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A Neural Network Based Approach To Fault Detection In Industrial Processes.
Edward James Williams

Abstract

The need for automated fault detection methods has increased in line with the complexity of
processing plant technology and their control systems. Fast and accurate fault detection and isolation
(FDI) is essential if a controller is to be effective in a supervisory role. This thesis is concerned with
developing an FDI system based upon artificial neural network techniques. The artificial neural
network (ANN) is a mechanism based upon the concepts of information processing within the brain,
and consequently has the ability to self adjust, or learn about a given problem domain. It can thus be
uuhsed in currently favoured model-based FDI systems with the advantage that it can learn process
dynamics by being presented examples of process input-output pairs without the need for traditional
mathematically complex models. Similarly, ANNs can be taught to classify characteristics in the
residual (or plant-mode! difference) signal without the necessity of constructing the types of filter used

in more classical solutions.

Initially, a class of feedforward neural network called the multilayer perceptron (MLP) is used to
model mathematically simulated linear and nonlinear plants in order to demonstrate their abilities in
this field. as well as investigating the consequence of parameter variation on model effectiveness and
how the mode! can be utilised in a model-based FDI system. A principle aim of this research is to
demonstrate the ability of the system to work online and in real-time on genuine industrial processes.
and the plant nominated as a test bed - the Unilever Automated Freezer (UAF) - is introduced. The
UAF, being a time-varying system, requires a novel system identification approach which has resulted
in a number of cascaded MLPs to model the various stages in the phased startup of the process. In
order to reduce model mismatch to a minimum, it was necessary to develop an effective switching
mechanism between one MLP in the cascade and the next. Attempts using a rule-based switching
mechanism, a simple MLP switch and an error based switching mechanism were made, before a
solution incorporating a genetic algorithm and an MLP network was developed which had the
capability of learning the optimum switching points. After the successful development of the model, a
series of MLPs were trained to recognise the characteristics of a number of faults within the residual
signals. Problems involving false alarms between certain faults were reduced by the introduction of
templates - or information pertaining to when a particular fault was most evident in the residuals,

The final solution consisting of an MLP Cascade mode! and fault isolation MLPs is essentially generic
for this class of time-varying system, and the results achieved on the UAF were far superior to those of
the currently used FDI system without the peed for any extra sensory information. The MLP Cascade
and associated switching device together with the development of an online real-time FDI system for a
time-varying piece of industrial machinery, are deemed to be original contributions to knowledge.
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?Chapter 1.

Introduction.

Failure detection in dynamic control systems is one of the many fields of industrial applications
which has benefited from improving technology and computational techniques. Concurrently,
the demand for ever more sophisticated, reliable and accurate failure detection methods has
been escalating in line with the increasing complexity of processing plant technology and their
control systems. Effective failure detection is essential if a control system is to operate
successfully in a supervisory mode.

Modem industrial processes, or plants, are typically controlled by a combination of manual
supervision and automatic control systems, although the supervisory component is increasingly
being automated by the use of knowledge-based (expert) systems which mimic human decision
making and reasoning in order to keep the plant operating efficiently. Such control systems
continually monitor a potentially large number of process variables using sensor measurements,
the reliability of which need to be ascertained prior to taking a conmrol decision. It is essential
that both sensor failures - where a sensor begins to produce erroneous signals - and actuator
failures - where a specific functional component of the process (excluding sensors) begins
behaving arypically - are detected if a control system is to operate successfully in a supervisory
mode. In order to detect such failures it is necessary to have some form of interface between
the sensors and the controller.

Traditionally, methods for failure detection relied upon measurable output signals transgressing
certain limit values or digressing from predefined models of the process. These methods were
consequently enhanced by the use of mathematical estimation and prediction techniques in
addition to methods for overcoming problems inherent in model-based systems. Mare recently,
computerised solutions - including artificial intelligence tools - have been introduced to improve
the performance of failure detection methods.
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Amongst the artificial intelligence (AI) techniques incorporated into failure detection systems is
the artficial neural network (ANN). ANNs are parallel information processing systems
modelled upon the mechanisms of the brain and consist of a potentially large number of
processing elements interconnected to allow the network to model itself upon the required
processing task. This emergent behaviour property allows the network to learn about a given
domain by being presented examples of it. ANNSs possess the ability to process both
considerable volumes of information and handle unexpected processing tasks in the current
domain on which the network has not been explicitly taught.

The aim of this research has been to design a failure detection and isolation (FDI) system using
artificial neural network techniques for a class of time-varying process which can be described
as being piecewise time-invariant. The specific industrial process used to demonstrate this
technique is the Unilever Automated Freezer used in the production of ice-cream products. The
purpose of this chapter is to introduce the research work as a whole, and describe the terms of
reference under which the research has been done.

It will begin by defining what is meant by failure detection, and showing how failure detection
has been achieved in non-model based and model based systems. Aspects of control systems
that can hinder failure detection will be mentioned.

The artificial neural network will be introduced in a general way, describing supervised and
unsupervised networks, and various training laws - before describing in more detail the MLP
and the generalised delta rule.

A brief survey of how neural nerworks have been used in failure detection systems will be
presented, including both model based and non-model based schemes.

Finally, the research plan for the thesis will be presented, describing in outline the model-based
failure detection system that will be pursued and how it is intended to differ from those already
in existence. The contribution to knowledge that the research will represent will be highlighted
in a summary of each chapter of the thesis.

1.1. A Definition Of Failure Detection.

A failure brings about a change (usually undesirable) in the behaviour of a component or a
process. For the purposes of this research, failures and faults are considered as being
synonymous, although in the strictness sense a fault describes a process component behaving
arypically, whereas a failure implies 2 component becoming completely nan-operational.
Similarly, a ‘hard’ failure describes, for example, a sensor breaking down, whereas a 'soft’
failure describes a sensor exhibiting a shift in bias, or a slow drift.
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Failure detection can be said to consist of three tasks:

Alarm Determining whether a failure has occurred.
Isolation Determining the source of the failure.
Estimation Determining the extent of the failure.

Typically, a fault is first detected when a symptom of it becomes evident in the behaviour of
the process. This means a failure alarm often occurs some period of time after the incident that
triggered it has taken place, and that the observed aberration in the process may not readily
lead to an understanding of what has caused the symptom. The isolation stage is necessary to
determine what exactly has occurred to cause the symptom at the earliest opportunity, so as to
minimise the effects of the fault, the extent of which are revealed by the estimation stage.

It is recognised [9] that the alarm and isolation stage of fault detection are the essential
components of an FDI system; the estimation stage often being a helpful, but not altogether
necessary, addition. The reasoning here is that failure alarming and isolation can be readily
handled in a Boolean framework (either a failure is present or it is not, either a component is at
fault or it is not) whereas the estimation of the size of a fault often requires numerical estimates
from a number of sources which can often be best delivered automatically by some form of
expert (knowledge based) system.

Similarly, fault diagnosis - explaining why the fault occurred - and fault correction -
remedying the condition - are generally high-level reasoning functions of either the human
supervisor or a knowledge-based controller.

1.2. Non-model Based Failure Detection.

Four surveys on the subject of failure detection in dynamic systems (8, 9, 15 and 30] show
failure detection techniques to be split into two broad categories: non-model based, where a
plant model is not used; and model based, where a plant model is used.

Non-model based failure detection systems rely upon using measurable process parameters to
determine when a fault has occurred and can be subdivided into the following categories.

1.2.1.  Limit Checking.

The most common of all currently used failure detection methods involve comparing plant
parameters 1o a set of preset limits (thresholds) and alarming a fault when they are transgressed
[2].
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Typically each parameter will have two threshold levels associated with it. When the first is
passed a warning signal is given, when the second is passed more radical action needs to be
taken.

Limit checking can be achieved by using some logic external to the sensors, or by installing
special sensors which perform the check in hardware. Special sensors may also be used to

measure variables such as sound and vibration.

Although limit checking is often effective in detecting such soft failures as a sudden offset or
bias in one or more of the sensors as long as the offset exceeds the threshold limit, should the
offset remain below the threshold limit the fault will be missed. Also if a soft failure such as a
drift occurs, it may be some time before the sensor measurement exceeds the threshold value.

1.2.2. Voting Systems.

In processes that possess a large degree of parallel hardware redundancy, especially in
applications where it is imperative that failures are detected quickly and accurately - such as in
aircraft control dynamics [10] - it is useful to employ a voting system to detect the failure.

Conceptually one of the least complex failure detection methods, voting systems rely on a
number (usually at least three) of identical instruments deployed to provide data on the same
aspects of the process. Logic can then be incorporated to detect failures and isolate faulty
instruments (usvally by comparing signals from the sensors and discarding individual readings
that differ from the rest).

Although easy to implement, and effective at providing reliable information on both the
isolation and estimation of failures, voting systems possess the obvious disadvantage of being
costly in terms of redundant hardware, and often compensations for instrument readings need to
be made due to physical constraints upon the location of the instruments (for example, two
sensors cannot occupy the same physical space, and the position where each is placed may
cause variations in their readings). Voting systems often have difficulty in the detection of soft
failures.

1.2.3. Frequency Analysis Of Plant Measurements.

Whilst operating under normal fault-free conditions, a number of plants exhibit a typical
frequency spectrum [26]. Faults, when they occur, cause this spectrum to deviate from the
norm. Swudy of the process parameters in the frequency domain using Fourier Analysis will
reveal these aberrations and can be used for failure detection.
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It may be that certain failures exhibit typical frequency spectra of their own, details of which
can be used for the isolation of faults,

The danger with using such a system exclusively is that a number of faults may not reveal
themselves in the frequency domain at all, and any information pertaining to them may be lost
when changing from the time domain.

1.3. Model Based Failure Detection.

Model based failure detection systems make use of analytical - as opposed to physical -
redundancy. This redundancy is achieved by the design of a process model which usually takes
present and previous measurements of process variables and provides an estimate of the current
process values. These estimates can then be compared to either actual measurements from the
process or other estimates generated from an alternative model and the difference, or residuals
calculated.

Ideally, the residuals will be zero under normal operating conditions, and non-zero when a fault
has occurred. In practice, under normal operating conditions, the residual will deviate from
zero with respect to a combination of inherent process noise and model mismatch. Process
models are usually highly complex mathematical functions arrived at after careful study of the
system. As much of the information necessary for the construction of the model is
unmeasurable, estimates have to be made of a number of physical process parameters. In
addition, the majority of model-based methods rely upon linear discrete-time models, where a
nonlinear system will have been linearised around some operating point, and continuous values
will have been sampled. Due to this, it is doubtful that the model will be able to reflect the
process perfectly at all times, meaning model uncertainiy, mismatch, will exist. A failure
detection system's ability to compensate for model mismatch is referred to as its robustness.

1.3.1. Filtering Approaches.

One of the classic e LTI
approaches to failure Actuators Plant Sensors

detection is by the use

of a filter on the sensed - $
Contro L2 | Filter
data. Kalman filtering Lawp—— Fil

techniques can be used ! |

to design an optimal Rigyre 1.1 No-failure system configuration.
filter which can detect
failures by signalling abrupt changes in the characteristics of the filter.
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The normal system configuration is described in figure 1.1 where if x is the internal state of the
actuator/plant/sensor system (not shown), u is the controlled input and y is the measured
output, then X is the filter estimate of x.

In order to allow abrupt changes in the system to be detected, it is possible to replace the
Kalman filter with one which is sensitive to failures, or else a mechanism can be developed
whereby the filter is monitored and adjusts the system on detection of a fault.

Failure sensitive filters are useful in detecting failures in time-invariant linear systems as
Kalman filters tend to rely upon old process measurements and respond sluggishly to abrupt
system changes, and can be said to have become ‘oblivious' to new measurements. Failure
sensitive filters work on the basis that the estimate of x should not necessarily be good, but that
the effects of certain faults become more evident in the filter residual. Now, when a failure
occurs and the initial system conditions die out, the filter residual maintains a fixed direction
whose magnitde reflects the size of the fault.

Filter monitoring can be achieved by using an innovations-based system whereby a normal (i.e.
non-failure sensitive) filter is used to provide sysiem estimates until the innovations-monitor
detects irregular behaviour. Using knowledge of the effects that certain failures have upan
system innovations it is possible to maich observed residuals with predetermined filter
responses to fauits to provide failure isolation information. Here, it is necessary to gather the
information on these fault signatures a priori. Such filtering methods are extensively reviewed
in [30].

1.3.2. Estimation Of Nonmeasurable Process Parameters.

Filtering methods of failure detection make use of a known process model to reconstruct
nonmeasurable state variables and attempt to detect abrupt changes in filter characteristics.
This results in faults being detected, but only after measurable output values have been affected
considerably, often over an extended period of time.

With the aid of the process model it is possible to incorporate techniques which estimare
nonmeasurable variables such as model states, model parameters and characteristic quantities,
thus improving failure detection. Model parameters are understood to be constants or time-
dependent coefficients in the process model, but are not directly measurable within the process
itself.

Once the process model has been decided and the relationship between physical process
coefficients and model parameters has been determined, an estimate of the model parameters
can be made and incorporated into the model.
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Failure detection can then be achieved by attempting to maich the current state of the process
to a catalogue of known relationships between process faults and changes in physical process
coefficients.

If a failure detection technique relies upon the estimation of nonmeasurable parameters, it is
important that this estimation is accurate, and methods have been developed to improve this
accuracy [15). These include:

* Making a least-squares calculation provided the signal-to-noise ratio is large.

¢ Determining time derivatives, by use of state variable filtering, allows the noise signal to be
filtered and a least-squares calculation to be made if the noise-to-signal ratio is significant
(31].

e Using an auxiliary model to introduce insrrumental variables which correlate with noise-
free process outputs only insignificantly. This allows for consistent parameter estimates,
with no distinct assumptions about the nature of the noise needing to be made [31].

1.3.3. Robust Failure Detection.

Model based control systems are invariably designed around a process model that has been
formulated using incomplete information. Estimation techniques can be used to improve the
accuracy of the model, but even the most accurate model rarely captures changes such as
physical process deterioration over time, meaning that differences between the model and the
process exist. Controllers should be able to discount this model uncertainty, i.e. they should be
robust.

Model uncertainty can Influence of
. IMC +¢ disturbances.
influence FDI systems as . ller Process ‘-é—+

it considerably dominates

sensor noise levels,

+
causing false alarms Model -(Sb
(signalling a failure when
none is present) and Estimate of model uncertainty and unmeasured disturbances.

misses (not signalling a Figyre 1.2 Intemal Model Control (IMC).
failure that is present). It

is possible to reduce the effects of model uncertainty on the process controller by introducing
an IMC (internal model contral) structure {18] as in figure 1.2. The IMC controller is used to
cancel the influence of unmeasured disturbances which will be reflected in the feedback signal
along with the model uncertainty.
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A method for allowing failure detection in the presence of model error is to include a
quantitative bound, or threshold, on the model error and maximise the norm of a failure signal
[13 and 17]. If the threshold is exceeded, a failure can be signalled. This method can be
improved by introducing a threshold selector [5] which defines a set of detectable sensor
failure signals. Once arrived at, these signals can be used to estimate the smallest size of
detectable failure.

1.4. Failure Detection In Controlled Systems.

 Control System Figure 1.3 shows a typical closed-loop feedback

ol system. A f modem da

J » control system large number of modem day
Control control systems are model-based in nature. That
’gﬁ;” is, they rely upon predetermined models - often
Controller mathematical in pature - and make control

decisions based upon differences between

Figure 1.3 A closed-loop feedback cantrol system.  measurements from the  process and
measurements from the model. Such conwrol systems have a number of characteristics [4]
inherent within them which affect the performance of the systems ability to detect failures. In
this section, control system refers to the process and its controller.

14.1. Sensitivity To Parameter Variations.

All processes are subject to a changing environment; factors such as the ageing of process
components. The degree to which a controller senses a change in output due to the natural
process changes (its sensitivity), and anempts to compensate, is of great imporiance.

It is often difficult to distinguish between parameter changes in the control system and sensor
failures if the failure takes the form of small incremental drift. Such a fault is liable to be
compensated for by the conmoller and remain undetected. Insensitive systems tend to lend
themselves to good fault detection.

1.4.2. Control Of The Transient Response.

The transient response - or the response to a change in the staie of the system - must be
adjusted until it is satisfactory, often by changing the feedback loop parameters in closed loop
systems.

An efficient control system will compensate for a fault, thus making it more difficult to detect.
However, control of the transient response tends to be superior for modelled phenomena than
for failures, allowing the two to be distinguished between.,
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1.4.3. Disturbance Signals.

Many processes contain components which produce signals with an inherent variable
disturbance or error. For example, electronic amplifiers geperate noise due to integrated
circuits and transistors, radar antennas are subject to wind gusts. Control systems must be
able 1o largely eliminate the influence that these disturbance signals have on process outputs.

As the effect of disturbance signals is present within system output, FDI systems must also
accommodate them, or false alarms may result.

144. Steady-State Error.

The steady state of the sysiem gives an indication as to its accuracy. Whenever the actual
system output does not match the desired output, the system is said to have a steady-state
error. Typically, this error becomes evident as the transient response of the system decays,
and can be reduced by the design of the controller.

A significant steady-state error may be interpreted as a drift or offset by an FDI system,
causing a false alarm as a failure is signalled.

14.5. Raobustness & Model Uncertainty.

The issue of a controllers robustness to model uncertainty has already been addressed earlier in
this chapter. Where the difference between the physical (process) outputs and the estimated
(model) outputs is significant due to poor model construction rather than atypical process
behaviour, false alarms can be made by the FDI system.

1.5. Artificial Intelligence & Failure Detection.

A number of fundamental problems arise with the failure detection methods thus far discussed.
Filtering approaches and filter design are principally based upon models which are linear
approximations of process dynamics. These dynamics are often nonlinear, though linear within
certain bounds, meaning that a filtering method of failure detection is effective in a limited
domain only. A further limitation is that failure characteristics must be classified a priori and
filters designed to detect these classes. This can cause robusmess difficulties, delays in
detection and false alarms,

With the advent of sophisticated artificial intelligence tools such as knowledge-based (expert)
systems, and parallel architectures such as artificial neural networks, failure detection systems
have been developed which aim at overcoming these limitations.
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A knowledge based - or expert - sysiem models the reasoning of a human expert by use of
explicit knowledge of a particular domain. This knowledge, elicited from human experts using
a variety of acquisition techniques, is typically held as a set of rules which forms the knowledge
base of the system and can be used to explain the systems reasoning at arriving at a particular
conclusion. Knowledge based systems can also be characterised by the use of measures of
uncertainty in their reasoning, and to work either from a number of possible conclusions
toward known facts about the current state of the domain (backward chaining), or to use the
facts to produce likely conclusions (forward chaining). Expert system solutions have been
developed for a wide variety of problems which generally fall into the categories of
classification, monitoring and planning. Recently, expert systems have been increasingly used
for industrial plant monitoring and failure detection and isolation [11].

In such applications, expert knowledge of a plant can be elicited in a number of ways, for
example;

¢ Process engineers and plant operators develop experience in distinguishing between the
normal and abnormal behaviour of plant sensors and actuators. This knowledge can then
be transferred into a set of rules which the expert system can use.

e Dependent upon the process, redundant information may exist due to the plant's inherent
physical interaction. For example, three parameters may be interdependent so that given
any two, the third could be calculated mathematically. Should all three be explicitly
measured, data will be generated which can be used to determine if a sensor failure has
occurred. Knowledge such as this can be used by an expert system.

Once an expert system has detected a failure, further rules can be utilised to inform the
operator and provide diagnostic information as to the nature of the fault. Knowledge based
systems appear particularly suited to failure detection in industrial process control systems by
providing facilities to scan applications in search of potential problems, reason about and
control events despite the ever-changing nature of many industrial applications, and respond to
events (such as failure) when they occur. By using interactive graphics and natural language
techniques, commaunication with human operators is enhanced. Expert system failure detection
devices currently in operation [6 and 23] provide a sophisticated, though highly complex,
method for the detection, isolation and estimation of faults.
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1.6. Artificial Neural Networks.

1.6.1. Overview.

Artificial Neural Networks (ANNS) are parallel information processing systems which take the
mechanisms of the brain as their inspiration. The term artificial neural network is an umbrella
expression describing a wide range of differing neural architectures, although they all share a
number of features in common with one another. Generally, they consist of a number of simple
processing elements, interconnected in a parallel architecture by weighted connections; they
provide a (usually) nonlinear relationship between their inputs and outputs; and they have the
ability to self adjust, or learn [25].

. - - - .

Figure 1.4 The generic processing element typical
of many artificial neural networks. Figure 1.5 The standard sigmoid function.

The simple processing element (PE) (figure 1.4) is the main building block of the artificial
neural network. It consists of a number of inputs on weighted connections and one output. The

inputs may arrive from a source external to the network, or may be outputs from other PEs
within the netwaork.

The output of the PE is calculated by summing each weighted input, adding some threshold - or
bias - value and passing the result through some (usually) nonlinear function, ofien sigmoidal
in shape (figure 1.5), thus

o=f():w,,i,,+z) (1.1

The output is often passed as an input to other processing elements within the network.

Learning is achieved by adjusting values in the network's weight matrix by one of a variety of
leaming rules. There are two types of learning regime: unsupervised, where the ANN
determines relationships within the input data for itself; and supervised, where the ANN is
explicitly taught the nature of the relationship by providing examples of input-output pairs.

The arrangement of processing elements in a specific topology and the learning rule employed
determine the nature of the artificial neural network.
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An example of an unsupervised ANN is the
Hopfield Netwark (figure 1.6). This network
is a form of associative memory, so called as
it can reconstruct stored data panerns from
incomplete or noisy data inputs, providing a
mapping from data to data. The principle
here is that a Hopfield network is trained with
a number of data parterns which (provided

i i
1 2 0

sufficient processing elements exist) will be
stored within the topology of the network,
Each stored pattern will become an attractor

Figure 1.6 The Hopfield Network. All connections are
not shown. Bach p element is connected to every other
in the layer.

within the memory of the network, so that should an incomplete or noisy data patern be
presented as an input to the network for classification, it will fall within the basin of artraction
for one of the stored patterns and be classified. Due to the principle of basins of attraction, the
Hopfield nerwork is potentially extremely tolerant of noisy input data, and provided the input
patern falls somewhere within the appropriate basin of amraction, it will be correctly
classified.

The Hopfield nerwork employs a manner of leaming called Hebbian leaming which adjusts
weights according to the correlation of the activation values of the two processing elements it
connects. Other types of ANN leamning are: reinforcement learning, where weight values are
increased for properly performed actions and decreased for poorly performed actions;
stochastic learning, where weight changes are made randomly and subsequently kept or
discarded dependent upon the performance of the network; and error-correction learning, one
example of which is widely used as the training regime for the multilayer perceptron.

1.6.2. The Multilayer Perceptron.

A well documented form of i N N o
supervised network is  the | | 1
muliilayer  percepron (MLP) i2 o,
(figure 1.7) [24]. Here, the .

processing elements are arranged :

: . . L \_/ \_/ /"0
in layers with each element in one Input Hidden  Hidden Output
layer being connected to all the Layer  Layerl Layern  Layer

elements in both the preceding and Figure 1.7 A typical fully connected mulilayer perceptron (MLP).

succeeding layers. An input vector

is presented to the input layer of the MLP and propagated forward through the network.
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Learning is achieved by comparing the output vector of the MLP with the (known) desired
output. This generates an error value which can be propagated back through the MLP, causing
the weights to change in a gradient descent so that, should an equivalent input vector be
presented to the MLP subsequenty, the MLP output will be closer to the desired output. Over
a large number of such presentations of input-output pairs to the MLP, (provided sufficient
processing elements exist) the network should be able to leamn the relationship between the two
vectors, and more significantly, should be able to provide a meaningful output vector for inputs
in the domain on which it has been trained but on which it has not been explicitly taught, i.e. it
should be able to gereralise. The completion of a predetermined series of presentations to the
MLP is referred to as an epach. The error correction learning mechanism is referred to as
backward error propagation, or backpropagation.

Once an MLP is constructed there will exist a series of processing elements (P) and weighis
(W), such that

Plty» Phujy» 300 Pl refer to the threshold value of the jth processing element in the
input layer, hidden layer n and the output layer respectively.

p,.‘:j), p,‘,‘nm, and p:m refer to the delta thresholds (changes necessary) of the jth

processing element in the input layer, hidden layer n and the output layer
respectively.

Pitjy» Phnijy» @nd P, refer to the output value of the jth processing element in the
input layer, hidden layer n and the output layer respectively.

Piy» Phy» and Py, refer to the local error of the jth processing element in the input

layer, hidden layer n and the output layer respectively.
D3, refers to the desired output for the jth processing element in the output layer.

17]. |7,
ourput PEs respectively, i.e. the number of PEs in each layer.

and |P,| refer to the size of the set of input PEs, hidden layer n PEs and

Wi pma Tefers to the value of the weight connecting the jth processing element in the

input layer to the kth processing element in the first hidden layer.

w,‘,’,( (k) refers to the delta value (change necessary) of the weight connecting the jth

processing element in the last hidden layer to the kth processing element in the
output layer.




The standard backpropagation algorithm can then be implemented as follows:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Assign random values in the range +1 to each p' and w" in the network.

Load the input vector to the input layer of the MLP. i.e. assign each p! the relevant

portion of the input vector.

Calculate the output of each jth PE in the first hidden layer according to

17l
P = f(; Py wi:t)bl(j) + P;n(n) (1.2)
{

where f{) is the activation function of the processing element, often the sigmoid thus
1
1+e™

fx)= (1.3)

where f is a positive constant governing the gradient of the curve.

Calculate the output of each jth PE in each subsequent hidden layer according to

!Pln-ll
Pinipy = S ; Phne1y Wnrgewmncy + Phoiy) (1.4)
o]

Calculate the output of each jth PE in the output layer according 10

1P
Pin=r (; Pixty Whtroin + P . (1.5)
a]

where hl refers to the final hidden layer. The activation function f{) at each PE in the
output layer is often linear should a continuous output be required from the MLP
and often the sigmoid function should a value close to 0 and 1 be required.

Calculate the discrepancy (error) between each jth actual MLP output pJ pand the
desired output pf , according to

pp=1 '(P:(j) = Pxi) (1.6)

where f() is the derivative of the activation function used in (step S).

Calculate the errors of each jth PE in the subsequent layers according to

2
p:!(n =f '(; Wiriow) * Poy) (.7
al
for the last hidden layer, and
[Pinal
Py = I*( ; Wittt Phsicty) (1.8)
=]
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Step 8.

Step 9.

for any subsequent hidden layers, where f() is the derivative of the activation
function used in (step 5)

Calculate the changes necessary in the weights connecting each jth PE in one layer to
each kth PE in the next according to

a — v . 0 . E
Wairoy = & Pugiy " Pory (1.9

for the last hidden layer

A — . a0 R -3
Whn( i) = O Phnciy” Phmtice (1.10)

for each subsequent hidden layer, and

A
Wiamm = O Py Pra (1.11)

for the input layer, where a is a positive constant governing the learning rate
(referred to as the learning coefficient). Adjust the weights connecting each jth PE
in one layer to each kth PE in the next according to

v I A
Wittirot) = Waic o) T Whithoy (1.12)
for the last hidden layer
v PR A
Wi partict) = Wha(inmri(ey T Wha preer0y (1.13)

for each subsequent hidden layer, and

v N a
Wihmey = Wi T Wi (1.14)

for the input layer,.

Calculate the changes necessary for each jth PE threshold according to
Pip =0 Paj (1.15)

for the output layer, and

Py = Pruci (1.16)

for each hidden layer, and change them according to

Poch = Paci ¥ Pxp (117

for the output layer, and

I — t A
Pincj) = Prpy F Panciy (1.18)

for each hidden layer.

28



Step 10. Repeat steps 2 through 9 until some stopping condition has been reached.

The global error (E) of the nerwork is often defined as the Euclidean Distance between each p°

and p? thus
m e 2
E= IZ{ P (1.19)
]-

and is usually calculated following step 6.

The stopping condition for the backpropagation algorithm is usually when E has reached some
value deemed in advance of training to be sufficiently low or a predetermined number of
training epochs have been completed.

Y The effect of the leaming coefficient
is to govern the speed with which the
error gradient is descended during
training. The ideal value of a is
problem dependent, although a small
value can often lead to extended
training time whilst a large value can
lead o the MLP oscillating around
minima [12] as demonstrated in

B

—> figure 1.8. An extension to the

Figure L.8 Illustration of how training effectiveness is influenced Standard backpropagation algorithm
by the size of the learning coefficient is the inclusion of an additional
learning parameter referred to as the momentum coefficient. The momenmim coefficient
includes a proportion of the last weight change when changing the current weight setting, and
can reduce the risk of the MLP settling to local error minimum and the oscillation effects of
large learning coefficients.

1.7. Using Artificial Neural Networks For Failure

Detection.

Artificial Neural Networks have been increasingly used to detect and isolate faults in a variety
of systems; for example chemical tank systems [22 and 27], aircraft flight control systems [20],
sensor faults [19], electronic circuit boards [16] and engine faults {3].

In the main, systems to detect chemical process faults have dominated the field with the issues
under investigation being;

29



1. The ability of ANNs to distinguish between normal and abnormal process operations.
This is the primary concern of all ANN based FDI research.

2. The ability of ANNSs to distinguish between several fault conditions [14].

3. The ability of ANNs to detect faults during steady-state operation [28].
4. The ability of ANNs to classify several faults occurring simultaneously [7 and 29].
5. The ability of ANNS to detect faults in the presence of sensor noise {21] and to detect

sensor faults [1 and 19].

Whilst a more thorough review of research into FDI systems using ANNs is conducted in
chapter 6, it is worth mentioning at this stage that a large amount of current research focuses
on classifying faults as an offline procedure where process data is collected during an
operational run. This data can subsequently be classified by a neural network architecture
attempting to recoghise certain features within the datalogs. Where research has been
conducted with the aim of having an online real-time FDI system as in [22], the system has
tended to be a time-invariant chemical process. This thesis concentrates on developing an
online real-time FDI system for a major piece of production-line machinery used in the
manufacture of ice-cream products.

1.8. Research Plan.

The main objective of this research was to investigaie the application of artificial neural
nerworks to the detection of faults in industrial processes, specifically the Unilever Automated
Freezer. A solution is proposed using a model-based approach as, typically, model-based
approaches provide a more rapid detection of faults than do non-model based methods such as
limit checking. As a fault causes a symptom which can manifest itself within the output
parameters of the system, a model will provide a prediction signal which will deviate from the
acwal. In this case, the residual between the model and the process will reflect this sympiom
which can subsequently be classified. In a limit checking FDI system, if the symptom
manifests itself as a slow drift it may take some time to exceed the predetermined threshold and
be detected. Should the symptom manifest itself as an offset which falls below the threshold
value, the FDI system will not detect it A further advantage to a model-based approach is that
should an accurate process model be developed, this model could effectively be used for
process simulation exercises, or in a model-based control system.
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Due to their ability to leam by
example, a method of modelling a
process is derived using the class
of ANN called the multilayer
perceptron. In an architecture
such as that shown in figure 1.9,
the model and each of the failure
classifiers can be replaced by
MLPs. The model MLP can then
be used to provide a residual o
the bank of classifier MLPs, each
rained to recognise a different
fault.

The benefits of such a system are:

Serics of fazk classification signals

Figure 1.9 Schematic of a model-based failure detection and
isolation system.

1. No explicit quantitative simulation model of the freezer would be required. The MLP

should be capable of leaming the required process operating range for itself.

A dynamic model of the freezer will be derived using data which is already monitored

The system should be able to adapt itsclf to the individual freezer it is monitoring. As
the dynamics of each freezer are liable to be marginally different from one another, the

In order to train the failure detection filter MLPs, a priori knowledge of each fault is
necessary. However, should an unforeseen fault occur, the model based system should
recognise an abnormal condition from the residual signal and signal a fault. An

2.
and logged. Further sensory information should not be necessary.
3.
MLP should be able to fine wne itself.
4.
additional filter can be subsequently trained.
5.

The system should provide fast and accurate online detection of failures on the freezer
in real-time,

The last of these points is particularly relevant to production line machinery such as the
Unilever Automated Freezer, where a warming up period for the process is followed by a

production period. If a fault can be detected before actual production begins, a saving in raw
materials is achieved. Also, if an immediately rectifiable fault is detected and isolated quickly
enough, it can be dealt with without the necessity of shutting down the machinery or a loss in
quality of the product, i.e. production is not affected.
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In order to achieve the model-based solution, the following research plan was adhered to:

1. An ongoing literature search encompassing classical fault detection methods and
specific ANN solutions to the fault detection problem was conducted to ascertain the
issues involved in the field, and progress on specific solution strategies. This led to the
conclusion that a model-based approach to FDI was preferred.

2. Research was conducted into methods of modelling dynamic systems using artificial
neural networks, and in particular the muliilayer perceptron. This resulted in
experimentation using MLPs to model simulated dynamic systems of both linear and
nonlinear forms.

3. The MLP modelling solution was then applied to the Unilever Automated Freezer
(UAF) as an example of a real industrial process. This highlighted a specific problem,
which was that the freezer was a time-varying dynamic system. The problem was
ultimately solved by using a cascade of MLPs to provide a continuous input-cutput
mapping over the complete operating cycle of the system. Further research was then
necessary to determine how best to switch between each MLP in the cascade to provide
the most effective model possible.

4, As daralogged measurements of the UAF had thus far been used to train and test the
dynamic model offline, it was necessary to test the system online to ensure that one of
the original objectives of the research could be achieved. To this end, a period of three
months was spent testing and refining the model at the Unilever Research Colworth
Laboratory. During this period, three potential faults were identified as being typical
to the operation of the UAF, and data was collected on each of these.

5. Having built a dynamic model of the freezer, it was then possible to develop a number
of fault classifying MLPs to recognise each of three candidate faults. This resulted in
working FDI system for the UAF based upon neural computing techniques which was
able to outperform the existing FDI system with no additional sensor hardware
requirements being necessary.

Although a model-based FDI system has been built for the Unilever Automated Freezer, the
design method and techniques used are generic and should be transferable to machines of the
same class as the UAF, i.e. piecewise time-invariant, or time-varying over a compleie operating
cycle.
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1.9. Summary Of Chapters.

The purpose of this chapter has been to introduce this research in a general way by reviewing
aspects of fault detection which are relevant and by detailing the neural network architecture
which was used. A research plan was presented which demonstrated how the eventual solution
was arrived at. Subsequent chapters will expand on the research plan in the following way.

hapte dellin mi em in ificial Neural rks

This chapter introduces the class of ANN termed the multilayer perceptron (MLP) as an
artractive method of modelling dynamic processes. Leaming strategies for the nerworks are
reviewed, and a number of experiments using simulated processes are presented in order to
demonstrate how the modelling of dynamic systems is achieved and the issues thar are involved.
Two classes of dynamic neural network will be briefly reviewed, and classical methods for
modelling dynamic systems will be evaluated against the experimental results using MLP
networks. This chapter builds upon techniques already available in the literature and does not
claim any original contribution to the knowledge of this area.

h nilever tomated Freezer

The purpose of this chapter is to introduce the Unilever Automated Freezer as a class of
dynamic industrial process upon which faults occur and need to be detected. The operation of
the freezer, the control laws to which it is subject and the current fault detection capabilities in
existence will be discussed. Three potential faults will be introduced as being typical of the
kind the UAF is subject to. The effect the faults have on icecream production will be
established, and the capabilities of the current system to correctly detect and isolate these faults
will be ascernained.

Chapter 4 odelling Time-Varying Pr

The purpose of this chapter is to demonstrate how the modelling techniques of Chapter 2 failed
to provide any useful results with the UAF. The problem with the approach is determined to be
that all systems modelled in Chapter 2 - although dynamic - are time-invariant in operation.
The freezer is a class of time-varying process, whose underlying mode of operation changes
disjointedly with time; i.e. a piecewise time-invariant system.

Two potential solutions are presented: including time as a part of the input vector of the MLP,
thus making the MLP time-varying; and modelling the freezer using a series of MLPs in what
can be termed an MLP Cascade.
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No reported modelling of this type of system has been found using artificial neural networks,
and the successful use of the MLP Cascade is deemed an original contribution to knowledge.

hapter § itching Mechanisms For Th LP Cascade.

The purpose of this chapter is to build upon the mechanism derived in Chapter 4 for modelling
piecewise time-invariant systems by offering a number of methods for switching between
MLPs in the Cascade. During Chapter 4, a rule-based switching mechanism was employed
which was based upon expert knowledge of the UAF. This chapter will examine this technique
more closely, and offer several alternatives that do not rely as closely upon explicit knowledge
of the freezer. Ultimately, a mechanism employing a genetic algorithm (GA) will be used in
anempting to locate the optimum switching points. Finally, a method for training the MLP
Cascade will be proposed.

This chapter attempts to present the MLLP Cascade as a generic method of modelling dynamic
systems of this class by proposing a design of switching mechanism that does not rely upon
explicit knowledge of the process, but on the equivalent information that is provided to the
model, and is deemed to be an original contribution to knowledge.

hapter 6 ilur tion Usin LP rk

The purpose of this chapter is to demonstrate how the residual signals generated by the three
candidate faults introduced in Chapter 3 can be isolated using a series of MLPs trained to
recognise fearures in the signals.

Initially, a survey of how artificial neural networks have been used for fault detection
previously will be presented together with comments upon how this research differs from, or
advances, the techniques developed. The three candidate faults will be reviewed, with
particulars of how they affect the MLLP Cascade and the residuals between it and the UAF.
Finally, details of how a series of MLPs were trained to recognise features within the fault
signals will be presented, and the final form of the neural network based FDI system will be
given.

With this chapter, a complete self-tuning FDI system is presented which is capable of leaming
the dynamics of, and detecting and isolating faults within, a class of time-varying system which
is deemed an original contribution to knowledge.



Chapter 7, Discussion & Future Work,

This chapter aims to review the derived FDI solution. Aspects of the research pertaining to the
models robustmess and how it compares with more traditional modelling, together with the
accuracy of the isolation filters and how they compare with the currently available FDI
capabilities of the UAF are discussed. The solution is critically evaluated with respect to the
original project objectives, and potential avenues for future research are presented.

hapter onclusion

The concluding chapter ties together the ideas presented throughout the thesis, and offers some
thoughts on how the solution could be implemented practically.

References For Chapter 1.

[11 A Bulsari, A Medvedev & H Saxén: Sensor Fault Detection Using State Vector
Estimator And Feed-forward Neural Networks Applied To A Simulated Biochemical
Process. Acta Polyrechnica Scandinavica: Chemical Technology & Metallurgy
Series. No. 199, 1991,

[2] D Cox: Startup Procedure Of W-Auto Freezer (Colworth). Monitoring And Alarms.
Private Communication. (C) Unilever Research Colworth Laboratory. 1992.

