing 

personal models 

Comparison 

of ML models 

Aiming at optimized 

control of HVAC 

systems 

Focusing on/ predicting 

occupants’ behavior 

Performing a sensitivity 

analysis/feature 

selection  

[18] ●      

[25] ●      

[26] ●      

[28] ●  ●    

[29]  ● ●    

[43] ● ● ● ●  ● 

[51]  ● ●    

[44] ●   ●   

[69] ●   ●   

[73] ●   ●   

[70] ●   ●  ● 

[59] ●      

[52] ●    ●  

[37] ●  ●  ●  

[64]  ● ●  ●  

[66]  ● ●  ●  

[74]  ●  ● ●  

[75]  ● ●  ● ● 

[76] ●  ● ●  ● 

[77] ●     ● 

[55] ●  ●    

[56] ●      



20 
 

[57] ●  ●    

[58] ●      

[78] ●  ●    

[38]  ●     

[60] ●      

[79] ●  ●    

[34] ●      

[61] ●      

[67]  ● ●    

[45] ●      

[39]  ●     

[80] ●      

[36] ●      

[40]  ● ●    

[81]  ● ●    

[41] ●  ●  ●  

[82] ●  ●    

[42]  ●   ●  

[83] ●      

[65]  ● ●  ●  

[84]  ● ● ●   

[62]  ● ●   ● 

[46]  ●    ● 

[85] ●   ●   

[47]  ●    ● 

[86]  ● ●   ● 
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[48]    ● ●  

[87] ●     ● 

[88] ●   ●   

[89]  ●  ●   

[90] ●     ● 

[91] ●     ● 

[63] ●    ● ● 

[92] ●  ●    

[93]  ● ●   ● 

[49] ●   ● ●  

[50]  ● ● ● ●  

[35] ●  ●    
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4.3 Input and Output Parameters 

According to Fig. 9, input parameters are classified into 14 main categories. It should be noted that 

for papers with multiple objectives, the input parameters were counted for each objective, 

separately, resulting in the total frequency of one of the variables (indoor environment) being more 

than 60 (the total number of papers). Moreover, the column “Focusing on/ predicting occupants’ 

behaviour” covers various occupant behaviors, such as window opening/closing behavior, activity 

level, occupancy status, and thermal controls like adjusting set-points or fans. Table 3 also shows 

inputs and predicted outputs that were used by the reviewed papers.  

• Indoor environmental parameters, personal/demographic parameters (clothing and 

metabolism), outdoor environmental and physiological parameters were the most frequently 

used input parameters among the reviewed papers due to their explicit relations with 

occupants’ thermal conditions. Behavioral parameters can affect both thermal conditions and 

building energy consumption, however, they are less studied. There is only one paper 

considering occupants’ behavior with regards to controls and optimization of HVAC systems 

[50]. This can be explained by the subjective and complex nature of behavioral factors, 

however, ML models with the ability to learn non-linear and complex relations can facilitate 

this issue, which can be the focus of future studies.  

• The review suggests that indoor environmental parameters were used more than outdoor 

environmental ones. Considering that outdoor weather conditions can also impact people’s 

expectations of the thermal environment according to the adaptive approach, future ML studies 

are recommended to conduct feature selection to identify the more important environmental 

variables (indoor or outdoor) in predicting occupants’ thermal comfort. 

• With the advent of the Internet of Things (IoT) and new technologies, using physiological 

parameters is increasing among studies, as they can directly capture occupants’ body responses 

to thermal conditions, especially in developing PCMs. However, collecting physiological 

parameters usually requires sensors to be attached to occupants’ skin, which may cause 

disturbance for people. Thus, employing new lightweight sensors with the least intrusion can 

be an interesting research area.  

• Spatial and architectural parameters were only included in 2 papers ([58], [85]), one of which 

considered outdoor spatial parameters (density, height, and plan type) in conjunction with 

vegetation type and weather conditions to predict PMV in green sidewalks [58] and the other 
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one generated different design options to assess indoor thermal comfort using mechanical and 

natural ventilation [85]. Analyzing the effects of architectural parameters on thermal comfort 

can assist building designers to design spaces with enhanced indoor thermal environments, 

which can be the focus of future studies.  

• Since thermal comfort is a complex concept with many known and unknown affecting 

parameters, investigating its relationship with other comfort aspects, such as visual, acoustical 

comfort, and indoor air quality (IAQ) can provide a more  comprehensive viewpoint. Therefore, 

six papers ([25], [69], [67], [47], [86]) considered lighting/visual parameters, one of which [89] 

also considered noise/acoustical ones as inputs. However, due to a lack of research in this area, 

future studies are recommended to further investigate these parameters.  

• TSV was the most frequently used output (target) parameter among the reviewed papers 

(around 48%). TPV, another metric that can be adopted as a proxy for occupants’ thermal 

perception was included in around 12% of the reviewed studies. For example,  Ma et al. [63] 

used TSV in conjunction with environmental and demographic parameters to predict TPV. The 

importance of TPV is in its direct relationship with the potential control actions that occupants 

might take to adjust their thermal condition. For example, ‘TPV = want cooler’ is probably 

associated with adaptive actions, such as turning on fans or increasing fan speed, opening 

window(s) or lowering the heating set-point. These actions are related to energy consumption 

and air quality, therefore, researchers are encouraged to focus on the importance of TPVs as 

well as TSVs in future studies. 

