
School of Engineering, Computing and Mathematics Theses

Faculty of Science and Engineering Theses

1994

A NEURAL NETWORK BASED APPROACH TO FAULT DETECTION A NEURAL NETWORK BASED APPROACH TO FAULT DETECTION

IN INDUSTRIAL PROCESSES IN INDUSTRIAL PROCESSES

EDWARD JAMES WILLIAMS

Let us know how access to this document benefits you

General rights General rights
All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies.
Please cite only the published version using the details provided on the item record or document. In the absence of an open
licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Take down policy Take down policy
If you believe that this document breaches copyright please contact the library providing details, and we will remove access to
the work immediately and investigate your claim.
Follow this and additional works at: https://pearl.plymouth.ac.uk/secam-theses

Recommended Citation Recommended Citation
WILLIAMS, E. (1994) A NEURAL NETWORK BASED APPROACH TO FAULT DETECTION IN INDUSTRIAL
PROCESSES. Thesis. University of Plymouth. Retrieved from https://pearl.plymouth.ac.uk/secam-theses/
509
This Thesis is brought to you for free and open access by the Faculty of Science and Engineering Theses at PEARL. It
has been accepted for inclusion in School of Engineering, Computing and Mathematics Theses by an authorized
administrator of PEARL. For more information, please contact openresearch@plymouth.ac.uk.

https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/secam-theses
https://pearl.plymouth.ac.uk/fose-theses
https://forms.office.com/e/bejMzMGapB
https://pearl.plymouth.ac.uk/about.html
https://pearl.plymouth.ac.uk/secam-theses?utm_source=pearl.plymouth.ac.uk%2Fsecam-theses%2F509&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pearl.plymouth.ac.uk/secam-theses/509?utm_source=pearl.plymouth.ac.uk%2Fsecam-theses%2F509&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pearl.plymouth.ac.uk/secam-theses/509?utm_source=pearl.plymouth.ac.uk%2Fsecam-theses%2F509&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:openresearch@plymouth.ac.uk

PEARL

PHD

A NEURAL NETWORK BASED APPROACH TO FAULT DETECTION IN
INDUSTRIAL PROCESSES

WILLIAMS, EDWARD JAMES

Award date:
1994

Awarding institution:
University of Plymouth

Link to publication in PEARL

https://researchportal.plymouth.ac.uk/en/studentTheses/ffac2354-8a93-46e4-a278-1fb98f8b1843

All content in PEARL is protected by copyright law.

The author assigns certain rights to the University of Plymouth including the right to make the thesis accessible and discoverable via the
British Library’s Electronic Thesis Online Service (EThOS) and the University research repository (PEARL), and to undertake activities to
migrate, preserve and maintain the medium, format and integrity of the deposited file for future discovery and use.

Copyright and Moral rights arising from original work in this thesis and (where relevant), any accompanying data, rests with the Author
unless stated otherwise*.

Re-use of the work is allowed under fair dealing exceptions outlined in the Copyright, Designs and Patents Act 1988 (amended), and the
terms of the copyright licence assigned to the thesis by the Author.

In practice, and unless the copyright licence assigned by the author allows for more permissive use, this means,

 That any content or accompanying data cannot be extensively quoted, reproduced or changed without the written permission of the
author / rights holder

 That the work in whole or part may not be sold commercially in any format or medium without the written permission of the author /
rights holder

 * Any third-party copyright material in this thesis remains the property of the original owner. Such third-party copyright work included in
the thesis will be clearly marked and attributed, and the original licence under which it was released will be specified . This material is not
covered by the licence or terms assigned to the wider thesis and must be used in accordance with the original licence; or separate
permission must be sought from the copyright holder.
Download date: 28. Oct. 2024

A NEURAL NETWORK BASED APPROACH TO
F A U L T D E T E C T I O N IN INDUSTRIAL PROCESSES

by

EDWARD JAMES W I L L I A M S

A thesis submitted to the University Of Plymouth in partial
fulfilment for the degree of

DOCTOR OF PHILOSOPHY

/ t •

School Of Computing

Faculty Of Technology

In collaboration with

Unilever Research Colworth Laboratory

December 1994

LIBRARY STORE \
REFERENCE ONLY

UMlVS^StTY OF PLYMaufH
ItemNo, f qooS.llJTOOT'

Date

Class No.
Con«.No.

1 7 JUN 1997

? r 5 o ^ .^ W I L

LIBRARY SERVSCES

90 0319790 1

To the memory of Frank, my father. I miss you.

A Neural Network Based Approach To Fault Detection In Industrial Processes.

Edward James Williams

Abstract

The need for automated fault detection methods has inaeased in line with the complexity of

processing plant tedmology and their control systems. Fast and accurate fault detection and isolation

(FDI) is essential if a controller is to be effective in a supervisory role. Hiis thesis is concerned with

developing an FDI system based upon artificial neural network techniques. The artificial netiral

network (ANN) is a medianism based upon the concepts of information processing within the brain,

and consequendy has the ability to self adjust, or learn about a given problem domain. It can thus be

utilised in currentiy favoured model-based FDI systems with the advantage that it can learn process

dynamics by being presented examples of process input-output pairs without the need f<ff traditional

mathematically complex models. Similarly, ANNs can be taught to classify characteristics in the

residual (or plant-model difference) signal without the necessity of constructing the types of filter used

in more classical solutions.

Initially, a class of feedforward neural network called the multilayer perceptron (MLP) is used to

model mathematically simulated linear and nonlinear plants in order to demonstrate their abilities in

this field, as well as investigating the consequence of parameter variation on model effectiveness and

how the model can be utilised in a model-based FDI system. A principle aim of this research is to

demonstrate the ability of the system to woric online and in real-time on genuine industrial processes,

and the plant nominated as a test bed - the Unilever Automated Freezer (UAF) - is introduced. The

UAF, being a time-varying system, requires a novel system identification approach which has resulted

in a number of cascaded MLPs to model the various stages in the phased startup of the process. In

order to reduce model mismatch to a minimum, it was necessary to develop an effective switching

mechanism between one MLP in the cascade and the next Attempts using a rule-based switching

mechanism, a simple MLP switch and an error based switching mechanism were made, before a

solution incorporating a genetic algorithm and an MLP network was developed which had the

capability of learning the optimum switdiing points. After the successful development of the model, a

series of MLPs were trained to recognise the characteristics of a nmnber of faults within the residual

signals. Problems involving false alarms between certain faults were reduced by the introduction of

templates - or information pertaining to when a particular fault was most evident in the residuals.

The final solution consisting of an MLP Cascade model and fault isolation MLPs is essentially generic

for this class of time-varying system, and the results achieved on the UAF were far superior to those of

the currenUy used FDI system without the need for any extra sensory information. The MLP Cascade

and associated switching device togeUier with Uie development of an online real-time FDI system for a

time-varying piece of industrial machinery, are deemed to be original contributions to knowledge.

Acknowledgements

Throughout this research project I have been fortimate to have the help and support of a great many

people, and I would like to take this opportunity to offer my thanks.

To Professor Michael J. Denham. my director of studies, whose consistently useful help, advk:e,

comment, criticism, and the occasional wave of the big stick has kept me on course. His knack of

being able to see about a dozen possible avenues of research from any one point never ceases to amaze

me.

To friends and colleagues within the School Of Computing and the Centre For Intelligent Systems.

University Of Plymouth. A friendlier bunch to work with I cannot imagine.

To Charles Johnston. David Cox. Chris Gledhill and Les Kindleysides of the Unilever Research

Colworth Laboratory for providing me with the information and support necessary to develop my

work, and the opportunity to try it out. My particular thanks to Paul Baker for letting me spend many

a day tinkering with his freezers, and other members of the ice cream group for accommodating my

demands on their time with considerable patience.

To my mum, friends and other family for always at least sounding interested.

Most especially to Anne, my wife and PhD widow. Her constant love, support and encouragement has

enabled me to persevere to the end. Last, but by no means least, to my daughter. Harriet Although

her technical advice has not always been readily usable, her endless enthusiasm for life has helped

keep me sane.

Author's Declaration

At no time during the registration for the degree of Doctor Of Philosophy has the author been

registered for any other University award.

This study was fmanced with the aid of a studentship from the Science and Engineering Research

Council, and carried out in collaboration with • and with additional funding from - the Unilever

Research Colworth Laboratory.

Throughout this study, a number of scientific seminars and conferences were attended, and several

presentations of work made. External institutions were visited for consultation purposes, including a

three month secondment to the Unilever Research Colworth Laboratory for field trials.

Signed...!rr7....<?L2:^^^

Date ^ . % . / ± / : . ' : } £

Contents.
Chapter 1. Introduction. 14

1.1. A Definition Of Failure Detectioa 15
1.2. Non-model Based Failure Detection. 16

1.2.1. limit Checking. 16
1.2.2. Voting Systems 17
1.2.3. Frequency Analysis Of Plant Measurements 17

1.3. Model Based FaUure Detectioa 18
1.3.1. Filtering Approaches 18
1.3.2. Estimation Of Nonmeasurable Process Parameters 19
1.3.3. Robust Failure Detectioa 20

1.4. Failure Detection In Controlled Systems 21
1.4.1. Sensitivity To Parameter Variations 21
1.4.2. Control Of The Transient Response 21
1.4.3. Disturbance Signals 22
1.4.4. Steady-State Error 22
1.4.5. Robusmess & Model Uncertainty 22

1.5. Artificial Intelligence & Failure Detectioa 22
1.6. Artificial Neural Networks 24

1.6.1. Overview 24
1.6.2. The Multilayo" P^c^troa 25

1.7. Using Artificial Neural Networks For Failure Detectioa 29
1.8. Research Plaa 30
1.9. Summary Of Chapters 33
References For Chapter 1 35

Chapter 2. Modelling Dynamic Systems Using Artificial Neural Networks. 38
2.1. MLPs As Process Models 39

2.1.1. Fmite & Infinite Impulse Response Systems 39
2.1.2. Learning Strategies 40
2.1.3. Alternative Artificial Neural Network Architectures 41

2.2. Modelling Dynamic Systems Using MLP Networks 41
2.2.1. The Simulated Dynamic Systems 41
2.2.2. Initialising The Networks 42
2.2.3. Training & Testing The Networks 42
2.2.4. Error Measurements 43
2.2.5. Modelling Linear Systems 44
2.2.6. Moddling Nonlinear Systems 50
2.2.7. Modelling ParametCT Variations 50

2.3. Model Based FDI Using MLP Networks 53
2.4. Dynamic Networks For Modelling Dynamic Systems 55
2.5. Comparisons With Traditional Modelling Techniques 57

2.5.1. FIRFUta- 57
2.5.2. UR FUter 59

2.6. Summary 62
References For Chapter 2 62

Chapter 3. The Unilever Automated Freezer. 64
3.1. OvCTview Of The Unilevo" Automated Freezer 65

3.1.1. Datalogging 66

3.1.2. The UAFs Control Structure 67
3.1.3. Stages In The Startup Of The UAF 69
3.1.4. Operation Of The UAF (Data Collection) 70

3.2. Fault Detection In The Unilevo- Automated Freezer 71
3.2.1. Current Fault Detection System 71
3.2.2. Simulated Faults In The UAF 73

3.2.2.1. Barrel Pressure Transducer Fault 73
3.2.2.2. Camflex Valve Disconnected 75
3.2.2.3. Uquid Ammonia Hand Valve Qosed 77

3.3. Sunmiary 78
References For Chapto" 3 78

Chapter 4. Modelling Time-Varying Processes. 80
4.1. Initial Attempts At ModeUing The UAF 81

4.1.1. Method Of Training. 81
4.1.2. Experimental Results 83
4.1.3. Reasons For Failure 86

4.2. Using A Time-Varying MLP. 88
4.2.1. Method Of Training. 89
4.2.2. E^qjerimental Results 89
4.2.3. Reasons For Failure. 90

4.3. Using A Cascade Of MLPs 92
4.3.1. Method Of Training. 93
4.3.2. Experimental Results 94

4.4. Summary 97
References For Chapto" 4 98

Chapter 5. Switching Mechanisms For The MLP Cascade. 99
5.1. Rule-Based Switchmg 100

5.1.1. Principle Of Operatioa 100
5.1.2. Expaimenial Results 102

5.2. Simple MLP Switch 103
5.2.1. Principle Of Operatioa 104
5.2.2. E3q)erimental Results 105

5.3. Error Switching 107
5.3.1. Principle Of Operation. 107
5.3.2. Experimental Results 108

5.4. Optimal MLP Switch 110
5.4.1. Principle Of Operation. 110
5.4.2. Experimental Results 111

5.5. The Genetic Algorithm, 112
5.5.1. Principle Of Operatioa 112

5.5.1.1. The Chromosome 113
5.5.1.2. Fimess 114
5.5.1.3. Sdectioa 114
5.5.1.4. Genetic Operators 115
5.5.1.5. Stopping Conditions 116

5.5.2. Experimental Results 118
5.6. Proposed Method Of Training The MLP Cascade 122
5.7. Summary 123
Refo^nces For Chapto-5 124

Chapter 6. Failure Detection Using M L ? Networks. 125
6.1. An Overview Of Fault Detection Systems Using ANNs 125
6.2. The Three Candidate Faults 127

6.2.1, Manifestations In The Output Signals 127
6.2.1.1. Barrel Pressure Transduce Fault 127
6.2.1.2. Camflex Valve Disconnected 127
6.2.1.3. Liquid Ammonia Hand Valve Qosed 127

6.2.2. Calculating The Residuals 131
6.3. Training A Bank Of MLPs To Classify The Faults 136

6.3.1. Method Of Training. 137
6.3.2. Experimental Results 139

6.4. Introducing Templates In Conjunction With The MLPs 144
6.4.1. Principle Of Operatioa 144
6.4.2. Experimental Results 145

6.5. The Model-Based FDI System. 149
6.6. Summary 151
References For Chapter 6 152

Chapter 7. Discussion & Future Work. 155
7.1. The Model 156

7.1.1. Projea Objectives 156
7.1.1.1. An Explicit Quantitative Freezer Model 156
7.1.1.2. Further Sensory Information. 157
7.1.1.3. Fme-Tuning Of The Model 157

7.1.2. Model Effectiveness 158
7.2. The Fault Isolation Filters 163

7.2.1. Project Objectives 163
7.2.1.1. Training The Filters 163
7.2.1.2. Previously Unencountered Faults 163

7.2.2. The Effectiveness Of The FDI 164
7.2.3. The Accuracy Of Hie FDI 166

7.3. The Combined System 169
7.3.1. Online Real-Time Opamioa 169

7.4. Future Work, 170
7.4.1. Extensions To The Current Solutioa 170

7.4.1.1. Increasing The Number Of Faults 171
7.4.1.2. Increasing The Scope Of The FDI 172
7.4.1.3. Testing The Model Using Other Product Formulations 172

7.4.2. Alternative Solutions 172
7.4.2.1. Non-modd Based FDI 173
7.4.2.2. An Integrated FDl/Conirol System 175

References For Chapter 7 175

Chapters. Concluding Remarks. 177

Appendix 1. Glossary. 180

Appendix 2. C Library Routines. 186
2.1. Structures 188
2.2. Functions & Procedures For Defining & Running An MLP 190
2.3. Procedures For Displaying MLP Informatioa 199
2.4. Functions & Procedures For Saving & Loading MLPs 202
2.5. Additional Functions & Procedures 203
2.6. Example: TTie XOR Problem. 207
2.7. C Source Code 210

Appendbc3. UAFDatalogs. 223
3.1. Normal Operatioa 224
3.2. Barrel Pressure Transducer Fault 254
3.3. Camflex Valve Disconnected 270
3.4. liquid Ammonia Hand Valve Qosed 291

List Of Figures.
1.1 No-failure system configuratioa 18
1.2 Internal Model Control (IMC). 20
1.3 A closed-loop feedback control system. 21
1.4 The genoic processing element typical of many aitifid al neural networks. 24
1.5 The standard sigmoid functioa 24
1.6 Hie Hopfield Network. 25
1.7 A typical fully connected multilayer pCTcq)tron (MLP). 25
1.8 Illustration of how training effectiveness is influenced by the size of the learning

coefifidenL 29
1.9 Schematic of a model-based failure detection and isolation system. 31

2.1 (a) Feedforward and (b) recurrent MLP learning schemes. 40
2.2 Graphs demonstrating how the error E decreases with learning time. 45
2.3 Graphs demonstrating how the error E decreases with learning time. 45
2.4 Graphs showing process and MLP inputs and outputs for a 3-5-1 MLP with

the P coefficient of the sigmoid function set to 0.5. 46
2.5 The standard sigmoid function with P set to 0.5,0.3 and 0.2. 47
2.6 Graphs showing process and MLP inputs and outputs for a 5-3-1 MLP with

the p coefficient of the sigmoid function set to 0.2. 48
2.7 Gr{̂)h demonstrating how the error £ decreases with learning time. 49
2.8 Graphs showing process and MLP inputs and outputs for a 5-3-1 MLP trained

using the recurrent training scheme. 49
2.9 Graphs demonstrating how E decreases with learning time for the MLP trained

to model a nonlinear process, 50
2.10 Graphs showing process and MLP inputs and outputs for a 4-3-1 MLP trained

to model a nonlinear process. 51
2.11 Graphs demonstrating (a) error ino-ease with parameter variation, and (b) how

the effects can be reduced using two MLPs, 52
2.12 Graphs showing how an MLP model trained using both the feedforward and

recurrent learning schemes responds to a sensor fault 54
2.13 Graph demonstrating how a classify MLP can be used to differentiate between

normal process op^ation and a fault situation 55

10

2.14 Schematic demonstrating how to model a dynamic system using (a) a static
ANN such as an MLP, and (b) a dynamic ANN such as an Hi man Net 55

2.15 Two dynamic networks with internal recurrency. (a) the Sudharsanan and
Sundareshan Net and (b) die El man Net 56

2.16 Schematic of a filter trained to predict the dynamic system outputs. 57
2.17 Graphs demonstrating differences that the length of FIR filter makes to system

identification for a linear system. 58
2.18 Graphs demonstrating differenoes that the length of FIR filter makes to system

identification for a nonlinear system. 60
2.19 A single layer perceptron as an ARMA model 61
2.20 ARMA modelling linear and nonlinear systems. 61

3.1 Topical production line for the manufacoire of ice-cream. 65
3.2 Schematic of (a) the Unilever Automated Freeze and (b) the dasher within the

barrel. 66
3.3 Block diagram of the UAF and associated hardware control structure, showing

flow, pressure, temperature and viscosity measurements and their controlles. 68
3.4 Simplified control structure showing parameters which affect only the UAF. 68
3.5 Graph showing the inputs and outputs of the UAF during a typical startup with

no faults. 71
3.6 Ammonia flow through the freeza*. 76

4.1 Schematic for modelling the UAF using a single time-invariant MLP. 81
4.2 Typical division of .log files into training and generalisation sets in a ratio of 2:1, 82
4.3 Graphs demonstrating the failure of a single time-invariant MLP to model the

UAF. 84
4.4 Graph demonsttating die response of a 4-12-4 MLP to the outputs of the UAF. 86
4.5 Schematic for modelling the UAF using a single time-varying MLP. 88
4.6 Graphs demonstrating the failure of a single time-varying MLP to model the

UAF. 90
4.7 Schematic for modelling the UAF with an MLP Cascade consisting of n

individual MLPs. 92
4.8 A brief desaiption of die stages the UAF undo-goes during startup. 92
4.9 IMagrammatic representation of how the MLP cascade opiates in real-time. 93
4.10 Graphs demonstrating how a six stage MLP Cascade is able to model the

outputs of the UAF to a far greata* degree of accuracy than previous methods. 97

5.1 Fmal form of rules derived for switching between MLPs in the Cascade. 101
5.2 Graph demonstrating how the switching signal generated by the rules

transgresses the threshold boundary. 102
5.3 An example of (a) a crisp and (b) a fuzzy decision boundary for determining if a

switching point has been reached. 103
5.4 Training error of the 77-6-1 MLP over an extended training poiod. 106
5.5 Graph demonstrating how die signal genomed by the MU' transgresses the

threshold boundary. 106
5.6 Graph demonsD-ating the poformance of the MLP Cascade using a simplG

MLP switching mechanism with a threshold value of 0.49. 107
5.7 Graph demonstrating the performance of the MLP Cascade using an error

switching mechanism with a threshold value of 0.31. 109
5.8 Graph demonstrating how the accumulated enor transgresses the threshold

boundary. 109

11

5.9 A typical UAF output showing stages of operation (1..6) and switching points
1S1..S5). 110

5.10 Graphs demonstrating the failure of an MLP to optimise and leam switching
points. 111

5.11 Selection can be accomplished using a roulette wheel where each population
memb^ is allocated a slot size proportional to its fimess. 114

5.12 The space tiie GA must search in findmg die optimal switching pomts for an
individual datalog. 120

5.13 Training OTor for four different MLP architectures over an extended training
period. 120

5.14 Graph demonstrating how the signal generated by the MLP transgresses the
threshold bound ary. 121

5.15 Graphs demonstrating the performance of the MLP Cascade using an MLP
Switch trained by GA derived data with a tiireshold of 0.5. 121

5.16 Training regime for the MLP Cascade and tiie MLP Switch. 122

6.1 The extent to which the UAF suffering from a barrel pressure transducer
fault differs from normal operatioa 128

6.2 The extent to which the UAF suffering from a disconnected camflex valve
differs from normal operatioa 129

6.3 The extent to whidi die UAF suffering from a closed liquid anunonia hand
valve differs fix)m normal op^atioa 130

6.4 Graphs demonstrating the residual signals calculated by simple diffo^ce for
normal freezer op^tioa 132

6.5 Graphs demonstrating the residual signals calculated by sunple diffCTence for
the barrel pressure transducer fault 132

6.6 Graphs demonstrating the residual signals calculated by simple difference for
the disconnected camflex valve. 133

6.7 Graphs demonstrating the residual signals calculated by simple difference for
the closed liquid ammonia hand valve. 133

6.8 Graphs demonstrating the residual signals calculated by moving average for
normal freezer operatioa 134

6.9 Graphs demonstrating the residual signals calculated by moving average for
the barrel pressure transducer fault 134

6.10 Graphs demonstrating the residual signals calculated by moving average for the
disconneaed camflex valve. 135

6.11 Graphs demonstrating the residual signals calculated by movmg average for the
closed liquid ammonia hand valve. 135

6.12 Typical division of Jog files into training sets for the fault isolation frlt^. 138
6.13 Example of how the three f i l t^ respond to a normal operating rua 140
6.14 Example of how the three filtas respond to a barrel pressure transducer fault 141
6.15 Example of how die tiiree filths respond to a camflex valve disconnection fault 142
6.16 Example of how the tiiree Alters respond to a liquid ammonia hand valve fault 143
6.17 Demonstration of the templates view of the residual data. 144
6.18 Example of how the three Glters respond to a normal opo t̂ing ma 146
6.19 Example of how the three filtas respond to a barrel pressure transducer fault 147
6.20 Example of how the three fllt^ respond to a camflex valve disconnection fault 148
6.21 Example of how the tiiree filters respond to a liquid ammonia hand valve fault 149
6.22 A schematic of a model-based FDI system based upon neural computing

techniques capable of detecting faults within the Unilevo' Automated Freeze. 150

12

7.1 Representation of the space two systems occupy. A subset of the total space
for each system (A* and B') represent normal operating conditions and are
identical to one another. 159

7.2 Graphs demonstrating how a series of IIR filters are imable to accurately
model the UAF. (x-axis restriaed). 161

7.3 Graphs demonstrating how a soies of UR filters are unable to accurately
model the UAF. (x-axis unrestriaed). 162

7.4 Cross section of the UAF barrel showing a lip seal which encircles the dasho-
spindle and is designed to grip tighter as the ratio of pressure pj to p^ increases. 165

7.5 Comparison of a UAF startup with a liquid ammonia hand valve fault In the
current system, the fireezer enters a holding condition; with the ANN based FDI
system, production is postponed due to accurate fault isolation informatioa 166

7.6 RS232/R2485 serial communication links between the UAF, CRLIOOO, and
other devices. 169

7.7 A non-model based architecture for fault detection and isolatioa 173

13

Chapter 1.

Introduction.

Failure detection in dynamic control systems is one of die many fields of industrial applications
which has benefited from improving technology and computational techniques. Concurrendy,
the demand for ever more sophisticated, reliable and accurate failure detection methods has
been escalating in line with the mcreasing complexity of processing plant technology and their
conffol systems. Effective failure detection is essential if a control system is to operate
successfully in a supervisory mode.

Modem industrial processes, or plants, are typically controlled by a combination of manual
supervision and automatic control systems, although the supervisory component is increasingly
being automated by die use of knowledge-based (expert) systems which mimic human decision
making and reasoning in order to keq) the plant operating cfficientiy. Such connrol systems
continually monitor a potentially large number of process variables using sensor measurements,
the reliability of which need to be ascertained prior to taking a control decision. It is essential
that both sensor failures - whm a sensor begins to produce erroneous signals - and acmator
failures - where a specific functional componem of the process (excluding sensors) be^ns
behaving atypically - are detected if a control system is to operate successfully in a supervisoiy
mode. In order to detea such failures it is necessaiy to have some form of interface between
the sensors and the controller.

Traditionally, methods for failure detection relied upon measurable ouQ)Ut signals transgressing
certain linut values or digressing from predefmed models of the process. These methods were
consequendy enhanced by the use of mathematical estimation and prediction techniques in
addition to methods for overcoming problems inherent in model-based systems. More recentiy,
computerised solutions - including artificial intelligence tools - have been introduced to improve
the performance of failure detection methods.

14

Amongst the artificial intelligence (AI) techniques incorporated into failure detection systems is
the artificial neural network (ANN), ANNs are parallel information processing systems
modelled upon the mechanisms of the brain and consist of a potentially large number of
processing elements inicrconneaed to allow the network to model itself upon the required
processing task. This emergent behaviour property allows die network to learn about a given
domain by being presented examples of it. ANNs possess the ability to process both
considerable volumes of information and handle unexpected processing tasks in the current
domain on which the networic has not been explicidy taught.

The aim of this research has been to design a failure detection and isolation (FDI) system using
artificial neural network techniques for a class of time-varying process which can be described
as being piecewise time-invariant The specific industrial process used to demonstrate this
technique is the Unilever Automated Freezer used in die production of ice-cream products. The
purpose of this chapter is to introduce die research woiic as a whole, and describe die terms of
reference under which the research has been done.

It will begin by defining what is meant by failure detection, and showing how failure detection
has bocn achieved in non-model based and model based systems. Aspects of control systems
that can hinder failure detection will be motioned.

The artificial neural network will be introduced in a general way, describing supervised and
unsupervised networks, and various training laws - before describing in more detail the MLP
and the generalised delta rule,

A brief survey of how neural networks have been used in failure detection systems will be
presented, including both model based and non-model based schemes.

Finally, die research plan for the thesis will be presented, describing in outline the model-based
failure detection system that will be pursued and how it is intended to differ from those already
in existence. The contribution to knowledge that the research will represent will be highlighted
in a summary of each chapter of the diesis.

1.1. A Definition Of Failure Detection.

A failure brings about a change (usually undesirable) in die behaviour of a component or a
process. For die purposes of this research, failures and faults are considered as being
synonymous, although in the stricmess sense a fault desoibes a process component behaving
atypically, whereas a failure implies a component becoming completely non-operational.
Similarly, a "hard' failure describes, for example, a sensor breaking down, whoeas a 'soft'
failure describes a sensor exhibiting a shift in bias, or a slow drift

15

Failure detection can be said to consist of three tasks:

Alarm Determining whether a failure has occurred.

Isolation Detennining die source of die failure.

Estimation Determining die extent of the failure.

Typically, a fault is first detected when a symptom of it becomes evid^t in die behaviour of
the process. This means a failure alarm often occurs some period of time after the incident that
iriggCTed it has taken place, and that the observed aberration in tiie process may not readily
lead to an imderstanding of what has caused the symptom. The isolation stage is necessary to
determine what exacdy has occurred to cause die symptom at die earliest opportunity, so as to
minimise the effects of the fault, the ext^t of which are revealed by the estimation stage.

It is recognised [91 that die alarm and isolation st^e of fault detection are the essential
components of an FDI system; die estimation stage often being a helpful, but not altogedier
necessary, addition. The reasoning here is that failure alarming and isolation can be readily
handled in a Boolean framework (either a failure is present or it is not, either a component is at
fault or it is not) whereas the estimation of the size of a fault often requires numerical estimates
from a number of sources which can often be best delivered automatically by some form of
expert O îowledge based) system.

Similarly, fault diagnosis - explaining why the fault occurred - and fault correction -
remedying die condition - arc gmeraUy high-level reasoning functions of either die human
supervisor or a knowledge-based controller.

1.2. Non-model Based Failure Detection.

Four surveys on die subject of failure detection in dynamic systems [8, 9, 15 and 30] show
failure detection techiuques to be split into two broad categories: non-model based, where a
plant model is not used; and model based, where a plant model is used.

Non-model based failure detection systems rely upon using measurable process parameters to
determine when a fault has occurred and can be subdivided into the following categories.

1.2.1. Limit Checking.

The most common of all currentiy used failure detection mediods involve comparing plant
parameters to a set of preset limits (thresholds) and alarming a fault when diey are transgressed
[2].

16

Typically each parameter wiU have two threshold levels associated with it . When the first is

passed a warning signal is givm, when the second is passed more radical action needs to be

taken.

Limit checking can be achieved by using some logic external to the sensors, or by installing

special sensors which perform the check in hardware. Special sensors may also be used to

measure variables such as sound and vibration.

Although limit checking is often effective in detecting such soft failures as a sudden offset or

bias in one or more of the sensors as long as the offset exceeds the threshold limit, should the

offset remain below the threshold limit the fault wi l l be missed. Also i f a soft failure such as a

drift occurs, it may be some time before the s^isor measurement exceeds the threshold value.

1.2.2. Voting Systems.

In processes that possess a large degree of parallel hardware redundancy, especially in

applications where it is i m p ^ t i v e that failures are detected quickly and accurately - such as in

aircraft control dynamics [10] - it is useful to employ a voting system to detect the failure.

Concepmally one of die least complex failure detection methods, voting systems rely on a

number (usually at least three) of identical instruments deployed to provide data on die same

aspects of the process. Logic can dim be incorporated to detea failures and isolate faulty

instniments (usually by comparing signals from the sensors and discarding individual readings

that differ from the rest).

Although easy to implement, and effective at providing reliable infonnation on both the

isolation and estimation of failures, voting systems possess the obvious disadvantage of being

costly in terms of redundant hardware, and often compensations for instrument readings need to

be made due to physical constraints upon the location of the instruments (for example, two

sensors cannot occupy the same physical space, and Uie position where each is placed may

cause variations in their readings). Voting systems often have difficulty in the detection of soft

failures.

1.2.3. Frequency Analysis Of Plant Measurements.

Whilst operating under normal fault-free conditions, a number of plants exhibit a typical

frequency spectnim [26], Faults, when they occur, cause this spectrum to deviate from the

norm. Smdy of the process parameters in the frequency domain using Four i^ Analysis wil l

reveal these abemtions and can be used for failure detection.

17

I t may be that certain failures exhibit typical frequency spectra of their own. details of which

can be used for the isolation of faults.