[3] W E Dietz, E L Kiech & M Ali: Jet And Rocket Engine Fault Diagnosis In Real
Time. Journal Of Neural Network Computing. No. 1. pp 5-18. 1989.

[4] R C Dorf: Modem Control Systems, 5* Edition. Appendix C. (P) Addison-Wesley
Publishing Co. Inc. 1989.

[5] A Emami-Naeini, M M Akhter & S M Rock: Effect Of Model Uncertainty On
Failure Detection: The Threshold Selector, JEEE Transactions On Automatic Control.
Vol. 33, No. 12. December 1988,

[6] D G Esp, A O Ekwue, J F Macqueen & B W Vaughan: AHFA - A Real-time
Expert System For The Incremental Diagnosis Of Multiple Faults On A Transmission
Network Using The Sequence And Timing Of Switching Indications. Proceedings Of
Control '94.Vol. 1, pp 141-145. March 1994.

71 J Y Fan, M Nikolaou & R E White: An Approach To Fault Diagnosis Of Chemical
Processes Via Neural Networks. AIChE Journal. Vol. 39, No. 1. pp 82-88. January
1993.

(8] P M Frank: Fault Diagnosis In Dynamic Systems Using Analytical And Knowledge-
Based Redundancy - A Survey And Some New Results. Auromarica. Vol. 26, No, 3.
pp 459-474. 1990.

9] J J Gertler: Survey Of Model-Based Failure Detection And Isolation In Complex
Plants. IEEE Control Systems Magazine. Vol. 8, No. 6. pp 3-11. December 1988.

f10] J Gilmore & R McKern: A Redundant Strapdown Inertial System Mechanization -
SIRU. Proceedings Of The AIAA Guidance, Control & Flight Mechanics Conference.
pp 17-19. 1970.

35



[11]

[12]

[13]

[14]

[15)

[16]

(171

(18]

[19]

[20]

(21]

[22]

(23]
[24]
[25])
[26]

[27]

(28]

C ] Harris (Ed.): Application Of Artificial Intelligence To Command & Control
Systems. (P) Peter Peregrinus Ltd. 1988.

J Hertz, A Krogh & R G Palmer: Inroduction To The Theory Of Neural
Computation. (P) Addison-Wesley Publishing Company. 1991.

D T Horak: Failure Detection In Dynamic Systems With Modelling Errors. AJAA
Journal Of Guidance And Control Dynamics. Vol. 11, No. 6. pp 508-516. 1988.

O Iordache, J P Corriou & D Tondeur: Neural Network For System Classification
And Process Fault Detection. Hungarian Journal Of Industrial Chemistry. Vol. 19,
No. 4. pp 265-274. 1991.

R Isermann: Process Fault Detection Based On Modelling And Estimation Methods -
A Survey. Automatica. Vol. 20, No. 4. pp 387-404. 1984,

B J Kagle, J H Murphy & L J Koos: Multi-Fault Diagnosis Of Electronic Circuit
Boards Using Neural Networks. Proceedings Of The Internarional Joint Conference
On Neural Networks (IJCNN). Vol. 2, pp 197-202. June 1990.

R L Kosut & R A Walker: Robust Fault Detection: The Effect Of Model Error.
Proceedings Of The 1984 American Conirol Conference. June 1984,

M Morari & E Zafiriou: Robust Process Control. (P) Prentice Hall International, Inc.
1989,

S R Naidu, E Zafiriou & T J McAvoy: Use Of Neural Networks For Sensor Fault
Detection In A Control System. /JEEE Conirol Systems Magazine. pp 49-55. April
1990.

M R Napolitano, C I Chen & S Naylor: Aircraft Failure Detection And Identification
Using Neural Networks. Journal Of Guidance, Control & Dynamics. Vol. 16, No. 6.
pp 999-1009. November-December 1993.

A G Parlos, J] Muthusami & A F Atiya: Incipient Fault Detection And Identification
In Process Systems Using Accelerated Neural Network Learing. Nuclear
Technology. Vol. 105, No. 2. pp 145-161. February 1994,

R J Patton, J Chen & T M Siew: Fault Diagnosis In Nonlinear Dynamic Systems
Via Neural Networks. Proceedings Of Control '94. Vol. 2. pp 1346-1351. March
1994,

D A Rowan: On-line Expert Systems In Process Industries. A/ Expert. August 1989,

D Rumelhart, G Hinton & R Williams: Leaming Representations By
Backpropagating Errors. Narure. No. 323. pp 533-536. 1986.

P K Simpson: Artificial Neural Systems. (P) Pergamon Press. 1990.

O A Solheim: Some Integrity Problems In Optimal Control Systems. Advances In
Control Systems: Proceedings Of The AGARD Conference. No. 137. Sepiember
1973.

T Sorsa & H N Koivo: Application Of Artificial Neural Networks In Process Fault
Diagnosis. Automatica. Vol. 29, No. 4. pp 843-849. 1993.

V Venkatasubramanian, R Vaidyanathan & Y Yamamoto: Process Fault Detection
And Diagnosis Using Neural Networks - 1. Steady-State Processes. Computers &
Chemical Engineering. Vol. 14, No. 7. pp 699-712. 1990.

36



[29]

[30]

[31]

K Watanabe, S Hirota & L Hou: Diagnosis Of Multiple Simultaneous Faults Via
Hierarchical Artificial Neural Networks. AIChE Journal. Vol. 40, No. 5. pp 839-848.
May 1994.

A S Willsky: A Survey Of Design Methods For Failure Detection In Dynamic
Systems. Automatica. Vol. 12, pp 601-611. 1976.

P C Young: Parameter Estimation For Continuous Time Models. Automatica. Vol.
17. pp 23-. 1981.

37



§Chapter 2.

Modelling Dynamic Systems Usmg
Artificial Neural Networks.

Process models are used in control and failure detection systems where - generally - the model
is referenced against the process and the residual signal utilised in further processing, One
structure used as an alternative to classic feedback conwmol (figure 1.3) is the internal model
control (IMC) technique which directly utilises a process model and process inverse model
within a feedback loop (figure 1.2).

In an IMC structure, the process model is evaluated in parallel with the process operation and
the difference between the outputs - the residual signal - is fed back to the controller.
Depending upon the accuracy of the model, the residual signal will be an estimate of the noise
and disturbances within the process. Typically, models are composed of highly complex
mathematical functions arrived at after careful study of the process, and as such can be time
consuming and expensive to produce. Also, many of the parameters necessary in the
construction of the model are unmeasurable, and estimation techniques need to be invoked to
determine them. Owing to this, it is unlikely that the model will reflect the process perfectly at
all times, and a certain degree of model uncertainty will exist.

Although the IMC class of contoller has been shown to possess considerable robustness to
model uncertainty (8], excessive uncertainty will lead to poor control. Similarly, in a failure
detection system based upon a model reference architecture, where failures are indicated when
the residual signal exceeds a centain threshold, high model uncertainty will lead to false alarms.

This chapter introduces the class of ANN termed the multilayer perceptron (MLP) as an
anractive method of modelling dynamic processes. Learning strategies for the nerworks are
reviewed, and a number of experiments using simulated processes are presented in order to
demonstrate how the modelling of dynamic systems is achieved and the issues that are involved.
Two classes of dynamic neural network will be briefly reviewed, and classical methods for
modelling dynamic systems will be evaluated against the experimental results using MLP
nerworks.
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2.1. MULPs As Process Models.

Multilayer feedforward networks have been demonstrated mathematically [5] as being
universal approximators. That is, they can approximate any measurable function to an
arbitrary degree of accuracy provided they possess sufficient processing elements in the hidden
layers. As dynamic processes map their inputs to outputs by means of some functional
dependence, this implies that it should be possible to model such systems using MLP networks.
Any failure in such a task can be artributable to either: an inappropriate network size (i.e. too
few hidden PEs or layers); inadequate learning (i.e. too short a leaming cycle or insufficient
training data);, or the lack of a deterministic relationship between inputs and outputs (i.e.
insufficient information included in the input vector to allow the mapping to the required
output).

This approximation capability of the MLP makes them particularly useful in modelling
dynamic systems as less a priori knowledge of the process dynamics is required than in
conventional modelling techniques. It should be possible to train a network to approximate the
underlying function of the system by presenting it with examples of input-output pairs. Whilst
it should be bome in mind that an MLP typically requires many preseniations of such
information in order to be able to learn the relationship - a time consuming endeavour - in many
instances it is possible to train the MLP offline using previously gathered process operating
records, making this less of a problem.

In addition, whilst many industrial processes behave linearly within certain bounds, over their
complete operating cycle they are nonlinear. It is impossible for conventional linear modelling
techniques to capture this nonlinearity, but as MLP networks are themselves nonlinear, it
should be possible to model such processes over a wider operating region.

2.1.1. Finite & Infinite Impulse Response Systems.

A finite impulse response system, in the context of dynamic sysiem theory, has a functional
dependence upon a finite (fixed) number of historic inputs in relation to its output. For
example, the output of a finite impulse response system at some discrete sampling point £ can
be described as some function f{) of the inputs to the system, thus

y(k) = flu(k),ulk=1),u(k=2),...u(k-n)) (2.1)

An MLP contains no internal memory of its own, i.e. it provides a static relationship between
its inputs and its outputs. As the approximation capabilities depend upon adequate information
being provided the MLP in its input vector, to model such a system an MLP would need to be
provided with all n+/ inputs.
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However, many industrial processes are infinite impulse response systems in that at time k the
functional dependence berween inputs and outputs to the system can be described thus

y(k)= f(u(k),u(k—1),u(k=2),...u(0)) 2.2

with the reliance upon inputs progressing back through time to the initial conditions of the
system. This would require an ever increasing number of inputs to the MLP as time
progressed - a concept which is meaningless for ANNs. An approach to modelling infinite
impulse response systems is to use previous values of y for the estimate thus

Y(k) = f(ul),u(k=1),...u(k=m), y(k-1),... y(k—n)) Q3

as historical information concerning u will be reflected in y. Therefore, as an MLP provides a
static relationship between its input vector and output vector, it is necessary to include both
historic - or time delayed - process inputs and outputs in the input vector to the MLP in order
to emulate dynamic behaviour.

2.1.2. Learning Strategies.

. Process by u Process | ——py | Qin et al [10] have
demonstrated that it is

possible to learn process

dynamics by feeding
back ecither the actual
(a) (b) output of the process or

MLP [——)F MLP e

Figure 2.1 (a) Feedforward and (b) recurrent MLP learning schemes. The input he  estimated  output
vectors to the MLP are usually time-delayed. from the MLP itself

referred to as the feedforward and recurrent leaming schemes respectively (figure 2.1). In
addition, either pattern learning - where the MLP is updated following every discrete
presentation of input data - or batch leaming - where a complete data set is processed as a
batch, and the MLP updated following the presentation of the entire baich - can be used,
providing four disparate learning strategies for the MLP.

Bach of the four strategies are shown to be able to learn a nonlinear autoregressive function,
although recurrent baich learning requires a variation of the standard backpropagation
algorithm. Batch and pattern learning are shown to be equivalent, provided the learning rate
for pattern learning is small i.e. all leaming schemes reached the same minimum error value.



2.13. Alternative Artificial Neural Network Architectures.

It is worth noting that the MLP is only one neural architecture in a class of many, others of
which have been used in control applications where system identification is necessary.

Associative memories (AMs) - which can reconstruct stored data patterns from incomplete or
noisy data inputs - such as the Hopfield Network have been demonstrated as being suitable for
plant modelling applications [2 and 7]. Although the latter has compared favourably with the
MLP for the functional approximation of systems, they are largely unproven in real-time
systems.

Narendra et al [9] reviewed the abilities of both recurrent and feedforward networks,
postulating that a generalised neural nerwork - incorporating features of both of these - would
be advantageous for system identification. A continuation of this work resulted in a class of
dynamic neural network [11] which is reviewed more fully in section 2.4.

2.2, Modelling Dynamic Systems Using MLP Networks.

A number of experiments using simulated dynamic systems have been conducted in order to
investigate a number of issues. As many industrial processes - whilst being highly nonlinear
during certain stages of their operating cycles such as startup and shutdown - are likely to
spend some of their time behaving linearly within a stable operating region, it is necessary that
an MLP be able to model both the process linear and nonlinear states.

In addition to describing a number of experiments which demonstrate how this is achieved, this
section will show how the feedforward leaming scheme compares with the recurrent, how
parameter changes can be accommodated for, and how faults which manifest themselves in the
residual signal can be alarmed.

2.2.1. The Simulated Dynamic Systems.

For the purposes of these experiments, two dynamic systems are simulated as mathematical
models; one linear, the other nonlinear.

The linear example is a single-input single-output (SISO) second order system described by the
state equations

x(k+1) = Ax(k) + Bu(k)+ v(k) (2.4)

for the process dynamics, and

41



y(k) = Hx(k)+ Ju(k)+w(k) (2.5)

for the sensor. The values for the matrices are

-0.226  0.030 -0.597
H=[-0534 -0451], J=[-0.819]

_[-0.441 —0.525 _ —0.934]
- T 2.6)

These values were chosen arbitrarily to provide a typical example of a stable system where the
A matrix has two distinct eigenvalues, being A} = 0.166 and Ay = 0.0.673. Here, u and y are

the system inputs and outputs respectively, x are the internal states of the process, and v and w
are zero-mean (Gaussian noise sequences.

The input-output relationship for the nonlinear process is described by the equation
y(k) = ay(k—1)+By(k - 2)* + yu(k) + du(k =1)* + v(k) Q.7
where

a=03, B=0.06, y=0.7, 5=0.5 (2.8)

and were again arbitrarily chosen to describe a stable system. Here v is a zero-mean Gaussian
noise sequence.

2.2.2. Initialising The Networks.

Each experiment was conducted using a number of MLPs with different internal structures (i.e.
a different number of input PEs and hidden PEs). Before the commencement of each
experiment the network being used was initialised by setting each weight value and each PE
threshold value to a random number between $0.1.

2.2.3. Training & Testing The Networks.

Typically, all available data for a particular neural network application is split into two groups:
a training set and a testing, or generalisation, set - both of which consist of input-output pairs
(ie. examples of inputs for the network to which the output is known). The MLP then
undergoes a period of training whereby the training set is repeatedly presented to the nerwork.
As each input pattern is presented, the network generates an output which can be compared to
the known - or desired - output from the training set, and a carresponding error measure can be
calculated. This error is then be used to train the network immediately (pattem training), or the
error can be accumulated for each input-output pattern in the training set and the accumulated
value be used to train the network following each epoch (baich training).
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Usually one complete presentation of the training set is referred to as an epoch. It can ofien
take a large number of epochs before the training error reduces 1o a minimum,

Once the training cycle is completed, the network can be tested using the generalisation set.
Here the input patierns are presented to the network and again the network's output compared
with the desired output. The error is not used to train the netwark, but is used to demonstrate
the extent to which the network is now able to mimic the output. If the network's output is
sufficiently similar to the desired output, the network can be said to be capable of
generalisation - or to have learnt - the problem. The accuracy which the network needs to
possess in order to be satisfactory is subjective and entirely dependent upon the application in
which the network is being used.

A phenomena known to occur in some applications is one of over-training. Here, the network
has been presented with the training set for too many epochs and can be said to have leamnt the
training set too well, so that it is able to generate accurate outputs for input parterns from the
training set, but poor outputs for input patterns from the generalisation set, i.e. its training
error is small, but its generalisation error is large.

For these experiments, as the information upon which the MLLP would be both trained and
tested is generated by the equations (2.4, 2.5, and 2.7) in discrete time steps, both the training
and generalisation sets were generated during the course of the run, with one epoch meaning
one input-output pair. During training, the process input v was represented by a sequence of
random numbers uniformly distributed between *1 for 10000 samples (training epochs).

As the aim of these experiments is to teach the MLLP to mimic a dynamic function rather than
to respond to a specific input with a specific output, the problem of over-training should not
occur. In order to test whether the function has been learnt, testing is achieved by representing
the input u as a sequence of random numbers with the same distribution, but the input value
would only change once every 20 samples.

2.24. Error Measurements.

In order to be able to compare the performance of one MLP with another, it is important to
have consistent measurements of error. At any discrete time interval k the error D between the
MLP output and the desired output is the Euclidean distance thus

j=1

D(k)= \/)i',(yj(k)-ij(k))’ (29)

43



for an MLP with n output processing elements. As this instantaneous error is liable to oscillate
and mask the underlying trend, the error is smoothed in two ways. The error § is accumulated
and averaged over m samples thus

1 m
- k— i )
S(m) - Z:D( ) (2.10)

J=0

For these experiments, m was set to 100. As the MILPs are always initialised with random
values, the possibility exists that for any one experiment the initialisation process may produce
a network already able to at least relatively accurately mimic the dynamic function. In order to
reduce this possibility, each experiment is conducted / times with an MLP of identical internal
structure initialised with a different set of random values, to produce an error E thus

1
E(m)= 7);’8'(”1) (2.11)
For these experiments, [ was set to 10. The training error T was taken as the highest of the last

five measures of E for each experiment.

The generalisation error G is the accumulation of the instantaneous error defined by the
Euclidean distance (2.9) over the testing cycle, consisting of n epochs, thus

G= ; D(k) (2.12)
>

Far these experiments, n was set to 100.

Therefore for each experiment, comparisons can be made between two error measures: the
training error 7, and the generalisation error G.

225, Modelling Linear Systems.

As MLPs provide a nonlinear response between inputs and outputs, it is important that they be
able to approximate linear functions as dynamic systems often behave linearly within certain
operating regions.

Initially experiments were conducted using an MLP with three input PEs. This input vector
comprised of u(k), u(k—1), and y(k—1), i.e. the MLP is trained to approximate a function
f() thus

Y(k) = f(u(k),u(k-1),y(k—1))
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Figure 2.2 Graphs demonstrating how the error E decreases with learning time. Input vectors comprise of 3, 5, and 7 time delayed process inputs and outputs. There is one hidden layer comprising
of 1. 2. 3,4, and 5 processing elements. Leamning scheme: Feedforward. P coefficient of sigmoid: 0.5.
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Figure 2.3 Graphs demonstrating how the error E decreases with learning time. Input vectors comprise of 3, 5. and 7 time delayed process inputs and outputs. There is one hidden layer comprising
of 1,2, 3.4, and 5 processing elements. Learning scheme: Feedforward. P coefficient of sigmoid: 0.2.




The number of hidden PEs was increased from one to five, and the error E observed as shown
in figure 2.2. The training error T reduced to 3.5x10-2, with five hidden units. The input layer
was increased to 5 and then 7 PEs, i.e. the MLP is trained to approximate the functions

(k) = f(uk),utk—1),u(k~2),y(k-1),y(k=2))
and
YUY = f(u(k),u(k~1),u(k—2),u(k-3),y(k—1), y(k—2), y(k=3))

although this failed to improve the mraining error.
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Figure 2.4 Graphs showing process and MLP inputs and outputs for a 3-5-1 MLP with the p coefficient of the
sigmoid function set to 0.5.
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Although the training error reduces to a relatively low level, the generalisation error G was
3.737 and, as can be seen in figure 2.4, the transitions are approximated well, but there is a
significant steady state error. One explanation for this occurrence is that the network has not
had a long enough training cycle, however subsequent training of 20000 epochs failed to
improve the situation to any significant degree.

A further explanation for the MLP failing to learn the dynamics of the process can be
artributed to an attempt to fit a nonlinear function (that of the MLP) to a linear function (that
of the process). Each processing element within the hidden layer of the MLP maps its inputs to
its outputs through a nonlinear activation function, usually sigmoidal thus

1
F=1"5 (2.13)

Figure 2.5 The standard sigmoid function (1.13) with f set t0 0.5, 0.3 and 0.2.

By adjusting the steepness (B) coefficient, the linear region of the function can be increased as
shown in figure 2.5. Therefore, the smaller the steepness coefficient is set during training, the
greater will be the linear response of the MLP. Previously a f value of 0.5 was used, now the
experiment was repeated with a steadily reducing value of . The graphs in figure 2.3 show
the training errors with B set to 0.2. Here, when the input vector consisted of u(k), u(k—1),
u(k-2), y(k-1), and y(k—2) in a network with 5 input PEs, 3 hidden PEs and 1 output
PE (i.e. an internal structure of 5-3-1), the training error reduced to 3.07x10°2 and the
generalisation error to 1.99. Figure 2.6 shows how the steady state error evident in figure 2.4
has now reduced. Increasing the number of hidden units and the size of the input vector does
not cause the training or generalisation errors to improve.
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Figure 2.6 Graphs showing process and MLP inputs and outputs for a 5-3-1 MLP with the p coefficient of the
sigmoid function set to 0.2.

Instead of using historic values of the process output y as part of the MLPs input vector in
order to introduce dynamics, it is possible to use historic values of the MLP estimate y. This
external recurrency in the composition of the input vector is referred to as the recurrent
learning scheme. The recurrent learning scheme is implemented in the 5-3-1 network above by
setting the input vector to u(k), u(k-1), u(k—2), y(k-1), and $(k=2). For this
experiment, with B again set to 0.2, the results are shown in figure 2.7 where the training error
T reaches a level of 3.9x102. Qin et al [10] observe that the recurrent learning scheme
requires a greater number of epochs than the feedforward scheme to achieve the same
performance. When the training time was increased to 30000 epochs, T reached 3.9x102 and
G was 2.27; the results are shown in figure 2.8.
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Figure 2,7 Graph demonstrating how the error E decreases with
learning time. There is one hidden layer comprising of 1,2, 3, 4,
and 5 processing elements. Learning scheme: Recurrent. §
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Figure 2.8 Graphs showing process and MLP inputs and outputs for a 5-3-1 MLP trained using the
recuirent training scheme.
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When tained by the feedforward learning scheme, the MLP is passed, as part of its input
vector, process outputs that are comprised partially of a noisy perturbation signal. As the
MLP receives this noise as input, the MLP output comprises partially of noise. When trained
by the recurrent scheme, this noise is absent from the input vector and so is not reflected in the
output vector. The MLP model using external recurrency reflects the process in the absence of
noise, i.. the noise is filtered. This being the case, there will always exist a residual error
between the process and the MLP model, i.e. the perturbation noise signal.

2.2.6. Modelling Nonlinear Systems.

In order to demonstrate how an MLP can model a nonlinear system such as described by (2.7),
experiments were conducted equivalent to those in the previous section, with the linear system
replaced by the nonlinear one. In order to allow for a greater nonlinear response from the MLP
the sigmoid's B coefficient was increased; a value of 0.4 was found to provide the best resulis

in this instance.

X0 = T, 601, ST YO-ID Pigure 2.9 shows how the training
error reduces over leaming time. As
with the previous experiments, the
best results were achieved using three
hidden elements were the error 7T
reduced to 2.09x102. Figure 2.10
shows the inputs to the process and

MLP and the subsequent outputs.

Figure 2.9 Graphs demonstrating how E decreases with learning
time for the MLP trained to model a nonlinear process.

2.2.7. Modelling Parameter Variations.

All industrial processes are subject to a changing environment. Factors such as the ageing of
process components represent parameter variations which a model based system needs to be
able to handle. If an MLP, once trained to identify a system, was used in a model based
architecture with no subsequent online training, it would cease to represent the system should
parameter variations occur. In a failure detection system, this would lead to false alarms; in a
control system, poor control decisions.

In an FDI system, an obvious solution would be to initially train the MLP to identify 2 dynamic
system offline. Once sufficient generalisation was achieved, the MLP could be used online but
with its leaming mechanism still enabled (i.e. the residual signal would continue to be used to
train the MLP using backpropagation).
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Figure 2.10 Graphs showing process and MLP inputs and ourputs for a 4-3-1 MLP trained to model a nonlinear
process.

In this way, as parameter variations occur - causing the functional dependence between inputs
and outputs to change - this new function would be learnt by the MLP. The danger here,
however, is that should a fault cause a slow drift in the residual signal that could be
misinterpreted as a parameter variation, this fault is liable to be leamt as part of the normal
process dynamics and go undetected, i.e. a miss.

A preferable solution would be to train the MLP to identify the system offline, and once
sufficient generalisation had been achieved, duplicate the MLLP model so that two identical
models exist.
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When used online, one MLP would act as the model and would receive no further training,
whilst the other would continue to learn the process dynamics online in order to capture
parameter variations should they occur; these will be referred to as the model and the rrainee
respectively. Should the two MLPs become dissimilar with the trainee representing the system
better than the model, ore of two evenis would occur dependent upon whether a fault was
considered to have occurred or not. Should a fault be present in the system, the weights of the
trainee would be reset to those of the model. Should it be decided that a fault had not occurred,
and the dynamics of the system had changed due to a parameter variation, the weights of the
model would be set to those of the trainee.
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Figure 2.11 Graphs demonstrating {a) errar increase with parameter variation, and (b) how the effects can be
reduced using two MLPs,

This phenomena can be simulated in the state space equations (2.4 and 2.5) by adjusting a
value in the A matrix. The model MLP derived in section 2.2.5. with B set at 0.2 was
duplicated to give the model and the trainee. The system was allowed to run for 50 epochs
before element A, in the A matrix was increased by 0.4 to -0.041, as parameter variations by
namure occur only gradually. Figure 2.11(a) shows how the error D increases for the model,
but reduces for the trainee which continues to learn the process dynamics. As the model error
is below 6x10°2 during normal operation, this value was chosen as suitable for a threshold;
should the error exceed the threshold, the model MLPs weights will be set to those of the
trainee. Figure 2.11(b) shows how the effect of model mismatch due to parameter variations
can be reduced in this manner. As can be seen, D does not reduce to its original low values but
with subsequent training this will be achieved. It should be borne in mind that the MLP was
allowed to learn the original process dynamics for 10000 training epochs and the new process
dynamics for only 50 epochs.

Similar experiments adjusting parameters to a greater or lesser degree than above resulted in
equivalent results, with the greater adjusuments resulting in a longer leamning time being
necessary for retraining the MLPs. Should very small alterations be made to elements in the A
matrix, the threshold is typically not exceeded, i.e. the model MLP still mimics the system
sufficiently well.
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2.3. Model Based FDI Using MLP Networks.

The aim of this section is to demonstrate how an MLP can be trained to recognise an aberration
in the residual signal of a model reference system as a fault; not to present a comprehensive
model based FDI system. Subsequent chapters will pursue this latter aim.

Figure 1.9 describes a model based FDI architecture which can be implemented using MLPs as
both the process model and the fault detection filters. Section 2.1.2. shows how the model
MLP can be trained using either the feedforward or the recurrent leaming scheme. In terms of
a fault detection system, one feature of using the feedforward scheme is that should a fault
occur which manifests itself in the process output, this erroneous signal will be used as a
component of the model MLPs input vector. This immediately raises the question of how the
detection of such a fault would be affected by this effect.

A sensor failure can be simulated [12] in one of two ways: either abrupt changes in the H
matrix of (2.5), or as biases in (2.5). The MLP derived in section 2.2.5. with B set at 0.2 was
used as a model for the process under normal operating conditions for 50 epochs. At this point
an abrupt change was made in the / matrix - a sensor fault - and the process continued for a
further 50 epochs. Figure 2.12 shows the results. The result of feeding back an erroneous
signal to the MLP as part of its input vector can be seen. As the recurrent leaming scheme
does not receive this erroneous signal as input, a comparison between the performance of the
two can be made. In this case the residual signal is calculated as the Euclidean distance
between the process and MLP outputs.

As is demonstrated, the appearance of the fault causes the MLLP model trained by the
feedforward scheme to behave differently to how it would had the fault rot occurred, whereas
the MLP model trained by the recurrent scheme continues to predict the process output exactly
the same as it would were the fault not present. With the feedforward leaming scheme, the
MLP outputs retain the same functional dependence upon the inputs as under normal operating
conditions. However, the inputs are no longer normal which has the effect of pushing the
model outputs further from the process outputs under fault conditions. This can be seen by
virtue of the fact that the residual error is greater under fault conditions using the feedforward
scheme as opposed to the recurrent scheme. As the feedforward learning scheme requires less
training epochs than the recurrent scheme and both MLPs in this instance were allowed the
same number of epochs to train, the residual error under normal conditions is less for the
feedforward scheme than for the recurrent. With respect to an FDI system, this means the
feedforward scheme is likely to be the superior strategy, and it seems sensible to use real
process values as opposed to estimated model values where possible.
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Figure 2.12 Graphs showing how an MLP model trained using both the feadforward and recurrent learning
schemes responds to a sensor fault.

One of the successful areas of application for many ANN systems is that of pattern
classification such as in [4 and 13]. In the case of a model based FDI system it should be
possible to train a series of MLP networks to recognise patterns within the residual signal. In
the example shown above a threshold detector would be able to detect the fault, and training an
MLP with a standard sigmoid function as the transfer function at a single output PE will
achieve this. Although in this case, a simple threshold detector would be more suitable to
detect the fault, for isolation purposes where a large number of different faults are possible, it
would be more helpful to recognise characteristic patterns in the residual signal. An MLP is
capable of providing this categorisation as will be demonstrated ultimately.
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Figure 2.13 Graph demonstrating how a classify MILP can be used to differentiate between normal process
operation and a fault situation.

Figure 2.13 shows an MLP with three input units (taking the current and previous two residual
errors), two hidden units and a single output (3-2-1) trained to distinguish between the normal
process operation and a fault state. Here, the network was trained for a period of 10000
epochs using an equal number of normal process instances (where the network is expected to
give a value close to 0) and fault instances (where the network is expected to give a value close
to 1). This is meant to be demonstrative only; classifying more complex parerns will be
explored in a later chapter.

24. Dynamic Networks For Modelling Dynamic Systems.

- Dynamic . Dynamic > As described in
b System by ! y .
section 221, a

fro] —frole system  described

by the state space

Static Dynamic
ANN | 2 ANN | 2 equations (2.4 and
2.5) is an infinite
(a) (b) impulse response
Figure 2.14 Schematic demonstrating how to model a dynamic system using (a) a .
static ANN such as an MLP, and (b) a dynamic ANN such as an Blman Ner system in that y(k)

depends not just
upoen recent values of u but upon all measurements of « through time to the initial conditions
u(0). As an MLP contains no internal memory, it is necessary to provide such memory by
external recurrency, by providing both time-delayed inputs and time~delayed outputs of the
system as input to the MLP, The schematic for such a system is shown in figure 2.14(a). This
approach has the disadvantage of increasing the training time of the MLP, as the ideal input
vector composition now needs to be established in addition to the number of units in the hidden
layer.

It would be beneficial to have a network that was itself dynamic and could be trained to model
its own dynamics on those of the system and so determine the order of system dynamics. Such
a network would then be able to predict y(k) given only u(k) (figure 2.14(b)).
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(a) (b)

Figure 2.15 Two dynamic networks with internal recurrency. (a) the Sudharsanan and Sundareshan Net and (b)
the Elman Net.

A dynamic petwork used for system modelling was proposed [11) whose internal architecture is
shown in figure 2.15(a). Here all hidden units are connected to one another via adaptable
weights. As the input vector is applied to the network, the outputs of the hidden units are
allowed to settle to a steady state before the output vector is calculated. Such a network still
requires external recurrency in addition to extended computation time to allow the hidden layer
to stabilise. Its advaniage appears to be a much shorter training time than for an MLP using
the backpropagation algorithm.

A much simpler form of internal recurrency was proposed by Elman [3]). The Elman Net
(figure 2.15(b)) has a number of units, referred to as conrext units which have the same
activation at time (k+1) as the hidden units at time (k). The connections between the hidden
units and the context units are of weight 1, whereas the connections between the context units
and the hidden units are adaptable. The network can be trained using the backpropagation
algorithm. Elman demonstrates how such a network is able to discover syntactic/semantic
features in words. Because of the recursion between hidden units and context units, the
netwaork itself represents a dynamic infinite impulse response system. Indeed, if the weights
between the context units and the hidden units are W; the weights between the external input
and the hidden units are W; and the weights between the hidden layer and the output layer are
W3, the Elman Net is governed by the equations

h(k+1)= f(Wh(k) + W,u(k))

2.14
Y= F(Wh(k)) 2.14)

where u, h, and y are the input, hidden and output layers respectively, and f{) is the transfer
function of each unit in the nerwork. Providing the transfer function has sufficient linear
response, this equation is equivalent to a form of state space equation indicating that the
number of hidden units directly corresponds to the order of the system dynamics.
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Hence the order of the process would have to be known in order to set the number of hidden
units accurately, i.e. the network does not learn the order of the process for itself.

In both cases, therefore, there appears little - if anything - to gain from using such dynamic
networks in this application. Subsequent research has been conducted using MLP Nerworks.

2.5. Comparisons With Traditional Modelling Techniques.

u(k) Dynamic y(k) In order to gauge the
System effectiveness of the MLP as a
* o) system identification tool, it is
/ ®— necessary to  draw  a
~ i comparison with traditional
. y(k)

Filter modelling techniques.  Such

2

€ techniques are often

i — implemented by means of a
Training

Algorithm filter, a schematic for which is

Figure 2.16 Schematic of a filter trained to predict the dynamic system ShOWD in figure 2.16, whose
outputs. coefficients have been

determined by some algorithm prior to actual use. Two such filters are the finite and infinite
impulse response filters.

25.1. FIR Filter.

The finite impulse response (FIR) filter uses anly a predetermined number of historical input
values, and provides an estimate of the output according to

L-1
Fky="Y ulk—j)- Iy (2.15)

j=0

where ¥ is the filter output, L is the length of the filter and h are the filter coefficients. This

can be rewritten

(k) u(k) u(k—1) o u(k—L+1) h,
:y(k+1) _ f;(k+1) u(k) oo uk=L+2) Q:h, 2.16)
Jlk+L-1)] |u(k+N) u(k+N-1) --- u(k—L+N+D]| |h
or
y=U-h .17



Ideally, y should be equal to , so & can solved by

h=U"y

Oulputs (L = 10)

Process

" FIR Flter

Epochs

Outputs (L = 40)

Epochs

Figure 2.17 Graphs demonstrating differences that the length of FIR filter makes to system identification for a
lincar system.
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However, as U is unlikely to be the square matrix necessary for inversion, the pseudoinverse
can be used, where X (the pseudoinverse of the non-square X ) is defined as

X*=(X"xy'-xT (2.18)
Therefore h can be computed as

h=U"y (2.19)

As the filter length is increased, the estimate of y can be observed and the calculation for the
generalisation error G made as in (2.12). The results are shown in table 2.1.

Filter Length 5 10 15 20 30 40

G 6.06 6.32 6.33 6.74 4.01 3.63

Table 2.1 The effect on error that the length of filter makes for a linear system.

As can be seen in figure 2.17, low lengths of filter provide a smoothed estimate for y without
the transient features of the signal. As the length of the filter is increased, it begins to better
approximate the output of the system. However, the value of G for a length 40 filter (3.63) is
still significantly higher than for the 5-3-1 MLP above (1.99).

Again when attempting to filter the example nonlinear dynamic system, the length of filter can
be seen to influence the generalisation error as shown in table 2.2:

Filter Length 5 10 15 20 30 40

G 23.44 20.769 17.905 15.096 13.884 12.537

Table 2.2 The effect on error that the length of filter makes for a nonlinear system.

The graphs in figure 2.18 show how the length of filter similarly affects the output signal as
above, but again the generalisation error is higher than for a 4-3-1 MLP.

As the filter is a finite impulse response system and both the MLP and the modelled dynamic
system are infinite impulse response systems the test cannot be considered an objective
comparison for the MLP.

2.5.2, IIR Filter.

A fairer comparison to attempt with the MLP is the Infinite Impulse Response (IIR) filter as
this more closely resembles the experimental setup of the MLP. The IR filter is also known as
the autoregressive moving average of a system, and both Bhat & McAvoy [1] and Mirzai et al
[6] use an autoregressive moving average (ARMA) model of a pH continuous stirred tank
reactor (CSTR) and a fermentation process respectively in comparison to the MLP.
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Figure 2.18 Graphs demonstrating differences that the length of FIR filter makes to system identification for a
nonlinear system.

A typical ARMA has the form

L M
50+ Y ylk=idb, = ¥ k- ja,, (2.20)
j=0

iw]

which can be replicated using a single layer (i.e. no hidden layer) perceptron with a linear
activation function at the output PE. (figure 2.19) with both historical input and output data
being presented as the input vector; the a; and b; terms being represented by the weights from
the input processing elements to the output processing elements. '
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This being the case, it is possible to

u(k)
compare the most accurate MLP
u(k-m) solutions with their ARMA counterparts
(i.e. the 5-3-1 MLP with a 5-1 ARMA
y(&-1) for the linear system, and a 4-3-1 MLP
with a 41 ARMA for the nonlinear
y(k-n) system).
Figure 2.19 A single layer perceptron as an ARMA model.
This leads to the results shown in figure 2.20.
Unear System

1.5 1 = Process

Epochs - RAfe

Nonlinea: System

-1 4

1.5 J- Process

- - - RFAter

Epochs

Figure 220 ARMA modelling linear and nonlinear systems.
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For the linear and ronlinear model respectively, the generalisation errors are 3.15 and 2.51,
demonstrating that even for simple systems the inclusion of a hidden layer can lead to improved
prediction capabilities.

2.6. Summary.

The purpose of this chapter has been to introduce the multilayer perceptron network as a
system identification tool upon which a model-based FDI system can be based.

Strategies for learning the dynamics of systems were reviewed and demonstrated upon an
example of a linear and nonlinear system in order to demonstrate the modelling capabilities of
the network. The issues of the MLPs ability to model linear systems with itself being
nonlinear, the extent to which the MLP can cope with parameter variations and a method for
detecting faults using an MLP model were investigated.

In addition, the external recurrency necessary to emulare dynamic behaviour in the otherwise
static MLP was compared with networks which possess internal recurrency and the results
obtained from experimentation with the MLP compared to traditional filtering approaches to
system identification,
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éChapter 3.

The Unilever Automated F reezer.é:

The previous chapter demonstrated how the MLP can be used to model processes simulated
mathematically and detect faults within them. This research programme is concemed with
fault detection in real industrial processes, and the remainder of this thesis will concern itself
with developing an FDI system for one such system; namely the Unilever Automated Freezer.

The Unilever Automated Freezer (UAF) is a piece of industrial hardware used in the
manufacture of ice-cream products, and is of current strategic importance to the Unilever food
group. Presently, rudimentary automated fault detection is conducted by the system's
controller, although detection of a fault results in the freezer entering a 'holding' condition
whereby ice-cream production is halted. In addition, the conmroller may take several minutes to
signal a fault, during which time - dependent upon the narture of the fault - liquid ice-cream
may escape the freezer unit; a condition which results in the freezer needing to be shutdown
and cleaned prior to the ice-cream production being resumed. Other faults - most typically
sensor faults such as biases - can result in the quality of the ice-cream being affected. These
faults often go undetected by the controller.