• To quantify the subjective quality of thermal comfort and evaluate the performance thermal 

comfort models by mathematical metrics, thermal comfort responses (such as TSV and TPV) 

need to be redefined as ordinal numbers. Therefore, TSV responses are often defined as -3= 

feeling too cold, -2= feeling cold, -1= feeling slightly cold, 0= feeling neutral, 1= feeling 

slightly war, 2= feeling warm, and 3= feeling hot. Similarly, other thermal comfort metrics 

such as TPV responses are often defined as -2= preferring a cooler temperature,  -1= preferring 

a slightly cooler temperature, 0= preferring no change in temperature, 1= preferring a slightly 

warmer temperature, 2= preferring a warmer temperature.  
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Developing 

models for a 

group 

Developing 

personal 

models 

Aiming at 

optimized 

control of HVAC 

systems 

Focusing on/ 

predicting 

occupants’ 

behavior 

Total 

Outdoor Environment 18 7 3 6 34 

Indoor Environment 29 19 10 9 67 

Personal/Demographic 25 11 6 5 47 

Contextual 10 5 1 3 19 

Behavioral 4 6 1 6 17 

Physiological  10 12 3 1 26 

Lighting/Visual 2 4 2  8 

Time Measure 10 5 2 5 22 

CO2 Concentration 9 2 4 1 16 

Occupancy Status 5 1 3 2 11 

Spatial/Architectural 2    2 

Noise/Acoustical  1 1  2 

Expressed State 2  2 2 6 

Vegetation 1    1 

 

Fig. 9. Heat map of the frequencies of used input parameters in relation with the main objectives of the 

reviewed papers. 
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Table 3. The input and output parameters of the reviewed papers.  

Paper [OE] [IE] [PD] [CON] [B] [P] [L] [TM] [CC] [OS] [S] [N] [ES] [V] Outputs(s) 

[18] ● ● ● ● ●          TSV, TCV 

[25]  ● ● ●  ● ● ● ●      TSV 

[26] ● ● ● ●           TSV 

[28] ● ● ● ●           3 and 7-point TSV 

[29]      ●         TSV 

[43]  ● ●   ●         3-point TSV, Control 

action 

[51] ● ● ● ● ● ●  ●       TSV, TA, TPV 

[44]      ●         Thermal state (derived 

from TSV) 

[69]  ● ● ●   ●  ● ●     PMV 

[73] ● ●      ●  ●     Temperature, Humidity 

(RH) 

[70] ● ●       ●      Temperature 

[59]  ● ●            Temperature 

[52]   ●     ●       Temperature 

[37] ● ● ●            TSV, Occupants’ 

Behavior 

[64] ● ●  ● ●          TPV 

[66]  ●   ● ●  ●       TSV, TCV 

[74] ● ●  ● ●          Occupants’ behavior 

[75]  ● ●   ●         TSV 
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[76]  ● ●            Energy Consumption, 

Temperature, Air 

Velocity, PMV 

[77]  ● ●            PMV 

[55] ●  ●      ●      PET, CO2 Emission, 

Gross Domestic Product 

(GDP) 

[56]      ●         TSV 

[57] ●  ● ●           TSV, MRT, PMV, PET 

[58] ●          ●   ● PMV 

[78]      ●  ●       TSV 

[38]  ● ●            TSV 

[60] ● ● ● ●    ● ●      TSV, TCV, TPV, TA 

[79] ● ● ● ● ●          TSV, ET*, SET, PMV 

[34] ● ● ●            TSV 

[61] ● ● ● ●    ● ●      TSV 

[67]  ●    ● ●        TSV 

[45] ● ●             Thermal State Index 

(TSI), Optimal Air 

Temperature (OAT) 

[39] ● ●      ● ● ●     Temperature  

[80]      ●         Thermal Demand (TD) 

[36]  ● ●            TPV 

[40]      ●         TPV 

[81]  ● ●            TPV 

[41]        ●  ●     Occupancy 
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[82]  ●   ● ●   ●      TSV 

[42] ● ●  ● ●   ●       TSV 

[83]      ●         Thermal State (TS), 

Discomfort (DC), 

Comfort (C ) 

[65] ● ●      ● ● ●     Occupants’ behavior 

[84]  ● ●   ●         TSV 

[62] ● ● ● ●     ●      3-point TSV 

[46]  ●    ●         TPV 

[85]  ● ●        ●    PMV, PPD 

[47]  ● ●   ● ●        Thermal Perception 

[86] ● ● ●   ● ●  ●      TSV 

[48]  ● ●            Occupants’ behavior 

(activity), Temperature  

[87]  ● ●            PMV 

[88] ● ●       ● ●   ●  Control action 

[89]  ● ●    ●  ●   ●   PMV 

[90] ● ● ● ●           Thermal Comfort 

[91]  ● ●   ●  ●       TSV 

[63] ● ● ●  ●        ●  TPV 

[92]  ● ●     ●       PMV 

[93]  ●    ●         TSV 

[49]  ●    ●         TSV 

[50]  ● ●  ●          Thermal Perception, 

Occupants’ behavior 

[35] ● ● ●            3-point TSV 
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[OE]: Outdoor Environment; [IE]: Indoor Environment; [P/D]: Personal/Demographic; [CON]: Contextual [B]: Behavioral; [P]: Physiological; 

[L]: Lighting/Visual; [TM]: Time Measure; [CC]: CO2 Concentration; [OS]: Occupancy Status; [S]: Spatial/Architectural; [TA]: Thermal 

Acceptance; [N]: Noise/Acoustical; [ET]: Expressed State; [V]: Vegetation.
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4.4 Methods and Tools 

This sub-section presents a comparison of sample sizes, tools, algorithms, generalization test 

methods and performance metrics of the reviewed papers. It should be noted that for papers with 

multiple objectives, the used algorithms were counted for each objective of these papers. 

 

Developing 

models for a 

group 

Developing 

personal 

models 

Aiming at 

optimized control 

of HVAC systems 

Focusing on/ 

predicting 

occupants’ behavior Total 

ANN 18 8 5 4 35 

SVM 15 16 3 4 38 

R 7 10 2 3 22 

TBM 7 13 1 2 23 

BM 6 5 1  12 

ENL 11 13 2 5 31 

KNN 7 7 1 1 16 

RL/DL 6 2 6 3 17 

GA 1 1  1 3 

M 1   1 2 

ELM 2  1  3 

LDA 3 3   6 

FOM 1  1  2 

FLS 1  1 1 3 

GP 2 1  1 4 

LVQ  1  1 2 

BNN 1   1 2 

PSO   1  1 

Kernel  1   1 

 

Fig. 10. Heat map of the frequencies of used algorithms in relation with the main objectives of the 

reviewed papers. 

• Samples contain various input parameters, such as environmental, demographic, contextual, 

behavioral, and physiological ones which can affect the output parameter (occupants’ thermal 

response). According to Table 4,  in some studies, such as [52], and [57], each subject’s thermal 

response was captured once (the number of responses was equal to the number of subjects). 