The danger with using such a system exclusively is that a number of faults may not reveal

themselves in the frequency domain at all, and any information pertaining to them may be lost

when changing from the time domain.

1.3. Model Based Failure Detection.

Model based failure detection systems make use of analytical - as opposed to physical -

redundancy. This redundancy is achieved by die design of a process model which usually takes

present and previous measurements of process variables and provides an estimate of the current

process values. These estimates can then be compared to either actual measurements from the

process or other estimates generated from an alternative model and the difference, or residuals

calculated.

Ideally, the residuals wi l l be zero under normal operating conditions, and non-zero when a fault

has occurred. In practice, under normal operating conditions, the residual wi l l deviate from

zero with respect to a combination of inherent process noise and model mismatch. Process

models are usually highly complex mathematical functions arrived at after careful study of the

system. As much of the information necessary for the construction of the model is

unmeasurable, estimates have to be made of a number of physical process parameters. In

addition, the majority of model-based methods rely upon linear discrete-time models, where a

nonlinear system wiU have been linearised aroimd some opaating point, and continuous values

wil l have been sampled. Due to this, i t is doubtful that the model wi l l be able to reflect the

process perfectly at all times, meaning model uncertainry, mismatch, wi l l exist. A failure

detection system's ability to compensate for model mismatch is referred to as its robustness.

U . l . Filtering Approaches.

One of tiie classic

approaches to failure

detection is by the use

of a filter on the sensed

data. Kalman filtering

techniques can be used

^ '* ^ ' ^ ^ " ^ " " j " " ^ ^ l a n t I * Sensors ^

Control Law

to design an optimal Figure l . l No-failure system configuration,
filter which can detea

failures by signalling abrupt changes in the characteristics of die fdter.

18

The normal system configuration is described in figure 1.1 wha^e i f J: is the internal slate of the

acmator/plant/sensor system (not shown), u is the controlled input and y is the measured

output, then x is the filter estimate of

In order to allow abrupt changes in the system to be detected, i t is possible to replace the

Kalman filter with one which is sensitive to failures, or else a mftrhaniCTn can be developed

whereby the filter is monitored and adjusts the system on detection of a fault.

Failure sensitive filters are useful in detecting failures in time-invariant linear systems as

Kalman filters tend to rely upon old process measurements and respond sluggishly to abrupt

system changes, and can be said to have become 'oblivious' to new measurements. Failure

sensitive filters work on the basis that the estimate of x should not necessarily be good, but that

the effects of certain faults become more evident in die filter residual. Now, when a failure

occurs and the initial system conditions die out, the filter residual mainraing a fixed direction

whose magnitude refleas the size of the fault.

Fdter monitoring can be achieved by using an innovations-based system whereby a normal (i.e.

non-failure sensitive) filter is used to provide system estimates until the innovations-monitor

detects irregular behaviour. Using knowledge of the effects that certain failures have upon

system innovations it is possible to match observed residuals wifli predetermined filter

responses to faults to provide failure isolation information. Here, i t is necessary to gather the

information on these fault signatures a priori. Such filtering methods are extensively reviewed

in [30].

1.3.2. Estimation Of Nonmeasurable Process Parameters.

Fdtering methods of failure detection make use of a known process model to reconstruct

nonmeasurable state variables and attempt to detea abrupt changes in filter characteristics.

This results in faults being detected, but only after measurable output values have been affeaed

considerably, often over an extended period of time.

Witii the aid of the process model it is possible to incorporate techniques which estimate

nonmeasurable variables such as model states, model parameters and characteristic quantities,

thus improving failure detection. Model parameters arc imderstood to be constants or time-

depend^t coefficients in the process model, but are not direcdy measurable within the process

itself.

Once the process model has b e ^ decided and Uie relationship between physical process

coefficients and model parameters has been detomined, an estimate of die model parameters

can be made and incorporated into the model.

19

Failure detection can then be achieved by attempting to match the current state of the process

to a catalogue of known relationships between process faults and changes in physical process

coefficients.

I f a failure detection technique relies upon the estimation of nonmeasurable parameters, i t is

important that this estimation is accurate, and methods have been developed to improve this

accuracy [15]. These include:

• Making a least-squares calculation provided the signal-to-noise ratio is large.

• Determining time derivatives, by use of state variable filtering, allows the noise signal to be

filtered and a least-squares calculation to be made i f the noise-to-signal ratio is significant

[31].

• Using an auxiliary model to introduce instrumental variables which correlate with noise-

free process outputs only insignificandy. This allows for consistent parameter estimates,

with no distinct assumptions about the nature of the noise needing to be made [31].

1.3.3. Robust Failure Detection.

Model based control systems are invariably designed around a process model that has been

formulated using incomplete informatioa Estimation techniques can be used to improve the

accuracy of the model, but even the most accurate model rarely captures changes such as

physical process deterioration over time, meaning that differences between the model and the

process exist Controllers should be able to discount this model uncertainty, i.e. they should be

robust.

IMC
Controller Process

I Influence of
4.1 disturbances.

Model

Model uncertainty can

influence FDI systems as

it considerably dominates

sensor noise levels,

causing false alarms

(signalling a failure when

none is present) and Esdmale of model uncertainly and unmeasured disturbances,

misses (not signalling a Figure 1J Internal Model Control (IMQ.

failiu^e that is present). It

is possible to reduce the effects of model uncertainty on die process controller by introducing

an IMC (internal model control) structure [18] as in figure 1.2. The I M C controller is used to

cancel the influence of unmeasured disturbances which wil l be reflected in die feedback signal

along with the model uncotainty.

20

A method for allowing failure detection in die presence of model error is to include a

quantitative bound, or threshold, on the model error and maximise the norm of a failure signal

[13 and 17]. I f the threshold is exceeded, a failure can be signalled. This method can be

in^rovcd by introducing a threshold selector [5] which defines a set of detectable sensor

failure signals. Once arrived at, these signals can be used to estimate die smallest size of

detectable failure.

1.4. Failure Detection In Controlled Systems.

Control
signal
input!

Process

Controller

Output

Control System | Figure 1.3 shows a typical closed-loop feedback

control system. A large number o f modem day

control systems are model-based in nature. That

is, they rely upon predetermined models - often

mathematical in nature - and make control

decisions based upon differences between

Figure 1 J Acloscd-loop feedback controlsystcm. measurements from the process and

measurements from die modeL Such control systems have a number of charaaeristics [4]

inherent within them which affect die performance of die systems ability to detea failures. In

this section, control system refers to the process and its controller.

1.4.1. Sensitivity To Parameter Variations.

A l l processes are subject to a changing environment factors such as the ageing of process

components. The degree to which a controller senses a change in output due to the natural

process changes (its sensitivity), and attempts to compensate, is of great importance.

I t is often difficult to distinguish between paramet^ changes in die control system and sensor

failures i f the failure takes the form of small incremental drift. Such a fault is liable to be

compensated for by the controller and remain undetected. Insensitive systems tend to laid

themselves to good fault detection.

1.4.2. Control Of The Transient Response.

The transient response - or die response to a change in die state of the system - must be

adjusted until it is satisfactory, often by changing the feedback loop parameters in closed loop

systems.

An efficient control system will compensate for a fault, thus making it more difficult to detea.

However, control of the transient response tends to be superior for modelled phenomena than

for failures, allowing the two to be distinguished betwe^.

21

1.4.3. Disturbance Signals.

Many processes contain componmts which produce signals witii an inherent variable

disturbance or error. For example, electronic amplifiers generate noise due to integrated

circuits and transistors, radar antennas are subject to wind gusts. Control syst^ns must be

able to largely eliminate die infiuence that Uiese disturbance signals have on process outputs.

As the effect of disturbance signals is present widiin system output, FDI systems must also

acconmiodate them, or false alarms may result.

1.4.4. Steady-State Error.

The steady state of the system gives an indication as to its acciu-acy. Whenever the actual

system output does not match the desired output, die system is said to have a steady-state

error. Typically, this error becomes evident as the transient response of the system decays,

and can be reduced by the design of die controller.

A significant steady-state error may be interpreted as a drift or offset by an FDI system,

causing a false alarm as a failure is signalled.

1.4.5. Robustness & Model Uncertainty.

The issue of a controllers robusmess to model uncertainty has already been addressed earlier in

this chapter. Where the diffidence between the physical (process) outputs and die estimated

(model) outputs is significant due to poor model construction rather than atypical process

behaviour, false alarms can be made by the FDI system.

1.5. Artificial Intelligence & Failure Detection.

A number of fundamental problems arise with the failure detection meUiods thus far discussed.

Fdtering approaches and filter design are principally based upon models which are linear

approximations of process dynamics. These dynamics are often nonlinear, though linear widiin

certain bounds, meaning tiiat a filtering method of failure detection is effective in a limited

domain only. A further limitation is that failure charact^tics must be classified a priori and

filters designed to detea diese classes. This can cause robusmess difficulties, delays in

detection and false alarms.

With die advent of sophisticated artificial intelligence tools such as knowledge-based (expm)

systems, and parallel architectures such as artificial neural networks, failure detection systems

have been developed which aim at overcoming these limitations.

22

A knowledge based - or expert - system models die reasoning of a human expert by use of

explicit knowledge of a paiticular domain. This knowledge, elicited from human experts using

a variety of acquisition techniques, is typically held as a set of rules which forms the knowledge

base of the system and can be used to explain the systems reasoning at arriving at a particular

conclusion. Knowledge based systems can also be characterised by the use o f measures of

unceriainty in their reasoning, and to work either from a numbo* of possible conclusions

toward known facts about die current state of the domain (backward chaining), or to use die

facts to produce likely conclusions (forward chaining). Expert system solutions have been

developed for a v^de variety of probluns which generally fa l l into the categories of

classification, monitoring and planning. Recendy. expert systems have been inoeasingly used

for industrial plant monitoring and failure detection and isolation [11].

In such applications, expert knowledge of a plant can be elicited in a number of ways, for

example:

• Process engineers and plant operators develop e?q)erience in distinguishing between die

normal and abnormal behaviour of plant sensors and actuators. This knovt^ge can dien

be transferred into a set of rules which the expen system can use.

• Dependent upon the process, redundant informadon may exist due to die plant's inherent

physical interaction. For example, diree parameters may be interdependent so that given

any two. the third could be calculated mathematically. Should all three be e)q)licitly

measured, data wi l l be generated which can be used to determine i f a sensor failure has

occurred. Knowledge such as this can be used by an expert system.

Once an expm system has deteaed a failure, f u r t h ^ rules can be utilised to inform the

operator and provide diagnostic information as to die nature of the fault. Knowledge based

systems appear particularly suited to failure detection in industrial process control systems by

providing facilities to scan applications in search of potential problems, reason about and

control events despite the ev&--changing nature of many industrial applications, and respond to

events (such as failure) when they occiu". By using interactive graphics and natural language

techniques, communication with human operators is enhanced. Expert system failure detection

devices cumaitiy in operation [6 and 23] provide a sophisticated, diough highly complex,

method for the detection, isolation and estimation of faults.

23

1.6. Artificial Neural Networks.

1.6.1, Overview.

Artificial Neural Networks (ANNs) arc parallel information processing systems which take the

mechanisms of the brain as their inspiration. The term artificial neural network is an umbrella

expression describing a wide range of differing neural architectures, alUiough they all share a

number of features in common with one another. G e n a ^ y , they consist of a number of simple

processing elements, interconneaed in a parallel architecture by weighted connections; they

provide a (usually) nonlinear relationship between their inputs and outputs; and they have the

ability to self adjust, or learn [25].

Figure i.4 The generic processing clement typical
of many artificial neural networks. Figure 1.5 The standard sigmoid function.

The simple processing element (PE) (figure 1.4) is the main building block o f the artificial

neural network. It consists of a numbo- of inputs on weighted connections and one output. The

inputs may arrive fi-om a source external to the network, or may be outputs from other PEs

within the network.

The output of the PE is calculated by summing each weighted input, adding some threshold - or

bias - value and passing the result through some (usually) nonlinear function, often sigmoidal

in shape (figure 1.5). tiius

(1.1)

The output is often passed as an input to other processing elements within the network.

Learning is achieved by adjusting values in the netwoik*s weight matrix by one o f a variety of

learning rules. There are two types of learning regime: unsupervised, where the A N N

determines relationships within die input data for itself; and supervised, where the A N N is

explicitiy taught the nature of the relationship by providing examples of input-output pairs.

The arrangement of processing elements in a specific topology and the learning rule employed

determine the nature of die artificial neural network.

24

An example of an unsupervised A N N is the

Hopfield Network (figure 1.6). This netwoik

is a form of associative memory, so called as

it can reconstruct stored data patterns from

incomplete or noisy data inputs, providing a

mapping from data to data. The principle

here is that a Hopfield network is nained witi i

a number of data patterns which (provided

sufficient processing elements exist) wi l l be
Fij^re 1.6 The Hopfield Network AU conn«^ons are
not shown. Each p element is connected to every other

in the layer. Each Stored pattern wi l l become an attraaor

within the memory of the network, so that should an incomplete or noisy data pattern be

presented as an input to the network for classification, it wi l l fall within die basin of attraction

for one of the stored patterns and be classified. Due to the principle of basins of attraction, the

HopfieM network is potentially extremely tolerant of noisy input data, and provided die input

pattern falls somewh^ within the appropriate basin of attraction, it w i l l be correctly

classified.

The Hopfield network employs a manner of learning called Hebbian learning which adjusts

weights according to the correlation of the activation values of the two processing elements it

connects. Other types of A N N learning are: reinforcement learning, where weight values are

increased for properly p^ormed actions and decreased for poorly p^onned actions;

stochastic learning, where weight changes are made randomly and subsequentiy kept or

discarded dependent upon the performance of the network; and error-correction learning, one

example of which is widely used as die training regime for the multilayer perceptron.

1.6.2. The Multilayer Perceptron.

A well documented form of

supervised network is die

multilayer perceptron (MLP)

(figure 1.7) [24]. Here, die

processing elements are arranged

in layers with each element in one

layer being connected to all the

elements in bodl die preceding and Figure 1.7 A typical fuUy connected multilayer perceptron (MLP).

succeeding layers. A n input vector

is presented to the input layer of die MLP and propagated forward through the network.

Hidden Hidden
Layer 1 Laya-n

25

Learning is achieved by comparing the output vector of die MLP widi die (known) desired

output This generates an error value which can be propagated back through die MLP. causing

die weights to change in a gradient descent so diat. should an equivalent input vector be

presented to die MLP subsequentiy. the MLP output wi l l be closer to the desired output. Over

a large number of such presentations of input-ou^ut pairs to the MLP, (provided sufficiait

processing elements exist) the network shoidd be able to learn the relationship between the two

vectors, and more significandy, should be able to provide a meaningful output vector for inputs

in die domain on which i t has b e ^ trained but on which it has not been explidtiy taught, i.e. it

should be able to generalise. The completion of a predetermined series of presentations to die

MLP is referred to as an epoch. The error correction learning mechanism is referred to as

backward error propagation, or backpropagation.

Once an MLP is constructed diere wi l l exist a series of processing elements (P) and weights

(W). such diat

P/O)' ^ A i O) ' P^oU) ^^^^ ^ direshold value of die ydi processing element in die

input layer, hidden layer n and the output layer respectively.

pf^y ^My)* P^f) ^ thresholds (changes necessary) of the ydi

processing element in die input layer, hidden layer n and die output layer

respectively.

AXJ)» Kn(y)' P^i) ^^^^ ^ output value of die ydi processing elonent in the

input layo", hidden layer n and the output layer respectively.

P^iD' PhnU)' Po(j) ^^"^ ^ processing element in die input

layer, hidden layer n and the output layer respectively.

p^^j refers to die desired output for theyth processing element in the output layer.

\P\, \Pf^\ and | /^| refer to die size of die set of input PEs. hidden layer n PEs and

output PEs respectively, i.e. die number of PEs in each layer.

to die value of die weight connecting die j\h processing element in die

input layer to the Ath processing element in the first hidden layer.

^w(yxt) to die delta value (change necessary) of die weight connecting die ydi

processing element in the last h i d d ^ layer to the ^ processing element in die

output layer.

26

The standard backpropagation algorithm can dien be implemented as follows:

Step 1. Assign random values in the range ±1 to each p ' and vv" in die network.

Step 2. Load die input vector to the input layer of the MLP. i.e. assign each p? the relevant

portion of die input vector.

Step 3. Calculate the ou^ut of eachyth PE in the f u ^ hidden layer according to

I ' l l

Plxijy = / (g PKk) • <(t)Mo-) + pUOI) (1-2)

where f () is the activation function of the processing element, often the sigmoid thus

1

1 + fi
f M = T—^ (1-3)

where ^ is a positive constant governing die gradi^t of die curve.

Step 4. Calculate the output of eachyth PE in each subsequoit hidden layer according to

I A ^ . 1

Step 5. Calculate die output of each / d i PE in die output layer according to

P^ai = ny.Ptut^ • K(k^oin + P'ocn) (1-5)

where hi refers to die final hidden layer. The activation function f () at each PE in the

output layer is often linear should a continuous output be required from the MLP

and often the sigmoid function shoidd a value close to 0 and 1 be required.

Step 6. Calculate die discrepancy (error) between each yth actual MLP output p^^^^md die

p:u->=f'(pU-p:o->^ (1-6)

desired output p^,^ according to

where f () is the derivative of the activation function used in (step 5).

Step 7. Calculate the errors of each yth PE in the subsequent layers according to

l^ol

for the last hidden layer, and

in«.i

27

for any subsequent hidden layers, whoie fO is the derivative of the activation

function used in (step 5)

Step 8. Calculate the changes necessary in the weights connecting each yth PE in one layer to

each M PE in the next according to

for the last hiddoi layer

for each subsequent hidden layer, and

for the input layer, where a is a positive constant govenung the learning rate

(refored to as the learning coefficient). Adjust the weights connecting each j t h PE

in one layer to each itth PE in die next according to

*^W(»o(t) - ^W(»o(fc) + ^^hK^oik) (i -12)

for the last hidden layer

for each subsequent hidden layer, and

for the input layer.

Step 9. Calculate the changes necessary for eachyth PE threshold according to

for the output lay^, and

for each hidden layer, and change them according to

for the output layer, and

for each hidden layer.

28

Step 10. Repeat stq)s 2 through 9 until some stopping condition has been reached.

The global error (E) of the network is often defined as the Euclidean Distance between each

and tiius

(1.19)

and is usually calculated following step 6.

The stopping condition for die backpropagation algorithm is usually w h ^ E has reached some

value deemed in advance of training to be sufficiendy low or a predetermined numbo- of

training epochs have been completed.

-Small a

Error surface

Large a

The effea of the learning coefficient

is to govan the speed widi which die

error gradient is descended during

training. The ideal value of a is

problem dependent, although a small

value can often lead to extended

training time whilst a large value can

lead to the MLP oscillating around

minima [12] as demonstrated in

figure 1.8. An extension to the

Figure 1.8 niustradon of how training effectiveness is influenced Standard baclq^ropagation algorithm
by the size of the learning coefficient. • - i • r j j - • i

IS die mclusion of an addiDonal
learning parameter referred to as the momentum coefficient. The momentum coefficient

includes a proportion of the last weight change when changing the current weight setting, and

can reduce the risk of die MLP settling to local error minimum and die oscillation effects of

large learning coefficients.

1.7. Using Artificial Neural Networks For Failure
Detection.

Artificial Neural Networics have been increasingly used to detea and isolate faults in a variety

of systems; for example chemical tank systems [22 and 27). aircraft flight control systems [20].

seasor faults [19], electronic circuit boards [16] and engine faults [3].

In die main, systems to detect c h ^ c a l process faults have dominated die field widi the issues

undo- investigation being:

29

1. The ability of ANNs to distinguish between normal and abnormal process operations.

This is the primary concern of all A N N based FDI research.

2. The ability of ANNs to distinguish between several fault conditions [14].

3. The ability of ANNs to detea faults during steady-state operation [28].

4. The ability of ANNs to classify several faidts occurring simultaneously [7 and 29].

5. The ability of ANNs to detect faults in die presence of sensor noise [21] and to detect

sensor faults [1 and 19].

Whilst a more thorough review of research into FDI systems using ANNs is conducted in

chapter 6, it is worth mentioning at this stage that a large amouiu of current research focuses

on classifying faults as an ofOine procedure where process data is collected during an

operational run. This data can subsequentiy be classified by a neural network architecmre

attempting to recognise certain features widiin die datalogs. Whae research has been

conducted with the aim of having an online real-time FDI system as in [22], the system has

tended to be a time-invariant chemical process. This thesis concentrates on developing an

online real-time F D I system for a major piece of production-line machinery used in die

manufacture of ice-cream products.

1.8. Research Plan.

The main objective of this research was to investigate die application of artificial neural

networks to die detection of faults in industrial processes, specifically die Unilever Automated

Freezer. A solution is proposed using a model-based approach as. typically, model-based

approaches provide a more rapid detection of faults than do non-model based methods such as

limit checking. As a fault causes a symptom which can manifest itself widiin die output

parameters of the system, a model wi l l provide a prediction signal which wil l deviate firam the

actual. In this case, die residual betweai die model and the process wil l reflect this symptom

which can subsequmdy be classified. In a limit checking FDI system, i f the symptom

manifests itself as a slow drift it may take some time to exceed die predetennined threshold and

be detected. Should the symptom manifest itself as an offset which falls below the direshold

value, the FDI system wi l l not detea i t A fimher advantage to a model-based approach is that

should an accurate process model be devetoped, this model could effectively be used for

process simulation exercises, or in a model-based control system.

30

£>ue to dieir ability to learn by

example, a method of modelling a

process is derived using the class

of A N N called die multilayer

percqitron. In an architecture

such as that shown in figure 1.9.

the model and each of the failure

classifiers can be replaced by

MLPs. The model MLP can dien

be used to provide a residual to

the bank of classifier MLPs. each

trained to recognise a different

fault.

Industrial IA^IO^.
Process I '

Model

Classifirr
1 * .

#1 *2

Serin of tehdMrinctfldi

Figure 1.9 Schematic of a model-based failure detection and
isolation system.

The benefits of such a system are:

1. No explicit quantitative simulation model of the freezer would be required. The MLP

should be capable of learning die required process operating range for itself.

2. A dynamic model of the freezer wil l be derived using data which is already monitored

and logged. Further sensory information should not be necessary.

3. The system should be able to adapt itself to die individual freezer i t is monitoring. As

the dynamics of each freezer are liable to be marginally different from one another, die

MLP should be able to fme tune itself.

4. In order to train die failure detection fdter MLPs. a priori knowledge of each fault is

necessary. However, shoidd an unforeseen fault occur, die model based system shoidd

recognise an abnormal condition from the residual signal and signal a fault. An

additional filter can be subsequcndy trained.

5. The system should provide fast and accurate (Hiline detection of failures on die freezer

in real-time.

The last of these points is particularly relevant to production line machinery such as the

Unilever Automated Freezer, where a warming up period for the process is followed by a

production period. I f a fault can be deteaed before actual production begins, a saving in raw

materials is achieved. Also, i f an immediately rectifiable fault is deteaed and isolated quickly

enough, it can be dealt widi without die necessity of shutting down die machinery or a loss in

quality of the product, i.e. production is not affected.

31

In order to achieve the model-based solution, die following research plan was adhered to:

1. An ongoing literature search encompassing classical faidt detection methods and

specific A N N solutions to the fault detection problem was conducted to ascertain die

issues involved in the field, and progress on specific solution strategies. This led to the

conclusion diat a model-based approach to FDI was preferred.

2. Research was conducted into methods of moddling dynamic systans using artificial

neural networks, and in particular the multilayer perceptroiL This resulted in

experimentation using MLPs to model simulated dynamic systems of both linear and

nonlinear forms.

3. The MLP modelling solution was then applied to the Unileva- Automated Freezer

(UAF) as an example of a real industrial process. This highlighted a specific problem,

which was that the freezer was a time-varying dynamic systenL The problem was

ultimately solved by using a cascade of MLPs to provide a continuous iiiput-ouq)ut

mapping over the complete operating cycle of the system. Further research was dien

necessary to determine how best to switch between each MLP in the cascade to provide

the most effective model possible.

4 . As daialogged measurements of die UAF had thus far been used to train and test die

dynamic model offline, it was necessary to test die system online to ensure that one of

the original objectives of die research could be achieved. To this end, a period of three

mondis was spent testing and refining the model at the Unilever Research Colworth

Laboratory. E>uring diis period, diree potential faults were identified as being typical

to die operation of the UAF. and data was collected on each of diese.

5. Having built a dynamic model of the freezer, it was tbm possible to develop a number

of fault classiiying MLPs to recognise each of diree candidate faults. Hus resulted in

workmg FDI system for die UAF based upon neural computing techniques which was

able to outperform die existing FDI system with no additional sensor hardware

requiremoits being necessary.

Aldiough a model-based FDI system has been built for die Unilever Automated Freezer, die

design method and tedmiques used are generic and should be transferable to marhinft^ of the

same class as the UAF. i.e. piecewise time-invariant, or time-varying over a complete operating

cycle.

32

1,9. Summary Of Chapters.

The puipose of this chapter has been to introduce this research in a general way by reviewing

aspects of fault detection which are relevant and by detailing the neural network architecture

which was used. A research plan was presented which demonstrated how the eventual solution

was arrived at. Subsequent chapters wi l l expand on the research plan in the following way.

Chapter 2. Mode l l ing Dynamic Systems Using A r t i f i c i a l Neural Ne tworks .

This chapter introduces the class of A N N termed the multilayer percq)tron (MLP) as an

attractive method of modelling dynamic processes. Learning strategies for the networks are

reviewed, and a number of expoiments using simulated processes are presented in order to

demonstrate how the modelling of dynamic systems is achieved and the issues that are involved.

Two classes of dynamic neural network wil l be briefly reviewed, and classical methods for

modelling dynamic systems wil l be evaluated against the experimental results using MLP

networks. This chapter builds upon techniques already available in the literature and does not

claim any original contribution to the knowledge of this area.

Chapter 3. The Unilever Automated Freezer.

The purpose of this chapter is to introduce the Unilevo" Automated Freezer as a class of

dynamic industrial process upon which faults occur and need to be detected. The operation of

the freezer, the control laws to which it is subjea and the current fault detection capabilities in

existence wi l l be discussed. Three potential faults wi l l be innroduced as being typical of the

kind the UAF is subject to. The effect the faults have on ice-cream production wil l be

established, and the capabilities of the current system to correcdy detea and isolate diese faults

wi l l be ascertained.

Chapter 4, Modelling Time-Varying PrpcegseiS,

The puipose of this chapter is to demonstrate how die moddling techniques of Chapter 2 failed

to provide any useful results with the UAF. The problem with the approach is determined to be

that all systems modelled in Chapter 2 - aldiough dynamic - are time-invariant in opo-auon.

The &eczer is a class of time-varying process, whose underlying mode of operation changes

disjointedly widi tune; i.e. a piecewise time-invariant system.

Two potential solutions are presented: including time as a pan of die input vector of die MLP.

thus making the MLP time-varying; and moddling the fineezer using a series of MLPs in what

can be termed an MLP Cascade.

33

No rcponed modelling of this type of system has b e ^ found using artificial neural netwoiics,

and the successful use of the MLP Cascade is deemed an original contribution to knowledge.

Chapter 5, Switching M^hanism$ Fpr The M L P Cascade.

The purpose of this chapter is to build upon the mechanism daived in Chapter 4 for modelling

piecewise time-invariant systems by offering a number of methods for switching between

MLPs in the Cascade. During Chapter 4. a nile-based switching mechanism was employed

which was based upon expert knowledge of the UAF. This chapter wi l l examine this technique

more closely, and offer several alternatives that do not rely as closely upon explicit knowledge

of the freezer. Ultimately, a mechanism employing a genetic algorithm (GA) w i l l be used in

anempting to locate the optimum switching points. Finally, a method for training the MLP

Cascade wi l l be proposed.

This chapter attempts to present the MLP Cascade as a gen^c mediod of mnrte.lHng dynamic

systems of this class by proposing a design of switching mechanism that does not rely upon

explicit knowledge of the process, but on the equivalent information that is provided to die

model, and is deemed to be an original contribution to knowledge.

Chapter 6. Fai lure Detection Using M L P Networks .

The purpose of this chapter is to demonstrate how the residual signals generated by the diree

candidate faults introduced in Chapter 3 can be isolated using a series of MLPs trained to

recognise features in the signals.

Initially, a survey of how artificial neural networks have been used for fault detection

previously w i l l be presented together with conmienis upon how this research differs from, or

advances, the techniques developed. The three candidate faults wi l l be reviewed, with

particulars of how they affect die MLP Cascade and the residuals between it and the UAF.

Fmally, details of how a series of MLPs were trained to recognise features within the fault

signals wi l l be presented, and the fmal fonn of the neural network based FDI system wi l l be

given.

With this chapter, a complete self-tuning FDI system is presented which is capable of learning

the dynamics of, and detecting and isolating faults within, a class of time-varying system which

is deemed an original contribution to knowledge.

34

Chapter 7. Piy;ussiQn & F^prfi Work.

This chapter aims to review the derived FDI solution. Aspects of the research pertaining to the

models robusmess and how i t compares with more traditional modelling, logeahej with the

accuracy of the isolation filters and how they compare with the currently available FDI

capabilities of the UAF are discussed. The solution is critically evaluated with respect to the

original project objectives^ and potential avenues for future research are presented.

Chapter?^. Conclusion.

The concluding chapter ties togeth^ the ideas presented throughout the thesis, and offers some

thoughts on how die solution could be implemented practically.

References For Chapter 1.

[1] A Bulsari, A Medvedev & H Sax^i: Sensor Fault Detection Using State Vector
Estimator And Feed-forward Neural Networks Applied To A Simulated Biochemical
Process. Acta Polytechnica Scanditiavica: Chemical Technology & Metallurgy
Series. No. 199. 1991.

[2] D Cox: Startup Procedure Of W-Auto Freezer (Colworth). Monitoring And Alarms.
Private Communication. (C) Unilever Research Colworth Laboratory. 1992.

[3] W E Dietz, E L Kiech & M Al i : Jet And Rocket Engine Fault Diagnosis In Real
Time. Journal Of Neural Network Computing. No. 1. pp 5-18. 1989.

[41 R C Dorf: Modem Control Systems, 5"^ Edition. Appendix C. (P) Addison-Wesley
Publishing Co. Inc. 1989.

[5] A Einanii-Naeini, M M Akhter & S M Rock: Effect Of Model Uncmainty On
Failure Detection: The Threshold Selector. IEEE Transactions On Automatic Control.
Vol. 33. No. 12. December 1988.

[6] D G Esp, A O Ekwue, J F Macqueen & B W Vaughan: AHFA - A Real-time
Expert System For The Incremental Diagnosis Of Multiple Faults On A Transmission
Network Using The Sequence And Timing Of Switching Indications. Proceedings Of
Control '94. VoL 1. pp 141-145. March 1994.

[7] J Y Fan, M Nikolaou & R E White: An Approach To Fault Diagnosis Of Chemical
Processes Via Neural Networks. AlCfiE Journal, Vol. 39, No. 1. pp 82-88. January
1993.