Of specific interest is the startup cycle of the UAF. Typically, following a production run, the
UAF is cleaned and left to stand idle overnight. As with many mechanical processes, following
a period of inactivity, the UAF is prone to develop faults when it begins to operate. In
addition, the startup cycle of the freezer is highly nonlinear and difficult to model using
traditional linear techniques. As an MLP provides a nonlinear response between its inputs and
outputs, it would appear a useful tool artempting to model the startup cycle of the UAF.

The purpose of this chapter is to introduce the Unilever Automated Freezer as an example of a
real industrial process upon which faults occur and need to be detected. It must be stressed
that it is only the startup of the freezer which is considered.



The method of operation of the freezer will be discussed, including the stages in the startup of
the freezer and the control laws governing its operation shown. The current method of
detecting failures (limit checking) will be discussed together with the identification of three
possible faults which can occur with the freezer and when - or if - the current fault detection
system identifies them.

3.1. Overview Of The Unilever Automated Freezer.

Materials —®  Blending |——®» Homogenisation|———» Pasteurisarion

Hardening |[€—— Filling L —— Freezing —— Holding

Packaging [———® Cold Storage ———®| Distribution }———®» Consumer

Figure 3.1 Typical production line for the manufacture of ice-cream.

Figure 3.1 shows the typical position of the freezing process within the ice-cream production
line. The UAF [3] takes in the premixed ingredients of the ice-cream and air and forms frozen,
aerated ice-cream as follows (figure 3.2(a)). The mix and air is pumped into the barrel of the
freezer where it is cooled by liquid ammonia. The motor turns the dasher within the barrel
which allows the dasher blades to remove frozen ice-cream from the interior surface of the
barrel as it forms. Finally, the frozen ice~cream is pumped from the barrel. The UAF therefore
fulfils three roles:

Heat Exchanger:  The principle role of the freezer is to refrigerate the mix and so form ice-
cream. Typically, the mix temperature is around 5°C and the produced
ice-cream is below -4%4°C. This temperamre exchange is achieved by
passing liquid ammonia over the mix whilst it is within the barrel of the
freezer.

Aerator: The UAF needs to incorporate sufficient air in the premix and ensure the
overrun! air remains in the ice-cream as it leaves the freezer in order to
produce a stable air cell distribution of small mean size.

10verrun: The increase in velume of ice-cream over volume of mix due to the incorporation of air.
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Texturiser: As ice crystals grow during the hardening and storage of the ice-cream,
the UAF needs to ensure that these crystals are small enough to reduce
later detectability. This is achieved by the dasher within the barrel (figure
3.2(b)). The dasher rotates inside the barrel and removes ice-cream from

the inner surface of the barrel.
Comnpretsed
ALr
l . Moo
. .
mo Ao
éi

Figure 3.2 Schematic of (a) the Unilever Automated Freezer and (b) the dasher within the barrel.

3.1.1. Datalogging.

As a mauer of routine, certain measured and controlled variables are logged by PC software.
This information is intended for fault diagrostics should a problem occur with a particular run
of the UAF, and it is this data that is used in training the MLP to model the freezer. In this
way, no additional hardware requirements are necessary as all necessary sensors are already
installed. The maximum rate that the UAF can be sampled is at 5 second intervals.

The logged parameters are shown in table 3.1:

Parameter, Type. Notes.
Time Measured | Bach batch of measurements is time
stamped.

Barrel Pressure Set point

Icecream Temperatiure Set point

Mix Flow Set point

Air Flow Set point

Mororload Set point

Overrun Set point

Maximum Motorload Set point

Table 3.1 The measurements logged by the controller and associated PC software.




Mix Pressure Measured | Typical range: 0-5 bar.

Ammonia Liquid Pressure. Measured | Service: this measurement is only available
to the UAF in the pilot plant, not in the
factory.

Ammonia Suction Pressure Measured | Service: this measurement is only available
to the UAF in the pilot plant, not in the
factory.

Barrel Pressure Measured | Typical range: 0-10 bar,

Mix Temperanre Measured | Typical range: 0-70°C.

Ice-cream Temperature Measured | Also referred to as the extrusion temperature.

Typical range: -15-70°C.

Ammonia Evaporation Pressure | Measured | Controls the extrusion temperature of the
ice~cream. Typical range: 0-15 bar.

Mix Flow Measured | Typical range: 0-10 lires/m
Air Flow Measured | Typical range: 0-10 lires/m
Motorload Measured | Measures the power needed to rotate the

dasher, and gives an indication of the
viscosity of the ice-cream. Typical range 0-

150%.
Mix Pump Speed Controlled | Typical range: 0-100%.
Ice-cream Pump Speed Controlled | Typical range: 0-100%.
Camflex Position Controlled | The Camflex valve is used to alter the

ammonia evaporation pressure and therefore
controls the cooling of the ice-cream.

Qvermun Calculated | Measure of the volume of air in the ice-
cream. Calculated as AiLFlowRate
Mix Flow Rate

Alarm Triggered | Series of flags indicating faults in the UAF.

Part of the current fault detection system.

Table 3.1 Continued.

As the ammonia liquid pressure and ammonia suction pressure are not measured on the factory
floor, these measurements will not be used in the training of the MLP model.

3.1.2. The UAF's Control Structure.

The UAF incorporates a number of feedback control loops as shown in figure 3.3. Actual
control is performed by the process computer, the CRL1000, which performs:

¢ PID (Proportional-Integral-Derivative) contro! of a number of individual loops
according to preset set points.

¢ Automatic startup and shutdown of the UAF.

67



e Fault detection by limit checking.

e Providing information to the human operator of process and service conditions,
and accepting set point changes from the operator.

The datalogging of freezer parameters are achieved by the connection of a PC to the CRL1000
via a serial link.

Ammonia

OVERR oc Gas
FC VISCOSITY
TEMP

5D

>

Unilever

Automated
Freezer

v

Ammormnia
@ Liquid

FILLER DEMAND

Figure 3.3 Black diagram of the UAF and associated hardware control structure, showing flow (F), pressure (P),
temperature (T) and viscosity (V) measurements and their controllers (C) (e.g. PC refers to pressure control).
Pump and dasher motors are referred to as (M).

Bt Poess e As can be seen from figure
Sa Pz o St Pexm
+ 3.3, a number of the control
lwesmr=s| ' Unilever = e loops are local to individual
L ¥ e, . -
=™, Automated . | §§ pieces of machinery, such
Mo Row o Freezer .\ :: as the pump controlhng the
Nemre flow of mix into the freezer,
Basrel Pressure and have no bearing upon
Cantroller

the dynamics of the freezer.
Viscasity This conwmol structure can

Pressure Cantroller L
Cantroller therefore be simplified to

show the parameters which

Figure 3.4 Simplified control structure showing parameters which affect affect onl the freezer
only the UAF. Y

68



dynamics as in figure 3.4. Here, inputs to the UAF are: the ice-cream pump speed, the camflex
position, the mix flow and the air flow; outputs are: the barrel pressure, the ice-cream
temperature, the motorload and the ammonia evaporation pressure. Set points which directly
affect the dynamics of the freezer are the barrel pressure set poini and the ice-cream
temperature set point.

3.1.3. Stages In The Startup Of The UAF.

The startup of the freezer is automated and undergoes several different distinct stages before
the UAF settles to a steady state and ice-cream of acceptable quality is being produced. These
stages are characterised by major components within the UAF switching in or out and by the
CRL.1000 concentrating on achieving one particular set point.

These stages are [1]:

Filling the barrel: This includes the initial services check (mix, air and ammonia),
the vent and mix valves being opened, and the mix pump run for
approximately 65 seconds to allow the barrel to fill with mix.

Starting the dasher: Here, an alarm sounds for five seconds to warn of the motor
about to start. The motor begins to turn the dasher within the
barrel in two stages, initially at a low speed and then at a full
speed. The dasher is allowed to rotate for about 20 seconds
before the next stage begins,

Pressurising the barrel: Air is injected into the barrel in a series of three five second
bursts. After this air is injected continuously until the barrel
pressure is greater than 4 bar.

Reducing the ammonia evaporation pressure:  The air injection is halted and the camflex
valve opened, initially by 15%, then in a series of 5% increments
until the ammonia evaporation pressure is less than 24 bar.

Increasing the motorload: Once the ammonia evaporation pressure reduces, refrigeration
begins and the mix starts to solidify. The dasher is now rotating
through a more viscous mix than before which means the load on
the motor is greater. The motorload is therefore increased to
match its set point,

Starting the pumps: Following the motorload and barrel pressure PID control being

tumed on, the mix valve is open and the mix and ice-cream
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pumps started. The air valve is then opened, and the overrun and
mix flow PID conmrol begun. At this point ice-cream is being
produced.

3.14. Operation Of The UAF (Data Collection).

For the purposes of training the MILP model, it was necessary to log a number of runs of the
UAF to gather training and generalisation (testing) data. As this stage of the research is
involved with modelling the dynamics of the UAF, it is important to try and stabilise all
extraneous variables that may affect these dynamics. For this reason the mix formulation was
kept the same (namely a Cometto formulation with no colours or flavourings - Carnetto NCF)
and the procedure for cleaning the freezer prior to each nin was identical.

As the startup of the UAF was under consideration it was necessary to gather startup data.
However, this would lead to only one log per day being collected. In order to increase this
number, it was important to attempt to get the UAF to a state close to how it would be if it
were left overnight following each freezer run. This was achieved using the following
procedure prior to running the UAF;

1. Open the dump valve to allow any ammonia still in the UAF to be removed and
connect the mix line to a cold water supply.

2. Open the vent valve, mix valve and discharge valve, then pump cold water through
the UAF for about 10 minutes.

3. At intervals of 2 minutes start the dasher rotating for a period of 20 seconds to
disperse any ice-cream remaining in the barrel.

4. Open the pump cover plates to drain the water from the freezer.

5. Close the dump valve,

6. Connect the mix line to the Cometto NCF mix storage tank.

7. Tighten the cover plates.
Following this, the freezer could be run in automatic mode with the various process parameters
being logged. Once ice-cream was produced - during the start pumps stage of the freezer

startup - the run was continued for a further 10 minutes to allow the freezer to seule to a steady
state.

The UAF could then be shut down, and the above cleaning procedure conducted prior to the
next run. A typical run gives rise to the data shown in figure 3.5.
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Figure 3.5 Graph showing the inputs and outputs of the UAF during a typical startup with no faults. All values
have been scaled to within £1. A camplete list of logged data is provided in appendix 3.

3.2. Fault Detection In The Unilever Automated Freezer.

Currently the CRI.1000 performs limited fault detection on the UAF. Once a fault condition is
detected, the controller puts the freezer into a ‘hold’ condition, whereby production of ice-cream
is halted until the fault is manually isolated and the freezer restarted.

3.2.1. Current Fault Detection System.

The fault detection is achieved by limit checking, and the fault conditions checked for along
with their thresholds are shown in table 3.2 [2).
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Alarm Monitored Parameter Threshold | Time before
‘hold’ in secs

Dasher motor not started Motorload <5% 3

High barrel pressure Barrel pressure >6.5 bar 5

Low barrel pressure Barrel pressure <0.5 bar 60

Mix pump not running Mix pump speed =0% 5

Ice-cream pump not running Ice~cream pump speed =0% 5

High motorload Motorload >165% 5

Low motorload Motorload <0.5% 60

Low air pressure Air Flow =0 litres/m 15

High ammonia suction pressure | Ammonia suction pressure | >1.5 bar 180

Low ammonia liquid pressure Ammonia liquid pressure <4.0 bar 10

Low mix pressure Mix Pressure <0.5 bar 60

Table 3.2 Fault conditions, thresholds and timouts on the UAP.

These conditions are checked during the different stages of startup in the following way:

Filling the barrel:

Starting the dasher:

Pressurising the barrel:

Alarms monitored: low air pressure, low ammonia liquid
pressure, mix pump not running, high barrel pressure, and low
mix pressure.

Alarms monitored: low air pressure, low ammonia liquid
pressure, and low mix pressure.

Alarms monitored: low air pressure, low ammonia liquid

pressure, and low mix pressure.

Reducing the ammonia evaporation pressure:  Alarms monitored: low air pressure, low

Increasing the motorload:

Starting the pumps:

ammonia liquid pressure, low mix pressure, dasher motor not
running, and low barrel pressure,

Alarms monitored: low air pressure, low ammonia liquid
pressure, low mix pressure, dasher motor not running, and low
barrel pressure.

Alarms monitored: low air pressure, low ammonia liquid
pressure, high ammonia suction pressure, dasher motor not
running, low mix pressure, high barrel pressure, low barrel
pressure, high motorload, low motorload mix pump not running,

ice-cream pump not running.
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In addition, during the following three control loops, the UAF will be put into a hold condition
should the explicit values or set points not be reached:

Air injection until the barrel pressure is greater than 4 bar. Time before 'hold’: 120secs.
Open camflex valve until ammonia evaporation pressure is Time before hold": 250secs.
less than 24 bar,

Wait for motorload set point to be reached. Time before 'hold'; 900secs.

3.2.2. Simulated Faults In The UAF.

In order to be able to determine the effectiveness of model-based approach to failure detection
using MLP networks, it is necessary that a system should be able to distinguish between

¢ Two failures sufficiently distinct from one another.
¢ Two failures sufficiently similar to one another.

In order to achieve this, at least three failures need to be simulated in the Unilever Automated
Freezer. Two failures can be considered to be similar if a human operator would have difficulty
distinguishing between them,

The three failures chosen were:

1. A barrel pressure ransducer fault.
2. A Camftex valve fault.
3. ALiquid ammonia hand valve fault.

The latter two faults concern the flow of ammonia and can be considered to cause the freezer to
behave similarly from the point of view of a human operator. The barrel pressure fault is also
indicative of a soft failure, and so will be useful in demonstrating an FDI systems capabilities
with this type of fault.

This section describes each of the three faults and the effects they have on the operation of the
freczer.

3.2.2.1. Barrel Pressure Transducer Fault.
Descrinti

The transducer relays the pressure in the barrel to the conmoller. A faulty sensor which gives
an offset of about +0.3 bar at atmospheric pressure was used in place of a correctly calibrated
one.
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Effects Of The Fault.

During freezer operation in steady state, the barrel pressure will be controlled at 4 bar as per
the reading from the transducer. The actual barrel pressure will be lower than the reading,
inferring a greater volume of air in the barrel leading to a lower heat transfer coefficient, so

lower extrusion temperature of the ice~cream and lower ammonia evaporation pressure.

Individual logged measurements will be affected as follows during steady state:

Mix Pressure:

Barrel Pressure:;

Mix Temperature:

Ice Cream Temperature:

NH3 Bvaporation Pressure:

Mix Flow:

Air Flow:
Motorload:

Mix Pump Speed:

Ice Cream Pump Speed:

Overrun:

Dependent upon conditions of the mix plant.

Offset from normal initially, controlled to 4 bar during steady
state operation.

Dependent upon conditions of the mix plant.

If the motorload were uncontrolled, it would be lower due to
the greater volume of air in the barrel at the lower pressure as
there is less mix to rotate, and the mix has a lower viscosity.
Also, there is less friction on the dasher from the lip seals at
lower pressures. As the motorload is controlled, the ice cream
temperature will have to be lowered to compensate.

The greater the volume of air in the barrel leads to a lower
heat transfer coefficient. With a controlled motorload, the
evaporation pressure must be lowered (i.e. made colder). This
is achieved by opening the camflex more,

Controlled, therefore independent of barrel pressure.
Controlled, therefore independent of barrel pressure.
Controlled, therefore independent of barrel pressure.
Controlled, therefore independent of barrel pressure.

Should run faster to conwol the barrel pressure at a lower
pressure.

Open more to reduce the ammonia evaporation pressure.

Independent of barrel pressure; dependent upon Mix Flow and
Air Flow.
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Symptoms During Each Stage Of Startup,

Stage # | Description Effects Of Fault

1 Fill barrel. Offset in barrel pressure reading.
No other effecis.

2 Start Dasher. Offset in barrel pressure reading.
No other effects.

3 Pressurise barrel. Offset in barrel pressure reading.

Air flow magnitude should be independent, but less
time will need to be spent injecting air into the
barrel due to the incormrect pressure reading.

4 Open camflex, reduce NH3 | No effects.

Evaporation Pressure.
5 | Increase motorload to its set | More air in the barrel, lower heat transfer
point. coefficient and lower viscosity will lead to slower
buildup in the motorload.
6 Start pumps. As per steady state conditions above:
- Lower extruston temperamure.

- Lower NH3 Evaporation Pressure.
- Faster ice cream pump speed.
- Camflex open more.

Table 3.3 The symptoms of the barrel pressure transducer fault during startup.

All stages subsequent to stage 3 (pressurising the barrel) should start sooner with this fault due
to less time being spent injecting air into the barrel during stage 3. However, the time delay is
likely to be two sampling points at the most which is unlikely to be significant enough to aid in
the detection of the fault.

The CRL1000 will not detect this faulr.

3.2.2.2. Camflex Valve Disconnected.
D .

The camflex controls the ammonia evaporation pressure. A wire was disconnected from the
camflex to prevent it from opening at all.

Effects Of The Fault,

Disconnecting the camflex valve will have no effect on the freezer operating conditions through
the initial stages of startup. Once the evaporation pressure of the ammonia needs to be reduced,
a signal will be sent to the camflex instructing it to open.
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As the camflex will not open, the evaporation pressure will remain constant and the freezer will
alarm out and go into a hold condition,

Figure 3.6 shows the valves controlling the flow of ammonia through the freezer.
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Figure 3.6 Ammania flow through the freezer. Key: (P)
Pressure reading taken. (PC) Pressure Controller.

Syiuptoms During Each Stage Of Startup,
Stage # | Description Effects Of Fault
1 Fill barrel. No effects.
2 Start Dasher. No effects.
3 Pressurise barrel. No effects.
4 Open camflex, reduce NH3 | The camflex will not open as required due to it
Evaporation Pressure. being disconnected. The ammonia evaporation

pressure will not reduce, as the camflex valve being
closed will keep the pressure roughly constant,
After approximately 4 minutes the freezer will
alarm and go into its holding condition.

5 Increase motorload to its set { This stage will not be reached.

point.

6 Start pumps. This stage will not be reached.

Table 3.4 The symptoms of the disconnected camflex valve fault during startup.
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This fault will cause the freezer to go into its holding condition after alarming during stage 4
(reducing the ammonia evaporation pressure). Subsequent stages will not occur.

The CRL1000 will detect the fault during stage 4 of the startup cycle.

3.2.23. Liquid Ammonia Hand Valve Closed.
Description,

In normal operating conditions, the hand valve will be open to allow the flow of ammonia
through the freezer. To simulate this fault, the valve was not opened prior to running the
freezer.

Effects Of The Fault,

Failing to open the liquid ammonia hand valve will have no effect upon the freezer operation
during the initial stages of startup. When the evaporation pressure needs to be reduced, the
reading will already be low due to the valve being closed. The freezer will alarm out and go
into a hold condition during the stage where the motorload atiempts to match its set point.

Figure 3.6 shows the valves controlling the flow of ammonia through the freezer.

Symptoms During Each Stage Of Startup.
Stage # | Description Effects Of Fault
1 Fill barrel. The initial rise in the ammonia evaporation
pressure will not occur.
2 Start Dasher. No effects.
Pressurise barrel. No effects.
4 Open camflex, reduce NH3 | This stage ends when the ammonia evaporation
Evaporation Pressure. pressure reaches 2% bar. As the ammonia flow will

not be reaching the pressure sensor, the pressure
reading will already be low, and this stage should
end quickly.

5 Increase motorload to its set | As the flow of ammonia is prevented by the liquid
point. ammonia hand valve being closed, refrigeration
will not occur in the freezer, and the freezer will
alarm and go into its holding condition.

6 Start pumps, This stage will not be reached.

Table 3.5 The symptoms of the liquid ammonia hand valve fault during startup.

This fault will cause the freezer to go into its holding condition after alarming during stage 5
(increasing the motorload). Subsequent stages will not occur.
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The CRL1000 detects this fault during stage 5 of the startup cycle.

3.3. Summary.

The aim of this chapter was to introduce the Unilever Automated Freezer, and briefly describe
its major components.

The startup of the freezer cycle was determined to be suitable for amempting to detect faults
using a model-based FDI system, as a number of faults can occur following the freezer
standing idle overnight and with the startup being highly nonlinear it is difficult to model using
linear modelling techniques. In addition, the information provided in the datalog is richer
during startup whereas little dynamic information can be gained once the freezer has reached a
steady state. Also, for economic and practical reasons it is important to detect faults as early
as possible - preferably prior to production.

Several stages were identified within the UAF startup cycle and described as being: filling the
barrel, starting the dasher, pressurising the barrel, reducing the ammonia evaporation pressure,
matching the motorload set point, and starting the pumps.

In order to concentrate on modelling the freezer dynamics, it was necessary to try and keep all
other variables external to the UAF as standard as possible. Such variables, which will affect
the dynamics of freezer, are: the formulation of the mix, the initial temperature of the barrel,
the type of dasher being used, and the amount of ammonia in the freezer prior to running, A
method for ensuring this standardisation was described.

The current method for detecting faults within the UAF was identified as being a non-model
based limit check on certain process parameters. The parameters were identified along with
their fault thresholds, and the alarms that would be triggered should the threshold be exceeded
detailed.

Three faults were identified as being possible to occur during startup and which could be
readily simulated on the UAF. Of these faults, two were sufficiently similar to one another to
cause a problem for a human operator to identify online, whilst the other was sufficiently
distinct from the first two. Also one fault of the faults was identified as being a soft sensor
bias which the current fault detection system would not be able to detect.

References For Chapter 3.

(1 D Cox: Startup Procedure Of W-Auto Freezer (Colworth). Private Communication.
(C) Unilever Research Colworth Laboratory, 1992.
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Colworth Laboratory. 1991.
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Chapter 4.
Modelling Time-Varying Processes.

Multilayer Perceptrons have been demonstrated as being universal approximators [3], although
factors governing their success are dependent upon the internal architecture of the network (in
terms of the number of hidden layers and processing elements within those layers) and the
composition of the input vector so as to provide sufficient information to allow it to
approximate adequately. For a system identification problem, Chapter 2 demonstrated how an
infinite impulse response system can be modelled using an MLP by providing historic (time-
delayed) process inputs and outputs to emulate dynamic behaviour, thus

y=rf(yu 4.1)
as historical information concerning u will be reflected in y.

Chapter 3 introduced the Unilever Automated Freezer as being a major piece of industrial
hardware upon which the modelling techniques developed in Chapter 2 would be applied. The
purpose of this chapter is to demonstrate how the modelling techniques of Chapter 2 failed to
provide any useful results with the UAF. The problem with the approach is determined to be
that all systems modelled in Chapter 2 - although dynamic - are time-invariant in operation.
The freezer is a class of time-varying process, whose underlying mode of operation changes
disjointedly with time; i.e. a piecewise time-invariant system.

Two potential solutions are presented: including time as a part of the input vector of the MLP,
thus making the MLP time-varying; and modelling the freezer using a series of MLPs - an
MLP Cascade.

The MLP Cascade is highlighted as being a novel approach to modelling time-varying systems
of this type.
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4.1.  Initial Attempts At Modelling The UAF.

Ice-cream Pump Speed * Barrel Pressure
Cemflex Position Unilever Antomated * loc-cream Temperatore:
Mix Flow Freezer * Ammeonia Evapomtion Prossure
Alr Flow 11 » Matorioad
BRHE I
] Historical Data
— * Buer Rey
e
] Single channels
Barrel Pressure Set Point|
leo-cream Temperature Data Muftiple chamncls
]
Scallng ealculation
N
[——————— Barre] Pressure (est)
[————— Ice-cream Tempereture (ex1)
MLP Model ia B o P (csh)

—— % Motorlcad (est)

Figure 4.1 Schematic for modelling the UAF using a single time-invariant MLP.

Initial attempts at modelling the UAF were conducted using the equivalent experimental set-up
as described in Chapter 2. Figure 4.1 demonstrates how both input and output signals from the
UAF are stored in a history buffer which is made available to an MLP along with the same set
point information that the UAF is receiving. As the freezer output signals are stored in the
history buffer as opposed to outputs from the MLP, the learning strategy employed is
feedforward as opposed to recurrent. The reason for this is explained below.

4.1.1. Method Of Training.

As in Chapter 2, the data was split into two groups, a training and generalisation set; the file
names for which are listed in figure 4.2!. It is typical to have a generalisation set of equal size
to the training set; however due to the cost of obtaining data for this research it was necessary
to compromise this ideal by splitting the available data into a training set that was of suitable
size to allow the MLP to learn the UAF dynamics, whilst keeping a generalisation set that was
large enough to reduce the risk of obtaining misleadingly promising results. If the
generalisation set is small, there is an increased danger that the items within it are - by

10ccasionally files from the training set were moved into the generalisation set and vice-versa, but
always for separate training runs. At no time was a file used for generalisation upon which an MLP
had been trained.
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coincidence - the subset of all possible items that responds favourably to the trained MLP;
other items which could have been within the set may have shown the MLP solution to be poor.

Training Set Generalisation Set| [pital experimentation was conducted by moving a
I-4a.log 24-Tb.log window sequentially over the data using both the
1-4clog 24-7d log . .
1-4dlog 24-7g log feedforward and recurrent learning schemes, which
I-4elog 11-9alog at this stage was thought to be unsuccessful due to
10-7a.log 11-9b.log the MLP becoming reliant upon the recent freezer
11-9clog 11-9d.log .
11-O¢log 18-3d.Jog measurements. By viewing figure 3.5, one can see
14-7alog 18-3e.log that the greatest fluctuations in process variables
18-3b.log 1-4b.log occur at the outset of a run, before settling into a
18-3c.log 8-4e.log ] ) ) )
18-3flog more stable operating region once the mix and ice-
24-Tallog cream pumps have been started. The MLP weights
?;';:::gg are initialised to random values prior to learning, so
24-7flog - ~ | that by the time one complete presentation of a log
24-Th.log file has been made to the MLP, it is possible that the
gi:gﬁgﬁ later more stable data will have been learnt at the
7-4d.log expense of the earlier fluctuating data, i.e. the
8-da.log earlier learning will have been overwritten. As the

Figure 4.2 Typical division of log files into .
training and generalisation sets in a ratio of data from the log is repeatedly presented to the

2.1. MLP, upon the last record being presented the file
pointer will move back to the start of the run. However, though this will cause this data once
more to be used in configuring the MLP, again the long period of stable data toward the end of
the run is likely to overwrite this learning,

This problem is usually solved by moving the window onto the data around the log files
randomly. For these experiments, therefore, the strategy adopted was to move the file pointer
to a random point in the available data, and allow several discrete time steps - or records- to be
read sequentially. The first of these records were purely to load the history buffer with past
data without presenting any data to the MLP; the remaining records were used to train the
MLP. While this was intended to solve the earlier problem of overwriting the initial learning, it
also meant that the recurrent learning scheme was unusable,

MLPs of various sizes were used in attempting to model the UAF as described below; in
addition to increasing the mumber of hidden units within the MLP, the composition of the input
layer was varied to include greater historical information. For these experiments, one training
epoch implies the presentation of one discrete time instant in one log file with the associated
historical information. Each configuration of MLP was allowed 100000 epochs to attempt to
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learn the UAF dynamics. All process variables were scaled to within +1 with respect to the
maximum value information in section 3.1.1.

4.1.2. Experimental Results.

Each experiment used one input vector composition on an MLP with a single hidden layer
ranging from 5 hidden units up to 15 hidden units. Each hidden unit within the MLP had a
standard sigmoid activation function with its steepness coefficient set to 0.4. In each case the
learning coefficient was set to 0.05 and the momentum coefficient to 0.6. Three compositions
of input vector were tried, consisting of 14, 22 and 30 processing elements respectively. The
input vector with 14 elements was comprised as shown in table 4.1.

PE # | Description UAF Type | Time Delay
1 Barrel Pressure Set Point Set Point 0
2 Ice-cream Temperature Set Point Set Point 0
3 Ice-cream Pump Speed Input 0
4 Camflex Position Input 0
5 Mix Flow Input 0
6 Air Flow Input 0
7 Ice-cream Pump Speed Input 1
8 Camflex Position Input 1
9 Mix Flow Input 1
10 | Air Flow Input 1
11 | Barrel Pressure Output 1
12 | Ice-cream Temperature Output 1
13 | Ammonia Evaporation Pressure Qutput 1
14 | Motorload QOutput 1

Table 4.1 The composition of input vector for a 14 input MLP.

For subsequent compositions of input vector, an additional eight processing elements were
added to the input layer; comprising of the four UAF input and four UAF output variables with
an additional time delay. The results obtained for these experiments are shown in table 4.2,

Number of hidden PEs

5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15

. 06891] o0.7045] o.70s5] 0.7202] o0.7049] 0.7049] o0.6942 0710] 07153
E 14
— 113.9395] 96.4941| 99.4195] 86.9213] 96.1749] 113.4407] 952258 154.6583 107.4714
=]
e
K= 06779] 0.4645] 06876] 06813] 06676] o0.6501] o0.6542 0.6317] 0.6602
w | 22
3 136.0796] 81.5995]142.0535] 138.9479] 77.4182] 762147| 87.6848] 933906] 97.9841)107.0301) 7.6861
Q
D
5 0.6537] 0.6564] 0.6566] 006496] 0.6621] 06475] 06617] 0.6544] 06460] 0.6438] o0.6594
Z 30

151.22120269.2854] 199.8122] 72.8838) 84.2825] 79.9148] 90.1126] B82379)165.3647] B4.7449] 84.7920

Table 4.2 The training and generalisation errors achieved for a time-invariant MLP model.
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For each experiment - employing a training cycle of 100000 epochs - in this table two errors
are shown; the upper being the training error (7), the lower being the generalisation error (G).
The training error is calculated identically to that used in Chapter 2 (equations (2.9, 2.10 and
2.11)) being a smoothed Euclidean distance measurement over the entire training set, as is the
generalisation error (equations (2.9 and 2.12)) being an accumulated Euclidean distance
measurement over the entire generalisation set.

SaTe Pom vmm Agwretia L vegraiion Pas wore

L}
[}

-
e LY

2 R % 9@ 8 ¥ # & R B B R § ® P 2 R 9 9 @ 8 B @ 8 B 2 R § §

a2 a7
Ics Crecn ¥ srearorors L
l '
bt AN —— o
1 [
Y
as 2 v s
Yo N
h
LT o4
.
r ! \ ar /
L] L]
2 A R ¥ &8 § R \ 2 2 8 2 R § % r 2 & % 9 8 3 R 8 8 B 2 R B 8§
a3 az

Figure 4.3 Graphs demonstrating the failure of a single time-invariant MLP to model the UAF.

As can be seen, both T and G for all experiments are poor, but the significantly higher
generalisation error indicates that the dynamics of the freezer have not been learnt by any of the
MLP architectures. Graphical results of the highlighted experiment (an MLP with an
architecture of 14-12-4 - since this generated the lowest value of G) are shown in figure 4.3 (in
this case for the file 18-3d.log).

Although the signals generated by the MLP are unlike those produced by the UAF, initially
promising features of the results are that some of the characteristics and general shapes of the
UAF signals are being predicted by the MILP. This is especially noticeable when at step 73
two major events occur: the barrel pressure reduces sharply and the ice-cream temperature
reduces to below 0°C, i.e. refrigeration takes place. At this point the MLP appears to
recognise that a change in state is about to occur by altering some of its own output values.
However, closer observation reveals that these MLP output changes are time delayed responses
to these events. Again, earlier in the run, the barrel pressure undergoes three step increases
which look anticipated by the MLPs fluctuations in barrel pressure, ammonia evaporation
pressure and ice-cream temperature estimates, but again the MLP changes occur one time step
following the step increases and not simultaneously.
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In each case, therefore, it appears that the MLP outputs are influenced by changes in the UAF
outputs as opposed the MLP predicting these changes in output. Table 4.3 shows the weight
matrix between the input layer and the hidden layer, and reveals that the most significant
weight values are those from input processing element numbers 11, 12, 13 and 14 to each of
the hidden PEs. Each of the other weights have been reduced by the backpropagation
algorithm to below 0.1 (except the weight of the connection between input PE 6 and hidden PE
11 which is just above this) which means that the input lines 1 through 10 will be having little
impact upon the outpuis of the MLP in comparison to input lines 11 through 14. As can be
seen from the composition of the input vector above, these input lines correspond to the time
delayed outputs of the UAF, i.e. the MLP estimates of UAF outputs are dependent - in the
main - upon past UAF outputs with other information being considered of little import.

PE in Hidden Layer

1 2 3 4 5 6 7 8 9 10 11 12
-0.0070] -0.0036] -0.0133-0.0084 -0.0112} -0.0075{ -0.0139] -0.01 19| -0.01381-0.0225|-0.0129| -0.0181

0.0032{-0.0014] -0.0012]-0.0036] 0.0115] 0.0097] 0.0098] 0.0020]-0.0020] 0.0134] 0.0116] 0.0024
-0.0068} -0.0120] -0.0066]-0.0182] -0.0269] -0.0062{-0.0312]-0.0031] -0.0209] 0.0103]-0.0046]-0.0098
-0.0047] 0.0078]-0.0156]-0.0177]-0.0179]-0.0019] -0.0252] -0.0016} -0.0043] -0.0064| -0.0047] -0.0009
0.0012{ 0.0007]-0.0407]-0.0199]-0.0438] -0.0337} 0.0021]-0.0108]-0.0015]-0.0070]-0.0211] 0.0056
-0.0410§-0.0220] 0.0056}-0.0180]-0.0138]-0.0260]-0.0391] 0.0094}-0.0317{ 0.0079]-0.1028]-0.0114
-0.0087}-0.0058] -0.0075] -0.0329]-0.0027] -0.0021}-0.0358] -0.0043| -0.0162{ 0.0092] 0.0054]-0.0165
-0.0087{ 0.0015]-0.0189}-0.0215-0.0077|-0.0110]-0.0237] -0.0009{ -0.0078{-0.0013|-0.0043] -0.0031
0.0116] 0.0199]-0.0547]-0.0292]-0.0218]-0.0140} -0.0010] -0.0332| -0.0123]-0.0205]-0.001 1] -0.0025
-0.0349] -0.0393] 0.0096}-0.0212]-0.0136|-0.0259]-0.0452] 0.0097]-0.0237{ 0.0022|-0.0145]-0.0166]
-0.2171]-0.6177] 0.9551] 0.6146] 0.6592] 0.2658]-0.2270]-0.0757|-0.3463{-0.2705]-0.0993]-0.3716
0.2722]-0.2121]-0.2166] 0.0564]-0.4946]-0.3391] 0.1780] 0.4351| 0.2645] 02206]-0.2444] 0.4547
-0.0343]-0.0085 -0.3855] -0.0406] 0.1677 -0.1680| 0.1222§-0.2431]-0.0050]-0.2095{-0.0988} -0.0638
14]-0.5202] -0.2694] 0.3706{-0.1435]-0.0956]-0.0349{-0.4453] 0.2211]-0.3836] 0.1799]-0.1561]-0.1929]

Table 4.3 Weight matrix of connections between the input layer and the hidden layer. Predominant weight values
are concentrated in the connections between inputs 11, 12, 13 and 14 and the hidden layer.
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Clearly the MLP in its current form will never be able to act as a dynamic model of the UAF so
long as this sole dependence upon the immediate preceding process outputs occurs. The extent
to which this reliance is true can be tested experimentally by attempting to predict the freezer
outputs at time X by providing an MLP with the four freezer outputs at time k- (i.e. a 4-h-4
MLP where h is the mumber of hidden units).

85



o Premuse AErmsi ¢ wpeETiion P res uee

| |
w N
[T wl ~——
7] o .
'
az az .
: . TT————
0 ] < L
f = 8 W ,8-.8 3 r-9 B B = B 8 49
a2 a
1o CracmY arparchere torie
| |
a AR —— had
‘lll *
as . ' [
Yy v —
—
[N o
uf \ Q /
°'znannaalnggggg R EEEEEEREEEEREE

Figure 4.4 Graph demonstrating the response of a 4-12-4 MLP to the outputs of the UAF. Note the similarity
between these and the results of a 14-12-4 MLP shown in figure 4.3.

For comparison with the above, a 4-12-4 MLP was trained for 100000 epochs with training
and generalisation errors calculated as before. Here, T reduces to 0.6994 with G emerging as
72.8602. Figure 4.4 demonstrates these results graphically.

Increasing the mumber of hidden layers within the MLP to two provided a further series of
experiments which were performed, although these supplied no better results than those above,
with MLP again tending to rely upon the most recent UAF outputs.

4.1.3. Reasons For Failure.

In order to determine why the MLP network should be able to learn the dynamics of the
systems introduced in Chapter 2 and yet fail to learn the dynamics of the UAF, one needs to
consider the differences between the two problems.

Clearly, the UAF is more complex (i.e. a higher order of dynamic system) than the
mathematical models of (2.6) and (2.8), but this alone should pose litile difficulty to the MLP
provided sufficient processing elements in the input and hidden layers were allocated. One
solution in attempting to alleviate the effects of this complexity upon the modelling MLP would
be to introduce some level of preprocessing on the input signals in order to extract features that
were pertinent to the modelling problem, whilst discarding information likely to hinder the
MLPs ability to model. One such method of preprocessing would be to perform some data
transformation such as the Fast Fourier Transform (FFT) on the input vector which would -
using the FFT - move the data into the frequency domain where it may be more readily possible
to learn the process dynamics using an MLP.

86




As the purpose of such feature extracting preprocessing is to simplify the input data and
remove any extraneous information from the signal, the danger with any such technique (in
view of the ultimate fault detection requirements of this research) is that the information lost
during the transformation may be exactly the information required. If, for example, failures
displayed the same frequency spectrum as was displayed under normal operating conditions,
once an FFT was performed information pertaining to the failure would be lost. In the case of
the UAF and its three candidate faults, this can be readily demonstrated if one considers
another preprocessing technique; that of reducing the input vector to its first differential, i.e.
providing the MLP with details of the rates of change of variables whilst discarding their
absolute values. In the case of the barrel pressure sensor fault, where the sensor reading is
offset whilst the barrel is at ammospheric pressure, it is precisely this absolute value that
identifies the problem as the rate of change of the reading for the initial part of the freezer
startup is identical to that of a normal run; in this case zero.

Such an example can be considered trivial in view of the fact that sensor biases are relatively
common faults in industrial processes, and therefore discarding such quantitative
measurements can be seen as foolhardy. However, the problem with regard to this research is
that it is financially prohibitive to identify all faults that can occur in the UAF a priori, which
in urn makes it impossible to know whether any preprocessing method would be suitable in all
cases. It may prove expedient to solve the modelling problem by performing a preprocessing
routine that still allowed the three candidate faults to be identified, but such a solution would
become redundant should the scope of the system be expanded to include other faults whose
distinguishing feamires were removed by the preprocessing.