On the other hand, in several other studies, such as [29], [64], and [75], each subject’s response 

was captured several times (the number of responses was higher than the number of subjects). 

Thus, finding the appropriate proportion of responses to the number of respondents seems to 

be an important subject for sample size. Furthermore, Table 4 shows that there was a large 

variation among the papers in terms of sample sizes, ranging from 54 [43] to 192,021 [65]. 
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The sample size is the number of collected samples or the number of rows in a data file. Since 

all ML methods are data-driven techniques, they strongly rely on data. Very small sample sizes 

may result in weak generalization performance of models and very large sample sizes may 

increase processing and convergence time, especially when working with time-consuming 

algorithms, such as SVM. Thus, determining the optimum sample size seems to be an 

important subject to be further studied. 

• The most frequently used tools for building ML models were Matlab, Python and R, which 

were mentioned in around 25%, 23% and 13% of the papers, respectively. This might be related 

to their strong statistical analysis power and their user-friendly environments. Furthermore, 

Python provides various libraries that facilitate the coding process. The overview of the most 

frequent tools for ML development helps researchers in tool selection for their future studies.  

• In addition to tools for building ML models, some studies ([69], [70], [59], [58], [67], [86]) 

adopted simulation instead of field or climate chamber measurements to generate data. The 

main challenge in this approach is that simulation requires determining many detailed inputs 

and calibration with real conditions.  

• As illustrated in Fig. 10, the most frequently used algorithms among the reviewed papers were 

SVM, ANN and Ensemble Learning (mainly RF), followed by Tree-Based models and 

Regression methods (mainly LoR). Fathi et al. [94] also reported SVM, ANN and Ensemble 

Learning as the most frequently used algorithms. ANN model has robustness, which can 

effectively solve non-linear and complex problems. Besides, through adjusting the weights 

between different elements, ANN model can adapt to different cases [95]. SVMs can be trained 

with few numbers of data samples. Another advantage of SVM over other ML models is the 

uniqueness and global optimality of the generated solution, as it does not require non-linear 

optimization with the risk of sucking in a local minimum limit [96]. Finally, RF is a form of 

ensemble learning, which aggregates small and weak models into strong and large models. 

Therefore, even if a few of the sub-classifiers perform poorly, other classifiers can fix the gap, 

which leads to a better generalization [24].  

• Providing thermal comfort plays a major role in building energy consumption, therefore, 

optimization can be used to reduce energy consumption without compromising occupants’ 

thermal comfort. Optimization algorithms (such as Firefly Algorithms, GP, and PSO) are 

recommended to be further investigated.  
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• The most adopted generalization test method was 10-fold cross-validation, followed by 

splitting the dataset into 80% training and 20% testing subsets and 5-fold cross-validation. 

Another strategy, as in reference [28], is to change the K value for cross-validation (in this 

case, in the range of 5 to 100) and choose the best value for K.   

• To have a good generalization, an appropriate trade-off between fitting model for data in hand 

and preventing overfitting should be observed. In other words, the model should obtain higher 

fitting measures and lower error measures. According to Table 4, the most frequently used 

metrics for performance evaluation were accuracy, R2, RMSE, MSE, and r, which appeared in 

50%, 23%, 20%, 18%, and 15% of the papers, respectively. R2 and r show how much the built 

models can explain the patterns of data. Moreover, accuracy, MSE and RMSE can be used to 

see how accurate the model is in predicting output values for train or/and test datasets. This 

study recommends future studies to consider both fitting and error metrics for model 

evaluation.   
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Table 4. The algorithms and assessment methods of the reviewed papers. 

Paper Sample size Tool/software Algorithm(s) Generalization test method Performance metric(s) 

[18] 5,512 Matlab SVM, ANN 80% of dataset for train and 20% for test  MSE, MAE, r, R2 

[25] 1040 (field study) 

and 

413 (lab study) 

NA ENL NA r, R2, Accuracy 

[26] 20,954  Weka ANN, SVM 10-fold cross-validation RMSE, MAE, r  

[28] 81,968  Python (Scikit) , R TBM, R, SVM, 

ANN, ENL, 

BM, KNN 

20-fold cross-validation MSE, R2 

[29] 450 (3 subjects) NA ANN 10-fold cross-validation MSE, MAE 

[43] 286 (54/91/143 for 3 

subjects) 

Python TBM, ENL, 

SVM, PSO 

Cross validation (random parts of the 

data for learning and evaluation) 

Accuracy 

[51] NA NA R, TBM, BM, 

Kernel 

algorithms 

NA R2, RMSE, ROC 

[44] 700 (20 subjects: 10 

male, 10 female) 

R, OriginPro, Matlab SVM, ELM 50% of dataset for train and 50% for 

test, 10-fold Cross validation for tuning 

parameters 

MSE, Accuracy 

[69] NA EnergyPlus 

(predicting energy 

consumption after 

application of RL 

control) 

RL NA Reward 

[73] NA Matlab ANN 70% of dataset for train, 15% for 

validation and 15% for test 

MAE, R2 
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[70] NA (10 years) EnergyPlus, 

SketchUp Make and 

Open Studio (for 

simulation), BCVTB 

(for co-simulation), 

Python  

RL Results of 10 years for train, results of 

10th year for test 

Reward 

[59] 870 OpenStudio, 

EnergyPlus (for 

energy analysis), 

Matlab 

ANN, R, TBM, 

SVM, ENL, RL 

365 data points (a year) for training and 

the remainder for test. 

Training set size varied from 5 % to 80 

% of the available dataset, in increments 

of 5%. 

