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A Neural Network Based Approach To Fault Detection In Industrial Processes. 

Edward James Williams 

Abstract 

The need for automated fault detection methods has inaeased in line with the complexity of 

processing plant tedmology and their control systems. Fast and accurate fault detection and isolation 

(FDI) is essential if a controller is to be effective in a supervisory role. Hiis thesis is concerned with 

developing an FDI system based upon artificial neural network techniques. The artificial netiral 

network (ANN) is a medianism based upon the concepts of information processing within the brain, 

and consequendy has the ability to self adjust, or learn about a given problem domain. It can thus be 

utilised in currentiy favoured model-based FDI systems with the advantage that it can learn process 

dynamics by being presented examples of process input-output pairs without the need f<ff traditional 

mathematically complex models. Similarly, ANNs can be taught to classify characteristics in the 

residual (or plant-model difference) signal without the necessity of constructing the types of filter used 

in more classical solutions. 

Initially, a class of feedforward neural network called the multilayer perceptron (MLP) is used to 

model mathematically simulated linear and nonlinear plants in order to demonstrate their abilities in 

this field, as well as investigating the consequence of parameter variation on model effectiveness and 

how the model can be utilised in a model-based FDI system. A principle aim of this research is to 

demonstrate the ability of the system to woric online and in real-time on genuine industrial processes, 

and the plant nominated as a test bed - the Unilever Automated Freezer (UAF) - is introduced. The 

UAF, being a time-varying system, requires a novel system identification approach which has resulted 

in a number of cascaded MLPs to model the various stages in the phased startup of the process. In 

order to reduce model mismatch to a minimum, it was necessary to develop an effective switching 

mechanism between one MLP in the cascade and the next Attempts using a rule-based switching 

mechanism, a simple MLP switch and an error based switching mechanism were made, before a 

solution incorporating a genetic algorithm and an MLP network was developed which had the 

capability of learning the optimum switdiing points. After the successful development of the model, a 

series of MLPs were trained to recognise the characteristics of a nmnber of faults within the residual 

signals. Problems involving false alarms between certain faults were reduced by the introduction of 

templates - or information pertaining to when a particular fault was most evident in the residuals. 

The final solution consisting of an MLP Cascade model and fault isolation MLPs is essentially generic 

for this class of time-varying system, and the results achieved on the UAF were far superior to those of 

the currenUy used FDI system without the need for any extra sensory information. The MLP Cascade 

and associated switching device togeUier with Uie development of an online real-time FDI system for a 

time-varying piece of industrial machinery, are deemed to be original contributions to knowledge. 
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Chapter 1. 

Introduction. 

Failure detection in dynamic control systems is one of die many fields of industrial applications 
which has benefited from improving technology and computational techniques. Concurrendy, 
the demand for ever more sophisticated, reliable and accurate failure detection methods has 
been escalating in line with the mcreasing complexity of processing plant technology and their 
conffol systems. Effective failure detection is essential if a control system is to operate 
successfully in a supervisory mode. 

Modem industrial processes, or plants, are typically controlled by a combination of manual 
supervision and automatic control systems, although the supervisory component is increasingly 
being automated by die use of knowledge-based (expert) systems which mimic human decision 
making and reasoning in order to keq) the plant operating cfficientiy. Such connrol systems 
continually monitor a potentially large number of process variables using sensor measurements, 
the reliability of which need to be ascertained prior to taking a control decision. It is essential 
that both sensor failures - whm a sensor begins to produce erroneous signals - and acmator 
failures - where a specific functional componem of the process (excluding sensors) be^ns 
behaving atypically - are detected if a control system is to operate successfully in a supervisoiy 
mode. In order to detea such failures it is necessaiy to have some form of interface between 
the sensors and the controller. 

Traditionally, methods for failure detection relied upon measurable ouQ)Ut signals transgressing 
certain linut values or digressing from predefmed models of the process. These methods were 
consequendy enhanced by the use of mathematical estimation and prediction techniques in 
addition to methods for overcoming problems inherent in model-based systems. More recentiy, 
computerised solutions - including artificial intelligence tools - have been introduced to improve 
the performance of failure detection methods. 

14 



Amongst the artificial intelligence (AI) techniques incorporated into failure detection systems is 
the artificial neural network (ANN), ANNs are parallel information processing systems 
modelled upon the mechanisms of the brain and consist of a potentially large number of 
processing elements inicrconneaed to allow the network to model itself upon the required 
processing task. This emergent behaviour property allows die network to learn about a given 
domain by being presented examples of it. ANNs possess the ability to process both 
considerable volumes of information and handle unexpected processing tasks in the current 
domain on which the networic has not been explicidy taught. 

The aim of this research has been to design a failure detection and isolation (FDI) system using 
artificial neural network techniques for a class of time-varying process which can be described 
as being piecewise time-invariant The specific industrial process used to demonstrate this 
technique is the Unilever Automated Freezer used in die production of ice-cream products. The 
purpose of this chapter is to introduce die research woiic as a whole, and describe die terms of 
reference under which the research has been done. 

It will begin by defining what is meant by failure detection, and showing how failure detection 
has bocn achieved in non-model based and model based systems. Aspects of control systems 
that can hinder failure detection will be motioned. 

The artificial neural network will be introduced in a general way, describing supervised and 
unsupervised networks, and various training laws - before describing in more detail the MLP 
and the generalised delta rule, 

A brief survey of how neural networks have been used in failure detection systems will be 
presented, including both model based and non-model based schemes. 

Finally, die research plan for the thesis will be presented, describing in outline the model-based 
failure detection system that will be pursued and how it is intended to differ from those already 
in existence. The contribution to knowledge that the research will represent will be highlighted 
in a summary of each chapter of the diesis. 

1.1. A Definition Of Failure Detection. 

A failure brings about a change (usually undesirable) in die behaviour of a component or a 
process. For die purposes of this research, failures and faults are considered as being 
synonymous, although in the stricmess sense a fault desoibes a process component behaving 
atypically, whereas a failure implies a component becoming completely non-operational. 
Similarly, a "hard' failure describes, for example, a sensor breaking down, whoeas a 'soft' 
failure describes a sensor exhibiting a shift in bias, or a slow drift 
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Failure detection can be said to consist of three tasks: 

Alarm Determining whether a failure has occurred. 

Isolation Detennining die source of die failure. 

Estimation Determining die extent of the failure. 

Typically, a fault is first detected when a symptom of it becomes evid^t in die behaviour of 
the process. This means a failure alarm often occurs some period of time after the incident that 
iriggCTed it has taken place, and that the observed aberration in tiie process may not readily 
lead to an imderstanding of what has caused the symptom. The isolation stage is necessary to 
determine what exacdy has occurred to cause die symptom at die earliest opportunity, so as to 
minimise the effects of the fault, the ext^t of which are revealed by the estimation stage. 

It is recognised [91 that die alarm and isolation st^e of fault detection are the essential 
components of an FDI system; die estimation stage often being a helpful, but not altogedier 
necessary, addition. The reasoning here is that failure alarming and isolation can be readily 
handled in a Boolean framework (either a failure is present or it is not, either a component is at 
fault or it is not) whereas the estimation of the size of a fault often requires numerical estimates 
from a number of sources which can often be best delivered automatically by some form of 
expert O îowledge based) system. 

Similarly, fault diagnosis - explaining why the fault occurred - and fault correction -
remedying die condition - arc gmeraUy high-level reasoning functions of either die human 
supervisor or a knowledge-based controller. 

1.2. Non-model Based Failure Detection. 

Four surveys on die subject of failure detection in dynamic systems [8, 9, 15 and 30] show 
failure detection techiuques to be split into two broad categories: non-model based, where a 
plant model is not used; and model based, where a plant model is used. 

Non-model based failure detection systems rely upon using measurable process parameters to 
determine when a fault has occurred and can be subdivided into the following categories. 

1.2.1. Limit Checking. 

The most common of all currentiy used failure detection mediods involve comparing plant 
parameters to a set of preset limits (thresholds) and alarming a fault when diey are transgressed 
[2]. 
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Typically each parameter wiU have two threshold levels associated with it . When the first is 

passed a warning signal is givm, when the second is passed more radical action needs to be 

taken. 

Limit checking can be achieved by using some logic external to the sensors, or by installing 

special sensors which perform the check in hardware. Special sensors may also be used to 

measure variables such as sound and vibration. 

Although limit checking is often effective in detecting such soft failures as a sudden offset or 

bias in one or more of the sensors as long as the offset exceeds the threshold limit, should the 

offset remain below the threshold limit the fault wi l l be missed. Also i f a soft failure such as a 

drift occurs, it may be some time before the s^isor measurement exceeds the threshold value. 

1.2.2. Voting Systems. 

In processes that possess a large degree of parallel hardware redundancy, especially in 

applications where it is i m p ^ t i v e that failures are detected quickly and accurately - such as in 

aircraft control dynamics [10] - it is useful to employ a voting system to detect the failure. 

Concepmally one of die least complex failure detection methods, voting systems rely on a 

number (usually at least three) of identical instruments deployed to provide data on die same 

aspects of the process. Logic can dim be incorporated to detea failures and isolate faulty 

instniments (usually by comparing signals from the sensors and discarding individual readings 

that differ from the rest). 

Although easy to implement, and effective at providing reliable infonnation on both the 

isolation and estimation of failures, voting systems possess the obvious disadvantage of being 

costly in terms of redundant hardware, and often compensations for instrument readings need to 

be made due to physical constraints upon the location of the instruments (for example, two 

sensors cannot occupy the same physical space, and Uie position where each is placed may 

cause variations in their readings). Voting systems often have difficulty in the detection of soft 

failures. 

1.2.3. Frequency Analysis Of Plant Measurements. 

Whilst operating under normal fault-free conditions, a number of plants exhibit a typical 

frequency spectnim [26], Faults, when they occur, cause this spectrum to deviate from the 

norm. Smdy of the process parameters in the frequency domain using Four i^ Analysis wil l 

reveal these abemtions and can be used for failure detection. 
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I t may be that certain failures exhibit typical frequency spectra of their own. details of which 

can be used for the isolation of faults. 

The danger with using such a system exclusively is that a number of faults may not reveal 

themselves in the frequency domain at all, and any information pertaining to them may be lost 

when changing from the time domain. 

1.3. Model Based Failure Detection. 

Model based failure detection systems make use of analytical - as opposed to physical -

redundancy. This redundancy is achieved by die design of a process model which usually takes 

present and previous measurements of process variables and provides an estimate of the current 

process values. These estimates can then be compared to either actual measurements from the 

process or other estimates generated from an alternative model and the difference, or residuals 

calculated. 

Ideally, the residuals wi l l be zero under normal operating conditions, and non-zero when a fault 

has occurred. In practice, under normal operating conditions, the residual wi l l deviate from 

zero with respect to a combination of inherent process noise and model mismatch. Process 

models are usually highly complex mathematical functions arrived at after careful study of the 

system. As much of the information necessary for the construction of the model is 

unmeasurable, estimates have to be made of a number of physical process parameters. In 

addition, the majority of model-based methods rely upon linear discrete-time models, where a 

nonlinear system wiU have been linearised aroimd some opaating point, and continuous values 

wil l have been sampled. Due to this, i t is doubtful that the model wi l l be able to reflect the 

process perfectly at all times, meaning model uncertainry, mismatch, wi l l exist. A failure 

detection system's ability to compensate for model mismatch is referred to as its robustness. 

U . l . Filtering Approaches. 

One of tiie classic 

approaches to failure 

detection is by the use 

of a filter on the sensed 

data. Kalman filtering 

techniques can be used 

^ '* ^ ' ^ ^ " ^ " " j " " ^ ^ l a n t I * Sensors ^ 

Control Law 

to design an optimal Figure l . l No-failure system configuration, 
filter which can detea 

failures by signalling abrupt changes in the characteristics of die fdter. 
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The normal system configuration is described in figure 1.1 wha^e i f J: is the internal slate of the 

acmator/plant/sensor system (not shown), u is the controlled input and y is the measured 

output, then x is the filter estimate of 

In order to allow abrupt changes in the system to be detected, i t is possible to replace the 

Kalman filter with one which is sensitive to failures, or else a mftrhaniCTn can be developed 

whereby the filter is monitored and adjusts the system on detection of a fault. 

Failure sensitive filters are useful in detecting failures in time-invariant linear systems as 

Kalman filters tend to rely upon old process measurements and respond sluggishly to abrupt 

system changes, and can be said to have become 'oblivious' to new measurements. Failure 

sensitive filters work on the basis that the estimate of x should not necessarily be good, but that 

the effects of certain faults become more evident in die filter residual. Now, when a failure 

occurs and the initial system conditions die out, the filter residual mainraing a fixed direction 

whose magnitude refleas the size of the fault. 

Fdter monitoring can be achieved by using an innovations-based system whereby a normal (i.e. 

non-failure sensitive) filter is used to provide system estimates until the innovations-monitor 

detects irregular behaviour. Using knowledge of the effects that certain failures have upon 

system innovations it is possible to match observed residuals wifli predetermined filter 

responses to faults to provide failure isolation information. Here, i t is necessary to gather the 

information on these fault signatures a priori. Such filtering methods are extensively reviewed 

in [30]. 

1.3.2. Estimation Of Nonmeasurable Process Parameters. 

Fdtering methods of failure detection make use of a known process model to reconstruct 

nonmeasurable state variables and attempt to detea abrupt changes in filter characteristics. 

This results in faults being detected, but only after measurable output values have been affeaed 

considerably, often over an extended period of time. 

Witii the aid of the process model it is possible to incorporate techniques which estimate 

nonmeasurable variables such as model states, model parameters and characteristic quantities, 

thus improving failure detection. Model parameters arc imderstood to be constants or time-

depend^t coefficients in the process model, but are not direcdy measurable within the process 

itself. 

Once the process model has b e ^ decided and Uie relationship between physical process 

coefficients and model parameters has been detomined, an estimate of die model parameters 

can be made and incorporated into the model. 
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Failure detection can then be achieved by attempting to match the current state of the process 

to a catalogue of known relationships between process faults and changes in physical process 

coefficients. 

I f a failure detection technique relies upon the estimation of nonmeasurable parameters, i t is 

important that this estimation is accurate, and methods have been developed to improve this 

accuracy [15]. These include: 

• Making a least-squares calculation provided the signal-to-noise ratio is large. 

• Determining time derivatives, by use of state variable filtering, allows the noise signal to be 

filtered and a least-squares calculation to be made i f the noise-to-signal ratio is significant 

[31]. 

• Using an auxiliary model to introduce instrumental variables which correlate with noise-

free process outputs only insignificandy. This allows for consistent parameter estimates, 

with no distinct assumptions about the nature of the noise needing to be made [31]. 

1.3.3. Robust Failure Detection. 

Model based control systems are invariably designed around a process model that has been 

formulated using incomplete informatioa Estimation techniques can be used to improve the 

accuracy of the model, but even the most accurate model rarely captures changes such as 

physical process deterioration over time, meaning that differences between the model and the 

process exist Controllers should be able to discount this model uncertainty, i.e. they should be 

robust. 

IMC 
Controller Process 

I Influence of 
4.1 disturbances. 

Model 

Model uncertainty can 

influence FDI systems as 

it considerably dominates 

sensor noise levels, 

causing false alarms 

(signalling a failure when 

none is present) and Esdmale of model uncertainly and unmeasured disturbances, 

misses (not signalling a Figure 1J Internal Model Control (IMQ. 

failiu^e that is present). It 

is possible to reduce the effects of model uncertainty on die process controller by introducing 

an IMC (internal model control) structure [18] as in figure 1.2. The I M C controller is used to 

cancel the influence of unmeasured disturbances which wil l be reflected in die feedback signal 

along with the model uncotainty. 
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A method for allowing failure detection in die presence of model error is to include a 

quantitative bound, or threshold, on the model error and maximise the norm of a failure signal 

[13 and 17]. I f the threshold is exceeded, a failure can be signalled. This method can be 

in^rovcd by introducing a threshold selector [5] which defines a set of detectable sensor 

failure signals. Once arrived at, these signals can be used to estimate die smallest size of 

detectable failure. 

1.4. Failure Detection In Controlled Systems. 

Control 
signal 
input! 

Process 

Controller 

Output 

Control System | Figure 1.3 shows a typical closed-loop feedback 

control system. A large number o f modem day 

control systems are model-based in nature. That 

is, they rely upon predetermined models - often 

mathematical in nature - and make control 

decisions based upon differences between 

Figure 1 J Acloscd-loop feedback controlsystcm. measurements from the process and 

measurements from die modeL Such control systems have a number of charaaeristics [4] 

inherent within them which affect die performance of die systems ability to detea failures. In 

this section, control system refers to the process and its controller. 

1.4.1. Sensitivity To Parameter Variations. 

A l l processes are subject to a changing environment factors such as the ageing of process 

components. The degree to which a controller senses a change in output due to the natural 

process changes (its sensitivity), and attempts to compensate, is of great importance. 

I t is often difficult to distinguish between paramet^ changes in die control system and sensor 

failures i f the failure takes the form of small incremental drift. Such a fault is liable to be 

compensated for by the controller and remain undetected. Insensitive systems tend to laid 

themselves to good fault detection. 

1.4.2. Control Of The Transient Response. 

The transient response - or die response to a change in die state of the system - must be 

adjusted until it is satisfactory, often by changing the feedback loop parameters in closed loop 

systems. 

An efficient control system will compensate for a fault, thus making it more difficult to detea. 

However, control of the transient response tends to be superior for modelled phenomena than 

for failures, allowing the two to be distinguished betwe^. 
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1.4.3. Disturbance Signals. 

Many processes contain componmts which produce signals witii an inherent variable 

disturbance or error. For example, electronic amplifiers generate noise due to integrated 

circuits and transistors, radar antennas are subject to wind gusts. Control syst^ns must be 

able to largely eliminate die infiuence that Uiese disturbance signals have on process outputs. 

As the effect of disturbance signals is present widiin system output, FDI systems must also 

acconmiodate them, or false alarms may result. 

1.4.4. Steady-State Error. 

The steady state of the system gives an indication as to its acciu-acy. Whenever the actual 

system output does not match the desired output, die system is said to have a steady-state 

error. Typically, this error becomes evident as the transient response of the system decays, 

and can be reduced by the design of die controller. 

A significant steady-state error may be interpreted as a drift or offset by an FDI system, 

causing a false alarm as a failure is signalled. 

1.4.5. Robustness & Model Uncertainty. 

The issue of a controllers robusmess to model uncertainty has already been addressed earlier in 

this chapter. Where the diffidence between the physical (process) outputs and die estimated 

(model) outputs is significant due to poor model construction rather than atypical process 

behaviour, false alarms can be made by the FDI system. 

1.5. Artificial Intelligence & Failure Detection. 

A number of fundamental problems arise with the failure detection meUiods thus far discussed. 

Fdtering approaches and filter design are principally based upon models which are linear 

approximations of process dynamics. These dynamics are often nonlinear, though linear widiin 

certain bounds, meaning tiiat a filtering method of failure detection is effective in a limited 

domain only. A further limitation is that failure charact^tics must be classified a priori and 

filters designed to detea diese classes. This can cause robusmess difficulties, delays in 

detection and false alarms. 

With die advent of sophisticated artificial intelligence tools such as knowledge-based (expm) 

systems, and parallel architectures such as artificial neural networks, failure detection systems 

have been developed which aim at overcoming these limitations. 
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A knowledge based - or expert - system models die reasoning of a human expert by use of 

explicit knowledge of a paiticular domain. This knowledge, elicited from human experts using 

a variety of acquisition techniques, is typically held as a set of rules which forms the knowledge 

base of the system and can be used to explain the systems reasoning at arriving at a particular 

conclusion. Knowledge based systems can also be characterised by the use o f measures of 

unceriainty in their reasoning, and to work either from a numbo* of possible conclusions 

toward known facts about die current state of the domain (backward chaining), or to use die 

facts to produce likely conclusions (forward chaining). Expert system solutions have been 

developed for a v^de variety of probluns which generally fa l l into the categories of 

classification, monitoring and planning. Recendy. expert systems have been inoeasingly used 

for industrial plant monitoring and failure detection and isolation [11]. 

In such applications, expert knowledge of a plant can be elicited in a number of ways, for 

example: 

• Process engineers and plant operators develop e?q)erience in distinguishing between die 

normal and abnormal behaviour of plant sensors and actuators. This knovt^ge can dien 

be transferred into a set of rules which the expen system can use. 

• Dependent upon the process, redundant informadon may exist due to die plant's inherent 

physical interaction. For example, diree parameters may be interdependent so that given 

any two. the third could be calculated mathematically. Should all three be e)q)licitly 

measured, data wi l l be generated which can be used to determine i f a sensor failure has 

occurred. Knowledge such as this can be used by an expert system. 

Once an expm system has deteaed a failure, f u r t h ^ rules can be utilised to inform the 

operator and provide diagnostic information as to die nature of the fault. Knowledge based 

systems appear particularly suited to failure detection in industrial process control systems by 

providing facilities to scan applications in search of potential problems, reason about and 

control events despite the ev&--changing nature of many industrial applications, and respond to 

events (such as failure) when they occiu". By using interactive graphics and natural language 

techniques, communication with human operators is enhanced. Expert system failure detection 

devices cumaitiy in operation [6 and 23] provide a sophisticated, diough highly complex, 

method for the detection, isolation and estimation of faults. 
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1.6. Artificial Neural Networks. 

1.6.1, Overview. 

Artificial Neural Networks (ANNs) arc parallel information processing systems which take the 

mechanisms of the brain as their inspiration. The term artificial neural network is an umbrella 

expression describing a wide range of differing neural architectures, alUiough they all share a 

number of features in common with one another. G e n a ^ y , they consist of a number of simple 

processing elements, interconneaed in a parallel architecture by weighted connections; they 

provide a (usually) nonlinear relationship between their inputs and outputs; and they have the 

ability to self adjust, or learn [25]. 

Figure i.4 The generic processing clement typical 
of many artificial neural networks. Figure 1.5 The standard sigmoid function. 

The simple processing element (PE) (figure 1.4) is the main building block o f the artificial 

neural network. It consists of a numbo- of inputs on weighted connections and one output. The 

inputs may arrive fi-om a source external to the network, or may be outputs from other PEs 

within the network. 

The output of the PE is calculated by summing each weighted input, adding some threshold - or 

bias - value and passing the result through some (usually) nonlinear function, often sigmoidal 

in shape (figure 1.5). tiius 

(1.1) 

The output is often passed as an input to other processing elements within the network. 

Learning is achieved by adjusting values in the netwoik*s weight matrix by one o f a variety of 

learning rules. There are two types of learning regime: unsupervised, where the A N N 

determines relationships within die input data for itself; and supervised, where the A N N is 

explicitiy taught the nature of the relationship by providing examples of input-output pairs. 

The arrangement of processing elements in a specific topology and the learning rule employed 

determine the nature of die artificial neural network. 
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An example of an unsupervised A N N is the 

Hopfield Network (figure 1.6). This netwoik 

is a form of associative memory, so called as 

it can reconstruct stored data patterns from 

incomplete or noisy data inputs, providing a 

mapping from data to data. The principle 

here is that a Hopfield network is nained witi i 

a number of data patterns which (provided 

sufficient processing elements exist) wi l l be 
Fij^re 1.6 The Hopfield Network AU conn«^ons are 
not shown. Each p element is connected to every other 

in the layer. Each Stored pattern wi l l become an attraaor 

within the memory of the network, so that should an incomplete or noisy data pattern be 

presented as an input to the network for classification, it wi l l fall within die basin of attraction 

for one of the stored patterns and be classified. Due to the principle of basins of attraction, the 

HopfieM network is potentially extremely tolerant of noisy input data, and provided die input 

pattern falls somewh^ within the appropriate basin of attraction, it w i l l be correctly 

classified. 

The Hopfield network employs a manner of learning called Hebbian learning which adjusts 

weights according to the correlation of the activation values of the two processing elements it 

connects. Other types of A N N learning are: reinforcement learning, where weight values are 

increased for properly p^ormed actions and decreased for poorly p^onned actions; 

stochastic learning, where weight changes are made randomly and subsequentiy kept or 

discarded dependent upon the performance of the network; and error-correction learning, one 

example of which is widely used as die training regime for the multilayer perceptron. 

1.6.2. The Multilayer Perceptron. 

A well documented form of 

supervised network is die 

multilayer perceptron (MLP) 

(figure 1.7) [24]. Here, die 

processing elements are arranged 

in layers with each element in one 

layer being connected to all the 

elements in bodl die preceding and Figure 1.7 A typical fuUy connected multilayer perceptron (MLP). 

succeeding layers. A n input vector 

is presented to the input layer of die MLP and propagated forward through the network. 

Hidden Hidden 
Layer 1 Laya-n 
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Learning is achieved by comparing the output vector of die MLP widi die (known) desired 

output This generates an error value which can be propagated back through die MLP. causing 

die weights to change in a gradient descent so diat. should an equivalent input vector be 

presented to die MLP subsequentiy. the MLP output wi l l be closer to the desired output. Over 

a large number of such presentations of input-ou^ut pairs to the MLP, (provided sufficiait 

processing elements exist) the network shoidd be able to learn the relationship between the two 

vectors, and more significandy, should be able to provide a meaningful output vector for inputs 

in die domain on which i t has b e ^ trained but on which it has not been explidtiy taught, i.e. it 

should be able to generalise. The completion of a predetermined series of presentations to die 

MLP is referred to as an epoch. The error correction learning mechanism is referred to as 

backward error propagation, or backpropagation. 

Once an MLP is constructed diere wi l l exist a series of processing elements (P) and weights 

(W). such diat 

P/O)' ^ A i O ) ' P^oU) ^^^^ ^ direshold value of die ydi processing element in die 

input layer, hidden layer n and the output layer respectively. 

pf^y ^My)* P^f) ^ thresholds (changes necessary) of the ydi 

processing element in die input layer, hidden layer n and die output layer 

respectively. 

AXJ)» Kn(y)' P^i) ^^^^ ^ output value of die ydi processing elonent in the 

input layo", hidden layer n and the output layer respectively. 

P^iD' PhnU)' Po(j) ^^"^ ^ processing element in die input 

layer, hidden layer n and the output layer respectively. 

p^^j refers to die desired output for theyth processing element in the output layer. 

\P\, \Pf^\ and | /^| refer to die size of die set of input PEs. hidden layer n PEs and 

output PEs respectively, i.e. die number of PEs in each layer. 

to die value of die weight connecting die j\h processing element in die 

input layer to the Ath processing element in the first hidden layer. 

^w(yxt) to die delta value (change necessary) of die weight connecting die ydi 

processing element in the last h i d d ^ layer to the ^ processing element in die 

output layer. 
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The standard backpropagation algorithm can dien be implemented as follows: 

Step 1. Assign random values in the range ±1 to each p ' and vv" in die network. 

Step 2. Load die input vector to the input layer of the MLP. i.e. assign each p? the relevant 

portion of die input vector. 

Step 3. Calculate the ou^ut of eachyth PE in the f u ^ hidden layer according to 

I ' l l 

Plxijy = / ( g PKk) • <(t)Mo-) + pUOI) (1-2) 

where f ( ) is the activation function of the processing element, often the sigmoid thus 

1 

1 + fi 
f M = T—^ (1-3) 

where ^ is a positive constant governing die gradi^t of die curve. 

Step 4. Calculate the output of eachyth PE in each subsequoit hidden layer according to 

I A ^ . 1 

Step 5. Calculate die output of each / d i PE in die output layer according to 

P^ai = ny.Ptut^ • K(k^oin + P'ocn) (1-5) 

where hi refers to die final hidden layer. The activation function f ( ) at each PE in the 

output layer is often linear should a continuous output be required from the MLP 

and often the sigmoid function shoidd a value close to 0 and 1 be required. 

Step 6. Calculate die discrepancy (error) between each yth actual MLP output p^^^^md die 

p:u->=f'(pU-p:o->^ (1-6) 

desired output p^,^ according to 

where f ( ) is the derivative of the activation function used in (step 5). 

Step 7. Calculate the errors of each yth PE in the subsequent layers according to 

l^ol 

for the last hidden layer, and 

in«.i 
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for any subsequent hidden layers, whoie fO is the derivative of the activation 

function used in (step 5) 

Step 8. Calculate the changes necessary in the weights connecting each yth PE in one layer to 

each M PE in the next according to 

for the last hiddoi layer 

for each subsequent hidden layer, and 

for the input layer, where a is a positive constant govenung the learning rate 

(refored to as the learning coefficient). Adjust the weights connecting each j t h PE 

in one layer to each itth PE in die next according to 

*^W(»o(t) - ^W(»o(fc) + ^^hK^oik) ( i -12) 

for the last hidden layer 

for each subsequent hidden layer, and 

for the input layer. 

Step 9. Calculate the changes necessary for eachyth PE threshold according to 

for the output lay^, and 

for each hidden layer, and change them according to 

for the output layer, and 

for each hidden layer. 
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Step 10. Repeat stq)s 2 through 9 until some stopping condition has been reached. 

The global error (E) of the network is often defined as the Euclidean Distance between each 

and tiius 

(1.19) 

and is usually calculated following step 6. 

The stopping condition for die backpropagation algorithm is usually w h ^ E has reached some 

value deemed in advance of training to be sufficiendy low or a predetermined numbo- of 

training epochs have been completed. 

-Small a 

Error surface 

Large a 

The effea of the learning coefficient 

is to govan the speed widi which die 

error gradient is descended during 

training. The ideal value of a is 

problem dependent, although a small 

value can often lead to extended 

training time whilst a large value can 

lead to the MLP oscillating around 

minima [12] as demonstrated in 

figure 1.8. An extension to the 

Figure 1.8 niustradon of how training effectiveness is influenced Standard baclq^ropagation algorithm 
by the size of the learning coefficient. • - i • r j j - • i 

IS die mclusion of an addiDonal 
learning parameter referred to as the momentum coefficient. The momentum coefficient 

includes a proportion of the last weight change when changing the current weight setting, and 

can reduce the risk of die MLP settling to local error minimum and die oscillation effects of 

large learning coefficients. 

1.7. Using Artificial Neural Networks For Failure 
Detection. 

Artificial Neural Networics have been increasingly used to detea and isolate faults in a variety 

of systems; for example chemical tank systems [22 and 27). aircraft flight control systems [20]. 

seasor faults [19], electronic circuit boards [16] and engine faults [3]. 

In die main, systems to detect c h ^ c a l process faults have dominated die field widi the issues 

undo- investigation being: 
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1. The ability of ANNs to distinguish between normal and abnormal process operations. 

This is the primary concern of all A N N based FDI research. 

2. The ability of ANNs to distinguish between several fault conditions [14]. 

3. The ability of ANNs to detea faults during steady-state operation [28]. 

4. The ability of ANNs to classify several faidts occurring simultaneously [7 and 29]. 

5. The ability of ANNs to detect faults in die presence of sensor noise [21] and to detect 

sensor faults [1 and 19]. 

Whilst a more thorough review of research into FDI systems using ANNs is conducted in 

chapter 6, it is worth mentioning at this stage that a large amouiu of current research focuses 

on classifying faults as an ofOine procedure where process data is collected during an 

operational run. This data can subsequentiy be classified by a neural network architecmre 

attempting to recognise certain features widiin die datalogs. Whae research has been 

conducted with the aim of having an online real-time FDI system as in [22], the system has 

tended to be a time-invariant chemical process. This thesis concentrates on developing an 

online real-time F D I system for a major piece of production-line machinery used in die 

manufacture of ice-cream products. 

1.8. Research Plan. 

The main objective of this research was to investigate die application of artificial neural 

networks to die detection of faults in industrial processes, specifically die Unilever Automated 

Freezer. A solution is proposed using a model-based approach as. typically, model-based 

approaches provide a more rapid detection of faults than do non-model based methods such as 

limit checking. As a fault causes a symptom which can manifest itself widiin die output 

parameters of the system, a model wi l l provide a prediction signal which wil l deviate firam the 

actual. In this case, die residual betweai die model and the process wil l reflect this symptom 

which can subsequmdy be classified. In a limit checking FDI system, i f the symptom 

manifests itself as a slow drift it may take some time to exceed die predetennined threshold and 

be detected. Should the symptom manifest itself as an offset which falls below the direshold 

value, the FDI system wi l l not detea i t A fimher advantage to a model-based approach is that 

should an accurate process model be devetoped, this model could effectively be used for 

process simulation exercises, or in a model-based control system. 
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£>ue to dieir ability to learn by 

example, a method of modelling a 

process is derived using the class 

of A N N called die multilayer 

percqitron. In an architecture 

such as that shown in figure 1.9. 

the model and each of the failure 

classifiers can be replaced by 

MLPs. The model MLP can dien 

be used to provide a residual to 

the bank of classifier MLPs. each 

trained to recognise a different 

fault. 

Industrial IA^IO^. 
Process I ' 

Model 

Classifirr 
1 * . 

#1 *2 

Serin of tehdMrinctfldi 

Figure 1.9 Schematic of a model-based failure detection and 
isolation system. 

The benefits of such a system are: 

1. No explicit quantitative simulation model of the freezer would be required. The MLP 

should be capable of learning die required process operating range for itself. 

2. A dynamic model of the freezer wil l be derived using data which is already monitored 

and logged. Further sensory information should not be necessary. 

3. The system should be able to adapt itself to die individual freezer i t is monitoring. As 

the dynamics of each freezer are liable to be marginally different from one another, die 

MLP should be able to fme tune itself. 

4. In order to train die failure detection fdter MLPs. a priori knowledge of each fault is 

necessary. However, shoidd an unforeseen fault occur, die model based system shoidd 

recognise an abnormal condition from the residual signal and signal a fault. An 

additional filter can be subsequcndy trained. 

5. The system should provide fast and accurate (Hiline detection of failures on die freezer 

in real-time. 

The last of these points is particularly relevant to production line machinery such as the 

Unilever Automated Freezer, where a warming up period for the process is followed by a 

production period. I f a fault can be deteaed before actual production begins, a saving in raw 

materials is achieved. Also, i f an immediately rectifiable fault is deteaed and isolated quickly 

enough, it can be dealt widi without die necessity of shutting down die machinery or a loss in 

quality of the product, i.e. production is not affected. 
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In order to achieve the model-based solution, die following research plan was adhered to: 

1. An ongoing literature search encompassing classical faidt detection methods and 

specific A N N solutions to the fault detection problem was conducted to ascertain die 

issues involved in the field, and progress on specific solution strategies. This led to the 

conclusion diat a model-based approach to FDI was preferred. 

2. Research was conducted into methods of moddling dynamic systans using artificial 

neural networks, and in particular the multilayer perceptroiL This resulted in 

experimentation using MLPs to model simulated dynamic systems of both linear and 

nonlinear forms. 

3. The MLP modelling solution was then applied to the Unileva- Automated Freezer 

(UAF) as an example of a real industrial process. This highlighted a specific problem, 

which was that the freezer was a time-varying dynamic systenL The problem was 

ultimately solved by using a cascade of MLPs to provide a continuous iiiput-ouq)ut 

mapping over the complete operating cycle of the system. Further research was dien 

necessary to determine how best to switch between each MLP in the cascade to provide 

the most effective model possible. 

4 . As daialogged measurements of die UAF had thus far been used to train and test die 

dynamic model offline, it was necessary to test die system online to ensure that one of 

the original objectives of die research could be achieved. To this end, a period of three 

mondis was spent testing and refining the model at the Unilever Research Colworth 

Laboratory. E>uring diis period, diree potential faults were identified as being typical 

to die operation of the UAF. and data was collected on each of diese. 

5. Having built a dynamic model of the freezer, it was tbm possible to develop a number 

of fault classiiying MLPs to recognise each of diree candidate faults. Hus resulted in 

workmg FDI system for die UAF based upon neural computing techniques which was 

able to outperform die existing FDI system with no additional sensor hardware 

requiremoits being necessary. 

Aldiough a model-based FDI system has been built for die Unilever Automated Freezer, die 

design method and tedmiques used are generic and should be transferable to marhinft^ of the 

same class as the UAF. i.e. piecewise time-invariant, or time-varying over a complete operating 

cycle. 
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1,9. Summary Of Chapters. 

The puipose of this chapter has been to introduce this research in a general way by reviewing 

aspects of fault detection which are relevant and by detailing the neural network architecture 

which was used. A research plan was presented which demonstrated how the eventual solution 

was arrived at. Subsequent chapters wi l l expand on the research plan in the following way. 

Chapter 2. Mode l l ing Dynamic Systems Using A r t i f i c i a l Neural Ne tworks . 

This chapter introduces the class of A N N termed the multilayer percq)tron (MLP) as an 

attractive method of modelling dynamic processes. Learning strategies for the networks are 

reviewed, and a number of expoiments using simulated processes are presented in order to 

demonstrate how the modelling of dynamic systems is achieved and the issues that are involved. 

Two classes of dynamic neural network wil l be briefly reviewed, and classical methods for 

modelling dynamic systems wil l be evaluated against the experimental results using MLP 

networks. This chapter builds upon techniques already available in the literature and does not 

claim any original contribution to the knowledge of this area. 

Chapter 3. The Unilever Automated Freezer. 

The purpose of this chapter is to introduce the Unilevo" Automated Freezer as a class of 

dynamic industrial process upon which faults occur and need to be detected. The operation of 

the freezer, the control laws to which it is subjea and the current fault detection capabilities in 

existence wi l l be discussed. Three potential faults wi l l be innroduced as being typical of the 

kind the UAF is subject to. The effect the faults have on ice-cream production wil l be 

established, and the capabilities of the current system to correcdy detea and isolate diese faults 

wi l l be ascertained. 

Chapter 4, Modelling Time-Varying PrpcegseiS, 

The puipose of this chapter is to demonstrate how die moddling techniques of Chapter 2 failed 

to provide any useful results with the UAF. The problem with the approach is determined to be 

that all systems modelled in Chapter 2 - aldiough dynamic - are time-invariant in opo-auon. 

The &eczer is a class of time-varying process, whose underlying mode of operation changes 

disjointedly widi tune; i.e. a piecewise time-invariant system. 

Two potential solutions are presented: including time as a pan of die input vector of die MLP. 

thus making the MLP time-varying; and moddling the fineezer using a series of MLPs in what 

can be termed an MLP Cascade. 
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No rcponed modelling of this type of system has b e ^ found using artificial neural netwoiics, 

and the successful use of the MLP Cascade is deemed an original contribution to knowledge. 

Chapter 5, Switching M^hanism$ Fpr The M L P Cascade. 

The purpose of this chapter is to build upon the mechanism daived in Chapter 4 for modelling 

piecewise time-invariant systems by offering a number of methods for switching between 

MLPs in the Cascade. During Chapter 4. a nile-based switching mechanism was employed 

which was based upon expert knowledge of the UAF. This chapter wi l l examine this technique 

more closely, and offer several alternatives that do not rely as closely upon explicit knowledge 

of the freezer. Ultimately, a mechanism employing a genetic algorithm (GA) w i l l be used in 

anempting to locate the optimum switching points. Finally, a method for training the MLP 

Cascade wi l l be proposed. 

This chapter attempts to present the MLP Cascade as a gen^c mediod of mnrte.lHng dynamic 

systems of this class by proposing a design of switching mechanism that does not rely upon 

explicit knowledge of the process, but on the equivalent information that is provided to die 

model, and is deemed to be an original contribution to knowledge. 

Chapter 6. Fai lure Detection Using M L P Networks . 

The purpose of this chapter is to demonstrate how the residual signals generated by the diree 

candidate faults introduced in Chapter 3 can be isolated using a series of MLPs trained to 

recognise features in the signals. 

Initially, a survey of how artificial neural networks have been used for fault detection 

previously w i l l be presented together with conmienis upon how this research differs from, or 

advances, the techniques developed. The three candidate faults wi l l be reviewed, with 

particulars of how they affect die MLP Cascade and the residuals between it and the UAF. 

Fmally, details of how a series of MLPs were trained to recognise features within the fault 

signals wi l l be presented, and the fmal fonn of the neural network based FDI system wi l l be 

given. 

With this chapter, a complete self-tuning FDI system is presented which is capable of learning 

the dynamics of, and detecting and isolating faults within, a class of time-varying system which 

is deemed an original contribution to knowledge. 
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Chapter 7. Piy;ussiQn & F^prfi Work. 

This chapter aims to review the derived FDI solution. Aspects of the research pertaining to the 

models robusmess and how i t compares with more traditional modelling, logeahej with the 

accuracy of the isolation filters and how they compare with the currently available FDI 

capabilities of the UAF are discussed. The solution is critically evaluated with respect to the 

original project objectives^ and potential avenues for future research are presented. 

Chapter?^. Conclusion. 

The concluding chapter ties togeth^ the ideas presented throughout the thesis, and offers some 

thoughts on how die solution could be implemented practically. 
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Chapter 2. 
Modelling Dynamic Systems Usingl 

Artificial Neural Networks, 

Process models are used in control and failure detection systems where - generally - the modd 

is referenced against the process and the residual signal utilised in f u r t h ^ processing. One 

structure used as an alternative to classic feedback control (figure 1.3) is the internal modd 

control (IMC) technique which direcdy utilises a process model and process inverse model 

within a feedback loop (figure 1.2). 

In an IMC structure, the process model is evaluated in parallel with die process operation and 

the difference between the outputs - the resichial signal - is fed back to the controller. 

D^>ending upon the accuracy of the modd. die residual signal wi l l be an estimate of the noise 

and disturbances within die process. Typically, models are composed of highly complex 

mathematical funcuons arrived at after careful smdy of the process, and as such can be time 

consuming and expensive to produce. Also, many of the parameters neccssaiy in the 

constniciion of the modd are unmeasurable, and estimation techniques need to be invoked to 

determine them. Owing to diis. it is unlikdy dial die modd wi l l reflea die process perfectly at 

all times, and a certain degree of model uncertainly w i l l exist 

Although the IMC class of controller has been shown to possess considerable robusmess to 

modd uncertainty [8]. excessive uncertainty wil l lead to poor control Similarly, in a failure 

detection system based upon a modd reference architecture, where failures are indicated when 

the residual signal exceeds a certain threshold, high modd uncertamty wi l l lead to false alarms. 

This chapter introduces die class of A N N tenncd the multilayer pcrccptron (MLP) as an 

attractive method of modelling dynamic processes. Learning strategies for the networks are 

reviewed, and a number of ejqieriments using simulated processes are presented in order to 

demonstrate how the modelling of dynamic systems is achieved and the issues that are involved. 