A secondary reason for resisting such preprocessing is the additional run time such methods
require in the overall system. In a real-time application, this extra processing time may become
undesirable.

A second difference between the UAF and the simple mathematical processes is that the freezer
is part of a closed-loop system. In a simple open loop system, the process outputs have a
dependency upon the inputs (i.e. y = f (u) where f() is some dynamic representation of the
system). In a closed loop (i.e. controlled) system - whilst this is still true - the inputs to the
process are also dependent upon the outputs (i.e. u = g(y) where g() is the relationship
displayed by the controller). Such a relationship implies that, in order to model such a closed-
loop system, both system inputs and outputs need to be included in the input vector of the MLP
in order to allow the modelling of both the process and its controller. However, in practice this
is already done, as such recurrency of process outputs is necessary to emulate the dynamic
behaviour of the system in an MLP.
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As several stages of operation have been identified in the startup regime of the UAF - stages
characterised by the switching in and out of various process components and changes in control
set points - it is likely that the changing from one stage to another constitutes an alteration in
the underlying operation of the freezer. As these differem stages occur sequentially in time,
this would mean that at any discrete time interval, the output of the UAF would depend not
only upon previous input and output measurements but also upon the point in time that the

measurements were made, i.e. the UAF would be a time-varying system. Thus an output
estimate for any y of the system will be

y=Ff(y,u,t) @4.2)

making the approximation of any such function using the types of MLP thus far employed
inaccurate as the composition of the input vector is inadequate. The identification [1] and
control [4] of certain classes of linear time-varying system has been discussed, the former being
achieved by introducing time-varying noise estimates into the adaptive Kalman Filter
algorithm.

4.2, Using A Time-Varying MLP.

Ice-cream Pump Speed » Berrel Pressure
Camflex Position Unilever Automated »  loe-cream Tempersture
. Freezer » Ammonin Eveporation Preasurc
> Matorioad
|S|IS|EE| S
Historical Data
Buffer E
Single charmels
Multiple charmels
(8]
Scaling ealeulation
[———% Barrel Pressure (est)
[ lec-¢cream Temperature (cst)
MLP Model \ ia B i P (est)
F————# Motorload (cst)
Logged Time Stamp o5} T

Figure 4.5 Schematic for modelling the UAF using a single time-varying MLP.

Initially an attempt to solve this problem was made using an MLP that was itself time-varying
by incorporating an explicit representation of time as part of its input vector, as demonstrated
schematically in figure 4.5.
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4.2.1. Method Of Training.

The method of training the time-varying MLP was identical to that of the time-invariant MLP
with the available data logs being split into a training and generalisation set in the ratio of 2:1
(figure 4.2). Again, a random window was moved around the training set with several records
being read to load the history buffer prior to actual training presentations being made to the
MLP.

The time stamp - which appears by each record in the data logs in the form hh:mm:ss - was
converted to an incremental integer which was scaled during training to a floating point oumber
between zero and one.

4.2.2, Experimental Results.

As before, each experiment involved a single layer MLP with the number of hidden units
varying from 5 to 15; each hidden unit possessing a standard sigmoid activation function with a
steepness coefficient of 0.4. The learning and momentum coefficients were set to 0.05 and 0.6
respectfully.

The three compositions of input vector - consisting of 15, 23, and 31 processing elements -
comprised of the UAF variables described in section 4.1.2 and an additional processing unit to
introduce the time representation into the MLLP. The results obtained for these experiments are
shown in table 4.4.

Number of hidden PEs

5 6 7 8 9 10 | 11 12 | 13 | 14 | 15

- 0.5334] 0.5075] 04815] o0.48s8] o0.5262] 04732] 0.4722] o0.4687] o0.4as3] 04824] 04716

E 15

— 104.8517]106.7779] 79.0250] £2.9038)] 89.1587] 80.7382] 86.4986] 72.7008] 88.4784| 71.0233] 715415

=]

(=}

g 04692] 0.4839] 046237] o04789| o04510] ©0.4606] 0.4330] o0.4413] o0.4238] 0.4412] o0.4440

w | 23

S 79.7217] 99.9563] 85.0729] 72.2395] 95.4785] 723343] 722105] 82.4675| ™.6723] &2.3920] 85.7320

Q

0

5 04367] 04242] 0.4405] 0.4289] o0.4168] 0.4360] 0.4296] 0.4209] 0.7 04344
31

Z

87.52318] 98.0718] 88.6329] 83.7017] BS5.826Bf 74.2756] 69.0638] 74.0058] 87.4401] 85.9011

Table 4.4 The training and generalisation errors achieved for a time-varying MLP model

Again, both 7 and G are poor, although in general T is approximately 0.2 lower than for the
time-invariant experiments indicating a slightly improved approximation of the UAF function.
The results of the highlighted experiment are shown in figure 4.6 for the 18-3d.log file.
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Figure 4.6 Graphs demonstrating the failure of a single time-varying MLP to model the UAF.,

Although graphically, the results still appear as poor as those for the time-invariant solution, it
is noteworthy that the spread of values in the weight matrix between the input and hidden
layers shows that all inputs are providing some bearing upon the eventual outputs of the MLP
as can be seen in table 4.5, which could indicate that the MLP is attempting to model the UAF.

However, the significant model mismatch displayed by the MILP renders this solution
inadequate for fault detection purposes, and experiments with increased mumbers of hidden
units and two hidden layers failed to improve on these results significanily. The conclusion
was therefore reached that another approach needed to be adopted in order to adequately model
the UAF.

4.2.3. Reasons For Failure.

As proposed above, the Unilever Automated Freezer is a time-varying system in that plant
outputs are dependent to some extent upon time. This conclusion has been reached as the UAF
has several distinct stages of operation during its startup cycle which occur sequentiatly in time
as a result of set point changes and control decisions altering the state of various process
components

However, it is unlikely that the UAF varies smoothly in time as the points at which one stage of
operation changes to another are not equi-distant. Moreover, for different processing runs of
the UAF, the stage changes may not occur at the same point during each run. Training an
MLP model with time represented explicitly as an input could be failing to emulate the
dynamics of the freezer as it itself is smoothly time-varying which would not be an accurate
representation of the freezer operation.
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PE in Hidden Layer

1 2 3 4 5
0.1944]  -0.0974] -0.1200] -0.1733] -0.1474

00633 -0.1839] -0.1279] -0.2527] -0.2804
0.0469] 0.1000] 0.0207] 0.0089] 0.1288
0.1316] -0.0662] -0.1240] -0.0825] -0.1099|
0.1472] 01589 -0.1767] -0.0895] 0.0176]
0.0068] 0.0352] -0.3181] -0.1564] -0.1409]
0.1443] -0.1852] -0.3735] -0.2500] -0.1309)
0.0307] -0.0865] -0.2100] -0.0020] -0.1589)
-0.2495] -0.1356] -0.0279] 00533] -0.0251
10| -0.0605] -0.2324] -0.3890] 0.0158] -0.1901
11| -0.0464] -0.0125] -0.2019] -0.2328] -0.1579)
12| -0.1686] -0.0786] -0.1264] -0.1337] -0.2248
13] 0.0763] -0.0662] -0.1532] -0.0372] -0.1195
14] 0.2089] 0.1555] -0.2017] -0.1662] -0.0082
PEin [15] -0.0704] 0.0131] -0.1422] -0.3408] .0.1232
Input [16] 0.0471] -0.0546] -0.0775| -0.0948] -0.1199|
Layer|17] 00477] 0.0266] -0.0478] -0.0188] -0.0073
18] 0.2165] -0.0054] -0.1019] -0.3695] -0.0391
19] -02018] -0.1467] -0.2442) - -0.1738] 0.2679
20] 0.7938 -0.7170{ 0.1761] -0.1513] 0.0506]
21] 00158 034200 03059 -04413] 0.0323
22] 04343 0.1369] 00079 04144] 02021
23] 04435] -05581] 04225] o0.1756] -0.3357
24| -0.3404] -0.2663] 00318] -0.1881] -0.0571
25| 0.0206] 03079] 02065] -0.0705] -0.0944
26| 02689 00637] -0.0235] 04091] -0.1284
27| 03124] -04400] 03716] 00778] -0.3425
28] -0.2236] -0.1176] -0.2081] -0.0346] -0.0662]
29} -0.0007] 03005] 02121 -0.1033] 00116
30] -02071] 0.120] 0.0336] 0.1601] -0.1230
31| -0.2394] -0.4207] 0.1690] 0.1193] -0.1201

Table 4.5 Weight matrix of connections between the input layer
and the hidden layer. Predominant weight values exist throughout
the matrix.

A-B =R R0 (7N E- DN [ S

As the stages of operation occur at disjointed time-intervals, an estimate for the output would
be:

Fi(Yeontt) ifp<k<p,
5, = Hi(Yey) € py<k<p,

k

(4.3)
falyeonty) o p <k

91



where p_ are a series of points in times at which the underlying model - f,() - of the freezer

changes.
4.3. Using A Cascade Of MLPs.
loo-cresm Pump Spesd Barrel Pressore
Camflex Position Unilever Antnmated # leo-cream Tempersiure
Mix Flow 1 Freezer Ammonia Evaporstion Presame
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Figure 4.7 Schematic for modelling the UAF with an MLP Cascade consisting of n individual MLPs.
The UAF can be constdered time-varying, although not smoothly dependent upon time as
would be an MLP with time as an input. Study of the freezer reveals six distinct stages of

operation (described briefly in
figure 4.8) characterised by the
switching in and out of various
process components and changes
in set points which alter the
underlying operation of the
process. If one considers that as
no significant events occur during
one mode of operation (as this
would constitute an additional
stage), each stage is likely to be
time-invariant in isolation and the

I.Fill Barrel: The first physical process the freezer
undergoes is to fill the barrel with ice-cream mixture
which necessitates the starting of the mix pump.

2.Start Dasher: The motor begins to rotate the dasher
through the mix first at a low speed, then at full speed.

3.Pressurise Barrel: Air is injected into the barrel until
the barrel pressure is greater than 4 bar.

4 Reduce NH3 Evaporation Pressure: The camflex
valve is opened until the ammonia evaporation pressure
falls below 244 bar.

5.Increase Motorioad: The load on the motor is increased
to match its set point.

6.Start Pumps: The mix and ice-cream pumps are started
and the production of ice-cream begins,

system could be described as

being piecewise time-invariant

Figure 4.8 A brief description of the stages the UAF undergoes
during startup.
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overall. Thus the system is more disjointedly dependent upon time, and attempting to model it
using an MLP with time as an input provided no greater success than before.

An alternative, where it is possible to clearly distinguish between several stages of a system's
operation as in (4.3) is to treat each stage as a functional dependence in its own right and
attempt to model it using a separate MLP. This would result in a cascade of MLLPs which it
should be possible to switch between during the normal running of the process to provide a
continuous input-output mapping (figure 4.7). A class of controller using multiple-models
exists [5] for a time-varying flight control problem using multiple Kalman Filters.

4.3.1. Method Of Training.

Once again the available data was split into a training and generalisation set, only now the data
within each .log file was subdivided into the six individual stages that constitute the startup
cycle of the UAF.

MLP # predicting UAF outputs

1 2 3 4 5 6

0 ou

10 20 30 40
Record #

Figure 4.9 Diagrammatic representation of how the MLP cascade operates in real-time. Shaded areas show
when two MLPs are being presented data simultaneously.

Six MLPs were initialised - one for each stage of operation - and presented data from each
corresponding portion of the training set by moving a random window around the data. If
records from the start of a stage were being presented to the MLP cascade, the history buffer
for each MLLP was initialised in one of two ways:

* Ifthe UAF was in stage | (i.e. being modelled by MLP #1) the buffer was cleared.

¢ If the UAF was in any other stage (i.e. being modelled by MLP #n where n # 1)
the buffer was filled with the last m records from stage n-/, where m indicates the
length of the history buffer (figure 4.9).

Initially, all the previously identified freezer variables representing inputs and outputs were
used in configuring each MLP, however subsequent experimentation dropped the inclusion of
the ice-cream temperature from all but the MLP modelling stage 6. As ice-cream only begins
to pass the temperature sensor once the ice-cream pump is started, prior to this the seasor reads
the temperature within the ice-cream pipe. The value this sensor returns prior to the pump
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being started is entirely dependent upon external environment considerations and not upon the
dynamics of the freezer.

4.3.2. Experimental Results.

As before, three compositions of input vector were applied to MLPs consisting of between 5
and 15 hidden processing elements within a single hidden layer. The activation function was
again a standard sigmoid with a steepness coefficient B of 0.4 and the MLPs each had learning

and momentum coefficients of 0.05 and 0.6 respectively.

For each of the first five MLPs in the cascade, the inputs vectors consisted of 12, 19 and 26
processing elements. The composition of the 12 unit input vector is shown in table 4.6.

PE # { Description UAF Type | Time Delay
| Barrel Pressure Set Point Set Point 0
2 Ice-cream Pump Speed Input 0
3 Camflex Position Input 0
4 Mix Flow Input 0
5 Air Flow Input 0
6 Ice-cream Pump Speed Input I
7 Camflex Position Input 1
8 Mix Flow Input 1
9 Air Flow Input 1
10 | Barrel Pressure Output 1
11 | Ammonia Evaporation Pressure Output 1
12 | Motorload Qutput 1

Table 4.6 The composition of input vector for a 12 input MLP.

For subsequent compositions of input vector, an additional seven processing elements were
added; comprising of the four UAF output and the three UAF input variables with an additional
time delay. For the sixth MLP in the cascade, input vectors of 14, 22 and 30 units were used -
the composition of which is detailed in section 4.1.2.

The results obtained for these experiments are shown in tables 4.7, 4.8, 4.9, 4.10, 4.11 and
4.12.

MLP #] (Fill Barrel).
Number of hidden PEs

5 6 7 8 9 101 1 |12 13|14 ] 15

t..a [gj 12 0.02453 | 0.02491 | 0.02540 | 0.026380 § 0.02589 | 0.02709 ]| 0.02669 | 0.02671 | 0.02682 | 0.02647 | 0.02775
B

£ 4-5 ]9 0.02432 | 0.02488 | 0.02523 | 0.02499 | 0.02476 | 0.02463

g &

z E 26 0.02446 | 0.02439 | 0.02446 | 0.02489 | 0.02497 | 0.02474 | 0.02511 | 0.02588 | 0.02564 | 0.02626 | 0.02590

Table 4.7 The training errors achieved for the first MLP model in the cascade.
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MLP #2 (Start Dasher).

Number of hidden PEs
5 6 7 8 9 10 1n 12 13 14 15
S 3| 12 |oesses] 003774 | 003996 | 0.03894 | 0.03869 | 0.03890 | 003924 | 0.03967 | 0.04021 | 0.04065 | 0.04020
5
-EB 19 | 003862 ] 0.03684 | 0.03636 | 0.03774 | 0.03789 | 0.03846 | 0.03868 | 6.04003 | 0.0399¢ | 0.03796 | 0.03897
2.
Z. S 2 0.03683 | 0.03697 | 0.03763 | 0.03640 | 0.03796 | 0.03699 | 0.03722 | 0.03757 | 0.03875
Table 4.8 The training errors achieved for the second MLP model in the cascade.
MLP #3 (Pressurise Barrel).
Number of hidden PEs
5 6 7 8 9 10 1 12 13 14 15
S R | 12 |004034] 0.04280 | 0.04148 | 0.04304 | 0.04232 ] 0.04216 | 0.04178 | 0.04158 | 0.04190 | 0.04205 | 0.04185
5 A
.gg 19 |o.04026 0.04154 | 0.04219 | 0.04024 | 0.04152 | 0.04181 | 0.04069 | 0.04092 | 0.04205 | 0.04149
n‘ F e
z.S 26 |oos029]; 5] 0.04060 | 0.04045 | 0.03988 | 0.03955 | 0.04046 | 0.04078 | 0.03926 | 0.03933 | 0.04080
Table 4.9 The training errors achieved for the third MLP mode! in the cascade.
MLP #4 (Reduce NH3 Evaporation Pressure).
Number of hidden PEs
5 6 7 8 9 10 1 12 13 14 15
S R | 12 |oo03646 ] 0.03583 | 003462 | 0.03349 | 0.03674 | 0.03339 | 0.03237 | 0.03439 | 0.03404 | 0.03386 | 0.03513
8 a
-gg 19 | 003095 | 0.03027 | 0.02919 0.02964 | 0.02945 | 0.02986 § 0.03101 | 0.03091 | 0.0297s | 0.03056
a,
z.Ei 26 002971 0.03173 | 0.03066 0.02921 | 0.02928 | 0.02951 || 0.02960 | 0.02911 | 0.03010 | 0.02950
Table 4.10 The training errors achieved for the fourth MLP model in the cascade.
MLP #S (Increase Motorload).
Number of hidden PEs
5 6 7 8 9 10 1 12 13 14 15
S R | 12 ]00s109] 0.05063 | 0.05022 | 0.05050 | 0.04977 | 0.05207 | 0.05091 | 0.05124 | 0.05208 | 0.05105 | 0.05156
Ba
-lgbg 19 | 0.05080 } 0.05001 | 0.05128 | 0.04967 | 0.04996 | 0.04890 | 0.04967 | 0.05091 | 0.05018 | 0.05111 | 0.05155
a,
A E 1 26 [oo4z 0.04963 | 0.05043 | 0.04864 | 0.04833 | 0.04998 | 0.04871 [ 0.04980 | 0.04991 ] 0.04970

Table 4.11 The training errors achieved for the fifth MLLP model in the cascade.
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MLP #6 (Start Pumps).
Number of hidden PEs

5 6 7 8 9 10 | 11 12 | 13 1 14 { 15

14 | 0.03729 ] 0.03607 | 0.03601 | 0.03831 | 0.03700 | 0.03725 | 0.03614 | 0.03538 | 0.03627 | 0.03566% } 0.03567

22 903383 ] 0.03336 | 0.03444 | 0.03323 ] 0.03253 | 0.03099 | 0.03108 | 0.03333 | 0.03209 | 0.03205 { 0.03103

Number of
input PEs

30 0.05863 | 0.04357 | 0.03000 | 0.029569 | 06.03038 | 0.03009 | 0.03002 ] 0.02912 ] 0.03006
Table 4,12 The training errors achieved for the sixth MLP model in the cascade,

For each of these tables only one error value is shown, being the training error 7. As the
previous results cited a generalisation error G for the set consisting of complete logs, the
calculation of G for only part of a log will not allow a consistent comparison to be made.

As is clearly demonstrated in the above tables, T is much improved over using a single time-
~ varying MLP; when the cascade is providing its worst predictions during stage 5, the error is
still enhanced by a factor of 10. However, observing the tables shows these errors could be
improved, in some cases by: increasing the size of imput vector; increasing the number of
hidden units; and increasing the number of hidden layers to 2. If the minimum error for a
particular stage is provided by the maximum sized input vector - as it is for all but the first
stage - it is necessary to experiment with an increased size of input vector. If the minimum
error is provided by the maximum number of hidden units - as it is for stage 6 - it is necessary
to increase the number of hidden units. In all the above experiments it is worth increasing the
number of hidden layers to two to observe whether this improves the MLPs performance, as it
is recognised that two hidden layers is sufficient to approximate any function and provide a
complete nonlinear range for the MLP [2).

The only improvement that was gained was by increasing the input vector of MLP #6 to 38
units and the hidden layer to 16 unit which reduced 7 to 0.02833. Experiments using two
hidden layers resulted in much poorer training errors even when longer training cycles were
allowed. In its final form, the MLP Cascade had the structure shown in table 4.13.

Stage Structure | Activation Function B CoefTicient
Fill Barrel 19-11-3 Sigmoid 04
Start Dasher 26-5-3 Sigmoid 04
Pressurise Barrel 26-6-3 Sigmoid 0.4
Reduce NH3 Evaporation Pressure | 26-8-3 Sigmoid 04
Increase Motorload 26-6-3 Sigmoid 04
Start Pumps 38-16-3 Sigmoid 0.4

Table 4.13 The final structure of the MLP Cascade.



Graphical results using this cascade are shown in figure 4.10 for the file 18-3d.log. For the
entire generalisation set, G was 36.6773 using this cascade; a significantly better value than for
previous methods of modelling the UAF. The switching points for changing stages in figure
4.10 were {3, 26, 30, 42, 55, 74)2. |
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Figure 4.10 Graphs demonstrating how a six stage MLP Cascade is able to model the outputs of the UAF to a
far greater degree of accuracy than previous methods. Note that no ice-cream temperature predictions are made
until the onset of stage 6.

4.4. Summary.

The aim of this chapter was to demonstrate how the Unilever Automated Freezer could be
modelled using variations on the techniques developed in Chapter 2.

Initial attempts at modelling the freezer used a single time-invariant MLP with an increasing
mumber of hidden processing elements within one and two hidden layers and 2 mumber of
differently composed input vectors. This technique was seen to have failed with the MLP
disregarding a large amount of information, relying upon immediately preceding output values
to predict the next in sequence. The reason for this failure was determined to be that the UAF -
in possessing several distinct startup stages - is likely to be a time-varying system, and the
MLP is not provided with sufficient information to approximate the functionality of the freezer.

2Switching point information is given in the form (s|, s ...s,} where s, indicates the record number
in the .log file that signifies stage x has started.



An initial attempt to rectify this situation was attempted by making the MLP itself time-varying
by providing it with an explicit representation of time as part of its input vector composition.
Experimentation with this time-varying MLP again provided inadequate results, only now the
MLP appeared to be using the complete input vector in calculating its outputs.

The failure of this MLP was determined to be that the UAF is a class of time-varying system
that can be described as being piece-wise time-invariant in that within each stage of operation
the functional dependence of the outputs to the inputs is not influenced by time, but changes
significantly when the freezer enters its next startup stage. The MLP, being smoothly time-
varying, appears unable to model this behaviour.

An attempt was then made to model each stage of the UAFs operation with an individual MLP
- ultimately linking each MLP together to form what could be termed an MLP Cascade,
providing a continuous input-output mapping of the UAF. This provided predictions of far
greater accuracy than the previous two methods, although a degree of model mismatch is still
evident.

This mismatch could be attributable to the manner in which the switching between the different
stages in the startup is achieved. Currently a rule-based switching system is employed which
uses expert knowledge to formulate the rules. This system, its inadequacies, and possible
alternatives are pursued in the next chapter, which attempts to further improve the modelling
capabilities of the MLP Cascade.
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%Chapter 5.

Switching Mechanisms For The MLP
Cascade.

Chapter 4 introduced the MLP Cascade as being a novel method of modelling time-varying
dynamic systems which can be described as being piecewise time-invariant, such as the
Unilever Automated Freezer. The purpose of this chapter is to highlight how the performance
of the MLP Cascade can be influenced by the use of alternative switching mechanisms between
one MLP in the Cascade and the next.

Six distinct phases of operation can be identified in the startup cycle of the Unilever Automated
Freezer. These stages are governed in the main by control laws, and are specifically:

L. Filling the barrel with mixture.

2. Starting the dasher rotating.

3. Increasing the barrel pressure to 4 bar,

4. Reducing the ammonia evaporation pressure to 2% bar.
5. Increasing the motorload to its set point,

6. Starting the mix and ice cream pumps.

The identification of these stages, coupled with the inability of a single multilayer perceptron -
both time-invariant and time-varying - to successfully provide a continuous input-output
mapping for the UAF led to the conclusion that the process is piecewise time-invariant system.
In this case, it was possible to model each individual stage with a single MLP; the entire
startup cycle being modelled by what can be termed an MLLP Cascade.

During Chapter 4, a rule-based switching mechanism was employed which was based upon
expert knowledge of the UAF. This chapter will examine this technique more closely, and offer
several alternatives that do not rely as closely upon explicit knowledge of the freezer. Finally,
a optimum method for training the MLP Cascade will be proposed.
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5.1. Rule-Based Switching.

Knowledge based (expert) systems are well established in the fields of control and FDI systems
[2, 7, 8 and 9], and are a principal artificial intelligence tool. Typically, expert systems
simulate luman reasoning by holding information pertaining to the problem domain (the
knowledge base) and applying deductive or inductive rules (the inference engine) to ascertain
new knowledge about the domain [5].

While it is not proposed to develop a complete expert system shell to control switching in the
MLP Cascade, it is useful to draw on certain aspects of expert system development theory;
more specifically the elicitation and formulation of rules.

S.1.1. Principle Of Operation.

The composition of rules in knowledge-based systems are similar to the branching conditions in
many programming languages in that they test a condition, and perform an action should the
condition be satisfied, i.e. they take the form:

IF (antecedent 1 is true) AND/OR
(antecedent 2 is true) AND/OR

(antecedent n is true)
THEN

(consequent 1)

(consequent 2)

(consequent m)

For the purposes of deriving rules for the switching from one MLP in the Cascade to the next,
it was necessary to elicit the knowledge from experts on the UAF, and determine how they
deduced - if possible from the datalogged records of the freezer - which stage of operation the
UAF was in. Numerous knowledge elicitation techniques exist which attempt to gather the
most complete and unambiguous series of rules available [1], however the modest size of this
problem domain meant that the most common form of elicitation - interviewing [4] - was the
most practical in this case.

It was identified that each stage in the UAFs startup cycle can be identified from the operating
records, and that a simple switching mechanism could be derived and encoded with the rules
used to distinguish between stages.

Table 5.1 shows the rules that govern the start and end of each stage.
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Start/End Stage | Rule
Start 1 Mix pump starts; mix flow 8.
End 1 Mix flow reduces.
Start 2 Motorload kicks.
End 2 Air flow begins.
Start 3 Air flow begins
End 3 Barrel pressure is greater than 4 bar.
Start 4 Camflex position = 15%.
End 4 Ammonia evaporation pressure is less than 2V bar.
Start 5 Ammonia evaporation pressure is less than 21 bar.
Erd 5 Motorload set point is reached.
Start 6 Pumps begin to operate.

Table 5.1 Initial rules developed for the switching MLPs in the Cascade.

A danger with attempting to use all the parameters detailed in table 5.1 is that some of the
measurements are uareliable using the data logging software on the freezer. An example of this
is the motorload pulses at the start of stage 2. The duration of these pulses are less than the
maximum sampling time of the software and are likely to be missed during some runs of the
freezer. Again, expert knowledge was employed to resolve these rules into those in figure 5.1.

Rule 1: IF (Not yet started stage 1) AND
(Mix pump started i.e. greater than 90%)
THEN
(Start stage 1)
Rule 2: IF (In stage 1) AND
(Mix flow drop by more than 4) OR
(Mix flow drops below 3)
THEN
(Start stage 2)
Rule 3: IF (In stage 2) AND
(Air flow begins i.e. 2 1)
THEN
(Start stage 3)
Rule 4: IF (In stage 3) AND
(Barrel Pressure is greater than 4)
THEN
(Start stage 4)
Rule §: IF (In stage 4) AND
(Ammonia evaporation pressure drops below 214)
THEN
(Start stage 5)
Rule 6: IF (In stage 5) AND
(Air flow is gresater than 5)
THEN
(Start stage 6)

Figure 5.1 Final form of rules derived for switching between MLPs in the Cascade.
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As these rules were unambiguous and relied upon measurements whose reliability could be
guaranteed, it was possible to incorporate them into the operation of the MLP Cascade.

5.1.2. Experimental Results.

As was mentioned in the summary to Chapter 4, the MLP Cascade used the rules derived in
figure 5.1 for its switching mechanism and the results are displayed graphically in figure 4.10.
The accumulated Buclidean distance error measurement G (equations 2.9 and 2.12) was
36.6773. The switching point signal is displayed in figure 5.2.

Rule-B ased Switch

08 1

0.6 1

0.4

0.2 1

0 10 2 €0 40 S0 &0 70

Switdhing$ ignal Threshad

Figure 52 Graph demonstrating how the switching signal generated by the rules transgresses the threshold
boundary.

As can be seen in figure 4.10, a degree of model mismatch is still evident between the MLP
Cascade models and the UAFs outputs. As the greatest model mismatch occurs close to - or at
- a switching point, it could be that the derived rules are inaccurate in one of two ways; either
they are incorrect or they are inexact. The former implies that the antecedents of the rule do
not have a bearing upon the switching point, the latter that a precise - or crisp - decision
boundary is inappropriate in this case.

An example of a crisp and fuzzy decision boundary is shown in figure 5.3. In the former,
before the antecedents of a particular rule have been satisfied the switching point is determined
as not reached. However, with a fuzzy decision boundary there is a region before and after the
antecedents of the rule have been satisfied when the switching point is determined as being
possibly reached i.e. a degree of uncertainty exists.
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Figure 53 An example of (a} a crisp and (b} a fuzzy decision boundary for determining if a switching point has
been reached.

This uncertainty with respect to when a particular switching point is reached can be
accommodated by using an MLP to learn the switching points from the set of rules. By
applying a standard sigmoid squashing function (figure 1.5) at the output node of an MLP, the
MLP will give a vatue between 0 and 1 and allow it's output to saturate very quickly toward
these values. In this case, a value of zero will indicate a certainty that the switching point has
not been reached, a one will indicate a certainty that it has, and a value in between will indicate
the uncertainty.

5.2, Simple MLP Switch.

The rules provide a definite point in time as to when to switch from one stage in the MLP
Cascade to another. However, this boundary is often fuzzy with different rules governing when
one stage can be said to have ended and the next stage begun, as can be seen in table 5.1.
Here, for example, the end of stage 1 is signified by the mix flow reducing, whereas the start of
stage 2 is signified by the motorload kicking. Resolving these rules into an unambiguous set as
in figure 5.1, changes these fuzzy decision boundaries into crisp ones, but may result in model
mismatch between the MILP Cascade and the UAF.

As MLPs are able to detect certain features within an input vector, it should be possible to
train one to detect stage changes and provide a fuzzy boundary between them. Two possible
architectures for the MLP would be to have:

. the same number of outputs as there are stages. The rationale here being if one of the
outputs showed a sufficiently positive output, i.e. close to +1, that would represent the
stage the process was in.

. a single output. This output would be close to +1 if a switching point had been
reached and zero otherwise.
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The danger with the former is that should several of the MLPs outputs be equally positive, the
result would be ambiguous. A possible solution would be to incorporate a winner-takes-alll
rule at the output layer. However, as the rules are formulated with information pertaining to
which stage the UAF is currently in, it seems likely that an MLP would need to be provided
with this information as part of it's input vector. Given this, it appears preferable to have only
a single output processing element signalling a switching point being reached or not. If the
MLP is aware that the UAF is currently in stage # then the only valid stage it could next be in
would be stage n+/. Allowing the MLP to signal a change to stage n+2, or even back to n-/
would only serve to complicate matters unnecessarily.

S.2.1. Principle Of Operation.

It should be possible to train an MLP to distinguish the features that the rules recognise by
presenting as an input vector complete records from the logs.

Experiments were conducted using MLPs varying in size in terms of internal architecture (i.e.
the mumber of hidden processing elements were varied from between 5 and 16), and in terms of
input vector. In order for the MLP to determine that a switching point has been reached, it must
be presented with current operating data (at time k), and one record of time-delayed data (at
time k-7) in order to determine any relevant changes in process variables. For these
experiments, all process variables except the time stamp and the alarm condition were used to
compose the input vector, i.e. 19 variables. Therefore the MLP had 39 input units initially (2 x
19 process variables + 1 to represent the current stage), increased by 19 for subsequent
experiments.

The available logs were again arranged into a training and generalisation set in the ratio of 2:1
(as in figure 4.2) and switching point information positions generated for the training set by the
same mechanisms that the rules use to recognise them,

1 A mechanism employed at the output layer of an artificial neural network by which each processing element is
connected to each other in the layer by an inhibitory connection, while an excitatory connection exists joining
each processing element to itself. The result is the output processing elements compete with one another until

only one remains active.
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The MLP was trained by randomly positioning a window onto the training set and presenting
this information to the MLP. If the input vector corresponded with a switching point, a value
of 0.9 would be backpropagated through the network, otherwise a 0.1 would be used2.

During testing, the MLPs output can be seen to spike in indication of a switching point. By
selecting a threshold value that needs to be exceeded if the network is to signal a switch of
stage, the sensitivity of the MLP switch can be altered, and false alarms increased ar reduced.

5.2.2. Experimental Results.

Each experiment used one input vector comprising of 39, 58, 77 and 96 processing elements
respectively upon a varying mumber of hidden units in a single hidden layer. In order to
encourage values close to 0 and 1, a sigmoid activation function with a steepness coefficient of
0.5 was applied to each processing element, including the output unit. In each case the learning
coefficient was set to 0.1 and 0.6 respectively.

Table 5.2 details the results achieved by the various sized MLPs,

Number of hidden PEs

5 6 7 8 9 10 f 11 | 12 | 13 [ 14| 15 ] 16

39 |]0.08516 ] 0.08479 | 0.08542 | 0.08812 | 0.0%395 | 0.08402 | 0.08618 | 0.08551 | 0.08562 | 0.08537 | 0.08424 | 0.08518

58 ] 0.08499 ] 0.08294 | 0.08395 | 0.08417 | 0.08235 | 0.08410 | 0.08291 || 0.08449 | 0.08390 | 0.08368 | 0.08426 | 0.08455

77 | 008150 ] 0.08065 | 0.08102 | 0.08274 | 0.08393 | 0.08142 | 0.03141 | 0.08333 | 0.08256 | 0.08190 | 0.08228 | 0.08315

Number of input
PEs

06 ] 0.08400 | 0.08145 | 0.08254 | 0.08335 | 0.08091 | 0.08352 | 0.03214 | 0.08349 ] 0.08326 | 0.02250 | 0.08299 | 0.08382

Table 5.2 Training errors for the simple MLP switch.

These values represent the training error of the MLPs after a training cycle of 100,000 epochs.
Although all errors are in the same region as each other, it is interesting to note that each MLP
composition was able to learn five out of the six switching points. However, subsequent
training of the 77-6-1 MLP (being the structure which provided the lowest error up until this
point) gradually reduces the training error to around 0.032 (figure 5.4).

All six switching points have now been recognised, though the penultimate two are not
identically placed with the rule based switching mechanism (figure 5.5).

2Although the sigmoid function saturates toward 0 and 1, it will never actually achieve these values.
Therefore an MLP with this function operating at its output layer needs to be presented with values
close to 0 and 1 to represent them (e.g. 0.1 and 0.9) as these can be reached by the network.

105




Traning Enror OF 77-6-1 Nelwork.
008
Q0%
004 -
002
4] T T v T T t T T T v T T T T T T T —
° = 8 8 g 8 8 e 8 g8 8
Training Epochs (x100,000)

Figure 5.4 Training error of the 77-6-1 MLP over an extended training period.

The first three and the last one of the switching points have been accurately recognised, whilst
the fourth is misplaced and the fifth is only accurate if the threshold value is carefully chosen
(in this case 0.49).

ML P Switch
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Figure 5.5 Graph demonstrating how the signal generated by the MLP transgresses the threshold boundary.
Using the MLP switching method with the UAF logs is demonstrated graphically in figure 5.6
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Figure 5.6 Graph demonstrating the performance of the MLP Cascade using a simple MLP switching
mechanism with a threshold value of 0.49. Switching points are {3, 26, 30, 42, 56, 74}.

A problem with both the rule-based mechanism and the simple MLP switch, however, would be
if the expert knowledge determining the placement of switching points was flawed and the
points were not in their optimum places. The rules determining when to switch stages would
prove incorrect, and the simple MLP switch - being trained by these rules - would be learning
these errors. A method therefore needs to be developed by which optimum switching points can
be found that do not rely upon expert knowledge.

5.3. Error Switching.

A simple mechanism for controlling the switching mechanism would be to employ some
quantitative measurement of error in the residual signals that would signal a switching point
should some predetermined threshold value be exceeded.

5.3.1. Principle Of Operation.

The first stage of startup of the UAF can be deemed to have begun when the mix pump is
started and the flow sensor begins to register that the mix is being pumped into the barrel. At
this point MLP #1 in the Cascade can begin modelling the freezer outputs. If the MLP is
modelling its correct corresponding stage, the difference between the UAF and MLP outputs
(the residual error - calculated in this case using a Euclidean distance measure, equation (2.9))
should be small. However, once a switching point has been reached, the error should increase
significantly, and the MLP changed to the next in sequence.
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The success of such a method depends upon the accuracy with which each MLP in the cascade
models its own particular stage, as ideally a low threshold would reed to be set to enable the
switching to occur as soon as pdssible between stages. If significant model mismatch was
evident, the threshold would need to be set high, impairing the operation of such a method.

A further problem would be if an MLPs predictions were high for one time step during a
particular stage of operation. This one-off high residual would trigger the switching
mechanism to change to the next MLP in the Cascade, which would begin modelling before its
stage had begun. This would be likely to cause high errors which would again trigger the
switching mechanism. To reduce the risk of spurious high residual errors causing problems, it
is proposed that the errors be accumulated during each stage of operation and a switching point
be signalled when this accumulated error crosses a threshold.

5.3.2. Experimental Results.

The results demonstrated in table 5.3 show how the MLP Cascade responds to different
threshold values being used to determine switching points.

Threshold Value | Generalisation Error Switching Points For 18-3D.LOG

0.1 138.8537 {3,5 6,7, 11, 12}

0.2 122.6838 {3, 13, 15, 17, 24, 25}
0.3 34.5920 {3, 26, 30, 42, 59, 72}
0.31 33.0303 {3, 27, 31, 44, 61, 73}
0.32 33.0303 {3, 27, 31, 44, 61, 73} -
0.33 33.2014 {3, 27, 31, 45, 62, 73}
0.4 35.6132 {3, 27, 32, 50, 64, 74}

Table 5.3 Switching point information generated by various threshold values.

A threshold level of 0.31 is the lowest value which provides the most accurate generalisation of
the MLP Cascade, although the accuracy of the rule-based switching mechanism is superior to
this. Figure 5.7 demonstrates the performance of the error switching mechanism graphically
for the file 18-3d.log.

Experiments were conducted using multiple thresholds, i.e. a different threshold value for each
switching point, but no significant improvements were made.
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Figure 5.7 Graph demonstrating the performance of the MLP Cascade using an error switching mechanism with
a threshold value of 0.31. Switching points are {3, 27, 31, 44, 61, 73}.

Figure 5.8 demonstrates how the accumulated Fuclidean distance error used in this switching
mechanism gradually rises while the current MLP is modelling its correct stage but then rises
sharply once the switching point has been passed.
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Figure 5.8 Graph demonstrating how the sccumulated error transgresses the threshold boundary. The
instantaneous error does not possess such high distinguishable peaks.