[8] P M Frank: Fault Diagnosis In Dynamic Systems Using Analytical And Knowledge-
Based Redundancy - A Survey And Some New Results. Automatica. Vo l . 26, No. 3.
pp 459^74. 1990.

[9] J J Gertler: Survey Of Model-Based Failure Detection And Isolation In Complex
Plants. IEEE Control Systems Magazine. VoL 8. No. 6. pp 3-11. Deccmbcx 1988.

[10] J Gilmore & R M c K e m : A Redundant Strapdown Inmia l System Mechanization -
SIRU. Proceedings Of The AIAA Guidance, Control & Flight Mechanics Conference.
pp 17-19. 1970.

35

[11] C J Harris (Ed.): Application Of Artificial Intelligence To Command & Control
Systems. (P) Peter Pcregrinus Ltd. 1988.

[12] J Hertz, A Krogh & R G Palnier: Introduction To The Theory Of Neural
Computation. (P) Addison-Wesley Publishing Company. 1991.

[13] D T Horak: Failure Detection In Dynamic Systems With Modelling Errors. AIAA
Journal Of Guidance And Control Dynamics. Vol 11. No. 6. pp 508-516. 1988.

[14] O lordache, J P Corriou & D Tondeur: Neural Network For System Classification
And Process Fault Detection. Hungarian Journal Of Industrial Chemistry. Vol. 19.
No. 4. pp 265-274. 1991.

[15] R Isennaiui: Process Fault Detecdon Based On Modelling And Estimation Methods -
A Survey. Automatica. VoL 20, No. 4. pp 387-404. 1984.

[16] B J Kagle, J H Murphy & L J Koos: Multi-Fault Diagnosis Of Electronic Circuit
Boards Using Neiu^ Networks. Proceedings Of The International Joint Conference
On Neural Networks (IJCNN). Vol. 2. pp 197-202. June 1990.

[17] R L Kosut & R A WaJker: Robust Fault Detection: The Effect Of Model Error.
Proceedings Of The 1984 American Control Conference. June 1984.

[18] M Morar i & E Zafiriou: Robust Process Control. (P) Prentice Hall International. Inc.
1989.

[19] S R Naidu, E Zafiriou & T J McAvoy: Use Of Neural Networks For Sensor Fault
Detection In A Control System. IEEE Control Systems Magazine, pp 49-55. April
1990.

[20] M R Napolitano, C I Chen & S Naylor: Aircraft Failure Detection And Identification
Using Neural Networks. Journal Of Guidance^ Control & Dynamics. Vol . 16. No. 6.
pp 999-1009. November-December 1993.

[21] A G Paries, J Muthusaini & A F Atiya: I n d p i ^ t Fault Detection And Identification
In Process Systems Using Accelo^ted Neural Network Learning. Nuclear
Technology. VoL 105. No. 2, pp 145-161. February 1994.

[22] R J Patton, J Chen & T M Siew: Fault Diagnosis In NonUnear Dynamic Systems
Via Neural Networks. Proceedings Of Control '94. Vol. 2. pp 1346-1351. March
1994.

[23] D A Rowan: On-line Expert Systems In Process Industries. A1 Expert. August 1989.

[24] D RuineUtart, G Hinton & R Williams: Learning Representations By
Backpropagating Errors. Nature. No. 323. pp 533-536. 1986.

[25] P K Simpson: Artificial Neural Systems. (P) Pergamon Press. 1990.

[26] O A Solheim: Some Integrity Problems In Optimal Control Systems. Advances In
Control Systems: Proceedings Of The AGARD Conference. No. 137. September
1973.

[27] T Sorsa & H N Koivo: Application Of Artificial Neural Networks In Process Fault
Diagnosis. Automatica, VoL 29. No. 4. pp 843-849. 1993.

[28] V Venkatasubrainanian, R Vaidyanathaii & Y Yamanioto: Process Fault Detection
And Diagnosis Using Neural Networks - I . Steady-State Processes. Computers &
Chemical Engineering. VoL 14. No. 7. pp 699-712. 1990.

36

[291 K Watanabe, S Hirota & L Hou: Diagnosis Of Multiple Simultaneous Faults Via
Hierarchical Artificial Neural Networks. AIChE Journal. Vol. 40. No. 5. pp 839-848.
May 1994.

[30] A S Willsky: A Survey Of Design Methods For Failure Detection In Dynamic
Systems./Iw/oma/icfl. VoL 12. pp 601-611. 1976.

[31] P C Young: Parameter Estimation For Continuous Time Models. Automatica. Vol.
17. pp 23-. 1981.

37

Chapter 2.
Modelling Dynamic Systems Usingl

Artificial Neural Networks,

Process models are used in control and failure detection systems where - generally - the modd

is referenced against the process and the residual signal utilised in f u r t h ^ processing. One

structure used as an alternative to classic feedback control (figure 1.3) is the internal modd

control (IMC) technique which direcdy utilises a process model and process inverse model

within a feedback loop (figure 1.2).

In an IMC structure, the process model is evaluated in parallel with die process operation and

the difference between the outputs - the resichial signal - is fed back to the controller.

D^>ending upon the accuracy of the modd. die residual signal wi l l be an estimate of the noise

and disturbances within die process. Typically, models are composed of highly complex

mathematical funcuons arrived at after careful smdy of the process, and as such can be time

consuming and expensive to produce. Also, many of the parameters neccssaiy in the

constniciion of the modd are unmeasurable, and estimation techniques need to be invoked to

determine them. Owing to diis. it is unlikdy dial die modd wi l l reflea die process perfectly at

all times, and a certain degree of model uncertainly w i l l exist

Although the IMC class of controller has been shown to possess considerable robusmess to

modd uncertainty [8]. excessive uncertainty wil l lead to poor control Similarly, in a failure

detection system based upon a modd reference architecture, where failures are indicated when

the residual signal exceeds a certain threshold, high modd uncertamty wi l l lead to false alarms.

This chapter introduces die class of A N N tenncd the multilayer pcrccptron (MLP) as an

attractive method of modelling dynamic processes. Learning strategies for the networks are

reviewed, and a number of ejqieriments using simulated processes are presented in order to

demonstrate how the modelling of dynamic systems is achieved and the issues that are involved.

Two classes of dynamic neural network wi l l be briefly reviewed, and classical methods for

modelling dynamic systems w i l l be evaluated against die experimental results using M L P

networks.

38

2.1. MLPs As Process Models.

Multilayer feedforward networks have been demonstrated mathematically [S] as being

universal g^proximaiors. That is. they can approximate any measurable function to an

arbitrary degree of accuracy provided they possess sufficient processing elements in the hidden

Xnycrs. As dynamic processes map their inputs to outputs by means of some functional

dependence, this implies tiiat it should be possible to model such systems using M L P networks.

Any failure in such a task can be attributable to either: an inappropriate network size (i.e. too

few hidden PEs or layers); inadequate lemming (i.e. too short a learning cycle or insufficient

training data); or the lack of a deterministic relationship between inputs and outputs (i.e.

insufficient information included in the input vector to allow the mapping to the required

output).

This approximation capability of the MLP makes them particularly useful in modelling

dynamic systems as less a priori knowledge of the process dynamics is required than in

conventional modelling techniques. It should be possible to nain a network to approximate the

imderlying function of die system by presenting it widi examples of input-output pairs. Whilst

it should be borne in mind that an MLP typically requires many presentations of such

information in o r d ^ to be able to leara the relationship • a time consuming endeavour - in many

instances i t is possible to train the MLP ofQine using previously gathered process o p ^ t i n g

records, making this less of a problem.

In addition, whilst many indusdial processes behave linearly within certain bounds, over their

complete operating cycle they are nonlinear. I t is impossible for conventional linear modelling

techniques to capture this nonllnearity. but as M L P networks are themselves nonlinear, it

should be possible to model such processes over a wider operatmg region.

2.1.1. Finite & Infinite Impulse Response Systems.

A finite impulse response system, in the context of dynamic system dieory. has a functional

dependence upon a finite (fixed) number of historic inputs in relation to its output. For

example, die ourpui of a finite impulse response system at some discrete sampling point k can

be described as some function f () of the inputs to the system, thus

y(k) = f(u(k)Mk-l)Mlc-2\..M{k-n)) (2.1)

An MLP contains no internal memory of its own, i.e. i t provides a static relationship between

its inputs and its outputs. As the approximation capabilities dq)end upon adequate information

being provided die MLP in its input vector, to model such a system an MLP would need to be

provided with all /i+7 inputs.

39

However, many industrial processes are infinite impulse response systems in that at time, k the

functional dep^dence between inputs and outputs to die syston can be described thus

3'(^) = fm)Mic -1). u{k - 2)u(0)) (2.2)

with die reliance upon inputs progressing back through time to the initiial conditions of the

system. This would require an ever increasing niunber of inputs to die M L P as timp.

progressed - a concept which is meaningless for ANNs. A n approach to modeling infinite

impulse response systems is to use previous values of y for the estimate thus

y(k) = f(u(k)MI^-l\...uik-m\y(k-l),...y(k-n)) (2.3)

as historical information concerning u wi l l be reflected in y. Therefore, as an M L P provides a

static relationship between its input vector and output vector, i t is necessary to include both

historic - or time delayed - process inputs and outputs in the input vector to the M L P in order

to emulate dynamic behaviour.

2.1.2. Learning Strategies.

Process

^̂ J>

IVoocss

NOP >9

(a) (b)

Qin et al [10] have

demonstrated that it is

possible to learn process

dynamics by feeding

back either the acmal

output of the process or

Figure 2.1 (a) Feedforward and (b) recurrent MLP learning schemes. The input ^ estimated output
vectors to the MLP are usually time-delayed. from the MLP itself.

referred to as the feedforward and recurrent learning schemes respectively (figure 2.1). In

addition, either pattern learning - where the MLP is updated following every discrete

presentation of input data - or batch learning - where a complete data set is processed as a

batch, and the MLP updated following the presmtation of the entire batch - can be used,

providing four disparate learning strategies for the MLP.

Each of the four strategies are shown to be able to learn a nonlinear autoregressive function,

aldiough recurrent batch learning requires a variation of die standard backpropagation

algorithm Batch and patton learning are shown to be equivalent, provided die learning rate

for pattern learning is small i.e. all learning schemes reached the same minimum error value.

40

2.1.3. Alternative Artificial Neural Network Architectures.

It is worth noting diat die MLP is only one neural architecture in a class of many, others of

which have b e ^ used in control applications where system identification is necessary.

Associative memories (AMs) - which can reconstruct stored data patterns from incomplete or

noisy data inputs - such as die Hopfield Network have been demonstrated as being suitable for

plant modelling applications [2 and 7]. Although the latter has compared favourably with die

MLP for die functional approximation of systems, they are largely unproven in real-time

systems.

Narendra et al [9] reviewed die abilities of bodi recurrent and feedforward networks,

postulating that a generalised neural network - incorporating feamres of both of these - would

be advantageous for system identification. A continuation of this work resulted in a class of

dynamic neural network [11] which is reviewed more ftdly in section 2.4.

2.2. Modelling Dynamic Systems Using MLP Networks.

A number of experiments using simulated dynamic systems have been conducted in order to

investigate a number of issues. As many industrial processes - whilst being highly nonlinear

during certain stages of their operating cycles such as startup and shutdown - are likely to

spend some of their time behaving linearly widiin a stable operating region, i t is necessary diat

an MLP be able to model both the process linear and nonlinear states.

In addition to describing a numbo* of e^qjeriments which demonstrate how this is achieved, diis

section wi l l show how die feedforward learning scheme compares with the recurrent, how

parameter changes can be accommodated for, and how faults which marufest diemselves in the

residual signal can be alarmed.

2.2.1. The Simulated Dynamic Systems.

For the purposes of diese experiments, two dynamic systems are simulated as mathematical

models; one linear, the other nonlinear.

The linear example is a single-input single-output (SISO) second order system described by die

state equations

x(k +1) = Ax(k) + Buik) + v(j t) (2.4)

for the process dynamics, and

41

y(k) = Hx(k) + Ju(k) + w(k) (2.5)

for the sensor. The values for the matrices are

_ "-0.441 -0.525] _r-0.934'
"[-0.226 a030j' ^"[-0.597 (2.6)

/ / = [-0.534 -0.451]. y = [-0.819]

These values were chosen arbitrarily to provide a typical example of a stable system w h ^ die

A matrix has two distinct dgoivalues. being Xi = 0.166 and X2 = 0.0.673. Ha-e. 1/ and y are

the system inputs and outputs respectivdy, j : are the internal states of the process, and v and w

are zero-mean Gaussian noise sequences.

The input-output relationship for the nonlinear process is described by the equation

^(jt) = ay(k -1) + py(jk - 2f + yu{k) + hu^k -1)^ + v(k) (2.7)

where

a = 0.3. p = a06. Y = 0.7, 6 = 0.5 (2.8)

and were again arbitrarily chosen to describe a stable system. Here v is a zero-mean Oaussian

noise sequence.

2.2.2. Initialising The Networks.

Each experiment was conducted using a number of MLPs with different internal structures (i.e.

a different number of input PEs and hidden PEs). Before the commencement of each

experiment the network being used was initialised by setting each weight value and each PE

threshold value to a random number betwe^ ±0.1.

2.2.3. Training & Testing The Networks.

Typically, all available data for a particular neural network application is split into two groups:

a training set and a testing, or generalisation, set - both of which consist of input-output pairs

(i.e. examples of inputs for die network to which die output is known). The MLP dien

undergoes a period of training whereby die training set is repeatedly presented to die network.

As each input pattern is presented, the network generates an output which can be compared to

the known - or desired - output from the training set, and a corresponding error measiue can be

calculated. This error is then be used to train the network immediately (pattern training), or die

error can be accumulated for each input-output pattern in die traimng set and die accumulated

value be used to train the network following each epoch (batch training).

42

Usually one complete presoitation of the training set is referred to as an epoch. I t can of la i

take a large number of epochs before die training error reduces to a minimum.

Once the training cycle is completed, die netwoilc can be tested using die genoBlisation set.

Here die input patterns are presented to the network and again die network's output compared

with die desired output. The error is not used to train die network, but is used to demonstrate

the extent to which the network is now able to mimic the output. I f die network's output is

sufTiciendy similar to die desired output, die network can be said to be capable of

generalisation - or to have learnt - die problem. The accuracy which die network needs to

possess in order to be satisfactory is subjective and entirely dependent upon the application in

which the network is being used.

A phenomena known to occur in some applications is one of over-training. Here, die network

has been presented widi die training set for too many epochs and can be said to have learnt die

training set too well. SO that it is able to generate accurate outputs for mput pattens from die

training set, but poor outputs for input patterns from the generalisation set, i.e. its training

error is small, but its generalisation error is large.

For these experiments, as die information upon which the MLP would be both trained and

tested is generated by die equations (2.4, 2.5. and 2.7) in disa-ete lime steps, both die training

and generaUsation sets were g^erated during the course of the run. widi one epoch meaning

one input-output pair. During training, die process input u was represented by a sequence of

random numbers uniformly distributed between ±1 for 10000 samples (training epochs).

As the aim of these experiments is to teach the MLP to minuc a dynamic function rather than

to respond to a specific input widi a specific ouqiut. die problem of over-training shoidd not

occur. In order to test whether the function has been learnt, testing is achieved by representing

the input u as a sequence of random numbers with the same distribution, but the input value

woidd oidy change once every 20 samples.

2.2.4. Error Measurements.

In order to be able to compare the performance of one MLP with another, it is important to

have consistent measurements of error. At any discrete time mterval k the error D betwe^ die

MLP output and the desired output is die Euclidean distance dius

D(k)= Y,^y.(k)-yj(k)f (2.9)

43

for an MLP with n output processing d^en t s . As diis instantaneous error is liable to oscillate

and mask die underlying trend, the error is smoothed in two ways. The error S is acounulated

and averaged over m samples thus

SOn) = - y D i k ' j) (2.10)
''J ^

For these experiments, m was set to 100. As the MLPs are always initialised with random

values, the possibility exists that for any one experiment the initialisation process may produce

a network already able to at least relatively accurately mimic the dynamic function. In order to

reduce this possibility, each experiment is conducted / times with an MLP of identical internal

structure initialised witii a different set of random values, to produce an error £ dius

£(/ ;2) = i^S;(m) (2.11)

For these expoiments, / was set to 10. The training error T was taken as die highest of die last

five measures of E for each experiment.

The generalisation error G is the accumulation of the instantaneous error defined by the

Euclidean distance (2.9) ovei die testing cycle, consisting of n epochs, dius

G=yD(k) (2.12)

For these experiments, n was set to 100.

Therefore for each experiment, comparisons can be made between two eiror measiues: the

training OTor 7, and the generalisation error G.

2.2.5. Modelling Linear Systems.

As MLPs provide a nonlinear response between inputs and ouqsuts. i t is important that they be

able to approximate linear functions as dynamic systems often behave linearly within certain

operating regions.

Initially experiments were conducted using an MLP widi three input PEs. This input vector

comprised of u(k), u(k — l), and y(k — l), i.e. the MLP is trained to approximate a function

fOthus

y(k) = f(u(k)Mk-l)MI^-l))

44

rtu • rtBO». mtx-i\ fO*!). r»-i»

Figure 2.2 Graphs demonstrating how the error E decreases with learning time. Input vectors comprise of 3.5. and 7 lime delayed process inputs and outputs. There is one hidden layer comprising
of 1.2. 3.4. and 5 processing elements. Learning scheme: Feedforward, p coefficient of sigmoid: 0.5.

rO) - QaOd, O-H O-D, fft-IX rtt-ii> - QBO). IU-U ttk-D, KM), rft- U rtU). r(k-l)}

Figure 2.3 Graphs demonstrating how the error E decreases with learning time. Input vectors comprise of 3. 5. and 7 time delayed process inputs and outputs. There is one hidden layer comprising
of 1.2,3.4, and 5 processing elements. Learning scheme: Feedforward, p coefficient of sigmoid: 0.2,

The numbo- of hidden PEs was increased from one to five, and die error E observed as shown

in figure 2.2. TTie training error T reduced to 3.5x10"^, with five hidden units. The input layo*

was increased to 5 and dien 7 PEs. i.e. the MLP is OBined to approximate the functions

y{k) = f(u{k)Mk-l)Mk'2\y{k-l\y{k-2))

and

y(A:) = / (u (f c) . u (f c - l) , / i (i t -2Xu(A: -3) . y (i t - l) . 3 . (i t -2) .> ' (J t -3))

although diis failed to improve the training error.

as

-as

10

-as

Inputi

40 so 70 « 0 90

Epochi

Outputs

Proocsi & rvLP

Epodu

Process

M P

Figure 2.4 Graphs showing process and MLP inputs and outputs for a 3-5-1 MLP with the p coefficient of the
sigmoid function set to 0.5.

46

Aldiough die training error reduces to a relatively low level, the generalisation error G was

3.737 and, as can be seen in figure 2.4, die transitions are approximated well, but there is a

significant steady state error. One explanation for this occuirence is that the network has not

had a long enough training cycle, howev^ subsequent training of 20000 epochs failed to

improve the situation to any significant degree.

A further explanation for the MLP failing to learn the dynamics of the process can be

attributed to an attempt to f i t a nonlinear function (that of die MLP) to a linear function (that

of die process). Each processing element within the hidden layer of the MLP maps its inputs to

its outputs through a nonlinear activation function, usually sigmoidal thus

-2^ (2.13)

Figure 2S The standard sigmoid function (1.13) with p set to 0.5,0.3 and 0.2.

By adjusting die steepness (p) coefficioit. die linear region of die function can be increased as

shown in figure 2.5. Therefore, the smaller the steepness coefficient is set during training, the

greater wi l l be die linear response of die MLP. Previously a P value of 0.5 was used, now the

experiment was repeated widi a steadily reducing value of p. The graphs in figure 2.3 show

the training errors with p set to 0.2. Ha-e, when die input vector consisted of u(k), u{k-1),

u(k-2), y (f c - l) , and y(k-2) in a network widi 5 input PEs. 3 hidden PEs and 1 output

PE (i.e. an internal structure of 5-3-1), die training error reduced to 3.07x10*^ and die

genoalisation error to 1.99. Figure 2.6 shows how the steady state error evident in figure 2.4

has now reduced. Increasing die number of hidden units and die size of die input vector does

not cause the training or genoalisation errors to improve.

47

Inputs

as

10 40 30 SO 60 70

•as

Prooss A M.P

Epodu

Outputs

OS

-as H

Epoctu

Proacsi

M.P

Figure 2.6 Graphs showing process and MU* inputs and outputs for a 5-3-1 MLP with die p ootfficitm of the
sigmoid functian set to 0.2.

Instead of using historic values of the process ou^ut y as part of the MLPs input vector in

order to introduce dynamics, i t is possible to use historic values of the MLP estimate y. This

external recurrency in die composition of the input vector is referred to as the recurrent

learning scheme. The reciurent learning scheme is implemented in the 5-3-1 network above by

setting die input vector to w(it). u(k-i), u{k~2), y(k-l), and y (i t - 2) . For diis

experiment, with p again set to 0.2, the resiUts are shown in figure 2.7 w h ^ die training error

T reaches a level of 3.9x10'^. Qin et al [10] observe that die recurrent learning schme

requires a greater mmiber of epochs than the feedforward scheme to achieve die same

performance. When the training time was increased to 30000 epochs. T reached 3.9x10'^ and

G was 2.27; the results are shown in figure 2.8.

48

1(1) - itMO, «(k-l K « a - U . Ttk4 X Jft-iU

Figure 2.7 Graph demonstrating how the error E decreases with
learning time. There is one hidden layer comprising of 1.2, 3,4,
and S processing elements. Learning scheme: Recurrent ^
coefficient 0.2.

0.5

-0.5

-0.5

Inputs

0 10 20 30 40 50 60 70 80 90

Epochs

Outputs

Process &MLP

Epochs

Process

MLP

Figure 2.8 Graphs showing process and MLP inputs and outputs for a 5-3-1 MLP trained using the
recurrent training scheme.

49

When trained by the feedforward learning scheme, the MLP is passed, as part of its input
vector, process outputs that arc comprised partially of a noisy poiurbation signaL As the
MLP receives this noise as input, the MLP output comprises partially of noise. When trained
by the recurrent sdieme, this noise is absent from the input vector and so is not reflected in the
output vector. The MLP model using external recurrency reflects the process in the absence of
noise, i.e. the noise is fdiered. This being the case, there will always exist a residual error
between the process and the MLP model, i.e. the perturbation noise signal.

2.2.6. Modelling Nonlinear Systems.

In order to demonstrate how an MLP can model a nonlinear system such as described by (2.7).
experiments were conducted equivalent to those in the previous section, with the linear system
replaced by the nonlinear one. In order to allow for a greater nonlinear response from the MLP
die sigmoid's p coefCdent was increased; a value of 0.4 was found to provide die best results
in this instance.

Figure 2.9 shows how the training
error reduces ova- learning time. As
with die previous experiments, the
best results were achieved using three
hidd^ elements were the error T
reduced to 2.09x10-2 Figure 2.10
shows die inputs to die process and
MLP and the subsequent outputs.

Kk) - ftB(k).«(h.lL Kb-U tO-U)

Figure 2.9 Graphs demonstrating how E decreases with learning
time for the MLP trained to model a nonlinear process.

2.2.7. Modelling Parameter Variations.

All industrial processes are subject to a changing environment Factors such as the ageing of
process components represent parameter variations which a model based system needs to be
able to handle. I f an MLP. once trained to identify a system, was used in a model based
architecture widi no subsequent online training, it would cease to represent the system should
parameter variations occur. In a failure detection system, this would lead to false alarms; in a
control system, poor control decisions.

In an FDI system, an obvious solution would be to initially train the MLP to idoitify a dynamic
system offline. Once sufficient generalisation was achieved, the MLP could be used online but
widi its learning mechanism still enabled (i.e. die residual signal would continue to be used to
train the MLP using backpropagation).

50

Inputs

05

-as H

10 20 30 fO 50 70 bo 90

ProooM&M.P

Epochs

Outputs

as

-a5 H

Epodu

Process

Figure 2.10 Graphs showing process and MLP inputs and outputs for a 4-3-1 MLP trained to model a nonlinear
process.

In this way. as parameter variations occur - causing the functional d^Dcndoice between inputs
and outputs to change - this new function would be learnt by the MLP. The danger here,
however, is that should a fault cause a slow drift in the residual signal that could be
misinterpreted as a parameter variation, this fault is liable to be learnt as part of the normal
process dynamics and go undetected, i.e. a miss.

A preferable solution would be to train the MLP to identify the system offline, and once

sufficient generahsation had been achieved, duplicate the MLP model so tiiat two identical

models exist.

51

When used online, one MLP would aa as the model and would receive no further training,
whilst the other would continue to learn the process dynamics online in order to capture
parameter variations should diey occur, these will be referred to as the model and the trainee
respectively. Should the two MLPs become dissimilar with the trainee representing the system
better than the model, one of two events would occur dependent upon whether a fault was
considered to have occurred or not Should a fault be present in the system, the weights of the
trainee would be reset to those of the model. Should it be decided thai a fault had not occurred,
and the dynamics of the system had changed due to a parameter variation, the weights of the
model would be set to diose of the trainee.

Figure 2.11 Graphs demonstrating (a) error increase with parameter variation, and (b) how the effects can be
reduced using two MLPs.

This phmomena can be simulated in the state space equations (2.4 and 2.5) by adjusting a
value in the /4 matrix. The model MLP derived in section 2.2.5. with ^ set at 0.2 was
duplicated to give the model and the trainee. The system was allowed to run for 50 epochs
before element A l l in the/I matrix was increased by 0.4 to -0.041. as parameter variations by
nature occur only gradually. Figure 2.11(a) shows how the error D ina-eases for the model,
but reduces for the trainee which continues to leara the process dynamics. As the model error
is below 6x10'^ during normal operation, this value was chosen as suitable for a threshold;
should the error exceed the threshold, the model MLPs weights will be set to those of the
trainee. Figure 2.11(b) shows how die effect of model mismatch due to parameter variations
can be reduced in this manner. As can be seen, D does not reduce to its original low values but
with subsequent training this will be achieved. It should be bome in mind that the MLP was
allowed to learn the original process dynamics for 10000 training epochs and die new process
dynamics for only 50 epochs.

Similar experiments adjusting parameters to a greater or lesser degree than above resulted in
equivalent results, with the greater adjustmwts resulting in a longer learning time bdng
necessary for retraining the MLPs. Should very small alterations be made to elements in the i4
matrix, the direshold is typically not exceeded, i.e. the model MLP still mimics the system
sufficiently well.

52

2.3. Model Based FDI Using MLP Networks.

The aim of this section is to demonsnate how an MLP can be trained to recognise an aberration
in the residual signal of a model reference system as a fault; not to present a comprehensive
model based FDI system Subsequent chapters will pursue this latto" aim.

Figure 1.9 describes a model based FDI architecture which can be implemented using MLPs as
both the process model and the fault detection filters. Section 2.1.2. shows how the model
MLP can be trained using either the feedforward or the recurrwt learning scheme. In terms of
a fault detection system, one feature of using the feedforward scheme is that should a fault
occur which manifests itself in the process output, this erroneous signal will be used as a
componem of the model MLPs input vector. This immediately raises the question of how the
detection of such a fault would be affected by this effect

A sensor failure can be simulated [121 in one of two ways: either abrupt changes In the H
matrix of (2.5), or as biases in (2.5). The MLP derived in section 2.2.5. with P set at 0.2 was
used as a model for the process under normal operating conditions for 50 epochs. At this point
an abrupt change was made mrhcH matrix - a sensor fault - and the process continued for a
fixnher 50 epochs. Figure 2.12 shows the results. The result of feeding back an emoneous
signal to the MLP as pan of its input vector can be seen. As the recurrent learning scheme
does not receive this erroneous signal as input, a comparison between the performance of the
two can be made. In this case the residual signal is calculated as the Euclidean distance
between the process and MLP outputs.

As is demonstrated, the appearance of the fault causes the MLP model trained by the
feedforward scheme to bdiave differently to how it would had the fault not occurred, whereas
the MLP model trained by the recurrent scheme continues to predict the process output exactly
the same as it woidd w ^ the fault not present With the feedforward learning scheme, the
MLP outputs retain the same functional dq)mdence upon the inputs as under normal operating
conditions. However, the inputs are no longer normal which has the effect of pushing die
model outputs further from the process outputs under fault conditions. This can be seen by
virtue of the fact that the residual error is greater under fault conditions using the feedforward
scheme as opposed to the recurr^t scheme. As the feedforward learning scheme requires less
training epochs than the recurrent scheme and both MLPs in this instance were allowed the
same number of epochs to train, the residual eiror under normal conditions is less for the
feedforward scheme than for the recurrent With respect to an FDI system, this means die
feedforward scheme is likely to be the superior strategy, and it seems sensible to use real
process values as opposed to estimated model values where possible.

53

B a

Figure 2.12 Graphs showing how an MLP model trained using both the feedforward and recurrent learning
schemes responds to a sensor fault.

One of the successful areas of application for many ANN systems is that of pattern
classification such as in [4 and 13]. In the case of a model based FDI system it should be
possible to train a series of MLP networks to recognise pattens within the residual signal In
the example shown above a threshold detector would be able to detea the fault, and t r a i n i n g an
MLP with a standard sigmoid function as the transfo" function at a single ou^ut PE will
achieve this. Although in this case, a simple threshold detector would be more suitable to
detea the fault, for isolation purposes whoe a large number of different faults are possible, it
would be more helpful to recognise charaaeristic pattens in die residual signal An MLP is
enable of providing this categorisation as wiU be demonstrated ultimately.

54

Figure 2.13 Graph demonstrating how a classify MLP can be used to differentiate between normal process
operation and a fault situation.

Figure 2.13 shows an MLP widi three input uiuts (taking die current and previous two residual
errors), two hiddm units and a single output (3-2-1) trained to distinguish between the normal
process operation and a fault state. Here, die network was trained for a period of 10000
epochs using an equal number of normal process instances (where the network is expected to
give a value close to 0) and fault instances (where die network is expected to give a value ck>se
to 1). This is meant to be demonsOBtive only, classifying more complex patiems will be
explored in a later chapter.

2.4. Dynamic Networks For Modelling Dynamic Systems.

Dynamic
System

rr.D
StnUc
Am

Dynamic
System

Dynamic
ANN

(a) (b)
Figure 2.14 Schematic demonstrating how to model a dynamic system using (a) a
static ANN such as an MLP, and (b) a dynamic ANN such as an Elman NcL

As described in
secuon 2.2.1, a
system described
by the state space
equations (2.4 and
2.5) is an infinite
impulse response
system in that y(k)
depends not just

upon recent values of u but upon all measurements of u through time to die initial conditions
u(0). As an MLP contains no internal memory, it is necessary to provide such memory by
external recurrency. by providing both time-delayed inputs and time-delayed ouqiuts of die
system as input to the MLP. The schematic for such a system is shown in figure 2.14(a). This
approach has die disadvantage of increasing die training time of die MLP. as the ideal input
vector composition now needs to be established in addition to the number of units in die hidden
layer.

It would be beneficial to have a network diat was itself dynamic and could be trained to model

its own dynamics on those of die system and so determine die order of system dynamics. Such

a network would then be able to predict yfitj given only u(k) (figure 2.14(b)).