Two classes of dynamic neural network wi l l be briefly reviewed, and classical methods for 

modelling dynamic systems w i l l be evaluated against die experimental results using M L P 

networks. 
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2.1. MLPs As Process Models. 

Multilayer feedforward networks have been demonstrated mathematically [S] as being 

universal g^proximaiors. That is. they can approximate any measurable function to an 

arbitrary degree of accuracy provided they possess sufficient processing elements in the hidden 

Xnycrs. As dynamic processes map their inputs to outputs by means of some functional 

dependence, this implies tiiat it should be possible to model such systems using M L P networks. 

Any failure in such a task can be attributable to either: an inappropriate network size (i.e. too 

few hidden PEs or layers); inadequate lemming (i.e. too short a learning cycle or insufficient 

training data); or the lack of a deterministic relationship between inputs and outputs (i.e. 

insufficient information included in the input vector to allow the mapping to the required 

output). 

This approximation capability of the MLP makes them particularly useful in modelling 

dynamic systems as less a priori knowledge of the process dynamics is required than in 

conventional modelling techniques. It should be possible to nain a network to approximate the 

imderlying function of die system by presenting it widi examples of input-output pairs. Whilst 

it should be borne in mind that an MLP typically requires many presentations of such 

information in o r d ^ to be able to leara the relationship • a time consuming endeavour - in many 

instances i t is possible to train the MLP ofQine using previously gathered process o p ^ t i n g 

records, making this less of a problem. 

In addition, whilst many indusdial processes behave linearly within certain bounds, over their 

complete operating cycle they are nonlinear. I t is impossible for conventional linear modelling 

techniques to capture this nonllnearity. but as M L P networks are themselves nonlinear, it 

should be possible to model such processes over a wider operatmg region. 

2.1.1. Finite & Infinite Impulse Response Systems. 

A finite impulse response system, in the context of dynamic system dieory. has a functional 

dependence upon a finite (fixed) number of historic inputs in relation to its output. For 

example, die ourpui of a finite impulse response system at some discrete sampling point k can 

be described as some function f ( ) of the inputs to the system, thus 

y(k) = f(u(k)Mk-l)Mlc-2\..M{k-n)) (2.1) 

An MLP contains no internal memory of its own, i.e. i t provides a static relationship between 

its inputs and its outputs. As the approximation capabilities dq)end upon adequate information 

being provided die MLP in its input vector, to model such a system an MLP would need to be 

provided with all /i+7 inputs. 
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However, many industrial processes are infinite impulse response systems in that at time, k the 

functional dep^dence between inputs and outputs to die syston can be described thus 

3'(^) = fm)Mic -1). u{k - 2) . . . .u(0)) (2.2) 

with die reliance upon inputs progressing back through time to the initiial conditions of the 

system. This would require an ever increasing niunber of inputs to die M L P as timp. 

progressed - a concept which is meaningless for ANNs. A n approach to modeling infinite 

impulse response systems is to use previous values of y for the estimate thus 

y(k) = f(u(k)MI^-l\...uik-m\y(k-l),...y(k-n)) (2.3) 

as historical information concerning u wi l l be reflected in y. Therefore, as an M L P provides a 

static relationship between its input vector and output vector, i t is necessary to include both 

historic - or time delayed - process inputs and outputs in the input vector to the M L P in order 

to emulate dynamic behaviour. 

2.1.2. Learning Strategies. 

Process 

^̂ J> 

IVoocss 

NOP >9 

(a) (b) 

Qin et al [10] have 

demonstrated that it is 

possible to learn process 

dynamics by feeding 

back either the acmal 

output of the process or 

Figure 2.1 (a) Feedforward and (b) recurrent MLP learning schemes. The input ^ estimated output 
vectors to the MLP are usually time-delayed. from the MLP itself. 

referred to as the feedforward and recurrent learning schemes respectively (figure 2.1). In 

addition, either pattern learning - where the MLP is updated following every discrete 

presentation of input data - or batch learning - where a complete data set is processed as a 

batch, and the MLP updated following the presmtation of the entire batch - can be used, 

providing four disparate learning strategies for the MLP. 

Each of the four strategies are shown to be able to learn a nonlinear autoregressive function, 

aldiough recurrent batch learning requires a variation of die standard backpropagation 

algorithm Batch and patton learning are shown to be equivalent, provided die learning rate 

for pattern learning is small i.e. all learning schemes reached the same minimum error value. 
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2.1.3. Alternative Artificial Neural Network Architectures. 

It is worth noting diat die MLP is only one neural architecture in a class of many, others of 

which have b e ^ used in control applications where system identification is necessary. 

Associative memories (AMs) - which can reconstruct stored data patterns from incomplete or 

noisy data inputs - such as die Hopfield Network have been demonstrated as being suitable for 

plant modelling applications [2 and 7]. Although the latter has compared favourably with die 

MLP for die functional approximation of systems, they are largely unproven in real-time 

systems. 

Narendra et al [9] reviewed die abilities of bodi recurrent and feedforward networks, 

postulating that a generalised neural network - incorporating feamres of both of these - would 

be advantageous for system identification. A continuation of this work resulted in a class of 

dynamic neural network [11] which is reviewed more ftdly in section 2.4. 

2.2. Modelling Dynamic Systems Using MLP Networks. 

A number of experiments using simulated dynamic systems have been conducted in order to 

investigate a number of issues. As many industrial processes - whilst being highly nonlinear 

during certain stages of their operating cycles such as startup and shutdown - are likely to 

spend some of their time behaving linearly widiin a stable operating region, i t is necessary diat 

an MLP be able to model both the process linear and nonlinear states. 

In addition to describing a numbo* of e^qjeriments which demonstrate how this is achieved, diis 

section wi l l show how die feedforward learning scheme compares with the recurrent, how 

parameter changes can be accommodated for, and how faults which marufest diemselves in the 

residual signal can be alarmed. 

2.2.1. The Simulated Dynamic Systems. 

For the purposes of diese experiments, two dynamic systems are simulated as mathematical 

models; one linear, the other nonlinear. 

The linear example is a single-input single-output (SISO) second order system described by die 

state equations 

x(k +1) = Ax(k) + Buik) + v( j t ) (2.4) 

for the process dynamics, and 
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y(k) = Hx(k) + Ju(k) + w(k) (2.5) 

for the sensor. The values for the matrices are 

_ "-0.441 -0.525] _r-0.934' 
"[-0.226 a030j' ^"[-0.597 (2.6) 

/ / = [-0.534 -0.451]. y = [-0.819] 

These values were chosen arbitrarily to provide a typical example of a stable system w h ^ die 

A matrix has two distinct dgoivalues. being Xi = 0.166 and X2 = 0.0.673. Ha-e. 1/ and y are 

the system inputs and outputs respectivdy, j : are the internal states of the process, and v and w 

are zero-mean Gaussian noise sequences. 

The input-output relationship for the nonlinear process is described by the equation 

^(jt) = ay(k -1) + py(jk - 2f + yu{k) + hu^k -1)^ + v(k) (2.7) 

where 

a = 0.3. p = a06. Y = 0.7, 6 = 0.5 (2.8) 

and were again arbitrarily chosen to describe a stable system. Here v is a zero-mean Oaussian 

noise sequence. 

2.2.2. Initialising The Networks. 

Each experiment was conducted using a number of MLPs with different internal structures (i.e. 

a different number of input PEs and hidden PEs). Before the commencement of each 

experiment the network being used was initialised by setting each weight value and each PE 

threshold value to a random number betwe^ ±0.1. 

2.2.3. Training & Testing The Networks. 

Typically, all available data for a particular neural network application is split into two groups: 

a training set and a testing, or generalisation, set - both of which consist of input-output pairs 

(i.e. examples of inputs for die network to which die output is known). The MLP dien 

undergoes a period of training whereby die training set is repeatedly presented to die network. 

As each input pattern is presented, the network generates an output which can be compared to 

the known - or desired - output from the training set, and a corresponding error measiue can be 

calculated. This error is then be used to train the network immediately (pattern training), or die 

error can be accumulated for each input-output pattern in die traimng set and die accumulated 

value be used to train the network following each epoch (batch training). 
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Usually one complete presoitation of the training set is referred to as an epoch. I t can of la i 

take a large number of epochs before die training error reduces to a minimum. 

Once the training cycle is completed, die netwoilc can be tested using die genoBlisation set. 

Here die input patterns are presented to the network and again die network's output compared 

with die desired output. The error is not used to train die network, but is used to demonstrate 

the extent to which the network is now able to mimic the output. I f die network's output is 

sufTiciendy similar to die desired output, die network can be said to be capable of 

generalisation - or to have learnt - die problem. The accuracy which die network needs to 

possess in order to be satisfactory is subjective and entirely dependent upon the application in 

which the network is being used. 

A phenomena known to occur in some applications is one of over-training. Here, die network 

has been presented widi die training set for too many epochs and can be said to have learnt die 

training set too well. SO that it is able to generate accurate outputs for mput pattens from die 

training set, but poor outputs for input patterns from the generalisation set, i.e. its training 

error is small, but its generalisation error is large. 

For these experiments, as die information upon which the MLP would be both trained and 

tested is generated by die equations (2.4, 2.5. and 2.7) in disa-ete lime steps, both die training 

and generaUsation sets were g^erated during the course of the run. widi one epoch meaning 

one input-output pair. During training, die process input u was represented by a sequence of 

random numbers uniformly distributed between ±1 for 10000 samples (training epochs). 

As the aim of these experiments is to teach the MLP to minuc a dynamic function rather than 

to respond to a specific input widi a specific ouqiut. die problem of over-training shoidd not 

occur. In order to test whether the function has been learnt, testing is achieved by representing 

the input u as a sequence of random numbers with the same distribution, but the input value 

woidd oidy change once every 20 samples. 

2.2.4. Error Measurements. 

In order to be able to compare the performance of one MLP with another, it is important to 

have consistent measurements of error. At any discrete time mterval k the error D betwe^ die 

MLP output and the desired output is die Euclidean distance dius 

D(k)= Y,^y.(k)-yj(k)f (2.9) 
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for an MLP with n output processing d^en t s . As diis instantaneous error is liable to oscillate 

and mask die underlying trend, the error is smoothed in two ways. The error S is acounulated 

and averaged over m samples thus 

SOn) = - y D i k ' j ) (2.10) 
''J ^ 

For these experiments, m was set to 100. As the MLPs are always initialised with random 

values, the possibility exists that for any one experiment the initialisation process may produce 

a network already able to at least relatively accurately mimic the dynamic function. In order to 

reduce this possibility, each experiment is conducted / times with an MLP of identical internal 

structure initialised witii a different set of random values, to produce an error £ dius 

£( / ;2) = i^S;(m) (2.11) 

For these expoiments, / was set to 10. The training error T was taken as die highest of die last 

five measures of E for each experiment. 

The generalisation error G is the accumulation of the instantaneous error defined by the 

Euclidean distance (2.9) ovei die testing cycle, consisting of n epochs, dius 

G=yD(k) (2.12) 

For these experiments, n was set to 100. 

Therefore for each experiment, comparisons can be made between two eiror measiues: the 

training OTor 7, and the generalisation error G. 

2.2.5. Modelling Linear Systems. 

As MLPs provide a nonlinear response between inputs and ouqsuts. i t is important that they be 

able to approximate linear functions as dynamic systems often behave linearly within certain 

operating regions. 

Initially experiments were conducted using an MLP widi three input PEs. This input vector 

comprised of u(k), u(k — l), and y(k — l), i.e. the MLP is trained to approximate a function 

fOthus 

y(k) = f(u(k)Mk-l)MI^-l)) 
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Figure 2.2 Graphs demonstrating how the error E decreases with learning time. Input vectors comprise of 3.5. and 7 lime delayed process inputs and outputs. There is one hidden layer comprising 
of 1.2. 3.4. and 5 processing elements. Learning scheme: Feedforward, p coefficient of sigmoid: 0.5. 
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Figure 2.3 Graphs demonstrating how the error E decreases with learning time. Input vectors comprise of 3. 5. and 7 time delayed process inputs and outputs. There is one hidden layer comprising 
of 1.2,3.4, and 5 processing elements. Learning scheme: Feedforward, p coefficient of sigmoid: 0.2, 



The numbo- of hidden PEs was increased from one to five, and die error E observed as shown 

in figure 2.2. TTie training error T reduced to 3.5x10"^, with five hidden units. The input layo* 

was increased to 5 and dien 7 PEs. i.e. the MLP is OBined to approximate the functions 

y{k) = f(u{k)Mk-l)Mk'2\y{k-l\y{k-2)) 

and 

y(A:) = / ( u ( f c ) . u ( f c - l ) , / i ( i t -2Xu(A: -3 ) . y ( i t - l ) . 3 . ( i t -2 ) .> ' (J t -3 ) ) 

although diis failed to improve the training error. 
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Figure 2.4 Graphs showing process and MLP inputs and outputs for a 3-5-1 MLP with the p coefficient of the 
sigmoid function set to 0.5. 
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Aldiough die training error reduces to a relatively low level, the generalisation error G was 

3.737 and, as can be seen in figure 2.4, die transitions are approximated well, but there is a 

significant steady state error. One explanation for this occuirence is that the network has not 

had a long enough training cycle, howev^ subsequent training of 20000 epochs failed to 

improve the situation to any significant degree. 

A further explanation for the MLP failing to learn the dynamics of the process can be 

attributed to an attempt to f i t a nonlinear function (that of die MLP) to a linear function (that 

of die process). Each processing element within the hidden layer of the MLP maps its inputs to 

its outputs through a nonlinear activation function, usually sigmoidal thus 

-2^ (2.13) 

Figure 2S The standard sigmoid function (1.13) with p set to 0.5,0.3 and 0.2. 

By adjusting die steepness (p) coefficioit. die linear region of die function can be increased as 

shown in figure 2.5. Therefore, the smaller the steepness coefficient is set during training, the 

greater wi l l be die linear response of die MLP. Previously a P value of 0.5 was used, now the 

experiment was repeated widi a steadily reducing value of p. The graphs in figure 2.3 show 

the training errors with p set to 0.2. Ha-e, when die input vector consisted of u(k), u{k-1), 

u(k-2), y ( f c - l ) , and y(k-2) in a network widi 5 input PEs. 3 hidden PEs and 1 output 

PE (i.e. an internal structure of 5-3-1), die training error reduced to 3.07x10*^ and die 

genoalisation error to 1.99. Figure 2.6 shows how the steady state error evident in figure 2.4 

has now reduced. Increasing die number of hidden units and die size of die input vector does 

not cause the training or genoalisation errors to improve. 
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Figure 2.6 Graphs showing process and MU* inputs and outputs for a 5-3-1 MLP with die p ootfficitm of the 
sigmoid functian set to 0.2. 

Instead of using historic values of the process ou^ut y as part of the MLPs input vector in 

order to introduce dynamics, i t is possible to use historic values of the MLP estimate y. This 

external recurrency in die composition of the input vector is referred to as the recurrent 

learning scheme. The reciurent learning scheme is implemented in the 5-3-1 network above by 

setting die input vector to w(it). u(k-i), u{k~2), y(k-l), and y ( i t - 2 ) . For diis 

experiment, with p again set to 0.2, the resiUts are shown in figure 2.7 w h ^ die training error 

T reaches a level of 3.9x10'^. Qin et al [10] observe that die recurrent learning schme 

requires a greater mmiber of epochs than the feedforward scheme to achieve die same 

performance. When the training time was increased to 30000 epochs. T reached 3.9x10'^ and 

G was 2.27; the results are shown in figure 2.8. 
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Figure 2.7 Graph demonstrating how the error E decreases with 
learning time. There is one hidden layer comprising of 1.2, 3,4, 
and S processing elements. Learning scheme: Recurrent ^ 
coefficient 0.2. 

0.5 

-0.5 

-0.5 

Inputs 

0 10 20 30 40 50 60 70 80 90 

Epochs 

Outputs 

Process &MLP 

Epochs 

Process 

MLP 

Figure 2.8 Graphs showing process and MLP inputs and outputs for a 5-3-1 MLP trained using the 
recurrent training scheme. 
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When trained by the feedforward learning scheme, the MLP is passed, as part of its input 
vector, process outputs that arc comprised partially of a noisy poiurbation signaL As the 
MLP receives this noise as input, the MLP output comprises partially of noise. When trained 
by the recurrent sdieme, this noise is absent from the input vector and so is not reflected in the 
output vector. The MLP model using external recurrency reflects the process in the absence of 
noise, i.e. the noise is fdiered. This being the case, there will always exist a residual error 
between the process and the MLP model, i.e. the perturbation noise signal. 

2.2.6. Modelling Nonlinear Systems. 

In order to demonstrate how an MLP can model a nonlinear system such as described by (2.7). 
experiments were conducted equivalent to those in the previous section, with the linear system 
replaced by the nonlinear one. In order to allow for a greater nonlinear response from the MLP 
die sigmoid's p coefCdent was increased; a value of 0.4 was found to provide die best results 
in this instance. 

Figure 2.9 shows how the training 
error reduces ova- learning time. As 
with die previous experiments, the 
best results were achieved using three 
hidd^ elements were the error T 
reduced to 2.09x10-2 Figure 2.10 
shows die inputs to die process and 
MLP and the subsequent outputs. 

Kk) - ftB(k).«(h.lL Kb-U tO-U) 

Figure 2.9 Graphs demonstrating how E decreases with learning 
time for the MLP trained to model a nonlinear process. 

2.2.7. Modelling Parameter Variations. 

All industrial processes are subject to a changing environment Factors such as the ageing of 
process components represent parameter variations which a model based system needs to be 
able to handle. I f an MLP. once trained to identify a system, was used in a model based 
architecture widi no subsequent online training, it would cease to represent the system should 
parameter variations occur. In a failure detection system, this would lead to false alarms; in a 
control system, poor control decisions. 

In an FDI system, an obvious solution would be to initially train the MLP to idoitify a dynamic 
system offline. Once sufficient generalisation was achieved, the MLP could be used online but 
widi its learning mechanism still enabled (i.e. die residual signal would continue to be used to 
train the MLP using backpropagation). 
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Figure 2.10 Graphs showing process and MLP inputs and outputs for a 4-3-1 MLP trained to model a nonlinear 
process. 

In this way. as parameter variations occur - causing the functional d^Dcndoice between inputs 
and outputs to change - this new function would be learnt by the MLP. The danger here, 
however, is that should a fault cause a slow drift in the residual signal that could be 
misinterpreted as a parameter variation, this fault is liable to be learnt as part of the normal 
process dynamics and go undetected, i.e. a miss. 

A preferable solution would be to train the MLP to identify the system offline, and once 

sufficient generahsation had been achieved, duplicate the MLP model so tiiat two identical 

models exist. 
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When used online, one MLP would aa as the model and would receive no further training, 
whilst the other would continue to learn the process dynamics online in order to capture 
parameter variations should diey occur, these will be referred to as the model and the trainee 
respectively. Should the two MLPs become dissimilar with the trainee representing the system 
better than the model, one of two events would occur dependent upon whether a fault was 
considered to have occurred or not Should a fault be present in the system, the weights of the 
trainee would be reset to those of the model. Should it be decided thai a fault had not occurred, 
and the dynamics of the system had changed due to a parameter variation, the weights of the 
model would be set to diose of the trainee. 

Figure 2.11 Graphs demonstrating (a) error increase with parameter variation, and (b) how the effects can be 
reduced using two MLPs. 

This phmomena can be simulated in the state space equations (2.4 and 2.5) by adjusting a 
value in the /4 matrix. The model MLP derived in section 2.2.5. with ^ set at 0.2 was 
duplicated to give the model and the trainee. The system was allowed to run for 50 epochs 
before element A l l in the/I matrix was increased by 0.4 to -0.041. as parameter variations by 
nature occur only gradually. Figure 2.11(a) shows how the error D ina-eases for the model, 
but reduces for the trainee which continues to leara the process dynamics. As the model error 
is below 6x10'^ during normal operation, this value was chosen as suitable for a threshold; 
should the error exceed the threshold, the model MLPs weights will be set to those of the 
trainee. Figure 2.11(b) shows how die effect of model mismatch due to parameter variations 
can be reduced in this manner. As can be seen, D does not reduce to its original low values but 
with subsequent training this will be achieved. It should be bome in mind that the MLP was 
allowed to learn the original process dynamics for 10000 training epochs and die new process 
dynamics for only 50 epochs. 

Similar experiments adjusting parameters to a greater or lesser degree than above resulted in 
equivalent results, with the greater adjustmwts resulting in a longer learning time bdng 
necessary for retraining the MLPs. Should very small alterations be made to elements in the i4 
matrix, the direshold is typically not exceeded, i.e. the model MLP still mimics the system 
sufficiently well. 
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2.3. Model Based FDI Using MLP Networks. 

The aim of this section is to demonsnate how an MLP can be trained to recognise an aberration 
in the residual signal of a model reference system as a fault; not to present a comprehensive 
model based FDI system Subsequent chapters will pursue this latto" aim. 

Figure 1.9 describes a model based FDI architecture which can be implemented using MLPs as 
both the process model and the fault detection filters. Section 2.1.2. shows how the model 
MLP can be trained using either the feedforward or the recurrwt learning scheme. In terms of 
a fault detection system, one feature of using the feedforward scheme is that should a fault 
occur which manifests itself in the process output, this erroneous signal will be used as a 
componem of the model MLPs input vector. This immediately raises the question of how the 
detection of such a fault would be affected by this effect 

A sensor failure can be simulated [121 in one of two ways: either abrupt changes In the H 
matrix of (2.5), or as biases in (2.5). The MLP derived in section 2.2.5. with P set at 0.2 was 
used as a model for the process under normal operating conditions for 50 epochs. At this point 
an abrupt change was made mrhcH matrix - a sensor fault - and the process continued for a 
fixnher 50 epochs. Figure 2.12 shows the results. The result of feeding back an emoneous 
signal to the MLP as pan of its input vector can be seen. As the recurrent learning scheme 
does not receive this erroneous signal as input, a comparison between the performance of the 
two can be made. In this case the residual signal is calculated as the Euclidean distance 
between the process and MLP outputs. 

As is demonstrated, the appearance of the fault causes the MLP model trained by the 
feedforward scheme to bdiave differently to how it would had the fault not occurred, whereas 
the MLP model trained by the recurrent scheme continues to predict the process output exactly 
the same as it woidd w ^ the fault not present With the feedforward learning scheme, the 
MLP outputs retain the same functional dq)mdence upon the inputs as under normal operating 
conditions. However, the inputs are no longer normal which has the effect of pushing die 
model outputs further from the process outputs under fault conditions. This can be seen by 
virtue of the fact that the residual error is greater under fault conditions using the feedforward 
scheme as opposed to the recurr^t scheme. As the feedforward learning scheme requires less 
training epochs than the recurrent scheme and both MLPs in this instance were allowed the 
same number of epochs to train, the residual eiror under normal conditions is less for the 
feedforward scheme than for the recurrent With respect to an FDI system, this means die 
feedforward scheme is likely to be the superior strategy, and it seems sensible to use real 
process values as opposed to estimated model values where possible. 
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B a 

Figure 2.12 Graphs showing how an MLP model trained using both the feedforward and recurrent learning 
schemes responds to a sensor fault. 

One of the successful areas of application for many ANN systems is that of pattern 
classification such as in [4 and 13]. In the case of a model based FDI system it should be 
possible to train a series of MLP networks to recognise pattens within the residual signal In 
the example shown above a threshold detector would be able to detea the fault, and t r a i n i n g an 
MLP with a standard sigmoid function as the transfo" function at a single ou^ut PE will 
achieve this. Although in this case, a simple threshold detector would be more suitable to 
detea the fault, for isolation purposes whoe a large number of different faults are possible, it 
would be more helpful to recognise charaaeristic pattens in die residual signal An MLP is 
enable of providing this categorisation as wiU be demonstrated ultimately. 
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Figure 2.13 Graph demonstrating how a classify MLP can be used to differentiate between normal process 
operation and a fault situation. 

Figure 2.13 shows an MLP widi three input uiuts (taking die current and previous two residual 
errors), two hiddm units and a single output (3-2-1) trained to distinguish between the normal 
process operation and a fault state. Here, die network was trained for a period of 10000 
epochs using an equal number of normal process instances (where the network is expected to 
give a value close to 0) and fault instances (where die network is expected to give a value ck>se 
to 1). This is meant to be demonsOBtive only, classifying more complex patiems will be 
explored in a later chapter. 

2.4. Dynamic Networks For Modelling Dynamic Systems. 

Dynamic 
System 

rr.D 
StnUc 
Am 

Dynamic 
System 

Dynamic 
ANN 

(a) (b) 
Figure 2.14 Schematic demonstrating how to model a dynamic system using (a) a 
static ANN such as an MLP, and (b) a dynamic ANN such as an Elman NcL 

As described in 
secuon 2.2.1, a 
system described 
by the state space 
equations (2.4 and 
2.5) is an infinite 
impulse response 
system in that y(k) 
depends not just 

upon recent values of u but upon all measurements of u through time to die initial conditions 
u(0). As an MLP contains no internal memory, it is necessary to provide such memory by 
external recurrency. by providing both time-delayed inputs and time-delayed ouqiuts of die 
system as input to the MLP. The schematic for such a system is shown in figure 2.14(a). This 
approach has die disadvantage of increasing die training time of die MLP. as the ideal input 
vector composition now needs to be established in addition to the number of units in die hidden 
layer. 

It would be beneficial to have a network diat was itself dynamic and could be trained to model 

its own dynamics on those of die system and so determine die order of system dynamics. Such 

a network would then be able to predict yfitj given only u(k) (figure 2.14(b)). 
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(b) 
Figure 2.15 Two dynamic networks with internal reourency. (a) the Sudharsanan and Sundareshan Net and (b) 
the Elman NeL 

A dynamic network used for system modelling was proposed [11] whose internal architecture is 
shown in figure 2.15(a). Here all hidden units are connected to one another via adaptable 
weights. As the input vector is applied to the netwoik. the outputs of the hidden units are 
allowed to settie to a steady state before the output vector is calculated. Such a netwoik still 
requires external recunency in addition to extmled computation time to allow the hidden layer 
to stabilise. Its advantage appears to be a much shoner training time than for an MLP using 
the backpropagation algorithm. 

A much simpler form of internal recumency was proposed by PI man [3]. The PI man Net 
(figure 2.15(b)) has a number of units, referred to as context units which have the same 
activation at time (k+1) as die hidden units at time (k). The connections between the hidden 
units and the context units are of weight 1, whereas the connections between the context units 
and the hidden units are adaptable. The network can be trained using the backpropagation 
algoritiun. Ebnan demonstrates how such a network is able to discover syntactic/semantic 
features in words. Because of the recursion between hidd^ units and context units, the 
network itself represents a dynamic infinite impulse response system. Indeed, i f die weights 
betwe^ die context units and the hidden uiuts are Wj; the weights between the external input 
and the hidden units are and the weights between the hidden layer and the ou^ut layer are 
IVj. the Ehnan Net is governed by the equations 

h(k-^l) = f(W,h(k)-^WMfc)) 

where w, / i , and y are die input, hidden and ou^ut layers respectively, and f ( ) is the transfer 

function of each unit in the network. Providing die transfer function has sufficient linear 

response, this equation is equivalent to a form of state space equation indicating that the 

number of hidden units directiy corresponds to the order of the system dynamics. 

56 



Hence the order of the process would have to be known in order to set the number of hidden 
units accurately, i.e. the network does not learn the order of the process for itself. 

In both cases, therefore, there appears little - i f anything - to gain from using such dynamic 
networks in this application. Subsequent research has been conducted using MLP Networks. 

2.5. Comparisons With Traditional Modelling Techniques. 

Dynamic 
System 

e(k) 

Filter yOc) 

Training 
Algorithm 

In order to gauge the 
effectiveness of the MLP as a 
system identiflcadon tool, it is 
necessary to draw a 
comparison with traditional 
modelling techniques. Such 
techniques are often 
implemented by means of a 
filter, a schematic for which is 

Figure 2.16 Schematic of a filter uained to predict the dynamic system shown in figure 2.16, whose 
^"'P '̂'- coefficients have been 
determined by some algorithm prior to actual use. Two such fdters are the finite and infinite 
impulse response fdters. 

2.5.1. FIR Filter, 

The finite impulse response (FIR) filter uses only a predetermined numba* of historical input 
values, and provides an estimate of the output according to 

Z.-I 

Hic) = Y,^(k-jyhj 
; - 0 

(2.15) 

whoc y is the filter output, L is the l^gdi of the filter and h are the filter coefficients. This 

can be rewritten 

u{k) u(k-l) ••• i / ( j t - L + l ) 
.. . u(jfc-L + 2) 

A 
^ (2.16) 

or 

y = Uh (2.17) 
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Ideally, y should be equal to y . so ^ can solved by 

h^U-'y 

-as 

-as 

Outputs a -10) 

Epodu 

Outputs a *40) 

Prooess 

F[R FUter 

— Praocu 

- FIR FUter 

Figure 2.17 Graphs demonstrating differences that the length of FIR filter makes to system identification for a 
linear system. 
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However, as is unlikely to be the square matrix necessary for invasion, die pseudoinverse 
can be used, where X* (the pseudoinverse of the non-square X ) is defined as 

X^ = ( X ' " x r X ^ (2.18) 

Therefore h can be computed as 

h-U*y (2.19) 

As the filter Imgdi is increased, the estimate of y can be obs^ed and die calculation for die 
generalisation error G made as in (2.12). The results are shown in table 2.1. 

Filter Lengtli 5 10 15 20 30 40 
G 6.06 6.32 6.33 6.74 4.01 3.63 

Table 2.1 The effect on error that the length of filter makes for a linear system. 

As can be seen in figure 2.17, low lengths of filter provide a smoothed estimate for y without 
the transient features of die signal. As the length of die filter is increased, it begins to better 
approximate the output of the system. However, die value of G for a lengdi 40 filter (3.63) is 
still significanUy higher dian for die 5-3-1 MLP above (1.99). 

Again when attmpting to filter the example nonlinear dynamic system, the length of filter can 
be seen to influence die generalisation error as shown in table 2.2: 

Filter Length 5 10 15 20 30 40 
G 23.44 20.769 17.905 15.096 13.884 12.537 

Table 22 The effect on error that die length of filter makes for a nonlinear system. 

The graphs in figure 2.18 show how die lengdi of fdter similarly affects die output signal as 
above, but again the generalisation error is higher than for a 4-3-1 MLP. 

As die filter is a finite impidse response system and both die MLP and the modelled dynamic 
system arc infinite impulse response systems die test cannot be considwed an objective 
comparison for the MLP. 

2.5,2. n R Filter. 

A fairer comparison to attempt widi die MLP is die Infinite Impidse Response (IIR) filter as 
this more closely resembles the experimental setup of the MLP. The IIR filter is also known as 
die autorcgressive moving avaage of a system, and both Bhat & McAvoy [1] and Mirzai et al 
[6] use an autoregressive moving avoage (ARMA) model of a pH continuous stirred tank 
reactor (CSTR) and a fermentation process respectively in comparison to the MLP. 
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Figure 2.18 Graphs demonstrating differences that die lengdi of FIR filter makes to system identificarion for a 
nonlinear system. 

A typical ARMA has the form 

m'^'£y(k-i)b, = f^u(k-j)a^, (2.20) 
i - I 

which can be repUcated using a single layer (i.e. no hidden layer) perceptron with a linear 

activation function at the output PE. (figure 2.19) widi both historical input and ou^ut data 

being presented as die input vector, die and terms bemg represented by die weights from 
the input processing elements to die output processing elem^ts. 

60 



u(k-m) 

This being die case, it is possible to 
compare the most accurate MLP 
solutions widi their ARMA counterparts 
(i.e. die 5-3-1 MLP widi a 5-1 ARMA 
for the linear system, and a 4-3-1 MLP 
with a 4-1 ARMA for the nonlinear 
system). 

Figure 2.19 A single layer perceptron as an ARMA model. 

This leads to the results shown in figure 2.20. 
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Figure 2.20 ARMA modelling linear and nonlinear systems. 
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Por the linear and nonlinear model respectively, die generalisation errors are 3.15 and 2.51, 
demonstrating that even for simple systems the inclusion of a hidden layer can lead to improved 
prediction c^abilities. 

2.6. Summary. 

The purpose of this chapter has been to introduce the multilayer perceptron network as a 
system identification tool upon which a model-based FDI system can be based. 

Strategies for learning die dynamics of systems woe reviewed and demonstrated upon an 
example of a linear and nonlinear system in order to demonstrate die modelling capabilities of 
the network. The issues of the MLPs ability to model linear systems wiUi itself bdng 
nonlinear, die extent to which die MLP can cope widi parameter variations and a method for 
detecting faults using an MLP model woe investigated. 

In addition, die external recunency necessary to emulate dynamic behaviour in the otherwise 
static MLP was compared widi networks which possess internal recurrency and die results 
obtained from experimentation with the MLP compared to traditional filtering approaches to 
system identification. 
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Chapter 3. 

The Unilever Automated Freezer, 

The previous chapter demonstrated how die MLP can be used to model processes simulated 
mathemadcally and detea faults within diem. This research programme is concerned with 
fault detection in real industrial processes, and the remainder of this thesis will concern itself 
widi developing an FDI system for one such system; namely the Unilever Automated Freezer. 

The Unileva- Automated Freezer (UAF) is a piece of industrial hardware used in die 
manufacture of ice-cream products, and is of current strategic importance to die Unilever food 
group. Presendy. rudimentary automated fault detection is conducted by the system's 
controller, although detection of a fault residts in the fieezer entering a "holding' condition 
whereby ice-a-eam production is halted. In addition, the controller may take several minutes to 
signal a fault, during which time - depend^t upon the nature of the fault - liquid ice-cream 
may escape die freezer unit; a condition which results in die freezer needing to be shutdown 
and cleaned prior to die ice-cream production being resumed. Other faults - most typically 
sensor faults such as biases - can result in the quality of die ice-cream being affected. These 
faults often go undetected by die controller. 

Of specific interest is die starmp cycle of die UAF. Typically, following a production run, die 
UAF is cleaned and left to stand idle overnight As with many mechanical processes, following 
a poiod of inactivity, the UAF is prone to develop faults when it begins to operate. In 
addition, the startup cycle of die freezer is highly nonlinear and difficult to model using 
traditional linear techniques. As an MLP provides a nonlinear response between its inputs and 
outputs, it would appear a useful tool attempting to model the startup cycle of the UAF. 

The purpose of dus chapter is to introduce die Unilever Automated Freezer as an example of a 
real industrial process upon which faults occur and need to be detected. It must be stressed 
that it is only the starmp of the freezer which is considered. 
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The method of operaiion of the fineezer will be discussed, including the stages in the startup of 
the freezer and the control laws governing its operation shown. The current method of 
detecting failures (limit checking) will be discussed togeth^ with the identification of three 
possible faults which can occur with the freezer and when - or i f - the current fault detection 
system identifies them. 

3.L Overview Of The Unilever Automated Freezer. 

Raw 
Materials Blending HomogenuaticHi 

Raw 
Materials w Blending p HomogenuaticHi Pasteurisation 

Hardening Filling Freezing Holding Hardening Filling Freezing m Holding 

b Packaging Cold Storage Distributimi Consumer w Packaging Cold Storage Distributimi P Consumer 

Figure 3.1 Typical production line for the manufacture of ice-cream. 

Figure 3.1 shows the typical posidon of the freezing process within die ice-crcam production 
line. The UAF [3] takes in the premixed ingredients of the ice-cream and air and forms frozen, 
aerated ice-cream as follows (figure 3.2(a)). The mix and air is pumped into the barrel of the 
freezer where it is cooled by liquid ammonia. The motor turns the dasher within the barrel 
which allows the dasher blades to remove frozen ice-cream from die interior surface of the 
band as it forms. Finally, the frozen ice-cream is pumped from the barrel. The UAF therefore 
fulfils Uirec roles: 

Heat Exchanger: The principle role of die freezer is to refrigerate the mix and so form ice­
cream. Typically, the mix temperature is around S^C and the produced 
ice-cream is below -4'/*C. This temperature exchange is achieved by 
passing liquid ammonia over die mix whilst it is widiin the barrel of the 
freezer. 

Aerator: The UAF needs to incorporate sufficient air in the prcmix and aisure the 
ovemin' air remains in the ice-cream as it leaves die freezer in order to 
produce a stable air cell distribuuon of small mean size. 

* Overrun: The increase in volume of ice-cream over volume of mix due to the incoiporation of air. 
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Texturiser: As ice crystals grow during the hardening and storage of the ice-cream, 
the UAF needs to ensure that these crystals are small enough to reduce 
lat^ detectability. This is achieved by the dasher within the barrel (figure 
3.2(b)), The dasher rotates inside the barrel and removes ice-cream finom 
the inner surface of the barrel. 

Figure 3.2 Schematic of (a) the Unilever Automated Freezer and (b) the dasher within the barrel. 

3.1.1. Datalogging. 

As a matter of routine, certain measured and controlled variables are logged by PC software. 
This information is intended for fault diagnostics should a problem occur with a particular run 
of the UAF, and it is this data that is used in training the MLP to model the freezer. In this 
way, no additional hardware requirements are necessary as all necessary sensors are already 
installed. The maximum rate that the UAF can be sampled is at 5 second intervals. 

The logged parameters are shown in table 3.1: 

Parameter. Type. Notes. 
Time Measured Each batch of measurements is time 

stamped. 
Barrel Pressure Set point 

Ice-cream Temperature Set point 
Mix Flow Set point 

Air Flow Set point 

Motorload Set point 

Overrun Set point 

Maximum Motorload Set point 

Table 3.1 The measurements logged by the controller and associated PC software. 
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Mix Pressure Measured Typical range: 0-5 bar. 

Ammonia Liquid Pressure. Measured Service: this measurement is only available 
to the UAF in the pilot plant, not in the 
factory. 

Ammonia Suction Pressure Measured S^ice: this measurement is only available 
to the UAF in the pilot plant, not in the 
factory. 

Bairel Pressure Measured Typical range: 0-10 bar. 

Mix Temperature Measured Typical range: 0-70**C. 

Ice-cream Temperature Measured Also referred to as the extrusion temperature. 
Topical range: -15-70**C. 

Ammonia Evaporation Pressure Measured Controls the extrusion temperamre of the 
ice-cream. Typical range: 0-15 bar. 

Mix Flow Measured Typical range: 0-10 litres/m 
Air Flow Measured Typical range: 0-10 l in^/m 

Motorload Measured Measures the power needed to rotate the 
dasher, and gives an indication of the 
viscosity of the ice-cream. Typical range 0-
150%. 

Mix Pump Speed Controlled Typical range: 0-100%. 

Ice-cream Pump Speed Controlled Typical range: 0-100%. 
Camflex Position Controlled The Camflex valve is used to alter the 

ammonia evaporation pressiu'e and therefore 
controls the cooling of the ice-o-eam. 

Overrun Calculated Measure of the volume of air in the ice­
cream. Calculated as . 

Mix Flaw Rate 

Alarm Triggered Series of flags indicating faults in the UAF. 
Part of the current fault detection system. 

Table 3.1 Continued. 

As the ammonia liquid pressure and ammonia suction pressure are not measured on the factory 
floor, these measurements will not be used in the training of the MLP model. 

3-1.2. The UAF's Control Structure. 

The UAF incorporates a niunber of feedback control loops as shown in figure 3.3. Actual 
control is performed by the process computer, the CRLIOOO, which performs: 

• PID (Proponional-Integral-Derivative) control of a number of individual loops 
according to preset set points. 

• Automatic startup and shutdown of the UAF. 
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• Fault detection by limit checking. 

• Providing information to the human operator of process and service conditions, 
and accepting set point changes from the operator. 

The damlogging of freezer parameters are achieved by the connection of a PC to the CRLIOOO 
via a serial link. 

OVERRi 

Air 

® 
Mbr->r 

Ammonia 
Gas 

VISCOSITY 

® 

-<P> 

Unilever 
Automated 

Freezer 

BARREL 
PRESSURE 

4) 

TEMP 

( I ) 

Ico-crcam 

Ammonia 
Liquid 

-FILLER DEMAND 

Figure 33 Block diagram of the UAF and associated hardware control structure, showing flow (F). pressure CP), 
temperature (T) and viscosity (V) measurements and their controllers (C) (e.g. PC refers to pressure control). 
Pump and dasher motors are referred to as (M). 
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Figure 3.4 Simplified control structure showing parameters which affect 
only die UAF. 

As can be seen from figure 
3.3, a number of the control 
loops are local to individual 
pieces of machinery, such 
as the pump controlling the 
flow of mix into the freezer, 
and have no bearing upon 
die dynamics of the freezer. 
This control structure can 
therefore be siii^)lified to 
show the parameters which 
affect only the freezer 
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dynamics as in figure 3.4, Here, inputs to the UAF are: the ice-cream pump speed, the camflex 
position. Che mix flow and the air flow; outputs are: the barrel pressure, the ice-cream 
temperature, the motorload and the ammonia evaporation pressure. Set points which directly 
affect the dynamics of the freezer are die barrel pressure set poiru and the ice-cream 
temperature set point. 

3.1 J . Stages In The Startup Of The L A F . 

The startup of the freezer is automated and undergoes sevoal different distinct stages before 
the UAF settles to a steady state and ice-cream of acceptable quality is being produced. These 
stages are characterised by major components within the UAF switching in or out and by the 
CRLIOOO concentrating on achieving one particular set point. 

These stages are [1]: 

Filling the barrel: 

Starting the dasher: 

Pressurising the barrel: 

This includes the initial services check (mix. air and ammonia), 
the vent and mix valves being opened, and the mix pimip run for 
approximately 65 seconds to allow the barrel to f i l l with mix. 

Here, an alarm soimds for five seconds to warn of the motor 
about to Stan. The motor begins to turn the dasher within the 
barrel in two stages, initially at a low speed and thai at a full 
speed. The dasher is allowed to rotate for about 20 seconds 
before the next stage begins. 

Air is injected into the barrel in a series of three five second 
bursts. After this air is injected continuously until the barrel 
pressure is greater than 4 bar. 

Reducing the aninionia evaporation pressure: The air injection is halted and the camflex 

valve opened; initially by 15%. then in a series of 5% increments 

until the ammonia evaporation pressure is less than 2V4 bar. 