An obvious disadvantage of the error switching mechanism is that actual switching points are
not signalled until MLP #n is modelling stage n+1 sufficiently poorly to allow the error value
to increase sharply and exceed the threshold. Therefore optimum switching points will not be
recognised, as switching only occurs after such points have passed. In order to switch at such
optimum times, 8 mechanism needs to be developed which does not rely upon predetermined
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rules, but which is able to recognise the optimum time to switch online during the operation of
the freezer.

54. Optimal MLP Switch.

If the rules governing where to switch between MLPs were inaccurate, a simple MLP switch
would be trained to generate the same erroneous switching points as supplied by the rules.

The rationale behind using an MLP Cascade to model a system with several stages is that
stage, can be modelled by a function f,() which can be approximated by MLP,, in the cascade.
As the system moves from stage, to stage,, |, the switching mechanism informs the cascade to
change from MLP, to MLP, ;. However, although a point may have been reached in the
freezer operation where a different control law needs to applied - a situation encompassed in
the rules derived above - the system dynamics may still be better modelled by the preceding
functional approximation until the effects of the stage change become pronounced. In this
situation, the rules will be informing the MLP cascade of the switching point too early.
Similarly, on the approach to a switching point being recognised by the rules - although the
conditions to switch have not yet been met - the succeeding functional approximation may
already be able to better describe the freezer dynamics than the current one. In such
circumstances, the positioning of the switching points determined by the rules need to have
their positions optimised.

54.1. Principle OF Operation.

The MLP Cascade needs to
have had some preliminary
training so that MLP,
approximates function f,()
which described the dynamics
of stage, to some arbitrary
degree. One method of
. . optimisation would be - should
Figure 5.9 A typical UAF output showing stages of operation (1..6) and the sample point fall within
switching points {s,.. s5}. The signal is sampled at time k. stage,, - the input vector can be
passed through MLP,, MLP, and MLP,,, and the resulting three residual errors compared.
The switching point can then be incremented, kept the same, or decremented depending upon
which error was the minimum.

I 1 12131 4
8, 5, B8,
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Consider the situation shown in figure 5.9, where a sample at time & can be identified as being
in stagey. Each MLP in the cascade will have been trained in advance using the original
switching point timings determined by the rules. The input vector from sample & can be passed
through MLP3;, MLP,4 and MLPs generating the errors ej, ¢4 and es. If ej is the lesser of the
three, s4 will be moved forward one sampling point. If e5 is the lesser of the three, s, will be
moved back one sampling point. An MLP can now be trained to generate switching point
information based on this new data, which should contimie to change throughout the training
cycle until the best points for each MLP in the cascade have been reached.

The mumber of hidden units and the composition of the input vector was varied in the same
manner as for the simple MLP switch.

54.2. Experimental Results.

Results for these experiments were extremely poor. Regardless of the degree of historical
information presented, the size of the hidden layer, or the number of hidden layers, the training
errors did not drop below 0.6846. Upon testing the MLP which had produced this training
error on the generalisation set, the network output failed to spike at discrete intervals signalling
switching points, as shown in figure 5.10.

L
T  —

Figure 5.10 Graphs demonstrating the failure of an MLP to optimise and learn switching points.
Here, with the threshold set to 0.52, the MLP output does not exceed it and so the MLP
Cascade predicts with MLP #1 for the duration of the run. However, when the threshold is
lowered to 0.51, the initial spike exceeds it but subsequent MLP outputs are even higher and
exceed the threshold also. In this situation, the MLP Cascade switches between each MLP in
succession, with individual networks subsequent to the first anempting to model the UAF for
one record only.

A problem with attempting to learn optimum switching points in such an ad-hoc manner, is that
the positions of such points are likely to be continually moving slightly allowing the MLP no
time to learn their positions. Also, a danger exists that optimal switching points could be learnt
with respect to a local minimum, rather than the problem's global minimum. It is therefore
desirable to use a mechanism to optimise the switching points with respect to their global
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minimum a priori to these points being learnt by the MLP Switch. A technique which could be
utilised to this end is the Genetic Algorithm optimisation technique.

5.5. The Genetic Algorithm.

The genetic algorithm (GA) is a global optimisation technique based upon a natural selection
principle. Populations of possible solutions are generated by the algorithm and processed by a
mumber of genetic operators such as crossover and mutation. The results of these operations
are measured against some fitness function to determine the success of the solution and a
mumber of the current generation selected to compose the next population. The process is
repeated until some stopping condition is reached, such as the fitness function for one member
of the population exceeding a certain value. An example of a GA used for adaptive control is
provided in [6].

In a problem such as finding the optimal switching poimts for changing from one MLP in the
Cascade to the next, an obvious fitness function is the generalisation error of the MLP cascade.

5.5.1. Principle Of Operation.

A number of techniques exist to search a problem space with the aim of maximising a reward
function or minimising a cost function. These fall mainly into the realms of (a) calculus based
searches - such as hill-climbing - which can encounter problems finding a global optimum
where there are local maxima (or minima) in the search space, and (b) random searches which
can be computationally inefficient.

The GA offers improvement over both these forms of searches. In the first instance, it uses a
population of points to conduct a search, as opposed to the single point used by many hill-
climbing techniques, thereby reducing the risk of settling to local optima. In the second
instance, it uses random choice in guiding its search strategy, which differs from random
searches in that it is not directionless.

The basic binary genetic algorithm operates in the following way:

Step 1: Determine a set of variable parameters which affect how good an
individual solution to the problem will be. Each potential solution
formed by this parameter set will be converted to a sequential string
of bits (0's and 1's), referred to as a chromosome.

Step 2: Determine a quantifiable measurement of how good a solution a
chromosome provides, referred to as firness.
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Step 3: Genperate an initial population of chromosomes where each

chromosome consists of a random sequence of 0's and 1's.

Step 4: Calculate the fitness of each member (chromosome) in the
population.

Step 5: Form the next generation of the population by performing some
selection criterion to determine which members will go through.

Step 6: Check to see if the stopping condition for the GA has been satisfied,
and end the search if it has.

Step 7:  Perform genetic operations upon the population.

Step 8:  Calculate the fitness of each member in the population,

Step 9: Form the next generation of the population by performing some

selection criterion to determine which members will go through.
Step 10: Repeat steps 6 through 9 until the check in step 6 is satisfied.
Typically, it is steps one and two which are the most time consuming and problematic to
complete. Following these, the genetic algorithm is generic and can be applied to a large
number of problems. The following sections expand upon some of the terminology introduced
in the basic operation of the GA.

5.5.1.1. The Chromosome.

A potential solution to a specific problem is comprised of a mumber of relevant parameters
which are deemed influential in determining how good a solution will be. This list of
parameters can be converted into a string of Q's and 1's which are termed chromosomes. An
individual chromosome is a member of a population of chromosomes with which the GA will
perform its search. Strictly speaking, the term chromosome is a facet of natural systems, and
the term string is often used in the context of the GA.

For example, a solution to a problem might involve three parameters - x, y and z - whose
values fall in the ranges 0..3, 0..10, and -50..50 respectively. The string composition could be
achieved as shown in table 5.4.

Parameter Range No of values | No of bits Lowest Highest
Value Value
X 0.3 4 2 11
y 0.10 11 4 0000 1010
z -50..50 101 7 0000000 1100100

Table 5.4 The string composition for an example genetic algorithm.
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Therefore the total number of bits needed to compose a chromosome would be 13 (2+4+7). A
typical chromosome may have the following contents.

110]10(0jO0|1[0OjO|[1|1|1|1]|0O"

X y oz
=2 =1 = 30 (or -20 when adjusted)

Genetic algorithm schema theory [3] proposes that the GA performs its search according to bit
strings which match templates (schemata) that the GA determines provide a good solution. It is
important to note that the GA does not formulate these schemata explicitly, but is theorised to
implicitly devise them during the course of the search. For example, by introducing an
additional symbol *' to indicate either a O or a 1, one can compose a schema such as
10#01%0**11# i.e. the specified bits are important whilst those indicated by a '*' can be either
0 or 1. If the GA had determined that this schema provided good solutions, it is likely that the
above chromosome would have a high fitness value as it matches the template.

5.5.1.2. Fitness.

Fitness is an objective numerical measure of how good a solution to a particular problem is,
and as a result is entirely specific to the problem. Typically, the higher the fimmess value, the
better the solution is and the GA artempts to maximise the fitness of the entire population and
arrive at the global best solution possible.

5.5.1.3. Selection.

Selection is the process by which members of the current population are allowed to progress to
the next generation by means of some mechanical procedure, and is therefore analogous to
reproduction amongst biological systems.

The GA rypically selects
members for the next
' Member #] | generation according to fitness.

Population.

— This means that not only do
D Member #2

the fintest members of the
D Member #3 | current population possess a
#4 | Bood chance of appearing in
the next generation, but the
fitter they are the greater

mumber of their ‘offspring'

Figure 5.11 Selection can be accomplished using a roulette wheel where there are likely to be. The
each population member is allocated a slot size proportional to its fitness.
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simple GA produces a symbolic roulette wheel upon which population members are allocated
slots whose sizes are weighted with respect to the proportion of total fitness the chromosome
possesses. Consider figure 5.11 where a population of five members have been ranked in order
of their fitness. The total population for the generation is summed, and the proportion of that
fitness each member possesses is calculated, and slot sizes allocated accordingly. The 'ball' is
now rolled five times (once for each member of population) and the member whose slot the ball
falls in is copied to the next generation of the population. While the chances of member #1
appearing in the new population are greater than member #5, it is important to remember that
the selection procedure is based upon randomness and that while the probability of the pew
population being made up of five copies of member #5 is extremely small, it is still a
possibility.

The possibility therefore exists for the GA to produce a fit member of the population, only to
lose it in the selection procedure. While the GA is likely to reproduce this fit member after a
number of further generations, an extension to the GA algorithm - referred to as elitism - is
intended to remove this possibility. With elitism, at least one place in the next generation is
reserved for the fittest member of the current population, the remainder being filled by the
usual selection procedure.

5.5.1.4. Genetic Operators.

Genetic operators work on changing the current population in two ways. Firstly, two members
of the population are 'mated’ with each other, producing two new members. Secondly, ore
member of the population is altered in a small way producing a single new member. These
operations are referred to as crossover and musation respectively.

Crossover

Crossover occurs by selecting two members of the population (the ‘parents’) and picking a
random point somewhere within the bit string (point k). The first £ bits of the first parent are
joined with the bits from k+/ to the end of the string of the second to form the first ‘child’, and
vice-versa to form the second child.

For example, if before crossover two members of the population were:
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after crossover they would become:

B*=1111|0[(O0O]1]|]1]O0|lO|1|1}1}1(0QO

Mutation

Mutation occurs by selecting one member of the population, and a random point somewhere
within the bit string (point ). The bit indicated by & is changed to a 1 if it were originally a 0,
or a 0 if it were originally a 1.

For example, if before mutation a member of the population was:

after mutation it would be:

aAt=(110(0|O0OfO]J1]|]0Of[O|Of1]|1|1]O

Usually crossover and mutation are not performed upon every member of the population but
with respect to probability values. The probability of crossover is usually set high (a value
such as 0.6) while the probability of mutation is usually set low (a value such as 1/(population
size)). Whilst the ultimate best probability values are problem dependent, a series of
experiments across a five function suite suggests that these values are generically adequate [3].

5.5.1.5. Stopping Conditions.

As with the choice of fitness function, the decision to stop performing the GA search is
dependent upon the problem. Typical stopping conditions are:

. When the number of generations has reached a predetermined value.
. When the best fitness value has not improved for a predetermined number of
generations.
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. When the best fitness equals a predetermired value. Some problems may, by
nature, have an upward boungd upon how good a solution is. If this is reached,
the best possible solution will have been produced, and subsequent generations
will not improve upon this. An example would be attempting to minimise a
cost function which is unable to fall below zero.

. Performing a check to determine how diverse the current population is, and
stopping if the population consists of mostly identical members (i.e. it has
converged). In an extreme case where every member of the population is the
same, crossover - which is the operator with the higher probability of
occurring - will not produce any fresh population members. It would then fall
to the mutation operator to introduce diversity, which would occur only
occasionally.

One convergence check is described by the following:

1 L-1 ;b

2- ;i
C=— —_— — (;.1)
L?; |P|

where P, is the population set at generation ¢, L is the length of each chromosome in P, and by
is the bit in the jth column of each chromosome in P; in turn. If the population contains 50%
ones and 50% zeros within each column it is as divergent as it can be and this function returns
0; if the population contains 100% ones or 100% zeros within each column, it has completely
converged, and this function returns 1. For example, given a population set at generation ¢ of
four chromosomes, each four bits long as follows:

Coumn 1 2 3 4
Member#1 = 1 | 0| O | 1
Member#2=( 1 | 0| 1[0
Member#3 =| 1 | 0| 1] 1
Member#a=! 1 | 0{ 0O 1

Here, the convergence of column 1 is 1, column 2 is 1, column 3 is 0 and column 4 is 0.5
making the convergence of the total population set 0.625.
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5.5.2, Experimental Results.

For determining the optimum switching points for the MLP Cascade, the relevant parameters in
configuring a member of the population are the integer sample points that represent the
switching positions. As the startup procedure of the UAF would only exceed 256 samples
under fault conditions and the final stage may occasionally start after sample 127 under normal
conditions, eight bits were assigned to each of the six switching points, making a total
chromosome length of 48 bits. As crossover and mutation of this sequential string would -
when decoded - at times produce a set of switching values which were nonsequential, the values
were sorted prior to the fitness of the solution being ascertained. This meant the GA was
searching through presorted strings in preference to determining that sorted strings provided
good solutions.

The fitness function was based upon the generalisation error (2.12) of each individual log file
such that the fimmess, f, was:

f= ﬁ x 100 5.2)

where G is the generalisation error of the log. In this way, the possible fitness was bounded
between 0 and 100, as a perfect solution would return a generalisation error of zero.

An elitist genetic algorithm was then used for each log in the training set until one of the
following conditions were met:

. 10,000 generations had occurred.

. The population was 95% convergent. This calculation was based upon the
convergence of bits in each column of the population according to (5.1).

A population size of 30, a crossover probability of 0.6 and a mutation probability of 0.033
were used.

The GA produced switching point information for each log file as shown in table 5.5.
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Log | Switching points | Generalisation | Switching points | Generalisation | Improvement

name by rules Error by GA Error (%%)
1-4A | {2,725, 30,42, 55, 98} 5.8592 | {1.23.24.41, 63,93} 5.8284 053
14C | (2 25,30,43,55, 77} 3.6191 | {2, 23,24,44,54,75) 33560 127
14D | {2,25,29,42, 55, 78} 43485 | {1,23,27.45,55, 75} 4.0911 5.92
14E | (2 25.30.42, 56,74} 3.6968 | (2, 22,24,40,54,73) 3.4547 6.55
10-7A | {0, 23,27,42,53,83) 64211 | 10.23.24.42, 54, 86} 5.9747 6.95
11-9C | [0.23,28,40, 53,73} 4.1805 | {1,22,23,40, 52,73} 3.9862 4.65
11-9E | {0, 23,27,44,55,75) 3.9015 | {0,23,25,47,57,76} 3.6030 9.73
147A | {0,23,27, 40, 55, 69) 4.2094 | {0,23,25,44,56,71) 3.7629 10.61
18-3B | {2, 25, 30,43, 56, 73} 45227 | {1.24,25.40, 55, 70} 42161 6.78
18-3C | {3, 26,30,43, 54, 76} 5.0300 | {4,19,22,28, 48,71} 4.8933 2.72
18-3F | {3,26,30,32,55, 75} 10.1308 | {2.16,17,32,47, 65} 9.4885 634
24-7A | 10, 23,27,41,54,75} 4.7302 | {0,23,24,44, 55, 76) 4.4519 5.88
24-7C | {0, 23,27.41,53, 70} 35542 | {0,23,24,37, 54, 72} 3.2563 8.38
24-7E | {0, 23, 28,43, 54,73} 4.4033 | {0,24, 25,45, 55, 74} 4.1555 5.63
24-7F | 10,24, 28,40, 53, 74} 3.6247 | {0, 24, 25,45, 54, 75} 3.2455 10.46
24-7TH | {0,23,27.48,61.71} 45418 | {0, 23,24,50, 62, 72) 4.2691 6.00
31-3A | {3,26,30, 43, 55, 112) 73116 | {1,24,25,44,90, 111) 6.8065 6.91
31-3B | {3.26.30,44, 56,89} 52001 | {1, 24, 26,38, 56, 88} 4.9423 6.73
74D | (3,26, 30,42, 56,75} 32454 | (2,23,26,27,55, 72} 3.0505 6.01
84A | {0,23,27,41,53,84) 6.8445 | 0,23, 24,41, 55, 86} 64513 5.74
Overall 99.5644 93.2838 6.31

Table 5.5 The switching point information generated for each log file in the training set.

Taking 1-4c.log as an example, the startup information is 96 records in length. Since each
solution string is a six parameter variable, the GA will have to search six dimensional space

with a 96 unit axis in all dimensions. One way to view such space is to plot it on two three
dimensional graphs, although this is unsatisfactory in that for each graph space will be fixed in
the three dimensions not shown. Figure 5.12 shows how, after 2000 generations, the GA has
begun to cluster its solutions, demonswrating how it begins to converge on the optimum

solution. On the graph it is interesting to note that one chromosome is far from the other
clusters. This solution had a fitness of 8.4 compared to the next worst which was 23.6, and
would therefore be unlikely to survive to subsequent generations.

Once the switching point information is desived by the genetic algorithm, it is possible to train
an MLP in the same manner as the simple MLP Switch (section 5.2). The results for this are
shown in table 5.6.

Number of input
PEs

Number of hidden PEs
5 6 7 8 9 10 1 12 13 14 15 16
39 0.04257 | 0.038440 | 0.0324} § 0.01839 | 8.03832 | D.03831 | 0.04111 | 0.04251 ] 0.04244 | 0.04208 | 0.04241 | 0.04157
58 0.06724 | 0.06719 | 0.06477 | 0.06591 | 0.06783 | 0.06624 | 0.06531 | 0.06816 | 0.06690 | 0.06740 | 0.06981 | 0.07309
717 0.07001 | 0.06856 | 0.07050 | 0.07098 § 0.07019 || 0.05872 | 0.07176 | 0.07442 | 0.07343 | 0.07573 | 0.07856 | 0.08018
96 0.07446 | 0.07289 | 0.07132 | 0.06954 | 0.05930 | 0.06845 | 0.07148 | 0.07287 | 0.07484 ] 0.07730 ] 0.07772 | 0.07766

Table 5.6 Training errors for the optimal MLP switch.
A oumber of things are in evidence: the results are superior than for the simple MLP switch;
the more time-delayed data is used in composing the input vector, the greater the training error;
and a number of different MLP architectures for an input vector of 39 units appears marginally
better than the others.
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As with the experiments for the simple MLP switch, the training time was extended to
determine the lowest likely training error for a 39 input MLP with 6 and 10 hidden units. In
addition, two hidden layer MLPs with an extra 6 and 10 hidden units in the second hidden layer
respectively were used to ascertain if this led to an improvement in performance. The results

are shown in figure 5.13.
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Figure 5.12 The space the GA must search in finding the optimal switching points for an individual datalog (in
this case 14c¢ log).
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Figure 5.13 Training error for four different MLP architectures over an extended training period.
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Here, after initially proving much poorer than the 3-layer networks, the four layer networks can
be seen to have much better training errors with the 39-6-6-1 MLP being the slightly superior
of the two. For 18-3d.log, these leads to the switching point generations by the MLP as
demonstrated in figure 5.14 (the desired output information was generated using a GA,
although this information was not used in training the MLP).

Optimd MLP Switch
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Figure 5.14 Graph demonstrating how the signal generated by the MLP transgresses the threshold boundary.
This led to a generalisation error of 34.8026 for the generalisation set, showing itself to be an
improvement over the rule-based switching method. Figure 5.15 demonstrates the performance
of the error switching mechanism graphically for the file 18-3d.log.
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Figure 5.15 Graphs demonstrating the performance of the MLP Cascade using an MLP Switch trained by GA
derived data with a threshold of 0.5. Switching points are {1, 24, 25, 38, 54, 74}.
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5.6. Proposed Method Of Training The MLP Cascade.

When each MLP in the Cascade is originally trained, log records are used which were based
upon the initial estimation of where the switching point locations were. As these positions are
based upon explicit knowledge of the UAF control laws, they may be inaccurately placed with
respect to the freezer dynamics. This means that some of the data records used to train each
MLP in the Cascade should have been used to train another MLP. As the switching points are
optimised using the GA, it will be possible to retrain the MLLP Cascade with more accurate

ranges of operation.
This gives rise to the training
Determine initial switching hani described i

points using expert mec. sm €sCr mn
N figure 5.16. The initial
switching points are derived
T”‘&Em.m using expert knowledge of the

swilching point data.

piecewise time-invariant
system. This information is
used to train a series of MLPs
which form the MLP
Cascade. If, following this
training, the MLP does not
model the process sufficiently
well, the MLP Cascade can

Trin the MLP be used to form the fitness
echanins, function for a genetic
L algorithm to determine the

Figure 5.16 Training regime for the MLP Cascade and the MLP Switch. optimal  switching  point
placements. The information that the GA provides can then be used to (a) train a further MLP

network to recognise the switching points online, and (b) rewrain the MLP Cascade to respond
more accurately.

By cycling through this procedure, it should be possible to gradually reduce the model
mismatch of the MLP Cascade, thus making the residual signal more pronounced in the
presence of a fault. In addition, by training the MLP Cascade and the MLP Switch to in
separate procedures, the problem of one's error compounding the other can be circumvented.
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5.7. Summary.

The purpose of this chapter has been to demonstrate a number of different mechanisms for
switching between each MLP in the MLP Cascade online and in real-time to provide a
contimious input-output mapping. By attempting to locate the switching points at their
optimum position, model mismatch caused by the changing from one MLP to another should be
reduced.

Initially, a rule-based switching mechanism was employed with the rules being derived from
expert knowledge of the UAF. A problem here, however, was that the rules provided crisp
decision boundaries to determine when a switching point had been reached.

As the initial composition of the rules governing when stage changes occurred indicated the
boundary between one stage and the next was fuzzy, an MLP was trained to attempt to
recognise the switching points. Although successful to a degree, by training the MLP using the
information provided by the rules, any errors in positioning represented by the rules would be
learnt by the MLP. Methods were then presented which did not rely so much upon the rules.

The first of these was a mechanism by which a change in stage would be signalled if the
residual error between the MLP Cascade and the UAF passed a predetermined threshold.
However a problem with this method is that the switching points would never be in their
optimum positions, always following them.

A method of training an MLP to recognise optimal switching points was attempted using a
system of moving the switching points during training. This failed to provide any useful
results, however, and a global optimisation technique - the genetic algorithm - was employed as
a separate offline procedure to determine the optimum switching points prior to the training of
the MLP Switch.

This final method proved the most successful and was adopted as part of the overall training
method for the MLP Cascade, details of which were presented.

This - and the previous - chapter have detailed a novel approach to modelling a class of
dynamic system that can be described as being piecewise time-invariant in operation, and
provides an original contribution to the body of knowledge already available on modelling
dynamic systems using MLP networks. Although the Unilever Automated Freezer has been
used to demonstrate the technique, the mechanism has been developed to be generic for all such
processes in this class, relying upon oaly explicit knowledge of the sysiem to determine initial
switching point information. As inaccuracies in this data will be reduced during the training
method described in section 5.6., this knowledge need only be rudimentary.
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Following the construction of the MLP Cascade with optimal MLP Switch, the mismatch
between the model and the UAF is sufficiently reduced to allow the residual signal in the
presence of failures to be used to train a fault isolation module based upon neural computing
techniques. This module is described in the next chapter.

References For Chapter 5.

(1]

(2]

(3}

(4]

(5]

[6

(7]

(8]

9]

J H Boose: A Survey Of Knowledge Acquisition Techniques & Tools. Knowledge
Acquisition. Vol. 1, No. 1. 1989.

P M Frank: Fault Diagnosis In Dynamic Systems Using Analytical And Knowledge-
Based Redundancy - A Survey And Some New Results. Automatica. Vol. 26, No. 3.
pp 459474. 1990.

D E Goldberg: Genetic Algorithms In Search, Optimization & Machine Learning, (P)
Addison-Wesley. 1989.

A Hart: Fact Finding By Interviews. Knowledge Acquisition For Expert Systems.
Chapter 5. pp 49-70. (P) Kogan Page. 1986

P Jackson: Introduction To Expert Systems, Second Edition. (P) Addison-Wesley.
1990.

J E Lansbury et al: Adaptive Hydrogenerator Tuning With A Genetic Algorithm.
IEEE Transactions On Energy Conversion. Vol. 9, Part 1. pp 179-185. 1994.

C Remberg, K Intemann, F N Fett & G Wozny: Decision Supporting System For
The Design Of Control-Systems For Distillation-Columns. Computers & Chemical
Engineering. Vol. 18. pp 409-413. 1994,

T D Vassos: Future-Directions In Instumentation, Control And Automation In The
Water And Waste-Water Industry. Warer Science And Technology. Vol. 28, No. 11-
12. pp 9-14. 1993. )

Y L Zhu, Y H Yang, B W Hogg, W Q Zhang & S Gao: An Exper-System For
Power-Systems Fault Analysis. [EEE Transactions On Power Systems. Vol. 9, No. 1.
pp 503-509. 1994,

124




%Chapter 6.

Failure Detection Using MLP
Networks.

Prior chapters have been involved primarily with a system identification problem, namely
providing an as accurate as possible dynamic model of the Unilever Automated Freezer.
Ultimately, the purpose of the model - when established - has been for use in a model-based
fault detection architecture for the rapid and accurate determination of fault conditions on the
UAF. Naturally, a precursor to the success of such a system is the accuracy of the model - and
to this end Chapters 4 and 5 have dealt exclusively with attempting to reduce model mismatch
to as low as possible - the rationale being the more accurate the model, the more the residual
signal will reflect fault conditions should they exist and not model mismatch.

The purpose of this chapter is to demonstrate how the residual signals generated by the three
candidate faults introduced in Chapter 3 can be isolated using a series of MLPs trained to
recognise features within the signals.

Initially, a survey of how artificial neural networks have been used for fault detection
previously will be presented together with comments upon how this research differs from, or
advances, the techniques developed. The three candidate faults will be reviewed, with
particulars of how they affect the MLP Cascade and the residuals between it and the UAF.
Finally, details of how a series of MLPs were trained to recognise features within the faunlt
signals will be presented, and the final form of the neural network based FDI system will be
given.

6.1. An Overview Of Fault Detection Systems Using ANNs.

In the introduction to [5]), Paul Werbos describes FDI systems as “... the major useful
engineering application of neural networks at the present time”. Subsequent work by a mumber
of researchers has led to the successful development of FDI systems for several applications.
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Typically the multilayer perceptron is used as the basis for such systems as in {6], with notable
exceptions being [1] which uses a series of Kohonen Self Organising Feature Maps [10] to
detect faults as deviations from the norm, [4] where an Increased Functionality Network! is
used to detect five faults in a chemical tank system, [19] which presents a hardware
implemented FDI system, and [21] where a series of hierarchical ANNs are used to divide
complex patterns into smaller subsets for classification.

Chemical tank systems are often used as example nonlinear systems to demonstrate the
artificial neural networks ability to successfully cope with several issues relating to FDI
systems. In [4], the ability of the ANN to comectly classify faults occurring simultaneously
together with a severity level is smdied, whilst [7 and 16] attempts to identify incipient faults in
the presence of sensor noise. Sensor faults are studied in [2] where an MLP is used in
conjunction with a more traditional State Vector Estimator and [12] where the fault diagnostic
and control components of a multiparameter controller [14] are replaced by an ANN.

Until recently, the majority of ANN based FDI systems have relied upon the monitored process
achieving steady-state [20 and 22] before fault detection could be attempted, owing to the
parameter patterns not always being unique during transients, or collecting time-series data
during operation and presenting it to an MLP for FDI offline [8 and 15). Two systems which
attempt to overcome this use several fault models based upon MLPs [18] and an MLP model
of the normal process operation [17] with an additional MLP trained to classify residual
differences between the model and the dynamic system.

In addition to chemical systems, ANNs have been used to detect faults in aircraft control
systems [13], electronic circuit boards faults [9] and rocket engine diagnostics [3).

As this research is primarily concerned with the online detection of faults on a piece of
industrial machinery in real-time during the dynamic startup of the process, a model-based
approach has been adopted which is closer to [17] than [18] as it uses a dynamic model of the
system operating under normal operating conditions as opposed to several dynamic models of
fault conditions. However, whereas a time-invariant three tank system is modelled in [18], the
process used here is a time-varying mechanical process which necessitates a bank of MLPs
used in conjunction with a sophisticated switching mechanism to provide a contimious input-
output mapping for the fault classifier networks.

IEssentially an MLP with several functions (e.g. sine. cosine, square root etc.) of each input being
calculated by the input layer to reduce the necessity of the MLP needing to approximate these
functions itself.
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6.2. The Three Candidate Faults.

Chapter 3 introduced three candidate faults, namely: a barrel pressure transducer fault, a
camflex valve fault, and a liquid ammonia hand valve fault. This section describes how each
fault manifests itself within the output signals of the UAF, and how the MLP Cascade responds
to each fault.

6.2.1. Manifestations In The Qutput Signals.

6.2.1.1. Barrel Pressure Transducer Fault.

This fault is initially registered by a slight (~0.3 bar) offset in the barrel pressure, although this
vanishes once the barrel pressure is controlled to 4 bar. However, this control causes other
discrepancies, namely a slower buildup of motorload and once the UAF has reached steady
state, a lower extrusion (ice-cream) temperature and a lower ammonia evaporation pressure, as
shown in figure 6.1.

6.2.1.2. Camflex Valve Disconnected.

The freezer will operate normally until stage four of the startup procedure, where the ammonia
evaporation pressure needs to be reduced to below 2% bar. This is usually achieved by
opening the camflex - now disconnected - so the evaporation pressure will remain constant, or
be seen to rise slightly as opposed to reduce. Subsequent stages will not be reached, meaning
the barrel pressure will not be controlled at 4 bar, the extrusion temperature will not reduce,
and the motorload will not increase. These effects are shown in figure 6.2.

6.2.1.3. Liquid Ammonia Hand Valve Closed.

The initial rise in ammonia evaporation pressure will not occur due to the valve allowing liquid
ammonia into the UAF being closed. Once stage four of the startup procedure is reached -
requiring the ammonia evaporation pressure to be lowered - it will be completed quickly as the
reading at the pressure sensor will already be low. However stage five will not be completed as
the lack of ammonia in the system will prevent refrigeration from occurring meaning the
extrusion temperature will not reduce and the motorload will not reach its set point. As the
freezer does not enter steady state operation, the barrel pressure will not be controlled at 4 bar.
These effects are shown in figure 6.3.

127



ol Prasue

“ fan

8
s
24 o ——
14
o v
e 2 ® R 9 ] 3 R =4 g8 8 e B 8 S
Soris é
oo Creamn 1 emporchre
::|~r .
= = Noma
ol —, —Fast
" '
v, '
i. ,
o T ™ T T
P 2 ] 7 v 8 8 g .18 -4 8 2 | B 9
~ “t
<
Sarpse
Mrtoriood
0
[}
o
o
”
»n
o
n
(] T

Figure 6.1 The extent to which the UAF suffering from a barrel pressure
transducer fault differs from normal operation.
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6.2.2. Calculating The Residuals.

The principle of constructing a model-based FDI system is that the difference between the
actual outputs and the model outputs can be used to form a residual, or difference, signal.
Under normal operating conditions - if the model is accurate - the residual signal should be
zero. Any deviation from this can therefore be attributed to noise perturbations, model
mismatch or process faults.

The first of these is unavoidable in any system - a typical cause being a small amount of
electronic feedback in the sensor - and in the case of the UAF, the distribution of the noise
component of the output is negligible. Chapters 4 and 5 dealt with attempting to construct a
model in which mismatch was reduced to a low level. The remainder of this chapter is involved
with determining what characteristics of the residual signal is typical of a particular fault, and
how best these can be detected and isolated.

As in the original schematic shown in figure 1.9, the simplest form of residual signal
calculation is by a simple difference between the two signals. Figures 6.4, 6.5, 6.6 and 6.7,
demonstrate this difference for the three candidate faults.

It is evident that the liquid ammonia hand valve fault causes the greatest deviation in residual
signal, with barrel pressure, ammonia evaporation pressure and motorload exhibiting abnormal
behaviour. In contrast, the camflex valve fault only causes notable deviation from the norm in
the reading for the ammonia evaporation pressure, and this as a positive bias whereas the liquid
ammonia hand valve fault caused a negative bias. As these two faults are considered to be
similar from the point of view of the human operator - both dealing with the flow of ammonia
through the UAF - it is useful for accurate isolation purposes that the residuals each produce
are distinct from one another.

Of greater concern is the barrel pressure transducer fault. Although the residual produced here
is distinct from the other two faults it is similar in characteristics to the residual produced by
normal operation, which will ultimately render this fault the most difficult to detect. Indeed,
only the offset from zero for the initial 29 sample points of operation marks this run as being
abnormal.

Several additional features of the residuals which are likely to be the results of model mismatch
are:

. The large spike registered by both the barrel pressure and ice cream temperature
sensors of the normal and barrel pressure transducer fault. This occurs at the time

the ice cream pumps are started and both the barrel pressure and ice cream
temperature drop sharply. The model response is one time-step behind.
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Figure 6.4 Graphs demonstrating the residual signals calculated by simple difference for normal freezer
operation,

Barrel Pressure Transducer Fault
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Figure 6.5 Graphs demonstrating the residual signals calculated by simple difference for the barrel pressure
transducer fault.
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Camflex Valve Disconnected
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Figure 6.6 Graphs demonstrating the residual signals calculated by simple difference for the disconnected
camflex valve.

Liquid NH3 Hand Valve Closed
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Figure 6.7 Graphs demonstrating the residual signals calculated by simple difference for the closed liquid
ammonia hand valve.
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Normal Operation
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Figure 6.8 Graphs demonstrating the residual signals calculated by moving average for normal freezer operation.
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Figure 6.9 Graphs demonstrating the residual signals calculated by moving average for the barrel pressure
transducer fault.
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Figure 6.10 Graphs demonstrating the residual signals calculated by moving average for the disconnected
camflex valve.

Liquid NH3 Hand Valve Closed

It Popas g 100 Conam T ercpweates

B
n
B
1]
[} ]
m
[1-1
=

Moving Argops Dfserce
£

.0 L]
" 8 = 8 8 § g B8
a4
{3 an
Sarple ¥ farpm §
Ammonin fvapcrofin Paeess Mokortt
[ }] ar

=

[

L]

w

w

1

m
Mwvtg beoge

Figure 6.11 Graphs demonstrating the residual signals calculated by moving average for the closed liquid
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. The negative offset that occurs in the motorload residual for all faults and the normal
run. As the actual motorload spikes twice as the dasher begins to rotate during stage
2 of startup, the model motorload spike twice. However, the duration of the actual
motorload spikes are less than the sampling rate of the sensor. This results in the
sensor registering the motorload as it is increasing, at its maximum value, as it is
decreasing or - in the worst case - missing the spike altogether. It is therefore
difficult for the model motorload to accurately reflect this feature.

A further feature of the graphs worth mentioning is the lack of ice cream temperature readings
for the camflex and the liquid ammonia hand valve faults. This is due to stage 6, where the
pumps are started and ice cream is produced, never being reached. Until ice cream is
produced, the extrusion temperature is not used in the model predictions.

Where model mismatch spikes such as those above are evident in the residuals, it is desirable to
remove - or at least reduce - them whilst retaining the residual offsets which characterise the
faults. A common way to achieve this is to average the residuals over several readings,
creating a moving average across the time-series as it progresses. The results of averaging
over five readings are demonstrated in figures 6.8, 6.9, 6.10 and 6.11. Here, the model
mismatch spikes are reduced, whilst the characteristic offsets of the faults have their leading
edges damped. These characteristics are still in evidence however, which means it should be
possible to attempt to classify them using a further set of MLPs.

6.3. Training A Bank Of MLPs To Classify The Faults.

In [17], three simulated faults are classified by providing an MLP with the residual vector
generated as the simple difference between the states of a three tank system and an MLP
trained as a dynamic model of the system. The fault classification MLP has three output lines
(one for each fault) and is trained to recognise the characteristics of the three faults in the
residual by providing a high signal on one of its outputs while the other two stay low. Whilst it
would be possible to emulate this method for this research, it suffers from one serious
drawback. As this research is intended as a pilot study, only three of the total possible faults
which could occur on the UAF has been selected for evaluating the method. If a three output
classifier MLLP was constructed to isolate the current fault information and subsequent work
demanded the introduction of several different faults to the system, a new MLP would need to
be constructed and trained to classify the existing faults and the fresh ones. This would occur
each time a fresh fault was identified. Even if every known fault was categorised and operating
records gathered a priori to the classifier MLP being trained, there remains the danger that a
hitherto unknown fault will be recognised, and again a fresh MLLP constructed and trained to
recognise this fault in addition to the others.
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The approach adopted here is therefore incremental. Each candidate fault will have a specific
MLP trained to recognise it, and trained to recognise no other fault. Each MLP will have a
single output indicating either the fault is present or it is not, depending upon whether the
output value has transgressed a predetermined threshold. This provides two main advantages:

1. As a fresh fault is identified, a single MLP needs to be trained to recognise this fault
and the classifier added to the bank of others without the need to retrain the others.

2. A different input vector can be constructed for each classifier MLP, providing each
with the best information for detecting its particular fault.

In addition, each of the individual MLPs is likely to be smaller than one trained to recognise all
three faults, as it will need only enough hidden units to recognise one pattern as opposed to
three. However the three separate MLPs taken together are equally likely to be larger than the
single MLP classifier.

6.3.1. Method Of Training.

When performing classification tasks using artificial neural networks, it is important to
construct the training set so an equal mumber of the different categories the network is required
to classify are available [11]. For each of the fault isolation filters, there are two possible
categories: either the fault is evident (requiring an output close to 1), or the fault is not evident
(requiring an output close to 0). In order to train each filter, therefore, eighteen log files were
chosen; nine of which reflect the fault, mine of which do not. For these experiments where
details of three individual faults are known, should a particular fault not be present in the
system one of two situations could have arisen: either the run is normal; or one of the other
faults is in evidence (for example, if the freezer is not suffering a camflex valve fault, then
either the run is normal, there is a barrel pressure transducer fault, or there is a liquid ammonia
hand valve fault). For this reason, the nine none-fault cases in the training set were split into
three groups of three, reflecting three normal runs and three each of the other two faults as
shown in figure 6.12.