RMSE 

(half of) MSE 

[52] 100 (100 subjects) Matlab  FLS NA RMSE 

[37] 8,404 (4,939 (10 

offices) and 3,465 

(10 

apartment/houses)) 

Matlab 5 ANN 

algorithms 

NA MAE, R2 

[64] 4,743 (38 subjects) R TBM, GP, 

ENL, SVM, R 

150 times 2-fold cross- validation AUC (ROC) 

[66] 448 (2 female 

subjects) 

Matlab SVM, ENL 10-fold cross-validation AUC (ROC) 

[74] NA (1 subject) Python RL, RNN For RNN: 70% of dataset for train and 

30% for test 

RMSE for RNN 

and Reward for Q-learning and 

SARSA 

[75] 63-115 per person 

(10 subjects), 953 in 

total 

NA KNN, ENL, 

SVM, LVQ 

10-fold cross-validation Accuracy, Cohen’s kappa  
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[76] NA Matlab ELM, ANN, 

FOM 

80% of dataset for train and 20% for test MSE 

[77] More than 98,000 

(training), about 

20,000  (validation), 

20,000 (test) 

Matlab ANN For ANN development: 70% of dataset 

for train, 15% for validation and 15% 

for test 

MSE, r, mean difference, relative and 

absolute error 

[55] NA NA SVM, ANN, 

GP 

NA RMSE, R2, r 

[56] 1,116 (26 subjects) NA SVM  80% of dataset for train and 20% for test Accuracy, R2, Spearman’s rank 

correlation, P-value 

[57] 454 (454 subjects, 

191 winter/ 263 

summer) 

NA ANN, GP, ELM NA RMSE, r, R2 

[58] 2,268 (randomly 

selected from 8000 

models) 

ENVI-Met (for data 

generation), Python 

R Various percentages of test set, cross-

validation 

MSE, Accuracy 

[78] 1,360 and 1128 (for 

winter and summer, 

respectively 29 

subjects) 

NA LDA, KNN, 

TBM, BM, 

SVM, ENL 

5-fold cross-validation Accuracy, r, R2  

[38] 1,199 (20 subjects) LIBSVM library SVM 5-fold cross-validation Accuracy  

[60] 16,795  NA R, SVM 10-fold cross-validation R2, r 

[79] 813 (813 subjects: 

(467 in NV and 346 

in AC buildings)) 

Weka ENL, ANN, 

SVM 

10-fold cross-validation MAE, RMSE, R2, r 

[34] 5576  NA KNN, SVM, 

ANN 

90% of dataset for train and 10% for test Confusion Matrix 
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[61] 11,000  NA KNN, GA NA Accuracy, True Positive Rate (TPR), 

True Negative Rate (TNR) 

[67] NA (8 subjects) Grasshopper KNN, TBM, 

BM, SVM 

10-fold cross-validation Accuracy for test samples 

[45] 800 (thermal comfort 

prediction model) 

and 

1,155  (energy 

consumption 

prediction model) 

Matlab ANN NA MSE, Accuracy 

[39] NA Matlab ANN, SVM, 

TBM, ENL 

5-fold cross-validation NA 

[80] 969 (11 subjects, first 

experiment) and 

59 (second 

experiment) 

Matlab SVM NA Accuracy 

[36] 900 (generated for 

verification) and 

1,712 (observation) 

Python BM Randomly clustering 9 individuals into 

3 clusters and attributing 900 data rows 

to them 

(Clustering Problem) 

[40] 3,848  (14 subjects) 'CARET' Package 

under R 

R, ANN, SVM, 

KNN, BM, 

TBM, ENL 

5-fold cross-validation AUC (ROC), Cohen's kappa 

[81] 648 Python SVM, ENL 5-fold cross-validation Accuracy, Precision, Recall 

[41] NA Matlab R, ENL, M, 

RNN 

NA Accuracy  
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[82] 400 to 500 (22 

subjects)  

Matlab   LDA, BM, 

KNN 

50% of dataset for train and 50% for test Accuracy 

[42] NA (7-10 subjects in 

2 offices) 

NA GA Cross-validation Accuracy, RMSE 

[83] 700 (20 subjects: 10 

male, 10 female) 

R  ENL 80% of dataset for train and 20% for test  P-value 

[65] 192,021 (6 subjects) R TBM, ENL 60% of dataset for train, 20% for 

validation and 20% for test 

Accuracy, MSE, RMSE  

 

[84] 1,305 (50 subjects: 

34 male, 16 female) 

SPSS, R R, BM, ANN, 

SVM, TBM, 

ENL 

80% of dataset for train and 20% for test Accuracy 

[62] 12,829 Python TBM, KNN, R, 

ENL, DL 

80% of dataset for train and 20% for test Confusion Matrix, Precision, Recall, 

F-Score 

[46] NA (19 males and 13 

females) 

NA RF, SVM, R 50% of dataset for train and 50% for 

test, 10-fold cross-validation  

Accuracy, F-Score  

[85] 15,936 NA DL/RL A separate 664 data samples as test set, 

10-fold cross-validation 

Accuracy, AE, APE 

[47] 22,575 (12 females 

and 13 males) 

R Programming (for 

correlation analysis), 

Python 

LDA, R, TBM, 

ENL, SVM 

60% of dataset for train and 40% for 

test, 10-fold cross-validation 
Accuracy 

[86] 15,456, (8 subjects) 

for first model and 

9,022 after feature 

selection 

Grasshopper (for 

parametric model), 

Python 

R, KNN, TBM, 

BM, SVM 

80% of dataset for train and 20% for 

test, 10-fold cross-validation 

Accuracy 

[48] NA NA DL, CNN NA RMSE 

[87] 784 NA ANN 100% of dataset for train and 100% for 

test 

RMSE, R2 
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[88] NA (up to 72 

subjects) 

NA DL NA Reward 

[89] Varying for 34 

subjects 

NA KNN N (100, 500, 1000 samples) for train 

and 0.15*N for test, N (100, 500, 1000 

samples) for train and 6400-N for test 

Accuracy 

[90] 10,794 Python ENL 70% of dataset for train and 30% for test Accuracy, MSE 

[91] 964 (13 subjects (443 

for men, 522 for 

women)) 

Matlab   ANN 80% of dataset for train and 20% for test Accuracy 

[63] 78,113 Python BNN 5-fold cross-validation Accuracy, F-Score, AUC (ROC), 

Adjusted rand index (ARI) 

[92] 172,800 (10 subjects) 

 