Increasing the niotorload: Once the ammonia evaporation pressure reduces, refrigeration 
begins and the mix starts to solidify. The dasher is now rotating 
through a more viscous mix than before which means the load m 
the motor is greater. The motorload is thoeforc increased to 
match its set point 

Starting the pumps: Following the moiorload and barrel pressure PID control being 

turned on, the mix valve is open and the mix and ice-cream 
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pumps staned. The air valve is then opened, and the overrun and 
mix flow PID coimol begun. At this point ice-cream is being 
produced. 

3.1.4. Operation Of The UAF (Data Collection). 

For the purposes of training the MLP model, it was necessary to log a number of runs of the 
UAF to gather training and generalisation (testing) data. As this stage of the research is 
involved with modelling the dynamics of the UAF, it is important to try and stabilise all 
exn-aneous variables that may affect these dynamics. For this reason the mix fomiulation was 
kept the same (namely a Cometio formulation with no colours or flavourings - Comeuo NCF) 
and the procedure for cleaning the freezer prior to each run was identical. 

As the startup of the UAF was under consideration it was necessary to gather startup data. 
Howev^. this would lead to only one log per day being collected. In order to increase this 
number, it was important to attempt to get the UAF to a state close to how it would be if it 
were left ovemight foUowmg each freezer run. This was achieved using the following 
procedure prior to niiming the UAF: 

1. O p ^ the dump valve to allow any ammonia still in the UAF to be removed and 
connect the mix line to a cold water supply. 

2. Open the \cni valve, mix valve and discharge valve, then pump cold water through 
the UAF for about 10 minutes. 

3. At intervals of 2 minutes stan the dasher rotating for a period of 20 seconds to 
disperse any ice-cream remaining in the barrel. 

4. Open the pump cover plates to drain the water from the freezer. 

5. Qose the dump valve. 

6. Connect the mix line to the Cometio NCF mix storage tank. 

7. Tighten the cover plates. 

Following this, the freezer could be nm in automatic mode with the various process parameters 
being logged. Once ice-cream was produced - during the stan pumps stage of the freezer 
startup - the run was continued for a further 10 minutes to allow the freezer to settle to a steady 
state. 

The UAF could then be shut down« and the above cleaning procedure conducted prior to the 

next run. A typical run gives rise to the data shown in figure 3.5. 
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Figure 3.S Graph showing the inputs and outputs of the UAF during a typical startup with no faults. AU values 
have been scaled to wiUiin ±1. A complete list of logged data is provided in appendix 3. 

3.2. Fault Detection In The Unilever Automated Freezer. 

Currently the CRLIOOO perfonns limited fault detection on the UAF. Once a fault condition is 
detected, the controller puts the freezer into a "hold' condition, whereby production of ice-oeam 
is halted until the fault is manually isolated and the freezer restarted. 

3.2.1. Current Fault Detection System. 

The fault detection is achieved by limit checking, and the fault conditions cherk^4 for along 

with their thresholds are shown in table 3.2 [2]. 
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Alanii Monitored Parameter Threshold Time before 
*hold' in sees 

Dasher motor not started Motorload <5% 3 
High barrel pressure Barrel pressure >6.5 bar 5 
Low barrel pressure Barrel pressure <0.5 bar 60 
Mix pump nor running Mix pump speed «0% 5 

Ice-cream pump not running Ice-cream pump speed «0% 5 

High motorload Motorload >\65% 5 
Low motorload Motorload <0.5% 60 
Low air pressure Air Flow sOlitresAn 15 

High anmionia sucuon pressure Ammonia sucdon pressure >1.5 bar 180 
Low ammonia liquid pressure Ammonia liquid pressure <4.0 bar 10 
Low mix pressure Mix Pressure <0.5 bar 60 
Table 32 Fault conditions, thresholds and timouts on the UAF. 

These conditions are checked during the diffo-ent stages of stanup in the following way: 

Fillhig the barrel: Alarms monitored: low air pressure, low ammonia liquid 

pressure, mix pump not running, high barrel pressure, and low 
nux pressure. 

Starting the dasher: Alarms monitored: low air pressure, low ammonia liquid 
pressure, and low mix pressure. 

Pressurising the batrel: Alarms monitored: low air pressure, low ammonia liquid 
pressure, and low mix pressure. 

Reducing the aininonia evaporation pressure: Alarms monitored: low air pressure, low 

ammonia liquid pressure, low mix pressure, dasher motor not 
ninning, and low barrel pressure. 

Increasing the motorload: Alarms monitored: low air pressure, low ammonia liquid 

pressure, low mix pressure, dasher motor not running, and low 
barrel pressure. 

Starting the pumps: Alarms monitored: low air pressure, low ammonia liquid 
pressure, high ammonia sucuon pressure, dasher motor not 
nmning. low mix pressure, high barrel pressure, low barrel 
pressure, high motorload. low motorload mix pump not running, 
ice-cream pump not nmning. 
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In addition, during the following three conool loops, the UAF will be put into a hold condition 
should the explicit values or set points not be reached: 

Air injection until the barrel pressure is greater than 4 bar. Time before "hold*: 120secs. 

Open camflex valve until ammonia evaporation pressure is Tune before *hold*: 250secs. 
less than bar. 

Wait for motorload set point to be reached. Time before "hold': 900secs. 

3.2.2. Simulated Faults In The UAF. 

In order to be able to determine the effecdveness of model-based approach to failure detection 
using MLP networks, it is necessary that a system should be able to distinguish between 

• Two failures sufficiendy distinct from one another. 
• Two failures sufficiendy similar to one another. 

In order to achieve this, at least three failures need to be simulated in the Unilever Automated 
Freezer. Two failures can be considered to be similar if a human operator would have difficulty 
distinguishing betwe^ them. 

The three failures chosen were: 

1. A barrel pressure transducer fault. 

2. A Camflex valve fault. 

3. A Liquid ammonia hand valve fault. 

The latter two faults concern the flow of ammonia and can be considered to cause the freezer to 
behave similarly from the point of view of a human opo^ator. The barrel pressure fault is also 
indicative of a soft failure, and so will be useful in demonstrating an FDI systems capabilities 
with this type of fault. 

This section desaibes each of die three faults and the effects diey have on die operation of the 
freezer. 

3.2,2.1. Barrel Pressure Transducer Fault. 

Deso-iptinn. 

The transduce- relays die pressure in the barrel to the controller. A faulty sensor which gives 
an offset of about -K).3 bar at atmospheric pressure was used in place of a correctly calibrated 
one. 
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EfTects Of The Fault. 

During freezer operation in steady state, the barrel pressure will be conn-oiled at 4 bar as per 
die reading from the transducer. The actual barrel pressure will be lower than the reading, 
inferring a greater volume of air in the barrel leading to a lower heat transfer coefficient, so 
lower extrusion temp^ture of the ice-cream and lower ammonia evaporation pressure. 

Individual logged measurements will be affeaed as follows during steady state: 

Mix Pressure: 

Barrel Pressure: 

Mix Temperanire: 

Ice Cream Temperature: 

NH3 Evaporation Pressure: 

Mix Flow: 

Air How: 

Motorload: 

Mix Pump Speed: 

Ice Cream Pump Speed: 

Camflex: 

Overrun: 

Dependent upon conditions of die mix plam. 

Offset from normal initially, controlled to 4 bar during steady 
state operation. 

Dependent upon conditions of the mix plant. 

If the motorload were uncontrolled, it would be low&r due to 
the greater volume of air in the barrel at the lowex pressure as 
there is less mix to rotate, and the mix has a lower viscosity. 
Also, iheit is less friction on die dasher from die lip seals at 
lower pressures. As die motorload is controlled, the ice cream 
temperature will have to be lowoed to compensate. 

The greats die volume of air in the barrel leads to a lower 
heat transfer coefficient. With a conliolled moiorload, die 
evaporation pressure must be lowered (i.e. made colder). This 
is achieved by opening the camflex more. 

Controlled, therefore independent of barrel pressure. 

Controlled, therefore independent of barrel pressure. 

Controlled, dierefore independent of barrel pressure. 

Controlled, dierefore independent of band pressure. 

Should run faster to control die barrel pressure at a lower 
pressure. 

Open more to reduce the ammonia evaporation pressure. 

Indq)endcnt of barrel pressure; dependent upon Mix Flow and 

Air Flow. 
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Symptoms IXiring Each Stage Qf Startup, 

Stage# Description Effects Of Fault 

1 Fill barrel. Offset in barrel pressure reading. 
No other effects. 

2 Start Dasher. Offset in barrel pressure reading. 
No other effects. 

3 Pressurise barrel. Offset in barrel pressure reading. 
Air flow magnitude should be independent, but less 
time will need to be spent injecting air into the 
barrel due to the incorrect pressure reading. 

4 Open camflex. reduce NH3 
Evaporadon Pressure. 

No effects. 

5 Increase motorload to its set 
point. 

More air in the barrel, lower heat transfer 
coefGcient and lower viscosity will lead to slower 
buildup in the motorload. 

6 Start pumps. As per steady state conditions above: 
- Lower extrusion temperature. 
- Lower NH3 Evaporation Pressure. 
- Fast^ ice cream pump speed. 
- Camflex open more. 

Table 3.3 The symptoms of the barrel pressure transducer fault during startup. 

Al l stages subsequent to stage 3 (pressurising die barrel) should stan sooner widi this fault due 
to less time being spent injecting air into die barrel during stage 3. However, die time delay is 
likely to be two sampling points at die most which is unlikely to be significant enough to aid in 
die detection of the fault. 

The CRLIOOO will not detect diis fault. 

3.2.2.2. Camflex Valve Disconnected. 

Description. 

The camflex controls the ammonia evaporation pressure. A wire was disconnected from the 
camflex to prevent it from opening at all. 

Effects Qf The Fault 

Disconnecting the camflex valve will have no effea on the freezer operating conditions through 

the initial stages of startup. Once the evaporation pressure of the ammonia needs to be reduced, 

a signal will be sent to the camflex instructing it to open. 
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As the camflex will not open, the evaporation pressure will remain constant and the freezer will 
alarm out and go into a hold condition. 

Figure 3.6 shows the valves cono-olling the flow of ammonia through the freezer. 
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Figure 3.6 Ammonia flow through the freezer. Key: (P) 
Pressure reading taken. (PC) Pressure Controller. 

Symptoms During Each Stage Of Startup. 

Stage # Description Effects Of Fault 

1 Fill barrel. No effects. 

2 Start Dasher. No effects. 

3 Pressurise barrel. No effects. 

4 Open camflex. reduce NH3 
Evaporation Pressure. 

The camflex will not open as required due to it 
being disconnected. Hie ammonia evaporation 
pressure will not reduce, as the camflex valve being 
closed will keep the pressure roughly constant. 
After approximately 4 minutes the freezer will 
alarm and go into its holding condition. 

5 Increase motorload to its set 
poim. 

This stage will not be reached. 

6 Start pumps. This stage will not be reached. 

Table 3.4 The symptoms of the disconnected camflex valve fault during startup. 
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This fault will cause die freezer to go into its holding condition after alarming during stage 4 
(reducing the ammonia evaporation pressure). Subsequent stages will not occur. 

The CRLIOOO will detect die fault during stage 4 of the startup cycle. 

3.2.2.3. Liquid Ammonia Hand Valve Closed. 

Description. 

In normal operating conditions, the hand valve will be open to allow the flow of amrnQnia 

through die freezer. To simulate this fault, die valve was not opened prior to running die 
freezer. 

Effects Of The Fault. 

Failing to open the liquid ammonia hand valve will have no effect upon die freezer operation 
during the initial stages of startup. When the evaporation pressure needs to be reduced, the 
reading will already be low due to die valve being closed. The freezer will alarm out and go 
into a hold condition during the stage where the motorload attempts to match its set point. 

Figure 3.6 shows die valves controlling die flow of ammonia through the freezer. 

Symptoms During Each Stage Of Startup. 

Stage# Description Effects Of Fault 
1 FiU barrel. The initial rise in the ammonia evaporation 

pressure will not occur. 
2 Start Dasher. No effects. 

3 Pressurise barrel. No effects. 
4 Open camflex. reduce NIC 

Evaporation Pressure. 
This stage aids whm the ammonia evaporation 
pressure reaches V/i bar. As the ammonia flow will 
not be reaching the pressure sensor, the pressure 
reading will already be low, and this stage should 
end quickly. 

5 Increase motorload to its set 
point. 

As the flow of ammonia is prevented by the liquid 
ammonia hand valve being closed, refrigeration 
will not occur in the freezer, and the freezer will 
alarm and go into its holding condition. 

6 Start pumps. This stage will not be reached. 
Table 3 J The symptoms of the liquid ammonia hand valve fault during startup. 

This fault will cause die freezer to go into its holding condition after alarming during stage 5 
(increasing die motorload). Subsequent stages will not occur. 
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The CRLIOOO detects this fault during stage 5 of the startup cycle. 

3.3. Summary. 

The aim of this chapter was to introduce the Unilever Automated Freezer, and briefly describe 
its major components. 

The startup of the freezer cycle was determined to be suitable for attempting to detea faults 
using a model-based FDI system, as a number of faults can occur following the fr:eezer 
standing idle overnight and with die startup being highly nonlinear it is difficult to model using 
linear moddling techniques. In addition, the information provided in die datalog is richer 
during startup whereas Utde dynamic information can be gained once the freezer has reached a 
steady state. Also, for economic and practical reasons it is important to detea faults as early 
as possible - preferably prior to production. 

Several stages were identified within die UAF startup c>'cle and described as bemg: filling die 
barrel, starting die dasher, pressurising die barrel, reducing the ammonia evaporation pressure, 
marching die motorload set point, and starting the pumps. 

In order to concentrate on modelling die freezer dynanucs. it was necessary to 07 and keep all 
other variables extmial to die UAF as standard as possible. Such variables, which will affect 
the dynamics of fiieezer. are: the formulation of the mix. the initial temperature of die barrel, 
the type of dasher being used, and the amount of ammonia in the freezer prior to running. A 
mediod for ensuring this standardisation was described. 

The current method for detecting faults widiin the UAF was identified as being a non-modd 
based limit check on certam process parameters. The parameters were identified along widi 
their fault thresholds, and die alarms that would be triggered should the threshold be exceeded 
detailed. 

Three faults were identified as being possible to occur during startup and which coidd be 
readily simulated on die UAF. Of diese faults, two were sufficiendy similar to one another to 
cause a problem for a human operator to identify online, whilst die other was su^iciendy 
distinct from die first two. Also one fault of die faults was identified as being a sofi sensor 
bias which die current fault detection system would not be able to detect. 
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Chapter 4. 

Modelling Time-Vatying Processes, 

Multilayer Perceptrons have been demonsn-ated as being univGsal approximators [3], although 
factors governing their success are dep^ent upon the internal architecture of the network (in 
toms of the numbo* of hidden layers and processing elements within those layers) and die 
composition of the input veaor so as to provide sufficient information to allow it to 
approximate adequately. For a system identification problem. Chapter 2 demonsorated how an 
infinite impulse response system can be modelled using an MLP by providing historic (time-
delayed) process inputs and outputs to emulate dynamic behaviour, thus 

y = f { y . u ) (4.1) 

as historical information concerning u will be reflected in y. 

Clhapter 3 introduced the Unilever Automated Freezer as being a major piece of industrial 
hardware upon which the modelling techniques developed in Chapter 2 would be applied. The 
purpose of this chapto* is to demonstrate how the modelling techniques of Chapt^ 2 failed to 
provide any useful results witii the UAF. The problem witii the approach is detCTmined to be 
that all systems modelled in Chapto* 2 - although dynamic - are time-invariant in operatioa 
The freeze is a class of time-varying process, whose underlying mode of operation changes 
disjointedly with time; i.e. a piecewise time-invariant system 

Two potential solutions are presented: including time as a part of the input vector of the MLP, 
thus making the MLP time-vaiying; and modelling the freeze using a smes of MLPs - an 
MLP Cascade. 

The MLP Cascade is highlighted as being a novel approach to modelling time-varying systems 
of tiiis type. 
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4.1. Initial Attempts At Modelling The UAF. 
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Figure 4.1 Schematic for modelling the UAF using a single time-invariant MLP. 

Initial attempts at modelling the UAF were conducted using the equivalent experimental set-up 
as described in Chapter 2. Figure 4.1 demonstrates how both input and output signals from the 
UAF are stored in a history buffer which is made available to an MLP along with the same set 
point information that the UAF is receiving. As the freezer output signals are stored in the 
history buffer as opposed to outputs from the MLP, the learning strategy employed is 
feedforward as opposed to recurrent. "Rie reason for this is explained below. 

4.1.1. Method OF Training. 

As in Chapter 2. the data was split into two groups, a training and geno-alisation set; the file 
names for which are listed in figure 4,2*. It is typical to have a generalisation set of equal size 
to the training set; however due to the cost of obtaining data for this research it was necessary 
to compromise this ideal by splitting the available data into a training set that was of suitable 
size to allow the MLP to learn the UAF dynamics, whilst keq)ing a geno^ation set that was 
large enough to reduce the risk of obtaining misleadingly promising results. I f the 
generalisation set is small, there is an inoieased danger that the items within it are - by 

* Occasionally files from die training set were moved into the generalisation set and vice-versa, but 
always for separate training runs. At no time was a file used for generalisation upon which an MLP 
had been trained. 
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coinddence - the subset of all possible items that responds favourably to the trained MLP; 
otha" items which could have been within the set may have shown the MLP solution to be poor. 

Training Set Generalisation Set 

l-4a.log 24-7b.log 
l-4c.iog 24-7dJog 
l-4dJog 24.7g.log 
l-4e,log ll-9aJog 
10-7a.log ll-9b.log 
ll-9c.log ll-9dJog 
il-9eJ[og 18-3dJog 
l4-7aJog 18-3e.log 
I8-3b.log l-4b.log 
i8-3c.log 8-4e.log 
18-3fJog 
24-7a.log 
24-7c.log 
24-7eJog 
24-7f.log 
24-7h.log 
31-3aJog 
31-3b.log 
7-4diog 
8-4a.log 

Initial e}q)erimentation was conducted by moving a 
window sequentially over the data using both the 
feedforward and recurrent learning schemes, which 
at this stage was thought to be unsuccessful due to 
the MLP becoming reliant upon the recent freezer 
measurements. By viewing figure 3.5, one can see 
that the greatest fluctuations in process variables 
occur at the outset of a run, before settling into a 
more stable operating region once the mix and ice-
aeam pumps have beai staned. The MLP weights 
are initialised to random values prior to learning, so 
that by the time one complete presentation of a log 
file has been made to the MLP, it is possible that the 
later more stable data will have been learnt at the 
e?q)ense of the earlier fluctuating data, i.e. the 
earlia learning will have been overwrinea As the 
data from die log is rq)eatedly presented to the 
MLP, upon the last record being presented the file 

pointer will move back to the start of the nm. However, though this will cause this data onoe 
more to be used in configuring the MLP, again die long period of stable data toward the end of 
the run is likely to overwrite this learning. 

This problem is usually solved by moving the window onto the data around the log files 
randomly. For these experiments, th^fore, the strategy adopted was to move the file pointer 
to a random point in the available data, and allow sevo^ discrete time steps - or records- to be 
read sequentially. The first of these records were purely to load the history buffer with past 
data without presenting any data to the MLP; the remaining records w^e used to train the 
MLP. While this was intended to solve the earlier problem of overwriting the initial learning, it 
also meant that the recurrent learning scheme was unusable. 

MLPs of various sizes wa^ used in attempting to model the UAF as desaibed below; in 
addition to increasing the numbc of hidden units within the MLP, the composition of the input 
layer was varied to include greater historical information For these experiments, one training 
epoch implies the presentation of one discrete time instant in one log file with the associated 
historical information Each configuration of MLP was allowed 100000 epochs to attempt to 

Figure 42 Typical division of Jog files into 
training and generalisation sets in a ratio of 
2:1. 
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learn the UAF dynamics. All process variables woe scaled to within ±1 with respect to the 
maximum value information in section 3.1.1. 

4.1.2. Experimental Results. 

Each experiment used one input veaor composition on an MLP with a single hidden layer 
ranging from 5 hidden units up to 15 hidden units. Each hidden unit within the MLP had a 
standard sigmoid activation function with its steepness coefBcient set to 0.4. In each case the 
learning coefficient was set to 0.05 and the momentum coefficient to 0.6. Three compositions 
of input vector were tried, consisting of 14, 22 and 30 processing elements respectively. Hie 
input vector with 14 elements was comprised as shown in table 4.1. 

PE# Description UAF Type Time Delay 
1 Barrel Pressure Set Point Set Point 0 
2 Ice-cream Temperature Set Point Set Point 0 
3 Ice-cream Pump Speed Input 0 
4 Camflex Position Input 0 
5 Mix Flow Input 0 
6 Air Flow Input 0 
7 Ice-cream Pump Speed Input 1 
8 Camflex Position Input 1 
9 Mix Flow Input 1 
10 Air Flow Input 1 
11 Barrel Pressure Output 1 
12 Ice-cream Temperature Output 1 
13 Ammonia Evaporation Pressure Output 1 
14 Motorload Output 1 

Table 4.1 The composition of input vector for a 14 input MLP. 

For subsequent compositions of input vector, an additional dght processing dements were 
added to the input layer; comprising of the four UAF input and four UAF output variables with 
an additional time delay. The results obtained for these experiments are shown in table 4.2. 

Number of hidden PEs 

5 6 7 8 9 10 u 12 13 14 15 

14 
0.6891 0.7045 0.7046 0.7202 0.7049 0.7049 0.6942 0 6891 0.7073 0.7190 0.7153 

14 
113.9395 96.4941 99.4195 86.9213 96.1749 113.4407 95.2258 69 4521 143.9628 1S4.6SS3 107.4714 

22 
0.6779 0.6645 0.6876 0.6813 0.6676 0.6501 0.6S42 0.6627 0.4693 0^817 0.6602 

22 
136.0796 8iJ99S 142.0535 138.9479 77.4182 76^147 87.6848 93J906 97.9841 107.0301 87.6861 

30 
0.6537 0.6564 0.6566 0.6496 0.6621 0.6475 0.6617 0.6544 0.6460 0.6438 0.6594 

30 
151.2212 269.2854 199.8122 72.8888 84.2825 79.9148 90.1126 882379 16SJ647 84.7449 84.7920 

en 

4-1 

I 
o 

55 
Table 42 The training and generalisation errors achieved for a time-invariant MLP model, 
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For each experiment - anploying a training cyde of 100000 epochs - in this table two errors 
are shown; the upper being the training oror (70. the lower being the genffalisation oror (G). 
The training error is calculated identically to that used in Chapter 2 (equations (2.9, 2.10 and 
2.11)) being a smoothed Euclidean distance measurement over the entire training set, as is the 
geno-alisation error (equations (2.9 and 2.12)) being an accumulated Euclidean distance 
measurement over the entire generalisation set 

8 e t) B B 5 S 5 a s 

' I I If 

0 8 8 8 8 6 8 8 R 3 9 

Figure 4.3 Graphs demonstrating the failure of a single time-invariant MLP to model the UAF. 

As can be seen, both T and G for all experiments are poor, but the significantly higher 
generalisation error indicates that the dynamics of the freezer have not been learnt by any of the 
MLP architectiu-es. Graphical results of the highlighted experiment (an MLP with an 
architecture of 14-12-4 - since this generated the lowest value of G) are shown in figure 4.3 (in 
this case for the fde 18-3d Jog). 

Although the signals generated by the MLP are unlike those produced by the UAF, initially 
promising features of the results are that some of the charaaeristics and general shapes of the 
UAF signals are being predicted by the MLP. This is especially noticeable when at step 73 
two major events occur: the barrel pressure reduces sharply and the ice-cream tempomire 
reduces to below 0**C, i.e. refrigmtion takes place. At this point the MLP appears to 
recognise that a change in state is about to occur by altering some of its own output values. 
However, closer observation reveals that these MLP output changes are time delayed responses 
to these events. Again, earlio" in the run, the barrel pressure undagoes three stq) increases 
which look anticipated by the MLPs fluctuations in barrel pressure, ammonia evaporation 
pressure and ice-cream lempo-ature estimates, but again the MLP changes occur one time s t^ 
following the stq) incs'eases and not simiiltaneously. 
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In each case, therefore, it appears that the MLP outputs are influenced by changes in the UAF 
outputs as opposed the MLP predicting these changes in output Table 4.3 shows the weight 
matrix between the input layer and the hidden layer, and reveals that the most significant 
weight values are those from input processing element numbers 11, 12, 13 and 14 to each of 
the hidden PEs. Each of the otho* weights have been reduced by the baclq)ropagation 
algorithm to below 0.1 (except the weight of the connection between input PE 6 and hidden PE 
11 which is just above this) which means that the input lines 1 through 10 will be having little 
impact upon the outputs of the MLP in comparison to input lines 11 through 14. As can be 
seen from the composition of the input vector above, these input lines correspond to the time 
delayed outputs of the UAF, i.e. die MLP estimates of UAF outputs are dq)endent - in the 
main - upon past UAF outputs with other information being considered of littie import 

PE in Hidden Layer 

1 2 3 4 5 6 7 8 9 10 11 12 
1 -0.0070 -0.0036 -0.0133 -0.0084 -0.0112 -0.0075 -0.0139 -0.0119 -0.0138 -0.0225 -0.0129 -0.0181 

2 0.0032 -0.0014 -0.0012 -0.0036 0.0115 0.0097 0.0098 0.0020 -0.0020 0.0134 0.0116 0.0024 

3 -0.0068 -0.0120 -0.0066 -0.0182 -0.0269 -0.0062 -0.0312 -0.0031 -0.0209 0.0103 -0.0046 -0.0098 

4 -0.0047 0.0078 -0.0156 -0.0177 -0.0179 -0.0019 -0.0252 -0.0016 -0.0043 -0.0064 -0.0047 -0.0009 

5 0.0012 0.0007 -0.0407 -0.0199 -0.0438 -0.0337 0.0021 -0.0108 -0.0015 -0.0070 -0.0211 0.0056 

6 -0.0410 -0.0220 0.0056 -0.0180 -0.0138 -0.0260 -0.0391 0.0094 -0.0317 0.0079 -0.1028 -0.0114 

7 -0.0087 -0.0058 -0.0075 -0.0329 -0.0027 -0.0021 -0.0358 -0.0043 -0.0162 0.0092 0.0054 -0.0165 

8 -0.0087 0.0015 -0.0189 -0.0215 -0.0077 -0.0110 -0.0237 -0.0009 -0.0078 -0.0013 -0.0043 -0.0031 

9 0.0116 0.0199 -0.0547 -0.0292 -0.0218 -0.0140 -0.0010 -0.0332 -0.0123 -0.0209 -0.0011 -0.0025 

10 -0.0349 -0.0393 0.0096 -0.0212 -0.0136 -0.0259 -0.0452 0.0097 -0.0237 0.0022 -0.0145 -0.0166 

11 -0.2171 -0.6177 0.9551 0.6146 0.6592 02658 -0.2270 -0.0757 -0.3463 -0.2705 -0.0993 -0.3716 

12 -0.2722 -0.2121 -0.2166 0.0564 -0.4946 -0.3391 0.1780 0.4351 0.2645 0.2206 -0.2444 04547 

13 -0.0343 -0.0085 -0.3855 -0.0406 -0.1677 -0.1680 0.1222 -0.2431 -0.0050 -0.2095 -0.0988 -0.0638 

14 -0.5202 -0.2694 0.3706 -0.1435 •0.0956 -0.0349 -0.4453 0.2211 -0.3836 0.1799 -0.1561 -0.1929 

PE in 
Input 
Layer 

Table 43 Weight matrix of connections between the input layer and the hidden layer. Predominant weight values 
are concentrated in the connections between inputs 11.12. 13 and 14 and the hidden layer. 

Qearly the MLP in its current form will never be able to act as a dynamic model of the UAF so 
long as this sole dqjendence upon the immediate preceding process outputs occurs. The extent 
to which tills reliance is true can be tested expoimentally by attempting to predict tiie freezer 
outputs at time k by providing an MLP with the four freezo* outputs at time k-I (i.e. a 4-h-4 
MLP where h is the number of hidden units). 
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Figure 4.4 Graph demonstrating the response of a 4-12-4 MLP to the outputs of the UAF. Note the similarity 
between these and the results of a 14-12-4 MLP shown in figure 4.3. 

For comparison with the above, a 4-12-4 MLP was trained for 100000 epochs with training 
and generalisation errors calculated as before. Here, T reduces to 0.6994 with G anerging as 
72.8602. Figure 4.4 demonstrates these results graphically. 

Increasing the number of hidden layers within the MLP to two provided a furtha* series of 
e3q)eriments which woe performed, although these supplied no better results than those above, 
with MLP again tending to rely upon the most recent UAF outputs. 

4.1.3, Reasons For Failure. 

In order to det^mine why the MLP network should be able to learn the dynamics of the 
systans introduced in Chapter 2 and yet fail to learn the dynamics of the UAF. one needs to 
considQ- the difTerences between the two problems. 

Qearly, the UAF is more complex (i.e. a higher order of dynamic system) than the 
mathematical models of (2.6) and (2.8), but this alone should pose little difficulty to the MLP 
provided sufficient processing dements in the input and hidden layers were allocated. One 
solution in attempting to alleviate the effects of this complexity upon the moddling MLP would 
be to introduce some level of preprocessing on the input signals in order to extraa features that 
were pminent to the modelling problem, whilst discarding information likdy to hinda- the 
MLPs ability to modeL One such m^hod of prq)rocessing would be to perform some data 
transformation such as the Fast Fourio- Transform (FFT) on the input vector which would -
usiog the FPT - move the data into the frequency domain where it may be more readily possible 
to learn the process dynamics using an MLP. 
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As the purpose of such feature extracting prq)rocessing is to simplify the input data and 
remove any extraneous information from the signal, the danger with any such technique (in 
view of the ultimate fault detection requirements of this research) is that the information lost 
during the transformation may be exacdy the information required. If, for example, failures 
displayed the same fi^ency spectrum as was displayed under normal operating conditions, 
once an FFT was performed information pertaining to the failure would be lost In the case of 
the UAF and its three candidate faults, this can be readily demonstrated i f one considers 
another preprocessing technique; that of reducing the input vector to its first differential, i.e. 
providing the MLP with details of the rates of change of variables whilst discarding their 
absolute values. In the case of the barrel pressure sensor fault, where the sensor reading is 
offset whilst the barrel is at atmosphoic pressure, it is precisely this absolute value that 
identifies the problem as the rate of change of the reading for the initial part of the fi-eezer 
startup is identical to that of a normal run; in this case zero. 

Such an example can be considered trivial in view of the faa that sensor biases are relatively 
common faults in industrial processes, and therefore discarding such quantitative 
measiucments can be seen as foolhardy. However, the problem with regard to this research is 
that it is fmancially prohibitive to identify all faults that can occur in the UAF a priori, which 
in turn makes it impossible to know wh^her any prqirocessing m ^ o d would be suitable in all 
cases. It may prove expedient to solve the moddling problem by performing a preprocessing 
routine that still allowed the three candidate faults to be identified, but such a solution would 
become redundant should the scope of the system be expanded to include other faults whose 
distinguishing features wo-e removed by the prqirocessing. 

A secondary reason for resisting such prq)rocessing is titie additional run time such methods 
require in the overall system. In a real-time application, this extra processing time may become 
imdesirable. 

A second difference between the UAF and the simple mathematical processes is that die fi^ezo* 
is pan of a closed-loop system. In a simple open loop system, the process outputs have a 
dq)endency upon the inputs (i.e. y = f («) w h ^ / ( ) is some dynamic representation of die 
system). In a closed loop (i.e. controlled) system - whilst this is still true - the inputs to the 
process are also dq)endem upon die outputs (i.e. u = g(y) where gO is die relationship 
displayed by the controUo-). Such a relationship implies that, in ordo" to model such a closed-
loop system, both system inputs and outputs need to be included in the input vector of the MLP 
in ordCT to allow the modelling of both the process and its controllo*. However, in practice this 
is already done, as such recurrency of process outputs is necessary to emulate the dynamic 
behaviour of the system in an MLP. 
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As several stages of operation have been identified in the startup regime of the UAF - stages 
characterised by the switching in and out of various process components and changes in control 
set points - it is likely that the changing fipom one stage to another constitutes an alteration in 
the underlying operation of the freezer. As these different stages occur sequentially in tiime> 
tiiis would mean that at any discrete time interval, die output of die UAF would depend not 
only upon previous input and output measurements but also upon the point in time that the 
measurements were made. i.e. the UAF would be a time-varying system. Thus an output 
estimate for any y of the system will be 

(4.2) 

making the approximation of any such fimction using the types of MLP thus far employed 
inaccurate as the composition of the input vector is inadequate. The identification [1] and 
control [4] of certain classes of linear time-varying system has been discussed, the former being 
achieved by introducing time-varying noise estimates into the adaptive Kalman Filter 
algorithm. 

4.2. Using A Time-Varying MLP. 
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Mix Flow 
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Figure 43 Schematic for modelling the UAF using a single time-varying MLP. 

Initially an attempt to solve this problem was made using an MLP that was itself time-varying 
by incoiporating an explicit rq)resentation of time as part of its input vector, as demonstrated 
schematically in figure 4.5. 
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4.2.1. Method Of Training. 

The method of training the time-varying MLP was identical to that of the time-invariant MLP 
with the available data logs being split into a training and geno^ation set in the ratio of 2:1 
(figure 4.2). Again, a random window was moved around the training set with several records 
being read to load the history buffer prior to actual training presentations being made to the 
MLP. 

The time stamp - which appears by each record in the data logs in the form hh'jnin:ss - was 
converted to an incremental integer which was scaled during training to a floating point number 
between zero and one. 

4.2.2. Experimental Results. 

As before, each experiment involved a single lay^ MLP with the number of hidden units 
varying from 5 to 15; each hidden unit possessing a standard sigmoid activation function with a 
steq)ness coefficient of 0.4. The learning and momemum coefficients w ^ set to 0.05 and 0.6 
respectfully. 

The three compositions of input veaor - consisting of 15, 23, and 31 processing demoits -
comprised of the UAF variables desaibed in section 4.1.2 and an additional process'mg unit to 
introduce the time representation into the MLP. The results obtained for these e:q)mments are 
shown in table 4.4. 

Number of hidden PEs 

5 6 7 8 9 10 11 12 13 14 15 

15 
0.5334 0.5075 0.4815 0.4858 0.5262 0.4732 0.4722 0.4687 0.4853 0^824 0.4716 

15 
104.8517 106.7779 79.0250 82.9038 89.1587 80.7382 86.4986 72.7008 88.4784 71.0233 71.5415 

23 
0.4692 0.4839 0.46237 0.4789 0.4510 0.4606 0.4330 0.4413 0.4238 0.4412 0.4449 

23 
79.7217 99.9568 85.0729 72.2395 95.4785 72J343 7i2105 82.4675 79.6723 8Z3920 85.7320 

31 
0.4363 0.4367 0.4242 0.4405 0.4289 0.4168 0.4360 0.4296 0.4209 0.4171 0.4344 

31 
61tJ64S 87J238 98.0718 88.6329 83.7017 B5.8268 74.2756 69.0638 74.0058 87.4401 85.9011 

I 
I 

Table 4.4 The training and generalisation errors achieved for a time-varying MLP model 

Again, both T and G are poor, although in general T is approximately 0.2 Iowa- than for the 
time-invariant expaiments indicating a slightly improved approximation of the UAF function. 
The results of the highlighted experiment are shown in figure 4.6 for the 18-3d Jog file. 
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Figure 4.6 Graphs demonstrating the failure of a single time-varying MLP to model the UAF. 

Altiiough graphically, die results still appear as poor as those for tiie time-invariant solution, it 
is noteworthy that the spread of values in the weight mauix between the input and hidden 
layers shows that all inputs are providing some bearing upon the eventual outputs of the MLP 
as can be seen in table 4.5. which could indicate that the MLP is attempting to model the UAF. 

However, the significant model mismatch displayed by the MLP renders this solution 
inadequate for fault detection ptuposes. and experiments with incaieased immbers of hidd^ 
units and two hidden layers failed to improve on these results significantiy. The conclusion 
was therefore reached that anoth^ approach needed to be adopted in order to adequately model 
the UAF. 

4.23. Reasons For Failure. 

As proposed above, the Unilever Automated Freeze is a time-varying system in that plant 
outputs are dependent to some extent upon time. This conclusion has been reached as the UAF 
has several distinct stages of operation during its startup cycle which occur sequentially in time 
as a result of set point changes and control decisions altering the state of various process 
components 

However, it is unhkely that the UAF varies smootiily in time as the points at which one stage of 
operation changes to another are not eqiu-distant Moreovo", for different processing runs of 
the UAF. the stage changes may not occur at the same point during each nm. Training an 
MLP model witii time rq)resented expliddy as an input could be failing to emulate the 
dynamics of the freeze as it itself is smoothly time-varying which would not be an accurate 
representation of the freezer operation 
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PE in Hidden Layer 

PE in 
Input 
Layer 

1 2 3 4 5 
1 -0.1944 -0.0974 -0.1200 -0.1733 -0.1474 

2 -0.0633 -0.1839 -0.1279 -0.2527 -0.2804 

3 -0.0469 0.1000 0.0207 0.0089 0.1288 

4 -0.1316 -0.0662 -0.1240 -0.0825 -0.1099 

5 -0.1472 -0.1589 -0.1767 -0.0895 0.0176 

6 -0.0068 0.0352 •0.3181 -0.1564 -0.1409 

7 -0.1443 -0.1852 -0.3735 -0.2500 -0.1309 

8 -0.0307 -0.0865 -0.2100 -0.0020 -0.1589 

9 -0.2495 -0.1356 -0.0279 0.0533 -0.0251 

10 -0.0605 -0.2324 -0.3890 0.0158 -0.1901 

11 -0.0464 -0.0125 -0.2019 -0.2328 -0.1579 

12 -0.1686 -0.0786 -0.1264 -0.1337 -0.2248 

13 -0.0763 -0.0662 -0.1532 -0.0372 •0.1195 

14 -0.2089 -0.1555 -0.2017 •0.1662 -0.0082 

15 -0.0704 0.0131 -0.1422 -0.3408 -0.1232 

16 -0.0471 -0.0546 -0.0775 -0.0948 -0.1199 

17 0.0477 0.0266 -0.0478 -0.0188 -0.0073 

18 -0.2165 -0.0054 -0.1019 -0.3695 -0.0391 

19 -0.2018 -0.1467 -0.2442 -0.1738 -0.2679 

20 -0.7938 -0.7170 0.1761 -0.1513 0.0506 

21 -0.0158 0.3420 0.3059 -0.4413 0.0323 

22 -0.4343 0.1369 0.0079 0.4144 -0.2021 

23 -0.4435 -0.5581 0.4225 0.1756 -0.3357 

24 -0.3404 -0.2663 0.0318 -0.1881 -0.0571 

25 0.0206 0.3079 0.2065 -0.0705 -0.0944 

26 -0.2689 0.0637 -0.0235 0.4091 -0.1284 

27 -0.3124 -0.4400 0.3716 0.0778 -0.3425 

28 -0.2236 -0.1176 -0.2081 -0.0346 -0.0662 

29 -0.0007 0.3005 0.2121 -0.1033 0.0116 

30 -0.2071 0.1120 0.0336 0.1601 -0.1230 

31 -0.2394| -0.4207 0.1690 0.1193 -0.1201 
Table 4^ Weight matrix of connections between the input layer 
and the hidden layer. Predominant weight values exist throughout 
the matrix. 

As the stages of operation occur at disjointed time-intervals, an estimate for the output would 
be: 

yk = 

/ i (3 '4 - i .Wt) if P i ^ k < p 2 

• 
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where are a series of points in tijnes at which the imderlying model - / , ( ) - of the freezer 

changes. 

4.3. Using A Cascade Of MLPs. 
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Figure 4.7 Schematic for modelling the UAF with an MLP Cascade consisting of n individual MLPs. 

The UAF can be considered time-varying, although not smoothly dq)endem upon time as 
would be an M L P with time as an input. Study of the freezer reveals six distinct stages of 
operation (described briefly in 
figure 4.8) charaaerised by the 
switching in and out of various 
process components and changes 
in set points which alter die 
underlying operation of die 
process. If one considers that as 
no significant events ocau* during 
one mode of operation (as diis 
would constitute an additional 
stage), each stage is likely to be 
time-invariant in isolation and the 
system could be desaibed as 

1. Fill Barrel: The first physical process the freeza* 
undergoes is to fill the barrel with ice-cream mixture 
which necessitates the siariii^ of the mix pump. 

2. Start Daslier: The motor begins to rotate the dasher 
through the mix first at a low speed, then at fu l l speed. 

3. Pressurise Barrel: Air is injected into the barrel until 
the barrel pressure is greater than 4 bar. 

4. Reduce NH3 Evaporation Pressure: Tl» camflex 
valve is opened until the ammonia evaporation pressure 
falls below 2V6 bar. 

5. Increase Motorload: The load on the motor is increased 
to match its set poim. 

6. Start Pumps: The mix and ice-aeam pumps are started 
and die production of ice-aeam begins. 

Figure 4.8 A brief description of the stages the UAF undergoes 
bemg piecewise time-invariant during startup. 
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overall. Thus the system is more disjointedly dependent upon time, and attempting to model it 
using an MLP with time as an input provided no greater success than before. 

An alternative, wh^e it is possible to clearly distinguish between several stages of a system's 
opQ*ation as in (4.3) is to treat each stage as a functional dg)endence in its own right and 
attempt to model it using a separate MLP. This would result in a cascade of MLPs which it 
should be possible to switch between during the normal running of the process to provide a 
continuous input-output mapping (figure 4.7). A class of controller using multiple-models 
exists [5] for a time-varying flight control problem using multiple Kalman Fdters. 

43.1. Method Of Training. 

Once again the available data was split into a training and generalisation set. only now the data 
within each .log file was subdivided into the six individual stages that constitute the startup 
cycle of the UAF. 

MLP # predicting UAF outputs 

10 20 30 40 50 60 70 80 140 
Record # 

Figure 4.9 Diagrammatic representation of how the MLP cascade operates in real-time. Shaded areas show 
when two MLPs are being presented data simultaneously. 

Six MLPs were initialised - one for each stage of opo-ation - and presented data from each 
corresponding portion of the training set by moving a random window around the data. If 
records finom the start of a stage were being presented to the MLP cascade, the history buffer 
for each MLP was initialised in one of two ways: 

• If the UAF was in stage 1 (i.e. being modelled by MLP #1) the buffer was cleared. 