Each file in the training set is passed through the MLP Cascade in turn to generate the residual
signal calculated as a moving average difference. The order of the training set is such that a
fault log always follows a non-fault log and vice-versa. Components of the residual signal are
used to form the input vector to the filter being trained, and a value of either 0.9 or 0.1 is
backpropagated through the network for a fault log and a non-fault log respectively.
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Training Sets For Fault Filters
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Figure 6.12 Typica! division of .log files into training sets for the fault isolation filters
During training, the instantaneous error for presentation £ between the output of the MLP (o)
and the desired output (d) is calculated as

D<k> - (d<k> _O<t>)2 (6.1)

i.e. the Buclidean distance. This value is summed for each sample in the complete training set
(n) so that the error for the mth epoch is

E, = 2:{ D+ 6.2)

After one epoch, this value is divided by the mumber of log files in the set (|Tsez|) to give the

training error (7" for epoch m.

E
=—=a 3
ITset| ©.3)

One training epoch implies a complete presentation of the training set. Initially training was
conducted for a total of 1000 epochs using a number of MLPs with a single hidden layer, the
size of the hidden layer varying. As this failed to provide any useful results, further
experiments were conducted using networks with two hidden layers, the number of processing
elements in each hidden layer varying between five and fifteen.

For each fault filter, the input vector was comprised of the following:

Barrel Pressure Transducer Fault Filter.

(5 inputs): Barrel Pressure Time delay: 0
Barrel Pressure Time delay: 1
Barrel Pressure Time delay: 2
Ammonia Evaporation Pressure Time delay: 0
Motorload Time delay: O
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Camflex Valve Disconnected Fault Filter.

(5 inputs): Barrel Pressure Time delay: 0
Ammonia Evaporation Pressure Time delay: 0
Ammonia Evaporation Pressure Time delay: 1
Ammonia Evaporation Pressure Time delay: 2
Motorload Time delay: 0

Liquid Ammonia Hand Valve Fault Filter.

(9 inputs): Barrel Pressure Time delay: O
Barrel Pressure Time delay: 1
Barrel Pressure Time delay: 2
Ammonia Evaporation Pressure Time delay: O
Ammonia Evaporation Pressure Time delay: 1
Ammonia Evaporation Pressure Time delay: 2
Motorload Time delay: O
Motorload Time delay: 1
Motorload Time delay: 2

The rationale behind these choices is that the most prominent residual deviation has a mumber
of time-delayed representations, whilst the others have just the current representation. For
example, in order to signal a barrel pressure transducer fault, the barrel pressure residual will
need to have been offset for three samples, whilst the ammonia evaporation pressure and
motorload residuals are low. For each of the three candidate faults, the ice cream temperature
is deemed unimportant for the isolation of the faults as it is not accurately measured whilst
each fault is manifest in the residual signals.

6.3.2. Experimental Results.

The resultant training errors for these experiments are as shown in table 6.1;

Number of hidden PEs In the two hidden layers
5|16 | 7] 8|9 |1w0]|n|12}13}14]15
Barre] Pressare

Transduecr Faolt 14,7427 | 14.4029 | 142623 | 14.1062 § 13.8957 | 13.8565 || 13.7992 || 13.6558

13.8436 | 13.9443

Comflex Valte | 125302 | 124144 | 125401 | 12.7867 | 12.6214 | 12.8664 | 12.8938 | 13.5787 | 13.8965 | 14.0045
Vlquld ITHD Hand | 41 0469 103922 | 105248 | 13.6074 | 10.7830 | 10.8923 | 11.0070 | 13.4440 | 13.4563 { 135138

Table 6.1 The training errors for each of the fault classifier MLPs for a number of hidden layer compositions.

The number of input units are constant for each filter (as described above) and the same
oumber of hidden units existed in each of the two hidden layers, meaning the shaded error of
the barrel pressure transducer fault was achieved with a 5-13-13-1 network. The shaded area
represents the lowest training error for each filter.

The greatest training errors belong to the barrel pressure filter which also requires the greatest
mumber of processing elements in the hidden layers.

139



For the lowest error networks, subsequent experiments were conducted to see if the training
error could be improved by varying the mumber of units in one of the hidden layers around the
current number. This meant, for example with the camflex valve filter, experiments using 5-7-
6-1, 5-7-8-1, 5-6-7-1, 5-6-8-1, 5-8-6-1, and 5-8-7-1 networks were used, although no
significant improvement was in evidence.

Figures 6.13, 6.14, 6.15 and 6.16 demonstrate how the filters respond to a normal run and each

of the three faults.
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Figure 6.13 Example of how the three filters respond to a normal operating run.
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Figure 6.14 Example of how the three filters respond to a barrel pressure transducer fault.
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Figure 6.15 Example of how the three filters respond to a camflex valve disconnection fault.
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Figure 6.16 Example of how the three filters respond to a liquid ammenia hand valve fault.

A number of features are in evidence. Firstly - during a normal run - although no false alarms
are reported, the liquid ammonia hand valve filter almost signals a fault. More serious is the
barrel pressure transducer filter. Although it correctly signals a fault in figure 6.14, it also
signals a false alarm in figure 6.15, demonstrating that it is responding purely to an offset (be it
positive or negative) in the barrel pressure residual with no regard to the other signals. In
addition, the camflex filter signal fails to transgress the threshold during a camflex valve fanlt
i.e. amiss. This could be rectified by lowering the threshold, but the barrel pressure transducer
fault would still be signalled.

By studying the residual signals, one can see that the fault is more prevalent during particular
phases of the UAFs operation. This information can be utilised into the fault detection module
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by introducing femplates i.e. windows on to the residual signal which indicate the best periods
of time to isolate the fault.

6.4. Introducing Templates In Conjunction With The
MLPs.

The previous section demonstrated how training the fault detection filters upon the entire
residual signal generated during a run resulted in misses and false alarms. This situation could
be rectified by introducing maximum likelihood windows - or templates - onto the residual
signals. In this way, each filter would have an associated template indicating when to apply the
filter to isolate the fault.

6.4.1. Principle Of Operation.

By observing the residual signals generated by the three candidate faults, it is evident that the
barrel pressure transducer fault is only evident during the first part of a freezer run, whilst the
other two faults are manifest during the latter part of the startup. It is therefore possible to
construct templates in the following ranges:

Barrel Pressure Transducer Fault Range: 0 = 50
Camflex Valve Disconnected Range: 50 = Endofrun
Liquid NH3 Hand Valve Closed Range: 40 = Endof run.

This allows views on to the data as described in figure 6.17
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Figure 6.17 Demonstration of the templates view of the residual data. N.B. Heights only vary to allow the
different templates to be seen.
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The filter MLPs can then be trained as before but with reduced access to the residual data,
ensuring that samples which do not help the fault isolation process are not presented the filter.

6.4.2. Experimental Results.

The resultant training errors for these experiments are shown in table 6.2:

Nomber of hidden PEs in the two hidden layers
5 6 7 8 9 10 u 12 13

Barrel Pressore
Transdueer Fanlt 121600 | 89204 | 119624 | B.E649| 88482 | R8I | 88264 88157] 8.8093

15

11.6807

Camflex Valve &

Disconnected 03831 | O038BB| 0.4416] 03840 03956] 03961 03973] 04020] 04059] 04440
Liquid NH3 Hand

Valve Closed 2.6924 | 26158 3.2426 342491 32109 3.2276 ] 33424 34734 3.6033

Table 6.2 The training errors for each of the fault classifier MLPs for a number of hidden layer compositions.
Once again, the number of input units was constant, and the shaded area represents the lowest
training error which could be achieved. Subsequent experiments varying the mumbers of
hidden units around these low values failed to provide improved performance.

Figures 6.18, 6.19, 6.20 and 6.21 demonstrate graphically how the fault isolation filters
respond to normal operation and each of the three candidate faults. As can be seen, the danger
of the false alarm during a normal run has been reduced, the barrel pressure transducer filter no
longer gives a false alarm during a camflex valve fault, and the camflex valve filter correctly
identifies this fault.

By removing the extraneous data from the training set, the fault isolation capabilities of the
filter networks is improved. It has enabled the filters to more correctly identify features within
the residual signal. For example, the barrel pressure transducer is no longer acting merely as a
threshold detector on the barrel pressure residual as was originally thought to be the case. This
can be observed in the barrel pressure transducer filter transgressing the threshold during the
barrel pressure fault, but not doing so during the liquid NH3 hand valve fault where a similar
offset is in evidence

A discussion relating to the effectiveness of the FDI capabilities of the system, and how it
compares with the current fault detection capabilities of the UAF is provided in the following
chapter.
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Figure 6.18 Example of how the three filters respond to a normal operating run.
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Figure 6.19 Example of how the three filters respond to a barrel pressure transducer fault.
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Figure 6.20 Example of how the three filters respond to a camflex valve disconnection fault.

148




Residuds (Liquid NH3 F auit)

0.25: Bard Pressue
0.2 1 - T keCean¥empadue
u'5: S S E S S S e e e = ""NHSEV!DPI’EIU’E
1. - = = Mololood
o1 4
005
B ]
g o
L . 8 8
0.05 \
1 ]
0.1 A J
J ]
[ ]
Q15 N
e | ]
02 Sagt®®® ® Soestum =4 u strmIEES EE ERie = o= = . =
0.25 -
Sampled
Fadi Signdls (Liquid NH3 F ault) Bare Peessue Faft
I - = e Caomfiex VdveFadt
® ® * ® LiqdNH3IFan
L L L R N I T T Tk T T T . Threshad
»
[ ]
L]
L]
° .
k-] .
2 .
Bas :
E 1.
B
| J :\
L
O'LA P . . . - T
° 8 8 8

sSanpled

Figure 6.21 Example of how the three filters respond to a liquid ammonia hand valve fault.

6.5. The Model-Based FDI System.

A fault detection and isolation system for the Unilever Automated Freezer has now been
developed using neural computing techniques. It can correctly detect and isolate three types of
fault: one of which is relatively slight, being a small offset in the barrel pressure transducer; the
other two being similar to one another, namely a fault in two of the valves which control the
flow of ammonia through the freezer.
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The developed system can be divided into two subsystems: a fault detection module and a fault
isolation module (figure 6.22).
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Figure 622 A schematic of a model-based FDI system based upon neural computing techniques capable of
detecting faults within the Unilever Automated Freezer.

The fault detection module operates by providing a dynamic model of the UAF under normal
operating conditions. When a fault occurs, it is likely to be evident in the difference between
the models outputs and the freezer outputs (the residual signal). The model is implemented by
using a sequence of cascaded MLPs (as detailed in Chapter 4) switched between by a further
MLP (as detailed in Chapter 5) to provide a continuous input-output mapping.
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The fault isolation module comprises of a bank of MLPs trained to recognise characteristics in
the residual signal together with a template which details when each fault is likely to be most in
evidence. An individual MLP is used to isolate one particular fault, making the system
incremental in that further faults can be coped with by adding trained MLPs and template
information to the system without the need to retrain the existing MLPs.

Each fault detection filter has a single output indicating whether a fault has occurred (typically
a value above the 0.5 threshold) or not (typically a value below this threshold).

6.6. Summary.

The purpose of this chapter has been to demonstrate how the UAF model is accurate enough to
enable a bank of MLPs to recognise characteristics in the residual signals as being those of
particular faults.

A survey of current FDI systems using artificial neural networks was presented with details of
how this investigation differs from these and provides an original contribution to knowledge.
This contribution is deemed to be:

* Current systems tend to rely upon detecting faults by recognising characteristics
during steady-state operation, a situation analogous to classical non-model based
systems such as frequency analysis where signals from the plant are transformed
to reveal (hopefully) distinctive signatures. The ANN in these systems determine
such characteristics internally.

¢ This research is concerned with the highly nonlinear transient dynamics evident in
the startup regime of an industrial process, which ideally requires a dynamic model
to detect irregularitics. Where current systems use such techniques, they have
relied upon demonstrating a solution upon chemical systems whose dynamics are
time-invariant. The system studied in this investigation is typical of many large
mechanical plants in that it has a phased startup which alters the underlying
dynamics of the process in time, i.e. a time-varying system. A novel approach to
modelling such a system has therefore been developed.

Following the survey, the three candidate faults proposed for detection and isolation in Chapter
3 were reviewed and details of how they manifested themselves in the output signals of the
model shown. Methods for calculating the residuals were then discussed followed by the initial
training of a bank of MLP filters to recognise the characteristics of individual faults. It was
decided to use a bank of filters rather than a single MLP (as in other reported research), as this
left the system open to further development without the need to retrain the isolation network.
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Due to the presence of false alarms and misses in this bank of filters, details of how maximum
likelihood templates were used to enable the filters to concentrate upon the residuals when their
faults were most in evidence.

Although such a system can correctly isolate the three candidate faults, it raises certain issues
such as:

* How do robustness considerations affect fault detection in a model-based system?
How robust is the model?

¢ How effective are the FDI capabilities of the system? How do they compare with
the currently available system?

¢ How accurate are the FDI capabilities of the system? In a number of test cases,
how many false alarms and misses are there?

* An important consideration of this investigation is that the developed system
should be able to detect and isolate faults online and in real-time to reduce the
amount of downtime of the machinery on the factory floor to a minimum, or if
possible reduce it altogether. The performance of the system working online
therefore needs to be addressed to determine whether it will be as effective during
real operation as in simulation.

These considerations, amongst others, are addressed in the following chapter together with
thoughts on how the scope of the investigation can be extended both in terms of supplementing
the current work and opening fresh avenues of research.
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?Chapter 7.

Discussion & Future Work.§

This thesis has detailed the investigation into the development of a fault detection and isolation
system for a dynamic industrial process using artificial neural network techniques. Ultimately,
the design has been founded on a modet based approach which has been inspired, in the main,
because traditional model based methods are able to respond to faults quicker than their non-
model based counterparts. Typically, non-model based solutions rely upon signals from the
process differing from some predetermined norm which can often take a period of time to
become prominent. Model based solutions, on the other hand, by utilising analytical
redundancy in the form of a dynamic model of the system, have the capacity to detect faults as
soon as they manifest themselves in the signals.

With the industrial process nominated as a test-bed for this research (the Unilever Automated
Freezer), fast and accurate fault detection is essential. Critical faults - which can result in the
automatic shutdown of the freezer - can often be cured by the intervention of the human
operator before shutdown occurs, thereby saving upon the costly downtime of the machinery.
In order for this to occur, however, the operator needs to be alerted to - and reliably informed
as to the nature of - the fault before the critical point is reached. In addition, soft failures, such
as slight offsets in sensor measurements or slight incremental drift in the readings, which can
often be missed by conventional fault detection techniques, can cause a reduction in the quality
of the produce, thereby proving costly as well. This research has concentrated on detecting and
isolating both of these types of fault by developing a solution which - whilst being tested on the
UAF - is essentially generic and can be easily ported to other pieces of machinery which
possess the same type of time-varying phased startup.

This investigation has been interested in isolating faults during startup as - following a period
of idle standing time - the machinery components are prone to breaking down. Once these
components have reached steady-state operation, the danger of them malfunctioning is reduced.
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Concentrating on the startup regime allows the detection of faults before the production of the
commodity begins thus saving costs in raw materials. As startup is typically the most transient
and nonlinear period of a process' life cycle it also proves the most difficult period to detect
faults within. In addition, starting a process such as the UAF requires the greatest degree of
human interaction during its operation. Within this period there exists the greatest danger of
incorrect set point information being entered or necessary valves not being opened. Again, this
kind of problem reduces as steady-state conditions are achieved.

This chapter aims to review the derived FDI solution, discussing its strengths and weaknesses
and demonstrating how it has met the objectives identified at the outset of the research.

7.1. The Model.

7.1.1. Project Objectives.

With respect to the model, the project objectives were that little or no explicit knowledge of the
process would be assumed, that no additional hardware would be required to build the model,
and that the model should be able to adapt itself to the particular process it was identifying.

7.1.1.1.  An Explicit Quantitative Freezer Model.

A large bottleneck in the development of model-based systems is the production of the model
Conventional systems rely upon the model being explicitly derived: a process which can often
involve detailed study of the system, interaction between its components and - in the case of
chemical systems - knowledge of reactions which take place within the system. This is often
time-consuming and ultimately relies upon a number of assumptions and estimations being
made about the process which can lead to model mismatch.

By utilising a self-adjusting algorithm such as a neural network, the need for explicit
knowledge about the observed system diminishes as process dynamics can be learnt by the
neural network. This has been demonstrated using simple mathematical processes in Chapter
2, and a real industrial process in Chapter 4. For simple time-invariant dynamic systems, it
was shown that given sufficient input information and hidden unit space a multilayer
perceptron is able to learn process dynamics during a learning cycle. For more complex time-
varying systems, it is necessary to incorporate a degree of process knowledge into the design of
the model. However this knowledge need only be a rudimentary awareness as to the nature of
the time-variance; be it smooth or piecewise. For the former it may be more sensible to
incorporate an explicit representation of time in order to transform the MLP into a time-
varying system, for the latter a series of cascaded MLPs may be more suitable. The MLP
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Cascade was adopted for this research, although this necessitated the inclusion of more explicit
process knowledge, namely the information which governed when to switch from one MLP in
the cascade to the next. By utilising a device such as the genetic algorithm to optimise this
switching mechanism based upon empirical knowledge of the system, the role of this explicit
information can be reduced.

7.1.1.2,  Further Sensory Information.

For this research, it was important that the derived model did not rely upon additional sensory
information which would require the installation of additional sensor equipment thereby
increasing the cost of the solution. It was therefore necessary to exclude such measurements as
the ammonia liquid pressure and ammonia suction pressure which are measured during pilot
plant trials but not on the factory floor.

Each MLP in the cascade relied only upon the ice-cream pump speed, the camflex position, the
mix and air flows, the barrel pressure, the extrusion temperature, the ammonia evaporation
pressure and the motorload. All of these parameters are routinely measured on the factory
floor, as are the additional variables used as inputs for the switching MLP.

It should be borne in mind, however, that although the current model is adequate for fault
detection purposes at present, should the scope of the fault detection be expanded to include
more fault conditions, the model may not be able to detect or isolate these faults should their
symptoms not be present in the output signals. In such a case it may prove necessary to
include further sensory information in the composition of the model in order to reflect these
new faults. Additional sensory information - which could include visual and audio data - could
only serve to enhance the model should it be pertinent to the dynamics of the system.

7.1.1.3.  Fine-Tuning Of The Model.

In order to reduce the mumber of extraneous variables in the experimental set-up of this work,
and allow the MLP access only to information relating to the UAF dynamics, certain
parameters were kept constant. These included

¢ The formulation of the product,
¢ The adopted procedure of cleaning the UAF prior to a production run, and
+ The physical UAF from which logged measurements were taken.

If the proposed solution were to be effective, it would be necessary to ascertain whether the
model derived from the logged runs of one freezer would be adequate for a second freezer
whose dynamics may vary slightly due to external or internal considerations. An example of
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external influences upon the system dynamics would be variations in air pressure should the
pieces of equipment by geographically disparate, whereas internal influences may include
physically different components of the freezer operating slightly at variance with one another.
However - given that the each piece of machinery is mostly identical in composition - it is
unlikely that the dynamics would prove to be wildly dissimilar from one machine to the next.
In this case it should be possible to produce a generic UAF model from the logged
measurements of one machine and port it to other UAFs and allow the MLP model a period of
“fine-tuning” to the individual UAF it was identifying.

Section 2.2.7 outlined how two MLP models could be used to handle the phenomenon of
parameter variations within dynamic systems. A similar procedure could be adopted during the
fine-tuning phase of the FDI systems life cycle. The generic model would be duplicated to
allow the first to remain static and perform fault detection and isolation whilst the second was
allowed some training time to adjust itself to the individual UAF. Once the new dynamics had
been sufficiently learnt, the unchanged generic model could be discarded and the fine-mned
model used in the FDI system.

7.1.2. Model Effectiveness.

An important consideration in any model-based control or FDI system relates to the quality of
the model. Questions such as: how robust is it? Does it behave sensibly when exposed to
unmodelled phenomena? What are its characteristics in the presence of faults? In short, just
how good a model is it?

In answering these questions it is important to review the quality of the information which is
used in constructing the model, and to highlight a fundamental difference in the requirements of
the model in a control system and in a fault detection system.

Consider a dynamic system (System I) that can be described by the state space equations (2.4
and 2.5) with two internal states - x(1) and x(2). The complete range that these two states can
possibly be in will occupy a subset of the two dimensional space between these two
parameters, which can be referred to as A. However, under normal operating conditions the
two states will be restricted to a further subset of this space, which can be referred to as A'. A
second dynamic system (System II) will also have a normal operating region (B") which is a
subset of its complete operating range (B). These two systems are represented diagramatically
in figure 7.1.
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A second consideration which needs to be addressed is how effective is the model when
compared to other (traditional) modelling techniques. Chapter 2 introduced two linear filtering
techniques which have found widespread application in many engineering disciplines - the finite
and infinite impulse response filters. In order to allow a fair comparison to be made between
the MLP Cascade developed in Chapters 4 and 5, certain aspects of the cascade which are
central to its effectiveness should - if possible - be transferred to the linear technique, Such
factors would be:

* The use of historical output values in determining current output vatues. This would
imply that the filter would be an infinite impulse response (IIR) filter.

* The use of several linked devices to allow the piecewise time-invariant nature of the
UAF 1o be modelled over its complete startup cycle.

* The use of expert knowledge in determining when to switch from one modelling device
to the next. The MLP Cascade uses this information in constructing an initial set of
modelling devices; further refinement is achieved by use of the Genetic Algorithm and
a further Switching MLP. Such a procedure would be unavailable for the IR model.

Comparison can therefore be made between several linked infinite impulse response filters with
a rule-based switching mechanism and the MLP Cascade. Several IIR filters were constructed
for each stage in the UAFs startup with the number of time-delayed inputs and outputs
increasing by one each time a fresh filter was built. Adjustments to the IIRs coefficients was
achieved using a least-squares calculation as in section 2.5.2. As with the each MLP in the
cascade, the following parameters were used in building the IIR filter:

Parameters for Filters 1 - . Inputs: Barrel Pressure Set Point.
Camflex Position.

Mix Flow.

Air Flow.

Ice-cream Pump Speed.

Outputs: | Barrel Pressure.
Ammonia Evaporation Pressure.
Motorload.

Additional parameters for Filter 6. | Input: Ice-cream Temperature Set Point.

Output: | Icecream Temperature.

The number of historic input and output parameters was increased until six of each were being
used to configure the [IR - a noumber twice that needed to build an MLP in the cascade. Figure
7.2 and 7.3 shows how a series of six IIR filters each with six time-delays on each of the UAF
input and output channels is unable to accurately model the UAF.
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Figure 7.2 Graphs demonstrating how a series of IIR filters are unable to
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Figure 7.3 Graphs demonstrating how a series of IIR filters are unable to

accurately model the UAF. (x-axis unrestricted).
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7.2. The Fault Isolation Filters.

7.2.1. Project Objectives.

With respect to the fault detection filters, the main project objectives were that records of
currently known faults could be used to train a series of isolation filters whilst at the same time
the system should be able to detect faults upon which it had not been a priori aware of.

7.21.1. Training The Filters.

A large number of faults able to occur in any system can be identified and simulated a priori to
the actual running of the system in a production capacity. The FDI system developed here is
designed to take advantage of this knowledge by utilising the residual signals generated for
each particular fault in the training of individual MLPs to recognise the fault. These residual
signals are utilised in conjunction with additional knowledge as to when the fault is most
evident in the signals to allow the MLP to accurately isolate the fault.

By training an individual MLP to recognise an individual fault, the system is incremental in
nature. This means that the FDI system can be put into use with a limited number of isolation
filters - perhaps for the most serious or regularly occurring faults - with additional ones being
added subsequently without the need, in the main, for retraining the others.

Furthermore, it should be possible to train the isolation filters to be as detailed as necessary.
For example, two of the candidate faults for this research are associated with the flow of
ammonia through the UAF. It may be that for groupings of faults such as these, a single filter
will suffice - in this case indicating a problem has been encountered with the ammonia flow - or
individual filters can be built to provide more detailed information - in this case that liquid
ammonia hand valve is closed or that the camflex valve is disconnected.

7.2.1.2.  Previously Unencountered Faults.

The primary purpose of the model is to differentiate between normal and abnormal process
operation, and as such can be considered a first pass filter in detecting faults. The isolation
filters, on the other hand, are primarily concerned with recognising their specific fault in the
residual signal calculated as the difference between the model and the UAF. Once a series of
filters have been trained to recognise individual faults and are established in the FDI system, a
fault which was previously unknown may be encoumtered, and as a result no filter will have
been designed to isolate it.
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It is still necessary to detect such a fault, however, and because it will - presumably - cause the
UAF to behave in an abnormal manner, it will cause the model's gutputs to deviate from the
freezers and will thus be detected. Accurate isolation will not occur in the absence of a
dedicated filter (established filters may signal they recognise the fault), but it should now be
possible to train an additional filter to isolate this fault which can be added to the bank of
established filters without the need to retrain them.

Retraining of established filters may on occasion be necessary, however, if a new filter is added
whose associated fault signature is similar to that of an established filter’s fault. Figure 6.6
demonstrates how the training sets for the fault detection filters are split into two categories:
records which reflect the particular fault to be isolated, and records which do not. The latter is
subdivided into groups, consisting of normal records and records which reflect other faults
which are not to be isolated by the filter being trained. This recognises the fact that an
individual fault isolation filter should not be differentiating between normal and abnormal runs
- this is the purpose of the model - but should be identifying a particular fault whilst paying no
heed to other faults. However, if a specific filter (Filter A) is trained to recognise a specific
fault's (Fault a) residual signal, it will have had records of other faults used in establishing that
a is not present. Once A is established and operating in the FDI system, it may be that a
previously unencountered fault (Fault x) is recognised, and offline an additional filter (Filter X)
trained to recognise it. The training set for X will have records of @ as being indicative that x is
not present, but because fault x was unknown during the training of filter A, it will not have
had x’s records included in its training set. A problem could arise if the residual generated by x
is similar to that generated by a. It is likely that X will be able to distinguish between a and x
as it will have been trained using records from both, but A may generate a false alarm each
time x is present, mistaking it for a. In such a situation, it will be necessary to retrain A using
details of x in the training set.

7.2.2. The Effectiveness Of The FDI.

The FDI system developed here is designed to be an advancement on that which is currently in
existence on the UAF without the need for additional hardware. By providing isolation
information, it can immediately be seen to be superior as presently the UAF enters a holding
condition if a problem is encountered. Further improvement the ANN based FDI system
affords can be gauged in two ways:

¢ [s it able to detect faults which the current system is unaware of?

¢ For faults which the current system does respond to, is it able to detect them sooner?

164



The former is obviously important, and can be demonstrated by means of the barrel pressure
transducer fault. Here, the current system is unable to detect the fault whereas the ANN based
system can typically detect it within a minute of the UAF starting a production run.

This fault affects the quality of the
icecream produced, whereas other
potential faults - such as a poor lip

Lip Seal
seal (figure 7.4) allowing ice-cream

mix to escape from the barrel - will
result in the wasting of raw
materials and the potential hazard of

Figure 7.4 Cross section of the UAF barrel showing a lip seal liquid ice-cream being present on the
which encircles the dasher spindle and is designed to grip tighter factory floor. Such problems can be

as the ratio of pressure p; to p, increases.
minimised by the rapid isolation of

the fault

The importance of the second of the two classes can be demonstrated by considering the effects
of failing to open the liquid ammonia hand valve. Once the evaporation pressure needs to be
reduced, the sensor reading will already be low due to the valve being closed. This means that
stage 4 of the UAF startup should end quickly and stage 5 commence. As the flow of ammonia
is prevented, refrigeration will not occur in the freezer, and the load on the motor will not
match its set point. The control system will enter an iterative loop during which time the
motorload condition will be checked several times. After a period of some fifieen minutes, the
freezer will sound an alarm and enter a holding condition.

From a production viewpoint, this condition results in the fifteen minutes loss of production
whilst the freezer is in its control loop plus the time spent by the operator in ascertaining what
is at fault following the freezers alarm. Obviously, a competent operator may be on hand
during the control system loop, recognise there is a problem with the startup and perform a
services check during which time he may notice that the liquid ammonia valve is closed. The
fault can then be rectified, and the startup contimuie normally. This presupposes that the
operator will be available for each piece of machinery on the factory floor - which of course he
may not. An automated FDI system such as the ANN based system - being able to detect the
fault long before the critical point where the holding condition is entered - will be able to alert
the operator in order to have the fault rectified.

In the case of the liquid ammonia hand valve fault, detection and isolation typically occurs one
or two sampling points following the ammonia evaporation pressure check which signals the
end of stage 4. If one therefore allows ten seconds for the fault to be detected subsequent to
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this check, and 1 minute for the operator to respond and rectify the problem, production will be
postponed by 70 seconds. A comparison is shown in figure 7.5.

Normal Operation |Pmdm=mm begins. I

SRR 4% SR TR O

0 1 2 3 4 5 6 7 8 17 18 19 20
Time (minutes)

Liquid NH3 Valve Fault (current system)

17 18 19 20

Time (minutes)

Figure 7.5 Comparison of a UAF startup with a liquid ammonia hand valve fault. In the current system, the
freezer enters a holding condition; with the ANN based FDI system. production is postponed due to accurate fault
isolation information. Nete: all times are approximate.

For the faults chosen as candidates for demonstrating the effectiveness of the FDI system, the
barrel pressure transducer fault represents a class of fault which cannot be detected by the
currently employed fault detection method, but can by the derived ANN based system. The
two ammonia valve faults cause the UAF to enter a holding condition and are therefore
detected by the current system. Typically, for the camflex valve fault a fault is signalled by the
ANN based FDI system some four minutes before the freezer halts startup, and for the liquid
ammonia hand valve some fifteen mimtes.

With the latter two faults, the current system affords only the detection of the fault. The time
taken for fault isolation is dependant upon the experience of the operator in knowing the range
of conditions which can result in the UAF halting startup, and the speed with which ke or she
can investigate each one to determine which is currently in effect.

7.2.3. The Accuracy OF The FDI.

With an automated FDI system, accuracy is of great importance. This accuracy can be
measured in two ways:
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¢ The ability of the FDI system to comectly detect and isolate each fault that occurs in
the dynamic system, i.e. it should have a high hit rate and a low miss rate.

¢ The ability of the FDI system to determine when the dynamic systems behaviour is
normal and not report a fault, i.e. it should have a low false alarm rate,

The first of these is necessary if faults are to be rectified to allow a normal operating cycle,
whilst the second engenders confidence in the FDI system. If the FDI system persistently flags
faults which are not present, a genuine alarm may result in no action being taken - the
assumption on the part of the operator being that it is another false alarm.

Normal Camflex Valve Barrel Pressure Liquid NH3 Hand
Transducer Valve

Name v = Name v| x| Name | x Name vl x
10-7alog | | 3-12alog | v 16-9alog | v| 17-3ilog | ¥| f bptc
14-7alog | *| r excd | 3-12blog | v| 16-9b.log | | 17-3jlog | ¥
24-7alog | Y| - | 3-12clog | 16-9c.log | ] 17-3klog | ¥
24-Tblog | ¥ 11-9alog | ] 16-9d.log | ¥/ 18-3glog | ¥
24-7clog | | 11-9blog | | 10-3alog | | 18-3h.log | v
24-7d.log | | 11-9c.log | ] 10-3clog | ¥ 18-3ilog | ¥
24-Telog | ¥ 11-9d.1og | ] 10-3d.log | ] 7delog | V]
24-7flog | ¥ 11-9elog | ] 10-3e.log | ¥/ 74flog | ¥
24-7g.log | v 17-3alog | v 10-3flog | | 74glog |
24-7h.log | 17-3cldog | ¥] 10-3glog | ¥ 7-dh.log | ¥
11-9alog | ¥ 17-3dJog | ] 10-3h.log | ¥ 74dilog | ¥
11-9b.log | ¥ 17-3edog | v 10-3ilog | ¥ T4ilog | ¥
11-9c.log | ¥ 17-3flog | ¥] 14glog | ¥ 7-4klog | ¥
11-9d.log | v| 17-3glog | v 74alog | ¥ 8-dblog | v
11-9e.log | V] 17-3h.log | 74blog | V] 84klog | v
18-3b.log | ¥ 8-4dlog | v 74clog | 84jlog | ¥
18-3c.log | v 8-4flog | v
18-3d.log | | 84glog | v
18-3e.log | | 8-dhlog | V|
18-3flog | ¥ 8dilog | v
31-3alog | ¥ 8djlog | ¥
31-3b.log | v
14alog | v
14blog | v
I-4clog | 7
1-4d.log | |
ldelog | v
T4dlog | = f bptc
8-4alog | |
8-delog | v

Table 7.1 A demonstration of how the FDI system performed for normal system operation and each of the
three candidate faults.

Table 7.1 demonstrates the accuracy of the FDI system for norma!l freezer operation and each
of the three candidate faults in turn in the following way. For each situation the first column
lists the log filename (the table represents all the data available to the project).
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The second column (¥') indicates whether or not the FDI system comectly ascertained the state
of the freezer. For normal system operation, a v indicates no fault isolation filters were
activated and that the model outputs were reliably close to the actual UAF outputs, whereas a
x indicates that the FDI system believed a fault was present either because an isolation filter
was activated or because the model outputs deviated from the plant outputs significantly. This
deviation was calculated in the manner of the generalisation error of the MLP Cascades
performance being the Euclidean distance of the estimated outputs to actual outputs summed
throughout the operating cycle. If an arbitrary threshold value of 10 was exceeded, the FDI
system could be said to have detected a fault. In terms of the above table this would indicate a
false alarm, but in a real operating situation this could indicate the presence of a hitherto
unknown fault and would warrant further investigation. For the isolation filters, a ¥ indicates
that the correct filter has been activated and the fault has been correctly isolated whereas a x
indicates that the filter has not been activated.

The third column (*) represents false alarm situations. Reocorded in this column are any
instances where a fault isolation filter unexpectedly indicated its particular fault was present
when in reality it was not. Mnemonics are used to represent the each isolation filter in this
column, where f cmfx indicates the camflex valve fault filter, f bptc indicates the barrel
pressure transducer fault filter, f nh3v indicates the liquid ammonia hand valve fault filter, and
1_excd indicates that for normal operation the threshold value was exceeded.

As can be seen from the table, for the three candidate faults there is a 100% hit rate, (i.e. when
each fault is present, the correct isolation information is derived). However, three false alarms
are reported for logs 14-7a, 7-4d and 17-3i, the first two of which are for normal runs, the
latter for a liquid ammonia hand valve fault.

For 14-7a the threshold boundary on the signal deviations is exceeded by a value of 5.243; no
isolation filter is triggered. It is interesting to note that this particular log file was one of the
first to be generated for this research - some months before the majority of the rest - and the
difference between plant and model outputs may be due to either:

* Model mismatch due to the dynamics of the UAF altering slightly between this
operating run being logged and subsequent ones. This could be due to component
degradation over time, or perhaps components being replaced in the UAF, i.e.
parameter variations.

e Model mismatch due, perhaps, to a different operating procedure being adopted to that
described in section 3.1.4.
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* The presence in the UAF of some slight fault equivalent to that of the barrel pressure
transducer fault in that production was not affected except for a possible degradation
in the quality of the ice cream.

With no comparable logs to study in conjunction with 14-7a, it is difficult to ascertain which of
the above is true, although the time scales involved makes the first option the most likely.

The latter two false alarms are concerned with the barrel pressure transducer fault filter firing
when this particular fault is - apparently - not present. Closer investigation of 7-4d reveals that
the conditions described in section 3.2.2.1 for the transducer fault are present in this log,
indicating that the faulty barrel pressure transducer may have been present in the UAF during
logging. Similarly - although the log clearly demonstrates that a liquid ammonia hand valve
fault was present - 17-3i also displays signs of the faulty transducer being present, most
noticeably the 0.3 bar offset at atmospheric pressure. The first of these, therefore, could
indicate that the logged run has been incorrectly categorised prior to MLP training, whereas the
latter is demonstrative of multiple faults in the system.

It is worth noting that, as both 14-7alog and 7-4d.log where used in training the MLP
Cascade, the model was re-evaluated without the data contained in these files, although this
provided negligible improvement in the model.

7.3. The Combined System.

A number of the ANN based FDI systems reviewed in section 6.1 rely on presenting logged
runs to a classification network as an offline process for categorisation. An impartant aspect
of this work was that the FDI system should be able to work online and in real-time in order to
detect and isolate faults during production and reduce downtime in the machinery.

7.3.1. Online Real-Time Operation.

Printer The principle adopted to ensure that any system
developed ofiline would work equivalently online
._r Prpent was to ensure that any data gathered to train the

model and isolation filters would be available in
"L BMrcarany}| €xacly the same format online. Currently the
i CRL 1000 control computer interfaces to the UAF
and is designed to provide logged measurements of

ToUAF<+— CRL 1000

O = N W

Operators Cansale

several process parameters at (reliably) 5 second

Figure 7.6 RS232/R2485 serial communication jntervals, as shown in figure 7.6,
links between the UAF, CRL1000, and other
devices.
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These parameters can be transmitted through an RS232 serial port to one of a variety of
components, typically an operators console or a printer at present. Prior to the commencement
of this research project, exploratory work had been conducted by the Unilever Research
Laboratories into interfacing an expert system controller to UAF which again would be
interfaced with the CRL1000. The direction taken with this work was, therefore, to develop a
system which would be PC based and would draw its input values from either;

* a.log file generated by the CRL1000, if the FDI system was undergoing an offline
training cycle, or

¢ directly from the CRL1000 through a serial link if the FDI system was operating
in real-time.
In this way an identical format of values could be used in both testing and training the MLP
networks comprising the FDI system.

As with any real-time system of this nature, it is necessary to ensure that any processing
conducted by the PC can be achieved within the sampling time of the CRL1000.

A period of time was spent at the Unilever Colworth Laboratory to conduct field trials of the
developed software. One of the principle purposes here was to demonstrate that the system
could operate online, and was tested using a number of PCs of varying specifications from
relatively unsophisticated Intel 286 and 386SX based machines through to much faster Intel
486DX based machines. As the FDI system is completely automated with no human
interaction necessary, the five second sampling time proved ample for the system to function
correctly - often with much larger networks than those comprising the final MLP Cascade and
filters.

7.4. Future Work.

Although this research has resulted in a viable FDI system based upon neural computing
techniques, a number of issues have arisen which are beyond the scope of this project to cover.
A mumber of considerations and ideas for future work are discussed below, both in terms of
extensions to the solution derived here, and with respect to departures from the current scheme.