TensorFlow DL, R, TBM, 

BM 

75% of dataset for train and 25% for test Time complexity, Accuracy, 

Precision, Recall 

[93] NA (10-13 subjects) Python SVM, ENL, 

TBM, ANN, 

CNN 

Leave one subject out (LOSO),  

10-fold cross-validation 

Accuracy, MAPE, MAE 

[49] 1,200 (20 students 

and 10 staff) 

Python BM, KNN, 

TBM, SVM, 

ENL, ANN, RL 

10-fold cross-validation MAE, Normalized Reward (for RL) 

[50] NA NA R, SVM, ANN NA Accuracy 

[35] 818 (235 subjects in 

12 air-conditioned 

offices, 583 subjects 

in 4 naturally 

ventilated 

residentials) 

 

NA SVM, ANN, R, 

LDA, KNN, 

TBM 

70% of dataset for train and 30% for 

test, 70% of dataset for train and 15% 

for validation and 15% for test (for 

ANN) 

Accuracy 

 [NA]: Not Mentioned Specifically; [ANN]: Artificial Neural Network; [SVM]: Support Vector Machine; [R]: Regression Method; [TBM]: Tree-

Based Method; [BM]: Bayesian Method; [ENL]: Ensemble Learning; [GA]: Gaussian Method; [M]: Markov Model; [RNN]: Recurrent Neural 

Network; [ELM]: Extreme Learning Machine; [KNN]: K-Nearest Neighbors; [LDA]: Linear Discriminant Analysis; [RL]: Reinforcement 
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Learning; [DL]: Deep Learning; [FOM]: Firefly Optimization Method; [FLS]: Fuzzy Logic System; [GP]: Genetic Programming; [CNN]: 

Convolutional Neural Networks; [LVQ]: Learning Vector Quantization; [BNN]: Bayesian Neural Network; [PSO]: Particle Swarm Optimization
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4.5 Performance of ML Models   

This section provides an overview of the performance of ML and PCMs in comparison with 

conventional methods, their impact on indoor environmental quality and energy consumption and 

their performance in relation to physiological parameters.   

     ML models and conventional methods: Results from many reviewed papers indicate that ML 

models perform better than conventional methods ([18], [22], [23],[33], [71], [51], [44], [73], [76], 

[70], [59], [64], [74], [55], [56], [38], [34], [39], [63], [49], [35]). For example, the results of a 

study by Chai et al. [18] showed that ML, especially the ANN model was effective in predicting 

TCV and TSV in naturally ventilated residential buildings in China. ML models also outperformed 

PMV and modified PMV models (aPMV, and ePMV) in predicting thermal sensation votes. 

Similarly, Chaudhuri et al. [35] implemented several classification algorithms for building a 

thermal comfort model with data from ASHRAE RP-884 (only from Singapore). Their results 

showed that ML approach achieved prediction accuracies of 73.14-81.2%, outperforming the 

traditional Fanger’s PMV model with accuracies of only 41.68-65.5%. The proposed approach 

also outperformed modified PMV models (ePMV and aPMV), which attained accuracies of 

61.75% and 35.51%, respectively. Zhou et al. [26] applied SVM to the ASHRAE RP-884 thermal 

comfort database. Compared to the PMV model, the new model’s sum of squares for residuals 

(SSE) was reduced by 96.4% and the fitting degree increased by 83.7%. Ma et al. [63] applied 

BNN algorithm to build a predictive model for occupant thermal preference using the ASHRAE 

Global Thermal Comfort Database II. Their results revealed that BNN model (with cross-validated 

mean accuracy = 0.693) outperformed PMV and adaptive model with accuracies equal to 0.334 

and 0.383, respectively. Hu et al. [49] compared the prediction performance of several ML 

algorithms with PMV, with the results showing that black-box methods (SVM, RF, and ANN) 

achieved better performance than the PMV model. Moreover, in an outdoor context, Kariminia et 

al. [57] developed an ELM to forecast thermal comfort of visitors in an open area in Iran and 

compared it with two other algorithms (i.e., GP and ANN). The ELM results had higher accuracy 

than GP and ANN with a very high coefficient of determination (0.9354) and performed better in 

predicting real thermal sensation votes than predicting PMV and especially PET values [57].  

     The performance of ML models is also investigated in studies with more sensitive occupants. 

For example, Wang et al. [25] developed two data-driven models (from a field study and a lab 

study) using RF to predict older people's thermal sensation. Their field study model, which was 
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developed with 4 environmental and 2 human-related inputs produced an overall accuracy of 

56.6% (24.9% higher than that of the PMV). Their lab study model, which was built with 5 local 

skin temperatures demonstrated an overall accuracy of 76.7%. Brik et al. [92] focused on various 

types of disability: physical, learning, intellectual, and neurological disabilities and built DL, LoR, 

DT, and GNB to predict PMV for this group. Their model showed an accuracy of 94% and 

precision and recall of 98% and 97%, respectively.  

     PCMs and conventional methods: Besides papers that addressed average-based models, the 

results from some other papers demonstrated the good performance of PCMs. PCMs take an 

individual person as the unit of analysis rather than populations or groups of people and use direct 

feedback from individuals and relevant data to train a model [51]. Shan et al. [29] showed that the 

prediction accuracy of a PCM was much higher than that of the PMV model when applied to 

individuals. Guenther and Sawodny [42] collected user feedback in daily working routines and 

developed a personalized comfort prediction model. Their results showed a 74% higher individual 

prediction accuracy compared to the standard PMV calculation. Similarly, the work conducted by 

Kim et al. [64] revealed that PCMs produced median accuracy up to 0.73, improving the 

predictions of PMV and adaptive modes with a median accuracy of 0.51. In another study, Liu et 

al. [40] developed PCMs using lab grade wearable sensors in normal daily activities. The 

developed PCMs with long-term tracking of physiological and environmental data resulted in a 

median prediction power of 78% accuracy and 79% AUC, which was significantly greater than 

conventional PMV and adaptive model [40]. Rehman et al. [62] developed a PCM for air-

conditioned buildings from ASHRAE RP-884 database with an accuracy of 85% in predicting 

thermal sensation votes. Lee and Ham [75] used wearable sensors and ML to continuously monitor 

and analyze individual physiological signals, activity-based metabolic rates and environmental 

parameters to develop a robust data-driven personalized model in consideration of human activity 

variations. In another study, a KNN-based thermal comfort model was developed to establish a 

personalized adaptive thermal comfort environment [89]. The test results of this work manifested 

that the accuracy of the KNN model with 1000 sets of training data could reach up to 88.31%. 