• I f the UAF was in any otho* stage (i.e. being modelled by MLP #n where n =̂  1) 
the buffer was filled with the last m records from stage n-7. where m indicates the 
length of the history buffer (figure 4.9). 

Initially, all the previously identified fieezer variables representing inputs and outputs were 

used in configuring each MLP; howev^ subsequent experim^tation dropped the inclusion of 

the ice-cream tempo^ture from all but the MLP moddling stage 6. As ice-cream only begins 

to pass the temp^mre sensor once the ice-cream pump is started, prior to this the sensor reads 

the temperature within the ice-aeam pipe. The value this sensor returns prior to the pump 
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being staned is entirely dq)endent upon external environment considerations and not upon die 
dynamics of the freezer. 

43.2. Experimental Results. 

As before, three compositions of input veaor were applied to MLPs consisting of between 5 
and 15 hidden processing elements within a single hidden layer. The activation function was 
again a standard sigmoid with a steepness coefficient p of 0.4 and the MLPs each had learning 
and momentum coefficients of 0.05 and 0.6 respectively. 

For each of the first five MLPs in the cascade, the inputs vectors consisted of 12. 19 and 26 
processing elements. The composition of die 12 unit input vector is shown in table 4.6. 

PE# Description UAF Type Time Delay 
1 Barrel Pressure Set Point Set Point 0 
2 Ice-cream Pump Speed Input 0 
3 Camflex Position Input 0 
4 Mix Flow Input 0 
5 Air Flow Input 0 
6 Ice-cream Pump Speed Input 1 
7 Camflex Position Input 1 
8 Mix Flow Input 1 
9 Air Flow Input 1 
10 Bairel Pressure Output 1 
11 Ammonia Evaporation Pressure Output 1 
12 Motorload Output 1 

Table 4.6 The composition of input vector for a 12 input MLP. 

For subsequent compositions of input vector, an additional sevai processing elements were 

added; comprising of the four UAF output and the three UAF input variables with an additional 

time delay. For the sixth M L P in the cascade, input vectors of 14. 22 and 30 imits were used -

the composition of which is detailed in section 4.1.2. 

The results obtained for these experiments are shown in tables 4.7. 4.8. 4.9. 4.10. 4.11 and 
4.12. 

MLEJaOFiU Barrel). 

Number of hidden PEs 

5 6 7 8 9 10 11 12 13 14 15 
12 0.02453 0.02491 0.02540 0.02680 0.02589 0.02709 0.02669 0.02671 0.02682 0i>2647 0.02775 

19 0.02432 0.02488 0.02523 0.02499 0.02476 0.02463 002425 0.02601 0.02492 O.O2520 0.02582 

26 0.02446 0.02439 0.02446 0.02489 0.02497 0.02474 0.02511 0.02588 0.02564 0.02626 0.02590 
I I 

Table 4.7 The training errors achieved for the first MLP model in the cascade. 
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MLP #2 (Start Dasher). 

Number of hidden PEs 

5 6 7 8 9 10 11 12 13 14 15 
12 0.03849 0.03774 0.03996 0.03894 0.03869 0.03890 0.03924 0.03967 0.04021 0.04065 0.04020 

19 0.03662 0.03684 0.03636 0.03774 0.03789 0.03846 0.03868 0.04003 0.03996 0.03796 0.03897 

26 0.03460 0.03S72 0.Q36S3 0.03697 0.03763 0.03640 0.03796 0.03699 0.03723 0.03757 0.03875 It 
Table 4.8 The training errors achieved for the second MLP model in the cascade. 

MLEM (Pressurise Barrel). 

Number of hidden PEs 

5 6 7 8 9 10 11 12 13 14 15 
12 0.04034 0.04280 0.04148 0.04304 0.04232 0.04216 0.04178 0.04158 0.O4190 0.04205 0.04185 

19 0.04026 0.03941 0.04154 0.04219 0.04024 0.04)52 0.04181 0.04069 0.04092 0.04205 0.04149 

26 0.04029 0.03915 0.04060 0.04045 0.03988 0.03955 0.04046 0.04078 0.03986 0.03933 0.04080 

Hoi, 

i t 
3 & 

Table 4.9 The training errors achieved for the third MLP model in the cascade. 

MLP #4 (Reduce NHS Evaporation Pressure). 

Number of hidden PEs 

5 6 7 8 9 10 11 12 13 14 15 
12 0.03646 0.03583 0.03462 0.03349 0.03674 0.03339 0.03237 0.03439 0.03404 0.03386 0.03513 

19 0.03096 0.03027 0.02919 0.02999 0.02964 0.02945 0.02986 0.03101 0.03091 0.02975 0.03056 

26 0.02971 0.03173 0.03066 0.02888 0.02921 0.02928 0.02951 0.02960 0.02911 0.03010 0.02950 It 
Table 4.10 The training errors achieved for the fourth MLP model in the cascade. 

MLP #5 (Increase Motorload). 

Number of hidden PEs 

5 6 7 8 9 10 11 12 13 14 15 
12 0.05109 0.05063 0.05022 0.05050 0.04977 0.05207 0.0S09I 0.05124 0X»52O8 0.05105 0.05156 

19 0.0S0S0 0.05001 0.05128 0.04967 0.04996 0.04890 0.04967 0.05091 0.05018 0.05111 0.05155 

26 0.04843 •0,04814: 0.04963 0.05043 0.04864 0.04833 0.04998 0.04871 0.049SO 0.04991 0.04970 I t 
Table 4.11 The training errors achieved for the fifth MLP model in the cascade. 
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MLP #6 (Start Pumps). 

Number of hidden PEs 

5 6 7 8 9 10 11 12 13 14 IS 
14 0.03729 0.03607 0.03601 0.03831 0.03700 0.03725 0.03614 0.03538 0.03627 0.03669 0.03567 

22 0.03383 0.03336 0.03444 0.03323 0.03253 0.03099 0.03108 0.03333 0.03209 0.Q3205 0.03103 

30 0.0S863 0.04357 0.03000 0.02969 0.03038 0.03009 0.03002 0.02912 0.03006 0.O3O03 0 02890 

Table 4.12 The training errors achieved for the sixth MLP model in the cascade. 

For each of these tables only one error value is shown, being the training error T. As the 

previous results dted a generalisation aror G for the set consisting of comply logs, the 

calculation of G for only part of a log will not allow a consistent comparison to be made. 

As is clearly demonstrated in the above tables. T is much improved over using a single time-
varying MLP; when the cascade is providing its worst predictions during stage 5, the error is 
still enhanced by a faaor of 10. Howevo-, observing the tables shows these errors could be 
improved, in some cases by: increasing the size of input vector; increasing the number of 
hidden units; and inoeasing the mimba* of hidden lay^s to 2. I f the m i n i m u m ^ o r for a 
particular stage is provided by the maximum sized input vector - as it is for all but the first 
stage - it is necessary to experimem with an increased size of input vector. If the minimum 
error is provided by the maximum numbo' of hidd^ units - as it is for stage 6 - it is necessary 
to ino-ease the number of hidden units. In all the above experiments it is worth inoeasing the 
number of hidden layers to two to observe whether this improves the MLPs performance, as it 
is recognised that two hidden layers is sufficient to approximate any function and provide a 
complete nonlinear range for the MLP [2]. 

The only improvanent that was gained was by increasing the input vector of MLP #6 to 38 
units and the hidden layer to 16 unit which reduced T to 0.02833. Expoimenis using two 
hiddai laya-s resulted in much poorer training errors evai what longo" training cycles woe 
allowed. In its final form, the MLP Cascade had the structure shown in table 4.13. 

Stage Structure Activation Function P CoefTicient 

FiU Barrel 19-11-3 Sigmoid 0.4 
Start Dasher 26-5-3 Sigmoid 0.4 
Pressurise Barrel 26-6-3 Sigmoid 0.4 
Reduce NH3 Evaporation Pressure 26-8-3 Sigmoid 0.4 
Increase Motorload 26-6-3 Sigmoid 0.4 
Start Pumps 38-16-3 Sigmoid 0.4 
Table 4.13 The final structure of the MLP Cascade. 
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Graphical results using this cascade are shown in figure 4.10 for the file 18-3dJog. For the 
entire generalisation set. G was 36.6773 using this cascade; a significantly better value than for 
previous methods of modelling the UAF. The switching points for changing stages in figure 
4.10 were {3. 26. 30.42.55.74)2 

E a B a a B c I s S" e s 9 a a B a B s « 

Figure 4.10 Graphs demonstrating how a six stage MLP Cascade is able to model the outputs of the UAF to a 
far greater degree of accuracy than previous methods. Note that no ice-cream temperature predictions are made 
until the onset of stage 6. 

4.4. Summary. 

The aim of this chapter was to demonstrate how the Unilever Automated Freezer could be 
modelled using variations on the techniques developed in Chapter 2. 

Initial attempts at modelling the freezer used a single time-invariant MLP with an increasing 

number of hidden processing elements within one and two hidden lay^s and a number of 

differently composed input vectors. This technique was seen to have failed with the MLP 

disregarding a large amount of information, relying upon immediately preceding output values 

to predict the next in sequence. The reason for this failure was determined to be that the UAF -

in possessing sevo-al distina startup stages - is hkdy to be a time-varying system, and the 

MLP is not provided with sufficient information to approximate the functionality of the freezer. 

^Switching point information is given in the forai {s j . S2 .. .s^} where Sj^ indicates the record number 
in the .log file that signifies stage x has started. 
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An initial attempt to rectify this situation was attempted by making the MLP itself time-varying 
by providing it with an cxpUdi representation of time as part of its input vector compositioa 
Experimentation with this time-varying MLP again provided inadequate results, only now the 
MLP appeared to be using the complete input vector in calculating its outputs. 

The failure of this MLP was determined to be that the UAF is a class of time-vaiying system 
that can be described as being piece-wise time-invariant in that within each stage of opo-ation 
the functional dq}endeDce of the outputs to the inputs is not influenced by time, but changes 
significantly whoi the freezer enters its next startup stage. The MLP, being smoothly time-
varying, appears unable to model this behaviour. 

An attempt was then made to model each stage of the UAFs opCTation with an uidividual MLP 
- ultimately Unking each MLP together to form what could be termed an MLP Cascade, 
providing a continuous input-output mapping of the UAF. This provided predictions of far 
greater accuracy than the previous two methods, although a degree of model mismatch is still 
evident 

This mismatch could be attributable to the manner in which the switchmg between the different 
stages in the startup is achieved. Currently a rule-based switching system is employed which 
uses expert knowledge to formulate the rules. This system, its inadequacies, and possible 
alternatives are pursued in the next chapter, which attempts to further improve the moddUng 
capabilities of the MLP Cascade. 
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Chapter 5. 

Switching Mechanisms For The MLP 
Cascade, 

Chapter 4 introduced the MLP Cascade as being a novel method of modelling time-varying 
dynamic systems which can be described as being piecewise time-invariant, such as the 
Unilever Automated Freezer. The purpose of this chapter is to highlight how the p^ormance 
of the M I P Cascade can be influenced by the use of alt&native switching mechanisms b^een 
one MLP in the Cascade and the next 

Six distinct phases of operation can be identified in the startup cycle of the Unileva- Automated 

Freezer. These stages are governed in the main by control laws, and are specifically: 

1. Filling the barrel with mixture. 

2. Starting the dasher rotating. 

3. Increasing the barrel pressure to 4 bar. 

4. Reducing the ammonia evaporation pressure to 2¥l bar. 

5. Increasing the motorload to its set point 

6. Starting the mix and ice cream pumps. 

The identification of these stages, coupled with the inability of a single multilayer perceptron -
both time-invariant and time-varying - to successfully provide a continuous input-output 
mapping for the UAF led to the conclusion that the process is piecewise time-invariant system. 
In this case, it was possible to model each individual stage with a single MLP; the entire 
startup cycle being modelled by what can be termed an MLP Cascade. 

During ChaptCT 4, a rule-based switching mechanism was employed which was based upon 
Gxpcn knowledge of the UAF. This chapter will examine this technique more closely, and offo" 
several alternatives that do not rely as closely upon explicit knowledge of the freezer. Fmally. 
a optimum method for training the MLP Cascade will be proposed. 
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5.1. Rule-Based Switching. 

Knowledge based (expert) systems are well established in the fields of control and FDI systems 
[2, 7» 8 and 9L and are a principal artificial intelligence tool. Typically, expen systems 
simulate human reasoning by holding information pertaining to the problem domain (the 
knowledge base) and applying deductive or inductive rules (the inference engine) to ascmain 
new knowledge about the domain [3]. 

While it is not proposed to develop a complete expert system shell to control switching in the 
MLP Cascade, it is useful to draw on cmain aspects of expert system development theory; 
more specifically the elidtation and formulation of rules. 

5.1.1. Principle Of Operation. 

The composition of rules in knowledge-based systems are similar to the branching conditions in 
many programming languages in that they test a condition, and poform an action should the 
condition be satisfied, i.e. they take the form: 

IF (antecedent 1 is true) AND/OR 

(antecedent 2 is true) AND/OR 

(aniecedem n is true) 

THEN 

(consequent 1) 

(consequent 2) 

(consequent m) 

For the purposes of deriving rules for the switching fiom one MLP in the Cascade to the next, 
it was necessary to elicit the knowledge fiom experts on the UAF, and determine how they 
deduced - i f possible fiom the datalogged records of the fi^zer - which stage of operation the 
UAF was in. Nimierous knowledge elldtation techniques exist which attempt to gather the 
most complete and unambiguous series of rules available [1], however the modest size of this 
problem domain meant that the most common fonn of eliciiation - interviewing [4] - was the 
most practical in this case. 

It was identified that each stage in the UAFs startup cycle can be identified fipom the opo-ating 
records, and that a simple switching mechanism could be derived and encoded with the rules 
used to distinguish between stages. 

Table 5.1 shows the rules that govern the start and end of each stage. 
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Start/End Stage Rule 

Start 1 Mix pump starts; mix flow »8. 

End 1 Mix flow reduces. 

Start 2 Motorload kicks. 

Bid 2 Air flow begins. 

Start 3 Air flow begins 

End 3 Barrel pressure is greater than 4 bar. 

Start 4 Camflex position a 15%. 

End 4 Ammonia evaporation pressure is less than Vh bar. 

Start 5 Ammonia evaporation pressure is less than 2V6 bar. 

End 5 Motorload set poim is reached. 

Start 6 Pumps begin to operate. 
Table 5.1 Initial rules developed for the switching MLPs in the Cascade. 

A danger with attempting to use all the parameters detailed in table 5.1 is that some of the 
measurements are unreliable using the data logging software on the freezer. An example of this 
is the motorload pulses at the start of stage 2. The duration of these pulses are less than the 
maximum sampling time of the software and are likely to be missed during some runs of the 
freezer. Again, e7q)ert knowledge was employed to resolve these rules into those in figure 5.1. 

Biil£_l: IF (Not yet started stage 1) AND 
(Mix pump started i.e. greater than 90%) 

THEN 
(Start stage 1) 

Rule 2: IF (In stage 1) AND 
(Mix flow drop by more than 4) OR 
(Mix flow drops below 3) 

THEN 
(Start stage 2) 

RuleJ: IF (In stage 2) AND 
(Air flow begins Le. ^ 1) 

THH^ 
(Start stage 3) 

Rule 4: IF (In stage 3) AND 
(Barrel Pressure is greater than 4) 

THEN 
(Start stage 4) 

R u k i : IF (In stage 4) AND 
(Ammonia evaporation pressure drops below 2V6) 

THEN 
(Start stage 5) 

IF (In stage 5) AND 
(Air flow is greater than 5) 

THEN 
(Start stage 6) 

Figure 5.1 Fmal form of rules derived for switching between MLPs in the Cascade. 
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As these rules were imambiguous and rehed upon measurements whose reliabifity could be 
guaranteed, it was possible to incorporate them into the operation of the MLP Cascade. 

5.1.2. Experimental Results. 

As was mmioned in the summary to Chapter 4. the MLP Cascade used the rules derived in 
figure 5.1 for its switching mechanism and the results are displayed graphically in figure 4.10. 
The accumulated Euclidean distance oror measurement G (equations 2.9 and 2.12) was 
36.6773. The switching point signal is displayed in figure 5.2. 

Rul&ecBed Switch 

as 

0.4 

ID 20 40 SO 60 70 

S w » i i n g S l 9 x ] TrreshdcJ 

Figure 5^ Graph demonstrating how the switching signal generated by the rules transgresses the threshold 
boundary. 

As can be seen in figure 4.10. a degree of model mismatch is still evident between the MLP 
Cascade models and the UAFs outputs. As the greatest model mismatch occurs dose to - or at 
- a switching point, it could be that the derived rules are inaccurate in one of two ways; dther 
they are incorrect or they are inexaa. The former implies that the antecedents of the rule do 
not have a bearing upon the switching point, the latter that a precise - or crisp - decision 
boundary is inappropriate in this case. 

An example of a crisp and fiizzy decision boundary is shown in figure 5.3. In the former, 
before the antecedents of a particular rule have been satisfied the switching point is d^ennined 
as not reached. Howevo", widi a fuzzy dedsion boundary tho ê is a region before and after the 
amecedents of the rule have been satisfied when the switching point is d^ermined as bdng 
possibly reached i.e. a degree of uncertainty exists. 
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Figure 53 An example of (a) a crisp and (b) a fuzzy decision boundary for determining if a switching point has 
been reached. 

This imcertainty with respect to whai a particular switching point is reached can be 
accommodated by using an MLP to learn the switching points from the set of rules. By 
applying a standard sigmoid squashing function (figure 1.5) at the output node of an MLP. the 
MLP will give a value between 0 and 1 and allow it's output to saturate very quickly toward 
these values. In this case, a value of z^o will indicate a certainty that the switching point has 
not been reached, a one will indicate a certainty that it has. and a value in between will indicate 
the uncertainty. 

5.2. Simple MLP Switch. 

The rules provide a definite point in time as to when to switch firom one stage in the MLP 
Cascade to anotha*. However, this boundary is often ftizzy with different rules governing when 
one stage can be said to have ended and the next stage begun, as can be seen in table 5.1. 
Here, for example, the end of stage 1 is signified by the mix flow reducing, whereas the start of 
stage 2 is signified by the motorload kicking. Resolving these rules into an unambiguous set as 
in figure 5.1. changes these fiizzy decision boundaries into crisp ones, but may result in model 
mismatch between the MLP Cascade and the UAF. 

As MLPs are able to detect certain features within an input vector, it should be possible to 
train one to detect stage changes and provide a fiizzy boundary between them. Two possible 
architectures for the MLP would be to have: 

• the same number of outputs as there are stages. The rationale here being i f one of the 
outputs showed a sufficiently positive output, i.e. close to +1. that would represent the 
stage the process was in. 

• a single output. This output would be close to +1 if a switching point had been 
reached and zero othowise. 
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The danger with the former is that should several of the MLPs outputs be equally positive, the 
result would be ambiguous. A possible solution would be to incorporate a mnner-takes-all^ 
rule at the output layer. However, as the rules are formulated with information potaining to 
which stage the UAF is ourentiy in, it seems likely that an MLP would need to be provided 
with this information as part of it's input vector. Given this, it appears pref^ble to have only 
a single output processmg element signalling a switching point bemg reached or not. I f tiie 
MLP is aware that the UAF is currentiy in stage n then the only valid stage it could next be in 
would be stage /i+7. Allowing the MLP to signal a change to stage rt+2. or even back to n-l 
would only serve to complicate matter unnecessarily. 

5.2.1. Principle Of Operation. 

It should be possible to train an MLP to distinguish the features that the rules recognise by 
presenting as an input veaor complete records from the logs. 

Experiments were conducted using MLPs varying in size in terms of internal architecture (i.e. 
the number of hidden processing elements were varied from between 5 and 16). and in terms of 
mpul vector. In order for Uie MLP to detennine that a switching point has been reached, it must 
be presented with current operating data (at time k\ and one record of time^lelayed data (at 
time k-1) in order to determine any relevant changes in process variables. For these 
e;q)eriments. all process variables except the time stamp and die alarm condition wctc used to 
compose the input vector, i.e. 19 variables. Therefore the MLP had 39 input units initially (2 x 
19 process variables + 1 to represent the current stage), increased by 19 for subsequent 
experiments. 

The available logs were again arranged into a training and gen^alisation set in the ratio of 2:1 
(as in figure 4.2) and switching point infonnation positions generated for die training set by the 
same mechanisms tiiat the rules use to recognise them. 

1 A mechanism employed at the output layer of an artificial neural network by which each processing element is 

connected to each other in the layer by an inhibitory connection, while an excitatory connection exists joining 

each processing element to itself. The result is the output processing elements compete with one another until 

only one remains active. 
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The MLP was trained by randomly positioning a window onto the training set and presenting 
this information to the MLP. If the input vector corresponded with a switching poim, a value 
of 0.9 would be backpropagated through the network, othawise a 0.1 would be used .̂ 

During testii^, the MLPs output can be seen to spike in indication of a switching point. By 
selecting a threshold value that needs to be exceeded i f the network is to signal a switch of 
stage, the sensitivity of the MLP switch can be altwed. and false alarms increased or reduced. 

5.2.2. ExperimentaJ Results. 

Each experiment used one input veaor comprising of 39, 58, 77 and 96 processing elonents 
respectively upon a varying number of hidden units in a single hidden layer. In order to 
encourage values close to 0 and 1, a sigmoid activation function with a steq)ness coefQcient of 
0.5 was appUed to each processing dement, including the output unit In each case the learning 
coefficient was set to 0.1 and 0.6 respectively. 

Table 5.2 details the results achieved by the various sized MLPs. 

Number of hidden PEs 

. 1 

5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 

3 9 0.08S16 0.08479 0.08S42 0.OS8U O.0839S 0.08402 0.08618 0.08551 0.08562 0.08537 0il8424 0.08518 

5 8 a08499 0.0S294 0.0839S 0.0S4I7 0.08235 0.08410 0.08291 0.08449 aOS390 0X8368 ojosm 0.08455 

7 7 Oit83SO 0.0S06S 0.08102 0.08274 0.08393 0.08142 0.08141 a08333 0.08256 0J)8190 008228 0^)8315 

9 6 0.0814S 0.0S2S4 0.08335 0.08091 0.08352 0.08214 0.08349 0.08326 OJOS250 0J08299 0i}83B2 

These values represent the training error of the MLPs after a training cyde of lOÔOOO epochs. 
Although all errors are in the same region as each other, it is interesting to note that each MLP 
composition was able to learn five out of the six switching points. However, subsequent 
training of the 77-6-1 MLP (bdng the structure which provided the lowest oror up until this 
point) gradually reduces the training error to around 0.032 (figure 5.4). 

All six switching points have now been recognised, though the penultimate two are not 
identically placed with the rule based switching mechanism (figure 5.5). 

^Although the sigmoid function saturates toward 0 and 1, it will never actually achieve these values. 
Therefore an MLP with this function operating at its output layer needs to be presented with values 
dose to 0 and 1 to represent them (e.g. 0.1 and 0.9) as these can be reached by the network. 
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Figure 5.4 Training error of the 77-6-1 MLP over an extended training period. 

The fu^t three and the last one of the switching points have been accurately recognised, whilst 
the fourth is misplaced and the fifth is only accurate if the threshold value is carefully chosen 
(in this case 0.49). 

0.8 

OA 

OA 

02 

M P Switch 

( I • • I 

M L P OUTPUT Desired OuTput Threshold 

Figure 5.5 Graph demonstrating how the signal generated by the MLP tran^esses the threshold boundary. 

Using the MLP switchmg method with die UAF logs is demonstrated graphically in figure 5.6 
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Figure 5.6 Graph demonstrating the performance of the MLP Cascade using a simple MLP switching 
mechanism with a threshold value of 0.49. Switching points are {3.26. 30,42,56. 74}. 

A problem with both the rule-based mechanism and the simple MLP switch, however, would be 
if the expert knowledge detomining the placement of switching points was flawed and the 

points were not in their optimiun places. The rules determinmg when to switch stages would 
prove incorrea. and the simple MLP switch - being trained by these rules - would be learning 

these errors. A method therefore needs to be developed by which optimum switching points can 
be foimd that do not rely upon expert knowledge. 

5.3. Error Switching. 

A simple mechanism for controlling the switching mechanism would be to onploy some 
quantitative measurement of error in the residual signals that would signal a switching point 
should some predetermined threshold value be exceeded. 

5 J . l . Principle Of Operation. 

The first stage of startup of the UAF can be deemed to have begun what the mix pump is 
started and the flow sensor begins to register that the mix is being pumped into the barrel. At 
this point MLP #1 in the Cascade can begm modelling the freezer ouq)uts. I f the MLP is 
modelling its correct corresponding stage, the difference between the UAF and MLP outputs 
(the residual oror - calculated in this case using a Euclidean distance measure, equation (2.9)) 
should be small However, once a switching point has been reached, the error should increase 
significantly, and the MLP changed to the next in sequence. 
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The success of such a method depends upon the accuracy with which each MLP in the cascade 
models its own particular stage, as ideally a low threshold would need to be set to enable the 
switching to occur as soon as possible between stages. If significant model mismatch was 
evident, the threshold would need to be set high, impairing the op^ation of such a method. 

A furtha* problem would be if an MLPs predictions were high for one time step during a 
particular stage of op^ation. This one-off high residual would triggo* the switching 
mechanism to change to the next MLP in the Cascade, which would begin modelling before its 
stage had begua This would be likely to cause high errors which would again trigger the 
switching mechanism. To reduce the risk of spurious high residual OTors causing problems, it 
is proposed that the errors be accumulated during each stage of opo-ation and a switching point 
be signalled when this accumulated error crosses a threshold. 

5.3.2. Experimental Results. 

The results demonstrated in table 5.3 show how the MLP Cascade responds to different 
threshold values being used to determine switching points. 

Threshold Value Generalisation Error Switching Points For 18-3D.LOG 

0.1 138.8537 { 3. 5. 6. 7. 11. 12} 
0.2 122.6838 { 3. 13. 15. 17. 24. 25 ) 
0.3 34.5920 { 3. 26. 30. 42. 59. 72 } 

0.31 33.0303 { 3. 27. 31, 44, 61. 73 } 
0.32 33.0303 { 3. 27. 31. 44, 61. 73 } 

0.33 33.2014 f 3. 27. 31. 45. 62. 73 } 
0.4 35.6132 { 3, 27, 32. 50. 64, 74 } 

Table 5.3 Switching point information generated by various threshold values. 

A threshold level of 0.31 is the lowest value which provides the most accurate generalisation of 
the MLP Cascade, although the accuracy of the rule-based switching mechanism is superior to 
this. Figure 5.7 demonstrates the performance of the error switching mechanism graphically 
for the file 18-3d.log. 

Experiments wo-e conducted using multiple thresholds, i.e. a diffo-eni threshold value for each 
switching poim. but no significant improvemertts w ^ made. 
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Figure 5.7 Graph demonstrating the performance of the MLP Cascade using an error switching mechanism with 
a threshold value of 0.31. Switching points are (3.27.31.44.61. 73}. 

Figure 5.8 demonstrates how the accumulated Euclidean distance error used in this switching 
mechanism gradually rises while the current MLP is moddling its correct stage but then rises 
sharply once the switching point has been passed. 

ThresholdTraisgresBlans Of Accumutded Error 

as 

0.2 H 

IrstCTtcneaiBErra Accunicfed E rror T hreshdd 

Figure 5^ Graph demonstrating how the accumulated error transgresses the threshold boundary. The 
instantaneous error does not possess such high distinguishable peaks. 

An obvious disadvantage of the error switching mechanism is that actual switching points are 
not signalled until MLP #n is modelling stage n+1 sufiBdemly poorly to allow the error value 
to inoease sharply and exceed the threshold. ThCTefore optimum switching points will not be 
recognised, as switching only occurs after such points have passed. In order to switch at such 
optimum times, a mechanism needs to be developed which does not rely upon predetermined 
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rules, but which is able to recognise the optimum time to switch online during the operation of 
the freezer. 

5.4. Optimal MLP Switch. 

If the rules governing where to switch between MLPs were inaccurate, a simple MLP switch 

would be trained to generate the same erroneous switching points as supplied by the rules. 

The rationale behind using an MLP Ĉ ascade to modd a system with s e v ^ stages is that 

stage„ can be modelled by a function f^{) which can be approximated by MLP„ m the cascade. 

As the system moves fiom stage„ to stageQ .̂̂ , the switching mechanism informs the cascade to 

change from MLP^ to MLP^+i- However, although a point may have been reached in the 

fiieezer operation where a different control law needs to applied - a situation encompassed in 

the rules derived above - the system dynamics may still be better modelled by the preceding 

functional approximation until the effects of the stage change become pronounced. In this 

situatioa, the rules will be informing the MLP cascade of the switching point too early. 

Similarly, on tiie approach to a switching point being recognised by tiie rules - altiiough the 

conditions to switch have not yet been met - the succeeding functional approximation may 

aheady be able to betto" describe tiie fieezer dynamics than the current one. In such 

circumstances, the positioning of the switching points dttermined by tiie rules need to have 

their positions optimised. 

5.4.1, Principle Of Operation. 

I 2 131 

Figure 5.9 A typical UAF output showing stages of operation (1..6) and 
switching points {s,.. s^}. The signal is sampled at time k. 

The MLP Cascade needs to 

have had some preliminary 

training so that MLPp 

approximates function /^O 

which described the dynamics 

of stagCji to some arbitrary 

degree. One method of 

optimisation would be - should 

tiie sample point fall within 

stagCn - the input vector can be 

passed through MLP^-b MLPn ^^LPQ^.! and the resulting three residual errors compared. 

The switchmg point can tiien be inaiemented, kq)t tiie same, or decremoited dq^ending upon 
which OTOr was the minimum 
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Consider the situation shown in flgure 5.9. where a sample at time k can be identified as bdng 
in stage4. Each MLP in the cascade will have been o-ained in advance using the original 
switching point timings detomined by the rules. The input vector from sample Jk can be passed 
through MLP3. MLP4 and MLP5 generating the orors 63. e4 and e5. If 63 is the lesser of the 
three. S4 will be moved forward one samplmg point. I f e5 is the lesser of the three. S4 will be 
moved back one sampling point. An MLP can now be trained to generate switching point 
information based on this new data, which should continue to change throughout the training 
cycle until the best points for each MLP in tiie cascade have been reached. 

The number of hiddai units and the composition of the input veaor was varied in the same 
manner as for the simple MLP switch. 

5.4.2. Experimental Results. 

Results for these experiments were extremely poor. Regardless of the degree of historical 
information presented, the size of the hidden layer, or the mmiber of hidden layers, the training 
errors did not drop below 0.6846. Upon testing tiie MLP which had produced this training 
error on the gen^alisation set, the network output failed to spike at discrete intervals signalling 
switching points, as shown in flgure 5.10. 

r 
Figure 5.10 Graphs demonstrating the failure of an MLP to optimise and leam switching points. 

Here, witij tiie Uireshold set to 0.52. tiie MLP output does not exceed it and so tiie MLP 
Cascade predicts witii MLP #1 for the duration of the run. However, whoi tiie threshold is 
lowoed to 0.51. tiie iiutial spike exceeds it but subsequent MLP outputs are even higher and 
exceed the tiireshold also. In tiiis situation, the MLP Cascade switches between each MLP in 
succession, with individual networks subsequent to the first attempting to model the UAF for 
one record only. 

A problem with attempting to leam optimum switching points in such an ad-hoc manner, is that 

tiie positions of such points are likely to be continually moving slightiy allowing the MLP no 

time to leam their positions. Also, a danger exists that optimal switching points coitid be learnt 

with respea to a local minimum, rather tiian the problem's global minimum. It is therefore 

desirable to use a mechanism to optimise tiie switchmg points with respect to their global 
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minimum a priori to these points being learnt by the MLP Switch. A technique which could be 
utilised to this end is the Genetic Algorithm optimisation technique. 

5.5. The Genetic Algorithm. 

The genetic algorithm (GA) is a global optimisation tedmique based upon a natural selection 
principle. Populations of possible solutions are geno-ated by the algorithm and processed by a 
number of genetic operators such as crossover and mutation. The results of these opo^tions 
are measured against some fitness function to determine the success of the solution and a 
number of the current generation selected to compose the next population. The process is 
repeated until some stopping condition is reached, such as the fitness function for one memba-
of the population exceeding a certain value. An example of a GA used for adaptive control is 
provided in [6]. 

In a problem such as finding the optimal switching points for changing firom one MLP in the 
Cascade to the next, an obvious fitness fimction is the generalisation error of the MLP cascade. 

5.5.1. Principle Of Operation. 

A numbo' of techniques exist to search a problem space with the aim of maximising a reward 
function or minimising a cost function. These fall mainly into the realms of (a) calculus based 
searches - such as hill-dimbing - which can encounto- problems finding a global optimum 
whae there are local maxima (or minima) in the search space, and (b) random searches which 
can be computationally inefficient 

The GA offers improvement over both these forms of searches. In the fu^t instance, it uses a 
population of points to conduct a search, as opposed to the single point used by many hill-
dimbing techniques, thereby reducing the risk of settling to local optima. In the second 
mstance. it uses random choice in guiding its search strategy, which differs from random 
searches in that it is not directionless. 

ThG basic binary genetic algorithm operates in the foUowmg way: 

Step 1: Detennine a set of variable parameters which affea how good an 
individual solution to the problem will be. Each potential solution 
formed by this parameter set will be converted to a sequential string 
of bits (O's and I's). referred to as a chromosome. 

Step 2: Determine a quantifiable measurement of how good a solution a 

chromosome provides, referred to as fitness. 

112 



Step 3: Generate an initial population of chromosomes where each 

chromosome consists of a random sequence of as and Ts. 

Step 4: Calculate the fitness of each member (chromosome) in die 

populadoa 

Step 5: Form the next generation of the population by performing some 

selection criterion to determine which m e m b ^ wil l go through. 

Step 6: Check to see i f the stopping condition for the GA has boen satisfied, 

and end the search i f it has. 

Step 7: Perform genetic operations upon the populatioa 

Step 8: Calculate the fimess of each member in the populatioa 

Step 9: Form the next generation of the population by performing some 

selection critoion to determine which members wi l l go through. 

Step 10: Repeat steps 6 through 9 until the check in step 6 is satisfied. 

Typically, it is steps one and two which are the most time consuming and problematic to 

compile. Following these, the genetic algorithm is generic and can be applied to a large 

tmmber of problems. The following sections expand upon some of the terminology introduced 

in the basic operation of the GA. 

5.5.1.1. The Chromosome. 

A potential solution to a specific problem is comprised of a numbo" of relevant parameters 

which are deaned influential in determining how good a solution wi l l be. This list of 

parameters can be converted into a string of O's and I's which are termed chromosomes. An 

individual chromosome is a member of a population of chromosomes with which the GA will 

perform its search. Strictly speaking, the term chrotnosome is a facet of natural systems, and 

the tenn string is often used in the context of the GA. 

For example, a solution to a problem might involve three parametas - x. y and z - whose 

values fall in the ranges 0..3. 0..10, and -50..50 respectively. The string composition could be 

achieved as shown in table 5.4. 

Parameter Range No of values No of bits Lowest 
VaJue 

Highest 
Value 

x 0..3 4 2 00 11 

y 0..10 11 4 0000 1010 

z -50..50 101 7 0000000 1100100 
Table 5.4 The string composition for an example genetic algorithm. 
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Therefore the total numbo- of bits needed to compose a chromosome would be 13 (2+4+7). A 

typical chromosome may have the following contents. 

1 
^ s 

0 0 0 
V 

0 1 0 0 1 1 1 1 0 

X 
= 2 

y 
= 1 30 (or -20 when adjusted) 

Genetic algorithm schema theory [3] proposes that the GA performs its search according to bit 

strings which match templates (schemata) that the GA detomines provide a good solutioa It is 

important to note that the GA does not formulate these schemata exphcitly. but is theorised to 

implicitly devise them during the course of the search. For example, by introducing an 

additional symbol to indicate either a 0 or a 1, one can compose a schema such as 

10=^*01*0**11* i.e. the specified bits are important whilst those indicated by a can be dther 

0 or 1. I f the GA had determined that this schema provided good solutions, it is l ikdy that the 

above chromosome would have a high fitness value as it matches the template. 

5.5.1.2. Fitness. 

Flmess is an objective numerical measure of how good a solution to a particular problem is. 

and as a result is entirely specific to the problem. T^ically^ the higher the fitness value» the 

betto* the solution is and the GA attempts to maximise the fitness of the entire population and 

arrive at the global best solution possible. 

5.5.1.3. Selection. 

Sdection is the process by which members of the current population are allowed to progress to 

the next generation by means of some mechanical procedure, and is tho^ore analogous to 

reproduction amongst biological systems. 

The GA typically selects 

monbers for the next 

gen^ t ion according to fimess. 

This means that not only do 

the fittest manbers of the 

current population possess a 

good chance of appearing in 

the next generation, but the 

fitter they are the greater 

numbo" of their 'offspring' 

Figure S.ll Selection can be accomplished using a roulette wheel where ihffC are l ikdy to be. The 
each population member is all(K:ated a slot size proportional to its fitness. 

Population. 

_ ] Member #1 

Member #2 

^ Member #3 

^ Member #4 

n Member #5 
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simple GA produces a symbolic roulette wheel upon which population manbers are allocated 

slots whose sizes are weighted with respect to the proportion of total fitness the chromosome 

possesses. Consider figure 5.11 where a population of five members have been ranked in ordo-

of their fitness. The total population for the generation is summed, and the proportion of that 

fitness each member possesses is calculated, and slot sizes allocated accordingly. The 'ball' is 

now rolled five times (once for each member of population) and the member whose slot the ball 

falls in is copied to the next generation of the population. While the chances of memb^ #1 

appearing in the new population are greato- than member #5, it is important to remember that 

the selection procedure is based upon randonmess and that while the probability of the new 

population being made up of five copies of monb^ #5 is extremely small, i t is still a 

possibility. 

The possibility therefore exists for the GA to produce a fit member of the population, only to 

lose it in the selection procedure. While the GA is likely to reproduce this fit member after a 

mimbo" of further generations, an extension to the GA algorithm - referred to as elitism - is 

intended to remove this possibihty. With elitism, at least one place in the next generation is 

reserved for the fittest member of the current population, the remaindo' being filled by the 

usual selection procedure. 

5.5.1.4. Genetic Operators. 

Genetic operators work on changing the current population in two ways. Firstly, two members 

of the population are 'mated' with each oth^. producing two new members. Secondly, one 

member of tiie population is altered in a small way producing a single new member. These 

operations are refored to as crossover and mutation respectively. 

Crossover 

Crossover occurs by selecting two memb^s of the population (the ^parents') and picking a 

random point somewho-e within the bit string (point k). The first k bits of the first parent are 

joined with the bits from to the end of the string of the second to form the first 'child', and 

vice-versa to form the second child. 

For example, i f before crossover two membm of the population were: 

A = 1 0 0 0 0 1 0 0 1 1 1 1 0 

B = 1 1 0 0 1 0 0 1 1 0 0 1 1 
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after ax)ssover they would become: 

A* = 1 0 0 0 0 0 0 1 1 0 0 1 1 

B* = 1 1 0 0 1 1 0 0 1 1 1 1 0 

M u m ^ 

Mutation occurs by selecting one member of the population, and a random point somewhere 

within the bit string (point The bit indicated by Jfe is dianged to a 1 i f i t were originally a 0. 

or a 0 i f it were originally a 1. 

For example, i f before mutation a member of the population was: 

A = 1 0 0 0 0 1 0 0 1 1 1 1 0 

k 

after mutation it would be: 

A* = 1 0 0 0 0 1 0 0 0 1 1 1 0 

Usually crossover and mutation are not performed upon evoy member of the population but 

with respect to probability values. The probability of crossover is usually set high (a value 

such as 0.6) while the probability of mutation is usually set low (a value such as l/(population 

size)). Whilst the ultimate best probabihty values are problem dependent, a saies of 

experiments across a five function suite suggests that these values are generically adequate [3]. 

5.5.1.5. Stopping Conditions. 

As with the choice of fitness function, the dedsion to stop performing the GA search is 

dq)endent upon the problem. Typical stopping conditions are: 

• When the number of generations has reached a predetermined value. 

• When the best fitness value has not improved for a pred^ermined mimb^ of 

generations. 
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When the best fitness equals a predetermined value. Some problems may, by 

nature, have an upward bound upon how good a solution is. I f this is reached, 

the best possible solution will have been produced, and subsequent generations 

will not improve upon this. An example would be attempting to minimise a 

cost function which is unable to fall below zero. 

Performing a check to determine how diverse the cuirent population is, and 

stopping i f the population consists of mostly identical members (i.e. i t has 

convQ-ged). In an extreme case where every member of the population is the 

same, crossover - which is the operator with the higher probability of 

occurring - will not produce any fresh population members. It would then fall 

to die mutation operaxor to introduce diversity, which would occur only 

occasionally. 

One convo-gence check is described by the following: 

L - l 
- i (5.1) 

where Pf is the population set at generation r, L is the length of each diromosome in and bj 

is the bit in the yth colimm of each chromosome in in turn. I f the population contains 50% 

ones and 50% zeros within each column i t is as divergent as it can be and this function returns 

0; i f the population contains 100% ones or 100% zeros within each column, it has completely 

convCTged, and this function returns 1. For example, given a population set at generation t of 

four chromosomes, each four bits long as follows: 

Column 1 2 3 4 

Member #1 = 1 0 0 1 
Member #2 = 1 0 1 0 
Member #3 = 1 0 1 1 
Member #4 = 1 0 0 1 

Here, the convergence of column 1 is 1, column 2 is 1, column 3 is 0 and column 4 is 0.5 

making the convergence of the total population set 0.625. 
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5.5.2. Experimental Results. 

For determining the optimum switching points for the MLP Cascade^ the relevant parameters in 

configuring a member of the population are the integer sample points that represent the 

switchmg positions. As the startup procedure of the UAF would only exceed 256 samples 

under fault conditions and the final stage may occasionally start after sample 127 imder normal 

conditions, eight bits were assigned to each of the six switching points, making a total 

chromosome length of 48 bits. As crossover and mutation of this sequential string would -

when decoded - at times produce a set of switching values which were nonsequential, the values 

w^e soned prior to the fitness of the solution being ascertained. This meant the GA was 

searching through presoned strings in preference to determining that sorted strings provided 

good solutions. 