7.4.1. Extensions To The Current Solution.

This research is intended to be a pilot study to determine whether or not, in principle, a neural
network based system can be developed which is capable of detecting and isolating faults in an
industrial process without the need for additional sensory equipment.
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As the system has been demonstrated to work, it is important to consider certain issues before
the system can be seriously considered in a live environment,

7.4.1.1. Increasing The Number Of Faults.

In order to demonstrate that the neural network based FDI system is capable of detecting and
isolating faults, it was necessary to identify three potential faults and collect data pertaining to
them. It was considered necessary to choose at least three faults as this would allow the system
to distinguish between two completely dissimilar faults and two faults which were similar in
nature, but caused by different events. A number of other factors were considered in choosing
the candidate faults; both in order to test other capabilities of the FDI system, as well as
practical considerations.

The practical considerations which were taken into account included - specific to the UAF - the
ability of the FDI system to isolate faults related to the flow of ammonia through the system, as
faults of this nature can be particularly troublesome on the factory floor, and the time and cost
necessary in producing a particular fault in the system. This latter point was important given
the limited resources available to the project.

Should it prove desirable to pursue this research further, it would be beneficial to extend the
number of faults which the FDI system is required to recognise. The important consideration
here would be the isolation filters ability to distinguish between faults whose characteristics are
increasingly similar to one another. The two similar faults considered in this research concern
valves on the ammonia line but which are on different sides of the barrel, i.e. the liquid
ammonia hand valve is situated before the ammonia has entered the barrel, whereas the
camflex valve is located on the outlet conduit. Figure 3.6 shows several valves which the
ammonia supply must pass through and it would be useful to determine whether an isolation
filter could determine the exact valve which was at fault, or whether it would only be possible
to isolate the fault to the ammonia inlet and outlet.

A problem with increasing the mumber of faults is that for each fault a number of freezer runs
will be necessary to collect data upon which to train an isolation filter. For certain faults, this
could prove expensive as generating the fault data may result in wastage of raw materials. An
example of this would be the lip seal fault considered in section 7.2.2. Due to the nature of the
fault, it would be necessary to allow a quantity of ice cream mix to escape the barrel whilst the
CRLI1000 logged the various freezer parameters. Once sufficient data was gathered, the UAF -
and surrounding area - would need to be cleaned. During the data collection cycle, this
procedure would need to be conducted several times, proving costly in both raw materials and
time, before a sufficient number of datalogs were generated to train an isolation filter.
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7.4.1.2. Increasing The Scope Of The FDI.

Currently the following types of faults have been investigated as part of this research:
¢  Faults which are dissimilar to one another.
e Faults which are similar to one another.
e Actator faults.
¢  Sensor faults.

¢ Faults which cause significant deviations from the normal operation of the system,
resulting in shutdown.

¢ Faults which manifest themselves as small offsets in the systems signals thereby
allowing the system to operate, but with a reduced quality in the product.

An issue that has not been specifically addressed is that of multiple faults, where a series of
faults occur simultaneously within the system. A competent FDI system should be able to
reliably isolate each fault, providing the operator with an accurate list of process components
which need attention.

Although this system appears to have provided one instance where this appears to be the case
(see section 7.2.3), it would be necessary to investigate its capabilities further as it would be
unlikely that during the course of an industrial processes life cycle, faults would present
themselves individually.

7.4.1.3. Testing The Model Using Other Product Forimulations.

In order to allow the model to concentrate on learning the dynamics of the UAF, it was
necessary (o maintain consistency between a mmber of external factors. Of these factors, the
product formulation is likely to change from time to time, and it would be necessary to
determine how a change in formulation would be likely to affect the freezer dynamics. At
worst, it may prove necessary to develop a separate freezer model for each formulation; the
correct one being selected prior to startup.

7.4.2. Alternative Solutions.

Currently, the study of the fault detection problem has centred around the use of the MLP
Network trained as an explicit input-cutput model. Whilst such an approach is most readily
workable when dealing with single-input single-output (SISQO) time-invariant processes, the
size of network needed to model more complex multi-input multi-output (MIMQ) systems

becomes considerable.




In addition, for real industrial processes - such as the Unilever Automated Freezer - which can
often prove to be time-varying with a staged startup procedure, it is unlikely that a single MLP
would be able to successfully model the process for all fault free conditions. This seriously
questions the robustness of such an approach, and whilst the problem has been solved in this
research by using a number of cascaded MLPs in the model, an alternative would be to move
away from a model reference system.

7.4.2.1. Non-model Based FDI.

In a non-model based FDI architecture, the need for an explicit model is eliminated as such a
system should be able to develop an implicit model by learning the behaviour of the process
under normal operating conditions. Once such a representation was formed, data obtained
from the plant would be classified as representing either a normal or abnormal run, the latter
indicating a fault. An extension to the architecture would take the abnormal records and
classify them providing fault isolation information, as detailed in figure 7.7.

Inputs Industrial Outputs
Process

v

i Fault Isolation
Module

Fault Detection R Act
Module St

Figure 7.7 A non-model based architecture for fault detection and isolation.
Here, the fault detection module could comprise of an MLP network trained to issue a positive
output - thereby activating the fault isolation module - if the freezer run is abnormal. The
isolation module could consist of several MLP filters in much the same manner as in the
derived solution, each of which is trained to recognise a specific fault.

However, as the detection module is not being taught to represent an explicit input-output
model, and as a danger exists that what may appear to the operator to be a normal datalog may
contain a hitherto undetected fault, it may prove beneficial to use a class of unsupervised ANN
to determine whether the run is normal or not. Two such ANN architectures are the Kohonen
self-organising feature map, and the continuous adaptive resonance theory (ART2) network.
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SelE ising F M

Feature Maps (FMs) possess the ability to discover patterns in the input data for themselves,
and cluster this data into groups, i.e. they will self-organise themselves. FMs make use of the
principle of competitive learning (where each processing element possesses self-exciting
recurrent connections and neighbour-inhibiting connections) to determine a ‘winning’
processing element. This element is most excited by the input vector.

If a processing element i receives many inputs Xji from other processing elements, these inputs
and their associated weights can be described by the row vectors X; and W; respectively thus

n

X, = [xu- Xaiv - - xm'] . W =[wli' Wair - W, ] (7.H

The value X,-W,-T can be thought of as a measure of distance between the input and weight
vector. The winner is the processing element whose weight vector is closest to the input.
Learning is achieved by updating each weight in the vector by the value

AW, = a(X, - W) (1.2)

where a is a learning coefficient, so that the weight vector associated with the winning

processing element will be moved closer to the input vector [4].

Similarly, FMs could be incorporated into the isolation module to allow faults of similar
classes to cluster together. An alternative to using the unsupervised rule on such networks is to
use a supervised learning vector quantization rule [3].

Adaptive Resonance Theory

Adaptive Resonance Theory (ART) is an unsupervised learning rule developed by Carpenter
and Grossberg [1]. ART networks are able to self-organise themselves in response to a
sequence of input-patterns, and classify these patterns by distinguishing between features in the
input. By using both long-term memory (storage for all classes of patterns so far learnt) and
short-term memory (storage for the current input pattern, the classification of that pattern and
the expected pattern) the network is able to classify each input patterm with respect to what is
already held in long term memory, or if the input pattern is sufficiently differemt to any yet
learnt, creates a new class of pattern with the input vector as its first member. ART uses
competitive learning to choose a winning class of pattern from long term memory.

Once chosen, the significant features of the input pattern are added to long term memory
through either a process of slow learning, where the method of allowing the significant features
to seep into the weight matrix is referred to as resonance, or fast learning where the pattern is
encoded directly onto the weight matrix which is useful for new classes of pattern.

174




The ARTI1 network was used for encoding binary patterns, whereas ART2 [2] extended this
for continuous values.

An advantage that the ART networks have over FMs is their ability to incorporate fresh classes
into their composition without the need for retraining. However both forms of unsupervised
network could be used to implement an FDI system such as in figure 7.7. Two separate
networks would be needed; one trained offline to distinguish between normal and abnormal
operating records, whilst the other would classify abnormal records into fault categories.
Whilst operating online, should the detection module fail to recognise an input pattern as being
normal process operation, a failure could be signalled and the record passed to the isolation
module for classification. Should this module fail to classify the record, an unknown fault
could be considered to have been encountered which could either be incorporated into the
module if based upon ART networks, or stored separately for the later retraining of the FM.

7.4.2.2. An Integrated FDI/Control System.

As a final comment upon possible future directions for research into this area, it is worth
considering the potential for integrating the FDI system with a controller based upon neural
computing techniques. Neural Controllers are prevalent in the literature, a number of which
[5] use model-reference systems. Here, two models are developed: one akin to the model used
in this research in order to determine how far actual plant outputs are off desired outputs; the
other an inverse model used to determine how much plant inputs need to be adjusted in order to
rectify any aberration in outputs.

Here, research would need to be conducted in how best to build this inverse model as well as
investigating the issues raised in section 7.1.2 pertaining to using a neural model in a control
system and how conflicts between the controller and the FDI system could be resolved.
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éChapter 8.

Concluding Remarks.é

Historically, research into the many properties and features of artificial neural networks has
been something of a roller coaster ride: periods spent in enthusiastic pursuit of the universal
machine, followed by virtual inactivity as the limitations of known models became evident.
However, the recent upsurge in interest from a wide variety of disciplines (psychology,
neuroscience, mathematics and computing science) has gained a momenmm which appears
unstoppable. Indeed, as research activity into traditional networks such as the MLP nears
exhaustion, one need not look far to find the next generation of more biologically plausible
networks, whose dynamics are based upon more contemporary studies of the brain, which are
likely to occupy researchers for many years to come,

The role of the artificial neural network in engineering applications has similarly increased in
recent years, yet the same practice which has led to disillusionment in symbolic Al systems is
often prevalent in ANN research. This is, in the main, the use of the technology to solve
simplistic - often artificially derived - problems, with a footnote to the effect that similar
success is likely should the solution be scaled up for application in a real-life situation. The
flaw in this reasoning can be readily demonstrated by considering the problem of modelling an
industrial process such as the Unilever Automated Freezer. The principle of building an MLP
model of a dynamic system was initially studied within the confines of simulated mathematical
systems of both linear and nonlinear design. Several aspects pertinent to a model-based FDI
system (modelling parameter variations, detecting aberrations in the residual signals and the
like) were investigated, and the theory - appearing sound - prepared for transfer to a practical
application. In retrospect it can be seen that it is at this point - where a large proportion of
published literature considers the principle proven and the problem solved - that this work
serigusly begins. Subsequent work has concentrated on designing a solution which would cope
with the piecewise time-invariant dynamics that the system exhibited, and which are likely to be

exhibited by any industrial process which employs a phased startup regime.




This research has resulted in the design of an FDI system which is as generic as the MLP upon
which it is based, but which has been tested and proven upon a real-life industrial process -
outperforming the existing fault detection system without the need for additional sensory
equipment. The main aspect of the works originality is the MLP Cascade and its associated
switching mechanism, which has the ability to model time-varying systems such as the UAF,
although - naturally - the ultimate test of the designs universality would come with the porting
of the architecture to other applications. However, as the design does not rely upon explicit
detailed knowledge of the dynamic system, this portability should not be a significant problem;
the scaling up of the work to a live testbed having been achieved.

As a final word, some thought can be given to the practicality of the solution. As has already
been mentioned - for the UAF - the FDI system does not rely upon additional sensors being
installed and can therefore be considered an inexpensive solution. However, a problem
encountered in this research involved the collection of data to train the various MLPs
comprising the solution. In order for the freezer to behave normally, one needs to operate it as
though a production run were being initiated, which means using the raw materials which
comprise the ice-cream. Therefore logging data of a normal run is instanily expensive -
especially if the freezer is being operated solely for the gathering of data for the FDI system
with none of the produced ice-cream being used. The problem is intensified when collecting
fault data. Again the UAF needs to be operated as though ice-cream were to be produced, but
with a strategic valve closed or a substandard component used in the process. In this situation,
it is unlikely that the ice~cream can be used in postproduction as it will undoubtedly be
substandard. So the problem involves the cost of gathering the data; a cost which could prove
prohibitive should the intention be to gather the data exclusively for training the MLPs.

In Unilever's case - where numerous freezer units exist worldwide - a practical solution would
be to initiate a programme whereby logged data was gathered as a matter of routine: each time
a particular piece of machinery was started, values of process parameters could be logged and
forwarded to a central data storage facility. This would not only result in a larger quantity of
data being captured than would be possible running one freezer repeatedly, but the data would
be more natural, less artificial. For this research, data was gathered from one machine by a
continual process of cleaning the UAF, starting it running, closing it down several minutes into
production and allowing it to settle to as close to initial conditions as possible before starting
again. It was thus possible to gather datalogs for as many as ten startups in one day.
However, on the factory floor a freezer is typically started once a day, allowed to produce its
quantity of tce-cream before being shutdown, cleaned and left idle overnight. If data could be
gathered from ten factory floor machines as a matrer of routine, the same quantity of data
would be captured, it would be more typical of UAF startup and the cost would be negligible.
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Obviously, gathering data on fault conditions could then prove problematic - although should
any UAF on the factory floor develop a fault, so long as the parameters were being logged, the
information necessary to train the isolation filters should be caught.

In summary, the main cost of implementing such a system would be incurred in the gathering
of normal and abnormal records. This cost can, however, be significantly reduced if it is
possible to gather the information in advance of the building of the FDI system during the
normal operation of the plant.

To conclude, then, this work has led to the development of an artificial neural network based
fault detection and isolation system which can adapt itself to a mechanical processes. It has
been tested on a specific piece of industrial machinery which possesses a class of time-varying
dynamics typical of systems with a phased startup regime.
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?Appendix 1.

Glossary

The purpose of this appendix is to provide a glossary of technical terms concerning aspects of
control and artificial neural network theory, as well as terminology specific to the Unilever
Automated Freezer used throughout this thesis.

Activation Function

Actuator

Al

Alarm

Ammonia (NHJ)
ANN

Artificial Intelligence

Artificial Neural Network

Backpropagation

Nonlinear transfer function between PE inputs and outputs,
often sigmoidal in shape.

A component of a plant that initiates a change, for example
the means to open and close a valve.

See artificial intelligence.

Audible and visual indication on the UAP showing there is a
problem with the freezer.

Colourless gas or liquid used as a refrigerant.
See artificial neural network.

The use of technology to develop automated devices to mimic
human reasoning processes.

A class of self organising system based upon the mechanisms
of the brain.

A supervised training algoritbm for fully connected
feedforward ANNs which moves actual network outputs
toward desired outputs in a gradient descent.
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Bar

Barrel

Blade

Camflex

Chromosomte

Control Loop

CRL1000

Crossover

Dasher

Dump Valve

Dynamic System

Measure of pressure.

Cylinder in the UAF in which ice cream mix is frozen. Air
and mixture enter the rear of the barrel where it is cooled and
frozen by means of liquid ammonia. A dasher rotates inside
the barrel removing ice from the interior surface. Ice cream is
extruded from the front of the barrel.

See scraper blade.

Type of suction control valve used with ammonia systems.
The camflex valve is used to alter the rate and temperamre at
which the ammonia evaporates, and thus controls the cooling
of the ice cream,

An individual potential solution handled by a genetic
algorithm.

A mechanism by which a controlled condition is measured and
compared with a desired value - or set point. Should a
difference between the two exist, the final part of the control
loop will attempt to limit or correct the deviation.

Type of process c:;')mputer manufactured by Control &
Readout Lid (now Control Techniques) used to control and
run the UAF. A keypad or keyboard can be used to set the
computer,

A genetic operator which combines two chromosomes.

An agitator fitted with scraper blades that rotates inside the
barrel of the UAF at about 240 rpm and removes ice from the
interior surface of the barrel. Several varieties of dasher exist
- each of which occupies a different volume of the barrel.

Valve used to return ammonia to the ammonia plant following
shutdown of the UAF.

A system which contains some form of internal memory such
that its current state depends to some extent upon its previous
state,
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Elitist Strategy

Epoch

Euclidean Distance

Evaporation Pressure

Extrusion Temperature

Fault Correction
Fault Detection
Fault Diagnosis

Fault Estimation

Fault Isolation

FDI

Type of genetic algorithm which always keeps the best
solution derived so far in the current population.

Usually refers to one complete presentation of the training
data to the ANN.

Straight line distance between two points in multidimensional
space.

The pressure at which the ammonia boils off in the UAF. A
high ammonia evaporation pressure implies a high ammonia
temperanure and therefore a low cooling rate.

The temperature at which Ice cream leaves the barrel of the
UAF.

The process of rectifying a fauolt.
The process of determining that a system is at fault.
The process of determining why a fault has occurred.

The process of determining the extent to which the fault has
affected a system.

The process of determining the source of a fault.

Fault Detection and Isolation.

Finite Impulse Response System A dynamic system whose current state is dependant upon a

FiR

Fitness

Genetic Algorithm

Genetic Operators

Hand Valve

finite mmber of prior states.
See finite impulse response system.

A measure of how good a solution a chromosome provides in
a genetic algorithm.

An optimisation technique based upon the principle of natural
selection.

Means of manipulating current members of the current
population (chromosomes) in a genetic algorithm.

The manually operated valve on the ammonia supply line.
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Hold

Hopfield Network

Ice cream Pump

IIR

Temporary stoppage of the UAF. Restarting from a hold
condition is relatively straightforward.

Specific ANN architecture which uses an unsupervised
learning rule.

Used to pump ice cream from the front of the barrel of the
UAF. The speed of the pump is used in controlling the barrel
pressure. ‘

See infinite impulse response system.

Infinite Impulse Response System A dynamic system whose current state is dependant upon

Knowledge Based System

Kohonen Network

Mix Pump

MLP

Model Based

Motorload

Multilayer Perceptron

Mutation

all previous states through time to the initial conditions of the
system.

An artificial intelligence tool which mimics higher level
iman reasoning,

Specific ANN architecture which uses an unsupervised
learning rule.

Ice cream prior to freezing in the UAF.

Used to pump liquid mix into the UAF barrel at a controlled
flow rate.

See mulrilayer perceptron.

A control or FDI system that relies upon an analytical model
of the system.

The measure of power needed to rotate the dasher within the
barrel of the UAF. This is related to the viscosity of the ice
cream in the barrel. A high motorload implies a high

viscosity.

Specific ANN architecture which is a fully connected
feedforward network often employing the backpropagation
algorithm to train it.

A genetic operator which changes a small part of a single
chromosome.
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NH3

Non-model Based

Overrun

PE

Population

Pressure Transducer

Processing Element

Quick Shut Off Valve

Residual Signal

Scraper Blade

Selection

Sensor

Set Point

Static System

See ammonia.

A control or FDI system that does not rely upon an analytical
model of the system,

The measure of the volume of air within the ice cream. The
overrun is a measure of the ratio of the amount of air and
liquid mix used to make ice cream. An overrun of 100%
means that there is an equal volume of air and mix.

See processing element.

A collection of chromosomes on which genetic operators work
in a genpetic algorithm.

A device for detecting pressure, for example the barrel
pressure on the UAF.

Individual unit within a artificial neural network analogous to
a bialogical neurone.

Valve on the UAF which is used to halt freezing by removing
liquid ammonia from the evaporation cylinder.

The difference between the actual process signals and those
calculated by an explicit mode! in a model based system.

A razor sharp blade attached to the dasher to remove ice
crystals from the interior surface of the barrel,

A method of deciding which members of the current
population of a genetic algorithm proceed into the next
generation, such as a simulated roulette wheel.

Device for measuring some attribute of a plant, for example a
pressure, temperature or flow rate. Signals from sensors can
be used to determine control decisions.

The desired values of certain process parameters that are to
be controlled.

A system which po internal memory such that its current state
is independent of its previous state.
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Supervised Learning

Symptom

Time Invariant System

Time Varying System

UAF

ANN learning paradigm which uses knowledge of the required
solution to the problem domain to influence outputs.

An indication - usually in the sensor measurements - that a
fault has occurred in a system.

A dynamic system whose underlying functional dependence
remains constant with respect to time,

A dynamic system whose underlying functional dependence
varies with respect to time.

See Unilever Automated Freezer.

Unilever Automated Freezer A type of freezer developed by Unilever for the production of

Unsupervised Learning

Viscosity

ice cream.

ANN learning paradigm which does not use knowledge of the
required solution to the problem domain to influence outputs.

A measure of the stiffness of - for example - ice cream,
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éAppendix 2.

C Library Routines.?

The purpose of this appendix is provide a functional specification for the multilayer perceptron
code developed for this research. Although this appendix is by no means an exhaustive list of
all the code written to develop the model based FDI solution, it provides the main building
blocks. It has been written with usability in mind, anrd can be readily utilised to encode an
MLP for application in many problem domains. A brief demonstration of encoding an MLP to

solve the XOR problem is provided.

In building the C library routines to implement the backpropagation training algorithm for the
MLP network, three major objectives have been borne in mind. These are:

(a

(b)

The code should be fast. As the MLP will often take a large number of
training epochs to learn sufficiently well, the need for speed in processing is
essential as inefficiencies in the code will greatly increase experimental time.
To this end pointers have been extensively used to access memory during the
implementation of the algorithm equations to avoid time-consuming
duplication of data.

The code should be compact, and the MLP storage itself should be as little as
possible. MLP networks are very memory intensive in their storage
requirements. Large arrays of floating point mumbers are necessary to store
processing element output values, thresholds, delta thresholds, weight values
and delta weights. A common method of encoding MLP networks is by use of
three dimensional arrays for the weights so that wlil[jl[k] refers to the value of
the weight connecting PE i in layer j to PE k in layer j-1. A drawback with
this approach is that at compilation time the value of the i and k dimensions
must be defined to be large enough to store the layer with the most PEs in it.
This means other layers with fewer PEs will still have this same large amount
of memory assigned, though a portion of it will be unused.
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The method adopted in this code to assign a dynamic one dimensional array
for the entire weight matrix with a mumber of additional overheads necessary
to determine where each weight is located within the MLP.

(©) The code should be flexible, All memory allocation for the MLP is performed
at execution time, ensuring that the only constraints on the size of the MLP are
the memory capacity of the PC and the memory model used during
compilation. In addition, all data pertaining to the MLP is stored in a
structure, meaning that several MLPs can be defined within one piece of code
with the minimum of confusion as to which data belongs to which network.

The code allows for the saving and loading of MLPs to disk. A stored MLP has the following
header information:

MLPName A string denoting the name of the MLP.

NoOfLayers An integer denoting the number of layers in the MLP.

LearnCoef MtmCoef  Two doubles denoting the learning and momenitum coefficients.

LI1L2.Ln A series of integers denoting the number of PEs in each layer.
There then follows a series of lines (one for each PE in the network) with the format:
t ThresholdValue TF Beta X->(Y, Z)

where 1 denotes the line represents a threshold value, ThresholdValue is a double representing
the value of the threshold, 7F is a short representing the transfer function, Bera is a double
representing the steepness of the transfer function, X is an integer representing the absolute
position of the PE, and Y and Z are local position and layer information. A series of lines (one
for each weight in the network) then follows with the format:

w ActiveFlag WeightValue X->(A, B)

where w denotes the line represents a weight value, AcriveFlag is a short indicating whether the
weight is active or not (1 = active, 0 = not active), WeightValue is a double representing the
value of the weight, X is an integer representing the absolute position of the weight, and 4 and
B are information regarding which two PEs the weight connects.

If the file on disk is an MLP initialisation file, the function readmlp() will create an MLP of the
configuration specified and initialise it. In order to construct an initialisation file, the
equivalent header information as above should be included, however instead of the threshold
and weight information, a single line of the following form needs to be included:
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x TF Beta SetAtOuput

where x denotes the file is an initialisation file, TF is a short integer code for the transfer
function at each processing element, Beta is a double representing the B (steepness) coefficient
of the transfer function, and SerArQutput is a short integer set to 1 if the transfer function
specified by TF is to be applied at the output PEs, and set to 0 if a linear activation function is
to be applied.

In all cases, the following codes are used to represent ransfer functions:

0: Linear

1 Standard Sigmoid
2: Hyperbolic Tangent
3 Sine

The following sections provide a functional specification for the C library routines.

2.1, Structures

The following three structures are used in the composition of the MLP structure, and it is not
usually necessary to define variables in terms of them directly.

struct pe Structure for each processing element.
Fields: pos Description: Integer denoting the local position of a PE within a
layer.
layer Integer denoting the layer the PE is in.
threshold Double representing the threshold (or bias) of the PE.
delta Double representing the change necessary to the
threshold.
output Double representing the output value of the PE.
error Double representing the local part of the overall error
to which this PE is responsible,
tf Short representing which transfer (activation)
function is currently active for the PE.
beta Double representing what the f (steepness) coefficient
is for this PE. :
struct w Structure for each weight.
Fields: fpe Description: Integer denoting the absolute position of the PE the
coanection is from.
tpe Integer denoting the absolute position of the PE the
connection is to.
value Double representing the value of the weight.
delta Double representing the change necessary in the
weight.
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active

Fields: err

act

Short denoting whether the weight is active or not.

Structure to improve the speed of the backpropagation algorithm by holding

Description:

all values sequentially in an order to facilitate processing.

Pointer to the double held in the PE structure
representing local error.

Pointer to the double held in the weight structure
representing the weight value.

Pointer to the short held in the weight structure
representing whether the weight is active or not.

The following typedef defines the MLP, and a pointer to a variable of this type needs to
declared in any C code which uses the library functions presented here.

typedefmlp  Typedef for the MLP structure.

Fields: idn
nol
nl

totpe

torw

pe

w

bp
Ic

m

Description:

Character string holding the name of the MILP.
Integer representing the number of layers in the MLP.
Pointer to series of nol integers representing the
number of PEs in each layer of the MLP.

Integer representing the total number of PEs in the
MLP.

Integer representing the total number of weights in the
MLP.

Pointer to a list of PE structures.

Pointer to a list of weight structures.

Pointer to a list of backprop data structures.

Double representing the learning coefficient of the
MLP.

Double representing the momentmm coefficient of the
MLP.
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2.2, Functions & Procedures For Defining & Running An
MLP.

2.2.1. DEFMLPQ

Name: defmlp Type Function

General Description

Returns the address of a newly defined MLLP. This function uses the following functions and
procedures in defining the MLP: calctotpe(), initpe(, calctotw(), initw(), initbp(), randwt(),
and randth().

Argument Type Description
type char * Identifier string for the MLP.
11 int The number of PEs in the ioput layer.
int The number of PEs in the first hidden layer.
int The number of PEs in the second hidden layer.
14 int The number of PEs in the output layer.
f short Code for the transfer function: 0 = linear, 1 = standard

sigmoid, 2 = hyperbolic tangent, 3 = sine.

beta double Steepness of the gradient of the transfer function.

S0 short Flag to determine whether the transfer function specified
by tf is applied to output layer PEs. A value of 1 sets the
transfer function to tf, a value of 0 sets the wansfer
function to the linear function,

Return Value mlp * Pointer to the newly created MLP.

Example

To create an MLP with 3 layers consisting of 10 input PEs, 5 PEs in the hidden layer and 2
output PEs with a standard sigmoid (steepness of 0.5) and a linear transfer function at the
output layer:

mlp *MyMLP;

MyMLP = defmlp("MLPName", 10, §, 2, 1, 0.5, 0);
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2.2.2. CALCTOTPEQ

Name: calctotpe Type Function

General Description

Returns the total number of PEs in an MLP. Used by defmlp().

Argument Type Description

nl int * Pointer to a list of the PEs in each layer.
nol int The mumber of layers.

Return Value int The total number of PEs in the MLP,
Example

To calculate how many PEs there are in a three layer MLP with structure 10-5-2:
int totpes, *nl, nol = 3;

nl = (int *) malloc(3 * sizeof(int));

*nl = 10; *(nl+1) = 5; *(nl+2) = 2;

totpes = calctotpe(nl, nol);

2.23. CALCTOTW(

Name; calctotw Type Function

General Description

Returns the total number of weights in an MLP. Used by defmlp().

Argument Type Description

ol int * Pointer to a list of the PEs in each layer.
nol int The mumber of layers.

Return Value int The total number of weights in the MLP.
Example

To calculate how many weights there are in a three layer MLP with structure 10-5-2:
int totpws, *nl, nol = 3;

nl = (int *) malloc{nol * sizeof(int *));

*nl = 10; *(nl+1) = 5; *(nl+2) = 2;

totpws = calctotw(nl, nol);
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2.24. INITPEQ

Name: initpe

Type Procedure

General Description

Takes the uninitialised list of PEs and gives them their identifying positions, transfer
functions, steepness coefficients and initialises their threshold values.

Argument Type Description

pe struct pe * | Pointer to list of PEs.

ol int * Pointer to a list of PEs in each layer.

nol int Number of layers.

totpe int The total mumber of processing elements.

tf short Code for the transfer function: 0 = linear, 1 = standard
sigmoid, 2 = hyperbolic tangent, 3 = sine.

beta double Steepness of the gradient of the transfer function.

seto short Flag to determine whether the transfer function specified
by tf is applied to output layer PEs. A value of 1 sets the
transfer function to tf, a value of 0 sets the transfer
function to the linear function.

Return Value N/A

Example

For an example of this procedure, refer to the source code for defmlp(). Under normal
circumstances, there is no need to directly access this procedure.
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2.2.5. INITWQ

Name: initw Type Procedure

General Description

Takes the uninitialised list of weights and gives them their identifying positions, and sets
their active flagto 1..

Argument Type Description

w struct w * | Pointer to list of weights.

pe struct pe * | Pointer to a list of PEs.

ol int * Pointer to list of number of PEs in each layer.
totpe int The total mumber of processing elements.
Return Value N/A

Example
For an example of this procedure, refer to the source code for defmlp(). Under normal
circumstances, there is no need to directly access this procedure.
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2.2.6. INITBPQ

Name: initbp

Type Procedure

General Description

Initialises the backpropagation reference list that is used to speed up processing. When the
list of weights and PEs are initialised, they are in an order in the array for fast calculations

during the feedforward cycle.

To allow the same speed during backpropagation, an

additional list is constructed which points to the necessary values in an order which is correct

for backpropagation.

Argument Type Description

bp struct bp * | Pointer to backpropagation reference list.
pe struct pe * | Pointer to list of PEs.

w struct w * | Pointer to list of weights.

ol int ¥ Pointer to a list of PEs in each layer.

nol ‘int Number of iayeré.

totpe int The total mumber of processing elements.
totwt int The total number of weights in the MLP.
Return Value N/A

Example

For an example of this procedure, refer to the source code for defmlp(). Under normal
circumstances, there is no need to directly access this procedure,
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2.2.7. RANDTHOQ

Name: randth Type Procedure

General Description

Randomises the threshold values of the PEs in the range *1 and initialises the deltas to zero.

Argument Type Description

mlp mip * Pointer to the mlp structure.

Return Value N/A

Example
In order to randomise the thresholds in a predefined mlp called *MyMLP:
randth(MyMLP);

2.2.8. RANDWT(Q

Name: randw Type Procedure

General Description

Randomises the weight values of the PEs in the range *1 and initialises the deltas to zero.

Argument Type Description

mlp mlp * Pointer to the mlp structure.

Return Value N/A

Example
In order to randomise the weights in a predefined mip called *MyMLP:
randwt(MyMLP);
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2.29. WRAND(Q

Name: wrand Type Function

General Description

Rewurns a random floating point mumber in the range 1. Used when initialising thresholds
and weights.

Argument Type Description

N/A

Return Value double Random number in the range 1.
Example

To obtain a random number using this function:
double smallrandnum;
smallrandnum = wrand();

2.210. FFQ

Name: | ff Type Procedure

General Description

This procedure feeds a predetermined input vector through the MLP.

Argument Type Description
iv double * Pointer to the input vector.
mip mlp * Pointer to the MLP structure.

Return Value N/A

Example

To feed a 2 part input vector comprising of 0.3 and -0.8 through a predefined 2-2-1 MLP
called MyMLP:

double *inputs;

inputs = (double *) malloc(2*sizeof(double *));

*inputs = 0.3; *(inputs+1) = -0.8;

fi(inputs, MyMLP);
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2.2.11. BP(Q

Name: bp Type Function

General Description

Performs the backpropagation algorithm through the MLP given a desired output vector. It
returns the Buclidean Distance as the global error of t network.

Argument Type Description

ov double * Pointer to the output vector.

mlp mlp * Pointer to the MLP structure.

Return Value double Euclidean Distance between the desired an actual outputs.
Example

To propagate a 1 part output vector with the value 0.5 through a predefined 2-2-1 MLP
called MyMLP:

double desired, error;

desired = 0.5;

error = bp(&desired, MyMLP);

2.2.12. CALCERR(Q

Name: calcerr Type Function

General Description

Rewrns the Euclidean Distance as the global error of the network without performing the
backpropagation algorithm,

Argument Type Description

ov double * Pointer to the output vector.

mip mlp * Pointer to the MLP structure.

Return Value double Euclidean Distance between the desired an actual outputs.
Example

To calculate the error for 2 part output vector comprising the value 0.5 and 0.7 of a
predefined 4-2-2 MLP called MyMLP:

double *desired, error;

desired = (double *) malloc(2*sizeof(double *));

*desired = 0.5; *(desired+1) =0.7;

error = calcerr(desired, MyMLP),
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2.2.13. TRANSQ

Name: | wrans Type Function

General Description

Returns the result of performing a transfer - or activation - function on a value.

Argument Type Description
X double The value to apply the function to.
t short Code for the transfer function: O = linear, 1 = standard

sigmoid, 2 = hyperbolic tangent, 3 = sine.

beta double Steepness of the gradient of the transfer function.
Return Value double The result of the transfer function.
Example

To find the corresponding sigmoid function value (steepness 0.2) of 1.456:
double result;
result = trans(1.456, 1, 0.2),

2.214. DTRANSO

Name: dtrans Type Function

General Description

Returns the result of performing the derivative of a transfer - or activation - function on a

value.

Argument Type Description

X double The value to apply the function to.

t short Code for the transfer function: 0 = linear, | = standard
sigmoid, 2 = hyperbolic tangent, 3 = sine.

beta double Steepness of the gradient of the transfer function.

Return Value double The result of the derivative of the transfer function.

Example

To find the corresponding derivative hyperbolic tangent function value (steepness 0.4) of
1.456:

double result;

result = dtrans(1.456, 2, 0.4);
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2.2.15. FREEMLP(

Name: freemlp Type Procedure

General Description

Frees the memory allocated by either defmlp() or readmlp().

Argument Type Description

mip mlp * Pointer to the MLP structure.

Return Value N/A

Example
To free the memory allocated to a predefined MLP called MyMLP:
freemlp(MyMLP);

2.3. Procedures For Displaying MLP Information.

2.3.1. DISPMLP(Q

Name: dispmlp Type Procedure

General Description

Displays general information about an MLP to a file stream. The information includes: the
MLP identifier name, its structure, its leamming and momentum coefficients, and its current
status.

Arpument Type Description

mlp mlp * Pointer to the MLP structure.

where FILE * Pointer to the file stream.

1 short Flag indicating current status of the MLP; 1 = training, 0 =
generalising.

Return Value N/A

Example

To print details of a predefined MLP called MyMLP which is currently training to the
standard output device:

dispmlp(MyMLP, stdout, 1);
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2.3.2. DISPPE(

Name: disppe

Type Procedure

General Description

Displays general information about a specific PE to a file stream. The information includes
the PEs absolute identifier, position in the network, threshold and delta threshold values,
output and error values, and the transfer function and f coefficient of the PE.

Argument Type Description

mlp mlip * Pointer to the MLP structure.

where FILE * Pointer to the file stream.

pe int The absolute position of the PE in the PE list structure
within the mlp structure.

Return Value N/A

Example

To print details of the fourth PE in the first hidden layer (layer 1) of a predefined MLP
called MyMLP to a predefined file whose pointer is fp:

disppe(MyMLP, fp, abspe(MyMLP, 3, 1));

N.B. For a description of the function abspe(), see below.
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2.3.3.

DISPW(

Name:

dispw

Type Procedure

General Description

Displays general information about a specific weight to a file sream. The information
includes the weights absolute identifier, the two PEs it connects, value and delta value, and
its status (i.e. whether active or not).

Argument Type Description

mlp mlp * Pointer to the MLP structure.

where FILE * Pointer to the file stream.

w int The absolute position of the weight in the weight list
structure within the mlp structure,

Return Value N/A

Example

To print details of the weight connecting the third PE in the input layer (layer 0) to the fourth
PE in the first hidden layer (layer 1) in a predefined MLP called MyMLP to the standard
output device:
dispw(MyMLP, stdout, absw(MyMLP, 2, 0, 3, 1));

N.B. For a description of the function absw(), see below.
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24. Functions & Procedures For Saving & Loading MLPs.

24.1. READMLP(Q

Name: readmlp Type Function

General Description

Reads an MLP definition file and returns the address to the opened MLP. If the MLP
definition file is an initialisation file as opposed to a stored file, a new MLP is created using
defmlp(Q.

Argument Type Description

fn char * The filename to be opened. If the file cannot be opened, a
value of NULL is returned by readmip().

mlp mlp * Pointer to the MLP structure to which the file contents are
to be read. If this argument is NULL, a new address is
created and returned using defmlp(). If an address is given
and the mlp pointed to does not match the structure of the
MLP on file, a value of NULL is returned by readmlp().

Return Value mlp * Pointer to the MLLP which has been read in from file. A
NULL pointer will be returned if the file is not successfully
read.

Example

To read an MLP initialisation file called MLPINIT.NND:

mlp *MyMLP;

MyMLP = readmlp("MLPINIT.NND", NULL);
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24.2, WRITEMLPQ

Name: writemlp Type Procedure

General D&scriptior_l
Writes the details of an MLP to file in a format readable by readmlp().

Argument Type Description

fn char * The filename to be opened for writing.

mlp mlp * Pointer to the MLP structure whose contents are to be
written to file.

Return Value N/A

Example
To write a predefined MLP called MyMLP to a file calted TESTMLP.NND:
writemlp("TESTMLP.NND", MyMLP),

2.5. Additional Functions & Procedures.
2.5.1. ABSPE()

Name: | abspe Type Function

General Description

Returns the absolute position of a PE in the PE list structure given its local position in its

layer.

Argument Type Description

mlp mlp * Pointer to the MLP structure.

pe it Position of PE in its layer.

1 int Layer the PEis in.

Return Value int The absolute position of the PE, or -1 if the PE specified
by pe and 1 does not exist.

Example

To return the absolute position of the eighth PE in the output layer of a four layer predefined
MLP called MyMLP;

int pos;

pos = abspe(MyMLP, 7, 3);

N.B. As the count for each PE in a layer and each layer begins from zero, the eighth PE is
referenced by 7, and the fourth layer by 3.
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2.5.2. ABSW(

Name: absw

Type Function

General Description

Returns the absolute position of a weight in the weight structure given which two PEs it

CONNeECts.

Argument Type Description

mip mlp * Pointer to MLP structure.

fpe int Number indicating which PE the connection is from.

fl it Number indicating which layer the connection is from.

tpe int Number indicating which PE the connection is to.

d int Number indicating which layer the connection is to.