55

lnpDtLa>'« Hidden Lxycr OutpuiL^ycr InpiitLa>v Hidden Layer OolpaiL^ncr

(b)
Figure 2.15 Two dynamic networks with internal reourency. (a) the Sudharsanan and Sundareshan Net and (b)
the Elman NeL

A dynamic network used for system modelling was proposed [11] whose internal architecture is
shown in figure 2.15(a). Here all hidden units are connected to one another via adaptable
weights. As the input vector is applied to the netwoik. the outputs of the hidden units are
allowed to settie to a steady state before the output vector is calculated. Such a netwoik still
requires external recunency in addition to extmled computation time to allow the hidden layer
to stabilise. Its advantage appears to be a much shoner training time than for an MLP using
the backpropagation algorithm.

A much simpler form of internal recumency was proposed by PI man [3]. The PI man Net
(figure 2.15(b)) has a number of units, referred to as context units which have the same
activation at time (k+1) as die hidden units at time (k). The connections between the hidden
units and the context units are of weight 1, whereas the connections between the context units
and the hidden units are adaptable. The network can be trained using the backpropagation
algoritiun. Ebnan demonstrates how such a network is able to discover syntactic/semantic
features in words. Because of the recursion between hidd^ units and context units, the
network itself represents a dynamic infinite impulse response system. Indeed, i f die weights
betwe^ die context units and the hidden uiuts are Wj; the weights between the external input
and the hidden units are and the weights between the hidden layer and the ou^ut layer are
IVj. the Ehnan Net is governed by the equations

h(k-^l) = f(W,h(k)-^WMfc))

where w, / i , and y are die input, hidden and ou^ut layers respectively, and f () is the transfer

function of each unit in the network. Providing die transfer function has sufficient linear

response, this equation is equivalent to a form of state space equation indicating that the

number of hidden units directiy corresponds to the order of the system dynamics.

56

Hence the order of the process would have to be known in order to set the number of hidden
units accurately, i.e. the network does not learn the order of the process for itself.

In both cases, therefore, there appears little - i f anything - to gain from using such dynamic
networks in this application. Subsequent research has been conducted using MLP Networks.

2.5. Comparisons With Traditional Modelling Techniques.

Dynamic
System

e(k)

Filter yOc)

Training
Algorithm

In order to gauge the
effectiveness of the MLP as a
system identiflcadon tool, it is
necessary to draw a
comparison with traditional
modelling techniques. Such
techniques are often
implemented by means of a
filter, a schematic for which is

Figure 2.16 Schematic of a filter uained to predict the dynamic system shown in figure 2.16, whose
^"'P '̂'- coefficients have been
determined by some algorithm prior to actual use. Two such fdters are the finite and infinite
impulse response fdters.

2.5.1. FIR Filter,

The finite impulse response (FIR) filter uses only a predetermined numba* of historical input
values, and provides an estimate of the output according to

Z.-I

Hic) = Y,^(k-jyhj
; - 0

(2.15)

whoc y is the filter output, L is the l^gdi of the filter and h are the filter coefficients. This

can be rewritten

u{k) u(k-l) ••• i / (j t - L + l)
.. . u(jfc-L + 2)

A
^ (2.16)

or

y = Uh (2.17)

57

Ideally, y should be equal to y . so ^ can solved by

h^U-'y

-as

-as

Outputs a -10)

Epodu

Outputs a *40)

Prooess

F[R FUter

— Praocu

- FIR FUter

Figure 2.17 Graphs demonstrating differences that the length of FIR filter makes to system identification for a
linear system.

58

However, as is unlikely to be the square matrix necessary for invasion, die pseudoinverse
can be used, where X* (the pseudoinverse of the non-square X) is defined as

X^ = (X ' " x r X ^ (2.18)

Therefore h can be computed as

h-U*y (2.19)

As the filter Imgdi is increased, the estimate of y can be obs^ed and die calculation for die
generalisation error G made as in (2.12). The results are shown in table 2.1.

Filter Lengtli 5 10 15 20 30 40
G 6.06 6.32 6.33 6.74 4.01 3.63

Table 2.1 The effect on error that the length of filter makes for a linear system.

As can be seen in figure 2.17, low lengths of filter provide a smoothed estimate for y without
the transient features of die signal. As the length of die filter is increased, it begins to better
approximate the output of the system. However, die value of G for a lengdi 40 filter (3.63) is
still significanUy higher dian for die 5-3-1 MLP above (1.99).

Again when attmpting to filter the example nonlinear dynamic system, the length of filter can
be seen to influence die generalisation error as shown in table 2.2:

Filter Length 5 10 15 20 30 40
G 23.44 20.769 17.905 15.096 13.884 12.537

Table 22 The effect on error that die length of filter makes for a nonlinear system.

The graphs in figure 2.18 show how die lengdi of fdter similarly affects die output signal as
above, but again the generalisation error is higher than for a 4-3-1 MLP.

As die filter is a finite impidse response system and both die MLP and the modelled dynamic
system arc infinite impulse response systems die test cannot be considwed an objective
comparison for the MLP.

2.5,2. n R Filter.

A fairer comparison to attempt widi die MLP is die Infinite Impidse Response (IIR) filter as
this more closely resembles the experimental setup of the MLP. The IIR filter is also known as
die autorcgressive moving avaage of a system, and both Bhat & McAvoy [1] and Mirzai et al
[6] use an autoregressive moving avoage (ARMA) model of a pH continuous stirred tank
reactor (CSTR) and a fermentation process respectively in comparison to the MLP.

59

1 ^

•as

•1 +

-i.s -L

-as

•i.s

Outputs (L - 10)

Epochs

Outputs (L - 10)

Epochs

Ftocesa

RR Fitter

TOFfltei

Figure 2.18 Graphs demonstrating differences that die lengdi of FIR filter makes to system identificarion for a
nonlinear system.

A typical ARMA has the form

m'^'£y(k-i)b, = f^u(k-j)a^, (2.20)
i - I

which can be repUcated using a single layer (i.e. no hidden layer) perceptron with a linear

activation function at the output PE. (figure 2.19) widi both historical input and ou^ut data

being presented as die input vector, die and terms bemg represented by die weights from
the input processing elements to die output processing elem^ts.

60

u(k-m)

This being die case, it is possible to
compare the most accurate MLP
solutions widi their ARMA counterparts
(i.e. die 5-3-1 MLP widi a 5-1 ARMA
for the linear system, and a 4-3-1 MLP
with a 4-1 ARMA for the nonlinear
system).

Figure 2.19 A single layer perceptron as an ARMA model.

This leads to the results shown in figure 2.20.

1.5

-as

•1.5

1.5

0^ +

•as +

•i.s

. 8

Uneai System

Epochs

Nonlinear System

BRRTer

Epochs - RFtter

Figure 2.20 ARMA modelling linear and nonlinear systems.

61

Por the linear and nonlinear model respectively, die generalisation errors are 3.15 and 2.51,
demonstrating that even for simple systems the inclusion of a hidden layer can lead to improved
prediction c^abilities.

2.6. Summary.

The purpose of this chapter has been to introduce the multilayer perceptron network as a
system identification tool upon which a model-based FDI system can be based.

Strategies for learning die dynamics of systems woe reviewed and demonstrated upon an
example of a linear and nonlinear system in order to demonstrate die modelling capabilities of
the network. The issues of the MLPs ability to model linear systems wiUi itself bdng
nonlinear, die extent to which die MLP can cope widi parameter variations and a method for
detecting faults using an MLP model woe investigated.

In addition, die external recunency necessary to emulate dynamic behaviour in the otherwise
static MLP was compared widi networks which possess internal recurrency and die results
obtained from experimentation with the MLP compared to traditional filtering approaches to
system identification.

References For Chapter 2.

[1] N Bhat & T J McAvoy: Use Of Neural Nets For Dynamic Modelling And Control Of
Chemical Process Systems. Computers &. Chemical Engineering. Vol. 14, No. 4/5. pp
573-583. 1990.

[2] S R Chu, R Shoureshi & M Tenorio: Neural Networks For System Identification.
IEEE Control Systems Magazine. Vol. 10. No. 3. pp 31-35. April 1990.

[3] J L Ehnaii: Fmding Structure In Time. Cognitive Science, VoL 14. pp 179-211. 1990.

[4] R P Gonnan & T J Sejnowski: Analysis Of Hiddai Units In A Layered Network
Trained To Classify Sonar Targets. Neural Networks. VoL 1. pp 75-89. 1988.

[5] K Honiik, M Stinchcoinbe & H White: Multilayer Feedforward Networks Are
Univa^al Approximators. Neural Netyvorks. VoL 2. pp 359-366. 1989.

[6] A R Mirzai, K Dixon, R D Hiiige & J R Leigh: Approaches To The Modelling Of
Biochemical Processes. Proceedings Of lEE Control '91, Edinburgh. Vol. 2. pp 844-
849. 1991.

[7] W S Mischo, M Honnel & H Toiler Neuraliy Inspired Associative Memories For
Learning Control. A Comparison. Proceedings Of The J991 International Conference
On Artificial Neural Networks (lCANN-9]), Espoo, Finland, Vol. 2. pp 1241-1245.
1991.

[8] M Morari & £ Zafiriou: Robust Process Control. (P) Prentice Hall Intonational, Inc.
1989.

62

[9] K S Naraidra & K Parthasarathy: Identification And Conn-ol Of Dynamical
Systems Using Neiu^ Networks. IEEE Transactions On Neural Networks, Vol. 1,
No. 1. pp 4-27. March 1990.

[10] S-Z Qin, H-T Su & T J McAvoy: Comparison Of Four Neural Net Learning
Methods For Dynamic System Identification. IEEE Transactions On Neural
Networks. Vol 3. No. 1. pp 122-130. January 1992.

[11] S I Sudharsanaii & M K Sundareshair. Training Of A Three-Layer Dynamical
Recurrent Neural Network For Nonlinear Input-Output Mapping. Proceedings Of The
30'^ Conference On Decision And Control, Brighton, December 1991.

[12] A S Willsky: A Survey Of Design Methods For Failure Detection In I>ynamic
Syst&ms.Automatica.Vol 12. pp 601-611. 1976.

[13] B S WitUier & J S Denker: Strategies For Teaching Layered Networks Classification
Tasks. Proceedings of the American Institute Of Physics, pp 850-859. 1988.

63

Chapter 3.

The Unilever Automated Freezer,

The previous chapter demonstrated how die MLP can be used to model processes simulated
mathemadcally and detea faults within diem. This research programme is concerned with
fault detection in real industrial processes, and the remainder of this thesis will concern itself
widi developing an FDI system for one such system; namely the Unilever Automated Freezer.

The Unileva- Automated Freezer (UAF) is a piece of industrial hardware used in die
manufacture of ice-cream products, and is of current strategic importance to die Unilever food
group. Presendy. rudimentary automated fault detection is conducted by the system's
controller, although detection of a fault residts in the fieezer entering a "holding' condition
whereby ice-a-eam production is halted. In addition, the controller may take several minutes to
signal a fault, during which time - depend^t upon the nature of the fault - liquid ice-cream
may escape die freezer unit; a condition which results in die freezer needing to be shutdown
and cleaned prior to die ice-cream production being resumed. Other faults - most typically
sensor faults such as biases - can result in the quality of die ice-cream being affected. These
faults often go undetected by die controller.

Of specific interest is die starmp cycle of die UAF. Typically, following a production run, die
UAF is cleaned and left to stand idle overnight As with many mechanical processes, following
a poiod of inactivity, the UAF is prone to develop faults when it begins to operate. In
addition, the startup cycle of die freezer is highly nonlinear and difficult to model using
traditional linear techniques. As an MLP provides a nonlinear response between its inputs and
outputs, it would appear a useful tool attempting to model the startup cycle of the UAF.

The purpose of dus chapter is to introduce die Unilever Automated Freezer as an example of a
real industrial process upon which faults occur and need to be detected. It must be stressed
that it is only the starmp of the freezer which is considered.

64

The method of operaiion of the fineezer will be discussed, including the stages in the startup of
the freezer and the control laws governing its operation shown. The current method of
detecting failures (limit checking) will be discussed togeth^ with the identification of three
possible faults which can occur with the freezer and when - or i f - the current fault detection
system identifies them.

3.L Overview Of The Unilever Automated Freezer.

Raw
Materials Blending HomogenuaticHi

Raw
Materials w Blending p HomogenuaticHi Pasteurisation

Hardening Filling Freezing Holding Hardening Filling Freezing m Holding

b Packaging Cold Storage Distributimi Consumer w Packaging Cold Storage Distributimi P Consumer

Figure 3.1 Typical production line for the manufacture of ice-cream.

Figure 3.1 shows the typical posidon of the freezing process within die ice-crcam production
line. The UAF [3] takes in the premixed ingredients of the ice-cream and air and forms frozen,
aerated ice-cream as follows (figure 3.2(a)). The mix and air is pumped into the barrel of the
freezer where it is cooled by liquid ammonia. The motor turns the dasher within the barrel
which allows the dasher blades to remove frozen ice-cream from die interior surface of the
band as it forms. Finally, the frozen ice-cream is pumped from the barrel. The UAF therefore
fulfils Uirec roles:

Heat Exchanger: The principle role of die freezer is to refrigerate the mix and so form ice­
cream. Typically, the mix temperature is around S^C and the produced
ice-cream is below -4'/*C. This temperature exchange is achieved by
passing liquid ammonia over die mix whilst it is widiin the barrel of the
freezer.

Aerator: The UAF needs to incorporate sufficient air in the prcmix and aisure the
ovemin' air remains in the ice-cream as it leaves die freezer in order to
produce a stable air cell distribuuon of small mean size.

* Overrun: The increase in volume of ice-cream over volume of mix due to the incoiporation of air.

65

Texturiser: As ice crystals grow during the hardening and storage of the ice-cream,
the UAF needs to ensure that these crystals are small enough to reduce
lat^ detectability. This is achieved by the dasher within the barrel (figure
3.2(b)), The dasher rotates inside the barrel and removes ice-cream finom
the inner surface of the barrel.

Figure 3.2 Schematic of (a) the Unilever Automated Freezer and (b) the dasher within the barrel.

3.1.1. Datalogging.

As a matter of routine, certain measured and controlled variables are logged by PC software.
This information is intended for fault diagnostics should a problem occur with a particular run
of the UAF, and it is this data that is used in training the MLP to model the freezer. In this
way, no additional hardware requirements are necessary as all necessary sensors are already
installed. The maximum rate that the UAF can be sampled is at 5 second intervals.

The logged parameters are shown in table 3.1:

Parameter. Type. Notes.
Time Measured Each batch of measurements is time

stamped.
Barrel Pressure Set point

Ice-cream Temperature Set point
Mix Flow Set point

Air Flow Set point

Motorload Set point

Overrun Set point

Maximum Motorload Set point

Table 3.1 The measurements logged by the controller and associated PC software.

66

Mix Pressure Measured Typical range: 0-5 bar.

Ammonia Liquid Pressure. Measured Service: this measurement is only available
to the UAF in the pilot plant, not in the
factory.

Ammonia Suction Pressure Measured S^ice: this measurement is only available
to the UAF in the pilot plant, not in the
factory.

Bairel Pressure Measured Typical range: 0-10 bar.

Mix Temperature Measured Typical range: 0-70**C.

Ice-cream Temperature Measured Also referred to as the extrusion temperature.
Topical range: -15-70**C.

Ammonia Evaporation Pressure Measured Controls the extrusion temperamre of the
ice-cream. Typical range: 0-15 bar.

Mix Flow Measured Typical range: 0-10 litres/m
Air Flow Measured Typical range: 0-10 l in^/m

Motorload Measured Measures the power needed to rotate the
dasher, and gives an indication of the
viscosity of the ice-cream. Typical range 0-
150%.

Mix Pump Speed Controlled Typical range: 0-100%.

Ice-cream Pump Speed Controlled Typical range: 0-100%.
Camflex Position Controlled The Camflex valve is used to alter the

ammonia evaporation pressiu'e and therefore
controls the cooling of the ice-o-eam.

Overrun Calculated Measure of the volume of air in the ice­
cream. Calculated as .

Mix Flaw Rate

Alarm Triggered Series of flags indicating faults in the UAF.
Part of the current fault detection system.

Table 3.1 Continued.

As the ammonia liquid pressure and ammonia suction pressure are not measured on the factory
floor, these measurements will not be used in the training of the MLP model.

3-1.2. The UAF's Control Structure.

The UAF incorporates a niunber of feedback control loops as shown in figure 3.3. Actual
control is performed by the process computer, the CRLIOOO, which performs:

• PID (Proponional-Integral-Derivative) control of a number of individual loops
according to preset set points.

• Automatic startup and shutdown of the UAF.

67

• Fault detection by limit checking.

• Providing information to the human operator of process and service conditions,
and accepting set point changes from the operator.

The damlogging of freezer parameters are achieved by the connection of a PC to the CRLIOOO
via a serial link.

OVERRi

Air

®
Mbr->r

Ammonia
Gas

VISCOSITY

®

-<P>

Unilever
Automated

Freezer

BARREL
PRESSURE

4)

TEMP

(I)

Ico-crcam

Ammonia
Liquid

-FILLER DEMAND

Figure 33 Block diagram of the UAF and associated hardware control structure, showing flow (F). pressure CP),
temperature (T) and viscosity (V) measurements and their controllers (C) (e.g. PC refers to pressure control).
Pump and dasher motors are referred to as (M).

Unilever
Automated

Freezer

Barrel Pressure
Canirollcr

Pressure
CanuoUer

ViscQsay
Contrallcr

Figure 3.4 Simplified control structure showing parameters which affect
only die UAF.

As can be seen from figure
3.3, a number of the control
loops are local to individual
pieces of machinery, such
as the pump controlling the
flow of mix into the freezer,
and have no bearing upon
die dynamics of the freezer.
This control structure can
therefore be siii^)lified to
show the parameters which
affect only the freezer

68

dynamics as in figure 3.4, Here, inputs to the UAF are: the ice-cream pump speed, the camflex
position. Che mix flow and the air flow; outputs are: the barrel pressure, the ice-cream
temperature, the motorload and the ammonia evaporation pressure. Set points which directly
affect the dynamics of the freezer are die barrel pressure set poiru and the ice-cream
temperature set point.

3.1 J . Stages In The Startup Of The L A F .

The startup of the freezer is automated and undergoes sevoal different distinct stages before
the UAF settles to a steady state and ice-cream of acceptable quality is being produced. These
stages are characterised by major components within the UAF switching in or out and by the
CRLIOOO concentrating on achieving one particular set point.

These stages are [1]:

Filling the barrel:

Starting the dasher:

Pressurising the barrel:

This includes the initial services check (mix. air and ammonia),
the vent and mix valves being opened, and the mix pimip run for
approximately 65 seconds to allow the barrel to f i l l with mix.

Here, an alarm soimds for five seconds to warn of the motor
about to Stan. The motor begins to turn the dasher within the
barrel in two stages, initially at a low speed and thai at a full
speed. The dasher is allowed to rotate for about 20 seconds
before the next stage begins.

Air is injected into the barrel in a series of three five second
bursts. After this air is injected continuously until the barrel
pressure is greater than 4 bar.

Reducing the aninionia evaporation pressure: The air injection is halted and the camflex

valve opened; initially by 15%. then in a series of 5% increments

until the ammonia evaporation pressure is less than 2V4 bar.

Increasing the niotorload: Once the ammonia evaporation pressure reduces, refrigeration
begins and the mix starts to solidify. The dasher is now rotating
through a more viscous mix than before which means the load m
the motor is greater. The motorload is thoeforc increased to
match its set point

Starting the pumps: Following the moiorload and barrel pressure PID control being

turned on, the mix valve is open and the mix and ice-cream

69

pumps staned. The air valve is then opened, and the overrun and
mix flow PID coimol begun. At this point ice-cream is being
produced.

3.1.4. Operation Of The UAF (Data Collection).

For the purposes of training the MLP model, it was necessary to log a number of runs of the
UAF to gather training and generalisation (testing) data. As this stage of the research is
involved with modelling the dynamics of the UAF, it is important to try and stabilise all
exn-aneous variables that may affect these dynamics. For this reason the mix fomiulation was
kept the same (namely a Cometio formulation with no colours or flavourings - Comeuo NCF)
and the procedure for cleaning the freezer prior to each run was identical.

As the startup of the UAF was under consideration it was necessary to gather startup data.
Howev^. this would lead to only one log per day being collected. In order to increase this
number, it was important to attempt to get the UAF to a state close to how it would be if it
were left ovemight foUowmg each freezer run. This was achieved using the following
procedure prior to niiming the UAF:

1. O p ^ the dump valve to allow any ammonia still in the UAF to be removed and
connect the mix line to a cold water supply.

2. Open the \cni valve, mix valve and discharge valve, then pump cold water through
the UAF for about 10 minutes.

3. At intervals of 2 minutes stan the dasher rotating for a period of 20 seconds to
disperse any ice-cream remaining in the barrel.

4. Open the pump cover plates to drain the water from the freezer.

5. Qose the dump valve.

6. Connect the mix line to the Cometio NCF mix storage tank.

7. Tighten the cover plates.

Following this, the freezer could be nm in automatic mode with the various process parameters
being logged. Once ice-cream was produced - during the stan pumps stage of the freezer
startup - the run was continued for a further 10 minutes to allow the freezer to settle to a steady
state.

The UAF could then be shut down« and the above cleaning procedure conducted prior to the

next run. A typical run gives rise to the data shown in figure 3.5.

70

as

-as

i f i :
m i

Input*

Outputs

ScrririeNo

Air Flaw

loe^ocm PifrpSpsed

Ccmnoi Posiflcn

- Bord Prcuue

- lae-aecm T OTipertfue

• ArrmcriaENcpcTcllmPreutje

Mdaioaa

Figure 3.S Graph showing the inputs and outputs of the UAF during a typical startup with no faults. AU values
have been scaled to wiUiin ±1. A complete list of logged data is provided in appendix 3.

3.2. Fault Detection In The Unilever Automated Freezer.

Currently the CRLIOOO perfonns limited fault detection on the UAF. Once a fault condition is
detected, the controller puts the freezer into a "hold' condition, whereby production of ice-oeam
is halted until the fault is manually isolated and the freezer restarted.

3.2.1. Current Fault Detection System.

The fault detection is achieved by limit checking, and the fault conditions cherk^4 for along

with their thresholds are shown in table 3.2 [2].

71

Alanii Monitored Parameter Threshold Time before
*hold' in sees

Dasher motor not started Motorload <5% 3
High barrel pressure Barrel pressure >6.5 bar 5
Low barrel pressure Barrel pressure <0.5 bar 60
Mix pump nor running Mix pump speed «0% 5

Ice-cream pump not running Ice-cream pump speed «0% 5

High motorload Motorload >\65% 5
Low motorload Motorload <0.5% 60
Low air pressure Air Flow sOlitresAn 15

High anmionia sucuon pressure Ammonia sucdon pressure >1.5 bar 180
Low ammonia liquid pressure Ammonia liquid pressure <4.0 bar 10
Low mix pressure Mix Pressure <0.5 bar 60
Table 32 Fault conditions, thresholds and timouts on the UAF.

These conditions are checked during the diffo-ent stages of stanup in the following way:

Fillhig the barrel: Alarms monitored: low air pressure, low ammonia liquid

pressure, mix pump not running, high barrel pressure, and low
nux pressure.

Starting the dasher: Alarms monitored: low air pressure, low ammonia liquid
pressure, and low mix pressure.

Pressurising the batrel: Alarms monitored: low air pressure, low ammonia liquid
pressure, and low mix pressure.

Reducing the aininonia evaporation pressure: Alarms monitored: low air pressure, low

ammonia liquid pressure, low mix pressure, dasher motor not
ninning, and low barrel pressure.

Increasing the motorload: Alarms monitored: low air pressure, low ammonia liquid

pressure, low mix pressure, dasher motor not running, and low
barrel pressure.

Starting the pumps: Alarms monitored: low air pressure, low ammonia liquid
pressure, high ammonia sucuon pressure, dasher motor not
nmning. low mix pressure, high barrel pressure, low barrel
pressure, high motorload. low motorload mix pump not running,
ice-cream pump not nmning.

72

In addition, during the following three conool loops, the UAF will be put into a hold condition
should the explicit values or set points not be reached:

Air injection until the barrel pressure is greater than 4 bar. Time before "hold*: 120secs.

Open camflex valve until ammonia evaporation pressure is Tune before *hold*: 250secs.
less than bar.

Wait for motorload set point to be reached. Time before "hold': 900secs.

3.2.2. Simulated Faults In The UAF.

In order to be able to determine the effecdveness of model-based approach to failure detection
using MLP networks, it is necessary that a system should be able to distinguish between

• Two failures sufficiendy distinct from one another.
• Two failures sufficiendy similar to one another.

In order to achieve this, at least three failures need to be simulated in the Unilever Automated
Freezer. Two failures can be considered to be similar if a human operator would have difficulty
distinguishing betwe^ them.

The three failures chosen were:

1. A barrel pressure transducer fault.

2. A Camflex valve fault.

3. A Liquid ammonia hand valve fault.

The latter two faults concern the flow of ammonia and can be considered to cause the freezer to
behave similarly from the point of view of a human opo^ator. The barrel pressure fault is also
indicative of a soft failure, and so will be useful in demonstrating an FDI systems capabilities
with this type of fault.

This section desaibes each of die three faults and the effects diey have on die operation of the
freezer.

3.2,2.1. Barrel Pressure Transducer Fault.

Deso-iptinn.

The transduce- relays die pressure in the barrel to the controller. A faulty sensor which gives
an offset of about -K).3 bar at atmospheric pressure was used in place of a correctly calibrated
one.

73

EfTects Of The Fault.

During freezer operation in steady state, the barrel pressure will be conn-oiled at 4 bar as per
die reading from the transducer. The actual barrel pressure will be lower than the reading,
inferring a greater volume of air in the barrel leading to a lower heat transfer coefficient, so
lower extrusion temp^ture of the ice-cream and lower ammonia evaporation pressure.

Individual logged measurements will be affeaed as follows during steady state:

Mix Pressure:

Barrel Pressure:

Mix Temperanire:

Ice Cream Temperature:

NH3 Evaporation Pressure:

Mix Flow:

Air How:

Motorload:

Mix Pump Speed:

Ice Cream Pump Speed:

Camflex:

Overrun:

Dependent upon conditions of die mix plam.

Offset from normal initially, controlled to 4 bar during steady
state operation.

Dependent upon conditions of the mix plant.

If the motorload were uncontrolled, it would be low&r due to
the greater volume of air in the barrel at the lowex pressure as
there is less mix to rotate, and the mix has a lower viscosity.
Also, iheit is less friction on die dasher from die lip seals at
lower pressures. As die motorload is controlled, the ice cream
temperature will have to be lowoed to compensate.

The greats die volume of air in the barrel leads to a lower
heat transfer coefficient. With a conliolled moiorload, die
evaporation pressure must be lowered (i.e. made colder). This
is achieved by opening the camflex more.

Controlled, therefore independent of barrel pressure.

Controlled, therefore independent of barrel pressure.

Controlled, dierefore independent of barrel pressure.

Controlled, dierefore independent of band pressure.

Should run faster to control die barrel pressure at a lower
pressure.

Open more to reduce the ammonia evaporation pressure.

Indq)endcnt of barrel pressure; dependent upon Mix Flow and

Air Flow.

74

Symptoms IXiring Each Stage Qf Startup,

Stage# Description Effects Of Fault

1 Fill barrel. Offset in barrel pressure reading.
No other effects.

2 Start Dasher. Offset in barrel pressure reading.
No other effects.

3 Pressurise barrel. Offset in barrel pressure reading.
Air flow magnitude should be independent, but less
time will need to be spent injecting air into the
barrel due to the incorrect pressure reading.

4 Open camflex. reduce NH3
Evaporadon Pressure.

No effects.

5 Increase motorload to its set
point.

More air in the barrel, lower heat transfer
coefGcient and lower viscosity will lead to slower
buildup in the motorload.

6 Start pumps. As per steady state conditions above:
- Lower extrusion temperature.
- Lower NH3 Evaporation Pressure.
- Fast^ ice cream pump speed.
- Camflex open more.

Table 3.3 The symptoms of the barrel pressure transducer fault during startup.

Al l stages subsequent to stage 3 (pressurising die barrel) should stan sooner widi this fault due
to less time being spent injecting air into die barrel during stage 3. However, die time delay is
likely to be two sampling points at die most which is unlikely to be significant enough to aid in
die detection of the fault.

The CRLIOOO will not detect diis fault.

3.2.2.2. Camflex Valve Disconnected.

Description.

The camflex controls the ammonia evaporation pressure. A wire was disconnected from the
camflex to prevent it from opening at all.

Effects Qf The Fault

Disconnecting the camflex valve will have no effea on the freezer operating conditions through

the initial stages of startup. Once the evaporation pressure of the ammonia needs to be reduced,

a signal will be sent to the camflex instructing it to open.

75

As the camflex will not open, the evaporation pressure will remain constant and the freezer will
alarm out and go into a hold condition.

Figure 3.6 shows the valves cono-olling the flow of ammonia through the freezer.

Aiuiuona G33
(toSQctioa)

vah-c

PC
Vuuuuiy

Unilever
Automated

Freezer

UmulMD n^V<hv

Figure 3.6 Ammonia flow through the freezer. Key: (P)
Pressure reading taken. (PC) Pressure Controller.

Symptoms During Each Stage Of Startup.

Stage # Description Effects Of Fault

1 Fill barrel. No effects.

2 Start Dasher. No effects.

3 Pressurise barrel. No effects.

4 Open camflex. reduce NH3
Evaporation Pressure.

The camflex will not open as required due to it
being disconnected. Hie ammonia evaporation
pressure will not reduce, as the camflex valve being
closed will keep the pressure roughly constant.
After approximately 4 minutes the freezer will
alarm and go into its holding condition.

5 Increase motorload to its set
poim.

This stage will not be reached.

6 Start pumps. This stage will not be reached.

Table 3.4 The symptoms of the disconnected camflex valve fault during startup.

76

This fault will cause die freezer to go into its holding condition after alarming during stage 4
(reducing the ammonia evaporation pressure). Subsequent stages will not occur.

The CRLIOOO will detect die fault during stage 4 of the startup cycle.

3.2.2.3. Liquid Ammonia Hand Valve Closed.

Description.

In normal operating conditions, the hand valve will be open to allow the flow of amrnQnia

through die freezer. To simulate this fault, die valve was not opened prior to running die
freezer.

Effects Of The Fault.

Failing to open the liquid ammonia hand valve will have no effect upon die freezer operation
during the initial stages of startup. When the evaporation pressure needs to be reduced, the
reading will already be low due to die valve being closed. The freezer will alarm out and go
into a hold condition during the stage where the motorload attempts to match its set point.

Figure 3.6 shows die valves controlling die flow of ammonia through the freezer.

Symptoms During Each Stage Of Startup.

Stage# Description Effects Of Fault
1 FiU barrel. The initial rise in the ammonia evaporation

pressure will not occur.
2 Start Dasher. No effects.

3 Pressurise barrel. No effects.
4 Open camflex. reduce NIC

Evaporation Pressure.
This stage aids whm the ammonia evaporation
pressure reaches V/i bar. As the ammonia flow will
not be reaching the pressure sensor, the pressure
reading will already be low, and this stage should
end quickly.