The fitness fimction was based upon the generalisation error (2.12) of each individual log file 

such that the fimess,/. was: 

/ = 7 ^ x 1 0 0 (5.2) 
O + 1 

where C is the generalisation error of the log. In this way. the possible fitness was boimded 

between 0 and 100, as a perfect solution would return a generalisation error of zero. 

An elitist genetic algorithm was then used for each log in the training set until one of the 

following conditions were met: 

• 10.000 generations had occurred. 

• The population was 95% convergent This calculation was based upon the 

convergence of bits in each coliunn of the population according to (5.1). 

A population size of 30, a crossover probability of 0.6 and a mutation probability of 0.033 

were used. 

The GA produced switching point information for each log file as shown in table 5.5. 
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Log Switching points Generalisation Switching points Generalisation Improvement 
name by rules Error by GA Error (%) 

1-4A (2.25, 30.42. 55,98) 5.8592 11,23.24.41,63,98) 5.8284 0.53 
1-4C (2,25,30.43,55.77) 3.6191 (2,23.24.44.54,75) 33560 7.27 
1-4D (2,25,29.42, 55,78) 4J485 (1,23.27.45.55,75) 4.0911 5.92 
1-4E (2,25,30.42. 56.74) 3.6968 (2,22.24.40.54,73) 3.4547 6.55 

10-7A (0.23. 27.42, 53.83) 6.4211 (0. 23.24.42,54,86) 5.9747 6.95 
11-9C (0.23, 28.40, 53,73) 4.1805 (1,22.23.40. 52,73) 3.9862 4.65 
11-9E (0.23. 27.44,55,75) 3.9915 (0, 23.25,47,57,76) 3.6030 9.73 
I4-7A (0.23,27.40,55.69) 4.2094 (0.23.25,44,56.71) 3.7629 10.61 
18-3B (2,25.30.43.56.73) 4J227 (1.24.25.40, 55,70) 4.2161 6.78 
18-3C (3, 26.30,43,54. 76) 5.0300 (4. 19. 22.28,48.71) 4.8933 2.72 
I8-3F (3. 26.30.32, 55. 75) 10.1308 (2.16.17,32,47.65) 9.4885 634 
24-7A (0,23.27.41,54.75) 4.7302 (0.23.24,44,55.76) 4.4519 5.88 
24-7C (0,23.27.41,53.70) 3.5542 (0.23,24.37,54.72) 3.2563 838 
24-7E (0,23.28.43.54.73) 4.4033 (0.24,25.45,55,74) 4.1555 5.63 
24-7F (0.24. 28,40, 53.74) 3.6247 (0,24,25,45,54.75) 3.2455 10.46 
24-7H (0,23. 27,48.61.71) 4J418 (0,23. 24.50.62. 72) 4.2691 6.00 
31-3 A (3.26,30.43,55,112) 73116 (1.24.25,44,90. I l l ) 6.8065 6.91 
31-3B (3. 26, 30,44. 56, 89) 5.2991 (1,24, 26.38,56.88) 4.9423 6.73 
7-4D (3, 26. 30,42.56. 75) 3.2454 (2,23, 26.27, 55.72) 3.0505 6.01 
8-4A 10, 23, 27,41.53.84) 6.8445 (0,23,24.41.55,86) 6.4513 5.74 

Overall 99.5644 93.2838 6.31 

Table 5.5 The switching point information generated for each .log file in the training set 

Taking l-4cJog as an example, the startup information is 96 records in length. Since each 

solution string is a six parameter variable, the GA wil l have to search six dimensional space 

with a 96 unit axis in all dimensions. One way to view such space is to plot it on two three 

dimensional graphs, although this is unsatisfactory in that for each graph space wi l l be fixed in 

the three dimensions not showa Figure 5.12 shows how. after 2000 generations, the GA has 

begun to cluster its solutions, demonstrating how it begins to converge on the optimum 

solution. On the graph it is interesting to note that one chromosome is far from the other 

clusters. This solution had a fitness of 8.4 compared to the next worst which was 23.6. and 

would therefore be unlikely to survive to subsequent generations. 

Once the switching point information is derived by the genetic algorithm, it is possible to train 

an MLP in the same manner as the simple MLP Switch (section 5.2). The results for this are 

shown in table 5.6. 

Number o f hidden PEs 

5 6 7 8 9 10 11 12 13 14 15 16 
39 0.042S7 0.03 B40 0.03S4I 0^831 0.04111 OiH251 0M2H4 0.04208 0JM2AI 0.04157 

58 0.06724 0.06719 0.06477 0.06591 0j067S3 0.06624 01)6931 0.06816 0j06690 0.06740 OJ069BI 0.07309 

77 0X17001 0.06SS6 0.07060 0il7098 0.07019 0.06872 0.07176 0.07442 0.07343 0.07673 0LO7866 aosois 

96 0.07446 0.07289 0.07132 0X)6994 0.06930 0.06846 0.072S7 0.07730 ojorm 0.07766 

73 
a. c 

Table 5.6 Training errors for the optimal MLP switch. 

A number of things are in evidence: the results are sup^or than for the simple M L P switch; 

the more time-delayed data is used in composing the input vector, the greats the training enor, 

and a number of different MLP architectures for an input vector of 39 units appears marginally 

better than the others. 
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As with the e3q)eriments for the simple MLP switch, the training time was extended to 

detomine the lowest l ikdy training error for a 39 input MLP with 6 and 10 hidden units. In 

addition, two hidden layer MLPs with an extra 6 and 10 hidden units in the second hiddai laya-

respectively were used to ascertain i f this led to an improvement in performance. The results 

are shown in figure 5.13. 

Figure 5.12 The space the GA must search in finding the optimal switching points for an individual datalog (in 
this case l-4c.log). 

Trdnlng Error OT Four Networks. 
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Figure 5.13 Training error for four different MLP architectures over an extended training period. 
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Here, after initially proving much poorer than the 3-laya- networks, the four layer networks can 

be seen to have much better training errors with the 39-6-6-1 MLP being the slightly superior 

of the two. For 18-3d.log. these leads to the switching point genoBtions by the MLP as 

demonsQ'ated in figure 5.14 (the desired output information was generated using a GA, 

although this information was not used in training the MLP). 

Optlmd MLP Switch 

0.6 

OA 

. 1 

1 
1 1 1 1 1 1 t 

ivLPOuiput Desired Outpur Trreshdd 

Figure 5.14 Graph demonstrating how the signal generated by the MLP tran^esses the threshold boundary. 

This led to a generalisation error of 34.8026 for the generalisation set. showing itself to be an 

improvement over the rule-based switching method. Figure 5.15 demonstrates the performance 

of the error switching mechanism graphically for the file 18-3d Jog. 

9 9 8 8 0 8 8 5 S S 

5 8 9 8 8 8 8 s s 

Figure 5.15 Graphs demonstrating the performance of the MLP Cascade using an MLP Switch trained by GA 
derived data with a threshold of 0.5. Switching points are {1,24,25. 38,54. 74}. 
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5.6. Proposed Method Of Training The MLP Cascade. 

When each MLP in the Cascade is originally trained, log records are used which were based 

upon the initial estimation of where the switching point locations were. As these positions are 

based upon explidt knowledge of the UAF control laws, they may be inaccurately placed with 

respect to the freezer dynamics. This means that some of the data records used to train each 

MLP in the Cascade should have been used to train anotho* MLP. As the switching points are 

optimised using the GA, it wil l be possible to retrain the MLP Cascade with more accurate 

ranges of operatioa 

Determine initia] snntchirtg 
poinia using opert 

Trsin the NfLP Cascade 
using current best 

switching point data. 

0 -
tstho 

Cflscnde sufficicnlly 

No No 

Use a genetic algorithm to | 
optimise the switching 1 

pointSL 1 

IVain the MLP | 
switching 1 

mechanism. 1 

the switch teaming 

This gives rise to the training 

mechanism described in 

figure 5.16. The initial 

switching points are derived 

using expert knowledge of the 

piecewise time-invariant 

system. This information is 

used to train a saies of MLPs 

which form the MLP 

Cascade. I f . following tiiis 

training, the M L P does not 

model the process sufficiently 

well, the MLP Cascade can 

be used to form the fimess 

function for a genetic 

algorithm to determine the 

optimal switching poim Figure 5.16 Training regime for the MLP Cascade and the MLP Switch. 

placements. The mformation that the GA provides can tiien be used to (a) train a further MLP 

network to recognise the switching points online, and (b) retrain tite MLP Cascade to respond 

more accurately. 

By cyding through this procedure, it should be possible to gradually reduce the model 

mismatch of the MLP Cascade, thus making the residual signal more pronounced in the 

presence of a fault. In addition, by training the MLP Cascade and the MLP Switch to in 

separate procedures, the problem of one's error compounding the other can be circumvented. 
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5.7. Summary. 

The purpose of this chapter has been to demonstrate a number of differem mechanisms for 

switching between each MLP in Uie MLP Cascade online and in real-time to provide a 

contimious input-ouq)ut mapping. By attempting to locate the switching points at their 

optimum position, model mismatch caused by the changing from one MLP to another should be 

reduced. 

Initially, a rule-based switching mechanism was employed with the rules being derived fix)m 

expert knowledge of the UAF. A problem here, however, was that the rules provided msp 

decision boundaries to determine when a switching point had been reached. 

As the initial composition of the rules governing when stage changes occurred indicated the 

botmdary between one stage and the next was fiizzy. an MLP was trained to attempt to 

recognise the switching points. Although successfiil to a degree, by training titie M L P using the 

information provided by the rules, any errors in positioning r^resented by the rules would be 

learnt by titie MLP. Methods were then presented which did not rely so much upon the rules. 

The first of these was a mechanism by which a change in stage would be signalled i f the 

residual error between the MLP Cascade and the UAF passed a predetermined threshold. 

However a problem with this method is that the switching points would never be in their 

optimum positions, always following them. 

A method of training an MLP to recognise optimal switching points was attempted using a 

system of moving the switching points during Paining. This failed to provide any usefid 

results, however, and a global optimisation technique - the genetic algorithm - was employed as 

a separate offline procedure to determme the optimum switching points prior to the training of 

the MLP Switch. 

This final method proved the most successful and was adopted as pan of the overall training 

method for the MLP Cascade, details of which were presented. 

This - and the previous - chapter have detailed a novel approach to modelling a class of 

dynamic system that can be described as being piecewise time-invariam in operation, and 

provides an original contribution to the body of knowledge a h ^ y available on modelling 

dynamic systems using MLP networks. Although the Unilever Automated Freezer has been 

used to demonstrate the technique, the mechanism has been developed to be genaic for all such 

processes in this class, relying upon only explicit knowledge of the system to determine initial 

switching point informatioa As inaccuracies in this data will be reduced during the training 

method desaibed in section 5.6.. this knowledge need only be rudimoitary. 
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Following the construction of the MLP Cascade with optimal MLP Switch, the mismatch 

between the model and the UAF is suffidemly reduced to allow the residual signal in the 

presence of failures to be used to train a fault isolation module based upon neural computing 

techniques. This module is described in the next chapter. 
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Chapter 6. 

Failure Detection Using MLP\ 
Networks, 

Prior chapters have been involved primarily wiUi a system identification problem, namely 

providing an as accurate as possible dynamic model of the Unilevo- Automated Freeze-. 

Ultimately, the purpose of the model - when established - has bcea for use in a model-based 

fault detection architecture for the rapid and accurate determination of fault conditions on the 

UAF. Naturally, a precursor to the success of such a system is the accuracy of the model - and 

to this end Cbapto^ 4 and 5 have dealt exclusively with attempting to reduce model mismatch 

to as low as possible - die rationale being the more accurate the model, the more the residual 

signal wi l l reflea fault conditions should they exist and not model mismatch. 

The purpose of this chapter is to demonstrate how the residual signals generated by the three 

candidate faults introduced in Chapter 3 can be isolated using a series of MLPs trained to 

recognise features within the signals. 

Initially, a survey of how artificial neural networks have been used for fault detection 

previously wi l l be presented togetho* with comments upon how this research diSers from, or 

advances, the techniques developed. The three candidate faults wil l be reviewed, with 

particulars of how tiiey affea the MLP Cascade and tiie residuals between it and the UAF. 

Finally, details of how a sales of MLPs were trained to recognise features within the fault 

signals wi l l be presented, and the fmal form of the neural network based FDI system wil l be 

given. 

6.h An Overview Of Fault Detection Systems Using ANNs. 

In the introduction to [5]. Paul Werbos describes FDI systems as "... the major useful 

engineering apphcation of neural networks at the present time". Subsequent work by a mimba" 

of research^ has led to the successful development of FDI systems for severdl applications. 
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Typically the multilayer percq)tron is used as the basis for such systems as in [6]. with notable 

exceptions being [1] which uses a series of Kohonen Self Organising Feature Maps [10] to 

detea faults as deviations firom die norm, [4] where an Increased Functionality Network* is 

used to detect five faults in a chemical tank system, [19] which presents a hardware 

in[q)lemented FDI system, and [21] where a series of hierarchical ANNs are used to divide 

complex patterns into sttialler subsets for classificatioa 

Chemical tank systems are often used as example nonlinear systems to demonstrate the 

artificial neural networks ability to successfully cope with several issues relating to FDI 

systems. In [4], the ability of the A N N to coiiectly classify faults occurring simultaneously 

together with a severity level is studied, whilst [7 and 16] attempts to identify indpient faults in 

the presence of sensor noise. Sensor faults are studied in [2] where an MLP is used in 

conjunction with a more traditional State Veaor Estimator and [12] where the fault diagnostic 

and control components of a multiparameter controller [14] are replaced by an A N N . 

Until recendy, the majority of A N N based FDI systems have rehed upon the monitored process 

achieving steady-state [20 and 22] before fault detection could be attempted, owing to the 

parameter patterns not always being unique during transients, or collecting time-series data 

during opea-ation and presenting it to an MLP for FDI offline [8 and 15]. Two systems which 

attempt to overcome this use several fault models based upon MLPs [18] and an M L P model 

of the normal process operation [17] with an additional MLP trained to classify residual 

differences between the model and the dynamic systent 

In addition to dbemical systems, ANNs have been used to deiea faults in aircraft control 

systems [13]. electronic circuit boards faults [9] and rocket engine diagnostics [3]. 

As this research is primarily concerned with the online detection of faidts on a piece of 

industrial machinery in real-time during the dynamic startup of the process, a model-based 

approach has been adopted which is closo* to [17] than [18] as it uses a dynamic model of the 

system operating imder normal operating conditions as opposed to several dynamic models of 

fault conditions. However, whereas a time-invariant three tank system is modelled in [18], the 

process used here is a time-varying mechanical process which necessitates a bank of MLPs 

used in conjunction with a sophisticated switching mechanism to provide a continuous input-

ouxpui mapping for the fault classifier networks. 

'Essentially an MLP widi several functions (e.g. sine, cosme. square root etc.) of each input being 

calculated by the input layer to reduce die necessity of the MLP needing to approximate these 

functions itself. 
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6.2. The Three Candidate Faults. 

Chapto- 3 introduced three candidate faults, namdy: a barrel pressure transducer fault, a 

camfiex valve fault, and a liquid ammonia hand valve fault. This section describes how each 

fault manifests itself within the output signals of the UAF. and how the MLP Cascade responds 

to each fault 

6.2.1. ManiFestations In The Output Signals. 

6.2.1.1. Barrel Pressure Transducer Fault 

This fault is initially registo^ed by a slight (cO.3 bar) offset in the barrel pressure, although this 

vanishes once the barrel pressure is controlled to 4 bar. However, this control causes other 

discrepancies, namely a slower buildup of motorload and once the UAF has reached steady 

state, a lower extrusion (ice-cream) tempo-ature and a lower ammonia evaporation pressure, as 

shown in figure 6.1. 

6.2.1.2. Camtlex Valve Disconnected. 

The freezer wil l operate normally imtil stage four of the startup procedure, where the ammonia 

evaporation pressure needs to be reduced to below IVi bar. This is usually achieved by 

opening the camfiex - now disconnected - so the evaporation pressure wil l ronain constant, or 

be seen to rise slightly as opposed to reduce. Subsequent stages wil l not be reached, meaning 

the barrel pressure wi l l not be controlled at 4 bar. the extrusion temperature wUI not reduce, 

and the motorload wi l l not increase. Tliese effects are shown in figure 6.2. 

6.2.1.3. Liquid Ammonia Hand Valve Closed. 

The initial rise in ammonia evaporation pressure wil l not occur due to the valve allowing liquid 

ammonia into the UAF being closed. Once stage four of the startup procedure is reached -

requiring the ammonia evaporation pressure to be lowered - it will be complied quickly as the 

reading at the pressure sensor wil l already be low. However stage five wi l l not be complied as 

the lack of anunonia in the system wil l prevoit refrigeration from occurring meaning the 

extrusion tempoature will not reduce and the motorload wil l not reach its set point As the 

freezo" does not enter steady state operation, the barrel pressure wi l l not be controlled at 4 bar. 

TTiese effects are shown in figure 6.3. 
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Figure 6.1 The extent to which the UAF suffering from a barrel pressure 
transducer fault differs from normal operation. 
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6.2.2. Calculating The Residuals. 

The principle of constructing a model-based FDI system is that the difference between the 
actual outputs and the model ouq)uts can be used to form a residual, or difference, signal 
Undo* normal operating conditions - if the model is accurate - the residual signal should be 
zero. Any deviation fipom this can therefore be attributed to noise perturbations, model 
mismatch or process faults. 

The first of these is unavoidable in any system - a typical cause being a small amount of 
electronic feedback in the sensor - and in the case of the UAF. the distribution of the noise 
component of the output is negligible. Chapters 4 and 5 dealt with attempting to construct a 
model in which mismatch was reduced to a low level Hie remainder of this chapt^ is involved 
with determining what characteristics of the residual signal is typical of a particular fault, and 
how best these can be detected and isolated. 

As in the original schematic shown in figure 1.9. the simplest form of residual signal 
calculation is by a simple difference between the two signals. Figures 6.4. 6.5. 6.6 and 6.7. 
demonstrate this difference for the three candidate faults. 

It is evident that the liquid ammonia hand valve fault causes the greatest deviation in residual 
signal, with barrel pressure, ammonia evaporation pressure and motorload exhibiting abnormal 
behaviour. In contrast, the camflex valve fault only causes notable deviation from the norm in 
the reading for the ammonia evaporation pressure, and this as a positive bias whereas the liquid 
ammonia hand valve fault caused a negative bias. As these two faults are considered to be 
similar from the point of view of the human operator - both dealing with the flow of ammonia 
through the UAF - it is useful for accurate isolation purposes that the residuals each produce 
are distinct from one another. 

Of greater concern is the barrel pressure transducer fault. Although the residual produced here 
is distinct from the oOxer two faults it is similar in charaaeristics to the residual produced by 
normal operation, which will ultimately render this fault the most difficult to detect Indeed, 
only the offset from zero for the initial 29 sample points of opo-ation marks this run as bdng 
abnormal. 

Sev^al additional features of the residuals which are likely to be the results of model mismatch 

are: 

The large spike registered by both the barrel pressure and ice cream temperature 
sensors of the normal and barrel pressure transduco" fault. This occurs at the time 
the ice cream pumps are started and both the barrel pressure and ice cream 
tempCTature drop sharply. The model response is one time-step behind. 
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Figure 6.4 Graphs demonstrating the residual signals calculated by simple difference for normal freezer 
operation. 

Barrel Pressure Transducer Fault 
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Figure 6.5 Graphs demonstrating the residual signals calculated by simple difference for the barrel pressure 
fransducer fault 

132 



Camflex Valve Disconnected 
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Figure 6.6 Graphs demonstrating the residual signals calculated by simple difference for the disconnected 
camflex valve. 

Liquid NH3 Hand Valve Closed 
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Figure 6.7 Graphs demonstrating the residual signals calculated by simple difference for the closed liquid 
ammonia hand valve. 
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Figure 6.8 Graphs demonstrating the residual signals calculated by moving average for normal freezer operation. 

Barrel Pressure Transducer Fault 

Figure 6.9 Graphs demonstrating the residual signals calculated by moving average for the barrel pressure 
transducer fault 
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Camflex Valve Disconnected 
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Figure 6.10 Graphs demonstrating the residual signals calculated by moving average for the disconnected 
camflex valve. 

Liquid NH3 Hand Valve Closed 
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Figure 6.11 Graphs demonstrating the residual signals calculated by moving average for the closed liquid 
ammonia hand valve. 
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• The negative offset that occurs in the motorload residual for all faults and the normal 
rua As the actual motorload spikes twice as the dash^ be^ns to rotate during stage 
2 of startup, the model moiorload spike twice. However, the duration of the actual 
motorload spikes are less than the sampling rate of the sensor. This results in the 
sensor registering the motorload as it is increasing, at its maximum value, as it is 
decreasing or - in the worst case - missing the spike altogether. It is therefore 
difficult for the model motorload to accurately reflea this feature. 

A furthCT feature of the graphs worth mentioning is the lack of ice aeam tempo^ture readings 
for the camflex and the liquid ammonia hand valve faults. This is due to stage 6, where the 
pumps are started and ice cream is produced, never being reached. Until ice cream is 
produced, the extrusion temperature is not used in the model predictions. 

Where model mismatch spikes such as those above are evident in the residuals, it is desirable to 
remove - or at least reduce - them whilst retaining the residual offsets which characterise the 
faults. A conunon way to achieve this is to average the residuals over sevo^ readings, 
creating a moving average across the time-series as it progresses. The results of averaging 
over five readings are demonstrated in figures 6.8. 6.9. 6.10 and 6.11. Hoe, the model 
mismatch spikes are reduced, whilst die characteristic offsets of the faults have their leading 
edges damped. These charaaoistics are still in evidence however, which means it should be 
possible to attempt to classify them using a furtho" set of MLPs. 

6.3. Training A Bank Of MLPs To Classify The Faults. 

In [17], three simulated faults are classified by providing an MLP with the residual vector 
generated as the simple differaice between the states of a three tank system and an MLP 
trained as a dynamic model of the system. The fault classification MLP has three output lines 
(one for each fault) and is trained to recognise the cbaract^stics of the three faults in the 
residual by providing a high signal on one of its outputs while the other two stay low. Whilst it 
would be possible to emulate this method for this research, it suffers from one serious 
drawback. As diis research is intended as a pilot study, only three of the total possible faults 
which could occur on the UAF has been selected for evaluating the method. If a three ou^ut 
classifier MLP was constructed to isolate the current fault information and subsequent work 
demanded the introduction of several different faults to the system, a new MLP would need to 
be constructed and trained to classify the existing faults and the fresh ones. This would occur 
each time a fresh faidt was identified. Even if every known fault was categorised and operating 
records gathoed a priori to the classifia MLP being trained, there remains the danger that a 
hitherto unknown fault will be recognised, and again a fresh MLP constructed and trained to 
recognise this fault in addition to the orheis. 
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The approach adopted here is therefore incrementaL Each candidate fault will have a specific 
MLP trained to recognise it, and trained to recognise no other fault. Each MLP will have a 
single output indicating either the fault is present or it is not, dq)ending upon whether the 
output value has transgressed a predetermined threshold. TTiis provides two main advantages: 

1. As a fresh fault is identified, a single MLP needs to be trained to recognise this fault 
and the classifier added to the bank of orhexs without the need to retrain the others. 

2. A diff^ent input vector can be constmaed for each classifier MLP, providing each 
with the best information for detecting its particular fault 

In addition, each of the mdividual MLPs is likely to be smallo- than one trained to recognise all 
three faults, as it will need only aiough hidden units to recognise one pattern as opposed to 
three. However the three separate MLPs taken together are equally likely to be larger than the 
single MLP classifier. 

6.3.1. Method Of Training. 

When performing classification tasks using artificial neural networks, it is important to 
construct the training set so an equal numba of the different categories the network is required 
to classify are available [ U ] . For each of the fault isolation filters, there are two possible 
categories: either the fault is evident (requiring an output close to 1), or the fault is not evident 
(requiring an output close to 0). In order to train each filter, therefore, eighteen iog files were 
chosen; nine of which reflect the fault, nine of which do not. For these experiments where 
details of three mdividual faults are known, should a particular fault not be present in die 
system one of two situations could have arisen: eitha the run is normal; or one of the other 
faults is in evidence (for example, if the freezer is not suffering a camflex valve fault, then 
either the run is normal, th^e is a barrel pressure transducer fault, or there is a liquid ammonia 
hand valve fault). For this reason, the nine none-fault cases in the training set woe split into 
three groups of three, reflecting three normal runs and three each of the other two faults as 
shown in figure 6.12. 

Each file in the training set is passed through the MLP Cascade in turn to generate the residual 
signal calculated as a moving average difî erence. The order of the training set is such that a 
fault log always follows a non-fault log and vice-v&sa. Components of the residual signal are 
used to form the input veaor to the filter being trained, and a value of either 0.9 or 0.1 is 
backpropagated through the network for a fault log and a non-fault log respectively. 
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IVainnig Sets For Faalt Fitters 
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Figure 6.12 Typical division of .log files into training sets for the fault isolation filters 

During trainings the instantaneous error for presentation k between the output of the MLP (o) 
and the desired output (d) is calculated as 

^(tf<*>-o"*")' (6.1) 

i.e. the Euclidean distance. This value is summed for each sample in the complete training set 
(/2) so that the error for the mth epoch is 

(6.2) 

After one epoch, this value is divided by the number of log files in the set (Ir^e/I) to give the 

training error (7) for epoch m. 

\Tset 
(6.3) 

One training epoch implies a complete presentation of the training set. Initially training was 
conducted for a total of 1000 epochs using a number of MLPs with a single hidden layer, the 
size of the hidden layer varying. As this failed to provide any useful results, further 
experiments were conducted using networks with two hidden layers, the numbo* of processing 
elements in each hidden layer vaiying between five and fifteen. 

For each fault filto", the input vector was comprised of the following: 

Barrel Pressure Transducer Fault Filter. 

(5 inputs): Barrel Pressure Time delay: 0 
Barrel Pressure Time delay: 1 
Barrel Pressure Time delay: 2 
Ammonia Evaporation Pressure Time delay: 0 
Motorload Time delay: 0 
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Camflex Valve Disconnected Fault Filter 

(5 inputs): Barrel Pressure Time delay: 0 
Ammonia Evaporation Pressure Time delay: 0 
Anunonia Evaporation Pressiue Tmie delay: 1 
Anunonia Evaporation Pressure Tmie delay: 2 
Motorload Time delay: 0 

Liquid Ammonia Hand Valve Fault Filter. 

(9 inputs): Barrel Pressure Time delay: 0 
Barrel Pressure Time delay: 1 
Barrel Pressure Time delay: 2 
Ammonia Evaporation Pressure Time delay: 0 
Ammonia Evaporation Pressure Time delay: 1 
Ammonia Evaporation Pressure Time delay: 2 
Motorload Time delay: 0 
Motorload Time delay: 1 
Motorload Time delay: 2 

The rationale behind these choices is that the most prominent residual deviation has a number 
of time-delayed representations, whilst the others have just the current rq)resentation. For 
example, in order to signal a barrel pressure transducer fault, the barrel pressure residual will 
need to have been offset for three samples, whilst the ammonia evaporation pressure and 
motorload residuals are low. For each of the three candidate faults, the ice cream temperature 
is deemed unimportant for the isolation of the faults as it is not accurately measured whilst 
each fault is manifest in the residual signals. 

63.2. Experimental Results. 

The resultant training errors for these experiments are as shown in table 6.1: 

5 6 7 8 9 10 11 12 13 14 15 
Barrel Pressnre 
IVansdnccr Panit 14.7427 14.4029 14.2633 14.1062 13.B957 13.8565 13.7992 13.6558 133674 13.8436 13.9443 

Cam flex Valve 
DisconnectEd 12.5302 12.4144 12.3313 12.5401 12.7867 1Z82I4 12.8664 12.8938 133787 13.8965 14.0045 

Liquid NH3 Hand 
Valve Clnsed 1IJ469 10J922 103248 13.6074 10.7830 10.8923 11.0070 13.4440 13.4563 133138 

Table 6.1 The training errors for each of the fault classifier MLPs for a number of hidden layer compositions. 

The number of input units are constam for each filter (as described above) and the same 
mmiber of hidden units existed in each of the two hidden layers, meaning the shaded error of 
the barrel pressure transducer fault was achieved with a 5-13-13-1 network. The shaded area 
represents the lowest training m^or for each filter. 

The greatest training errors belong to the barrel pressure filter which also requires the greatest 
numbo- of processing elements in the hidden layers. 
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For the lowest error networks, subsequent experiments were conducted to see if the training 
error could be improved by varying the number of units in one of the hidden lay^s around the 
current number. This meant, for example with the camflex valve filto-, experiments using 5-7-
6-1. 5-7-8-1. 5-6-7-1. 5-6-8-1. 5-8-6-1, and 5-8-7-1 networks were used, although no 
significant improvement was in evidence. 

Figures 6.13. 6.14, 6.15 and 6.16 demonstrate how the filters respond to a normal run and each 
of the three faults. 
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Figure 6.13 Example of how the three filters respond to a normal operating run. 

140 



Residuds (Bcvrel Pressure Fault) 

0.25 n 

•.OS 1 

BoTd Prssi/e 
loe Crecm T enjiaaue 
NH3 Evcp Press ue 
Motakxxj 

Sonple* 

fcult SIgnds (Daiel PressureFoutt) 

Bore* PressueFcilT 

— Cortto VdveFoit 
• • LlcMtlNH3FaJT 

Thieshcld 

sonpte* 

Figure 6.14 Example of how the three filters respond to a barrel pressure transducer fault 
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Figure 6.15 Example of how the three filters respond to a camflex valve disconnection fault 
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Figure 6,16 Example of how the three filters respond to a liquid ammonia hand valve fault 

A numbo- of features are in evidence. Firsdy • during a normal run - although no false alarms 
are reported, the Uquid ammonia hand valve fdter almost signals a fault. More serious is the 
barrel pressure transduca* filter. Although it correctly signals a fault in figure 6.14, it also 
signals a false alarm in figure 6.15. demonstrating that it is responding purely to an offset (be it 
positive or negative) in the barrel pressure residual with no regard to the oth^ signals. In 
addition, the camfiex filto- signal fails to transgress the threshold during a camflex valve fault 
i.e. a miss. This could be rectified by lowering the threshold, but the barrel pressure transducer 
fault would still be signalled. 

By smdying the residual signals, one can see that the fault is more prevalent during particular 

phases of the UAFs operatioa This information can be utilised into the faidt detection module 
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by inn-oducing templates i.e. windows on to the residual signal which indicate the best poiods 
of time to isolate the fault 

6.4. Introducing Templates In Conjunction With The 
MLPs. 

The previous section demonstrated how training the fault detection filters upon the entire 
residual signal generated during a run resulted in misses and false alarms. This situation could 
be rectified by introducing maximum l i k ^ o o d windows - or templates - onto the residual 
signals. In this way, each fdter would have an associated template indicating when to apply the 
filter to isolate the fault 

6A1. Principle OF Operation. 

By observing the residual signals generated by the three candidate faults, it is evident that the 
barrel pressure transducer fault is only evidon during the fust part of a freezer run. whilst the 
other two faults are manifest during the latter part of the startup. It is therefore possible to 
construa templates in the following ranges: 

Barrel Pressure Transducer Fault 

Camflex Valve Disconnected 

Liquid NH3 Hand Valve Closed 

Range: 

Range: 

Range: 

0 

50 

40 

50 

End of run 

End of run. 

This allows views on to the data as described in figure 6.17 
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Figure 6.17 Demonstration of the templates view of the residual data. N.B. Heights only vary to allow the 
different templates to be seen. 
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The filter MLPs can then be trained as before but with reduced access to the residual data, 
ensuring that samples which do not help the fault isolation process are not presented the filter. 

6.4.2. Experimental Results. 

The resultant training errors for these experiments are shown in table 6.2: 

Nnmbcr of hidden PEa In the two bidden layers 

5 6 7 8 9 10 u 12 13 14 15 
Barrel Prcssnre 
TVansdDCcr Panlt 12.1600 8.9204 11.9624 8.8649 8.8482 8.8322 8J364 8.8157 8.8093 ssoso 11.6807 

CfUDflex Valve 
Disconnected 0JS3I 0JS88 0.4416 0J840 03956 03961 0 3640 03973 0.4020 0.4059 0.4440 

Uqold NH3 Hand 
Va>?e Closed 2.6914 X61S8 3.2426 3.2633 2.5391 3.4249 3.2109 3.2276 33424 3.4734 3.6033 

Table 62 The training errors for each of the fault classifier MLPs for a number of hidden layer compositions. 

Once again, the number of input units was constant, and the shaded area represents the lowest 
training error which could be achieved. Subsequent experiments varying the numbers of 
hidden units around these low values failed to provide improved performance. 

Figures 6.18, 6.19, 6.20 and 6.21 demonstrate graphically how the fault isolation filters 
respond to normal opo-ation and each of the three candidate faults. As can be seen, the danger 
of the false alarm during a normal run has been reduced, the barrel pressure transducer filter no 
longer gives a false alarm during a camflex valve fault, and the camflex valve Tdter correctly 
identifies this fault 

By removing the extraneous data from the training set, the fault isolation capabilities of the 
filter networks is improved. It has enabled die fdters to more correcdy identify features wiUiin 
the residual signal. For example, the barrel pressure transduce- is no longer acting m^ely as a 
threshold deteaor on the barrel pressure residual as was originally thought to be the case. This 
can be obs^ed in the barrel pressure transduce fdter transgressing the threshold during the 
barrel pressure fault, but not doing so during the liquid NH3 hand valve fault where a similar 
offset is in evidence 

A discussion relating to the effectiveness of the FDI capabilities of the system, and how it 
compares with the current fault detection capabilities of the UAF is provided in the followmg 
chapter. 
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Figure 6.18 Example of how the three filters respond to a normal operating run. 
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Figure 6.19 Example of how the three filters respond to a barrel pressure transducer fault 
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Figure 6^0 Example of how the three filters respond to a cam flex valve disconnection fault 
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Figure 6^1 Example of how the three filters respond to a liquid ammonia hand valve fault 

6.5. The Model*Based FDI System. 

A fault detection and isolation system for the Unileva" Automated Freezer has now been 
developed using neural computing techniques. It can correcdy detect and isolate three types of 
fault: one of which is relatively slight, being a small offset in the barrel pressure transducer; the 
other two being similar to one another, namely a fault in two of the valves which control the 
flow of ammonia through the freeze. 
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The developed system can be divided into two subsystems: a fault detection module and a fault 
isolation module (figure 6.22). 

Umlevcr Atxtsmated 
Mbinow 

Fault Detection 
Module 

H Stage 1 

8): 
Model MLP 

AddUooalUAPvvUblal 

N Mcrvin 

HiitDricilOMiS 

Ihe MLP Cascade 

Fault Isolauon 
Module 
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Transducer Fault 

Fdter 

Liquid Ammoma 
Hand \^lve Fault 

Fdter 

rnrormilion Camftcx Valve 
Fanh Filter 

l.BKltiPMMB 

FuASisnl FauftSigiKl Fault Sigml 

Figure 6J2 A schematic of a model-based FDI system based upon neural computing techniques capable of 
detecting faults within the Unilever Automated Freezer. 

The fault detection module operates by providing a dynamic model of the UAF undo- normal 

opCTaiing conditions. When a fault occurs, it is likdy to be evidoit in the diffarace between 

the modds outputs and the freezer outputs (the residual signal). The model is implemented by 

using a sequence of cascaded MLPs (as detailed in Chapter 4) switched between by a furtho-

MLP (as detailed in Chapter 5) to provide a continuous input-output mapping. 
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The fault isolation module comprises of a bank of MLPs trained to recognise charaaeristics in 
the residual signal together with a template which details when each fault is likely to be most in 
evidoice. An individual MLP is used to isolate one particular fault, making the system 
incremental in that further faults can be coped with by adding trained MLPs and template 
information to the system without the need to retrain the existing MLPs. 

Each fault detection TilteT has a single output indicating whether a fault has occurred (typically 
a value above the 0.5 threshold) or not (typically a value below this threshold). 

6.6, Summary. 

The purpose of this chapter has been to demonstrate how the UAF model is accurate enough to 
enable a bank of MLPs to recognise characteristics in the residual signals as being those of 
particular faults. 

A survey of current FDI systems using artificial neural networks was presented with details of 
how this investigation differs from these and provides an origmal contribution to knowledge. 
This contribution is deemed to be: 

• Current systems tend to rely upon detecting faults by recognising characteristics 
during steady-state opa-ation, a situation analogous to classical non-model based 
systems such as frequency analysis where signals from the plant are transformed 
to reveal (hopefully) distinctive signatures. The ANN in these systems detamme 
such characteristics internally. 

• This research is concerned with the highly nonlinear transient dynamics evidm in 
the startup re^me of an industrial process, which ideally requires a dynamic modd 
to detea irregularities. Where current systems use such techniques, they have 
relied upon demonstrating a solution upon chemical systems whose dynamics are 
time-invariant The system smdied m this investigation is typical of many large 
mechanical plants in that it has a phased startup which alters the und^ying 
dynamics of the process in time, i.e. a time-varying system. A novel approach to 
modelling such a system has therefore been developed. 

Following the survey, the three candidate faults proposed for detection and isolation in Chapter 

3 w ^ reviewed and details of how they manifested themsdves in the output signals of the 

model shown. Methods for calculating the residuals were then discussed followed by the initial 

training of a bank of MLP filters to recognise the characteristics of individual faults. It was 

decided to use a bank of filters rather than a single MLP (as in o\hsi reported research), as this 

left the system open to further development without the need to retrain the isolation network. 
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Ehie to the presence of false alarms and misses in this bank of filters, details of how maximum 
likelihood templates were used to enable the filters to concentrate upon the residuals when their 
faults were most in evidence. 

Although such a system can correcdy isolate the three candidate faults, it raises certain issues 
such as: 

• How do robustness consid^ations affect fault detection in a model-based systan? 
How robust is the model? 

• How effective are the FDI capabilities of the system? How do they compare with 
the currently available system? 

• How accurate are the FDI capabilities of the system? In a number of test cases, 
how many false alarms and misses are there? 

• An important consideration of this investigation is that the developed system 
should be able to detect and isolate faults online and in real-time to reduce the 
amount of downtime of the machinery on the factory floor to a minimum, or if 
possible reduce it altogeth^. The performance of the system working online 
therefore needs to be addressed to det^mine wh^h^ it > ^ be as effective during 
real operation as in simulatioa 

These considerations, amongst others, are addressed in the following chapter together with 
thoughts on how the scope of the investigation can be extended both in toms of supplementing 
the current work and opening fresh avenues of research. 
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Chapter 7. 

Discussion & Future Work. 

This thesis has detailed the investigation into the development of a fault detection and isolation 
system for a dynamic industrial process using artificial neural network techniques. Ultimately, 
the design has been founded on a model based approach which has been inspired, in the main, 
because traditional model based methods are able to respond to faults quicker dian their non-
model based coimterparts. TypicaUy, non-model based solutions rely upon signals fit>m the 
process differing from some predo^mined norm which can often take a p ^ o d of time to 
become prominent Model based solutions, on the other hand, by utilising analytical 
redundancy in the form of a dynamic model of the system, have the capacity to detect faults as 
soon as they manifest themselves in the signals. 

With the industrial process nominated as a test-bed for this research (the Unilever Automated 
Freezer), fast and accurate fault detection is essential Critical faults - which can result in the 
automatic shutdown of the freezer - can often be cured by the intervention of the human 
opo^tor before shutdown occurs, tho^by saving upon the costly downtime of the machinery. 
In order for this to occiu*. however, the operator needs to be alened to - and reliably informed 
as to the nature of - the fault before the critical point is reached. In addition, sofr failures, such 
as slight offsets in sensor measurements or slight incremental drift in the readings, which can 
ofren be missed by conventional fault detection techniques, can cause a reduction in the quality 
of the produce, thereby proving costly as well. This research has concentrated on detecting and 
isolating both of these types of fault by developing a solution which - whilst being tested on the 
UAF - is essentially genmc and can be easily ported to otho- pieces of machinery which 
possess the same type of time-varying phased startup. 

This investigation has been interested in isolating faults during startup as - following a p^od 
of idle standing time - the machinery components are prone to breaking dowa Once these 
components have reached steady-state operation, the danger of them malfunctioning is reduced. 
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Concentrating on the startup regime allows the detection of faults before the production of die 
commodity begins thus saving costs in raw materials. As startup is typically the most transient 
and nonlinear period of a process' life cycle it also proves the most difficult period to detect 
faults withia In additioa starting a process such as the UAF requires the greatest degree of 
human mteraction during its operation. Within this period there exists the greatest danger of 
incorrea set point information being entered or necessary valves not being opened. Agaia this 
kind of problem reduces as steady-state conditions are achieved. 

This chapter aims to review the derived FDI solution, discussing its strengths and weaknesses 
and demonstrating how it has met the objectives identified at the outset of the research. 

7.1. The Model. 

7.1.1. Project Objectives. 

With respea to the model, the project objectives were that litde or no explicit knowledge of the 
process would be assumed, that no additional hardware would be required to build the model, 
and that the model should be able to adapt itself to the particular process it was identifying. 

7.1.1.1. An Explicit Quantitative Freezer Model. 

A large bottleneck in the development of model-based systems is the production of the model 
Ck)nventional systems rdy upon the model being explicitly derived: a process which can often 
involve detailed study of the system, interaction between its components and - in the case of 
chemical systems - knowledge of reactions which take place within the systeia This is often 
time-consuming and ultimatdy relies upon a number of assiunptions and estimations being 
made about the process which can lead to model mismatch. 

By utilising a self-adjusting algorithm such as a neural network, the need for explicit 
knowledge about the observed system diminishes as process dynamics can be learnt by the 
neural network. This has been demonstrated using simple mathematical processes in Chapto-
2, and a real industrial process in Chapter 4. For simple time-invariant dynamic systems, it 
was shown that given sufficient input information and hidden unit space a multilayo* 
perceptron is able to learn process dynamics during a learning cyde. For more complex time-
varying systems, it is necessary to incorporate a degree of process knowledge into the design of 
the model Howevo* this knowledge need only be a rudimentary awareness as to the nature of 
the time-variance; be it smooth or piecewise. For the formo- it may be more sensible to 
incorporate an explidt representation of time in order to transform the MLP into a time-
varying system, for the latto* a series of cascaded MLPs may be more suitable. The MLP 
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Cascade was adopted for this research, although this necessitated the inclusion of more explicit 

process knowledge, namely the infonnation which governed when to switch from one MLP in 

the cascade to the next. By utiUsing a device such as the genetic algorithm to optunise this 

switching mechanism based upon empirical knowledge of the system, the role of this explicit 

information can be reduced. 