Alsaleem et al. [43] evaluated various supervised ML algorithms to produce accurate PCMs for 3 

individuals. They also built a general model, the accuracy of which was less than the PCMs with 

accuracies up to 88%. By bringing more personal interest and data, personalised models may help 

researchers to better understand the internal links of personal factors, such as psychology, 
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physiology and behavioural ones [50]. Thus, this almost new paradigm has become one of the 

promising research trends in thermal comfort studies. 

     ML methods, indoor thermal conditions and energy consumption: Since one of the main 

goals for analyzing thermal perception is to adjust indoor thermal conditions, some studies trained 

and evaluated ML methods for this purpose. For example, Peng et al. [39] used ML to present a 

control strategy with learning capabilities to make cooling systems adapt to occupant temperature 

preferences under dynamic contexts comprising of indoor and outdoor conditions as well as 

occupant behavior. Their results showed that the active learning-based control reduced the need 

for occupant interventions in adjusting room temperatures to fit their preferences. Furthermore, a 

4-25% reduction was reported in cooling energy demand. Valladares [70] proposed a deep 

reinforcement learning algorithm to maintain thermal comfort and air quality within optimal levels 

while consuming the least amount of energy from air-conditioning units and ventilation fans. Their 

proposed agent had 10% lower CO2 levels than the current control system while consuming about 

4–5% less energy. In another study [73] with the similar purpose of optimization, a Model 

Predicitve Control (MPC) system with an adaptive ML-based model for building automation and 

control applications was proposed, which reduced 58.5% of cooling thermal energy consumption 

in an office and 36.7% of cooling electricity consumption in a lecture theatre, as compared to their 

respective original controls [73]. Yu et al. [88] also developed a control algorithm for optimization 

of energy consumption of air-conditioning and exhaust fans through Deep Q-Learning. Their 

results showed that the deep learning agent offered energy saving up to 43% when compared with 

the air-conditioning with a fixed temperature of 25°C. On average, the energy-saving with this 

agent was about 19%, yet the corresponding CO2 level was reduced by about 24% with the 

presence of agent control. Lu et al. [34] conducted a data-driven simulation of comfort-based 

temperature set-point control system with tabular Q-learning. Their results revealed that the best 

recall of the statistical thermal comfort model was 49.3%, which outperformed that of PMV being 

43%. Furthermore, with the implementation of reinforcement learning controller, the thermal 

comfort-based controller could control the set-point to the optimal state with any start state after a 

certain number of episodes for training. Similarly, Han et al. [74] proposed a reinforcement 

learning method for the advanced control of window opening and closing to optimize its time 

point. Their results demonstrated that the RL control strategy improved thermal and indoor air 

quality by more than 90% when compared with the actual historically observed occupant data.  
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     ML performance and physiological parameters: The performance of ML models can be 

impacted by input parameters, which are assumed to affect the output parameter. According to 

table 3, some studies used outdoor/indoor environmental and basic personal parameters. However, 

thermoregulation is the result of complex mechanisms that are modulated by mutual interactions 

between the sympathetic nervous system and the parasympathetic nervous system [93], which 

indicates the importance of physiological parameters. Thus, some recent studies have focused on 

physiological parameters. As an example, Chaudhuri et al. [44] presented a model, which used 

skin temperature of the area between the wrist and the fingers on the dorsal side of the hand, the 

gradient of skin temperature, body surface area and clothing insulation to evaluate thermal state. 

Their results showed that the model based on normalized skin features accurately predicted 87% 

of thermal states. In a similar study, the possibility to predict human thermal state from 

physiological parameters (hand skin temperature, hand skin conductance, pulse rate, blood oxygen 

saturation, and blood pressure) was investigated by using RF [83]. The results from this study 

manifested that physiological features exhibited the potential to indicate thermal state. Dai et al. 

[80] also used skin temperatures as the only input to an intelligent control model based on SVM. 

Their results demonstrated that using a single skin temperature correctly predicted 80% of thermal 

demands and using combined skin temperatures from different body segments could improve the 

model to over 90% accuracy. In addition to individual and environmental parameters, Du et al. 

[84] used skin temperature of nine different body parts to identify the main impacting factors for 

a localized airflow system and predict a cooling performance based on ML, with the results 

showing a prediction performance up to 83.99%. Jung et al. [46] investigated the performance of 

personal thermal comfort inference using classification algorithms. Their results indicated that 

when air temperature was used as the sole feature, a median accuracy of 42.6% was observed 

across all the models, which was drastically improved up to 97% when adding heat exchange rate 

as another feature. The results of another study revealed that physiological quantities could be used 

to estimate TSV with mean MAE and MAPE values that reached up to 1.4 and 24%, respectively 

[93]. Moreover, Liu et al. [56] developed a SVM model to predict the cool discomfort, comfort, 

and warm discomfort in outdoor environments using local skin temperatures and thermal load as 

inputs. Their results showed that when using single local skin temperature as input, the skin 

temperature of exposed body parts exhibited the highest prediction accuracy (66%–70%). The 

review by Vellei, et al. has suggested that skin temperature represents the most important 

https://www.sciencedirect.com/science/article/pii/S0360132321006697#!
https://www.sciencedirect.com/science/article/pii/S0360132321006697#!
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physiological variable affecting thermal perception in the indoor built environment, with 70% of 

the reviewed studies having measured skin temperature and 39% of them having monitored 

the body core temperature as physiological parameters [97]. As wearable sensors such as 

multiparametric chest belts, smartwatches and smart bands need to represent a good trade-off 

between accuracy, intrusiveness and user acceptance [93], this review recommends future studies 

focus more on wearable sensors, their comfort and user acceptance to improve the performance of 

ML models.   