5 Increase motorload to its set
point.

As the flow of ammonia is prevented by the liquid
ammonia hand valve being closed, refrigeration
will not occur in the freezer, and the freezer will
alarm and go into its holding condition.

6 Start pumps. This stage will not be reached.
Table 3 J The symptoms of the liquid ammonia hand valve fault during startup.

This fault will cause die freezer to go into its holding condition after alarming during stage 5
(increasing die motorload). Subsequent stages will not occur.

77

The CRLIOOO detects this fault during stage 5 of the startup cycle.

3.3. Summary.

The aim of this chapter was to introduce the Unilever Automated Freezer, and briefly describe
its major components.

The startup of the freezer cycle was determined to be suitable for attempting to detea faults
using a model-based FDI system, as a number of faults can occur following the fr:eezer
standing idle overnight and with die startup being highly nonlinear it is difficult to model using
linear moddling techniques. In addition, the information provided in die datalog is richer
during startup whereas Utde dynamic information can be gained once the freezer has reached a
steady state. Also, for economic and practical reasons it is important to detea faults as early
as possible - preferably prior to production.

Several stages were identified within die UAF startup c>'cle and described as bemg: filling die
barrel, starting die dasher, pressurising die barrel, reducing the ammonia evaporation pressure,
marching die motorload set point, and starting the pumps.

In order to concentrate on modelling die freezer dynanucs. it was necessary to 07 and keep all
other variables extmial to die UAF as standard as possible. Such variables, which will affect
the dynamics of fiieezer. are: the formulation of the mix. the initial temperature of die barrel,
the type of dasher being used, and the amount of ammonia in the freezer prior to running. A
mediod for ensuring this standardisation was described.

The current method for detecting faults widiin the UAF was identified as being a non-modd
based limit check on certam process parameters. The parameters were identified along widi
their fault thresholds, and die alarms that would be triggered should the threshold be exceeded
detailed.

Three faults were identified as being possible to occur during startup and which coidd be
readily simulated on die UAF. Of diese faults, two were sufficiendy similar to one another to
cause a problem for a human operator to identify online, whilst die other was su^iciendy
distinct from die first two. Also one fault of die faults was identified as being a sofi sensor
bias which die current fault detection system would not be able to detect.

References For Chapter 3.

[1] D Cox: Startup Procedure Of W-Auto Freezer (Colwonh). Private Communication.
(C) Unilever Research Colwordi Laboratory. 1992.

78

[2] D Cox: Startup Procedure Of W-Auto Freezer (Colworth). Monitoring And Alarms.
Private Conmiunication. (C) Unilever Research Colworth Laboratory. 1992.

[3] URCL Personnel: Autofieezer Trainers Course Manual. (C) Unilever Research
Colworth Laboratory. 1991.

79

Chapter 4.

Modelling Time-Vatying Processes,

Multilayer Perceptrons have been demonsn-ated as being univGsal approximators [3], although
factors governing their success are dep^ent upon the internal architecture of the network (in
toms of the numbo* of hidden layers and processing elements within those layers) and die
composition of the input veaor so as to provide sufficient information to allow it to
approximate adequately. For a system identification problem. Chapter 2 demonsorated how an
infinite impulse response system can be modelled using an MLP by providing historic (time-
delayed) process inputs and outputs to emulate dynamic behaviour, thus

y = f { y . u) (4.1)

as historical information concerning u will be reflected in y.

Clhapter 3 introduced the Unilever Automated Freezer as being a major piece of industrial
hardware upon which the modelling techniques developed in Chapter 2 would be applied. The
purpose of this chapto* is to demonstrate how the modelling techniques of Chapt^ 2 failed to
provide any useful results witii the UAF. The problem witii the approach is detCTmined to be
that all systems modelled in Chapto* 2 - although dynamic - are time-invariant in operatioa
The freeze is a class of time-varying process, whose underlying mode of operation changes
disjointedly with time; i.e. a piecewise time-invariant system

Two potential solutions are presented: including time as a part of the input vector of the MLP,
thus making the MLP time-vaiying; and modelling the freeze using a smes of MLPs - an
MLP Cascade.

The MLP Cascade is highlighted as being a novel approach to modelling time-varying systems
of tiiis type.

80

4.1. Initial Attempts At Modelling The UAF.

Icfrcrc3fli Puflip Speed
Cam f i d Position

Mix Flow
Air Flow

Unilever AntnmaTrrt
Freezer

Unilever AntnmaTrrt
Freezer

Unilever AntnmaTrrt
Freezer

, 1
Unilever AntnmaTrrt

Freezer

111 L

Unilever AntnmaTrrt
Freezer

111 L

lo&ocsm l^mpoBlUic
Ammoiua EvapotBtum Plcssuic

Band Pressure
Ice-cream Ttaiipcaturt

Htstoncal

Set Poinl

K2
Shifl^ channels

>
Multiple channels

(E

MLP Model

Barrel (Vcsstnc CcA)
Ice-cream Tunpemuie Ccsl)
Annnonui GvaporsliaD l̂ cssure (est)
Motorioad Ccst)

Figure 4.1 Schematic for modelling the UAF using a single time-invariant MLP.

Initial attempts at modelling the UAF were conducted using the equivalent experimental set-up
as described in Chapter 2. Figure 4.1 demonstrates how both input and output signals from the
UAF are stored in a history buffer which is made available to an MLP along with the same set
point information that the UAF is receiving. As the freezer output signals are stored in the
history buffer as opposed to outputs from the MLP, the learning strategy employed is
feedforward as opposed to recurrent. "Rie reason for this is explained below.

4.1.1. Method OF Training.

As in Chapter 2. the data was split into two groups, a training and geno-alisation set; the file
names for which are listed in figure 4,2*. It is typical to have a generalisation set of equal size
to the training set; however due to the cost of obtaining data for this research it was necessary
to compromise this ideal by splitting the available data into a training set that was of suitable
size to allow the MLP to learn the UAF dynamics, whilst keq)ing a geno^ation set that was
large enough to reduce the risk of obtaining misleadingly promising results. I f the
generalisation set is small, there is an inoieased danger that the items within it are - by

* Occasionally files from die training set were moved into the generalisation set and vice-versa, but
always for separate training runs. At no time was a file used for generalisation upon which an MLP
had been trained.

81

coinddence - the subset of all possible items that responds favourably to the trained MLP;
otha" items which could have been within the set may have shown the MLP solution to be poor.

Training Set Generalisation Set

l-4a.log 24-7b.log
l-4c.iog 24-7dJog
l-4dJog 24.7g.log
l-4e,log ll-9aJog
10-7a.log ll-9b.log
ll-9c.log ll-9dJog
il-9eJ[og 18-3dJog
l4-7aJog 18-3e.log
I8-3b.log l-4b.log
i8-3c.log 8-4e.log
18-3fJog
24-7a.log
24-7c.log
24-7eJog
24-7f.log
24-7h.log
31-3aJog
31-3b.log
7-4diog
8-4a.log

Initial e}q)erimentation was conducted by moving a
window sequentially over the data using both the
feedforward and recurrent learning schemes, which
at this stage was thought to be unsuccessful due to
the MLP becoming reliant upon the recent freezer
measurements. By viewing figure 3.5, one can see
that the greatest fluctuations in process variables
occur at the outset of a run, before settling into a
more stable operating region once the mix and ice-
aeam pumps have beai staned. The MLP weights
are initialised to random values prior to learning, so
that by the time one complete presentation of a log
file has been made to the MLP, it is possible that the
later more stable data will have been learnt at the
e?q)ense of the earlier fluctuating data, i.e. the
earlia learning will have been overwrinea As the
data from die log is rq)eatedly presented to the
MLP, upon the last record being presented the file

pointer will move back to the start of the nm. However, though this will cause this data onoe
more to be used in configuring the MLP, again die long period of stable data toward the end of
the run is likely to overwrite this learning.

This problem is usually solved by moving the window onto the data around the log files
randomly. For these experiments, th^fore, the strategy adopted was to move the file pointer
to a random point in the available data, and allow sevo^ discrete time steps - or records- to be
read sequentially. The first of these records were purely to load the history buffer with past
data without presenting any data to the MLP; the remaining records w^e used to train the
MLP. While this was intended to solve the earlier problem of overwriting the initial learning, it
also meant that the recurrent learning scheme was unusable.

MLPs of various sizes wa^ used in attempting to model the UAF as desaibed below; in
addition to increasing the numbc of hidden units within the MLP, the composition of the input
layer was varied to include greater historical information For these experiments, one training
epoch implies the presentation of one discrete time instant in one log file with the associated
historical information Each configuration of MLP was allowed 100000 epochs to attempt to

Figure 42 Typical division of Jog files into
training and generalisation sets in a ratio of
2:1.

82

learn the UAF dynamics. All process variables woe scaled to within ±1 with respect to the
maximum value information in section 3.1.1.

4.1.2. Experimental Results.

Each experiment used one input veaor composition on an MLP with a single hidden layer
ranging from 5 hidden units up to 15 hidden units. Each hidden unit within the MLP had a
standard sigmoid activation function with its steepness coefBcient set to 0.4. In each case the
learning coefficient was set to 0.05 and the momentum coefficient to 0.6. Three compositions
of input vector were tried, consisting of 14, 22 and 30 processing elements respectively. Hie
input vector with 14 elements was comprised as shown in table 4.1.

PE# Description UAF Type Time Delay
1 Barrel Pressure Set Point Set Point 0
2 Ice-cream Temperature Set Point Set Point 0
3 Ice-cream Pump Speed Input 0
4 Camflex Position Input 0
5 Mix Flow Input 0
6 Air Flow Input 0
7 Ice-cream Pump Speed Input 1
8 Camflex Position Input 1
9 Mix Flow Input 1
10 Air Flow Input 1
11 Barrel Pressure Output 1
12 Ice-cream Temperature Output 1
13 Ammonia Evaporation Pressure Output 1
14 Motorload Output 1

Table 4.1 The composition of input vector for a 14 input MLP.

For subsequent compositions of input vector, an additional dght processing dements were
added to the input layer; comprising of the four UAF input and four UAF output variables with
an additional time delay. The results obtained for these experiments are shown in table 4.2.

Number of hidden PEs

5 6 7 8 9 10 u 12 13 14 15

14
0.6891 0.7045 0.7046 0.7202 0.7049 0.7049 0.6942 0 6891 0.7073 0.7190 0.7153

14
113.9395 96.4941 99.4195 86.9213 96.1749 113.4407 95.2258 69 4521 143.9628 1S4.6SS3 107.4714

22
0.6779 0.6645 0.6876 0.6813 0.6676 0.6501 0.6S42 0.6627 0.4693 0^817 0.6602

22
136.0796 8iJ99S 142.0535 138.9479 77.4182 76^147 87.6848 93J906 97.9841 107.0301 87.6861

30
0.6537 0.6564 0.6566 0.6496 0.6621 0.6475 0.6617 0.6544 0.6460 0.6438 0.6594

30
151.2212 269.2854 199.8122 72.8888 84.2825 79.9148 90.1126 882379 16SJ647 84.7449 84.7920

en

4-1

I
o

55
Table 42 The training and generalisation errors achieved for a time-invariant MLP model,

83

For each experiment - anploying a training cyde of 100000 epochs - in this table two errors
are shown; the upper being the training oror (70. the lower being the genffalisation oror (G).
The training error is calculated identically to that used in Chapter 2 (equations (2.9, 2.10 and
2.11)) being a smoothed Euclidean distance measurement over the entire training set, as is the
geno-alisation error (equations (2.9 and 2.12)) being an accumulated Euclidean distance
measurement over the entire generalisation set

8 e t) B B 5 S 5 a s

' I I If

0 8 8 8 8 6 8 8 R 3 9

Figure 4.3 Graphs demonstrating the failure of a single time-invariant MLP to model the UAF.

As can be seen, both T and G for all experiments are poor, but the significantly higher
generalisation error indicates that the dynamics of the freezer have not been learnt by any of the
MLP architectiu-es. Graphical results of the highlighted experiment (an MLP with an
architecture of 14-12-4 - since this generated the lowest value of G) are shown in figure 4.3 (in
this case for the fde 18-3d Jog).

Although the signals generated by the MLP are unlike those produced by the UAF, initially
promising features of the results are that some of the charaaeristics and general shapes of the
UAF signals are being predicted by the MLP. This is especially noticeable when at step 73
two major events occur: the barrel pressure reduces sharply and the ice-cream tempomire
reduces to below 0**C, i.e. refrigmtion takes place. At this point the MLP appears to
recognise that a change in state is about to occur by altering some of its own output values.
However, closer observation reveals that these MLP output changes are time delayed responses
to these events. Again, earlio" in the run, the barrel pressure undagoes three stq) increases
which look anticipated by the MLPs fluctuations in barrel pressure, ammonia evaporation
pressure and ice-cream lempo-ature estimates, but again the MLP changes occur one time s t^
following the stq) incs'eases and not simiiltaneously.

84

In each case, therefore, it appears that the MLP outputs are influenced by changes in the UAF
outputs as opposed the MLP predicting these changes in output Table 4.3 shows the weight
matrix between the input layer and the hidden layer, and reveals that the most significant
weight values are those from input processing element numbers 11, 12, 13 and 14 to each of
the hidden PEs. Each of the otho* weights have been reduced by the baclq)ropagation
algorithm to below 0.1 (except the weight of the connection between input PE 6 and hidden PE
11 which is just above this) which means that the input lines 1 through 10 will be having little
impact upon the outputs of the MLP in comparison to input lines 11 through 14. As can be
seen from the composition of the input vector above, these input lines correspond to the time
delayed outputs of the UAF, i.e. die MLP estimates of UAF outputs are dq)endent - in the
main - upon past UAF outputs with other information being considered of littie import

PE in Hidden Layer

1 2 3 4 5 6 7 8 9 10 11 12
1 -0.0070 -0.0036 -0.0133 -0.0084 -0.0112 -0.0075 -0.0139 -0.0119 -0.0138 -0.0225 -0.0129 -0.0181

2 0.0032 -0.0014 -0.0012 -0.0036 0.0115 0.0097 0.0098 0.0020 -0.0020 0.0134 0.0116 0.0024

3 -0.0068 -0.0120 -0.0066 -0.0182 -0.0269 -0.0062 -0.0312 -0.0031 -0.0209 0.0103 -0.0046 -0.0098

4 -0.0047 0.0078 -0.0156 -0.0177 -0.0179 -0.0019 -0.0252 -0.0016 -0.0043 -0.0064 -0.0047 -0.0009

5 0.0012 0.0007 -0.0407 -0.0199 -0.0438 -0.0337 0.0021 -0.0108 -0.0015 -0.0070 -0.0211 0.0056

6 -0.0410 -0.0220 0.0056 -0.0180 -0.0138 -0.0260 -0.0391 0.0094 -0.0317 0.0079 -0.1028 -0.0114

7 -0.0087 -0.0058 -0.0075 -0.0329 -0.0027 -0.0021 -0.0358 -0.0043 -0.0162 0.0092 0.0054 -0.0165

8 -0.0087 0.0015 -0.0189 -0.0215 -0.0077 -0.0110 -0.0237 -0.0009 -0.0078 -0.0013 -0.0043 -0.0031

9 0.0116 0.0199 -0.0547 -0.0292 -0.0218 -0.0140 -0.0010 -0.0332 -0.0123 -0.0209 -0.0011 -0.0025

10 -0.0349 -0.0393 0.0096 -0.0212 -0.0136 -0.0259 -0.0452 0.0097 -0.0237 0.0022 -0.0145 -0.0166

11 -0.2171 -0.6177 0.9551 0.6146 0.6592 02658 -0.2270 -0.0757 -0.3463 -0.2705 -0.0993 -0.3716

12 -0.2722 -0.2121 -0.2166 0.0564 -0.4946 -0.3391 0.1780 0.4351 0.2645 0.2206 -0.2444 04547

13 -0.0343 -0.0085 -0.3855 -0.0406 -0.1677 -0.1680 0.1222 -0.2431 -0.0050 -0.2095 -0.0988 -0.0638

14 -0.5202 -0.2694 0.3706 -0.1435 •0.0956 -0.0349 -0.4453 0.2211 -0.3836 0.1799 -0.1561 -0.1929

PE in
Input
Layer

Table 43 Weight matrix of connections between the input layer and the hidden layer. Predominant weight values
are concentrated in the connections between inputs 11.12. 13 and 14 and the hidden layer.

Qearly the MLP in its current form will never be able to act as a dynamic model of the UAF so
long as this sole dqjendence upon the immediate preceding process outputs occurs. The extent
to which tills reliance is true can be tested expoimentally by attempting to predict tiie freezer
outputs at time k by providing an MLP with the four freezo* outputs at time k-I (i.e. a 4-h-4
MLP where h is the number of hidden units).

85

e R a q 8 a e s B s 5 S 3

V

s fl -a_ij8-_a—s—a B g s a s a

Figure 4.4 Graph demonstrating the response of a 4-12-4 MLP to the outputs of the UAF. Note the similarity
between these and the results of a 14-12-4 MLP shown in figure 4.3.

For comparison with the above, a 4-12-4 MLP was trained for 100000 epochs with training
and generalisation errors calculated as before. Here, T reduces to 0.6994 with G anerging as
72.8602. Figure 4.4 demonstrates these results graphically.

Increasing the number of hidden layers within the MLP to two provided a furtha* series of
e3q)eriments which woe performed, although these supplied no better results than those above,
with MLP again tending to rely upon the most recent UAF outputs.

4.1.3, Reasons For Failure.

In order to det^mine why the MLP network should be able to learn the dynamics of the
systans introduced in Chapter 2 and yet fail to learn the dynamics of the UAF. one needs to
considQ- the difTerences between the two problems.

Qearly, the UAF is more complex (i.e. a higher order of dynamic system) than the
mathematical models of (2.6) and (2.8), but this alone should pose little difficulty to the MLP
provided sufficient processing dements in the input and hidden layers were allocated. One
solution in attempting to alleviate the effects of this complexity upon the moddling MLP would
be to introduce some level of preprocessing on the input signals in order to extraa features that
were pminent to the modelling problem, whilst discarding information likdy to hinda- the
MLPs ability to modeL One such m^hod of prq)rocessing would be to perform some data
transformation such as the Fast Fourio- Transform (FFT) on the input vector which would -
usiog the FPT - move the data into the frequency domain where it may be more readily possible
to learn the process dynamics using an MLP.

86

As the purpose of such feature extracting prq)rocessing is to simplify the input data and
remove any extraneous information from the signal, the danger with any such technique (in
view of the ultimate fault detection requirements of this research) is that the information lost
during the transformation may be exacdy the information required. If, for example, failures
displayed the same fi^ency spectrum as was displayed under normal operating conditions,
once an FFT was performed information pertaining to the failure would be lost In the case of
the UAF and its three candidate faults, this can be readily demonstrated i f one considers
another preprocessing technique; that of reducing the input vector to its first differential, i.e.
providing the MLP with details of the rates of change of variables whilst discarding their
absolute values. In the case of the barrel pressure sensor fault, where the sensor reading is
offset whilst the barrel is at atmosphoic pressure, it is precisely this absolute value that
identifies the problem as the rate of change of the reading for the initial part of the fi-eezer
startup is identical to that of a normal run; in this case zero.

Such an example can be considered trivial in view of the faa that sensor biases are relatively
common faults in industrial processes, and therefore discarding such quantitative
measiucments can be seen as foolhardy. However, the problem with regard to this research is
that it is fmancially prohibitive to identify all faults that can occur in the UAF a priori, which
in turn makes it impossible to know wh^her any prqirocessing m ^ o d would be suitable in all
cases. It may prove expedient to solve the moddling problem by performing a preprocessing
routine that still allowed the three candidate faults to be identified, but such a solution would
become redundant should the scope of the system be expanded to include other faults whose
distinguishing features wo-e removed by the prqirocessing.

A secondary reason for resisting such prq)rocessing is titie additional run time such methods
require in the overall system. In a real-time application, this extra processing time may become
imdesirable.

A second difference between the UAF and the simple mathematical processes is that die fi^ezo*
is pan of a closed-loop system. In a simple open loop system, the process outputs have a
dq)endency upon the inputs (i.e. y = f («) w h ^ / () is some dynamic representation of die
system). In a closed loop (i.e. controlled) system - whilst this is still true - the inputs to the
process are also dq)endem upon die outputs (i.e. u = g(y) where gO is die relationship
displayed by the controUo-). Such a relationship implies that, in ordo" to model such a closed-
loop system, both system inputs and outputs need to be included in the input vector of the MLP
in ordCT to allow the modelling of both the process and its controllo*. However, in practice this
is already done, as such recurrency of process outputs is necessary to emulate the dynamic
behaviour of the system in an MLP.

87

As several stages of operation have been identified in the startup regime of the UAF - stages
characterised by the switching in and out of various process components and changes in control
set points - it is likely that the changing fipom one stage to another constitutes an alteration in
the underlying operation of the freezer. As these different stages occur sequentially in tiime>
tiiis would mean that at any discrete time interval, die output of die UAF would depend not
only upon previous input and output measurements but also upon the point in time that the
measurements were made. i.e. the UAF would be a time-varying system. Thus an output
estimate for any y of the system will be

(4.2)

making the approximation of any such fimction using the types of MLP thus far employed
inaccurate as the composition of the input vector is inadequate. The identification [1] and
control [4] of certain classes of linear time-varying system has been discussed, the former being
achieved by introducing time-varying noise estimates into the adaptive Kalman Filter
algorithm.

4.2. Using A Time-Varying MLP.

Ic&̂ fCQ̂ Q Pixflop Speed
Comflcc Position

Mix Flow
Air Flow

Band Prcssurr

IjOĵ l̂ ed riffle Stâ op

Unilever Automated
Freezer

Unilever Automated
Freezer

Unilever Automated
Freezer

, 1
Unilever Automated

Freezer
1 ,!

Unilever Automated
Freezer

Bcnel Pressure
Ice-oeam 'Huiipciuluic
Ammnnia Evaporation Prcssmc

Historical Data
Riiffer

SetPDim

MLP Model

[s]

MultlplsclttinKls

Barrel Pressure (est)
IcooQun Ibmpcratuxc (est)
Ammonia EvaporatiOD Pressure (ed)
Motorload (est)

Figure 43 Schematic for modelling the UAF using a single time-varying MLP.

Initially an attempt to solve this problem was made using an MLP that was itself time-varying
by incoiporating an explicit rq)resentation of time as part of its input vector, as demonstrated
schematically in figure 4.5.

88

4.2.1. Method Of Training.

The method of training the time-varying MLP was identical to that of the time-invariant MLP
with the available data logs being split into a training and geno^ation set in the ratio of 2:1
(figure 4.2). Again, a random window was moved around the training set with several records
being read to load the history buffer prior to actual training presentations being made to the
MLP.

The time stamp - which appears by each record in the data logs in the form hh'jnin:ss - was
converted to an incremental integer which was scaled during training to a floating point number
between zero and one.

4.2.2. Experimental Results.

As before, each experiment involved a single lay^ MLP with the number of hidden units
varying from 5 to 15; each hidden unit possessing a standard sigmoid activation function with a
steq)ness coefficient of 0.4. The learning and momemum coefficients w ^ set to 0.05 and 0.6
respectfully.

The three compositions of input veaor - consisting of 15, 23, and 31 processing demoits -
comprised of the UAF variables desaibed in section 4.1.2 and an additional process'mg unit to
introduce the time representation into the MLP. The results obtained for these e:q)mments are
shown in table 4.4.

Number of hidden PEs

5 6 7 8 9 10 11 12 13 14 15

15
0.5334 0.5075 0.4815 0.4858 0.5262 0.4732 0.4722 0.4687 0.4853 0^824 0.4716

15
104.8517 106.7779 79.0250 82.9038 89.1587 80.7382 86.4986 72.7008 88.4784 71.0233 71.5415

23
0.4692 0.4839 0.46237 0.4789 0.4510 0.4606 0.4330 0.4413 0.4238 0.4412 0.4449

23
79.7217 99.9568 85.0729 72.2395 95.4785 72J343 7i2105 82.4675 79.6723 8Z3920 85.7320

31
0.4363 0.4367 0.4242 0.4405 0.4289 0.4168 0.4360 0.4296 0.4209 0.4171 0.4344

31
61tJ64S 87J238 98.0718 88.6329 83.7017 B5.8268 74.2756 69.0638 74.0058 87.4401 85.9011

I
I

Table 4.4 The training and generalisation errors achieved for a time-varying MLP model

Again, both T and G are poor, although in general T is approximately 0.2 Iowa- than for the
time-invariant expaiments indicating a slightly improved approximation of the UAF function.
The results of the highlighted experiment are shown in figure 4.6 for the 18-3d Jog file.

89

R a q s s e a s B S R g g

e R a a a e a a 9 S «

8 B » 8 8 B 2 a g g

Figure 4.6 Graphs demonstrating the failure of a single time-varying MLP to model the UAF.

Altiiough graphically, die results still appear as poor as those for tiie time-invariant solution, it
is noteworthy that the spread of values in the weight mauix between the input and hidden
layers shows that all inputs are providing some bearing upon the eventual outputs of the MLP
as can be seen in table 4.5. which could indicate that the MLP is attempting to model the UAF.

However, the significant model mismatch displayed by the MLP renders this solution
inadequate for fault detection ptuposes. and experiments with incaieased immbers of hidd^
units and two hidden layers failed to improve on these results significantiy. The conclusion
was therefore reached that anoth^ approach needed to be adopted in order to adequately model
the UAF.

4.23. Reasons For Failure.

As proposed above, the Unilever Automated Freeze is a time-varying system in that plant
outputs are dependent to some extent upon time. This conclusion has been reached as the UAF
has several distinct stages of operation during its startup cycle which occur sequentially in time
as a result of set point changes and control decisions altering the state of various process
components

However, it is unhkely that the UAF varies smootiily in time as the points at which one stage of
operation changes to another are not eqiu-distant Moreovo", for different processing runs of
the UAF. the stage changes may not occur at the same point during each nm. Training an
MLP model witii time rq)resented expliddy as an input could be failing to emulate the
dynamics of the freeze as it itself is smoothly time-varying which would not be an accurate
representation of the freezer operation

90

PE in Hidden Layer

PE in
Input
Layer

1 2 3 4 5
1 -0.1944 -0.0974 -0.1200 -0.1733 -0.1474

2 -0.0633 -0.1839 -0.1279 -0.2527 -0.2804

3 -0.0469 0.1000 0.0207 0.0089 0.1288

4 -0.1316 -0.0662 -0.1240 -0.0825 -0.1099

5 -0.1472 -0.1589 -0.1767 -0.0895 0.0176

6 -0.0068 0.0352 •0.3181 -0.1564 -0.1409

7 -0.1443 -0.1852 -0.3735 -0.2500 -0.1309

8 -0.0307 -0.0865 -0.2100 -0.0020 -0.1589

9 -0.2495 -0.1356 -0.0279 0.0533 -0.0251

10 -0.0605 -0.2324 -0.3890 0.0158 -0.1901

11 -0.0464 -0.0125 -0.2019 -0.2328 -0.1579

12 -0.1686 -0.0786 -0.1264 -0.1337 -0.2248

13 -0.0763 -0.0662 -0.1532 -0.0372 •0.1195

14 -0.2089 -0.1555 -0.2017 •0.1662 -0.0082

15 -0.0704 0.0131 -0.1422 -0.3408 -0.1232

16 -0.0471 -0.0546 -0.0775 -0.0948 -0.1199

17 0.0477 0.0266 -0.0478 -0.0188 -0.0073

18 -0.2165 -0.0054 -0.1019 -0.3695 -0.0391

19 -0.2018 -0.1467 -0.2442 -0.1738 -0.2679

20 -0.7938 -0.7170 0.1761 -0.1513 0.0506

21 -0.0158 0.3420 0.3059 -0.4413 0.0323

22 -0.4343 0.1369 0.0079 0.4144 -0.2021

23 -0.4435 -0.5581 0.4225 0.1756 -0.3357

24 -0.3404 -0.2663 0.0318 -0.1881 -0.0571

25 0.0206 0.3079 0.2065 -0.0705 -0.0944

26 -0.2689 0.0637 -0.0235 0.4091 -0.1284

27 -0.3124 -0.4400 0.3716 0.0778 -0.3425

28 -0.2236 -0.1176 -0.2081 -0.0346 -0.0662

29 -0.0007 0.3005 0.2121 -0.1033 0.0116

30 -0.2071 0.1120 0.0336 0.1601 -0.1230

31 -0.2394| -0.4207 0.1690 0.1193 -0.1201
Table 4^ Weight matrix of connections between the input layer
and the hidden layer. Predominant weight values exist throughout
the matrix.

As the stages of operation occur at disjointed time-intervals, an estimate for the output would
be:

yk =

/ i (3 '4 - i .Wt) if P i ^ k < p 2

•

91

(4.3)

where are a series of points in tijnes at which the imderlying model - / , () - of the freezer

changes.

4.3. Using A Cascade Of MLPs.

OutinexPotiUon
Mix Flow
Ah Flaw 3

Bind Plcixure

K2

Mii:Uple chmiKla

Sdimg cilculitioQ

Hue yiSSm x ^ " " '
I.BMtdPBMure

3, AQUDOQU EvipoMioD
PiGnun

4. M u L a l O V l

AddiUontlUAPvarWda C

Unilever Anlomaled
Fitc2Er

Set Poinl

Barrel
Icfrcmni Tcnqcnbne

HotfwualDita
BufBr

Switching
Mechanisni nl

MLP#1

MLP #2

MLP#n

—^ Bcrd PrcAUiic (cM)

Matorfo«l(eA)

MLP Cascade

Figure 4.7 Schematic for modelling the UAF with an MLP Cascade consisting of n individual MLPs.

The UAF can be considered time-varying, although not smoothly dq)endem upon time as
would be an M L P with time as an input. Study of the freezer reveals six distinct stages of
operation (described briefly in
figure 4.8) charaaerised by the
switching in and out of various
process components and changes
in set points which alter die
underlying operation of die
process. If one considers that as
no significant events ocau* during
one mode of operation (as diis
would constitute an additional
stage), each stage is likely to be
time-invariant in isolation and the
system could be desaibed as

1. Fill Barrel: The first physical process the freeza*
undergoes is to fill the barrel with ice-cream mixture
which necessitates the siariii^ of the mix pump.

2. Start Daslier: The motor begins to rotate the dasher
through the mix first at a low speed, then at fu l l speed.

3. Pressurise Barrel: Air is injected into the barrel until
the barrel pressure is greater than 4 bar.

4. Reduce NH3 Evaporation Pressure: Tl» camflex
valve is opened until the ammonia evaporation pressure
falls below 2V6 bar.

5. Increase Motorload: The load on the motor is increased
to match its set poim.

6. Start Pumps: The mix and ice-aeam pumps are started
and die production of ice-aeam begins.

Figure 4.8 A brief description of the stages the UAF undergoes
bemg piecewise time-invariant during startup.

92

overall. Thus the system is more disjointedly dependent upon time, and attempting to model it
using an MLP with time as an input provided no greater success than before.