7.1.1.2, Further Sensory Inrormation. 

For this research, it was important that the d^ved model did not rely upon additional sensory 

information which would require the installation of additional sensor equipment thereby 

increasing the cost of the solutioa It was therefore necessary to exclude such measurements as 

the ammonia liquid pressure and ammonia suction pressure which are measiu^ during pilot 

plant trials but not on the factory floor. 

Each MLP in the cascade relied only upon the ice-cream pump speed, the camflex position, the 
mix and air flows, the barrel pressure, the extrusion temperature, the ammonia evaporation 
pressure and the motorload. All of these parameters are routinely measured on the factory 
floor, as are the additional variables used as inputs for the switching MLP. 

It should be borne in mind, however, that although the current model is adequate for fault 

detection purposes at present, should the scope of the fault detection be expanded to include 

more fault conditions, the model may not be able to detect or isolate these faults should their 

symptoms not be present in the output signals. In such a case it may prove necessary to 

include further sensory information in the composition of the model in order to reflea these 

new faults. Additional sensory information - which could include visual and audio data - could 

only serve to enhance the model should it be pertinent to the dynamics of the system. 

7.1.1.3. Fine-Tuning Of The Model. 

In order to reduce the number of extraneous variables in the e3q)erimental set-up of this work, 
and allow die MLP access only to information relating to the UAF dynamics, certain 
parameters wCTe kept constant These included 

• The formulation of the product, 

• The adopted procedure of cleaning the UAF prior to a production nm, and 

• The physical UAF from which logged measurements were taken. 

I f the proposed solution were to be effective, it would be necessary to ascertain whetho* the 

model derived from the logged runs of one freezer would be adequate for a second freezer 

whose dynamics may vary slightly due to ext^al or i n t ^ a l considerations. An example of 
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external influences upon the system dynamics would be variations in air pressure should the 
pieces of equipment by geographically disparate, whereas internal influences may include 
physically different components of the fteezer operating slightly at variance witii one another. 
However - g i v ^ that the each piece of macJiinery is mostiy identical in composition - it is 
unlikely tilat the dynamics would prove to be wildly dissimilar from one machine to the next. 
In Uiis case it should be possible to produce a generic UAF model firom the logged 
measurements of one machine and port it to other UAFs and allow the MLP model a period of 
"fme-tuning" to the individual UAF it was identifying. 

Section 2.2.7 outlined how two MLP models could be used to handle the phenomenon of 
parameter variations within dynamic systems. A similar procedure could be adopted during die 
fine-tuning phase of the FDI systems life cycle. The generic model would be duplicated to 
allow the fu^t to r ^ a i n static and perform fault detection and isolation whilst the second was 
allowed some training time to adjust itself to the individual UAF. Once the new dynamics had 
been suffidendy learnt, the unchanged generic model could be discarded and the fine-tuned 
model used m the FDI system. 

7.1.2. Model EfTectiveness. 

An important consideration in any model-based conQx)l or FDI system relates to the quality of 
the model. Questions such as: how robust is it? Does it behave sensibly when exposed to 
uiunodelled phenomena? What are its characteristics in the presence of faults? In short, just 
how good a model is it? 

In answering these questions it is important to review the quality of the information which is 
used in constructing the model, and to highlight a fimdamental difference m the requirements of 
the model in a control system and in a fault detection system. 

Consider a dynamic system (System I) that can be desaibed by the state space equations (2.4 
and 2.5) with two internal states - x(l) and x(2). Tlie complete range that these two states can 
possibly be in will occupy a subset of the two dimensional space between these two 
parameters, which can be refared to as A. HowevCT, under normal operating conditions die 
two states will be resnicied to a further subset of this space, which can be refored to as A*. A 
second dynamic system (System II) will also have a normal operating region (B*) which is a 
subset of its complete operating range (B). These two systems are rq)resented diagramatically 
in figure 7.1. 
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x(2) \ 1 x(2) 

x(l) x(l) 
Figure 7.1 Representation of the space two systems occupy. A subset of the total space for each system (A' and 
B') represent normal operating conditions and are identical to one another. 

These two subsets (A and B') may be identical, i.e. under normal operating conditions, the 
dynamics of the two systems are indistinguishable from one another. 

If an attempt is made to model System I using an MLP network provided with only normal 
operating records, tiie MLP may perfectly rephcate A but this is no indication that it has 
coirectiy identified System 1. It may be that if the model were tested outside this narrow 
operating range it would be seen to more closely resemble System n. Indeed, if one considers 
that System I and II would be only two of a myriad of systems that could occupy the same 
region under normal operating conditions, it seems unUkely that the MLP model would - by 
chance - have identified the correct system. This research adopts precisely this procedure in 
training the model. 

In a control system such a method could legitimately be viewed as a weakness, as it is desirable 
that a the conu-oller behaves sensibly over die entire operating range of the system. Once die 
system begins to move beyond its normal bounds, it is the controller's function to compensate 
for any abnormalities in the system and anempt to bring the system back under control. 

However, in an FDI system this method can be argued to be a strength. Whilst, the system is 
behaving normally, it is desirable that the model be as accurate as possible. As a fault begins 
to manifest itself and move the system into its abnormal q)erating r ^ o n , the model is required 
to diverge from the systems behaviour. The greater tiiis divergence, the more sensitive will be 
the FDI system in detecting faults. Therefore, outside of the normal operating region it is 
advamageous that the MLP model represent a different system to that which has been modelled 
in order to allow fault detection to occur. In addition, as the MLP model itself represents a 
dynamic system, it is likely to respond similariy each time a particular fault is encountered, 
allowing fault isolation to be performed. 
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A second consideration which needs to be addressed is how effective is the model when 
compared to other (traditional) moddling techniques. Chapter 2 introduced two linear filtering 
techniques which have foimd widespread application in many engmeering disciplines - the finite 
and infinite impulse response fdto^. In order to allow a fair comparison to be made b^een 
the MLP Cascade developed in Chapters 4 and 5, cotain aspects of the cascade which are 
central to its effectiveness should - i f possible - be transferred to the linear technique. Such 
factors would be: 

• The use of historical output values in determining current output values. This would 
imply that the filter wotild be an infinite impulse response (IBR) filt^. 

• The use of several linked devices to allow the piecewise time-invariant nature of the 
UAF to be modelled over its complete startup cycle. 

• The use of expert knowledge m determining when to switch from one modelling device 
to the next. The MLP Cascade uses this information in constructing an initial set of 
moddling devices; further refinement is achieved by use of the Genetic Algorithm and 
a further Switching MLP. Such a procedure would be unavailable for the OR model. 

Comparison can thCTeforc be made between several linked infmite impulse response filters with 
a rule-based switching mechanism and the MLP Cascade. Several IIR fdters were construaed 
for each stage in the UAFs startup with the numbo* of time-delayed inputs and outputs 
inoeasing by one each time a fi^h filter was built. Adjusmients to the IIRs coefficients was 
achieved using a least-squares calculation as in section 2.5.2. As with the each MLP in die 
cascade, the following parameters were used in building the IIR fdter: 

Parameters for Filters 1 - 5. Inputs: Barrel Pressure Set Point 

Camflex Positioa 

Mix Flow. 

Air Row. 

Ice-cream Pump Speed. 

Inputs: Barrel Pressure Set Point 

Camflex Positioa 

Mix Flow. 

Air Row. 

Ice-cream Pump Speed. 

Outputs: Barrel Pressure. 

Ammonia Evaporation Pressure. 

Motorload. 

Additional parameters for Filter 6. Input: Ice-cream Temperature Set Point 

OuQ>ut: Ice-cream Temperature. 

The numbCT of historic input and output parameters was inaeased until six of each were bang 
used to configure the IIR - a number twice that needed to build an MLP in the cascade. Figure 
7.2 and 7.3 shows how a series of six OR fdters each with six time-delays on each of the UAF 
input and output channels is imable to accurately model the UAF. 
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Figure 72 Graphs demonstrating how a series of UR filters are unable to 
accurately model the UAF. (x-axis restricted). 
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Figure 73 Graphs demonstratuig how a series of lER filters are unable to 
accurately model the UAF. (x-axis unrestricted). 
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7.2. The Fault Isolation Filters. 

7.2.1. Project Objectives. 

With respea to the fault detection filters, the main project objectives were that records of 
currently known faults could be used to train a series of isolation filters whilst at the same time 
the system should be able to detea faults upon which it bad not been a priori aware of. 

7.2.1.1. Training The Filters. 

A large number of faults able to occur in any system can be identified and simulated a priori to 
the actual running of the system in a production capacity. The FDI system developed here is 
designed to take advantage of this knowledge by utilising the residual signals generated for 
each particular fault in the training of individual MLPs to recognise the fault. These residual 
signals are utilised in conjimction with additional knowledge as to when the fault is most 
evident in the signals to allow the MLP to accurately isolate the fault 

By u-aining an individual MLP to recognise an individual fault, the system is incremental in 
nature. This means that the FDI system can be put into use with a limited number of isolation 
filters - perhaps for the most serious or regularly occurring faults - with additional ones being 
added subsequently without the need, in the main, for retraining the others. 

Furthermore, it should be possible to train the isolation fdters to be as detailed as necessary. 
For example, two of the candidate faults for this research are associated with the flow of 
ammonia through the UAF. It may be that for groupings of faults such as these, a single filter 
wiU suffice - in this case indicating a problem has been encounto^ with the ammonia flow - or 
individual filters can be built to provide more detailed information - in this case that liquid 
anmionia hand valve is closed or that the camflex valve is disconneaed. 

7.2.1.2. Previously Unencountered Faults. 

The primary purpose of the model is to dififCTentiate between normal and abnormal process 
operation, and as such can be considered a first pass filter in detecting faults. The isolation 
filters, on the oth^ hand, are primarily concaned with recognising their specific fault in the 
residual signal calculated as the difference between the model and the UAF. Once a smes of 
fdters have been o-ained to recognise individual faults and are established in the FDI system, a 
fault which was previously unknown may be encountered, and as a result no filter will have 
been designed to isolate i t 
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It is still necessary to detea such a fault, however, and because it will - presumably - cause the 
UAF to behave in an abnormal manner, it will cause the model's outputs to deviate from the 
freezers and will thus be detected. Accurate isolation will not occur in the absence of a 
dedicated filter (established filters may signal they recognise the fault), but it should now be 
possible to train an additional filter to isolate this fault which can be added to the bank of 
established filters without the need to retrain them. 

Retraining of established filters may on occasion be necessary, howeva-. if a new filter is added 
whose associated fault signature is similar to that of an established filter's fault. Figure 6.6 
demonstrates how the training sets for the fault detection filters are split into two categories: 
records which reflea the particular fault to be isolated, and records which do not. The latter is 
subdivided into groups, consisting of normal records and records which reflea other faults 
which are not to be isolated by the filter being trained. This recognises the fact that an 
individual fault isolation filter should not be differentiating between normal and abnormal runs 
- this is the purpose of the model - but should be identifying a particular fault whilst paying no 
heed to other faults. However, i f a spedfic filter (Filter A) is trained to recognise a specific 
fault's (Fault a) residual signal, it will have had records of other faults used in establishing that 
a is not present. Once A is established and opiating in the FDI system, it may be that a 
previously unencountered fault (Fault x) is recognised, and offline an additional filter (Filter X) 
trained to recognise it. The training set for X will have records of a as being indicative that x is 
not present, but because fault ;c was unknown diuing the training of filter A, it will not have 
had records included in its training seL A problem could arise if the residual generated by x 
is similar to that generated by a. It is likely that X will be able to distinguish between a and x 
as it will have be^ trained using records from both, but A may genoate a false alarm each 
time X is present, mistaking it for a. In such a situation, it will be necessary to retrain A using 
details of A: in the training seL 

7.2.2. The Effectiveness Of The FDL 

The FDI system developed hoe is designed to be an advancement on that which is currently in 
existence on the UAF without the need for additional hardware. By providing isolation 
informatioa it can immediately be seen to be supmor as presently the UAF enters a holding 
condition i f a problem is encountCTed. Further impnovonent the ANN based FDI system 
affords can be gauged in two ways: 

• Is it able to detect faults which the current system is unaware of? 

• For faults which the current system does respond to, is it able to detea them soona? 
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The former is obviously important, and can be demonstrated by means of the barrel pressure 
transducer fault. Here, the current system is unable to detect the fault whereas the ANN based 
system can typically detect it within a minute of the UAF starting a production run. 

Exterior 

Lip Seal 

Interior 
This fault affects the quality of the 
ice-cream produced, whereas otho-
potential faults - such as a poor lip 
seal (figure 7.4) allowing ice-cream 
mix to escape fix)m the barrel - will 
result in the wasting of raw 
materials and the potential hazard of 

Figure 7.4 Cross section of the UAF barrel showing a Up seal ^^^^ ice-cream being present on the 
factory floor. Such prohlons can be 
minimised by the rapid isolation of 

which encircles the dasher spindle and is designed to grip tighter factory floor. Such prohltans can be 
as the ratio of pressure pj to pp mcreases ^ 

the fault 

The importance of the second of the two classes can be demonstrated by considering the effects 
of failing to open the liquid ammonia hand valve. Once the evaporation pressure needs to be 
reduced, the sensor reading will already be low due to the valve being closed. This means that 
stage 4 of the UAF startup should end quickly and stage 5 commence. As the flow of ammonia 
is prevented, refrigeration will not occur in the freezer, and the load on the motor will not 
match its set point. The control system will enter an iterative loop during which time the 
motorload condition will be checked seva^ times. Ai to a period of some fifteen minutes, the 
freezer will soimd an alarm and enter a holding conditioiL 

From a production viewpoint, this condition results in the fifteen minutes loss of production 
whilst die fiieezer is in its control loop plus the time spent by the operator in ascmaining what 
is at fault following the freezers alarm. Obviously, a competent operator may be on hand 
during the control system loop, recognise thoe is a problem with the startup and perform a 
services check diuing which time he may notice that the liquid ammonia valve is closed. Hie 
fault can then be rectified, and the startup continue normally. This presupposes that the 
operator will be available for each piece of machinery on the factory floor - which of course he 
may not. An automated FDI system such as the ANN based system - being able to detect the 
fault long before the critical point where the holding condition is entered - will be able to aim 
the opo-ator in order to have die fault rectified. 

In the case of the liquid ammonia hand valve fault, detection and isolation typically occurs OIK 
or two sampling points following the ammonia evaporation pressure check which signals the 

end of stage 4. I f one therefore allows ten seconds for the fault to be detected subsequent to 
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this check, and 1 minute for the operator to respond and rectify the problem, production will be 
postponed by 70 seconds. A comparison is shown in figure 7.5. 

Normal Operation Production 

5 6 7 8 
Thne (mfnotcs) 

17 18 19 20 

Liquid NH3 Valve Fault (current system) 
Stage S fBpidly succeeds 
Stage 4. 

UAF detects fault 
and entera a hold 
condition. 

v^^<^-<^ Stage I. 

ff-'i'Wm Stage 2. 

Stages. 

Stage 4. 

Stages. 

Stage 6. 
(Production). 

5 6 7 8 
Tfane (mlnntcs) 

Liquid NH3 Valve Fault (ANN based FDI system) 
FDT system detects and 
isolates fault Operator opens vaKe 

and rectifies fnult. 

5 6 7 8 
Time (minutes) 

^ i i 
17 18 19 20 

Production im^egirMj 

Figure 7.5 Comparison of a UAF startup with a liquid ammonia hand valve fault. In the current system, the 
freezer enters a holding condition; with the ANN based PDI system, production is postponed due to accurate fault 
isolation information. Note: all times are approximate. 

For the faults chosen as candidates for demonstrating the effectiveness of the FDI system, the 
barrel pressure transduca* fault represents a class of fault which cannot be detected by the 
currendy employed fault detection method, but can by the daived ANN based system. The 
two anmionia valve faults cause the UAF to enter a holding condition and are therefore 
delected by the current system. TVpically, for the camflex valve fault a fault is signalled by the 
ANN based FDI system some four minutes before the fireezer halts startup, and for the liquid 
ammonia hand valve some fiiteen minutes. 

With the latter two faults, the current system affords only the detection of the fault The time 
taken for fault isolation is dependam upon the expoience of the operator in knowing the range 
of conditions which can result in the UAF halting startup, and the speed with which he or she 
can investigate each one to determine which is currently in effect 

7.2.3. The Accuracy Of The FDL 

With an automated FDI system, accuracy is of great importance. This accuracy can be 
measured in two ways: 
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• The ability of the FDI system to correcdy detect and isolate each fault that occurs in 
the dynamic system, i.e. it should have a high hit rate and a low miss rate. 

• The ability of the FDI system to determine whoi the dynamic systems behaviour is 
normal and not report a fault, i.e. it should have a low false alarm rate. 

The first of these is necessary i f faults are to be rectified to allow a normal opo'ating cycle, 
whilst the second engenders confidence in the FDI system. If the FDI system persistendy flags 
faults which are not present, a genuine alarm may result in no action being taken - the 
assumption on the part of die operator being that it is another false alarm. 

Normal Camflex Valve Barrel Pressure Liquid NH3 Hand 
Transducer Valve 

Name • X Name X Name • X Name X 

10-7aJog • 3-12a Jog • 16-9aJag • 17-3iiog • / bptc 
14-7aJog / excd 3-12bJog • 16-9b.log • 17-3jJog • 
24-7a.log • 3-12cJog • 16-9cJog • 17-3Uog • 
24-7bJog • ll-9a.log • 16-9dJog • 18-3g.log • 
24-7c.log • ll-9bJog • 10-3aJog • 18-3h.log • 
24-7d.log • ll-9c.log • 10-3cJog • 18-3iJog • 
24-7e.log • ll-9d.Iog • 10-3d.log • 7-4e.log • 
24-7fJog • ll-9eJog • 10-3e.log • 74fJog • 
24-7g.log 17-3aJog • 10-3f.log • 7-4gJog • 
24-7h.log • 17-3cJog • 10-3g.log • 7-4h.log • 
li-9aJog • 17-3dJog • 10-3h.log • 7-4iJog • 
ll-9bJog • 17-3eJog • 10-3iJpg • 74jJog 
ll-9c.log • 17-3fJog • MgJog 7^kJog • 
ll-9d.log • 17-3g.log • 7-4a.log • 8-4bJQg • 
ll-9e.log • 17-3h.log • lAbXog • S^kJog • 
18-3b.log • 8-4dJog 7-4c.log • S^jJog • 
18-3c.lpg • 8-4fJog • 
18-3d.log • 8-4gJog • 
18-3eJog • 8-4h.log • 
18-3f.log • 8-4i.log • 
31-3a.log • 8-4j.Iog • 
31-3b.log • 
1-4a log • 
l-4b.log • 
l-4c.lQg • 
l-4d.lQg 
l-4e.log 
7-4dJog fbptc 
8-4a.log • 
8-4e.log • 
Table 7.1 A demonstration of how the FDI system performed for normal system operation and each of the 
three candidate faults. 

Table 7.1 demonstrates the accuracy of the FDI system for normal fine^er opo^on and each 

of the three candidate faults in turn in die following way. For each situation the first column 

lists the .log fdename (the table represents all the data available to the project). 
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The second column (v^) indicates whether or not the FDI system correctly ascertained the state 
of the freezer. For normal system operation, a indicates no fault isolation filters were 
activated and that the model outputs were reliably close to the actual UAF outputs, wh -̂eas a 
X indicates that the FDI system bdieved a fault was present eitho- because an isolation filter 
was activated or because the model outputs deviated from the plant outputs significantly. This 
deviation was calculated in the manna- of the generalisation oror of the MLP Cascades 
performance being the Euclidean distance of the estimated outputs to actual outputs summed 
throughout the operating cycle. If an arbitrary threshold value of 10 was exceeded, the FDI 
system could be said to have detected a fault. In terms of the above table this would indicate a 
false alarm, but in a real opo'ating simation this could indicate the presence of a hitherto 
unknown fault and would warrant further investigatioa For the isolation filters, a ^ indicates 
that the correct filter has been activated and the fault has been conecUy isolated whoeas a « 
indicates that the filter has not been activated. 

The third column (») represents false alarm simations. Recorded in this column are any 
instances whae a fault isolation filter unexpeaedly indicated its particular fault was present 
when in reality it was not. Mnemonics are used to represent the each isolation filter m tiiis 
column, where f_cmfx indicates the camflex valve fault filter, f_bp(c indicates the barrel 
pressure transducer fault fdler./_/i/iJv indicates the liquid ammonia hand valve fault filter, and 
t excd indicates that for normal operation the threshold value was exceeded. 

As can be seen from the cable, for the three candidate faults there is a 100% hit rate. (i.e. when 
each fault is present, the correct isolation information is derived). However, three false alarms 
are reported for logs 14-7a. 1-^ and 17-3i. the first two of which are for normal runs, the 
latter for a liquid anmionia hand valve fault. 

For 14-7a the threshold boundary on the signal deviations is exceeded by a value of 3.243; no 
isolation filter is niggled. It is mteresting to note that this particular log file was one of the 
first to be gena-ated for tiiis research - some months before tiie majority of the rest - and the 
difference between plant and model outputs may be due to either: 

• Model mismatch due to the dynamics of the UAF altering slightiy between this 
operating run being logged and subsequent ones. This could be due to component 
degradation over time, or perhaps components being rq)laced in the UAF. i.e. 
parameter variations. 

• Model mismatch due. p^haps, to a differcm opo^aiing procedure being adopted to that 
described in section 3.1.4. 

168 



• The presence in the UAF of some slight fault equivalent to that of the barrel pressure 
transducer fault in that production was not affected except for a possible degradation 
in the quality of the ice cream. 

With no comparable logs to study in conjunction with 14-7a. it is difficult to ascertain which of 
the above is true, although the time scales involved makes the first option the most likely. 

The latter two false alarms are concerned with the barrel pressure transducer fault filter firing 
when this particular fault is - apparendy - not present Closer investigation of 7-4d reveals that 
the conditions described in section 3.2.2.1 for the transduco* fault are present in this log. 
indicating that the faulty barrel pressure transducer may have been present in the UAF during 
logging. Similarly - although the log clearly demonstrates that a liquid ammonia hand valve 
fault was present - 17-3i also displays signs of the faulty transducer being present, most 
noticeably the 0.3 bar offset at atmosphoic pressure. The first of tiiiese. thoefore. could 
indicate that the logged run has been incorrecdy categorised prior to ML? training, whereas the 
latto" is demonstrative of multiple faults in the system. 

It is worth noting that, as both 14-7aJog and 7-4d.log where used in training the MLP 
Cascade, the model was re-evaluated without the data contained in these files, although this 
provided negligible improvemoit in the model. 

7.3. The Combined System. 

A numba- of the ANN based FDI systons reviewed in section 6.1 rdy on presenting togged 
runs to a classification network as an offline process for categorisation. An important aspea 
of tiiis work was that die FDI system should be able to work online and in real-time in order to 
detect and isolate faults during production and reduce downtime in the machinery. 

7.3.1. Online Real-Time Operation. 

TbUAP cm, 1000 

Printer 

Expert System 

OpCiutoD CQDSDIC 

The principle adopted to ensure that any system 
developed offline would work equivalentiy online 
was to ensure that any data gath^ed to train the 
model and isolation filters would be available in 
exactiy the same format online. Currently die 
CRLIOOO control computer intofaces to the UAF 
and is designed to provide logged measurements of 
several process parameters at (reliably) 5 second 

Figure 7.6 RS232/R2485 serial communication intervals, as shown in figure 7 6 
links between the UAF. CRLIOOO. and other 
devices. 
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These parameters can be transmitted through an RS232 serial port to one of a variety of 
componaits. typically an operators console or a printer at present. Prior to the commencement 
of this research project, exploratory work had beai conducted by the Unilever Research 
Laboratories into interfacing an expert system controller to UAF which again would be 
interfaced with the CRLIOOO. The direction taken with this work was. therefore, to develop a 
system which would be PC based and would draw its input values from either: 

• a .log file generated by the CRLIOOO. if the FDI system was undergoing an ofiQine 
training cycle, or 

• directly from the CRLIOOO through a serial link if the FDI system was operating 

in real-time. 

In this way an identical format of values could be used in both testing and training the MLP 
networks comprising the FDI system. 

As with any real-time system of this nature, it is necessary to ensure that any processing 
conducted by the PC can be achieved within the san^)ling time of the CRLIOOO. 

A period of time was spent at the Unilevo- Colworth Laboratory to conduct field trials of the 
developed software. One of the principle purposes here was to demonstrate that the system 
could operate online, and was tested using a number of PCs of varying specifications from 
relatively unsophisticated Intel 286 and 386SX based machines through to much faster Intel 
486DX based machines. As the FDI system is complaely automated with no human 
interaction necessary, the five second sampling time proved ample for the system to function 
conecdy - often with much larger networks than those comprising the final MLP Cascade and 
filters. 

7.4. Future Work. 

Although this research has resulted in a viable FDI system based upon neural computing 

techniques, a number of issues have arisen which are beyond the scope of this projea to cover. 

A number of considerations and ideas for future work are discussed below, both in terms of 

extensions to the solution derived here, and with respea to dq)artures from the current scheme. 

7.4.1. Extensions To The Current Solution. 

This research is intended to be a pilot study to determine wh^her or not. in principle, a neural 
network based system can be developed which is capable of detecting and isolating faults in an 
industrial process without the need for additional sensory equipment 
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As the system has been demonstrated to work, it is important to consido* certain issues before 
the system can be seriously considoed in a live environment 

7.4.1.1. Increasing The Number Of Faults. 

In order to demonsQ-ate that the neural network based FDI system is capable of detecting and 
isolating faults, it was necessary to identify three potential faults and collect data pertaining to 
them. It was considered necessary to choose at least three faults as this would allow the system 
to distinguish between two completely dissimilar faults and two faults which were similar in 
nature, but caused by differeiu events. A number of other factors w ^ considered in choosing 
the candidate faults; both in ord^ to test other capabilities of the FDI system, as well as 
practical considerations. 

The practical consid^ations which were taken into account included - specific to the UAF - the 
ability of the FDI system to isolate faults related to the flow of ammonia through the system, as 
faults of this nature can be particularly troublesome on the factory floor, and the time and cost 
necessary in producing a particular fault in the system. This latter point was important given 
the limited resources available to the project 

Should it prove desirable to pursue Uiis research further, it would be beneficial to extend the 
number of faults which the FDI system is required to recognise. The important consideration 
here would be the isolation filters abihty to distinguish between faults whose characteristics are 
increasingly similar to one another. The two similar faults considered in this research concon 
valves on titie ammonia line but which are on diffoem sides of the barrel, i.e. the liquid 
ammonia hand valve is situated before die ammonia has entoed the barrel, whereas the 
camflex valve is located on the outiet conduit. Figure 3.6 shows several valves which the 
ammonia supply must pass through and it would be useful to determine wheth^ an isolation 
fdter could determine the exact valve which was at fault, or whether it would only be possible 
to isolate the fault to the ammonia inlet and oudet 

A problem with increasing the numba of faults is that for each fault a number of fieezer nms 
wiD be necessary to collea data upon which to train an isolation filter. For catain faults, diis 
could prove expensive as gena-ating the fault data may result m wastage of raw materials. An 
example of this would be die lip seal fault considered in section 7.2.2. Due to die nature of the 
fault it would be necessary to allow a quantity of ice aeam mix to escape the barrel whilst the 
CRLIOOO logged the various freezo" parameters. Once sufficient data was gathered, the UAF -
and surrounding area - would need to be cleaned. During the data collection cycle, this 
procedure would need to be conducted several times, proving cosUy in both raw matmals and 
time, before a sufficient number of datalogs were generated to team an isolation fUto". 
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7.4.1.2. Increasing The Scope Of The F D L 

Currentiy the following types of faults have been investigated as part of tiiis research: 

• Faults which are dissimilar to one another. 

• Faults which are similar to one anotho". 

• Actuator faults. 

• Sensor faults. 

• Faults which cause significant deviations from the normal operation of the system, 
resulting in shutdowa 

• Faults which manifest themsdves as small offsets in the systems signals thereby 
allowing the system to operate, but with a reduced quality in the product 

An issue that has not been specifically addressed is that of multiple faults, where a series of 
faults occur simultaneously within the system. A competem FDI system should be able to 
reliably isolate each fault, providing the operator with an accurate list of process components 
which need attentioa 

Although this system appears to have provided one instance where this appears to be the case 
(see section 7.2.3), it would be necessary to investigate its capabilities fiirther as it would be 
unlikely that during the course of an industrial processes life cycle, faults would present 
themselves individually. 

7.4.1.3. Testing The Model Using Other Product Formulations. 

In ord^ to allow the model to concentrate on learning the dynamics of the UAF. it was 
necessary to maintain consistency between a number of external factors. Of these factors, the 
product formulation is likely to change from time to time, and it would be necessary to 
determine how a change in formulation would be likely to affect the fi:eezer dynamics. At 
worst, it may prove necessary to develop a sq)arate freezo- model for each formulation; the 
correct one being seleaed prior to startup. 

7.4.2. Alternative Solutions. 

Currentiy. the study of the fault detection problem has centred around the use of the MLP 
Network trained as an explicit input-output model Whilst such an approach is most readily 
workable w h ^ dealing with single-input single-output (SISO) time-invariant processes, the 
size of network needed to model more complex multi-input multi-ouq)ut (MIMO) systems 
becomes considerable. 
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In additioa for real industrial processes - such as the Unilever Automated Freezer - which can 
often prove to be time-varying with a staged startup procedure, it is unlikely that a single MLP 
would be able to successfully model the process for all fault free conditions. Hiis seriously 
questions the robustness of such an approach, and whilst the problem has be^ solved in this 
research by using a number of cascaded MLPs in the model, an alternative would be to move 
away fi-om a model reference system. 

7.4.2.1. Non-model Based FDI . 

In a non-model based FDI architecture, the need for an exphat model is e}\m\nntM\ as such a 
system should be able to devdop an implicit model by learning the behaviour of the process 
under normal operating conditions. Once such a r^resentation was formed, data obtained 
from the plant would be classified as representing either a normal or abnormal run. the latter 
indicating a fault. An extension to the architecture would take the abnormal records and 
classify them providing fault isolation information, as detailed in figure 7.7. 

Industrial 
Process 

Outputs 

Fault Detection 
Module 

ActivBtinn 
Signal 

Fault Isolation 
Module 

Lsnlslinn 
Signal 

Figure 7.7 A non-model based architecture for fault detection and isolation. 

Here, the fault detection module could comprise of an MLP network trained to issue a positive 
output - thereby activating the fault isolation module - if the fiieezer run is abnormal. The 
isolation module could consist of several MLP filters in much the same manno* as in die 
derived solution, each of which is trained to recognise a specific fault 

However, as the detection module is not being taught to rq}resent an explicit input-output 
model, and as a danger exists that what may appear to the opo-ator to be a normal datalog may 
contain a hitiierto undetected fault, it may prove beneficial to use a class of unsupervised ANN 
to detomine whether the run is normal or not. Two such ANN architectures are the Kohonen 
self-organising feature map. and the continuous adaptive resonance theory (ART2) network. 
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Self-organising Feature Maps. 

Feature Maps (FMs) possess the ability to discover patterns in the input data for themselves, 
and cluster this data into groups, i.e. they will self-organise themselves. FMs make use of the 
principle of competitive learning (whae each processing elonent possesses self-exciting 
recurrent connections and neighbour-inhibiting connections) to det^mine a 'winning' 
processing element. This element is most excited by the input vector. 

If a processing dement / receives many inputs xji from other processing elements, these inputs 
and their associated weights can be described by tiie row vectors X,- and Wi respectively thus 

The value XjWi^ can be thought of as a measure of distance between the input and weight 
veaor. The winner is the processing dement whose weight vector is dosest to the input 
Learning is achieved by updating each wdght in the vector by the value 

AW. = a(X.-W.) (1.2) 

where a is a learning coeffident. so that the weight veaor assodated with the winning 

processing dement will be moved doser to the input veaor [4]. 

Similarly, FMs could be incorporated into the isolation module to allow faults of similar 
dasses to duster together. An alternative to using the unsupervised rule on such networks is to 
use a supervised learning vector quantization rule [3]. 

Adaptive Resonance Theory 

Adaptive Resonance Iheory (ART) is an unsupervised learning rule devdoped by Carpenter 
and Grossberg [1]. ART networks are able to self-organise tiiemsdves in response to a 
sequence of input-patterns, and dassify these pattons by distinguishing between features in the 
input. By using both long-term memory (storage for all dasses of pattens so far learnt) and 
short-term memory (storage for the current input pattern, the dassification of that pattern and 
the e?q)ected pattern) the network is able to classify each input pattern with respect to what is 
afready hdd in long term monory, or i f the input panem is sufridendy differem to any yet 
learnt, creates a new dass of pattern with the input veaor as its first member. ART uses 
competitive learning to choose a wiiming dass of pattern from long term memory. 

Once chosen, the significant features of the input pattern are added to long term monory 

through either a process of slow learning, where the method of allowing the significant features 

to seep into the weight matrix is refored to as resonance, or fast learning where the pattern is 

encoded directly onto the weight matrix which is useful for new dasses of pattou 

174 



The ARTl network was used for encoding binary patterns, whereas ART2 [2] extended this 
for continuous values. 

An advantage that the ART networks have over FMs is their ability to incorporate firesh classes 
into their composition without the need for retraining. Howevo* both forms of unsupervised 
network could be used to implement an FDI system such as in figure 7.7. Two separate 
networks would be needed; one trained offline to distinguish between normal and abnormal 
operating records, whilst the other would classify abnormal records into fault categories. 
Whilst operating online, should the detection module fail to recognise an input patton as bdng 
normal process operation, a failure could be signalled and the record passed to the isolation 
module for classification. Should this module fail to classify the record, an unknown fault 
could be considered to have been encounto^ which could either be incorporated into the 
module if based upon ART networks, or stored sq>arately for the later retraining of the FM. 

7.4.2.2. An Integrated FDI/Control System. 

As a final comment upon possible future directions for research into this area, it is worth 
considering the potential for integrating the FDI system with a controllo- based upon neural 
computing techniques. Neural Controllers are prevalent in the literature, a numbo- of which 
[5] use model-reference systems. Here, two models are developed: one akin to the model used 
in this research in order to determine how far actual plant outputs are off desired outputs; the 
other an inverse model used to determine how much plant inputs need to be adjusted in order to 
rectify any aberration in outputs. 

Here, research would need to be conducted in how best to build this inverse model as well as 
investigating the issues raised in section 7.1.2 pertaining to using a neural model in a control 
system and how conflicts between the controller and the FDI system could be resolved. 
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Chapter 8. 

Concluding Remarks, 

Historically, research into the many properties and features of artificial neural networks has 
been something of a roller coaster ride: peiods spent in enthusiastic pursuit of the universal 
machine, followed by virtual inactivity as the limitations of known models became evident. 
However, the recent upsurge in interest from a wide variety of disciplines (psychology, 
neurosdenoe. mathematics and computing science) has gained a momemum which j^pears 
unstoppable. Indeed, as research activity into traditional networks such as the ML? nears 
exhaustion, one need not look far to find the next generation of more biologically plausible 
networks, whose dynamics are based upon more contemporary studies of the brain, which are 
likely to occupy researchers for many years to come. 

The role of the artificial neural network in engineering applications has similariy increased in 
recent years, yet the same practice which has led to disillusionment in symbolic AI systems is 
often prevalent in ANN research. This is. in the main, the use of the technology to solve 
simplistic - often artificially derived - problems, with a foomote to the e£fea that similar 
success is likely should the solution be scaled up for application in a real-life situation. The 
flaw in this reasoning can be readily demonstrated by considaing the problem of modelling an 
industrial process such as the Unilevo- Automated Freezer. The principle of building an MLP 
model of a dynamic system was initially studied within the confmes of simulated mathematical 
systems of both linear and nonlinear design. Several aspects pertinent to a model-based FDI 
system (modelling parameter variations, detecting aberrations in die residual signals and the 
like) wCTe investigated, and the theory - appearing sound - prepared for transfer to a practical 
application. In retrospect it can be seen that it is at this point - wh^e a large proportion of 
published literature considers the principle proven and the problem solved - that this work 
seriously begins. Subsequent work has concentrated on designing a solution which would cope 
with the piecewise time-invariant dynamics that the system exhibited, and which are likely to be 
exhibited by any industrial process which employs a phased startup regime. 
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This research has resulted in the design of an FDI system which is as generic as the MLP upon 
which it is based, but which has been tested and proven upon a real-life industrial process -
outperforming the existing fault detection system without the need for additional sensory 
equipment The main aspect of the works originality is the MLP Cascade and its associated 
switching mechanism, which has the ability to model time-varying systons such as the UAF, 
although - naturally - the ultimate test of the designs imiversality would come with the porting 
of the architecture to otho* applications. However, as the design does not rely upon e;q)lidt 
detailed knowledge of the dynamic system, this portability should not be a significant problem; 
the scaling up of the work to a live testbed having been achieved. 

As a fmal word, some thought can be given to the practicality of the solution. As has already 
been mentioned - for the UAF - the FDI system does not rely upon additional sensors bdng 
installed and can therefore be considered an inexpensive solution. Howeva-. a problem 
encountered in this research involved the collecdon of data to train the various MLPs 
comprising the solution. In order for the freezer to behave normally, one needs to operate it as 
though a production run were being initiated, which means using the raw mataials which 
comprise the ice-creanL Therefore logging data of a normal run is instantly expensive -
especially if the freezCT is be'mg operated solely for the gathering of data for the FDI system 
with none of the produced ice-cream being used. The problem is intensified y/hen collecting 
fault data. Again the UAF needs to be operated as though ice-cream were to be produced, but 
with a strategic valve closed or a substandard component used in the process. In this simadon. 
it is unlikely that the ice-cream can be used in postproduction as it will imdoubtedly be 
substandard. So the problem involves the cost of gathoing the data; a cost which could prove 
prohibitive should the intention be to gather the data exclusively for training the MLPs. 

In Unileva's case - who-e numa-ous fireezo" units exist worldwide - a practical solution would 
be to initiate a programme whereby logged data was gathered as a matto- of routine: each time 
a particular piece of machinery was started, values of process parameters could be logged and 
forwarded to a central data storage facility. This would not only result in a larger quantity of 
data being captured than would be possible running one fiieezer repeatedly, but the data would 
be more natural, less artificial. For this research, data was gathered finom one machine by a 
continual process of cleaning the UAF, starting it running, closing it down several minutes into 
production and allowing it to settle to as close to initial conditions as possible before starting 
again. It was thus possible to gatho* datalogs for as many as ten startups in one day. 
Howevo". on the factory floor a fieezer is typically started once a day, allowed to produce its 
quantity of ice-cream before bdng shutdown, cleaned and left idle ovemigbL If data could be 
gathered from ten factory floor machinRS as a matter of routine, the same quantity of data 
would be capmred. it would be more typical of UAF startup and die cost would be negligible. 
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Obviously, gathering data on fault conditions could then prove problematic - although should 
any UAF on the factory floor develop a fault, so long as the paramet^ being logged, the 
information necessary to train the isolation filters should be caught. 

In summary, the main cost of implemming such a system would be incurred in the gathaing 
of normal and abnormal records. This cost can, howevo*, be significantly reduced if it is 
possible to gather the information in advance of the building of the FDI system during the 
normal operation of the plant 

To conclude, then, this work has led to the development of an artificial neural n^work based 
fault detection and isolation system which can adapt itself to a mechanical processes. It has 
been tested on a specific piece of industrial machinery which possesses a class of time-varying 
dynamics typical of systems with a phased startup regime. 
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Appendix 1. 

Glossary 

The purpose of this appendix is to provide a glossary of technical tmns concerning aspects of 
control and artificial neural network theory, as well as tominology specific to the Unilever 
Automated Freezer used throughout this thesis. 

Activation Function 

Actuator 

Al 

Alarm 

Ammonia (NH3) 

ANN 

Ar-tificial Intelligence 

ArtiTicial Neural Network 

Nonlinear transfer function between PE inputs and outputs, 
often sigmoidal in shape. 

A component of a plant that initiates a change, for example 
the means to open and close a valve. 

See artificial intelligence. 

Audible and visual indication on the UAF showing thoe is a 
problem with the freezer. 

Colourless gas or liquid used as a refrigerant 

See artificial neural network. 

The use of technology to devdop automated devices to mimic 
human reasoning processes. 

A class of self organising system based upon the mechanisms 
of the braiiL 

Backpropagation A sup^ised training algorithm for fiilly connected 
feedforward ANNs which moves actual network ou^uts 
toward desired outputs in a gradient descent 
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Bar 

Barrel 

Measure of pressure. 

Cylinda* in the UAF in which ice cream mix is frozen. Air 
and mixture enter the rear of the barrel where it is cooled and 
frozen by means of liquid ammonia. A dasher rotates inside 
the barrel removing ice from the interior surface. Ice oeam is 
extruded from the front of the barrel 

Blade 

Camflex 

Chromosome 

Control Loop 

CRLIOOO 

Crossover 

Dasher 

Dump Valve 

Dynamic System 

See scraper blade. 

Type of suction control valve used with ammonia systsns. 
The camflex valve is used to alter the rate and temperature at 
which the ammonia evaporates, and thus controls the cooling 
of the ice cream. 

An individual potential solution handled by a genetic 
algorithm. 

A mechanism by which a controlled condition is measured and 
compared with a desired value - or set point. Should a 
difference between the two exist, the final part of the control 
loop will attempt to limit or correct the deviation. 

Type of process computer manufactured by Control & 
Readout Ltd (now Control Techniques) used to control and 
run the UAF. A keypad or keyboard can be used to set the 
computer. 

A genetic operator which combines two chromosomes. 

An agitator fitted with scraper blades that rotates inside the 
barrel of the UAF at about 240 rpm and removes ice from the 
interior surface of the barrel. Several varieties of dasher exist 
- each of which occupies a different volume of the barrel 

Valve used to return ammonia to the ammonia plant following 
shutdown of the UAF. 