     Table 5 shows the performance of ML models in mathematical formats to make the comparison 

of their performance with other models possible. Table 5 suggests that ML models could 

outperform PMV models with up to 35.9% higher accuracy and even adaptive methods with up to 

31% higher accuracy [63]. On the other hand, PCMs could outperform PMV models with up to 

74% higher accuracy [42]. Applying ML-based control schemas reduced thermal comfort-related 

energy consumption in buildings up to 58.5% [73], while improving indoor quality up to 90% [74] 

and reducing CO2 levels up to 24% [88]. Moreover, using physiological parameters improved the 

prediction accuracy of PCMs up to 97% [46].  

Table 5. Performance of ML models. 

 Study Performance 

ML models and 

conventional methods 

[18] R2 
ANN = 0.799 + R2 PMV or R2 

ePMV 

R2 
ANN = 0.833 + R2 

aPMV
  

R2 
SVM = 0.524 + R2 PMV or R2 

ePMV  

R2 
ANN = 0.558 + R2 

aPMV
  

[35] Accuracy ML = 15.7-31.46%  +  Accuracy PMV 

Accuracy ML = 11.39-19.45% +  Accuracy ePMV  

Accuracy ML = 37.63-45.69 % + Accuracy aPMV  

[26] SSE SVM = SSE PMV – 96.4% 

Fitting degree SVM = 83.7% + Fitting degree PMV   

[63] CV mean accuracy BNN = 35.9%  + CV mean accuracy PMV  

CV mean accuracy BNN = 31%  + CV mean accuracy Adaptive   

[49] Performance intelligent thermal comfort neural network = 13.1-17.8%  + Performance PMV 

[57] Accuracy ELM  = 93.54% > Accuracy GP or ANN 

[25] (Field study) Accuracy RF = 24.9%  +  Accuracy PMV  

(Lab study) Accuracy RF = 76.7%   

[92] Accuracy ML = 94% , Precision ML  =  and 98% and Recall = 97%. 

[29] Mean accuracy PCM = 89.2% >> Accuracy PMV 

https://www.sciencedirect.com/topics/engineering/core-body-temperature


44 
 

PCMs and 

conventional methods 

Mean MAE PCM  = 0.16 and Mean MSE PCM  = 0.06 

[42] Accuracy PCM  = 74%  +  Accuracy PMV 

[64] Accuracy PCM  = 22%  +  Accuracy PMV or Adaptive 

[40] Median Cohen's kappa PCM  = 74%, Median accuracy PCM  = 78% and Median 

AUC PCM  = 79% >> Cohen's kappa, Accuracy and AUC PMV or Adaptive 

[62] Accuracy PCM  = 85%   

[89] Accuracy PCM  = 88.31%   

[43] Accuracy PCM  = 88%  > Accuracy General model   

ML methods, indoor 

thermal conditions 

and energy 

consumption 

[39] Occupant interventions Active learning-based control < Occupant interventions Current 

control 

Cooling energy demand Active learning-based control = Cooling energy demand Current 

control – 4-25% 

[70] CO2 level RL control = CO2 level Current control – 10% 

Energy consumption RL control = Energy consumption Current control – 4-5% 

[73] (Office) Cooling thermal energy consumption ML control = Cooling thermal 

energy consumption Current control – 58.5% 

(Lecture theatre) Cooling electricity consumption ML control = Cooling 

electricity consumption Current control – 36.7% 

[88] Energy consumption RL control = Energy consumption Current control – 19% (On 

average) 

CO2 level RL control = CO2 level Current control – 24% 

[34] Recall RL = 6.3%  +  Recall PMV 

Set-point= Optimal state 

[74] Thermal and indoor air quality RL = 90%  + Thermal and indoor air quality 

Current state 

ML performance and 

physiological 

parameters 

[44] Accuracy ML with normalized skin features = 87%   

[83] (Males) Accuracy RF with physiological parameters = 92.86%  

(Females) Accuracy RF with physiological parameters = 94.29% 

[80] Accuracy SVM with a single skin temperature = 80% 

Accuracy SVM with combined skin temperatures ≥ 90% 

[84] Accuracy ML with skin temperatures ≤ 83.99%   

[46] Median accuracy ML with air temperature and heat exchange rate = 97% = 54.4%  +  

Median accuracy ML with air temperature 

[93] MAE ML with physiological parameters  ≤ 1.4 

MAPE ML with physiological parameters  ≤ 24% 

[56] Accuracy ML with skin temperatures of exposed body parts = 66-70% 

*Description:  
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Example 1: “R2 
ANN = 0.799 + R2 PMV or R2 

Epmv” means R2 value of ANN is equal to R2 value of PMV or ePMV models 

plus 0.799  

Example 2: “Accuracy ELM  = 93.54% > Accuracy GP or ANN” means Accuracy of ELM  is equal to 93.54% which is higher 

than accuracy of GP or ANN 

 

 

                  4.6 Challenges of ML Models  

In a recent review study, Khalil et al. [68] concluded that ML model selection, data privacy and 

security, and Federated Learning are the major challenges in the field of thermal comfort IoT data 

analytics. More comprehensively, the present review introduces some challenges relating to the 

process of all ML applications in thermal comfort studies.     

- Data collection: There are 3 main approaches for data collection. Data can be collected 

through field studies, which indicate occupants’ real conditions. However, controlling or 

measuring all of the potential affecting parameters can be a real challenge in this approach. In 

contrast, it is more feasible to control or limit affecting parameters in climate chambers. 

However, they do not represent naturally ventilated spaces and real-life conditions. On the 

other hand, the third approach (data generation) is to use data from simulated conditions, 

instead of real ones. For example, Eslamirad et al. [58] used ENVI-Met simulation to generate 

8,000 samples to evaluate thermal comfort conditions in green sidewalks, from which 2,268 

samples were selected for training their ML model to predict PMV values. However, 

simulation requires determining several input features, which are in many cases based on 

premises and can increase the risk of the performance gap between the model and real 

conditions. Moreover, simulating a large number of various options can be time-consuming. 

To mitigate the gap, the study by Xiong and Yao [89] has used combinations of simulated and 

field data. In this study, they collected real environmental parameters by the means of an 

artificial intelligent environmental controller. However, instead of real TSV, simulation was 

used to calculate PMV values which were considered as the output parameter (thermal 

perception indices). Thus, future studies are recommended to systematically compare data 

collection approaches due to study objectives, implementation challenges and solutions.  