An alternative, wh^e it is possible to clearly distinguish between several stages of a system's
opQ*ation as in (4.3) is to treat each stage as a functional dg)endence in its own right and
attempt to model it using a separate MLP. This would result in a cascade of MLPs which it
should be possible to switch between during the normal running of the process to provide a
continuous input-output mapping (figure 4.7). A class of controller using multiple-models
exists [5] for a time-varying flight control problem using multiple Kalman Fdters.

43.1. Method Of Training.

Once again the available data was split into a training and generalisation set. only now the data
within each .log file was subdivided into the six individual stages that constitute the startup
cycle of the UAF.

MLP # predicting UAF outputs

10 20 30 40 50 60 70 80 140
Record #

Figure 4.9 Diagrammatic representation of how the MLP cascade operates in real-time. Shaded areas show
when two MLPs are being presented data simultaneously.

Six MLPs were initialised - one for each stage of opo-ation - and presented data from each
corresponding portion of the training set by moving a random window around the data. If
records finom the start of a stage were being presented to the MLP cascade, the history buffer
for each MLP was initialised in one of two ways:

• If the UAF was in stage 1 (i.e. being modelled by MLP #1) the buffer was cleared.

• I f the UAF was in any otho* stage (i.e. being modelled by MLP #n where n =̂ 1)
the buffer was filled with the last m records from stage n-7. where m indicates the
length of the history buffer (figure 4.9).

Initially, all the previously identified fieezer variables representing inputs and outputs were

used in configuring each MLP; howev^ subsequent experim^tation dropped the inclusion of

the ice-cream tempo^ture from all but the MLP moddling stage 6. As ice-cream only begins

to pass the temp^mre sensor once the ice-cream pump is started, prior to this the sensor reads

the temperature within the ice-aeam pipe. The value this sensor returns prior to the pump

93

being staned is entirely dq)endent upon external environment considerations and not upon die
dynamics of the freezer.

43.2. Experimental Results.

As before, three compositions of input veaor were applied to MLPs consisting of between 5
and 15 hidden processing elements within a single hidden layer. The activation function was
again a standard sigmoid with a steepness coefficient p of 0.4 and the MLPs each had learning
and momentum coefficients of 0.05 and 0.6 respectively.

For each of the first five MLPs in the cascade, the inputs vectors consisted of 12. 19 and 26
processing elements. The composition of die 12 unit input vector is shown in table 4.6.

PE# Description UAF Type Time Delay
1 Barrel Pressure Set Point Set Point 0
2 Ice-cream Pump Speed Input 0
3 Camflex Position Input 0
4 Mix Flow Input 0
5 Air Flow Input 0
6 Ice-cream Pump Speed Input 1
7 Camflex Position Input 1
8 Mix Flow Input 1
9 Air Flow Input 1
10 Bairel Pressure Output 1
11 Ammonia Evaporation Pressure Output 1
12 Motorload Output 1

Table 4.6 The composition of input vector for a 12 input MLP.

For subsequent compositions of input vector, an additional sevai processing elements were

added; comprising of the four UAF output and the three UAF input variables with an additional

time delay. For the sixth M L P in the cascade, input vectors of 14. 22 and 30 imits were used -

the composition of which is detailed in section 4.1.2.

The results obtained for these experiments are shown in tables 4.7. 4.8. 4.9. 4.10. 4.11 and
4.12.

MLEJaOFiU Barrel).

Number of hidden PEs

5 6 7 8 9 10 11 12 13 14 15
12 0.02453 0.02491 0.02540 0.02680 0.02589 0.02709 0.02669 0.02671 0.02682 0i>2647 0.02775

19 0.02432 0.02488 0.02523 0.02499 0.02476 0.02463 002425 0.02601 0.02492 O.O2520 0.02582

26 0.02446 0.02439 0.02446 0.02489 0.02497 0.02474 0.02511 0.02588 0.02564 0.02626 0.02590
I I

Table 4.7 The training errors achieved for the first MLP model in the cascade.

94

MLP #2 (Start Dasher).

Number of hidden PEs

5 6 7 8 9 10 11 12 13 14 15
12 0.03849 0.03774 0.03996 0.03894 0.03869 0.03890 0.03924 0.03967 0.04021 0.04065 0.04020

19 0.03662 0.03684 0.03636 0.03774 0.03789 0.03846 0.03868 0.04003 0.03996 0.03796 0.03897

26 0.03460 0.03S72 0.Q36S3 0.03697 0.03763 0.03640 0.03796 0.03699 0.03723 0.03757 0.03875 It
Table 4.8 The training errors achieved for the second MLP model in the cascade.

MLEM (Pressurise Barrel).

Number of hidden PEs

5 6 7 8 9 10 11 12 13 14 15
12 0.04034 0.04280 0.04148 0.04304 0.04232 0.04216 0.04178 0.04158 0.O4190 0.04205 0.04185

19 0.04026 0.03941 0.04154 0.04219 0.04024 0.04)52 0.04181 0.04069 0.04092 0.04205 0.04149

26 0.04029 0.03915 0.04060 0.04045 0.03988 0.03955 0.04046 0.04078 0.03986 0.03933 0.04080

Hoi,

i t
3 &

Table 4.9 The training errors achieved for the third MLP model in the cascade.

MLP #4 (Reduce NHS Evaporation Pressure).

Number of hidden PEs

5 6 7 8 9 10 11 12 13 14 15
12 0.03646 0.03583 0.03462 0.03349 0.03674 0.03339 0.03237 0.03439 0.03404 0.03386 0.03513

19 0.03096 0.03027 0.02919 0.02999 0.02964 0.02945 0.02986 0.03101 0.03091 0.02975 0.03056

26 0.02971 0.03173 0.03066 0.02888 0.02921 0.02928 0.02951 0.02960 0.02911 0.03010 0.02950 It
Table 4.10 The training errors achieved for the fourth MLP model in the cascade.

MLP #5 (Increase Motorload).

Number of hidden PEs

5 6 7 8 9 10 11 12 13 14 15
12 0.05109 0.05063 0.05022 0.05050 0.04977 0.05207 0.0S09I 0.05124 0X»52O8 0.05105 0.05156

19 0.0S0S0 0.05001 0.05128 0.04967 0.04996 0.04890 0.04967 0.05091 0.05018 0.05111 0.05155

26 0.04843 •0,04814: 0.04963 0.05043 0.04864 0.04833 0.04998 0.04871 0.049SO 0.04991 0.04970 I t
Table 4.11 The training errors achieved for the fifth MLP model in the cascade.

95

MLP #6 (Start Pumps).

Number of hidden PEs

5 6 7 8 9 10 11 12 13 14 IS
14 0.03729 0.03607 0.03601 0.03831 0.03700 0.03725 0.03614 0.03538 0.03627 0.03669 0.03567

22 0.03383 0.03336 0.03444 0.03323 0.03253 0.03099 0.03108 0.03333 0.03209 0.Q3205 0.03103

30 0.0S863 0.04357 0.03000 0.02969 0.03038 0.03009 0.03002 0.02912 0.03006 0.O3O03 0 02890

Table 4.12 The training errors achieved for the sixth MLP model in the cascade.

For each of these tables only one error value is shown, being the training error T. As the

previous results dted a generalisation aror G for the set consisting of comply logs, the

calculation of G for only part of a log will not allow a consistent comparison to be made.

As is clearly demonstrated in the above tables. T is much improved over using a single time-
varying MLP; when the cascade is providing its worst predictions during stage 5, the error is
still enhanced by a faaor of 10. Howevo-, observing the tables shows these errors could be
improved, in some cases by: increasing the size of input vector; increasing the number of
hidden units; and inoeasing the mimba* of hidden lay^s to 2. I f the m i n i m u m ^ o r for a
particular stage is provided by the maximum sized input vector - as it is for all but the first
stage - it is necessary to experimem with an increased size of input vector. If the minimum
error is provided by the maximum numbo' of hidd^ units - as it is for stage 6 - it is necessary
to ino-ease the number of hidden units. In all the above experiments it is worth inoeasing the
number of hidden layers to two to observe whether this improves the MLPs performance, as it
is recognised that two hidden layers is sufficient to approximate any function and provide a
complete nonlinear range for the MLP [2].

The only improvanent that was gained was by increasing the input vector of MLP #6 to 38
units and the hidden layer to 16 unit which reduced T to 0.02833. Expoimenis using two
hiddai laya-s resulted in much poorer training errors evai what longo" training cycles woe
allowed. In its final form, the MLP Cascade had the structure shown in table 4.13.

Stage Structure Activation Function P CoefTicient

FiU Barrel 19-11-3 Sigmoid 0.4
Start Dasher 26-5-3 Sigmoid 0.4
Pressurise Barrel 26-6-3 Sigmoid 0.4
Reduce NH3 Evaporation Pressure 26-8-3 Sigmoid 0.4
Increase Motorload 26-6-3 Sigmoid 0.4
Start Pumps 38-16-3 Sigmoid 0.4
Table 4.13 The final structure of the MLP Cascade.

96

Graphical results using this cascade are shown in figure 4.10 for the file 18-3dJog. For the
entire generalisation set. G was 36.6773 using this cascade; a significantly better value than for
previous methods of modelling the UAF. The switching points for changing stages in figure
4.10 were {3. 26. 30.42.55.74)2

E a B a a B c I s S" e s 9 a a B a B s «

Figure 4.10 Graphs demonstrating how a six stage MLP Cascade is able to model the outputs of the UAF to a
far greater degree of accuracy than previous methods. Note that no ice-cream temperature predictions are made
until the onset of stage 6.

4.4. Summary.

The aim of this chapter was to demonstrate how the Unilever Automated Freezer could be
modelled using variations on the techniques developed in Chapter 2.

Initial attempts at modelling the freezer used a single time-invariant MLP with an increasing

number of hidden processing elements within one and two hidden lay^s and a number of

differently composed input vectors. This technique was seen to have failed with the MLP

disregarding a large amount of information, relying upon immediately preceding output values

to predict the next in sequence. The reason for this failure was determined to be that the UAF -

in possessing sevo-al distina startup stages - is hkdy to be a time-varying system, and the

MLP is not provided with sufficient information to approximate the functionality of the freezer.

^Switching point information is given in the forai {s j . S2 .. .s^} where Sj^ indicates the record number
in the .log file that signifies stage x has started.

97

An initial attempt to rectify this situation was attempted by making the MLP itself time-varying
by providing it with an cxpUdi representation of time as part of its input vector compositioa
Experimentation with this time-varying MLP again provided inadequate results, only now the
MLP appeared to be using the complete input vector in calculating its outputs.

The failure of this MLP was determined to be that the UAF is a class of time-vaiying system
that can be described as being piece-wise time-invariant in that within each stage of opo-ation
the functional dq}endeDce of the outputs to the inputs is not influenced by time, but changes
significantly whoi the freezer enters its next startup stage. The MLP, being smoothly time-
varying, appears unable to model this behaviour.

An attempt was then made to model each stage of the UAFs opCTation with an uidividual MLP
- ultimately Unking each MLP together to form what could be termed an MLP Cascade,
providing a continuous input-output mapping of the UAF. This provided predictions of far
greater accuracy than the previous two methods, although a degree of model mismatch is still
evident

This mismatch could be attributable to the manner in which the switchmg between the different
stages in the startup is achieved. Currently a rule-based switching system is employed which
uses expert knowledge to formulate the rules. This system, its inadequacies, and possible
alternatives are pursued in the next chapter, which attempts to further improve the moddUng
capabilities of the MLP Cascade.

References For Chapter 4.

[1] D Guangren: Identification Of Multi-Level Tmie Vaiymg Systems. Advances In
Modelling & Simulation. Vol. 8, No. 4. pp39-48. 1987.

[2] J Hertz, A Krogh & R G Palmer: Introduction To The Theory Of Neural
Computation. (P) Addison-Wesley Publishing Company. 1991,

[3] K Homik, M Stinchcombe & H White: Multilayer Feedforward Networks Are
Universal Approximators. Neural Networks. Vol. 2. pp 359-366. 1989.

[4] G Kem & K M Przycluski: On Perturbations Of Linear Controllable Infinite-
Dimensional Time-Varying Discrete-Tune Systems. Systems & Control Letters. VoL
15. No. l .pp 61-66. 1990.

[5] L D Tdlman & M B Leahy Jr: Multiple Model-Based Conmjl: Development And
Initial Evaluation. Proceedings Of The 28th Conference On Decision And Control,
Tampa Florida, pp 2519-2524. DecembCT 1989.

98

Chapter 5.

Switching Mechanisms For The MLP
Cascade,

Chapter 4 introduced the MLP Cascade as being a novel method of modelling time-varying
dynamic systems which can be described as being piecewise time-invariant, such as the
Unilever Automated Freezer. The purpose of this chapter is to highlight how the p^ormance
of the M I P Cascade can be influenced by the use of alt&native switching mechanisms b^een
one MLP in the Cascade and the next

Six distinct phases of operation can be identified in the startup cycle of the Unileva- Automated

Freezer. These stages are governed in the main by control laws, and are specifically:

1. Filling the barrel with mixture.

2. Starting the dasher rotating.

3. Increasing the barrel pressure to 4 bar.

4. Reducing the ammonia evaporation pressure to 2¥l bar.

5. Increasing the motorload to its set point

6. Starting the mix and ice cream pumps.

The identification of these stages, coupled with the inability of a single multilayer perceptron -
both time-invariant and time-varying - to successfully provide a continuous input-output
mapping for the UAF led to the conclusion that the process is piecewise time-invariant system.
In this case, it was possible to model each individual stage with a single MLP; the entire
startup cycle being modelled by what can be termed an MLP Cascade.

During ChaptCT 4, a rule-based switching mechanism was employed which was based upon
Gxpcn knowledge of the UAF. This chapter will examine this technique more closely, and offo"
several alternatives that do not rely as closely upon explicit knowledge of the freezer. Fmally.
a optimum method for training the MLP Cascade will be proposed.

99

5.1. Rule-Based Switching.

Knowledge based (expert) systems are well established in the fields of control and FDI systems
[2, 7» 8 and 9L and are a principal artificial intelligence tool. Typically, expen systems
simulate human reasoning by holding information pertaining to the problem domain (the
knowledge base) and applying deductive or inductive rules (the inference engine) to ascmain
new knowledge about the domain [3].

While it is not proposed to develop a complete expert system shell to control switching in the
MLP Cascade, it is useful to draw on cmain aspects of expert system development theory;
more specifically the elidtation and formulation of rules.

5.1.1. Principle Of Operation.

The composition of rules in knowledge-based systems are similar to the branching conditions in
many programming languages in that they test a condition, and poform an action should the
condition be satisfied, i.e. they take the form:

IF (antecedent 1 is true) AND/OR

(antecedent 2 is true) AND/OR

(aniecedem n is true)

THEN

(consequent 1)

(consequent 2)

(consequent m)

For the purposes of deriving rules for the switching fiom one MLP in the Cascade to the next,
it was necessary to elicit the knowledge fiom experts on the UAF, and determine how they
deduced - i f possible fiom the datalogged records of the fi^zer - which stage of operation the
UAF was in. Nimierous knowledge elldtation techniques exist which attempt to gather the
most complete and unambiguous series of rules available [1], however the modest size of this
problem domain meant that the most common fonn of eliciiation - interviewing [4] - was the
most practical in this case.

It was identified that each stage in the UAFs startup cycle can be identified fipom the opo-ating
records, and that a simple switching mechanism could be derived and encoded with the rules
used to distinguish between stages.

Table 5.1 shows the rules that govern the start and end of each stage.

100

Start/End Stage Rule

Start 1 Mix pump starts; mix flow »8.

End 1 Mix flow reduces.

Start 2 Motorload kicks.

Bid 2 Air flow begins.

Start 3 Air flow begins

End 3 Barrel pressure is greater than 4 bar.

Start 4 Camflex position a 15%.

End 4 Ammonia evaporation pressure is less than Vh bar.

Start 5 Ammonia evaporation pressure is less than 2V6 bar.

End 5 Motorload set poim is reached.

Start 6 Pumps begin to operate.
Table 5.1 Initial rules developed for the switching MLPs in the Cascade.

A danger with attempting to use all the parameters detailed in table 5.1 is that some of the
measurements are unreliable using the data logging software on the freezer. An example of this
is the motorload pulses at the start of stage 2. The duration of these pulses are less than the
maximum sampling time of the software and are likely to be missed during some runs of the
freezer. Again, e7q)ert knowledge was employed to resolve these rules into those in figure 5.1.

Biil£_l: IF (Not yet started stage 1) AND
(Mix pump started i.e. greater than 90%)

THEN
(Start stage 1)

Rule 2: IF (In stage 1) AND
(Mix flow drop by more than 4) OR
(Mix flow drops below 3)

THEN
(Start stage 2)

RuleJ: IF (In stage 2) AND
(Air flow begins Le. ^ 1)

THH^
(Start stage 3)

Rule 4: IF (In stage 3) AND
(Barrel Pressure is greater than 4)

THEN
(Start stage 4)

R u k i : IF (In stage 4) AND
(Ammonia evaporation pressure drops below 2V6)

THEN
(Start stage 5)

IF (In stage 5) AND
(Air flow is greater than 5)

THEN
(Start stage 6)

Figure 5.1 Fmal form of rules derived for switching between MLPs in the Cascade.

101

As these rules were imambiguous and rehed upon measurements whose reliabifity could be
guaranteed, it was possible to incorporate them into the operation of the MLP Cascade.

5.1.2. Experimental Results.

As was mmioned in the summary to Chapter 4. the MLP Cascade used the rules derived in
figure 5.1 for its switching mechanism and the results are displayed graphically in figure 4.10.
The accumulated Euclidean distance oror measurement G (equations 2.9 and 2.12) was
36.6773. The switching point signal is displayed in figure 5.2.

Rul&ecBed Switch

as

0.4

ID 20 40 SO 60 70

S w » i i n g S l 9 x] TrreshdcJ

Figure 5^ Graph demonstrating how the switching signal generated by the rules transgresses the threshold
boundary.

As can be seen in figure 4.10. a degree of model mismatch is still evident between the MLP
Cascade models and the UAFs outputs. As the greatest model mismatch occurs dose to - or at
- a switching point, it could be that the derived rules are inaccurate in one of two ways; dther
they are incorrect or they are inexaa. The former implies that the antecedents of the rule do
not have a bearing upon the switching point, the latter that a precise - or crisp - decision
boundary is inappropriate in this case.

An example of a crisp and fiizzy decision boundary is shown in figure 5.3. In the former,
before the antecedents of a particular rule have been satisfied the switching point is d^ennined
as not reached. Howevo", widi a fuzzy dedsion boundary tho ê is a region before and after the
amecedents of the rule have been satisfied when the switching point is d^ermined as bdng
possibly reached i.e. a degree of uncertainty exists.

102

True H

Switching
point

reached

FaJsc

Tree H

Switching
point

reached

False

Antecedents of rule x
SQtisfied

Antecedents of nile x
satisfifid

(a) (b)
Figure 53 An example of (a) a crisp and (b) a fuzzy decision boundary for determining if a switching point has
been reached.

This imcertainty with respect to whai a particular switching point is reached can be
accommodated by using an MLP to learn the switching points from the set of rules. By
applying a standard sigmoid squashing function (figure 1.5) at the output node of an MLP. the
MLP will give a value between 0 and 1 and allow it's output to saturate very quickly toward
these values. In this case, a value of z^o will indicate a certainty that the switching point has
not been reached, a one will indicate a certainty that it has. and a value in between will indicate
the uncertainty.

5.2. Simple MLP Switch.

The rules provide a definite point in time as to when to switch firom one stage in the MLP
Cascade to anotha*. However, this boundary is often ftizzy with different rules governing when
one stage can be said to have ended and the next stage begun, as can be seen in table 5.1.
Here, for example, the end of stage 1 is signified by the mix flow reducing, whereas the start of
stage 2 is signified by the motorload kicking. Resolving these rules into an unambiguous set as
in figure 5.1. changes these fiizzy decision boundaries into crisp ones, but may result in model
mismatch between the MLP Cascade and the UAF.

As MLPs are able to detect certain features within an input vector, it should be possible to
train one to detect stage changes and provide a fiizzy boundary between them. Two possible
architectures for the MLP would be to have:

• the same number of outputs as there are stages. The rationale here being i f one of the
outputs showed a sufficiently positive output, i.e. close to +1. that would represent the
stage the process was in.

• a single output. This output would be close to +1 if a switching point had been
reached and zero othowise.

103

The danger with the former is that should several of the MLPs outputs be equally positive, the
result would be ambiguous. A possible solution would be to incorporate a mnner-takes-all^
rule at the output layer. However, as the rules are formulated with information potaining to
which stage the UAF is ourentiy in, it seems likely that an MLP would need to be provided
with this information as part of it's input vector. Given this, it appears pref^ble to have only
a single output processmg element signalling a switching point bemg reached or not. I f tiie
MLP is aware that the UAF is currentiy in stage n then the only valid stage it could next be in
would be stage /i+7. Allowing the MLP to signal a change to stage rt+2. or even back to n-l
would only serve to complicate matter unnecessarily.

5.2.1. Principle Of Operation.

It should be possible to train an MLP to distinguish the features that the rules recognise by
presenting as an input veaor complete records from the logs.

Experiments were conducted using MLPs varying in size in terms of internal architecture (i.e.
the number of hidden processing elements were varied from between 5 and 16). and in terms of
mpul vector. In order for Uie MLP to detennine that a switching point has been reached, it must
be presented with current operating data (at time k\ and one record of time^lelayed data (at
time k-1) in order to determine any relevant changes in process variables. For these
e;q)eriments. all process variables except the time stamp and die alarm condition wctc used to
compose the input vector, i.e. 19 variables. Therefore the MLP had 39 input units initially (2 x
19 process variables + 1 to represent the current stage), increased by 19 for subsequent
experiments.

The available logs were again arranged into a training and gen^alisation set in the ratio of 2:1
(as in figure 4.2) and switching point infonnation positions generated for die training set by the
same mechanisms tiiat the rules use to recognise them.

1 A mechanism employed at the output layer of an artificial neural network by which each processing element is

connected to each other in the layer by an inhibitory connection, while an excitatory connection exists joining

each processing element to itself. The result is the output processing elements compete with one another until

only one remains active.

1(H

The MLP was trained by randomly positioning a window onto the training set and presenting
this information to the MLP. If the input vector corresponded with a switching poim, a value
of 0.9 would be backpropagated through the network, othawise a 0.1 would be used .̂

During testii^, the MLPs output can be seen to spike in indication of a switching point. By
selecting a threshold value that needs to be exceeded i f the network is to signal a switch of
stage, the sensitivity of the MLP switch can be altwed. and false alarms increased or reduced.

5.2.2. ExperimentaJ Results.

Each experiment used one input veaor comprising of 39, 58, 77 and 96 processing elonents
respectively upon a varying number of hidden units in a single hidden layer. In order to
encourage values close to 0 and 1, a sigmoid activation function with a steq)ness coefQcient of
0.5 was appUed to each processing dement, including the output unit In each case the learning
coefficient was set to 0.1 and 0.6 respectively.

Table 5.2 details the results achieved by the various sized MLPs.

Number of hidden PEs

. 1

5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6

3 9 0.08S16 0.08479 0.08S42 0.OS8U O.0839S 0.08402 0.08618 0.08551 0.08562 0.08537 0il8424 0.08518

5 8 a08499 0.0S294 0.0839S 0.0S4I7 0.08235 0.08410 0.08291 0.08449 aOS390 0X8368 ojosm 0.08455

7 7 Oit83SO 0.0S06S 0.08102 0.08274 0.08393 0.08142 0.08141 a08333 0.08256 0J)8190 008228 0^)8315

9 6 0.0814S 0.0S2S4 0.08335 0.08091 0.08352 0.08214 0.08349 0.08326 OJOS250 0J08299 0i}83B2

These values represent the training error of the MLPs after a training cyde of lOÔOOO epochs.
Although all errors are in the same region as each other, it is interesting to note that each MLP
composition was able to learn five out of the six switching points. However, subsequent
training of the 77-6-1 MLP (bdng the structure which provided the lowest oror up until this
point) gradually reduces the training error to around 0.032 (figure 5.4).

All six switching points have now been recognised, though the penultimate two are not
identically placed with the rule based switching mechanism (figure 5.5).

^Although the sigmoid function saturates toward 0 and 1, it will never actually achieve these values.
Therefore an MLP with this function operating at its output layer needs to be presented with values
dose to 0 and 1 to represent them (e.g. 0.1 and 0.9) as these can be reached by the network.

105

008 -

T r d n b i g Error Of 77-6-1 Network.

ao6 I
CXM •

0.02 -

n -

° 2 8 8 % S 8 S 8
Trdnlng Epochs (xlOO,000)

8

Figure 5.4 Training error of the 77-6-1 MLP over an extended training period.

The fu^t three and the last one of the switching points have been accurately recognised, whilst
the fourth is misplaced and the fifth is only accurate if the threshold value is carefully chosen
(in this case 0.49).

0.8

OA

OA

02

M P Switch

(I • • I

M L P OUTPUT Desired OuTput Threshold

Figure 5.5 Graph demonstrating how the signal generated by the MLP tran^esses the threshold boundary.

Using the MLP switchmg method with die UAF logs is demonstrated graphically in figure 5.6

106

S 9 5 3 5

n « B 9 4z 9 a 9

Figure 5.6 Graph demonstrating the performance of the MLP Cascade using a simple MLP switching
mechanism with a threshold value of 0.49. Switching points are {3.26. 30,42,56. 74}.

A problem with both the rule-based mechanism and the simple MLP switch, however, would be
if the expert knowledge detomining the placement of switching points was flawed and the

points were not in their optimiun places. The rules determinmg when to switch stages would
prove incorrea. and the simple MLP switch - being trained by these rules - would be learning

these errors. A method therefore needs to be developed by which optimum switching points can
be foimd that do not rely upon expert knowledge.

5.3. Error Switching.

A simple mechanism for controlling the switching mechanism would be to onploy some
quantitative measurement of error in the residual signals that would signal a switching point
should some predetermined threshold value be exceeded.

5 J . l . Principle Of Operation.

The first stage of startup of the UAF can be deemed to have begun what the mix pump is
started and the flow sensor begins to register that the mix is being pumped into the barrel. At
this point MLP #1 in the Cascade can begm modelling the freezer ouq)uts. I f the MLP is
modelling its correct corresponding stage, the difference between the UAF and MLP outputs
(the residual oror - calculated in this case using a Euclidean distance measure, equation (2.9))
should be small However, once a switching point has been reached, the error should increase
significantly, and the MLP changed to the next in sequence.

107

The success of such a method depends upon the accuracy with which each MLP in the cascade
models its own particular stage, as ideally a low threshold would need to be set to enable the
switching to occur as soon as possible between stages. If significant model mismatch was
evident, the threshold would need to be set high, impairing the op^ation of such a method.

A furtha* problem would be if an MLPs predictions were high for one time step during a
particular stage of op^ation. This one-off high residual would triggo* the switching
mechanism to change to the next MLP in the Cascade, which would begin modelling before its
stage had begua This would be likely to cause high errors which would again trigger the
switching mechanism. To reduce the risk of spurious high residual OTors causing problems, it
is proposed that the errors be accumulated during each stage of opo-ation and a switching point
be signalled when this accumulated error crosses a threshold.

5.3.2. Experimental Results.

The results demonstrated in table 5.3 show how the MLP Cascade responds to different
threshold values being used to determine switching points.

Threshold Value Generalisation Error Switching Points For 18-3D.LOG

0.1 138.8537 { 3. 5. 6. 7. 11. 12}
0.2 122.6838 { 3. 13. 15. 17. 24. 25)
0.3 34.5920 { 3. 26. 30. 42. 59. 72 }

0.31 33.0303 { 3. 27. 31, 44, 61. 73 }
0.32 33.0303 { 3. 27. 31. 44, 61. 73 }

0.33 33.2014 f 3. 27. 31. 45. 62. 73 }
0.4 35.6132 { 3, 27, 32. 50. 64, 74 }

Table 5.3 Switching point information generated by various threshold values.

A threshold level of 0.31 is the lowest value which provides the most accurate generalisation of
the MLP Cascade, although the accuracy of the rule-based switching mechanism is superior to
this. Figure 5.7 demonstrates the performance of the error switching mechanism graphically
for the file 18-3d.log.

Experiments wo-e conducted using multiple thresholds, i.e. a diffo-eni threshold value for each
switching poim. but no significant improvemertts w ^ made.

108

a « B s e 8 s R a 9

4. e s s B 8 a B 8 e B S s S S S

Figure 5.7 Graph demonstrating the performance of the MLP Cascade using an error switching mechanism with
a threshold value of 0.31. Switching points are (3.27.31.44.61. 73}.

Figure 5.8 demonstrates how the accumulated Euclidean distance error used in this switching
mechanism gradually rises while the current MLP is moddling its correct stage but then rises
sharply once the switching point has been passed.

ThresholdTraisgresBlans Of Accumutded Error

as

0.2 H

IrstCTtcneaiBErra Accunicfed E rror T hreshdd

Figure 5^ Graph demonstrating how the accumulated error transgresses the threshold boundary. The
instantaneous error does not possess such high distinguishable peaks.

An obvious disadvantage of the error switching mechanism is that actual switching points are
not signalled until MLP #n is modelling stage n+1 sufiBdemly poorly to allow the error value
to inoease sharply and exceed the threshold. ThCTefore optimum switching points will not be
recognised, as switching only occurs after such points have passed. In order to switch at such
optimum times, a mechanism needs to be developed which does not rely upon predetermined

109

rules, but which is able to recognise the optimum time to switch online during the operation of
the freezer.

5.4. Optimal MLP Switch.

If the rules governing where to switch between MLPs were inaccurate, a simple MLP switch

would be trained to generate the same erroneous switching points as supplied by the rules.

The rationale behind using an MLP Ĉ ascade to modd a system with s e v ^ stages is that

stage„ can be modelled by a function f^{) which can be approximated by MLP„ m the cascade.

As the system moves fiom stage„ to stageQ .̂̂ , the switching mechanism informs the cascade to

change from MLP^ to MLP^+i- However, although a point may have been reached in the

fiieezer operation where a different control law needs to applied - a situation encompassed in

the rules derived above - the system dynamics may still be better modelled by the preceding

functional approximation until the effects of the stage change become pronounced. In this

situatioa, the rules will be informing the MLP cascade of the switching point too early.

Similarly, on tiie approach to a switching point being recognised by tiie rules - altiiough the

conditions to switch have not yet been met - the succeeding functional approximation may

aheady be able to betto" describe tiie fieezer dynamics than the current one. In such

circumstances, the positioning of the switching points dttermined by tiie rules need to have

their positions optimised.

5.4.1, Principle Of Operation.

I 2 131

Figure 5.9 A typical UAF output showing stages of operation (1..6) and
switching points {s,.. s^}. The signal is sampled at time k.

The MLP Cascade needs to

have had some preliminary

training so that MLPp

approximates function /^O

which described the dynamics

of stagCji to some arbitrary

degree. One method of

optimisation would be - should

tiie sample point fall within

stagCn - the input vector can be

passed through MLP^-b MLPn ^^LPQ^.! and the resulting three residual errors compared.