A system which contains some form of intonal memory such 
that its current state dq)ends to some extent upon its previous 
state. 
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Elitist Strategy 

Epoch 

Euclidean Distance 

Evaporation Pressure 

Extrusion Temperature 

Fault Correction 

Fault Detection 

Fault Diagnosis 

Fault Estimation 

Fault Isolation 

FDI 

Type of genetic algorithm which always keeps the best 
solution derived so far in the current population 

Usually refo-s to one complete presentation of the training 
data to the ANN. 

Straight Une distance between two points in multidimensional 
space. 

The pressure at which the ammonia boils off in the UAF. A 
high ammonia evaporation pressure implies a high ammonia 
temperature and therefore a low cooling rate. 

The temperature at which Ice oeam leaves the barrel of the 
UAF. 

The process of rectifying a fault 

The process of determining that a system is at fault 

The process of determining why a fault has occurred. 

The process of determining the extent to which the fault has 
affected a system. 

The process of determining the source of a fault 

Fault Detection and Isolation. 

Finite Impulse Response System A dynamic system whose current state is dependant upon a 
fmile number of prior states. 

FIR 

Fitness 

Genetic Algorithm 

Genetic Operators 

Hand Valve 

See finite impulse response system. 

A measure of how good a solution a chromosome provides in 
a genetic algorithm. 

An optimisation technique based upon the principle of natural 
selection. 

Means of manipulating current monbers of the current 
population (chromosomes) in a genetic algorithm, 

TTie manually operated valve on the ammonia supply line. 
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Hold 

Hopfield Network 

Ice cream Pump 

IIR 

Temporary stoppage of the UAF. Restarting from a hold 
condition is relatively straightforward. 

Specific ANN architecture which uses an unsupervised 
learning rule. 

Used to pump ice aeam from the front of the barrel of the 
UAF. The speed of the pump is used in controlling the barrel 
pressure. 

See infinite impulse response system. 

Infmite Impulse Response System A dynamic system whose current state is dependant upon 
all previous states through time to the initial conditions of the 
system. 

Knowledge Based System An artificial intelligence tool which mimics higher level 
human reasoning. 

Kohonen Network 

Mix 

Mix Pump 

Specific ANN architecture which uses an unsupervised 
learning rule. 

Ice CTeam prior to fi-eezing in the UAF. 

Used to pump hquid mix into the UAF barrel at a controlled 
flow rate. 

MLP 

Model Based 

Motorload 

Multilayer Perceptron 

Mutation 

See multilayer perceptron. 

A control or FDI system that relies upon an analytical model 
of the system. 

The measure of power needed to rotate the dasher within the 
barrel of the UAF. This is related to the viscosity of tiie ice 
cream in the barrel. A high motorload implies a high 
viscosity. 

Specific ANN architecture which is a fiilly connected 
feedforward network often employing the baclqiropagation 
algorithm to train it 

A genetic operator which changes a small part of a single 
chromosome. 

183 



NH3 

Non-model Based 

Overrun 

PE 

Population 

Pressure Transducer 

Processing Element 

Quick Shut on* Valve 

Residual Signal 

Scraper Blade 

Selection 

Sensor 

Set Point 

Static System 

See wnmonia. 

A control or FDI system that does not rely upon an analytical 
model of the system. 

The measure of the volume of air within the ice cream. The 
overrun is a measure of the ratio of the amount of air and 
liquid mix used to make ice cream. An overrun of 100% 
means that there is an equal volume of air and mix. 

See processing element. 

A collection of chromosomes on which genetic op -̂ators work 
in a genetic algorithm 

A device for detecting pressure, for example the barrel 
pressure on the UAF. 

Individual unit within a artificial neural network analogous to 
a biological neurone. 

Valve on the UAF which is used to halt freezing by removing 
liquid ammonia from the evaporation cylinder. 

The difference between the actual process signals and those 
calculated by an explicit model in a model based system 

A razor sharp blade attached to the dasher to remove ice 
crystals from the int^or surface of the barrel 

A m^hod of deciding which members of the current 
population of a genetic algorithm proceed into the next 
geno-ation, such as a simulated roulette wheel 

Device for measuring some attribute of a plant, for exan ĵle a 
pressure, temperature or flow rate. Signals from sensors can 
be used to determine control decisions. 

The desired values of certain process parametos that are to 
be controlled. 

A system which no intanal monory such that its current state 
is independent of its previous state. 
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Supervised Learning 

Symptom 

Time Invariant System 

Time Varying System 

UAF 

ANN learning paradigm which uses knowledge of the required 
solution to the problem domain to influence outputs. 

An mdication - usually in the sensor measurements - that a 
fault has occurred in a system. 

A dynamic system whose underlying functional dqjendenoe 
remains constant with respect to time. 

A dynamic system whose undo'lying functional dq>endaioe 
varies with respect to time. 

See Unilever Automated Freezer. 

Unilever Automated Freezer A type of freezer developed by Unilever for the production of 

icecream. 

Unsupervised Learning 

Viscosity 

ANN learning paradigm which does not use knowledge of the 
required solution to the problem domain to influence outputs. 

A measure of the stiffness of - for example - ice cream. 
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Appendix 2. 

C Library Routines, 

The purpose of this appendix is provide a functional specification for the multilayer perceptron 
code developed for this research. Although this appendix is by no means an exhaustive list of 
all the code written to devdop the model based FDI solution, it provides the main building 
blocks. It has been written with usabihty in mind, and can be readily utilised to encode an 
ML? for application in many problem domains. A brief demonstration of encoding an ML? to 
solve the XOR problem is provided. 

In building the C library routines to implement the backpropagation training algorithm for the 
MLP network, three major objectives have been borne in mind. These are: 

(a) The code should be fast. As tiie MLP will often take a large number of 
training epochs to learn suffidemly well, the need for speed in processing is 
essential as inefficiendes in the code will greafly increase experimental time. 
To this end pointers have beai extensively used to access monory during the 
implementation of the algorithm equations to avoid time-consuming 
duplication of data. 

(b) The code should be compaa, and the MLP storage itself should be as littie as 
possible. MLP networks are voy monory intensive in their storage 
requirements. Large arrays of floating poim numbm are necessary to store 
processing element output values, thresholds, delta thresholds, weight values 
and delta weights. A common m^od of mxxiing MLP networks is by use of 
tiiree dimensional arrays for Uie wdghts so that w[i]|j][k] refCTs to the value of 
die weight connecting PE i m laya- j to PE k in laya- j-1. A drawback witii 
this approach is that at compilation time the value of the i and k dimensions 
must be defined to be large enough to store the layer with the most PEs in it 
This means other layCTS with fewer PEs will stiU have this same large amount 
of memory assigned, though a portion of it will be unused. 
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The method adopted in this code to assign a dynamic one dimensional array 
for the entire weight matrix with a tmmber of additional overheads necessary 
to determine where each weight is located within the MLP. 

(c) The code should be flexible. All m^ory allocation for the MLP is poformed 
at execution time, ensuring that the only constraints on the size of the MLP are 
the memoiy capacity of the PC and Uie memory model used during 
compilation In additioa all data pertaining to the MLP is stored in a 
structure, meaning that several MLPs can be defined within one piece of code 
with the minimum of confusion as to which data belongs to which network. 

The code allows for the saving and loading of MLPs to disk. A stored MLP has the following 
header information: 

MLPName A string denoting the name of the MLP. 

NoOfLayo^ An integer denoting the number of layers in the MLP. 

LeamCoef MtmCoef Two doubles denoting the learning and momentum coefficients. 

L I L2 .. Ln A series of integers denoting the number ofPEs in each layer. 

There then follows a series of lines (one for each PE in the network) with the format: 

t ThresholdValue TF Beta X->(Y. Z) 

where t denotes the line represents a threshold value. ThresholdValue is a double representing 
the value of the threshold. TF is a short r^resentiing the transfo' function. Beta is a double 
representing the steq)ness of the transfo" function. X is an integer representing the absolute 
position of the PE. and Y and 2 are local position and layer infonnatioa A series of lines (one 
for each weight in the network) then follows with the format: 

w ActiveFlag WeightValue X->(A, B) 

where w denotes the line represents a weight value. ActiveFlag is a short indicating whether the 
weight is active or not (1 = active, 0 = not active), WeightValue is a double representing die 
value of the weight. X is an intego- representing the absolute position of the weight, and A and 
B are information regarding which two PEs the weight connects. 

If the fUe on disk is an MLP initialisation file, the function readmlpO will create an MLP of die 
configuration specified and initialise it In order to construct an initialisation file, the 
equivalent heads' mformation as above should be included, howevo- instead of the threshold 
and weight information, a single line of the following form needs to be included: 

187 



x TF Beta SetAtOuput 

where ;c denotes the file is an initialisation file. TF is a short intego- code for the transfM* 
fimction at each processmg elem^t. Beta is a double representing the p (steepness) coefficient 
of the transfer function, and SetAtOutput is a short integer set to 1 if the transfer function 
specified by is to be applied at the output PEs. and set to 0 if a linear activation fimction is 
to be applied. 

In all cases, the following codes are used to represem transfer functions: 

0: linear 
1: Standard Sigmoid 
2: Hyperbolic Tangent 
3: Sine 

The following sections provide a functional specification for the C library routines. 

2.1. Structures 

The following three structures are used in the composition of the MLP structure, and it is not 
usually necessary to define variables in toms of them directiy. 

struct pe Structure for each processing element 

Fidds: pos Description: Integer denoting die local position of a PE within a 
layer. 

layo" Integer denoting the lay^ the PE is ia 
threshold Double representing the threshold (or bias) of the PE. 
delta Double representing the change necessary to the 

threshold. 
output Double representing the output value of the PE. 
error Double rq)resenting the local part of the overall error 

to which this PE is responsible. 
tf Short representing which transfer (activation) 

function is currentiy active for the PE. 
beta Double rq)resenting what the P (steepness) coefficient 

is for tills PE. 

struct w Structure for each weight 

Fields: fpe Description: Intego- denoting the absolute position of the PE the 
coimection is from. 

tpe Intego- denoting the absolute position of the PE the 
connection is to. 

value Double rq)resenting the value of the weight 
delta Double representing the change necessary in the 

weight 
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active Short denoting whether the weight is active or not 

struct bp Structure to improve the speed of the backpropagation algorithm by holding 

all values sequentially in an order to facilitate processing. 

Fidds: err Description: Pointer to the double hdd in the PE structure 
representing local error, 

w Pomter to the double held in the weight structure 
rq)resentLng the weight value, 

act Pointer to the short held in the weight structure 
rq)resenting whether the weight is active or not. 

The following typedef defines the MLP, and a pointo- to a variable of this type needs to 
declared in any C code which uses the library functions presented here. 

typedef mlp Typedef for the MLP structure. 

Fields: idn Description: Charaaer string holding the name of the MLP. 
nol Integer rq)resenting the number of layas in the MLP. 
nl Pointer to series of nol integers representing the 

number of PEs in each layer of the MLP. 
XDXpe IntegCT representing the total number of PEs in the 

MLP. 
totw Integer representing the total numba- of weights in the 

MLP. 
pe Pointer to a list of PE structures, 
w PointCT to a list of weight structures, 
bp Pointa- to a hst of backprop data structures. 
Ic Double representing the learning coefficient of the 

MLP. 
m Double representing the momentum coefficiem of the 

MLP. 
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2.2. Functions & Procedures For Defining & Running An 
MLP. 

2.2.1. DEFMLPO 

Name: definlp Type Function 

General Description 

Returns the address of a newly defined MLP. This fimction uses the following functions and 
procedures in defining the MLP: calctotpeQ. initpeO» calctotwQ* initwO, mitbpO. randwtQ. 
and randthQ. 

Argument Type Description 

type char * Identifier string for the MLP. 

11 im The number of PEs in the input layer. 

12 int The number of PEs in the first hidden layer. 

B int The number of PEs in the second hidden layer. 

14 int The number of PEs in the output layer. 

tf short Code for die transfa* fimction: 0 = linear, 1 = standard 
sigmoid. 2 = hypa-bolic tangent, 3 = sine. 

beta double Steepness of the gradient of the transfer function. 

so short Flag to detomine whether the transf^ fimction specified 
by tf is appUed to output layo- PEs. A value of 1 sets the 
transfer function to tf. a value of 0 sets the transfer 
function to the linear function. 

Return Value mlp * Pointer to the newly created MLP. 

Example 

To create an MLP with 3 layo-s consisting of 10 input PEs» 5 PEs in the hidden layo* and 2 
output PEs with a standard sigmoid (steepness of 0.5) and a linear transfer fimction at the 
output layer: 
mlp *MyMLP; 

MyMLP = defimlpC'MLPName", 10.5.2.1,0.5,0); 
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2.2.2. CALCTOTPEO 

Name: calctotpe Type Function 

General Description 

Returns the total number of PEs in an MLP. Used by defmlpQ. 

Argument Type Description 

nl int * Pointer to a list of the PEs in each lay^. 

nol int The numbo* of layers. 

RetiuTi Value int The total number of PEs in the MLP. 

Example 
To calculate how many PEs there are in a three layer MLP with structure 10-5-2: 
int totpes, *nl, nol = 3; 
nl = (int *) malloc(3 * sizeof(int)); 
*nl = 10; *(nl+l) = 5; *(nl+2) = 2; 
totpes = calctotpe(nl, nol); 

2.2.3. CALCTOTWO 

Name: calctotw Type Function 

General Description 

Returns the total number of weights in an MLP. Used by defmlpQ. 

Argument Type Description 

nl int* Poimo" to a list of the PEs in each layer. 

nol int The number of laya^. 

Return Value int The total number of weights in the MLP. 

Example 
To calculate how many weights there are in a three layer MLP with structure 10-5-2: 
im totpws. *nl, nol = 3; 
nl = (int *) malloc(nol • sizeofCint *)); 
*nl = 10; *(nl+l) = 5; *(nl+2) = 2; 

toq?ws = calctotw(nl, nol); 
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2.2.4. INITPEO 

Name: initpe Type Procedure 

General Description 

Takes the uninitialised hst of PEs and gives them their identifying positions, transfer 
functions, steepness coeffidents and initialises their threshold values. 

Argument Type Description 

strua pe * Points- to list of PEs. 

nl mt Pointer to a list of PEs in each layer. 

nol mt Numbo- of layers. 

totpe mt The total number of processing dements. 

short Code for the transfer function: 0 = linear, 1 = standard 
sigmoid, 2 = hyperbolic tangent. 3 = sine. 

beta double Steq)ness of the gradient of the transfer function. 

seto short Flag to detoinine whether the transfer function specified 
by tf is applied to output layer PEs. A value of 1 sets the 
transfo" function to tf, a value of 0 sets the transfer 
function to the linear fiinctioa 

Return Value N/A 

Example 

For an example of tiiis procedure, refer to die source code for deftnlpQ. Undo- normal 
circumstances, there is no need to direcdy access this procedure. 
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2.2.5. INITWO 

Name: initw Type Procedure 

General Description 

Takes the uninitialised list of weights and gives them their identifying positions* and sets 
their active flag to 1.. 

Argument Type Description 

w strua w * PointCT to list of weights. 

pe strua pe * Pointer to a list of PEs. 

Dl int * Pointer to list of numb^ of PEs in each layer. 

totpe int The total number of processing elements. 

Return Value N/A 

Example 

For an example of this procedure, refer to the source code for defmlpQ. Undo* normal 
circumstances, there is no need to directly access this procedure. 
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2.2.6. BVITBPO 

Name: initbp Type Procedure 

Genera] Description 

Initialises tiie backpropagation reference list that is used to speed up processing. When the 
list of weights and PEs are initialised, they are in an order in the array for fast calculations 
during the feedforward cycle. To allow the same speed during backpropagation, an 
additional list is constructed which points to the necessary values in an order which is correa 
for backpropagation. 

Argument Type Description 

bp struct bp * Pointer to badq)ropagation reference list 

Pe struct pe * Pointer to hst of PEs. 

w strua w * PointCT to list of weights. 

nl int* Pointer to a list of PEs in each layer. 

nol int Number of layers. 

totpe int The total number of processing elements. 

totwt int The total number of weights in the MLP. 

Return Value N/A 

Example 

For an example of this procedure, refo- to the source code for defmlpQ. Undo* normal 
circumstances, there is no need to directiy access this procedure. 
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2.2.7. RANDTHO 

Name: randth Type Procedure 

General Description 

Randomises the threshold values of the PEs in the range ±1 and initialises the deltas to zero. 

Argument Type Description 

mlp * Pointer to the mlp structure. 

Return Value N/A 

Example 
In order to randomise the thresholds in a predefmed mlp called *MyMLP: 
randth(MyMLP); 

2.2.8. RANDWTO 

Name: randw Type Procedure 

General Description 

Randomises the weight values of the PEs in the range ±1 and initialises the deltas to zero. 

Argument Type Description 

mlp mlp * Pointer to the mlp structure. 

Return Value N/A 

Example 

In order to randomise the weights in a predefined mlp called *MyMLP: 
randwt(MyMLP); 
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2.2.9. WRANDO 

Name: wrand Type PunctioD 

General Description 

Returns a random floating point numbo* in the range ±1. Used when initialising thresholds 

and weights. 

Argument Type Description 

N/A 

Return Value double Random number in the range ± 1 

Example 
To obtain a random number using this function: 
double smallrandnum; 
smallrandnum = wrandQ; 

2.2.10. FFO 

Name: f f Type Procedure 

General Description 

This procedure feeds a predetoroined input vector through the MLP. 

Argument Type Description 

iv double * Pointer to the input vector. 

mlp mlp * Pointer to the MLP structure. 

Return Value N/A 

Example 

To feed a 2 part input vector comprising of 0.3 and -0.8 through a predefined 2-2-1 MLP 
called MyMLP: 
double ^inputs; 

inputs = (double *) malloc(2*sizeof(double *)); 
•inputs = 0.3; *(inputs+l) = -0.8; 
ff(inputs, MyMLP); 

196 



2.2.11. BPO 

Name: bp Type Function 

General Description 

Performs the backpropagation algorithm through the ML? given a desired output vector. It 
returns the Euclidean Distance as the global error of t network. 

Argument Type Description 

ov double * Pointer to the output vector. 

mlp mlp * Pointer to the MLP structure. 

Return Value double Euclidean Distance between the desired an actual outputs. 

Example 
To propagate a 1 pan output vector with the value 0.5 through a predefined 2-2-1 MLP 
called MyMLP: 
double desired, OTor; 
desired = 0.5; 

2.2.12. CALCERRO 

Name: calcerr Type Function 

General Description 

Returns the Euclidean Distance as the global oxor of the network without performing the 
backpropagation algorithm. 

Argument Type Description 

ov double * Pointo" to the output vector. 

mlp mlp * Pointer to the MLP structure. 

Return Value double Euclidean Distance between the desired an actual outputs. 

Example 

To calculate the enor for 2 part output vector comprising the value 0.5 and 0.7 of a 
predefined 4-2-2 MLP called MyMLP: 
double *desired. error, 

desired = (double *) malloc(2*sizeof];double *)); 

•desired = 0.5; *(desired+l) = 0.7; 

error = calcerr(desired, MyMLP); 
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2.2.13. TRANSO 

Name: trans Type Function 

General Description 

Returns the result of performing a transfo' - or activation - function on a value. 

Argument Type Description 

X double The value to apply the function to. 

t short Code for the transfer function: 0 = linear. 1 = standard 
sigmoid, 2 = hyperbolic tangent, 3 = sine. 

beta double Steepness of the gradient of the transf^ function. 

Return Value double The result of the transfer function. 

Example 
To find the corresponding sigmoid function value (steq)ness 0.2) of 1.456: 
double result; 
result = trans( 1.456, 1.0.2); 

2.2.14. DTRANSO 

Name: dd'ans Type Function 

General Description 

Returns the result of performing the doivative of a transfer - or activation - function on a 
value. 

Argument Type Description 

double The value to apply the function to. 

short Code for the transfer function: 0 = linear, 1 = standard 
sigmoid, 2 = hypa-bolic tangent, 3 = sine. 

beta double Steq}ness of the gradient of the transfer fiinctioa 

Return Value double The result of the daivative of the transfer functioa 

Example 

To find the corresponding derivative hyperbolic tangent function value (steepness 0.4) of 
1.456: 
double result; 

result = dtrans( 1.456, 2,0.4); 
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2.2.15. FREEMLPO 

Name: fieemlp Type Procedure 

General Description 

Frees the memory allocated by either defmlpO or readmlpO-

Argument Type Description 

mlp mlp * Pointer to the MLP structure. 

Return Value N/A 

Example 

To &ee the memory allocated to a predefined MLP called MyMLP: 
freemlp(MyMLP); 

23. Procedures For Displaying M L P Information. 

2.3.1. DISPMLPO 

Name: dispmlp Type Procedure 

General Description 

Displays gena-al information about an MLP to a file stream. The information includes: the 
MLP identifier name, its structure, its learning and momentum coefficients, and its current 
status. 

Argument Type Description 

mlp mlp * Pointer to the MLP structure. 

where FILE* Pointer to the file stream. 

1 short Flag indicating current status of the MLP: 1 = training, 0 = 
generalising. 

Return Value N/A 

Example 

To print details of a predefined MLP called MyMLP which is currently training to the 
standard output device: 
dispmlp(MyMLP, stdout. 1); 
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2.3.2. DISPPEO 

Name: disppe Type Procedure 

General Description 

Displays geno-al information about a specific PE to a file stream. The information includes 
the PEs absolute identifier, position in the network, threshold and delta threshold values, 
output and error values, and the transfer function and p coefficient of the PE. 

Argument Type Description 

mlp mlp * Pointer to the MLP structure. 

whoie FILE* Pointer to the file stream. 

pe int The absolute position of the PE in the PE list structure 
within the mlp structure. 

Return Value N/A 

Example 

To print details of the fourth PE in die first hidden laya- (layer 1) of a predefined MLP 

called MyMLP to a predefined file whose pointer is fp: 
disppe(MyMLP, fp, abspe(MyMLP, 3, 1)); 
N,B. For a description of the function abspe(), see below. 
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2.3.3. DISPWO 

Name: dispw Type Procedure 

General Description 

Displays general information about a specific weight to a file stream. The information 
includes the weights absolute id^tifier, the two PEs it connects, value and delta value, and 
its status (i.e. whetho- active or not). 

Argument Type Description 

mlp mlp * Pointer to the MLP structure. 

where FILE* PointQ" to the fde stream. 

w int The absolute position of the weight in the weight list 
structiuie within the mlp structure. 

Return Value N/A 

Example 
To print details of the weight connecting the third PE in the input layer Oayer 0) to the fourth 
PE in the first hiddoi layo* Qayer 1) in a predefmed MLP called MyMLP to the standard 
output device: 

dispw(MyMLP, stdout, absw(MyMLP, 2,0,3,1)); 
N.B. For a description of the function abswQ, see below. 
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2.4. Functions & Procedures For Saving & Loading MLPs. 

2.4.1. READMLPO 

Name: readmlp Type Function 

Genera] Description 

Reads an MLP definition file and returns the address to the opened MLP. If the MLP 

definition file is an initialisation file as opposed to a stored file, a new MLP is created using 

definlpO* 

Argument Type Description 

fa char * The filename to be opened. If the file cannot be opened, a 
value of NULL is returned by readmlpQ. 

mlp mlp * Pointo" to the MLP structure to which the file contents are 
to be read. If this argument is NULL, a new address is 
created and returned using definlpQ. If an address is given 
and the mlp pointed to does not match the structure of the 
MLP on file, a value of NULL is returned by readmlpQ. 

Return Value mlp * Pointo* to the MLP which has been read in from file. A 
NULL pointer wiU be returned if the file is not successfully 
read. 

Example 
To read an MLP initialisation file called MLPINTT.NND: 
mlp *MyMLP; 
MyMLP = readmlpC'MLPINIT.NND". NULL); 
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2.4.2. WRTTEMLPO 

Name: writemlp Type Procedure 

General Description 

Writes the details of an MLP to file in a format readable by readmlpQ. 

Argument Type Description 

fn char* The filename to be opened for writing. 

mlp mlp * Pointer to the MLP structure whose contents are to be 
written to file. 

Return Value N/A 

Example 
To write a predefined MLP called MyMLP to a file called TESTMLP.NND: 
writemlpC'TESTMLP.NND". MyMLP); 

2.5. Additional Functions & Procedures. 

2.5.1. ABSPEO 

Name: abspe Type Function 

General Description 

Returns the absolute position of a PE in the PE list structure given its local position in its 
layer. 

Argument Type Description 

mlp mlp * Pointer to the MLP stmctiu^. 

pe int Position of PE in its layer. 

1 im Layer the PE is in. 

Return Value int The absolute position of the PE. or -1 i f the PE spedfied 
by pe and 1 does not exist. 

Example 

To return the absolute position of the eighth PE in the output layer of a four layer predefined 
MLP caUed MyMLP; 
int pos; 

pos = abspe(MyMLP, 7. 3); 

N.B. As the count for each PE in a layer and each layo* be^ns from z^o, the dghth PE is 
referenced by 7, and the fourth layer by 3. 
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2.5.2. ABSWO 

Name: absw Type Function 

General Description 

Returns the absolute position of a weight in the weight structure given which two PEs it 

connects. 

Argument Type Description 

mlp mlp * Pointer to MLP structure. 

fpe int Number indicating which PE the connection is fix>m. 

f l int Numba" indicating which layer the connection is from. 

tpe int Number indicating which PE the connection is to. 

a int Numbo* indicating which layer the connection is to. 

Return Value int Absolute position of the weight, or -1 i f the weight 
specified by fpe, fl, tpe and tl does not exist 

Example 

To return the absolute value of the weight connecting the fourth PE in the first hidden layer 
to the first PE in the second hidden layer of a predefined four layo- MLP called MyMLP: 
int pos; 
pos = absw(MyMLP, 3, 1,0, 2); 

N.B. Al l coimting of PEs and layers be^ns firom zero. Therefore the fourth PE is referred to 
as numt>er 3 etc. 
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2.5.3. ADDRPEO 

Name: addrpe Type Function 

General Description 
Returns the address of a certain attribute of a certain PE. 

Argument Type Description 
mlp mlp * Pointer to the MLP structure. 
pe int Absolute position of the PE in the PE list structure within 

the MLP structure. 
attr char Codt indicating which attribute is required: 't' = threshold, 

'd' = delta threshold, V = output, and 'e' = local OTor. 

Return Value double * Pointer to the particidar attribute required. 

Example 
To find the address of the output of a predefmed 6-3-1 MLP called MyMLP, where die 
output is the output attribute of the first PE in the output layer Gayer 2): 
double *output; 

ou^ut = addrpe(MyMLP, abspe(MyMLP, 0. 2), 'o*); 

N.B. For a description of the function abspeO. see above. 

2.5.4. ADDRWO 

Name: addrw Type Function 

General Description 
Returns the address of a certain attribute of a certain weight 

Argument Type Description 

mlp mlp * Pointer to the MLP structure. 
w int Absolute position of the weight in the weight list structure 

within the MLP structure. 
attr char Code indicating which attribute is required: V = value, *d' 

= delta value. 

Return Value double * Pointer to the particular attribute required. 

Example 

To find the address of the delta value of the weight coimecting the foiuth PE in the input 
laya- to the ninth PE in the first hidden layo" in a predefined MLP called MyMLP: 
double *delta; 

delta = addrw(MyMLP, absw(MyMLP, 3,0. 8, 1). 'd'); 
N.B. For a description of the function abswQ. see above. 
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2.5.5. ALTPEO 

Name: altpe Type Procedure 

General Description 

Allows an attribute of a PE to be altered given the absolute value of the pe and an attribute 
code. 

Argument Type Description 

mlp mlp * Pointer to the MLP structure. 

pe mt Absolute position of the PE in die PE list structure within 
the MLP structure. 

attr char Code indicating the attribute to be changed: T = transfer 
fimction (values 0 = linear, 1 = sigmoid, 2 = hyperbolic 
tangent, 3 = sine), 'b' = steepness coefficient of the transfer 
fimctioa 

newval double New value of the attribute. The new value needs to be 
passed as a double, with any necessary conversion to other 
types performed by the procedure. 

Return Value N/A 

Example 

To change the transfo* function of the seventh PE in the first hidden layer (layer I ) to die 
hyperbolic tangent in a predefined MLP called MyMLP: 

altpe(MyMLP, abspe(MyMLP, 6, 1), T, (double) 2); 

N.B. For a description of die fimction abspeO. see above. 
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2.5.6. ALTWO 

Name: altw Type Procedure 

General Description 

Allows an attribute of a weight to be changed given the absolute position of the weight and 
an attribute code. Currently the only attribute which can be changed is the active flag. 

Argument Type Description 

mlp mĴ  Pointer to the MLP structure. 

Absolute position of the weight in the weight list structure 
within the MLP structure. 

w mt 

attr char Code indicating the attribute to be changed. The only 
currentiy available value is 'a' for activating or deactivating 
a wdght 

Return Value N/A 

Example 

To deactivate the weight connecting the fourth PE in the second hidden layer (layo* 3) to the 
first PE in the output layo* Qayer 4) in a predefined MLP called MyMLP: 

altw(MyMLP. absw(MyMLP, 3, 3,0,4), 'a'); 

N.B. The same command will reactivate the weight, as tiie active flag is toggled. For a 
description of the function abswQ. see above. 

2.6. Example: The XOR Problem. 

One of the strengths of the MLP network is to learn complex nonlinear mappings between 
input-output pairs, and solve problems tiiat are not linearly sq)arable. One problem that does 
not possess a linearly separable solution is tiie logical Exclusive-OR (XOR) function that has a 
positive output if one or otho* of the inputs is positive, but not both. Although this problem 
appears trivial to the human mind, early self-adjusting systans were not able to determine the 
relationship between the iiqjuts and tiie outputs for themselves. 
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For such a problem, the training set consists of four pattons: 

Inputs Output 

Pattern 1 0 0 0 

0 1 1 

1 0 1 

1 1 0 

Pattern 2 
0 0 0 

0 1 1 

1 0 1 

1 1 0 

Patterns 

0 0 0 

0 1 1 

1 0 1 

1 1 0 Pattern 4 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

Upon each of these patterns being presented to the MLP. one epoch can be said to have 
occurred. As the sigmoid activation fimction satiu^ies towards 0 and 1 but neva- actually 
reaches them, it is prefa-able to use values which are close to these to represent them. Because 
this problem deals with only O's and I's as inputs and outputs, the values 0.1 and 0.9 will be 
used to represent them as they are sufficiently dissimilar from one another not to be confiised. 

The following program can then be used to solve the XOR problem. 

/ / include <stdio.h> 
//include <stdl ib .h> 
//include "mlpdefs.h" 

tfdefi ne stopping_condi t ion 
//define t s e t s i z e 

((epoch = 100000) | [ ( e rror < O.OOOOD) 
4 / * Size of t r a i n i n g set * / 

void main(void) 
{ 
mlp *xornilp; 
double * i v : 
double desout; 
double *output: 
double error = 1.0: 
double t r n s e t [ 4 ] [ 3 ] 
long epoch = 0: 
i n t pat tern; 

/ * The MLP * / 
/ * The input vector * / 
/ * The desired output * / 
/ * The actual MLP output * / 
/ * The global error of the MLP for each epoch * / 
/ * The t ra in ing set information * / 
/ * Epoch counter * / 
/ * Pattern counter * / 

/ * Load the t r a i n i n g set with the information in the form: 
/ * t O . n C O . l ] [ 0 . 1 ] 
/ * [ O . n C O . 9 ] [ 0 . 9 ] 
/ * [ 0 . 9 ] [ 0 . 1 ] [ 0 . 9 ] 
/ * [ 0 . 9 ] [ 0 . 9 ] [ 0 . 1 ] 
t r n s e t [ 0 ] [ 0 ] = 0.1 
t r n s e t [ l ] [ 0 ] = 0.1 
t r n s e t [ 2 ] [ 0 ] = 0.9 
t r n s e t [ 3 ] [ 0 ] = 0.9 

t r n s e t [ 0 ] [ l ] = 0 . 1 : t r n s e t [ 0 ] C 2 ] = 0.1 
t r n s e t [ l ] [ n = 0 . 9 : t r n s e t [ l ] [ 2 ] = 0.9 
t r n s e t [ 2 ] [ l } = 0 .1 ; t r n s e t [ 2 ] [ 2 ] = 0.9 
t r n s e t [ 3 ] [ l ] = 0 .9 ; t r n s e t t 3 ] [ 2 ] = 0.1 

/ * Use the randomize function to i n i t i a l i s e the random number generator. * / 
randomize(); 

/ * Define a 2-2-1 MLP with a standard sigmoid a c t i v a t i o n function * / 
/ * applied at each PE in the network. * / 
xormlp = defmlpCXORSolution". 2. 2. 0. 1. 1. 0 .5 . 1 ) ; 
/ * Set the learning and momentum c o e f f i c i e n t s . * / 
xorinlp->lc = 0 .5 ; xormlp->m = 0 .9; 

/ * Al locate memory for the input vector . * / 
iv - (double *) malloc(2 * s izeof(double * ) ) : 

/ * Main program loop * / 
while ( !stopping_condit ion) 

{ 
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/ * T r a i n the HLP on each p a t t e r n i n the t r a i n i n g se t i n t u r n . * / 
f o r ( p a t t e r n = 0 . e r r o r = 0 . 0 ; p a t t e r n < t s e t s i z e : p a t t e r n + + ) 

{ 

/ * Load the i n p u t v e c t o r w i t h the c u r r e n t i n p u t p a t t e r n . * / 
* i v = t r n s e t [ p a t t e r n ] [ 0 ] : * ( i v + l ) = t r n s e t [ p a t t e r n ] [ l ] : 
/ * Set the d e s i r e d o u t p u t . * / 
desout = t r n s e t [ p a t t e r n ] [ 2 ] : 

/ * Feed the i n p u t v e c t o r fo rward and backpropagate the * / 
/ * d e s i r e d o u t p u t . * / 
f f ( i v . x o r m l p ) ; 
e r r o r += bp(&desout , x o r m l p ) : 

I 
epoch++; 

) 
p r i n t f C F i n i s h e d t r a i n i n g a f t e r %ld epochs. \ n \ n " . epoch) : 

/ * Tes t t he MLP. Set o u t p u t t o the o u t p u t a t t r i b u t e o f the o u t p u t PE. * / 
ou tpu t = addrpeCxormlp. abspe(xormlp . 0, 2 ) , * o ' ) ; 
f o r ( p a t t e r n = 0; p a t t e r n < t s e t s i z e : p a t t e r n + + ) 

{ 

/ * Load the i n p u t v e c t o r w i t h the c u r r e n t i n p u t p a t t e r n . * / 
* i v = t r n s e t [ p a t t e r n ] [ 0 ] : * ( i v + l ) = t r n s e t [ p a t t e r n ] [ l ] ; 
/ * Feed the i n p u t v e c t o r f o r w a r d . * / 
f f ( i v . x o r m l p ) ; 
p r i n t f C P a t t e r n Xd: 1 2 . I f X 2 . 1 f - - > 1 2 . I f ( a c t u a l ) X 2 . 1 f ( p r e d i c t e d ) . \ n ' 

p a t t e r n + 1 . * i v , * ( i v + l ) . t r n s e t [ p a t t e r n ] [ 2 ] . * o u t p u t ) : 
} 

/ * Save the MLP t o d i s k . * / 
writemlpCXORMLP.NND-. x o r m l p ) : 
/ * Free a l l a l l o c a t e d memory. * / 
f r e e ( i v ) ; 
f r e e m l p ( x o r m l p ) ; 

1 

If the file is saved as XOR.CPP. compilation can be achieved using the Borland C command 
line compiler as follows: 

bee -G -fT xor.cpp mlp.cpp 

resulting in the executable file XOR.EXE (for compiler options, please refer to Borland 
documentation). When run, the programs output is equivalem to: 

Fin i shed t r a i n i n g a f t e r 1202 epochs 

Pa t t e rn 1 : 0 .1 0 .1 - - > 0 .1 ( a c t u a l ) 0 1 ( p r e d i c t e d ) . 
Pa t t e rn 2: 0 .1 0 .9 - - > 0 .9 ( a c t u a l ) 0 9 ( p r e d i c t e d ) . 
Pa t t e rn 3: 0 .9 0 .1 - - > 0 .9 ( a c t u a l ) 0 9 ( p r e d i c t e d ) . 
P a t t e r n A: 0 .9 0 .9 - - > 0 . 1 ( a c t u a l ) 0 1 ( p r e d i c t e d ) . 

The output file, XORMLP.NND, has the foUowing contents: 

XORSolution 
3 
0.500000 0.900000 
2 2 1 
t 0.062767 1 O.&OOOOO 0 X 0 . 0 ) 
t -0.069308 1 0.500000 I X l . O ) 
t 2.847186 1 0.500000 2 - X O . l ) 
t 5.256626 1 0.500000 3 - X l . l ) 
t -3.282526 1 0.500000 4 - X 0 . 2 ) 
w 1 -5.229600 0 - X 0 . 2 ) 
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w 1 -6.226864 1 - X 1 . 2 ) 
w 1 -3.875745 2 - X 0 . 3 ) 
w 1 -3.875199 3 - X 1 . 3 ) 
w 1 -7.194473 4 - X 2 . 4 ) 
w 1 7.152833 5 - X 3 . 4 ) 

which can be read using further programs with the function readmlpO-

2.7. C Source Code. 

The following subsections list the source code both for the MLPDEFS.H header file and the 
MLP.CPP file of library routines. Comments are provided throughout the code, but additional 
information is contained above. 