Return Value int Absolute position of the weight, or -1 if the weight
specified by fpe, fl, tpe and tl does not exist.

Example

To return the absolute value of the weight connecting the fourth PE in the first hidden layer
to the first PE in the second hidden layer of a predefined four layer MLP called MyMLP:

int pos;

pos = absw(MyMLP, 3, 1, 0, 2);

N.B. All counting of PEs and layers begins from zero. Therefore the fourth PE is referred to

as number 3 etc.
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2.5.3. ADDRPE(Q

Name: addrpe Type Function

General Description
Returns the address of a certain attribute of a certain PE,

Argument Type Description

mlp mlp * Pointer to the MLP structure.

pe int Absolute position of the PE in the PE list structure within
the MLP structure.

attr char Code indicating which attribute is required: 't' = threshold,
'd' = delta threshold, ‘o’ = output, and ‘e’ = local error.

Return Value double * Pointer to the particular attribute required.

Example

To find the address of the output of a predefined 6-3-1 MLP called MyMLP, where the
output is the output attribute of the first PE in the output layer (layer 2):

double *output;

output = addrpe(MyMLP, abspe(MyMLZP, 0, 2), '0");

N.B. For a description of the function abspe(), see above.

2.54. ADDRW()

Name: addrw Type Function

General Description
Returns the address of a certain attribute of a certain weight.

Argument Type Description

mlp mip * Pointer to the MLP structure.

w int Absolute position of the weight in the weight list structure
within the MLP structure.

attr char Code indicating which attribute is required: 'v' = value, 'd'
= delta value.

Return Value double * Pointer to the particular attribute required.

Example

To find the address of the delta value of the weight connecting the fourth PE in the input
layer to the ninth PE in the first hidden layer in a predefined MLP called MyMLP:

double *delta;

delta = addrw(MyMLP, absw(MyMLP, 3, 0, 8, 1), 'd’);

N.B. For a description of the function absw(), see above.
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2.5.5. ALTPEQ

Name: altpe

Type Procedure

General Description

Allows an attribute of a PE to be altered given the absolute value of the pe and an attribute

code.

Argument Type Description

mlp mlp * Pointer to the MLP structure.

pe int Absolute position of the PE in the PE list structure within
the MLP structure.

atr char Code indicating the attribute to be changed: 'f = transfer
function (values 0 = linear, 1 = sigmoid, 2 = hyperbolic
tangent, 3 = sine), ‘b’ = steepness coefficient of the transfer
function.

newval double New value of the attribute. The new value needs to be
passed as a double, with any necessary conversion to other
types performed by the procedure.

Return Value N/A

Example

To change the transfer function of the seventh PE in the first hidden layer (layer 1) to the
hyperbolic tangent in a predefined MLP called MyMLP:

altpe(MyMLP, abspe(MyMLP, 6, 1), 'f', (double) 2);

N.B. For a description of the function abspe(), see above.
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2.5.6. ALTW(Q

Name: altw Type Procedure

General Description

Allows an attribute of a weight to be changed given the absolute position of the weight and
an attribute code. Currently the only attribute which can be changed is the active flag,

Argument Type Description

mip mlp * Pointer to the MLP structure.

w int Absolute position of the weight in the weight list structure
within the MLP structure.

attr char Code indicating the attribute to be changed. The only
currently available value is "a’ for activating or deactivating
a weight.

Return Value N/A

Example

To deactivate the weight connecting the fourth PE in the second hidden layer (layer 3) to the
first PE in the output layer (layer 4) in a predefined MLP called MyMLP:

altw(MyMLP, absw(MyMLP, 3, 3, 0, 4), 'a’);

N.B. The same command will reactivate the weight, as the active flag is toggled. For a
description of the function absw(), see above.

2.6. Example: The XOR Problem.

One of the strengths of the MLP network is to learn complex nonlinear mappings between
input-output pairs, and solve problems that are not linearly separable. One problem that does
not possess a linearly separable solution is the logical Exclusive-OR (XOR) function that has a
positive output if one or other of the inputs is positive, but not both. Although this problem
appears trivial to the human mind, early self-adjusting systems were not able to determine the
relationship between the inputs and the outputs for themselves.
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For such a problem, the training set consists of four patterns:

Inputs Output
Pattern 1 0 0 0
Pattern 2 0 1 1
Pattern 3 1 0 1
Pattern 4 1 1 0

Upon each of these patterns being presented to the MLP, one epoch can be said to have
occurred. As the sigmoid activation function saturates towards 0 and | but never actually
reaches them, it is preferable to use values which are close to these to represent them. Because
this problem deals with only 0's and 1's as inputs and outputs, the values 0.1 and 0.9 will be
used to represent them as they are sufficiently dissimilar from one another not to be confused.

The following program can then be used to solve the XOR problem.

{linclude <stdio.h>
ffinclude <stdlib.h>
finclude "mlpdefs.h*®

{ldefine stopping_condition ((epoch = 100000) || (error < D.00001))
fldefine tsetsize 4 /* Size of training set */

void main(void)
{

mlp *xormlp: /* The MLP */

double *iv: /* The input vector */
double desout; /* The desired output */
double *output; /* The actual MLP output */

double error = 1.0: /* The global error of the MLP for each epoch */
double trnset[4][3); /* The training set information */

long epoch = 0; /* Epoch counter */

int pattern; /* Pattern counter */

/* Load the training set with the information in the form: */

/* {0.11[0.1] (0.1] *f
/* (0.1100.9] [0.9)] */
/* (0.9](0.1] [0.9] */
/* [0.9](0.9] [0.1] */
trnset[01[0] = 0.1; trnset[01[1]) = 0.1: trnset[0]{2] = 0.1:
trnset[1][0] = 0.1;: trnset[1](1] = 0.9: trnset[1](2] = 0.9;
trnset(21(0] = 0.9; trnset(2](1} = 0.1; trnset{2](2] = 0.9;
trnset[31[0] = 0.9: trnset[3][1] = 0.9; trnset({31(2] = 0.1:

/* Use the randomize function to initialise the random number generator. */
randomize();

/* Define a 2-2-1 MLP with a standard sigmoid activation function */
/* applied at each PE in the network. *f
xormlp = defmlp(*X0RSolution®, 2, 2, 0, 1, 1, 0.5, 1):

/* Set the learning and momentum coefficients. */

xormlp->1c = 0.5; xormlp->m = 0.9;

/* Allocate memory for the input vector. */
iv = (double *) malloc(2 * sizeof(double *));:

/* Main program loop */
while (!stopping_condition)
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/* Train the HLP on each pattern in the training set in turn, */
for (pattern = 0, error = 0.0; pattern < tsetsize: pattern++)
{
/* Load the input vector with the current input pattern. */
*iv = trnset{pattern][0]: *(iv+l) = trnset[pattern][1];
/* Set the desired output. */
desout = trnset[pattern][2]:

/* Feed the input vector forward and backpropagate the */
/* desired output. */
ff(iv, xormlp):
error += bp(&desout. xormlp):
}

epoch++;

}

printf(*Finished training after %1d epochs.\n\n". epoch):

/* Test the MLP. Set output to the output attribute of the output PE. */
output = addrpe(xormlp, abspe(xormlp, 0, 2}, ‘0°):
for {pattern = 0: pattern < tsetsize; pattern++)

{

/* Load the input vector with the current input pattern. */

*iv = trnset[pattern](0]; *(iv+l) = trnsetipatternl[1]:

/* Feed the input vector forward. */

ff(iv, xormlp):

printf(~Pattern %d: 22.1f %2.1f --> %22.1f (actual) %2.1f (predicted).\n",

pattern+l., *iv, *(iv+l}, trnset[pattern][2], *output):
}

/* Save the MLP to disk. */
writemlp("XORMLP.RND", xormlp);
/* Free all allocated memory. */
free(iv):

freemlp(xormlp);

If the file is saved as XOR.CPP, compilation can be achieved using the Borland C command
line compiler as follows:

bee -G -ff xor.cpp mip.cpp

resulting in the executable file XOR.EXE (for compiler options, please refer to Borland
documentation). When run, the programs output is equivalent to:

Finished training after 1202 epochs.

Pattern 1: 0.1 0.1 --> 0.1 (actual) 0.1 (predicted).
Pattern 2: 0.1 0.9 --> 0.9 (actual) 0.9 (predicted).
Pattern 3: 0.9 0.1 --> 0.9 (actual) 0.9 (predicted).
Pattern 4: 0.9 0.9 --> 0.1 (actual) 0.1 (predicted).

The output file, XORMLP.NND, has the following contents:

XORSolution

3

0.500000 0.900000

221

t 0.062767 1 (.500000 0->(0.0)
t -0.069308 1 0.500000 1->(1,0)
t 2.847186 1 0.500000 2->(0.1)
t 5.256626 1 0.500000 3->(1,1)
t -3.282526 1 0.500000 4->(0,2)
w1l -6.229600 0->(0.2)
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-6.226864 1->(1,2)
-3.875745 2->(0.3)
-3.875199 3->(1.3)
-7.194473 4->(2,4)

1
1
1
1
1 7.152833 5->(3.,4)

EZ XX

which can be read using further programs with the function readmip().

2.7. C Source Code.

The following subsections list the source code both for the MLLPDEFS.H header file and the
MLP.CPP file of library routines. Comments are provided throughout the code, but additional
information is contained above.

2.7.1. MLPDEFS.H

o Ty *f
/* mlpdefs.h */
R */
/* Header file for Multilayer Perceptron applications. Contains constants, */
/* structures, typedefs, function and procedure declarations used with *f
/* MLP.CPP */
/ir ......................................................................... */
/* Version 2.1 (C) Edward J. Williams Last Update: Dec 4th, 1992. */
/* ......................................................................... i/

ffif !defined(_MLPDEFS_H)
fldefine _MLPDEFS_H

/* Constants - Default values for an mlp declaration. */
[* == *I
fidefine def_nol 4 /* No of layers in mlp */
{idefine def_11 2 /* No of pe’s in layer 1 */
fldefine def_12 4 /* No of pe’s in layer 2 */
fidefine def_13 4 /* No of pe‘s in layer 3 */
{idefine def_14 1 /* No of pe's in layer 4 */
{idefine def_lc 0.1 /* Learning coef */
fidefine def_m 0.8 /* Momentum coef */
/* Structures */
A */
struct pe { /* Structure for processing element. */
int pos; /* Position */
int layer: /* In layer */
double threshold; /* Threshold or bias */
double delta; /* Change in threshold */
double output: /* Output of pe */
double error; /* Error at pe */
short tf: /* Transfer function */
double beta; /* Steepness of transfer function */
}.
struct w { /* Structure for weight. */
int fpe; /* From pe */
int tpe; /* To pe */
double value: /* Value of the weight */
double delta: /* Change due to error */
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short active; /* 1 if active. 0 otherwise */

}
struct bp { /* Structure for backprop reference list. */
double *err; /* Pointer to error in PE structure. */
double *w; /* Pointer to weight value in weight structure. */
short “*act: /* Pointer to active flag in weight structure. */
|
typedef struct { /* MLP structure. */
char *idn: /* Name of the mlp. */
int nol: /* No of layers. */
int *nl; /* Pe's in each layer */
int totpe: /* Total no of pe’s in mlp */
int totw; /* Total no weights in mlp */
struct pe *pe; /* Pointer to pe’s */
struct w *w; /* Pointer to all the weights */
struct bp *bp: /* Reference to the weights for bp */
double 1c: /* Learning coefficient */
double m; /* Momentum coefficient */
} mlip:
/* Functions and Procedures */
* */
mlp *defmlp{char *, int, int, int., int. short, double. short); /* Defines the
mlp. */
int calctotpe(int *, int}); /* Calculates the tetal no of pe‘s. */
int calctotw(int *, int); /* Calculates the total no of weights. */

void initpe(struct pe *, int *, int. int. short, double, short); /* Initialises the
pe's. */
void initw(struct w *, struct pe *, int *, int); /* Initialises the weights. */
void initbp(struct bp *, struct pe *, struct w *, int *, int, int, int);
/* Initialises the bp reference ltist, */
void randwt(mlp *): /* Randomises the weights. */
void randth(mlp *): /* Randomises the thresholds. */

double wrand(void); /* Returns random double: -1 < x <1 */

void ff(double *, mlp *): /* Feeds vector forward through the mip. */

double bp(double *, mip *); /* Propagates error back through the mlp. */

double calcerr(double *, mlp *); /* Calculates the error of the network without
backprop. */

double trans(double. short, double); /* Transfer functions. */
double dtran;(double. short, double); /* Derivatives of transfer functions. */

void dispmlp{mip *, FILE *, short): /* Display general mlp data. */
void disppel(mlp *, FILE *, int); /* Display pe data. */

void dispw(mlp *. FILE *. int): /* Display weight data. */

void freemlp(mlp *); /* Frees mlps allocated memory */

int abspe(mlp *, int, int): /* Returns abs position value of pe */
int absw(mlp *, int, int, int, int); /* Returns abs position value of weight */

void altpe(mlp *, int, char, double): /* Alters attributes of pe */
void altw(mlp *, int. char): /* Alters attributes of weight */

double *addrpe(mlp *, int, char); /* Returns address of a pe attribute */
double *addrw(mlp *, int, char); /* Returns address of a weight attribute */

mlp *readmlp(char *, mlp *); /* Reads an mlp from file. */
void writemlp(char *, mlp *); /* Writes an mlp to file. */

flendi f
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2.7.2. MLP.CPP

/* ......................................................................... */
/* mlp.cpp */
/* ------- */
/* Generic code for the definition and running of a Multilayer Perceptron, */
/* and it's training with the backpropagation algorithm. */
/* ......................................................................... *I
/* Version 2.1 (C) Edward J. Williams Last Major Update: Apr 3rd. 1992. */
/* ......................................................................... i-l
/* Minor revision: Sept 12th. 1993. */
/™ Update of bp() and calcerr() functions to return the */
/* global error calculated as the Euclidean Distance. */
/* ......................................................................... i/

f}if tdefined(__STDIO_H}
flinclude <stdio.h>
flendi f

jHf !defined(_STDLIB_H)
ffinclude <stdlib.h>
{lendi f

fif ldefined(_MATH_H)
ffinclude <math.h>

ffendi f

fif 'defined(__STRING_H)
fHinclude <string.h>
flendi f

{fif 'defined(_MLPDEFS_H)
{tinclude *mlpdefs.h”

flendi f

/* Function: Returns the absolute value of a processing element in the */
I* array of PEs given its local position in its layer. */
/* Returns -1 if no such PE exists. */

int abspe{mlp *mip. int pe, int 1)
{
int cnt, value = -1:

for (ent = 0: cnt < mlp->totpe: cnt++)
if (((*(mlp->pe+cnt}).pos == pe) && ({(*(mlp->pe+cnt)).layer = 1))
value = cnt:

return value;

1

/* Function: Returns the absolute position of a weight in the array of */

/* weights given its which two PEs it connects. */

/* Returns -1 if no such weight exists. */

int absw(mlp *mlp, int fpe, int f1, int tpe, int t1)
{
int cnt, value = -1;

for (cnt = 0; cnt < mlp->totw;: cnt++)
if ( ((*{mlp-d>pe+r(*(mlp-dw+cnt}).fpe)).pos = fpe) &&
((*(mlp->pe+(*(mlp-dwtcnt)}. fpe)).layer — f1) &&§
((*(mIp->pe+(*(mlp-dwtcnt)).tpe)).pos == tpe) &&
((*(mlp->pe+(*(mip->w+cnt)).tpe)).layer = t1) )
value = cnt:

return value;

}

/* Function: Returns the address of a certain attribute of a certain PE when*/
/* given the absolute value of the PE and a charater code for the */
’* attribute required. Permissable codes are: */
/* "t Threshold */
/* ‘g’ Delta Threshold */
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/*
/*

'o': Qutput

‘e’ Local Error

double *addrpe{mlp *mlp, int pe, char attr)

{

double *address;

switch (attr)

{

1

case

case °

case

case

"t

': address

address = &((*(mlp->petpe)).threshold):
break:;

&((*(mlp->pet+pe)).delta);
break;

: address
break;

: address = &((*(mlp->pe+pe)).error);
break;

n

&((*(mlp->petpe)).outpul):

return address:

/* Function: Returns the address of a certain attribute of a certain weight

given the absolute value of the weight and a character code
for the attribute required. Permissable codes are:

‘v Value

i Delta Value

double *addrw{mlp *mlp. int w, char attr)

{

double *address:

switch (attr)

{

}

case

Ccase

v

address
break:

E((*(mlp-d>wtw)).value):

'd’: address = &((*{mlp-dwiw)).delta);

break;

return address:

/* Procedure: Allows an attribute of a PE to be changed given the absolute

/i-
/*
/*
/*
/*

value of the PE and an attribute code, where valid codes are:
"fr Transfer Function
‘b’: Beta coefficient

The new value of the attribute is passed in as a double and
converted to the new data type within the procedure.

void altpe(mlp *mip. int pe. char attr. double newval)

{

switch (attr)

{

}

case

case

tEe.

‘b:

(*(mlp->petpe)).tf = (short) newval;
break:

{(*(mip->petpe)).beta = newval;
break;

/* Procedure: Allows an attribute of a weight to be changed given the

Ii
/t
I/*
I-l'
/*
/*

absolute value of the weight and an attribute code, Currently
the only valid code is:

‘a': Active flag.
At present no it is not necessary to pass a value to this
procedure for changing the attribute as is required in
altpe().

void altw(mlp *mlp., int w, char attr)

{

switch (attr)

{
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case ‘a': if ((*(mlp-d>ww)).active)
{*(mip->w+w)).active = 0:

else
(*(mlp-D>w+w)).active = 1;
break:
}

}
/* Function: This function performs the backpropagation algorithm on the */
/* MLP given a desired output vector., It returns the global error */
™~ (Euclidean Distance} of the network. */

double bp(double *ov, mip *mip)
{
int i. ). ke
int *nl;
struct pe *pe;
struct w *w;
struct bp *bp:
double cumlerr = 0.0, sumerrs;

/* Initialise bp and w pointer. */
bp = mlp->bp:
w = mp-dw:

/* Initialise pointers to final layer, pe, and output vector element. */
nl = mlp->nl + mip->nol - 1;

pe = mlp->pe + mlp->totpe - 1;

ov += *nl - 1;

/* Calculate the errors at the output neurons, adjust the */
/* thresholds, and cumulate the errors. */
for (j = *nl; j > 0; j--. ov--, pe--)

{

pe->error = dtrans(pe->output, pe->tf, pe->beta) * (*ov - pe-doutput):
pe->delta = mlp->1c * pe-Yerror + (MIp->m * pe->delta):;
pe->threshold += pe->delta:
cumlerr += (*ov - pe->output) * (*ov - pe->output):
}
nl--;

/* Perform the backprop algorithm through the mlp. */
for (i = mlp->nol - 1; i > 1; i--, nl--)
for (j = *nl; j > 0; j--. pe--}
{
sumerrs = 0.0;
for (k = *(nl+1); ¥ > 0; k--, bp+)
sumerrs += *(bp->w) * *(bp->err) * (double) *({bp->act);
pe-2>error = dtrans(pe->output, pe->tf, pe-d>beta) * sumerrs;:
pe->delta = mlp->1c * pe->error + (mlp->m * pe->delta);
pe->threshold += pe->delta;
}

/* Calculate the deitaweights and adjust the weight values. */
for (k = 0: k < mlp->totw: k++, wht)
{
w->delta = ({(mlp->1c * (*(mip->pe+(w->tpe))).error *
(*(mlp->pe+(w->fpe))).output) + (mlp->m * w->delta)) *
w->active; /* with momentum */
w->value += w->delta;

)

/* Return the Euclidean distance error of the network. */
return sgrt{cumlerr):

}

/* Function: This function calculates the global error (Euclidean Distance) */
/* of the network without performing the backprop algorithm. */
double calcerr{double *ov. mlp *mlp)

{

int *nl:
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struct pe *pe;:

int i;
double cumlerr = 0.0:

/* Initialise pointers to final layer, pe, and output vector element. */
nl = mlp->nl + mlp->nol - 1;

pe = mlp->pe + mip->totpe - 1:;

ov += *nl - 1;

/* Calculate the error */
for (i = *nl; i > 0; i--, av--, pe--)
cumlerr += (*ov - pe-Joutput) * {(*ov - pe-doutput);

/* Return the Euclidean distance error of the network. */
return sqrt{cumlerr)};
}

/* Function: Returns the total number of PEs in an MLP given the number of */
1> PEs in each layer and the number of layers. */
int calctotpe(int *nl, int nol)
{
int totn = 0,
cnt;

for (cnt = 0: cnt < nol: cnt++, nl+t)
totn += *nl;

return totn;
}

/* Function: Returns the total number of weights in an MLP given the number */

/* of PEs in each layer and the number of layers. */
int calctotw(int *nl, int nol)
{
int totw = 0,
cnt:
nl++;

for (ecnt = 1; cnt < nol; cnt++, nl++)
totw += *nl * *(nl-1);

return totw:

1

/* Function: Returns the address of a newly defined MLP. In order to define */
I* the MLP a string identifier, the number of PEs in the four */
/* allowable layers, a transfer function code. a steepness */
/* coefficient. and a flag indicating whether the transfer */
/* function is te be applied at the output layer needs to be */
/* provided. Permissable transfer function codes are: */
/* 0: Linear */
/* 1: Standard Sigmoid */
/* 2: Hyperbolic Tangent */
/* 3: Sine */
/* Prior to returning. all weights and thresholds are initialised.*/

mlp *defmlp(char *type, int 11, int 12, int 13, int 14, short tf, double beta. short
so)

{

mlp *MLP:

struct pe “*pe;

struct w *w

struct bp “*bp:

int *nl, nol, totpe. totw:

char *idn;

/* Allocate memory for nl and assign values. */
if ({11 > 0) && (12 > 0) && (13 > 0) && (14 > 0))
{
nol = 4;
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nl = (int *) calloc(nol, sizeof(*nl));

*nl = 11;
*(nl+l) = 12:
*{n1+2) = 13;
*(nl+3) = 14;
}
else if ((11 > 0) & (12 > 0) && (13 = 0) && (14 > 0))
{
nol = 3;
nl = (int *) calloc(nol, sizeof(*nl));
*+nl = 11;
*(n1+1) = 12;
*(nl+42) = 14;

}
else if ((11 > 0) && (12 = 0) && (13 = 0) && (14 > O))
{

nol = 2;
nl = (int *) calloc{nel, sizeof(*nl));
*nl 11;

*(nl+1) = 14;
}

else
return NULL;

/* Allocate memory for identifier. and initialise. */
idn = (char *) calloc(strlen(type), sizeof(*idn)):
sprintf(idn, "%s°. type):

/* Allocate memory for the processing elements and initialise */
totpe = calctotpe(nl. nol):

pe = (struct pe *) calloc(totpe., sizeof(*pe));

initpe(pe, nl, nol, totpe, tf, beta, so);

/* Allocate memory for the weights and initialise */
totw = calctotw(nl, nol);

w = {struct w *) calloc(totw, sizeof(*w)):

initw(w, pe., nl, totpe):

/* Allocate memory for backprop reference list and initialise */
bp = (struct bp *) calloc(totw, sizeof(*bp)):
initbp(bp, pe. w, nl, nol, totpe, totw);

/* Allocate memory for the mlp and set values. */
MLP = (mlp *) calloc(l, sizeof(*MLP));

MLP->idn = idn:
MLP->nol = not;
MLP->nl =nl;
MLP->totpe = totpe:
MLP->totw = totw:
MLP->pe = pe;
MLP->w = w;
MLP->bp = bp:
MLP->1c¢ = def_lc;
MLP->m = def_m;
/* Randomize the weights and thresholds of the mlp */
randwt (MLP) :
randth{MLP);

/* Return the address of the mip */
return MLP:
}

/* Procedure: Displays general information about the MLP to a file stream.

TAd If the argument 1" is set to one, the legend LEARHING is
/* printed, otherwise Predicting is.

void dispmlip(mlp *mlp, FILE *where, short 1)

{

char string[20];
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char spaces[20]:

if (mlp->nol = 4)
sprintf{string, “"%d-%d-%¥d-%d", *(mip->nl1), *(mip->nl1+1), *(mlp->nl+2),
*(mlp->nl1+3));
else if (mlp->nol == 3)
sprintf(string. "2d-2d-Zd°. *{(mlp->nl), *(mlp->nl+l), *(mlp->ni+2));
else if (mlp->nol = 2)
sprintf(string. “¥d-%d", *(mlp->nl), *(mlp->nl+l)):

sprintf(spaces, * ")
spaces{strlien(mlp->idn)] = "\0":

fprintf(where, "MLP name: Is. Structure : ¥s.\n", mlp->idn, string);
fprintf(where, °%s Learning coef: %f.\n", spaces., mlp->1c):
fprintf({where, "%s Momentum coef: %f.\n", spaces, mlp->m);
fprintf(where, "%s Status ", spaces);
if (1)

fprintf(where, "LEARNINGAn\n"):
else

fprintf({where. "Predicting\n\n®);
}
/* Procedure: Displays general information about a specific PE to a file */
Vid stream. */

void disppe(mlip *mlp, FILE *where, int pe)
{

fprintf(where, “Processing Element: Td\n~, pe):

fprintf(where, Position: Zd\n®, (*(mlp->pe+pe)).pos}:
fprintf(where, = Layer: Zd\n". (*(mlp->pe+pe)).layer);
fprintf(where. = Threshold: Zf\n". (*(mlp->pe+pe)).threshold);
fprintf(where, = Delta: Zf\n", (*(mlp-dpetpe)).delta);
fprintf(where, * Output: Zfin®, (*(mlp->petpe)).output);
fprintf(where, * Error: 2f\n", (*(mlp->pe+tpel).error);
fprintf(where, * Trans Func: "):

switch ({(*(mip->pe+pe)).tf)
{
case O: fprintf(where, “No transfer function\n");

break:
case 1: fprintf(where, “Standard Sigmoid\n~):
break:
case 2: fprintf(where, "Hyperbolic Tangent\n®):
break:
case 3: fprintf(where, “Sine\n~);
break:
}
fprintf(where, = Steepness: Zf\n\n®. (*(mlp->pe+pe)).beta);

}

/* Procedure: Displays general information about a specific weight to a file*/

/* stream. */
void dispw{mlp *mlp, FILE *where. int w)
{
fprintf(where. “Weight %Zd\n®. w):
fprintf(where, * From PE: 2d7, (*(mp->pe+(*(mip-dw+w)).fpe)).pos):
fprintf(where, ° {PE Zd)\n", (*{mlp->wtw)).fpe);
fprintf(where, " Layer: Zd\n®, (*(mlp->pet(*(mlp-d>w+w)).fpe)).layer):
fprintf(where, * To PE: £d®. (*(mip->pe+(*(mip-dw+w)).tpe)).pos);
fprintf(where, ° (PE Zdi)\n", (*(mlp-d>wtw)).tpe);
fprintf(where, * Layer: Zd\n®, (*(mlp->pe+(*(mip->wiw)).tpe})).layer):
fprintf(where., = Value: Zf\n®, (*(mip->wiw)).value);
fprintf(where. = Delta: EfAn®, (*(mlp-d>wiw)).delta);
fprintf(where, * Status: ")

if ( (*(mlp->whw)).active )
fprintf(where, “Activated\n\n");
else
fprintf(where, “Deactivated\n\n-);
}

/* Function: Returns the derivative of the transfer function. given a */
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/> transfer function identifying code. Permissable codes are: */

1+ 0: Linear */
* 1: Standard Sigmoid */
/* 2: Hyperbolic Tangent */
™ 3: Sine */
double dtrans(double x. short t. double beta)
{
double value;
switch (t)
{
case 0: value = 1;
break:
case 1: value = (2.0 * beta * x * (1.0 - x));
break:
case 2: value = (beta * (1.0 + x) * (1.0 - x));
break:
case 3: value = cos(x);
break:
H
return value:
1
/* Procedure: Feeds an input vector forward through the MLP. */

void ff(double *iv, mlp *mip)
{

int i, J. k:

struct pe *pe;

struct w *w;

double suminps:;

/* Use temporary address pointers for the PEs and weights */
pe = mlp->pe;
w =mlp-dw;

/* Load the input vector into the input layer of the MLP */
for (j = 0; j < *(mlp->nl); j++, ivH+, pett)
pe->output = *iv;

/* Feed the values forward through the MLP */
for (i = 1: i < mip->nol: i++)
for {(j = 0: j < *(mlp->nl+i); j++. pett)
{
suminps = 0.0;
for (k = 0; k < *(mlp->n1+(i-1)): k++, wit)
suminps += w->value * (*(mlp->pe+(w->fpe))).output
* (double) w->active;
pe->output = trans(suminps + pe->threshold, pe->tf, pe->beta):
}
}

/* Procedure: Frees all the memory allocated to the MLP by either defmlp() */

/* readmlp(}. */
void freemlp(mlp *mlp)
{

free(mlp->idn);
free(mlp->nl):
free(mlp->pe):
free(mlp->w);
free(mlp->bp):
free(mlp};

}

/* Procedure: Initialises the backpropagation structure used to speed the */

™ implementation of the backpropation algorithm. */

void initbp(struct bp *bp. struct pe *pe, struct w *w, int *nl, int nol, int totpe.
int totw)

{
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struct pe “*peref:
int pecnt. went;

peref = pe;

/* Set the pe ptr to last pe in penultimate layer. */
pe += (totpe - *(nl+nol-1}) - 1);

/* Assign the values to bp reference list. */ :
for (pecnt = totpe - *(nl+nol-1) - 1; pecnt >= 0; pecnt--, pe--)
for (went = totw - 1; went >= 0; went--)
if ((*(wtwcnt)),fpe = pecnt)
{
bp->err = &((*{peref+(*(wtwcnt)).tpe)).error):
bp->w = &((*(w+wcnt)).value):
bp->act = &((*{wHtwcnt)).active):

bp++;

}
}
/* Procedure: Takes the unintialised list of PEs and gives them their */
/* identifying positions, transfer functions, steepness coeffs */
I/* and initialises their threshold values. */

void initpe(struct pe *pe, int *nl. int nol, int totpe, short tf, double beta. short
seto)

{
int pos = 0, layer = 0, cnt:

/* Initialise the pe's. */
for {(cnt = 0: cnt < totpe: cnt++)
{
(*(pe+cnt)).pos = pos;
(*(petcnt)).layer = layer:
{(*(petcnt)).threshold = wrand():
{*(pe+cnt)).output = 0.0;
if ((layer == {(nol - 1}) && !seto)
(*(pe+cnt)).tf = 0;
else
(*(petcnt)).tf = tf;
if (*(nl+layer) - 1 = pos)
{
pos = 0:
+layer:
}
else
++pos;
(*(pe+cnt)).beta = beta:
}
}

/* Procedure: Takes the unintialised list of weightss and gives them their */

/™~ identifying positions., and sets their active flag teo 1. */
void initw(struct w *w, struct pe *pe. int *nl, int totpe)
{
int fpe,
tpe.
wno = 0:

/* Initialise the weights. */
for (tpe = *nl; tpe < totpe; tpe++)
for (fpe = 0: fpe < tpe: fpet++)
{
if {((*(pe+fpe)).layer = (*(pe+tpe)).layer - 1)
{
(*{w+wno)).fpe = fpe;
(*(wtwno)).tpe = tpe:
(*(wtwno) ).active = 1;
wno++;

}
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}

/* Procedure: Randomises all the thresholds in an mlp to the range [-1. +1].*/
/> and initialises the deltas to zero. */
void randth(mlp *mlp)

{

int cnt:

for (cnt = 0: cnt < mlp->totpe: cnt++)
{
(*(mlp->petcnt)).threshold = wrand();
(*(mip->pe+cnt)).delta = 0.0;
}

}
/* Procedure: Randomises all the weights in an mlp to the range (-1, +1]. */
* and initialises the deltas to zero. */

void randwt{mlp *mlp)
{

int cnt:

for {(cnt = 0: cnt < mlp->totw; cnt++)
{
(*(mlp-dw+cnt)).value = wrand():
(*(mlp->wicnt)).delta = 0.0:
}

}

/* Function: Reads a mip definition file and returns the address to the MLP.*/

r* [f the mlp argument to the function is NULL, a new address is */
/* created otherwise the same address is returned as is given. *f
'hd If the MLP definition file is an initialialisation file as >/
/* opposed to a stored file, the MLP is created using defmlp(). */
mlp *readmlp(char *fn, mlp *oldmlp)

{

FILE *fp:

mlp *newmlp:

char *idn, fchar;

int fint, 11 =0, 12 =0, 13 =0, 14 = 0, cnt, init = 0;

double ffr, ff12, beta = 0.5;

short fsh, tf = 1, seto = 1;

idn = (char *) calloc(20, sizeof(*idn));

/* Return NULL if unable to open file. */
if {((fp = fopen(fn, *r*)) = NULL)
{
printf(°_READMLP(): Unable to open file: Zs\n®, fn);
return NULL:
}

/* Check to see if nnd file is an initialisation file */
fscanf(fp, "%*s %d £*1f $*1f", &fint);
for (; fint > 0; fint--}
fscanf(fp, "%*d"):
fscanf(fp. "\nZc". &fchar):

if ((fchar = °"x"} || (fchar = 'X'})
{
fscanf(fp. "%hd Z1f Thd". &tf, &beta, &seto):
init = 1;
}
rewind(fp):

fscanf(fp, "Zs %d F1f 21f", idn. &fint, &Ff1, &ff12):

/* Return NULL if the specified MLP and the MLP stored on file are not the */
/* same structure. */
if (oldmlp != NULL)
if (oldmlp->nol != fint)
{
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printf(°_READMLP(): Defined mlp and mlp in Zs are incompatible\n®, fn):
return NULL:
}

switch (fint)
{
case 2: fscanf(fp, "%d Zd\n®", &11, &14};

break;

case 3: fscanf(fp. "%d %d %¥d\n", &11, &12. &14);
break:

case 4: fscanf(fp. "%d %d %d Zd\n®, &11, &12, &13, &14);
break;

if (oldmlp == NULL)

newmlp = defmlp(idn. 11, 12, 13, 14, tf, beta, seto);
else

newmlp = oldmlp:

newmlp->lc = ffl;
newmlp->m = ff12;

f* If the file is not an initialisation file. read in the stored values. */
if (linit)
{
for (cnt = 0: cnt < newmlp->totpe; cnt++)
{
fscanf(fp. "%*c 31f ZThd E1f ¥*s\n", &Ff1, &fsh, &FF12);
(*{newmlp->pe+cnt)).thresheld = ff1;
(*{newmlp->pe+cnt)).tf = fsh;
(*(newmlp->pe+cnt)).beta = ff12;
}
for (cnt = 0; cnt < newmlp->totw; cnt++)
{
fscanf(fp, *%*c Thd 31f T*s\n", &fsh. &ffl):
(*(newmlp->w+cnt)).value = ffl;
(*{newmlp->w+cnt)).active = fsh;
}
}

fclose(fp):

return newnlp;
}

/* Function: Returns the value of the transfer function, given a transfer */

/* function identifying code. Permissable codes are: */
/* 0: Linear */
/* 1: Standard Sigmoid */
/* 2: Hyperbolic Tangent */
/* 3: Sine */

double trans{(double x, short t, double beta)

{
double value;

switch (t)

{

case 0: value = x:
break:

case 1: value = 1.0 / (1.0 + exp(-(2.0 * beta * x))):
break;

case 2: value = (1.0 - exp(-(2.0 * beta * x))) / (1.0 + exp(-(2.0 * beta * x))):
break;

case 3: value = sin{(x):
break:

}

return value:

)
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/* Function: Returns a random floating point number in the range {-1, +1].
™ Used when initialtising thresholds and weights.
double wrand(veoid)
{
double n;

n = ((double) rand() / ((double) RAND_MAX / 0.1));
if (rand() % 101 3 2 = 1)
n=n?*-1.0;

return n;

}

/* Procedure: Writes an MLP to file in a format readable by readmlp().
r* File format is:

/* MLPldentifier(_String)

/* NoOfLayers(_Integer)

/* LearningCoef{_double) MomentumCoef(_double)

/* PEsInFirstLayer(_Integer) ... PEslnLastlLayer(_Integer)
/* t Threshold(_double) TransFunc{_short) Beta(_double)
/* t Threshold{_double) TransFunc{_short) Beta(_double) etc
/* w Active(_short) WeightValue(_double)

/* w Active(_short) WeightValue(_double) etc
void writem!p(char *fn, mlp *mlip)

{

FILE *fp:

char infofl7];

int cnt;

if ((fp = fopen{fn, “w")) = HNULL)
printf("_WRITEMLP(): Unable to open file: ¥s\n", fn);
else
{
fprintf(fp. “Zs\nZd\nZf Zf\n°, mlp->idn, mip->nol, mip->lc, mlp->m);
for {cnt = 0; ¢ent < mlp->nol;: cnt+t)
fprintf(fp, "%d ". *(mlp->nli+cnt)):
fprintf(fp, “\n");

for (cnt = 0: cnt < mlp->totpe: cnt++)
{
sprintf(info. "%1d->(%1d,%1d)", ent, (*(mlp->petcnt)).pos.
{(*(mip->pe+cnt)).layer);
fprintf(fp, "t If Zhd If Es\n", (*(mlp->pet+tcnt)).threshold,
(*(mlp->petcnt)).tf, (*(mip->pe+cnt)).beta. info):
}
for (cnt = 0: cnt < mlp->totw; cnt++)
{
sprintf(info, "31d->(%1d.%1d)". cnt. (*(mlp-dwtcnt)). fpe,
(*(mlp->w+cnt)).tpe);
fprintf(fp, “"w Zhd %f ¥s\n", (*(mip-dw+cnt)).active,
(*(mlp->w+cnt)).value, info):
}
fclose(fp):
}
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éAppendix 3.
| UAF Datalogs.§

The purpose of this appendix is to provide, in graphical format, a complete list of all the data
used in training the MLP Cascade, the MLP Switch, and the Fault Isolation Filters which
comprise the model based FDI solution.

Each set of data was gathered from the Unilever Automated Freezer via the CRL 1000 control
computer connected to a PC by a serial link. The freezer was operated using the technique
detailed in section 3.1.4. to enable similar startup conditions before each run. Usually several
runs were logged in any one day, and the log name indicates the date and the sequence of the
run; for example 11-9b.log, 11-9c.log and 11-9d.log refer to the 3rd, 4th and 5th datalogs
gathered on September 11th.

All freezer inputs and outputs have been scaled to between *1 for use with an MLP network
according to their maximum possible values detailed in section 3.1.1. A complete results list
detailing how the FDI system behaved for each datalog is provided in section 7.2.3.
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3.1. Normal Operation.
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3.4. Liquid Ammonia Hand Valve Fault.
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