The switchmg point can tiien be inaiemented, kq)t tiie same, or decremoited dq^ending upon
which OTOr was the minimum

110

Consider the situation shown in flgure 5.9. where a sample at time k can be identified as bdng
in stage4. Each MLP in the cascade will have been o-ained in advance using the original
switching point timings detomined by the rules. The input vector from sample Jk can be passed
through MLP3. MLP4 and MLP5 generating the orors 63. e4 and e5. If 63 is the lesser of the
three. S4 will be moved forward one samplmg point. I f e5 is the lesser of the three. S4 will be
moved back one sampling point. An MLP can now be trained to generate switching point
information based on this new data, which should continue to change throughout the training
cycle until the best points for each MLP in tiie cascade have been reached.

The number of hiddai units and the composition of the input veaor was varied in the same
manner as for the simple MLP switch.

5.4.2. Experimental Results.

Results for these experiments were extremely poor. Regardless of the degree of historical
information presented, the size of the hidden layer, or the mmiber of hidden layers, the training
errors did not drop below 0.6846. Upon testing tiie MLP which had produced this training
error on the gen^alisation set, the network output failed to spike at discrete intervals signalling
switching points, as shown in flgure 5.10.

r
Figure 5.10 Graphs demonstrating the failure of an MLP to optimise and leam switching points.

Here, witij tiie Uireshold set to 0.52. tiie MLP output does not exceed it and so tiie MLP
Cascade predicts witii MLP #1 for the duration of the run. However, whoi tiie threshold is
lowoed to 0.51. tiie iiutial spike exceeds it but subsequent MLP outputs are even higher and
exceed the tiireshold also. In tiiis situation, the MLP Cascade switches between each MLP in
succession, with individual networks subsequent to the first attempting to model the UAF for
one record only.

A problem with attempting to leam optimum switching points in such an ad-hoc manner, is that

tiie positions of such points are likely to be continually moving slightiy allowing the MLP no

time to leam their positions. Also, a danger exists that optimal switching points coitid be learnt

with respea to a local minimum, rather tiian the problem's global minimum. It is therefore

desirable to use a mechanism to optimise tiie switchmg points with respect to their global

111

minimum a priori to these points being learnt by the MLP Switch. A technique which could be
utilised to this end is the Genetic Algorithm optimisation technique.

5.5. The Genetic Algorithm.

The genetic algorithm (GA) is a global optimisation tedmique based upon a natural selection
principle. Populations of possible solutions are geno-ated by the algorithm and processed by a
number of genetic operators such as crossover and mutation. The results of these opo^tions
are measured against some fitness function to determine the success of the solution and a
number of the current generation selected to compose the next population. The process is
repeated until some stopping condition is reached, such as the fitness function for one memba-
of the population exceeding a certain value. An example of a GA used for adaptive control is
provided in [6].

In a problem such as finding the optimal switching points for changing firom one MLP in the
Cascade to the next, an obvious fitness fimction is the generalisation error of the MLP cascade.

5.5.1. Principle Of Operation.

A numbo' of techniques exist to search a problem space with the aim of maximising a reward
function or minimising a cost function. These fall mainly into the realms of (a) calculus based
searches - such as hill-dimbing - which can encounto- problems finding a global optimum
whae there are local maxima (or minima) in the search space, and (b) random searches which
can be computationally inefficient

The GA offers improvement over both these forms of searches. In the fu^t instance, it uses a
population of points to conduct a search, as opposed to the single point used by many hill-
dimbing techniques, thereby reducing the risk of settling to local optima. In the second
mstance. it uses random choice in guiding its search strategy, which differs from random
searches in that it is not directionless.

ThG basic binary genetic algorithm operates in the foUowmg way:

Step 1: Detennine a set of variable parameters which affea how good an
individual solution to the problem will be. Each potential solution
formed by this parameter set will be converted to a sequential string
of bits (O's and I's). referred to as a chromosome.

Step 2: Determine a quantifiable measurement of how good a solution a

chromosome provides, referred to as fitness.

112

Step 3: Generate an initial population of chromosomes where each

chromosome consists of a random sequence of as and Ts.

Step 4: Calculate the fitness of each member (chromosome) in die

populadoa

Step 5: Form the next generation of the population by performing some

selection criterion to determine which m e m b ^ wil l go through.

Step 6: Check to see i f the stopping condition for the GA has boen satisfied,

and end the search i f it has.

Step 7: Perform genetic operations upon the populatioa

Step 8: Calculate the fimess of each member in the populatioa

Step 9: Form the next generation of the population by performing some

selection critoion to determine which members wi l l go through.

Step 10: Repeat steps 6 through 9 until the check in step 6 is satisfied.

Typically, it is steps one and two which are the most time consuming and problematic to

compile. Following these, the genetic algorithm is generic and can be applied to a large

tmmber of problems. The following sections expand upon some of the terminology introduced

in the basic operation of the GA.

5.5.1.1. The Chromosome.

A potential solution to a specific problem is comprised of a numbo" of relevant parameters

which are deaned influential in determining how good a solution wi l l be. This list of

parameters can be converted into a string of O's and I's which are termed chromosomes. An

individual chromosome is a member of a population of chromosomes with which the GA will

perform its search. Strictly speaking, the term chrotnosome is a facet of natural systems, and

the tenn string is often used in the context of the GA.

For example, a solution to a problem might involve three parametas - x. y and z - whose

values fall in the ranges 0..3. 0..10, and -50..50 respectively. The string composition could be

achieved as shown in table 5.4.

Parameter Range No of values No of bits Lowest
VaJue

Highest
Value

x 0..3 4 2 00 11

y 0..10 11 4 0000 1010

z -50..50 101 7 0000000 1100100
Table 5.4 The string composition for an example genetic algorithm.

113

Therefore the total numbo- of bits needed to compose a chromosome would be 13 (2+4+7). A

typical chromosome may have the following contents.

1
^ s

0 0 0
V

0 1 0 0 1 1 1 1 0

X
= 2

y
= 1 30 (or -20 when adjusted)

Genetic algorithm schema theory [3] proposes that the GA performs its search according to bit

strings which match templates (schemata) that the GA detomines provide a good solutioa It is

important to note that the GA does not formulate these schemata exphcitly. but is theorised to

implicitly devise them during the course of the search. For example, by introducing an

additional symbol to indicate either a 0 or a 1, one can compose a schema such as

10=^*01*0**11* i.e. the specified bits are important whilst those indicated by a can be dther

0 or 1. I f the GA had determined that this schema provided good solutions, it is l ikdy that the

above chromosome would have a high fitness value as it matches the template.

5.5.1.2. Fitness.

Flmess is an objective numerical measure of how good a solution to a particular problem is.

and as a result is entirely specific to the problem. T^ically^ the higher the fitness value» the

betto* the solution is and the GA attempts to maximise the fitness of the entire population and

arrive at the global best solution possible.

5.5.1.3. Selection.

Sdection is the process by which members of the current population are allowed to progress to

the next generation by means of some mechanical procedure, and is tho^ore analogous to

reproduction amongst biological systems.

The GA typically selects

monbers for the next

gen^ t ion according to fimess.

This means that not only do

the fittest manbers of the

current population possess a

good chance of appearing in

the next generation, but the

fitter they are the greater

numbo" of their 'offspring'

Figure S.ll Selection can be accomplished using a roulette wheel where ihffC are l ikdy to be. The
each population member is all(K:ated a slot size proportional to its fitness.

Population.

_] Member #1

Member #2

^ Member #3

^ Member #4

n Member #5

114

simple GA produces a symbolic roulette wheel upon which population manbers are allocated

slots whose sizes are weighted with respect to the proportion of total fitness the chromosome

possesses. Consider figure 5.11 where a population of five members have been ranked in ordo-

of their fitness. The total population for the generation is summed, and the proportion of that

fitness each member possesses is calculated, and slot sizes allocated accordingly. The 'ball' is

now rolled five times (once for each member of population) and the member whose slot the ball

falls in is copied to the next generation of the population. While the chances of memb^ #1

appearing in the new population are greato- than member #5, it is important to remember that

the selection procedure is based upon randonmess and that while the probability of the new

population being made up of five copies of monb^ #5 is extremely small, i t is still a

possibility.

The possibility therefore exists for the GA to produce a fit member of the population, only to

lose it in the selection procedure. While the GA is likely to reproduce this fit member after a

mimbo" of further generations, an extension to the GA algorithm - referred to as elitism - is

intended to remove this possibihty. With elitism, at least one place in the next generation is

reserved for the fittest member of the current population, the remaindo' being filled by the

usual selection procedure.

5.5.1.4. Genetic Operators.

Genetic operators work on changing the current population in two ways. Firstly, two members

of the population are 'mated' with each oth^. producing two new members. Secondly, one

member of tiie population is altered in a small way producing a single new member. These

operations are refored to as crossover and mutation respectively.

Crossover

Crossover occurs by selecting two memb^s of the population (the ^parents') and picking a

random point somewho-e within the bit string (point k). The first k bits of the first parent are

joined with the bits from to the end of the string of the second to form the first 'child', and

vice-versa to form the second child.

For example, i f before crossover two membm of the population were:

A = 1 0 0 0 0 1 0 0 1 1 1 1 0

B = 1 1 0 0 1 0 0 1 1 0 0 1 1

115

after ax)ssover they would become:

A* = 1 0 0 0 0 0 0 1 1 0 0 1 1

B* = 1 1 0 0 1 1 0 0 1 1 1 1 0

M u m ^

Mutation occurs by selecting one member of the population, and a random point somewhere

within the bit string (point The bit indicated by Jfe is dianged to a 1 i f i t were originally a 0.

or a 0 i f it were originally a 1.

For example, i f before mutation a member of the population was:

A = 1 0 0 0 0 1 0 0 1 1 1 1 0

k

after mutation it would be:

A* = 1 0 0 0 0 1 0 0 0 1 1 1 0

Usually crossover and mutation are not performed upon evoy member of the population but

with respect to probability values. The probability of crossover is usually set high (a value

such as 0.6) while the probability of mutation is usually set low (a value such as l/(population

size)). Whilst the ultimate best probabihty values are problem dependent, a saies of

experiments across a five function suite suggests that these values are generically adequate [3].

5.5.1.5. Stopping Conditions.

As with the choice of fitness function, the dedsion to stop performing the GA search is

dq)endent upon the problem. Typical stopping conditions are:

• When the number of generations has reached a predetermined value.

• When the best fitness value has not improved for a pred^ermined mimb^ of

generations.

116

When the best fitness equals a predetermined value. Some problems may, by

nature, have an upward bound upon how good a solution is. I f this is reached,

the best possible solution will have been produced, and subsequent generations

will not improve upon this. An example would be attempting to minimise a

cost function which is unable to fall below zero.

Performing a check to determine how diverse the cuirent population is, and

stopping i f the population consists of mostly identical members (i.e. i t has

convQ-ged). In an extreme case where every member of the population is the

same, crossover - which is the operator with the higher probability of

occurring - will not produce any fresh population members. It would then fall

to die mutation operaxor to introduce diversity, which would occur only

occasionally.

One convo-gence check is described by the following:

L - l
- i (5.1)

where Pf is the population set at generation r, L is the length of each diromosome in and bj

is the bit in the yth colimm of each chromosome in in turn. I f the population contains 50%

ones and 50% zeros within each column i t is as divergent as it can be and this function returns

0; i f the population contains 100% ones or 100% zeros within each column, it has completely

convCTged, and this function returns 1. For example, given a population set at generation t of

four chromosomes, each four bits long as follows:

Column 1 2 3 4

Member #1 = 1 0 0 1
Member #2 = 1 0 1 0
Member #3 = 1 0 1 1
Member #4 = 1 0 0 1

Here, the convergence of column 1 is 1, column 2 is 1, column 3 is 0 and column 4 is 0.5

making the convergence of the total population set 0.625.

117

5.5.2. Experimental Results.

For determining the optimum switching points for the MLP Cascade^ the relevant parameters in

configuring a member of the population are the integer sample points that represent the

switchmg positions. As the startup procedure of the UAF would only exceed 256 samples

under fault conditions and the final stage may occasionally start after sample 127 imder normal

conditions, eight bits were assigned to each of the six switching points, making a total

chromosome length of 48 bits. As crossover and mutation of this sequential string would -

when decoded - at times produce a set of switching values which were nonsequential, the values

w^e soned prior to the fitness of the solution being ascertained. This meant the GA was

searching through presoned strings in preference to determining that sorted strings provided

good solutions.

The fitness fimction was based upon the generalisation error (2.12) of each individual log file

such that the fimess,/. was:

/ = 7 ^ x 1 0 0 (5.2)
O + 1

where C is the generalisation error of the log. In this way. the possible fitness was boimded

between 0 and 100, as a perfect solution would return a generalisation error of zero.

An elitist genetic algorithm was then used for each log in the training set until one of the

following conditions were met:

• 10.000 generations had occurred.

• The population was 95% convergent This calculation was based upon the

convergence of bits in each coliunn of the population according to (5.1).

A population size of 30, a crossover probability of 0.6 and a mutation probability of 0.033

were used.

The GA produced switching point information for each log file as shown in table 5.5.

118

Log Switching points Generalisation Switching points Generalisation Improvement
name by rules Error by GA Error (%)

1-4A (2.25, 30.42. 55,98) 5.8592 11,23.24.41,63,98) 5.8284 0.53
1-4C (2,25,30.43,55.77) 3.6191 (2,23.24.44.54,75) 33560 7.27
1-4D (2,25,29.42, 55,78) 4J485 (1,23.27.45.55,75) 4.0911 5.92
1-4E (2,25,30.42. 56.74) 3.6968 (2,22.24.40.54,73) 3.4547 6.55

10-7A (0.23. 27.42, 53.83) 6.4211 (0. 23.24.42,54,86) 5.9747 6.95
11-9C (0.23, 28.40, 53,73) 4.1805 (1,22.23.40. 52,73) 3.9862 4.65
11-9E (0.23. 27.44,55,75) 3.9915 (0, 23.25,47,57,76) 3.6030 9.73
I4-7A (0.23,27.40,55.69) 4.2094 (0.23.25,44,56.71) 3.7629 10.61
18-3B (2,25.30.43.56.73) 4J227 (1.24.25.40, 55,70) 4.2161 6.78
18-3C (3, 26.30,43,54. 76) 5.0300 (4. 19. 22.28,48.71) 4.8933 2.72
I8-3F (3. 26.30.32, 55. 75) 10.1308 (2.16.17,32,47.65) 9.4885 634
24-7A (0,23.27.41,54.75) 4.7302 (0.23.24,44,55.76) 4.4519 5.88
24-7C (0,23.27.41,53.70) 3.5542 (0.23,24.37,54.72) 3.2563 838
24-7E (0,23.28.43.54.73) 4.4033 (0.24,25.45,55,74) 4.1555 5.63
24-7F (0.24. 28,40, 53.74) 3.6247 (0,24,25,45,54.75) 3.2455 10.46
24-7H (0,23. 27,48.61.71) 4J418 (0,23. 24.50.62. 72) 4.2691 6.00
31-3 A (3.26,30.43,55,112) 73116 (1.24.25,44,90. I l l) 6.8065 6.91
31-3B (3. 26, 30,44. 56, 89) 5.2991 (1,24, 26.38,56.88) 4.9423 6.73
7-4D (3, 26. 30,42.56. 75) 3.2454 (2,23, 26.27, 55.72) 3.0505 6.01
8-4A 10, 23, 27,41.53.84) 6.8445 (0,23,24.41.55,86) 6.4513 5.74

Overall 99.5644 93.2838 6.31

Table 5.5 The switching point information generated for each .log file in the training set

Taking l-4cJog as an example, the startup information is 96 records in length. Since each

solution string is a six parameter variable, the GA wil l have to search six dimensional space

with a 96 unit axis in all dimensions. One way to view such space is to plot it on two three

dimensional graphs, although this is unsatisfactory in that for each graph space wi l l be fixed in

the three dimensions not showa Figure 5.12 shows how. after 2000 generations, the GA has

begun to cluster its solutions, demonstrating how it begins to converge on the optimum

solution. On the graph it is interesting to note that one chromosome is far from the other

clusters. This solution had a fitness of 8.4 compared to the next worst which was 23.6. and

would therefore be unlikely to survive to subsequent generations.

Once the switching point information is derived by the genetic algorithm, it is possible to train

an MLP in the same manner as the simple MLP Switch (section 5.2). The results for this are

shown in table 5.6.

Number o f hidden PEs

5 6 7 8 9 10 11 12 13 14 15 16
39 0.042S7 0.03 B40 0.03S4I 0^831 0.04111 OiH251 0M2H4 0.04208 0JM2AI 0.04157

58 0.06724 0.06719 0.06477 0.06591 0j067S3 0.06624 01)6931 0.06816 0j06690 0.06740 OJ069BI 0.07309

77 0X17001 0.06SS6 0.07060 0il7098 0.07019 0.06872 0.07176 0.07442 0.07343 0.07673 0LO7866 aosois

96 0.07446 0.07289 0.07132 0X)6994 0.06930 0.06846 0.072S7 0.07730 ojorm 0.07766

73
a. c

Table 5.6 Training errors for the optimal MLP switch.

A number of things are in evidence: the results are sup^or than for the simple M L P switch;

the more time-delayed data is used in composing the input vector, the greats the training enor,

and a number of different MLP architectures for an input vector of 39 units appears marginally

better than the others.

119

As with the e3q)eriments for the simple MLP switch, the training time was extended to

detomine the lowest l ikdy training error for a 39 input MLP with 6 and 10 hidden units. In

addition, two hidden layer MLPs with an extra 6 and 10 hidden units in the second hiddai laya-

respectively were used to ascertain i f this led to an improvement in performance. The results

are shown in figure 5.13.

Figure 5.12 The space the GA must search in finding the optimal switching points for an individual datalog (in
this case l-4c.log).

Trdnlng Error OT Four Networks.

— 3 S ^ I

— - 39-10-1

3 9 ^ 1

- - - 39-I0-I0-1

S 8 9 8
T(«nIngEp(xlis (xlOO,000)

8 S

Figure 5.13 Training error for four different MLP architectures over an extended training period.

120

Here, after initially proving much poorer than the 3-laya- networks, the four layer networks can

be seen to have much better training errors with the 39-6-6-1 MLP being the slightly superior

of the two. For 18-3d.log. these leads to the switching point genoBtions by the MLP as

demonsQ'ated in figure 5.14 (the desired output information was generated using a GA,

although this information was not used in training the MLP).

Optlmd MLP Switch

0.6

OA

. 1

1
1 1 1 1 1 1 t

ivLPOuiput Desired Outpur Trreshdd

Figure 5.14 Graph demonstrating how the signal generated by the MLP tran^esses the threshold boundary.

This led to a generalisation error of 34.8026 for the generalisation set. showing itself to be an

improvement over the rule-based switching method. Figure 5.15 demonstrates the performance

of the error switching mechanism graphically for the file 18-3d Jog.

9 9 8 8 0 8 8 5 S S

5 8 9 8 8 8 8 s s

Figure 5.15 Graphs demonstrating the performance of the MLP Cascade using an MLP Switch trained by GA
derived data with a threshold of 0.5. Switching points are {1,24,25. 38,54. 74}.

121

5.6. Proposed Method Of Training The MLP Cascade.

When each MLP in the Cascade is originally trained, log records are used which were based

upon the initial estimation of where the switching point locations were. As these positions are

based upon explidt knowledge of the UAF control laws, they may be inaccurately placed with

respect to the freezer dynamics. This means that some of the data records used to train each

MLP in the Cascade should have been used to train anotho* MLP. As the switching points are

optimised using the GA, it wil l be possible to retrain the MLP Cascade with more accurate

ranges of operatioa

Determine initia] snntchirtg
poinia using opert

Trsin the NfLP Cascade
using current best

switching point data.

0 -
tstho

Cflscnde sufficicnlly

No No

Use a genetic algorithm to |
optimise the switching 1

pointSL 1

IVain the MLP |
switching 1

mechanism. 1

the switch teaming

This gives rise to the training

mechanism described in

figure 5.16. The initial

switching points are derived

using expert knowledge of the

piecewise time-invariant

system. This information is

used to train a saies of MLPs

which form the MLP

Cascade. I f . following tiiis

training, the M L P does not

model the process sufficiently

well, the MLP Cascade can

be used to form the fimess

function for a genetic

algorithm to determine the

optimal switching poim Figure 5.16 Training regime for the MLP Cascade and the MLP Switch.

placements. The mformation that the GA provides can tiien be used to (a) train a further MLP

network to recognise the switching points online, and (b) retrain tite MLP Cascade to respond

more accurately.

By cyding through this procedure, it should be possible to gradually reduce the model

mismatch of the MLP Cascade, thus making the residual signal more pronounced in the

presence of a fault. In addition, by training the MLP Cascade and the MLP Switch to in

separate procedures, the problem of one's error compounding the other can be circumvented.

122

5.7. Summary.

The purpose of this chapter has been to demonstrate a number of differem mechanisms for

switching between each MLP in Uie MLP Cascade online and in real-time to provide a

contimious input-ouq)ut mapping. By attempting to locate the switching points at their

optimum position, model mismatch caused by the changing from one MLP to another should be

reduced.

Initially, a rule-based switching mechanism was employed with the rules being derived fix)m

expert knowledge of the UAF. A problem here, however, was that the rules provided msp

decision boundaries to determine when a switching point had been reached.

As the initial composition of the rules governing when stage changes occurred indicated the

botmdary between one stage and the next was fiizzy. an MLP was trained to attempt to

recognise the switching points. Although successfiil to a degree, by training titie M L P using the

information provided by the rules, any errors in positioning r^resented by the rules would be

learnt by titie MLP. Methods were then presented which did not rely so much upon the rules.

The first of these was a mechanism by which a change in stage would be signalled i f the

residual error between the MLP Cascade and the UAF passed a predetermined threshold.

However a problem with this method is that the switching points would never be in their

optimum positions, always following them.

A method of training an MLP to recognise optimal switching points was attempted using a

system of moving the switching points during Paining. This failed to provide any usefid

results, however, and a global optimisation technique - the genetic algorithm - was employed as

a separate offline procedure to determme the optimum switching points prior to the training of

the MLP Switch.

This final method proved the most successful and was adopted as pan of the overall training

method for the MLP Cascade, details of which were presented.

This - and the previous - chapter have detailed a novel approach to modelling a class of

dynamic system that can be described as being piecewise time-invariam in operation, and

provides an original contribution to the body of knowledge a h ^ y available on modelling

dynamic systems using MLP networks. Although the Unilever Automated Freezer has been

used to demonstrate the technique, the mechanism has been developed to be genaic for all such

processes in this class, relying upon only explicit knowledge of the system to determine initial

switching point informatioa As inaccuracies in this data will be reduced during the training

method desaibed in section 5.6.. this knowledge need only be rudimoitary.

123

Following the construction of the MLP Cascade with optimal MLP Switch, the mismatch

between the model and the UAF is suffidemly reduced to allow the residual signal in the

presence of failures to be used to train a fault isolation module based upon neural computing

techniques. This module is described in the next chapter.

References For Chapter 5.

[1] J H Boose: A Survey Of Knowledge Acquisition Techniques & Tools. Knowledge
Acquisition. Vol . 1. No. 1. 1989.

[2] P M FVank: Fault Diagnosis In Dynamic Systems Using Analytical And Knowledge-
Based Redundancy - A Survey And Some New Results. Autoniatica. VoL 26. No. 3.
pp 459^74. 1990.

[3] D E Goldberg: Genetic Algoritimis In Search, Optimization & Machine Learning. (P)
Addison-Wesley. 1989.

[4] A Hart: Faa Fmding By Interviews. Knowledge Acquisition For Expert Systems.
Chapter 5. pp 49-70. (P) Kogan Page. 1986

[51 P Jackson: Introduction To Expert Systems, Second Editioa (P) Addison-Wesley.
1990.

[6 J E Lansbury et al: Adaptive Hydrogenerator 1\ming With A Genetic Algoritiim.
IEEE Transactions On Energy Conversion, Vol 9, Part 1. pp 179-185. 1994.

[7] C Remberg, K Intemann, F N Felt & G Wozny: Decision Supporting System For
The Design Of Control-Systems For Distillation-Columns. Computers & Chemical
Engineering, Vol. 18. pp 409-413. 1994.

[8] T D Vassos: Fumre-Directions In Insttmnentation, Control And Automation In Hie
Water And Waste-Water Industry. Water Science And Techtwlogy. Vol. 28. No. 11-
12. pp 9-14. 1993.

[9] Y L Zhu, Y H Yang, B W Hogg, W Q Zhang & S Gao: An Expert-System For
PowCT-Systems Fault Analysis. IEEE Transactions On Power Systems. VoL 9. No. 1.
pp 503-509. 1994.

124

Chapter 6.

Failure Detection Using MLP\
Networks,

Prior chapters have been involved primarily wiUi a system identification problem, namely

providing an as accurate as possible dynamic model of the Unilevo- Automated Freeze-.

Ultimately, the purpose of the model - when established - has bcea for use in a model-based

fault detection architecture for the rapid and accurate determination of fault conditions on the

UAF. Naturally, a precursor to the success of such a system is the accuracy of the model - and

to this end Cbapto^ 4 and 5 have dealt exclusively with attempting to reduce model mismatch

to as low as possible - die rationale being the more accurate the model, the more the residual

signal wi l l reflea fault conditions should they exist and not model mismatch.

The purpose of this chapter is to demonstrate how the residual signals generated by the three

candidate faults introduced in Chapter 3 can be isolated using a series of MLPs trained to

recognise features within the signals.

Initially, a survey of how artificial neural networks have been used for fault detection

previously wi l l be presented togetho* with comments upon how this research diSers from, or

advances, the techniques developed. The three candidate faults wil l be reviewed, with

particulars of how tiiey affea the MLP Cascade and tiie residuals between it and the UAF.

Finally, details of how a sales of MLPs were trained to recognise features within the fault

signals wi l l be presented, and the fmal form of the neural network based FDI system wil l be

given.

6.h An Overview Of Fault Detection Systems Using ANNs.

In the introduction to [5]. Paul Werbos describes FDI systems as "... the major useful

engineering apphcation of neural networks at the present time". Subsequent work by a mimba"

of research^ has led to the successful development of FDI systems for severdl applications.

125

Typically the multilayer percq)tron is used as the basis for such systems as in [6]. with notable

exceptions being [1] which uses a series of Kohonen Self Organising Feature Maps [10] to

detea faults as deviations firom die norm, [4] where an Increased Functionality Network* is

used to detect five faults in a chemical tank system, [19] which presents a hardware

in[q)lemented FDI system, and [21] where a series of hierarchical ANNs are used to divide

complex patterns into sttialler subsets for classificatioa

Chemical tank systems are often used as example nonlinear systems to demonstrate the

artificial neural networks ability to successfully cope with several issues relating to FDI

systems. In [4], the ability of the A N N to coiiectly classify faults occurring simultaneously

together with a severity level is studied, whilst [7 and 16] attempts to identify indpient faults in

the presence of sensor noise. Sensor faults are studied in [2] where an MLP is used in

conjunction with a more traditional State Veaor Estimator and [12] where the fault diagnostic

and control components of a multiparameter controller [14] are replaced by an A N N .

Until recendy, the majority of A N N based FDI systems have rehed upon the monitored process

achieving steady-state [20 and 22] before fault detection could be attempted, owing to the

parameter patterns not always being unique during transients, or collecting time-series data

during opea-ation and presenting it to an MLP for FDI offline [8 and 15]. Two systems which

attempt to overcome this use several fault models based upon MLPs [18] and an M L P model

of the normal process operation [17] with an additional MLP trained to classify residual

differences between the model and the dynamic systent

In addition to dbemical systems, ANNs have been used to deiea faults in aircraft control

systems [13]. electronic circuit boards faults [9] and rocket engine diagnostics [3].

As this research is primarily concerned with the online detection of faidts on a piece of

industrial machinery in real-time during the dynamic startup of the process, a model-based

approach has been adopted which is closo* to [17] than [18] as it uses a dynamic model of the

system operating imder normal operating conditions as opposed to several dynamic models of

fault conditions. However, whereas a time-invariant three tank system is modelled in [18], the

process used here is a time-varying mechanical process which necessitates a bank of MLPs

used in conjunction with a sophisticated switching mechanism to provide a continuous input-

ouxpui mapping for the fault classifier networks.

'Essentially an MLP widi several functions (e.g. sine, cosme. square root etc.) of each input being

calculated by the input layer to reduce die necessity of the MLP needing to approximate these

functions itself.

126

6.2. The Three Candidate Faults.

Chapto- 3 introduced three candidate faults, namdy: a barrel pressure transducer fault, a

camfiex valve fault, and a liquid ammonia hand valve fault. This section describes how each

fault manifests itself within the output signals of the UAF. and how the MLP Cascade responds

to each fault

6.2.1. ManiFestations In The Output Signals.

6.2.1.1. Barrel Pressure Transducer Fault

This fault is initially registo^ed by a slight (cO.3 bar) offset in the barrel pressure, although this

vanishes once the barrel pressure is controlled to 4 bar. However, this control causes other

discrepancies, namely a slower buildup of motorload and once the UAF has reached steady

state, a lower extrusion (ice-cream) tempo-ature and a lower ammonia evaporation pressure, as

shown in figure 6.1.

6.2.1.2. Camtlex Valve Disconnected.

The freezer wil l operate normally imtil stage four of the startup procedure, where the ammonia

evaporation pressure needs to be reduced to below IVi bar. This is usually achieved by

opening the camfiex - now disconnected - so the evaporation pressure wil l ronain constant, or

be seen to rise slightly as opposed to reduce. Subsequent stages wil l not be reached, meaning

the barrel pressure wi l l not be controlled at 4 bar. the extrusion temperature wUI not reduce,

and the motorload wi l l not increase. Tliese effects are shown in figure 6.2.

6.2.1.3. Liquid Ammonia Hand Valve Closed.

The initial rise in ammonia evaporation pressure wil l not occur due to the valve allowing liquid

ammonia into the UAF being closed. Once stage four of the startup procedure is reached -

requiring the ammonia evaporation pressure to be lowered - it will be complied quickly as the

reading at the pressure sensor wil l already be low. However stage five wi l l not be complied as

the lack of anunonia in the system wil l prevoit refrigeration from occurring meaning the

extrusion tempoature will not reduce and the motorload wil l not reach its set point As the

freezo" does not enter steady state operation, the barrel pressure wi l l not be controlled at 4 bar.

TTiese effects are shown in figure 6.3.

127

e m d P r c a t m

A n v n a i k i E K p c r d k n P R s s u i v

o o

S R 8 0 R 8 R 8 9 8 5 R 8 9

^

8 9 8 8 ^ 8 9 8 8 8 9

Figure 6.1 The extent to which the UAF suffering from a barrel pressure
transducer fault differs from normal operation.

128

6Z\

p3]09uuoosip B uiojj Suuajjns jvfl ipniM oj luapra am ^9 ajnSij

8 8

8 8 ft U S

ttnfisdUB 1 u s a o «ci

0£T

uopeĵ do [Buuou mojj sjajup 9A[ba pimq eruoanuB
pmfari pasop e may Suuajjns jvfl »pn|A oj jirapra aqx £'9 ajnSij

ft 8 » 8 6 8 3 8 ft 8 £J o o

6 8 6) 8 J S 8 3 B 8 6 8 8 S

' f

a 8 8 i 9 8 3 8 8 f t 8 8 3

ft 8 8

6.2.2. Calculating The Residuals.

The principle of constructing a model-based FDI system is that the difference between the
actual outputs and the model ouq)uts can be used to form a residual, or difference, signal
Undo* normal operating conditions - if the model is accurate - the residual signal should be
zero. Any deviation fipom this can therefore be attributed to noise perturbations, model
mismatch or process faults.