2.7.1. MLPDEFS.H 

/ * - - * 
/ * m l p d e f s . h * 
/ * - * 
/ * Header f i l e f o r M u l t i l a y e r Perceptron a p p l i c a t i o n s . Contains c o n s t a n t s . * 
/ * s t r u c t u r e s , t y p e d e f s . f u n c t i o n and procedure d e c l a r a t i o n s used w i t h * 
/ * HLP.CPP * 
/ * * 
/ * Vers ion 2 . 1 (C) Edward J . W i l l i a m s Last Update: Dec 4 t h . 1992. * 
/ * * 

# i f !defined(_MLPDEFS_H) 
/ /de f ine _MLPDEFS_H 

/ * Constants - D e f a u l t va lues f o r an mlp d e c l a r a t i o n . * / 
/ * ~ V 

//def i ne d e f _ n o l 4 / * No o f l a y e r s i n mlp * / 

/ / d e f i ne d e f _ l l 2 / * No o f pe ' s i n l a y e r 1 * / 
/ / de f ine def_12 4 / * No o f pe ' s i n 1 ayer 2 * / 
/ / d e f i ne def_13 4 / * No o f pe ' s i n 1 ayer 3 * / 
/ / d e f i ne def_14 1 / * No o f pe ' s i n l a y e r 4 * / 

/ / d e f i ne d e f _ l c 0 .1 / * Learn ing coef */ 
/ / d e f i ne def_m 0.8 / * Momentum coef */ 

/ * s t r u c t u r e s * / 
/ * — = * / 

s t r u c t pe { 
i n t pos; 
i n t l a y e r ; 
double t h r e s h o l d 
double d e l t a : 
double o u t p u t : 
double e r r o r ; 
s h o r t t f ; 
double be ta : 

/ * S t r u c t u r e f o r p rocess ing e lement . 
/ * P o s i t i o n * / 

In l a y e r * / 
Threshold o r b ias * / 
Change i n t h r e s h o l d * / 
Output o f pe * / 

/ * E r r o r a t pe * / 
/ * T r a n s f e r f u n c t i o n * / 
/ * Steepness o f t r a n s f e r f u n c t i o n * / 

/ * 
/ * 
/ * 
/ * 

s t r u c t w { 
i n t 
i n t 
double 
double 

f p e : 
t p e ; 
va lue : 
d e l t a : 

/ * S t r u c t u r e f o r w e i g h t . * / 
/ * From pe * / 
/ * To pe * / 
/ * Value o f the we igh t * / 
/ * Change due to e r r o r * / 
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s h o r t a c t i v e : / * 1 i f a c t i v e . 0 o t h e r w i s e * / 

s t r u c t bp { 
double * e r r i 
double *w; 
s h o r t *act; 

/ * S t r u c t u r e f o r backprop r e f e r e n c e l i s t . * / 
/ * Po in te r t o e r r o r i n PE s t r u c t u r e . * / 
/ * Po in te r t o we igh t va lue i n we igh t s t r u c t u r e . * / 
/ * Po in te r t o a c t i v e f l a g i n we igh t s t r u c t u r e . * / 

t ypedef s t r u c t { 
char * i d n ; 
i n t nol ; 
i n t * n l ; 
i n t t o t p e : 
i n t t o t w : 
s t r u c t pe *pe: 
s t r u c t w *w: 
s t r u c t bp *bp: 
double I c : 
double m: 
} mlp : 

/ * MLP s t r u c t u r e , * / 
/ * Name o f the mlp . * / 
/ * No o f l a y e r s . * / 
/ * Pe's i n each l a y e r * / 
/ * To ta l no o f pe ' s i n mlp * / 
/ * To ta l no we igh t s i n mlp * / 
/ * Po in t e r to pe ' s * / 
/ * Po in t e r to a l l the we igh t s * / 
/ * Reference to the we igh t s f o r bp * / 
/ * Learn ing c o e f f i c i e n t * / 
/ * Momentum c o e f f i c i e n t * / 

/ * Funct ions and Procedures * / 
/ * = ™ * / 

mlp *de fmlp (cha r * . i n t , i n t . i n t . i n t . s h o r t , doub le , s h o r t ) ; / * D e f i n e s the 
mlp . * / 

i n t c a l c t o t p e d n t * . i n t ) : / * Ca lcu l a t e s the t o t a l no o f p e ' s . * / 
i n t c a l c t o t w ( i n t * . i n t ) : / * Ca lcu l a t e s the t o t a l no o f w e i g h t s . * / 

v o i d i n i t p e ( s t r u c t pe * . i n t * . i n t . i n t . s h o r t , doub l e , s h o r t ) : / * I n i t i a l i s e s the 
p e ' s . * / 

v o i d i n i t w ( s t r u c t w * . s t r u c t pe * . i n t * . i n t ) ; / * I n i t i a l i s e s the w e i g h t s . * / 
v o i d i n i t b p C s t r u c t bp * . s t r u c t pe * . s t r u c t w * . i n t * . i n t . I n t . i n t ) : 

/ * I n i t i a l i s e s the bp r e f e r e n c e l i s t . * / 
v o i d randwtCmlp * ) : / * Randomises the w e i g h t s . * / 
v o i d r and th (mlp * ) : / * Randomises the t h r e s h o l d s . * / 

double wrandCvoid) : / * Returns random double: 1 < X < 1 

v o i d f f ( d o u b l e * . mlp * ) : / * Feeds v e c t o r fo rward th rough the mlp . * / 
double bp(double * , mlp * ) : / * Propagates e r r o r back through the mlp . * / 
double c a l c e r r ( d o u b l e * . mlp * ) : / * Ca lcu l a t e s the e r r o r o f the network w i t h o u t 

backprop. * / 

double t r a n s ( d o u b l e . s h o r t , d o u b l e ) : / * T rans f e r f u n c t i o n s . * / 
double d t r a n s ( d o u b l e . s h o r t , d o u b l e ) ; / * D e r i v a t i v e s o f t r a n s f e r f u n c t i o n s . * / 

v o i d d i spmlp (mlp * , FILE * , s h o r t ) ; / * D i sp l ay general mlp da t a . * / 
v o i d d i sppe(mlp * , FILE * . i n t ) ; / * D i sp l ay pe da t a . * / 
v o i d d ispw(mlp * . FILE * . i n t ) : / * D i sp l ay we igh t da t a . * / 

v o i d f r e e m l p ( m l p * ) : / * Frees mips a l l o c a t e d memory * / 

i n t abspe(mlp * , i n t . i n t ) ; / * Returns abs p o s i t i o n va lue o f pe * / 
i n t absw(mlp * , i n t . i n t , i n t . i n t ) : / * Returns abs p o s i t i o n value o f w e i g h t * / 

v o i d a l t p e ( m l p * , i n t . cha r , d o u b l e ) ; / * A l t e r s a t t r i b u t e s o f pe * / 
v o i d a l t w ( m l p * . i n t . c h a r ) ; / * A l t e r s a t t r i b u t e s o f we igh t * / 

double *addrpe(mlp * . i n t . c h a r ) : / * Returns address o f a pe a t t r i b u t e * / 
double *addrw(mlp * , i n t , c h a r ) : / * Returns address o f a we igh t a t t r i b u t e * / 

mlp *readmlp(char * , mlp * ) ; / * Reads an mlp f r o m f i l e . * / 
v o i d w r i t e m l p ( c h a r * . mlp * ) ; / * Wr i t e s an mlp t o f i l e . * / 

//endi f 
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2.7.2. MLP.CPP 
/ * - * 
/ * mlp .cpp * 
/ * • 
/ * Generic code f o r the d e f i n i t i o n and running o f a M u l t i l a y e r P e r c e p t r o n . * 
/ * and i t ' s t r a i n i n g w i t h the backpropaga t ion a l g o r i t h m . * 
/ * - - - - - - * 
/ * Vers ion 2 .1 (C) Edward J . W i l l i a m s Last Major Update: Apr 3 r d , 1992. * 
/ + - - * 
/ * Minor r e v i s i o n : Sept 1 2 t h . 1993. * 
/ * Update o f b p ( ) and c a l c e r r O f u n c t i o n s to r e t u r n the * 
/ * g l o b a l e r r o r c a l c u l a t e d as the Eucl idean D i s t a n c e . * 
/ * - * 

tfif ! d e f i n e d ( _ S T D I O _ H ) 
/ / i nc lude < s t d i o . h > 
tfendif 
/ / i f ! d e f i n e d ( _ S T D L l B _ H ) 
/ / inc lude < s t d l i b . h > 
//endi f 
/ / i f ! d e f i n e d ( MATH_H) 
/ / inc lude <math.h> 
//endi f 
/ / i f !de f ined(_STRING_H) 
/ / inc lude < s t r i n g . h > 
/ / end i f 

/ / i f !defined(_MLPDEFS_H) 
/ / inc lude "mlpde f s -h" 
//endi f 

/ * F u n c t i o n : Returns the abso lu t e va lue o f a process ing element i n the * / 
/ * a r r a y o f PEs g iven i t s l o c a l p o s i t i o n i n i t s l a y e r . * / 
/ * Returns -1 i f no such PE e x i s t s . * / 
i n t abspeCmlp *mlp . i n t pe. i n t 1) 
{ 

i n t c n t . va lue = - 1 : 

f o r ( c n t = 0 : cn t < m l p - > t o t p e : cn t++) 
i f ( ( ( * C m l p - > p e + c n t ) ) . p o s == pe) && ( ( * ( m l p - > p e + c n t ) > . 1 a y e r = 1 ) ) 

va lue = c n t : 

r e t u r n v a l u e ; 
} 

/ * F u n c t i o n : Returns the abso lu t e p o s i t i o n o f a weigh t i n the a r r a y o f * / 
/ * we igh t s g iven i t s which two PEs i t connects . * / 
/ * Returns -1 i f no such weight e x i s t s , 
i n t absw(mlp *mlp . i n t f p e . i n t f 1 , i n t t p e . i n t t l ) 

i n t c n t . va lue = - 1 ; 

f o r ( c n t = 0 : cn t < m l p - > t o t w : cn t++) 
i f ( ( ( * ( m l p - > p e + ( * { m l p - > w + c n t ) ) . f p e ) ) . p o s = f p e ) && 

( ( * ( m l p - > p e + ( * ( m l p - > w + c n t ) ) . F p e ) ) . l a y e r = f 1 ) && 
( ( * ( m l p - > p e + ( * ( m l p - > w + c n t ) ) . t p e ) ) . p o s = tpe ) && 
( ( * ( m l p - > p e + ( * ( m l p - > w + c n t ) ) . t p e ) ) . l a y e r = t l ) ) 

va lue c n t : 

r e t u r n v a l u e ; 
} 

/ * F u n c t i o n : Returns the address o f a c e r t a i n a t t r i b u t e o f a c e r t a i n PE when*/ 
/ * g iven the abso lu t e value o f t he PE and a c h a r a t e r code f o r the * / 
/ * a t t r i b u t e r e q u i r e d . Permissable codes a re : * / 
/ * ' f : Threshold * / 
/ * ' d ' : De l ta Threshold * / 
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/ * ' o ' : Output * / 
/ * ' e ' : Local E r r o r * / 
double *addrpe(mlp *mlp . i n t pe. char a t t r ) 
( 
double *address; 

s w i t c h ( a t t r ) 
{ 
case • f : address 

break: 
= &( (* (mlp ->pe+pe ) ) t h r e s h o l d ) 

case • d ' : address 
break; 

= &(C*(m1p->pe+pe)) d e l t a ) : 

case • o ' : address 
break: 

= &(C*Cmlp->pe+pe)) o u t p u t ) : 

case •e ' : address 
break; 

= &( (* (mlp ->pe+pe ) ) e r r o r ) ; 

r e t u r n address : 
) 

I * F u n c t i o n : Returns the address o f a c e r t a i n a t t r i b u t e o f a c e r t a i n weigh t * / 
/ * g iven the abso lu te va lue o f the we igh t and a cha rac t e r code * / 
/ * f o r the a t t r i b u t e r e q u i r e d . Permissable codes a r e : * / 
/ * ' V : Value * / 
/ * - d ' : Del ta Value * / 
double *addrw(mlp *ni lp . i n t w, char a t t r ) 
{ 
double *address: 

s w i t c h ( a t t r ) 
\ 
case ' v ' : address = & C ( * ( m l p - > w + w ) ) . v a l u e ) ; 

break; 
case - d ' : address = & ( ( * ( m l p - > w 4 « ) ) . d e l t a ) : 

break; 
I 

r e t u r n address : 
I 

/ * Procedure: Al lows an a t t r i b u t e o f a PE t o be changed g iven the abso lu te * / 
/ * va lue o f the PE and an a t t r i b u t e code, where v a l i d codes a re : * / 
/ • ' f : T r a n s f e r Func t ion * / 
/ * ' b ' : Beta c o e f f i c i e n t * / 
/ * The new va lue o f the a t t r i b u t e i s passed i n as a double and * / 
/ * conver ted to the new data type w i t h i n the procedure . * / 
v o i d a l t p e ( m l p *mlp . i n t pe. char a t t r . double newval) 
( 

s w i t c h ( a t t r ) 
i 
case * f ' : ( * ( m l p - > p e + p e ) ) . t f = ( s h o r t ) newva l : 

b reak: 
case ' b ' : (* (mlp->pe+pe) ) .be ta = newval : 

b reak: 
} 

} 

Procedure: A l l o w s an a t t r i b u t e o f a we igh t t o be changed g iven the * / 
abso lu t e va lue o f the weigh t and an a t t r i b u t e code. C u r r e n t l y * / 
the on ly v a l i d code i s : * / 

' a ' : A c t i v e f l a g . * / 
At present no i t i s not necessary to pass a value to t h i s * / 
procedure f o r changing the a t t r i b u t e as i s r e q u i r e d i n * / 
a l t p e O . * / 

v o i d a l t w ( m l p *mlp . i n t w, char a t t r ) 

s w i t c h ( a t t r ) 
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case 'a*: i f ( ( * ( m l p - > w + w ) ) . a c t i v e ) 
( * ( m l p - > w + w ) ) . a c t i v e = 0; 

e l s e 
( * ( m l p - > w + w ) ) . a c t i v e = 1 : 

b reak; 
) 

1 

/ * F u n c t i o n : This f u n c t i o n performs the backpropaga t ion a l g o r i t h m on the * / 
/ * MLP g i v e n a de s i r ed ou tpu t v e c t o r . I t r e t u r n s the g l o b a l e r r o r * / 
/ * (Euc l i dean Dis t ance ) o f the ne twork . * / 
double bp(double *ov . mlp *mlp) 
{ 

i n t i . j . k ; 
i n t * n l ; 
s t r u c t pe *pe: 
s t r u c t w *w; 
s t r u c t bp *bp: 
double cumle r r = 0 . 0 , sumerrs: 

/ * I n i t i a l i s e bp and w p o i n t e r . * / 
bp = mlp->bp; 
w = mlp->w; 

/ * I n i t i a l i s e p o i n t e r s t o f i n a l l a y e r , pe, and o u t p u t v e c t o r e lement . * / 
n l = mlp ->n l + mlp->nol - 1 : 
pe = mlp->pe + m l p - > t o t p e - 1 ; 
ov += * n l - 1 : 

/ * C a l c u l a t e the e r r o r s a t the ou tpu t neurons, a d j u s t the * / 
/ * t h r e s h o l d s , and cumulate the e r r o r s . * / 
For ( j = * n l ; j > 0; j - . o v - - , p e - - ) 

i 
p e - > e r r o r = d t r a n s ( p e - > o u t p u t , p e - > t f . pe->beta) * (*ov - p e - > o u t p u t ) ; 
pe ->de l t a = m l p - > l c * pe->er ror + (mlp->m * p e - > d e l t a ) ; 
p e - > t h r e s h o l d += p e - > d e l t a : 
cumle r r -•-= (*ov - pe ->ou tpu t ) * (*ov - p e - > o u t p u t ) : 

} 
n l - - : 

/ * Per form the backprop a l g o r i t h m through the m l p . * / 
f o r ( i = mlp->nol - 1 : i > 1; i - - . n l - - ) 

f o r ( j = * n l : j > 0; j - . p e - - ) 
I 
sumerrs = 0 . 0 ; 
f o r (k = * ( n l 4 - I ) : k > 0; k - - . bp++) 

sumerrs += *(bp->w) * * ( b p - > e r r ) * ( d o u b l e ) * ( b p - > a c t ) ; 
p e - > e r r o r = d t r a n s ( p e - > o u t p u t , p e - > t f . pe ->be ta ) * sumerrs ; 
pe ->de l t a = m l p - > l c * pe ->e r ro r + (mlp->m * p e - > d e l t a ) ; 
p e - > t h r e s h o l d + " p e - > d e l t a ; 
} 

t* C a l c u l a t e the d e l t a w e i g h t s and a d j u s t the w e i g h t v a l u e s . * / 
f o r (k = 0; k < m l p - > t o t w : k-H-. w++) 

\ 
w - > d e l t a = ( ( m l p - > l c * ( * ( m l p - > p e + ( w - > t p e ) ) ) . e r r o r * 

( * ( m l p - > p e + ( w - > f p e ) ) ) . o u t p u t ) + (mlp->ni * w - > d e U a ) ) * 
w - > a c t i v e ; / * w i t h momentum * / 

w->value += w - > d e l t a ; 

/ * Return the Eucl idean d i s t ance e r r o r o f the ne twork . * / 
r e t u r n s q r t ( c u m l e r r ) ; 

} 

/ * F u n c t i o n : This f u n c t i o n c a l c u l a t e s the g l o b a l e r r o r (Euc l idean Dis t ance ) * / 
/ * o f the network w i t h o u t p e r f o r m i n g the backprop a l g o r i t h m . * / 
double c a l c e r r ( d o u b l e *ov. mlp *mlp) 
{ 

i n t * n l : 
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s t r u c t pe *pe: 

i n t i ; 
double cumle r r = 0 . 0 : 

/ * I n i t i a l i s e p o i n t e r s to f i n a l l a y e r , pe. and o u t p u t v e c t o r e lement . * / 
n l = mlp ->n l + mlp->nol - 1 ; 
pe = mlp->pe + m l p - > t o t p e - 1 : 
ov 4^ * n l - 1 : 

/ * C a l c u l a t e the e r r o r * / 
f o r ( i = * n l : i > 0; i - - . o v - - . p e - - ) 

cumle r r += (*ov - pe ->ou tpu t ) * {*ov - p e - > o u t p u t ) ; 

/ * Return the Eucl idean d i s t ance e r r o r o f the ne twork . * / 
r e t u r n s q r t ( c u m l e r r ) ; 

1 

/ * F u n c t i o n : Returns the t o t a l number o f PEs i n an MLP g iven the number o f * / 
/ * PEs i n each l a y e r and the number o f l a y e r s . * / 
i n t c a l c t o t p e ( i n t * n l . i n t n o l ) 
( 

i n t t o t n = 0 . 
c n t : 

f o r ( c n t = 0; cn t < n o l : cnt-H+. nl-H-) 
t o t n 4= * n l : 

r e t u r n t o t n ; 
} 

/ * F u n c t i o n : Returns the t o t a l number o f we igh t s i n an HLP g iven the number • / 
/ * o f PEs i n each l a y e r and the number o f l a y e r s . * / 
i n t c a l c t o t w ( i n t * n l . i n t n o l ) 
{ 

i n t t o tw = 0 . 
c n t : 

n l -H-: 
f o r ( c n t = 1 : cn t < n o l ; cnt-H-. nl-M-) 

t o tw += * n l * * ( n l - l ) : 

r e t u r n t o t w : 
} 

/ * F u n c t i o n : Returns the address o f a newly d e f i n e d MLP. In order to d e f i n e * / 
/ * the MLP a s t r i n g i d e n t i f i e r , the number o f PEs i n the f o u r * / 
/ * a l l o w a b l e l a y e r s , a t r a n s f e r f u n c t i o n code, a steepness * / 
/ * c o e f f i c i e n t , and a f l a g i n d i c a t i n g whether the t r a n s f e r * / 
/ * f u n c t i o n i s to be a p p l i e d at the o u t p u t l a y e r needs to be * / 
/ * p r o v i d e d . Permissable t r a n s f e r f u n c t i o n codes a r e : * / 
/ * 0 
/ * 1 
/ * 2 
/ * 3 

L inear * / 
Standard Sigmoid * / 
H y p e r b o l i c Tangent * / 
Sine * / 

/ * P r i o r to r e t u r n i n g , a l l we igh t s and t h r e s h o l d s are i n i t i a l i s e d . * / 
mlp *de fmlp (cha r * t y p e . i n t 1 1 . i n t 12. i n t 13. i n t 14. s h o r t t f . double b e t a , s h o r t 
so) 
( 
mlp *MLP: 
s t r u c t pe *pe: 
s t r u c t w *w; 
s t r u c t bp *bp: 
i n t * n l , n o l . t o t p e . t o t w : 
char * i d n : 

/ * A l l o c a t e memory f o r nl and ass ign va lues . * / 
i f ( ( 1 1 > 0) && (12 > 0) && (13 > 0) && (14 > 0 ) ) 

I 
nol = 4 ; 
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n l = Cin t * ) c a l l o c C n o l . s i z e o f ( * n l ) ) 
* n l = 11 
* ( n l + l ) = 12 
* ( n l + 2 ) = 13 
* ( n l + 3 ) = 14 

) 
e l s e i f ( ( 1 1 > 0) && (12 > 0) && (13 = 0) && (14 > 0 ) ) 

I 
nol = 3: 
n l = ( i n t * ) c a l l o c ( n o l . s i z e o f ( * n l ) ) ; 
* n l = 1 1 
* ( n l + l ) = 12 
* ( n l + 2 ) = 14 

) 
e l s e i f C d l > 0) && (12 = 0) && (13 = 0) && (14 > 0 ) ) 

{ 

nol = 2 ; 
nl = ( i n t * ) c a l l o c C n o l . s i z e o f ( * n l ) ) ; 
*n l = 1 1 : 
* ( n l + l ) = 14; 

) 
e l se 

r e t u r n NULL; 

/ * A l l o c a t e memory f o r i d e n t i f i e r , and i n i t i a l i s e . * / 
i d n = (char * ) c a l 1 o c ( s t r l e n ( t y p e ) , s i z e o f ( * i d n ) ) ; 
s p r i n t f ( i d n , " I s " , t y p e ) ; 

/ * A l l o c a t e memory f o r the p rocess ing elements and i n i t i a l i s e * / 
t o t p e = c a l c t o t p e ( n l . n o l ) ; 
pe = ( s t r u c t pe * ) c a l l o c ( t o t p e . s i z e o f ( * p e ) ) ; 
i n i t p e ( p e . n l , n o l . t o t p e . t f . be t a , s o ) ; 

/ * A l l o c a t e memory f o r the we igh t s and i n i t i a l i s e * / 
t o t w = c a l c t o t w ( n l . n o l ) : 
w = ( s t r u c t w * ) c a l l o c ( t o t w , s i z e o f C * w ) ) : 
i n i t w ( w . pe. n l . t o t p e ) : 

/ * A l l o c a t e memory f o r backprop r e fe rence l i s t and i n i t i a l i s e * / 
bp « ( s t r u c t bp * ) c a l l o c ( t o t w , s i z e o f ( * b p ) ) : 
i n i t b p ( b p , pe, w. n l . n o l . t o t p e . t o t w ) : 

/ * A l l o c a t e memory f o r the mlp and se t va lues . * / 
HLP ° (mlp * ) c a l l o c d , s i zeof (*MLP)) ; 

MLP->idn = i d n : 
MLP->nol = n o l : 
MLP->nl = n l ; 
MLP->totpe = t o t p e ; 
MLP->totw = t o t w : 
MLP->pe = pe: 
MLP->w = w; 
HLP->bp = bp; 
MLP->lc = d e f _ l c : 
MLP->m = def_m: 

/ * Randomize the we igh t s and t h r e sho lds o f the mlp * / 
randwt(MLP): 
r and th (HLP) : 

/ * Return the address o f the mlp * / 
r e t u r n MLP; 

) 

/ * Procedure: D i s p l a y s general i n f o r m a t i o n about the MLP t o a f i l e s t ream. * / 
/ * I f the argument ' 1 ' i s se t t o one, the legend LEARNING i s * / 
/ * p r i n t e d , o the rw i se P r e d i c t i n g i s . * / 
v o i d d i spmlp(mlp *mlp , FILE *where. s h o r t 1) 
I 
char s t r i n g [ 2 0 ] : 
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char s p a c e s [ 2 0 ] : 

i f (mlp->no l = 4) 
s p r i n t f C s t r i n g . "Xd-Xd-Xd-Jd 

* ( m l p - > n l + 3 ) ) ; 
e l s e i f (mlp ->no l = 3) 

s p r i n t f ( s t r i n g . " J d - i d - X d " . * ( m l p - > n l ) . * ( m l p - > n l + l ) 
e l s e i f (mlp ->no l = 2) 

s p r i n t f ( s t r i n g . - X d - X d " , * ( m l p - > n l ) . * ( m l p - > n l + l ) ) ; 

* ( m l p - > n l ) . * ( m l p - > n l + l ) . * ( m l p - > n l + 2 ) 

( m l p - > n l + 2 ) ) : 

s p r i n t f C s p a c e s . ' 
s p a c e s C s t r l e n ( m l p - > i d n ) ] \0 

f p r i n t f ( w h e r e , "MLP name: Xs. 
f p r i n t f ( w h e r e , 'Xs 
f p r i n t f ( w h e r e . "Xs 
f p r i n t f ( w h e r e . "Xs 
i f ( 1 ) 

f p r i n t f ( w h e r e , -LEARNINGVnXn"): 
e l s e 

f p r i n t f ( w h e r e . " P r e d i c t i n g \ n \ n " ) 

S t r u c t u r e 
Learning coef 
Momentum coef 
S ta tus 

X s . \ n ' . m l p - > i d n , s t r i n g ) 
X f . \ n " . spaces, m l p - > l c ) : 
X f . \ n " . spaces. mlp->m) : 
" . spaces) ; 

/ * Procedure: Di sp lays general i n f o r m a t i o n about a s p e c i f i c PE t o a f i l e 
/ * s t ream. 
v o i d d i sppe{mlp *mlp . FILE *where, i n t pe) 
{ 

Processing Element: X d \ n " , p e ) ; 
P o s i t i o n : X d \ n - , ( * ( m l p - > p e + p e ) ) . p o s ) : 

f p r i n t f ( w h e r e 
f p r i n t f ( w h e r e 
f p r i n t f ( w h e r e . * Layer: Xd\n" 
f p r i n t f ( w h e r e . " Th re sho ld : X f \ n " 
f p r 1 n t f ( w h e r e . • D e l t a : X f \ n " 
f p r i n t f ( w h e r e . " Output : X f \ n ' 
f p r i n t f ( w h e r e . " E r r o r : X f \ n " 
f p r i n t f ( w h e r e . ' Trans Func: " ) ; 
s w i t c h ( ( * ( m l p - > p e + p e ) ) . t f ) 

{ 

( * ( m l p - > p e + p e ) ) . l a y e r ) ; 
( * ( m l p - > p e + p e ) ) . t h r e s h o l d ) 
( * ( m l p - > p e + p e ) ) . d e l t a ) ; 
( * ( m l p - > p e + p e ) ) . o u t p u t ) : 
( * ( m l p - > p e + p e ) ) . e r r o r ) ; 

case 0: f p r i n t f { w h e r e . "No t r a n s f e r f u n c t i o n X n " ) 
break: 

case 1 : f p r i n t f ( w h e r e , "Standard S i g m o i d X n ' ) ; 
break; 

case 2: f p r i n t f ( w h e r e , " H y p e r b o l i c TangentXn") : 
b reak: 

case 3: f p r i n t f ( w h e r e . "S ineXn" ) ; 
break; 

} 

f p r i n t f ( w h e r e Steepness: X f \ n \ n " . ( * ( m l p - > p e + p e ) ) . b e t a ) 

* / 
* / 

/ * Procedure: D i sp l ays general i n f o r m a t i o n about a s p e c i f i c w e i g h t t o a f i l e * / 
/ * s t ream. * / 
v o i d d ispw(mlp *mlp . FILE *where. i n t w) 
{ 

f p r i n t f ( w h e r e , 
f p r i n t f ( w h e r e . 
f p r i n t f ( w h e r e . 
f p r i n t f ( w h e r e . 
f p r i n t f ( w h e r e , 
f p r i n t f ( w h e r e , 
f p r i n t f ( w h e r e , 
f p r i n t f ( w h e r e . 
f p r i n t f ( w h e r e . 
f p r i n t f ( w h e r e . 

Weight X d \ n ' . w ) : 
From PE: X d " . ( * ( m l p - > p e + ( * ( m l p - > w + w ) ) . f p e ) ) . p o s ) ; 

(PE X d ) \ n - . ( * ( m l p - > w + w ) ) . f p e ) ; 
Layer: X d \ n " , ( * ( m l p - > p e + ( * ( m l p - > w + w ) ) . f p e ) ) . 1 a y e r ) 

' To PE: X d " , ( * ( m l p - > p e + ( * ( m l p - > w + w ) ) , t p e ) ) . p o s ) : 
(PE X d ) \ n - , ( * ( m l p - > w + w ) ) . t p e ) : 

I d V n " , ( * ( m l p - > p e + ( * ( m l p - > w H w ) ) . t p e ) ) . l a y e r ) 
( * ( m l p - > w + w ) ) . v a l u e ) : 
( * ( m l p - > w + w ) ) . d e l t a ) : 

Layer 
Value : 
D e l t a : 
S t a tus : 

X f \ n " 
X f \ n " 
• ) : 

i f ( ( * ( m l p - > w + w ) ) . a c t i v e ) 
f p r i n t f ( w h e r e . " A c t i v a t e d X n V n " ) ; 

e l s e 
f p r i n t f ( w h e r e . ' D e a c t i v a t e d \ n \ n ' ) 

/ * F u n c t i o n : Returns the d e r i v a t i v e o f the t r a n s f e r f u n c t i o n , g i v e n a 
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/ * t r a n s f e r f u n c t i o n i d e n t i f y i n g code. Permissable codes are; 
/ * 0 
/ * 1 
/ * 2 
/ * 3 

Linear * 
Standard Sigmoid * 
H y p e r b o l i c Tangent * 
Sine * 

double d t r a n s ( d o u b l e x . sho r t t . double be ta ) 
{ 
double v a l u e : 

s w i t c h ( t ) 
{ 

case 0: va lue = 1 : 
break: 

case 1 : va lue = ( 2 . 0 * beta * x * ( 1 . 0 - x ) ) : 
b reak: 

case 2 : va lue = (beta * ( 1 . 0 + x ) * ( 1 . 0 - x ) ) : 
b reak: 

case 3: va lue = c o s ( x ) ; 
break: 

) 

r e t u r n v a l u e ; 
) 

/ * Procedure: Feeds an i n p u t v e c t o r f o r w a r d th rough the MLP. * / 
v o i d f f ( d o u b l e * i v . mlp *mlp) 
{ 

i n t i . j . k ; 
s t r u c t pe *pe; 
s t r u c t w *w: 
double suminps: 

/ * Use temporary address p o i n t e r s f o r the PEs and weights * / 
pe = mlp->pe: 
w = mlp->w; 

/ * Load the i n p u t v e c t o r i n t o the i n p u t l a y e r o f the HLP * / 
f o r ( j = 0; j < * ( m l p - > n l ) ; i v + + . pe+-^) 

pe->output = * i v : 

/ * Feed the values fo rward through the HLP * / 
f o r ( i = 1 : i < m l p - > n o l ; i + + ) 

f o r ( j = 0 : j < * ( m l p - > n l + i ) ; pe++) 
{ 

suminps = 0 . 0 ; 
f o r (k - 0 ; k < * ( m l p - > n l - K i - l ) ) : k++. w++) 

suminps += w->value * ( * ( m l p - > p e + ( w - > f p e ) ) ) . o u t p u t 
* (double ) w - > a c t i v e : 

pe ->outpu t = t rans(suminps + p e - > t h r e s h o l d . p e - > t f . p e - > b e t a ) ; 
) 

) 
/ * Procedure: Frees a l l the memory a l l o c a t e d t o the MLP by e i t h e r d e f m l p O * / 
/ * r e a d m l p O . * / 
v o i d f r e e m l p ( m l p *mlp) 
( 

f r e e ( m l p - > i d n ) ; 
f r e e ( m l p - > n l ) ; 
f r e e ( m l p - > p e ) : 
f r e e ( m l p - > w ) ; 
f r e e ( m l p - > b p ) : 
f r e e ( m l p ) ; 

1 

/ * Procedure: I n i t i a l i s e s the backpropaga t ion s t r u c t u r e used t o speed the * / 
/ * implementa t ion o f the backp ropa t ion a l g o r i t h m . • / 
v o i d i n i t b p ( s t r u c t bp *bp. s t r u c t pe *pe. s t r u c t w *w. i n t * n l , i n t n o l . i n t t o t p e 
i n t t o t w ) 
I 
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s t r u c t pe * p e r e f : 
i n t pecn t . went ; 

pe re f = pe: 

/ * Set the pe p t r to l a s t pe i n p e n u l t i m a t e l a y e r . * / 
pe ^ ( t o t p e - * ( n l + n o l - l ) - 1 ) ; 

/ * Assign the values t o bp r e f e r ence l i s t . * / 
f o r (pecn t = t o t p e - * ( n l + n o l - l ) - 1 ; pecnt >= 0; p e c n t - - . p e - - ) 

f o r (went = to tw - 1 ; went >= 0: w e n t - - ) 
i f ( ( * ( w + w c n t ) ) . f p e = pecnt ) 

\ 
bp->e r r = & ( ( * { p e r e f + ( * ( w + w c n t ) ) . t p e ) ) . e r r o r ) : 
bp->w = & ( ( * ( w + w c n t ) ) . v a l u e ) ; 
bp->act = & ( ( * { w - H t f c n t ) ) . a c t i v e ) : 
bp++: 

1 
} 

/ * Procedure: Takes the u n i n t i a l i s e d l i s t o f PEs and g ives them t h e i r * / 
/ * i d e n t i f y i n g p o s i t i o n s , t r a n s f e r f u n c t i o n s , steepness c o e f f s * / 
/ * and i n i t i a l i s e s t h e i r t h r e s h o l d v a l u e s . • / 
v o i d i n i t p e ( s t r u c t pe *pe. i n t * n l . i n t n o l . i n t t o t p e . s h o r t t f . double b e t a , s h o r t 
s e t o ) 
( 

i n t pos = 0 . l a y e r « 0 . c n t : 

/ • I n i t i a l i s e the pe"s. * / 
f o r ( c n t = 0 : cn t < t o t p e ; cnt+-f^) 

( 
( * ( p e + c n t ) ) . p o s = pos: 
( * ( p e + c n t ) ) . l a y e r = l a y e r : 
( * ( p e - H c n t ) ) . t h r e s h o l d = w r a n d ( ) : 
( * ( p e + c n t ) ) . o u t p u t •= 0 . 0 ; 
i f ( ( l a y e r = (no l - 1 ) ) && ! se to ) 

( * ( p e + c n t ) ) . t f » 0; 
e l s e 

( * ( p e + c n t ) ) . t f = t f : 
i f ( * { n l - H a y e r ) - 1 = pos) 

{ 
pos = 0; 
+-t-layer; 

} 

e l se 
-H-pos: 

(*(pe- f -cn t ) ) .be ta = be ta : 

1 

/ * Procedure: Takes the u n i n t i a l i s e d l i s t o f we igh t ss and g ives them t h e i r * / 
/ * i d e n t i f y i n g p o s i t i o n s , and se t s t h e i r a c t i v e f l a g t o 1 . * / 
v o i d i n i t w ( s t r u c t w *w. s t r u c t pe *pe. i n t * n l . i n t t o t p e ) 
{ 

i n t f p e . 
t p e . 
wno = 0; 

/ * I n i t i a l i s e the w e i g h t s . * / 
f o r ( t p e = * n l : tpe < t o t p e : tpe-H-) 

f o r ( f p e = 0: fpe < t p e : fpe-H+) 
{ 

i f ( ( * ( p e - H f p e ) ) . l a y e r = ( * ( p e + t p e ) ) . l a y e r - 1) 
{ 

( * ( w + w n o ) ) . f p e = f p e ; 
(* (w+wno) ) . t pe = t p e ; 
( * ( w + w n o ) ) . a c t i v e = 1; 
wno++; 

1 
) 
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) 

/ * Procedure: Randomises a l l the t h re sho lds i n an mlp t o the range [ - 1 . + 1 ] . * / 
/ * and i n i t i a l i s e s the d e l t a s t o ze ro . * / 
v o i d r and th (mlp *mlp) 
{ 

i n t c n t : 

f o r ( c n t 0; c n t < m l p - > t o t p e ; cn t++) 
{ 

( * ( m l p - > p e + c n t ) ) . t h r e s h o l d = w r a n d O ; 
( * ( m l p - > p e + c n t ) ) . d e l t a = 0 . 0 : 

) 
} 

/ * Procedure: Randomises a l l t he we igh t s i n an mlp t o the range [ - 1 , + 1 ] , * / 
/ * and i n i t i a l i s e s the d e l t a s to ze ro . * / 
v o i d randwt(mlp *mlp) 
( 

i n t c n t : 

f o r ( c n t •= 0; cn t < m l p - > t o t w : cnt-H-) 
{ 

(* (mlp ->w+-cn t ) ) . va lue = w r a n d O : 
( * { m l p - > w + c n t ) ) . d e l t a •= 0 . 0 : 

1 
} 

/ * F u n c t i o n : Reads a mlp d e f i n i t i o n f i l e and r e t u r n s the address to the MLP.*/ 
/ * I f the mlp argument to the f u n c t i o n i s HULL, a new address i s * / 
/ * c r e a t e d o the rwi se the same address i s r e t u r n e d as i s g i v e n . * / 
/ * I f the MLP d e f i n i t i o n f i l e i s an i n i t i a l i a l i s a t i o n f i l e as * / 
/ * opposed to a s t o r ed f i l e , the MLP i s c rea ted us ing d e f m l p O . * / 
mlp *readmlp(char * f n , mlp *o ldmlp) 
{ 

FILE * f p : 
mlp *newmlp: 
char * i d n , f c h a r ; 
i n t f i n t . 11 = 0 , 12 = 0 . 13 = 0 . 14 = 0 . c n t . i n i t = 0; 
double f f l . f f l 2 . beta = 0 . & : 
s h o r t f s h . t f = 1 . se to = 1 : 

i d n = (char * ) c a l l o c ( 2 0 , s i z e o f ( * i d n ) ) ; 

/ • Return NULL i f unable t o open f i l e . * / 
i f ( ( f p = f o p e n ( f n , " r ' ) ) = NULL) 

{ 

pr int fC_REAOMLP( ) : Unable to open f i l e : %s \n ' , f n ) ; 
r e t u r n NULL: ) 

/ * Check to see i f nnd f i l e i s an i n i t i a l i s a t i o n f i l e * / 
f s c a n f ( f p . "%*s %d 3;* l f I * l f - . A f i n t ) ; 
f o r ( : f i n t > 0: f i n t - - ) 

f s c a n f ( f p . • X * d " ) : 
f s c a n f ( f p . ' \ n l c - , & f c h a r ) ; 
i f ( ( f c h a r = ' x ' ) | | ( f c h a r = ' X ' ) ) 

{ 
f s c a n f { f p , "Shd % l f %hd ' . & t f . Abeta . & s e t o ) : 
i n i t = 1 ; 

} 
r e w i n d ( f p ) : 

f s c a n f ( f p . '%s Xd I l f X l f . i d n . i f i n t . &f f 1 . & f f l 2 ) : 

/ * Return NULL i f the s p e c i f i e d HLP and the MLP s t o r e d on f i l e a re no t the * / 
/ * same s t r u c t u r e . * / 
i f ( o ldmlp != NULL) 

i f ( o l d m l p - > n o l ! - f i n t ) 
{ 
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p r i n t f ( ' _ R E A D H L P ( ) : Def ined mlp and mlp i n 2s are i n c o m p a t i b l e X n " . f n ) ; 
r e t u r n NULL: 

1 

s w i t c h ( f i n t ) 
{ 

case 2: f s c a n f ( f p . "%d X d \ n ' . A l l , &14) ; 
break; 

case 3: f s c a n f ( f p . " I d I d X d \ n " . fill. &12. & 1 4 ) ; 
b reak : 

case 4 : f s c a n f ( f p . " I d I d %6 %d\n". & 1 1 . &12. &13. & 1 4 ) : 
b reak : 

1 

i f ( o ldmlp = NULL) 
newmlp = d e f m l p ( i d n . 1 1 . 12. 13. 14. t f . be ta , s e t o ) ; 

e l s e 
newmlp = o l d m l p ; 

newmlp->lc = f f l ; 
newmlp->m = f f l 2 ; 

/ * I f the f i l e i s not an i n i t i a l i s a t i o n f i l e , read i n the s t o r e d va lues . * / 
i f ( M n i t ) 

{ 

f o r ( c n t = 0: cn t < newmlp->totpe; cnt-H-) 
{ 

f s c a n f ( f p . '%*c X l f Xhd % l f %*s\n-. & f f 1 . & f s h . & f f l 2 ) : 
( * ( n e w m l p - > p e + c n t ) ) . t h r e s h o l d = f f 1 ; 
( * ( n e w m l p - > p e + c n t ) ) . t f = f s h ; 
(* (newmlp->pe+cn t ) ) . be t a = f f l Z ; 

1 
f o r ( c n t = 0; cn t < newmlp->totw: cnt++) 

( 
f s c a n f ( f p . '%*c I h d X l f S*s\n". & f s h . & f f l ) : 
( * (newmlp ->w+cn t ) ) . va lue = f f l : 
( * ( n e w m l p - > w + c n t ) ) . a c t i v e = f s h ; 

) 
1 

f c l o s e ( f p ) : 

r e t u r n newmlp: 
} 

/ * F u n c t i o n : Returns the va lue o f the t r a n s f e r f u n c t i o n , g iven a t r a n s f e r * / 
/ * f u n c t i o n i d e n t i f y i n g code. Permissable codes a re : * / 
/ * 0: L inear * / 
/ * 1 : Standard Sigmoid * / 
/ * 2: H y p e r b o l i c Tangent * / 
/ * 3: Sine * / 
double t r a n s ( d o u b l e x , s h o r t t . double beta) 
{ 

double v a l u e : 

s w i t c h ( t ) 
( 
case 0: va lue = x ; 

break: 
case 1 : va lue = 1.0 / ( 1 . 0 + e x p ( - ( 2 . 0 * beta * x ) ) ) ; 

b reak; 
case 2: va lue = ( 1 . 0 - e x p ( - ( 2 . 0 * beta * x ) ) ) / ( 1 . 0 + e x p ( - ( 2 . 0 * beta * x ) ) ) 

break; 
case 3: va lue = s i n ( x ) ; 

b reak : 
} 

r e t u r n va lue 
) 
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/ * F u n c t i o n : Returns a random f l o a t i n g p o i n t number i n the range [ - 1 . + 1 ] . * / 
/ * Used when i n i t i a l i s i n g th resho lds and w e i g h t s . * / 
double w r a n d ( v o i d ) 
{ 

double n ; 

n = ( ( d o u b l e ) r a n d O / ( ( d o u b l e ) RAND_MAX / Q . D ) : 
i f ( r a n d O X 101 X 2 = 1) 

n = n * - 1 . 0 : 

r e t u r n n ; 
1 

* Procedure: W r i t e s an MLP to f i l e i n a format readable by r e a d m l p O . * 
* F i l e fo rma t i s : * 
* H L P I d e n t i f i e r ( _ S t r i n g ) * 
* N o O f L a y e r s { _ I n t e g e r ) * 
* Lea rn ingCoef (_doub le ) MomentumCoef(_double) * 
* P E s I n F i r s t L a y e r { _ I n t e g e r ) . . . P E s I n L a s t L a y e r ( _ I n t e g e r ) * 
* t Th re sho ld (_doub le ) TransFunc<_short) fleta(_double) * 
* t Thresho ld (_doub le ) TransFunc(_shor t ) Be ta (_doub le ) e tc * 
* w A c t i v e ( _ s h o r t ) WeightValue(_double) * 
* w A c t i v e ( _ s h o r t ) WeightValue(_double) e t c * 

v o i d w r i t e m l p ( c h a r * f n , mlp *mlp) 
{ 

FILE * f p : 
char i n f o C l ? ] : 
i n t c n t ; 

i f ( ( f p = f o p e n ( f n . " w " ) ) = NULL) 
p r i n t f ( " _ W R I T E M L P ( ) : Unable to open f i l e : X s \ n " . f n ) ; 

e lse 
I 

f p r i n t f ( f p . "Xs\nXd\nXf X f X n " , m l p - > i d n . m l p - > n o l . m l p - > l c . mlp->m): 
f o r ( c n t = 0: c n t < m l p - > n o l ; cnt-H-) 

f p r i n t f ( f p . "Xd " . * ( m l p - > n l + c n t ) ) : 
f p r i n t f ( f p . " \ n " ) ; 

f o r ( c n t = 0: cn t < m l p - > t o t p e : cn t++) 
( 

s p r i n t f C i n f o . " X l d - > ( X l d . X l d ) " . c n t . ( * ( m l p - > p e + c n t ) ) . p o s . 
( * ( m l p - > p e + c n t ) ) . l a y e r ) : 

f p r i n t f ( f p . " t Xf Xhd Xf X s \ n " . ( * ( m l p - > p e + c n t ) ) . t h r e s h o l d . 
( * ( m l p - > p e + c n t ) ) . t f . ( * ( m l p - > p e + c n t ) > . b e t a , i n f o ) : 

} 
f o r ( c n t = 0 : cn t < m l p - > t o t w ; cnt-H-) 

( 
s p r i n t f ( i n f o . " X l d - X X l d . X l d ) " . c n t . ( * ( m l p - > w + c n t ) ) . f p e . 

( * ( m l p - > w + c n t ) ) . t p e ) ; 
f p r i n t f ( f p . "w Xhd Xf X s \ n " . ( * ( m l p - > w + c n t ) ) . a c t i v e . 

( * ( m l p - > w + c n t ) ) . v a l u e , i n f o ) : 
1 

f c l o s e ( f p ) : 
) 
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Appendix 3. 

UAF Datalogs. 

The purpose of this appendix is to provide, in graphical format, a complete list of all the data 
used in training the MLP Cascade, the MLP Switch, and the Fault Isolation Filters which 
comprise the model based FDI solutioa 

Each set of data was gathCTed finom the Unilever Automated Freezer via the CRLIOOO control 
computer connected to a PC by a serial link, The fteezer was operated using the technique 
detailed in section 3.1.4. to enable similar startup conditions before each nm. Usually several 
runs were logged in any one day. and the log name indicates the date and the sequence of the 
run; for example ll-9b.log. 11-9cJog and ll-9dJog refer to the 3rd. 4th and 5th datalogs 
gathered on September 1 Ith. 

All freezer inputs and outputs have been scaled to between ±1 for use with an MLP network 
according to their maximum possible values detailed in section 3.1.1. A complete results list 
detailing how the FDI system behaved for each datalog is provided in section 7.2.3. 
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3.2. Barrel Pressure Transducer Fault. 
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