- Thermal comfort indices: A basic issue in thermal comfort study, is selecting a thermal 

perception metric. TSV has been the most used metric, however, TPV can be more associated 

with occupants’ actions and consequently, energy consumption. Thus, future studies are 
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recommended to investigate both of these metrics, their relationships with input parameters 

and with each other.  

- Occupants’ Responses: In the case of supervised learning, occupants’ responses (output 

values) are used as ground truth data. Once a ML algorithm is trained, its’ prediction is 

compared with the real reported thermal responses in terms of evaluation metrics. When the 

prediction of an algorithm is close to the real occupants’ responses, its performance is better. 

Time scale of asking occupants’ thermal conditions is an important issue to prevent intrusion 

and tedium, while providing enough data to train ML models. As a solution to this matter, 

during a climate chamber study, Morresi et al. [93] asked the participants to express their TSV 

whenever there was a change in it, instead of collecting TSV with a specific frequency. 

However, the main limitation of this solution is that in real life, responders may forget to report 

their thermal perception. Thus, there seems to be a lack of knowledge in time scaling area, 

which is recommended to be further investigated.    

- Sample size: To build a model with good generalization performance with proper processing 

and convergence time, determining the optimum sample size is another challenge, which is 

recommended to be the focus of future studies to bridge the gap in this area.   

- Feature selection: Another consideration is selecting the right input parameters (conducting 

feature conditioning), which is important to prevent wasting time and energy on collecting 

inessential parameters and to less disturb occupants’. Therefore, many of the reviewed studies 

emphasized feature selection, since the optimization of input parameters not only increases the 

model accuracy but also makes the evaluation process easier. Future studies are recommended 

to consider contextual, psychological and architectural parameters as well to provide a more 

comprehensive feature selection process.  

- Model selection: Since ML provides a range of various algorithms to work with, it’s essential 

to choose proper ones in line with the objectives of the study. White-box models (such as NB, 

KNN, DT) generate an explicit expression that relates the environmental parameters with 

comfort levels, hence, one of their main advantages is that they are interpretable. However, 

comfort level is subjective and depends on many factors, which may not be learned by white-

box these models. Different from the white-box methods, which rely crucially on the feature 

selection process, the black-box approaches can automatically learn the inherent coupling 

among different features [49]. Thus, some of the high qualified models for handling complex 



47 
 

problems are black-box models, such as SVM, ANN and ensemble learning methods, however, 

these models are not easily interpretable. In addition, they may be time-consuming, which can 

be a challenge for real ML applications in buildings. Therefore, researchers can adopt and 

evaluate ML models, in terms of their predictive performance, their complexities to work with, 

and their time and computational cost.  

- Real world application: It is important to address both thermal comfort and energy 

consumption simultaneously to control energy consumption without compromising thermal 

comfort. As thermal comfort is a complex subject and interacts with many factors, further 

studies are recommended to investigate its interaction with other comfort aspects and energy 

consumption. 

5. Conclusion  

The use of ML models is growing in many scientific fields, such as thermal comfort studies due 

to their capabilities to handle complex and non-linear problems. To provide an insight into the role 

of ML techniques in recent thermal comfort investigations, 60 papers, published from 2016 to 

2021 were systematically reviewed. The review was classified into several sub-sections: overall 

schema, data collection, study context, parameters, methods, challenges of ML models and their 

application. The main conclusions are summarized as below: 

• Most of the reviewed studies (62%) focused on developing group-based comfort models, while 

35% focused on PCMs. Since PCMs account for individual differences and present high 

prediction performances, they are recommended to be further studied.  

• The most used tools for building ML were Matlab, Python and R due to their strong statistical 

analysis power and their user-friendly environments, which can assist researchers in tool 

selection. 

• The most frequently used algorithms among the reviewed papers were SVM, ANN and 

Ensemble Learning (mainly RF), followed by Tree-Based models and Regression methods 

(mainly LoR) due to their abilities to handle complex problems.  

• The most frequently used metrics for performance evaluation were accuracy, R2, RMSE, MSE, 

and r, which appeared in 50%, 23%, 20%, 18%, and 15% of the papers, respectively. Future 

studies are recommended to consider both fitting and error metrics for model evaluation.   

• ML models could outperform PMV and adaptive models with up to 35.9% and 31% higher 

accuracy and PCMs could outperform PMV models with up to 74% higher accuracy. Applying 
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ML-based control schemas reduced thermal comfort-related energy consumption in buildings 

up to 58.5%, while improving indoor quality up to 90% and reducing CO2 levels up to 24%. 

Moreover, using physiological parameters improved the prediction accuracy of PCMs up to 

97%.  

 

6. Future Studies 

To suggest research gaps in this area, major recommendations for future studies are summarized 

as below:  

• Study contexts were reviewed in terms of regions, seasons, building types, and building 

operation modes. The review over regions suggests that regions, such as Russia, Southern 

America, Africa and the Middle East are less investigated and need to be further investigated. 

Due to the high frequency of previous studies in summer, future studies are recommended to 

investigate other seasons, especially winter due to its heating demand. The review over 

building types indicates that further studies need to focus on educational buildings and 

hospitals. As the most investigated building operation mode was HVAC, future studies are 

recommended to further investigate naturally ventilated buildings.  

• Future studies are recommended to investigate the impacts of architectural and spatial features 

on thermal comfort, which can help architects and building designers in creating more 

comfortable and energy-efficient buildings. Moreover, future studies are recommended to 

further investigate the application of ML in outdoor thermal comfort studies.  

• Physiological parameters directly indicate thermal conditions and their measurement with 

wearable sensors needs to represent a good trade-off between accuracy, intrusiveness and user 

acceptance. Therefore, it is interesting to investigate how wearable sensors can be developed 

in future research studies and industry to provide a high level of accuracy without disturbing 

users.   

• In terms of ML algorithms, since optimization can be used to reduce energy consumption 

without compromising occupants’ thermal comfort, algorithms such as Firefly algorithms, GP, 

and PSO are recommended to be further investigated.  
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