The first of these is unavoidable in any system - a typical cause being a small amount of
electronic feedback in the sensor - and in the case of the UAF. the distribution of the noise
component of the output is negligible. Chapters 4 and 5 dealt with attempting to construct a
model in which mismatch was reduced to a low level Hie remainder of this chapt^ is involved
with determining what characteristics of the residual signal is typical of a particular fault, and
how best these can be detected and isolated.

As in the original schematic shown in figure 1.9. the simplest form of residual signal
calculation is by a simple difference between the two signals. Figures 6.4. 6.5. 6.6 and 6.7.
demonstrate this difference for the three candidate faults.

It is evident that the liquid ammonia hand valve fault causes the greatest deviation in residual
signal, with barrel pressure, ammonia evaporation pressure and motorload exhibiting abnormal
behaviour. In contrast, the camflex valve fault only causes notable deviation from the norm in
the reading for the ammonia evaporation pressure, and this as a positive bias whereas the liquid
ammonia hand valve fault caused a negative bias. As these two faults are considered to be
similar from the point of view of the human operator - both dealing with the flow of ammonia
through the UAF - it is useful for accurate isolation purposes that the residuals each produce
are distinct from one another.

Of greater concern is the barrel pressure transducer fault. Although the residual produced here
is distinct from the oOxer two faults it is similar in charaaeristics to the residual produced by
normal operation, which will ultimately render this fault the most difficult to detect Indeed,
only the offset from zero for the initial 29 sample points of opo-ation marks this run as bdng
abnormal.

Sev^al additional features of the residuals which are likely to be the results of model mismatch

are:

The large spike registered by both the barrel pressure and ice cream temperature
sensors of the normal and barrel pressure transduco" fault. This occurs at the time
the ice cream pumps are started and both the barrel pressure and ice cream
tempCTature drop sharply. The model response is one time-step behind.

131

Normal Operation

iliL»iiiiikii>»

^ ^ ^ ^ ^ ^ ^
S 3 5 B

« 8 ll B a 3 s a (] B

1 .
B ' o B 9 9

Figure 6.4 Graphs demonstrating the residual signals calculated by simple difference for normal freezer
operation.

Barrel Pressure Transducer Fault

n 8 (3 0 i B

n -a B n g B B 3 S S S

Figure 6.5 Graphs demonstrating the residual signals calculated by simple difference for the barrel pressure
fransducer fault

132

Camflex Valve Disconnected

i:
d B o

Figure 6.6 Graphs demonstrating the residual signals calculated by simple difference for the disconnected
camflex valve.

Liquid NH3 Hand Valve Closed

2 B

a o B e g

n 8 a 8 R g

Figure 6.7 Graphs demonstrating the residual signals calculated by simple difference for the closed liquid
ammonia hand valve.

133

i'
L

« s «

R B 0 B N g O

Normal Operation

r

N B n B n a a H

B a B

Figure 6.8 Graphs demonstrating the residual signals calculated by moving average for normal freezer operation.

Barrel Pressure Transducer Fault

Figure 6.9 Graphs demonstrating the residual signals calculated by moving average for the barrel pressure
transducer fault

134

Camflex Valve Disconnected

a B c

H B O

Figure 6.10 Graphs demonstrating the residual signals calculated by moving average for the disconnected
camflex valve.

Liquid NH3 Hand Valve Closed

a 2 a 9 g e B

8 e 3 £ B

I .
8 a a A a o H 3 S

Figure 6.11 Graphs demonstrating the residual signals calculated by moving average for the closed liquid
ammonia hand valve.

135

• The negative offset that occurs in the motorload residual for all faults and the normal
rua As the actual motorload spikes twice as the dash^ be^ns to rotate during stage
2 of startup, the model moiorload spike twice. However, the duration of the actual
motorload spikes are less than the sampling rate of the sensor. This results in the
sensor registering the motorload as it is increasing, at its maximum value, as it is
decreasing or - in the worst case - missing the spike altogether. It is therefore
difficult for the model motorload to accurately reflea this feature.

A furthCT feature of the graphs worth mentioning is the lack of ice aeam tempo^ture readings
for the camflex and the liquid ammonia hand valve faults. This is due to stage 6, where the
pumps are started and ice cream is produced, never being reached. Until ice cream is
produced, the extrusion temperature is not used in the model predictions.

Where model mismatch spikes such as those above are evident in the residuals, it is desirable to
remove - or at least reduce - them whilst retaining the residual offsets which characterise the
faults. A conunon way to achieve this is to average the residuals over sevo^ readings,
creating a moving average across the time-series as it progresses. The results of averaging
over five readings are demonstrated in figures 6.8. 6.9. 6.10 and 6.11. Hoe, the model
mismatch spikes are reduced, whilst die characteristic offsets of the faults have their leading
edges damped. These charaaoistics are still in evidence however, which means it should be
possible to attempt to classify them using a furtho" set of MLPs.

6.3. Training A Bank Of MLPs To Classify The Faults.

In [17], three simulated faults are classified by providing an MLP with the residual vector
generated as the simple differaice between the states of a three tank system and an MLP
trained as a dynamic model of the system. The fault classification MLP has three output lines
(one for each fault) and is trained to recognise the cbaract^stics of the three faults in the
residual by providing a high signal on one of its outputs while the other two stay low. Whilst it
would be possible to emulate this method for this research, it suffers from one serious
drawback. As diis research is intended as a pilot study, only three of the total possible faults
which could occur on the UAF has been selected for evaluating the method. If a three ou^ut
classifier MLP was constructed to isolate the current fault information and subsequent work
demanded the introduction of several different faults to the system, a new MLP would need to
be constructed and trained to classify the existing faults and the fresh ones. This would occur
each time a fresh faidt was identified. Even if every known fault was categorised and operating
records gathoed a priori to the classifia MLP being trained, there remains the danger that a
hitherto unknown fault will be recognised, and again a fresh MLP constructed and trained to
recognise this fault in addition to the orheis.

136

The approach adopted here is therefore incrementaL Each candidate fault will have a specific
MLP trained to recognise it, and trained to recognise no other fault. Each MLP will have a
single output indicating either the fault is present or it is not, dq)ending upon whether the
output value has transgressed a predetermined threshold. TTiis provides two main advantages:

1. As a fresh fault is identified, a single MLP needs to be trained to recognise this fault
and the classifier added to the bank of orhexs without the need to retrain the others.

2. A diff^ent input vector can be constmaed for each classifier MLP, providing each
with the best information for detecting its particular fault

In addition, each of the mdividual MLPs is likely to be smallo- than one trained to recognise all
three faults, as it will need only aiough hidden units to recognise one pattern as opposed to
three. However the three separate MLPs taken together are equally likely to be larger than the
single MLP classifier.

6.3.1. Method Of Training.

When performing classification tasks using artificial neural networks, it is important to
construct the training set so an equal numba of the different categories the network is required
to classify are available [U] . For each of the fault isolation filters, there are two possible
categories: either the fault is evident (requiring an output close to 1), or the fault is not evident
(requiring an output close to 0). In order to train each filter, therefore, eighteen iog files were
chosen; nine of which reflect the fault, nine of which do not. For these experiments where
details of three mdividual faults are known, should a particular fault not be present in die
system one of two situations could have arisen: eitha the run is normal; or one of the other
faults is in evidence (for example, if the freezer is not suffering a camflex valve fault, then
either the run is normal, th^e is a barrel pressure transducer fault, or there is a liquid ammonia
hand valve fault). For this reason, the nine none-fault cases in the training set woe split into
three groups of three, reflecting three normal runs and three each of the other two faults as
shown in figure 6.12.

Each file in the training set is passed through the MLP Cascade in turn to generate the residual
signal calculated as a moving average difî erence. The order of the training set is such that a
fault log always follows a non-fault log and vice-v&sa. Components of the residual signal are
used to form the input veaor to the filter being trained, and a value of either 0.9 or 0.1 is
backpropagated through the network for a fault log and a non-fault log respectively.

137

IVainnig Sets For Faalt Fitters

fisrrel pressure Transducer
Present Absent

I-48J08

10-3d.log
IO-3eJns
ia-3f.iog
l&-3tLk)g
IO-3i.log
7-4a.ki8
jMcJoa_

17-3cJog
17-38.108

l8-38.lnfl
7-4jJ08

Mb.lo8
ll-9b.Io8
1ft.3d.rnfl

Cmmflex Vilve IHscoiinectcd

Present Absent
l7-3aJog

I7-3C.IOS
l7-3r.kia
17-3g.log

fMi.log

ia-3cJos . e!
ia-3Klo8 ill 7-4c.ln8 ' ill

i e
7-4j.ki8 s i
8-4kJog
l-4bJog Is l1-9bJog Is lft-3d.lna Is

Uqoid NU3 Uand VUve Closed

Present Absmt
17-3UOS
I7-3k.k)g
Ift.38.»08
l8-3Llna

7-4gJog
7-4jJo8

10-3cJog,
10-3Klog ilj 7-4clogJ ilj
17-3ckig a
17-38Jaa
8-4eJoa
MKlog
ll-9bJog
1S.3d.laa

Figure 6.12 Typical division of .log files into training sets for the fault isolation filters

During trainings the instantaneous error for presentation k between the output of the MLP (o)
and the desired output (d) is calculated as

^(tf<*>-o"*")' (6.1)

i.e. the Euclidean distance. This value is summed for each sample in the complete training set
(/2) so that the error for the mth epoch is

(6.2)

After one epoch, this value is divided by the number of log files in the set (Ir^e/I) to give the

training error (7) for epoch m.

\Tset
(6.3)

One training epoch implies a complete presentation of the training set. Initially training was
conducted for a total of 1000 epochs using a number of MLPs with a single hidden layer, the
size of the hidden layer varying. As this failed to provide any useful results, further
experiments were conducted using networks with two hidden layers, the numbo* of processing
elements in each hidden layer vaiying between five and fifteen.

For each fault filto", the input vector was comprised of the following:

Barrel Pressure Transducer Fault Filter.

(5 inputs): Barrel Pressure Time delay: 0
Barrel Pressure Time delay: 1
Barrel Pressure Time delay: 2
Ammonia Evaporation Pressure Time delay: 0
Motorload Time delay: 0

138

Camflex Valve Disconnected Fault Filter

(5 inputs): Barrel Pressure Time delay: 0
Ammonia Evaporation Pressure Time delay: 0
Anunonia Evaporation Pressiue Tmie delay: 1
Anunonia Evaporation Pressure Tmie delay: 2
Motorload Time delay: 0

Liquid Ammonia Hand Valve Fault Filter.

(9 inputs): Barrel Pressure Time delay: 0
Barrel Pressure Time delay: 1
Barrel Pressure Time delay: 2
Ammonia Evaporation Pressure Time delay: 0
Ammonia Evaporation Pressure Time delay: 1
Ammonia Evaporation Pressure Time delay: 2
Motorload Time delay: 0
Motorload Time delay: 1
Motorload Time delay: 2

The rationale behind these choices is that the most prominent residual deviation has a number
of time-delayed representations, whilst the others have just the current rq)resentation. For
example, in order to signal a barrel pressure transducer fault, the barrel pressure residual will
need to have been offset for three samples, whilst the ammonia evaporation pressure and
motorload residuals are low. For each of the three candidate faults, the ice cream temperature
is deemed unimportant for the isolation of the faults as it is not accurately measured whilst
each fault is manifest in the residual signals.

63.2. Experimental Results.

The resultant training errors for these experiments are as shown in table 6.1:

5 6 7 8 9 10 11 12 13 14 15
Barrel Pressnre
IVansdnccr Panit 14.7427 14.4029 14.2633 14.1062 13.B957 13.8565 13.7992 13.6558 133674 13.8436 13.9443

Cam flex Valve
DisconnectEd 12.5302 12.4144 12.3313 12.5401 12.7867 1Z82I4 12.8664 12.8938 133787 13.8965 14.0045

Liquid NH3 Hand
Valve Clnsed 1IJ469 10J922 103248 13.6074 10.7830 10.8923 11.0070 13.4440 13.4563 133138

Table 6.1 The training errors for each of the fault classifier MLPs for a number of hidden layer compositions.

The number of input units are constam for each filter (as described above) and the same
mmiber of hidden units existed in each of the two hidden layers, meaning the shaded error of
the barrel pressure transducer fault was achieved with a 5-13-13-1 network. The shaded area
represents the lowest training m^or for each filter.

The greatest training errors belong to the barrel pressure filter which also requires the greatest
numbo- of processing elements in the hidden layers.

139

For the lowest error networks, subsequent experiments were conducted to see if the training
error could be improved by varying the number of units in one of the hidden lay^s around the
current number. This meant, for example with the camflex valve filto-, experiments using 5-7-
6-1. 5-7-8-1. 5-6-7-1. 5-6-8-1. 5-8-6-1, and 5-8-7-1 networks were used, although no
significant improvement was in evidence.

Figures 6.13. 6.14, 6.15 and 6.16 demonstrate how the filters respond to a normal run and each
of the three faults.

Reslduds (Normd Run)

0.23

0.7
a i s

0.1

ao5

I "

-a 05

-ai

-a 15

-a2
-0.25

Borel PressLi e

loe Oeem T enpg^due

NHSEvqp Press ue

MtScrload

7

S(vnpto#

Fcull Signds (Normd Run)

Bore! PressueFoiii

— — CoTtfiot Fall

- - - - LkMdNH3FaJt

Threshold

o 0.5

Sonpie*

Figure 6.13 Example of how the three filters respond to a normal operating run.

140

Residuds (Bcvrel Pressure Fault)

0.25 n

•.OS 1

BoTd Prssi/e
loe Crecm T enjiaaue
NH3 Evcp Press ue
Motakxxj

Sonple*

fcult SIgnds (Daiel PressureFoutt)

Bore* PressueFcilT

— Cortto VdveFoit
• • LlcMtlNH3FaJT

Thieshcld

sonpte*

Figure 6.14 Example of how the three filters respond to a barrel pressure transducer fault

141

0.25

02 •

0.15 •

Ol

0.05 H

3 °
•0.06

-ai

-0.15 •

-0.2 •

-0.25 •

J

l o 5

Residuds (Conflex Fault)

Borel Pressue

loe Crecm T aips^due

NH3Evq3Pres6ue

Mu(u load

Sonple*

Fadt SIgnds (Canflex VdveF<iilt)

Boref PreretxeFoit

Comflet Vdve Fait

LlcMdNH3Falt

Threshold

Scinple*

Figure 6.15 Example of how the three filters respond to a camflex valve disconnection fault

142

Realduds aiquldNHS Fcu»)

0.15 -

— Boid Pressif e

~ loeCrecmTempercru-e

• NHSEvcpPressire

- Mctfcilocrt

Scmplof

Fault S Ignds a (quid NH3 F auH)

§ 0 5

QoTd Pressue Fait
— — CtJrtlex VdveFoUt

- - - - LfcMtlNH3FaiT

Trreshoid

Sonplef

Figure 6,16 Example of how the three filters respond to a liquid ammonia hand valve fault

A numbo- of features are in evidence. Firsdy • during a normal run - although no false alarms
are reported, the Uquid ammonia hand valve fdter almost signals a fault. More serious is the
barrel pressure transduca* filter. Although it correctly signals a fault in figure 6.14, it also
signals a false alarm in figure 6.15. demonstrating that it is responding purely to an offset (be it
positive or negative) in the barrel pressure residual with no regard to the oth^ signals. In
addition, the camfiex filto- signal fails to transgress the threshold during a camflex valve fault
i.e. a miss. This could be rectified by lowering the threshold, but the barrel pressure transducer
fault would still be signalled.

By smdying the residual signals, one can see that the fault is more prevalent during particular

phases of the UAFs operatioa This information can be utilised into the faidt detection module

143

by inn-oducing templates i.e. windows on to the residual signal which indicate the best poiods
of time to isolate the fault

6.4. Introducing Templates In Conjunction With The
MLPs.

The previous section demonstrated how training the fault detection filters upon the entire
residual signal generated during a run resulted in misses and false alarms. This situation could
be rectified by introducing maximum l i k ^ o o d windows - or templates - onto the residual
signals. In this way, each fdter would have an associated template indicating when to apply the
filter to isolate the fault

6A1. Principle OF Operation.

By observing the residual signals generated by the three candidate faults, it is evident that the
barrel pressure transducer fault is only evidon during the fust part of a freezer run. whilst the
other two faults are manifest during the latter part of the startup. It is therefore possible to
construa templates in the following ranges:

Barrel Pressure Transducer Fault

Camflex Valve Disconnected

Liquid NH3 Hand Valve Closed

Range:

Range:

Range:

0

50

40

50

End of run

End of run.

This allows views on to the data as described in figure 6.17

a25
0.2

0.15

01

ao6
0

•QD5 i

-01

-0.15

-02

-025

Retiducrit (Bcvrel Pressure Fault)

Camflex Valve
Fault Template

BcnelPressue

" [ce OeomT errperolLre

I * " " " NHSEvcpPressixB

! Mo!CTload

J Barrel Pressure
Transducer Fault

Template

Liquid NH3 Hand Valve
Fault Template

Figure 6.17 Demonstration of the templates view of the residual data. N.B. Heights only vary to allow the
different templates to be seen.

144

The filter MLPs can then be trained as before but with reduced access to the residual data,
ensuring that samples which do not help the fault isolation process are not presented the filter.

6.4.2. Experimental Results.

The resultant training errors for these experiments are shown in table 6.2:

Nnmbcr of hidden PEa In the two bidden layers

5 6 7 8 9 10 u 12 13 14 15
Barrel Prcssnre
TVansdDCcr Panlt 12.1600 8.9204 11.9624 8.8649 8.8482 8.8322 8J364 8.8157 8.8093 ssoso 11.6807

CfUDflex Valve
Disconnected 0JS3I 0JS88 0.4416 0J840 03956 03961 0 3640 03973 0.4020 0.4059 0.4440

Uqold NH3 Hand
Va>?e Closed 2.6914 X61S8 3.2426 3.2633 2.5391 3.4249 3.2109 3.2276 33424 3.4734 3.6033

Table 62 The training errors for each of the fault classifier MLPs for a number of hidden layer compositions.

Once again, the number of input units was constant, and the shaded area represents the lowest
training error which could be achieved. Subsequent experiments varying the numbers of
hidden units around these low values failed to provide improved performance.

Figures 6.18, 6.19, 6.20 and 6.21 demonstrate graphically how the fault isolation filters
respond to normal opo-ation and each of the three candidate faults. As can be seen, the danger
of the false alarm during a normal run has been reduced, the barrel pressure transducer filter no
longer gives a false alarm during a camflex valve fault, and the camflex valve Tdter correctly
identifies this fault

By removing the extraneous data from the training set, the fault isolation capabilities of the
filter networks is improved. It has enabled die fdters to more correcdy identify features wiUiin
the residual signal. For example, the barrel pressure transduce- is no longer acting m^ely as a
threshold deteaor on the barrel pressure residual as was originally thought to be the case. This
can be obs^ed in the barrel pressure transduce fdter transgressing the threshold during the
barrel pressure fault, but not doing so during the liquid NH3 hand valve fault where a similar
offset is in evidence

A discussion relating to the effectiveness of the FDI capabilities of the system, and how it
compares with the current fault detection capabilities of the UAF is provided in the followmg
chapter.

145

0.25

0.2

0.15

0.)

0J»
•B
I 0

0.06

•ai i

•a 15

-a2 •

•0.25

I as

I

• /

Resldudi (Normd Run)

Foj l l Signdt (Normd Run)

icmple*

Sard Prsstxe

Ice Crecm T errpsciije

NH3EvcpPressue

^ ^ ^ ^ BoTd Pressue Fall

— — Cannot Fout

- - - - LkMdNHSFoJt

T hresMd

Figure 6.18 Example of how the three filters respond to a normal operating run.

146

Reslduds (Bcvrel Pressure Fcutt)

0.25 -
Benel Pressue

r*43 EvopPrssue

Matcrknd

• 0.5

u

Sonple*

Fault Slgnds (Bard PressureFouH)

Borel PressireFoLW

— — Connet VdveFoit

- - - - LiqidNHSFcUt

T Ires hold

Scmple*

Figure 6.19 Example of how the three filters respond to a barrel pressure transducer fault

147

Residudt (C<inflex Fcmilt)

a2s

0.2

0.15

a)

0 ^

I °
-a 05

-0.1

•0.15

•02

•0.26

•
•

»
f

~ ~~ IceCrecmTerTpercJue

t
1 f

- - - • NH3 EvopPressixe

- •
« •

MQtatoad

• 1
** •

1 L

V

I 0.5

Scmplef

F cult S Ignds (Ccmf lex Vdve F cult)

- Bold PressiFe Fait

- ComflecVclveFail

- L k ^ N H S F o i t

— Trreshdd

Scmpls*

Figure 6^0 Example of how the three filters respond to a cam flex valve disconnection fault

148

Residuds aiquldNHS Fcutt)

c O . 5
S
B

0.05 i

Bard Pressue
Ice Creon T eirpercJue

- - - - NH3Evq3Pre3Sife
MOtahxn

FodtSignds aiquIdNH3FajH> Bard PressveFoit
Ocirttet VdveFoiT
LkMdNH3FaJt

'T̂ ê5hdd

Sorple*

Figure 6^1 Example of how the three filters respond to a liquid ammonia hand valve fault

6.5. The Model*Based FDI System.

A fault detection and isolation system for the Unileva" Automated Freezer has now been
developed using neural computing techniques. It can correcdy detect and isolate three types of
fault: one of which is relatively slight, being a small offset in the barrel pressure transducer; the
other two being similar to one another, namely a fault in two of the valves which control the
flow of ammonia through the freeze.

149

The developed system can be divided into two subsystems: a fault detection module and a fault
isolation module (figure 6.22).

Umlevcr Atxtsmated
Mbinow

Fault Detection
Module

H Stage 1

8):
Model MLP

AddUooalUAPvvUblal

N Mcrvin

HiitDricilOMiS

Ihe MLP Cascade

Fault Isolauon
Module

BsiTcl Pressure
Transducer Fault

Fdter

Liquid Ammoma
Hand \^lve Fault

Fdter

rnrormilion Camftcx Valve
Fanh Filter

l.BKltiPMMB

FuASisnl FauftSigiKl Fault Sigml

Figure 6J2 A schematic of a model-based FDI system based upon neural computing techniques capable of
detecting faults within the Unilever Automated Freezer.

The fault detection module operates by providing a dynamic model of the UAF undo- normal

opCTaiing conditions. When a fault occurs, it is likdy to be evidoit in the diffarace between

the modds outputs and the freezer outputs (the residual signal). The model is implemented by

using a sequence of cascaded MLPs (as detailed in Chapter 4) switched between by a furtho-

MLP (as detailed in Chapter 5) to provide a continuous input-output mapping.

150

The fault isolation module comprises of a bank of MLPs trained to recognise charaaeristics in
the residual signal together with a template which details when each fault is likely to be most in
evidoice. An individual MLP is used to isolate one particular fault, making the system
incremental in that further faults can be coped with by adding trained MLPs and template
information to the system without the need to retrain the existing MLPs.

Each fault detection TilteT has a single output indicating whether a fault has occurred (typically
a value above the 0.5 threshold) or not (typically a value below this threshold).

6.6, Summary.

The purpose of this chapter has been to demonstrate how the UAF model is accurate enough to
enable a bank of MLPs to recognise characteristics in the residual signals as being those of
particular faults.

A survey of current FDI systems using artificial neural networks was presented with details of
how this investigation differs from these and provides an origmal contribution to knowledge.
This contribution is deemed to be:

• Current systems tend to rely upon detecting faults by recognising characteristics
during steady-state opa-ation, a situation analogous to classical non-model based
systems such as frequency analysis where signals from the plant are transformed
to reveal (hopefully) distinctive signatures. The ANN in these systems detamme
such characteristics internally.

• This research is concerned with the highly nonlinear transient dynamics evidm in
the startup re^me of an industrial process, which ideally requires a dynamic modd
to detea irregularities. Where current systems use such techniques, they have
relied upon demonstrating a solution upon chemical systems whose dynamics are
time-invariant The system smdied m this investigation is typical of many large
mechanical plants in that it has a phased startup which alters the und^ying
dynamics of the process in time, i.e. a time-varying system. A novel approach to
modelling such a system has therefore been developed.

Following the survey, the three candidate faults proposed for detection and isolation in Chapter

3 w ^ reviewed and details of how they manifested themsdves in the output signals of the

model shown. Methods for calculating the residuals were then discussed followed by the initial

training of a bank of MLP filters to recognise the characteristics of individual faults. It was

decided to use a bank of filters rather than a single MLP (as in o\hsi reported research), as this

left the system open to further development without the need to retrain the isolation network.

151

Ehie to the presence of false alarms and misses in this bank of filters, details of how maximum
likelihood templates were used to enable the filters to concentrate upon the residuals when their
faults were most in evidence.

Although such a system can correcdy isolate the three candidate faults, it raises certain issues
such as:

• How do robustness consid^ations affect fault detection in a model-based systan?
How robust is the model?

• How effective are the FDI capabilities of the system? How do they compare with
the currently available system?

• How accurate are the FDI capabilities of the system? In a number of test cases,
how many false alarms and misses are there?

• An important consideration of this investigation is that the developed system
should be able to detect and isolate faults online and in real-time to reduce the
amount of downtime of the machinery on the factory floor to a minimum, or if
possible reduce it altogeth^. The performance of the system working online
therefore needs to be addressed to det^mine wh^h^ it > ^ be as effective during
real operation as in simulatioa

These considerations, amongst others, are addressed in the following chapter together with
thoughts on how the scope of the investigation can be extended both in toms of supplementing
the current work and opening fresh avenues of research.

References For Chapter 6.

[1] J T Alander, M FVisk, L HolmstrOm, A Hanifliainen & J Tuominen: Process Error
Detection Using Self-Organizing Feature Maps. Rolf Nevanlinna Institute Research
Report, Helsinki, Finland, January 1991.

[2] A Bulsari, A Medvedev & H Sax^n: Sensor Fault Detection Using State Vector
Estimator And Feed-forward Neural Networks Applied To A Simulated Biochemical
Process. Acta Polytechnica Scandinavica: Chemical Technology <& Metallurgy
Series. No. 199. 1991.

[3] W E Dietz, E L Kiech & M All: Jet And Rocket Engine Fault Diagnosis In Real
Timt,Journal Of Neural Network Computing. No, l.pp5-18. 1989.

[4] J Y Fan, M Nikolaou & R E White: An Approach To Fault Diagnosis Of Chemical
Processes Via Neural Networks. AlChE Journal, Vol 39, No. 1. pp 82-88. January
1993.

152

[5] R L Gezelter & R M Pap: Fault Diagnosis. Handbook Of Neural Computing
Applications. Ed. A J Maren, C T Harston &. R M Pap. Chapter 21. pp 337-345. (P)
Academic Press, Inc. 1990.

[6] J C Hoskins & D M Himmelblau: Artificial Neural Network Models Of Knowledge
Representation In Chemical Engineering. Computers & Chemical Engineering. Vol.
12. No. 9/10. pp 881-890. 1988.

[7] J C Hoskins, K M Kaliyur & D M Himmelblau: Incipient Fault i:)etection And
Diagnosis Using Artificial Neural Networks. Proceedings Of The International Joint
Conference On Neural Networks (IJCNN), Vol. 1. pp 81-86. June 1S>90.

[8] O lordache, J P Corriou & D Tondeur: Neural Network For System Classification
And Process Fault Detection. Hungarian Journal Of industrial Chemistry. Vol. 19.
No. 4. pp 265-274. 1991.

[9] B J Kagle, J H Murphy L J Koos & J R Reeder: Multi-Fault EHagnosis Of
Electronic Circuit Boards Using Neural Networks. Proceedings Of The International
Joint Conference On Neural Networks (fJCNNl Vol. 2. pp 197-202. June 1990.

[10] T Kohonen: The Self Organising Map. Proceedings Of The IEEE. Vol. 78, No. 9. pp
1464-1480. September 1990.

[11] R Lippmann: An Introduction To Computing With Neural Nets. IEEE ASSP
Magazine, pp 4-22. April 1987.

[12] S R Naidu, E ZaHriou & T J McAvoy: Use Of Neural Networks For Sensor Fault
Detection In A Control SystenL IEEE Control Systems Magazine, pp 49-55. April
1990.

[13] M R Napolitano, C I Chen & S Naylor: Aircraft Failure Detection And Identification
Using Neural Networks. Journal Of Guidance, Control & Dynamics. VoL 16, No. 6.
pp 999-1009. November-December 1993.

[14] C N Nett, C A Jacobson & A T Miller: An Integrated Approach To Controls And
EHagnostics: The 4-Parameta- Controller. Proceedings Of The 1988 American Control
Conference, pp 824-835. March 1988.

[15] B A Osyk, M S Hung, G R Madey: A Neural Network Model For Fault Detection In
Conjunction With A Programmable Logic ControUa-. Journal Of Intelligent
Maniffacturing. Vol. 5, No. 2. pp 67-78. 1994.

[16] A G Parlos, J Muthusami & A F Atiya: Incipient Fault Detection And Identification
In Process Systems Using Accelerated Neural Network Learning. Nuclear
Technology. Vol. 105, No. 2. pp 145-161. February 1994.

[17] R J Patton, J Chen & T M Siew: Fault Diagnosis In Nonlinear Dynamic Systems
Via Neural Networks. Proceedings Of Control '94. VoL 2. pp 1346-1351. March
1994.

[18] T Sorsa & H N Koivo: Application Of Artificial Neural Networks In Process Fault
Diagnosis. Automatica. Vol. 29. No. 4. pp 843-849. 19S>3.

[19] A H Tan, Q Pan, H C Lui & H H Teh: INSIDE: A Nauonet Based Hardware Fault
Diagnostic SystenL International Joint Conference On Neural Networks (IJCNN).
Vol. l.pp 63-68. 1990.

153

[20] V Venkatasubramanian, R Vaidyanathan & Y Yamamoto: Process Fault Detection
And Diagnosis Using Neural Networks - I . Steady-State Processes. Computers &
Chemical Engineering. Vol. 14, No. 7. pp 699-712. 1990.

[21] K Watanabe, S Hirota & L Hou: Diagnosis Of Multiple Simultaneous Faults Via
Hia-archical Artificial Neural Networks. AlChE Journal. Vol, 40, No. 5. pp 839-848.
May 1994.

[22] Y Yamamoto & V Venkatasubramanian: Integrated Approach Using Neural
Networks For Fault Detection And Diagnosis. Proceedings Of The International Joint
Conference On Neural Networks (IJCNN). Vol. 1. pp 317-326. June 1990.

154

Chapter 7.

Discussion & Future Work.

This thesis has detailed the investigation into the development of a fault detection and isolation
system for a dynamic industrial process using artificial neural network techniques. Ultimately,
the design has been founded on a model based approach which has been inspired, in the main,
because traditional model based methods are able to respond to faults quicker dian their non-
model based coimterparts. TypicaUy, non-model based solutions rely upon signals fit>m the
process differing from some predo^mined norm which can often take a p ^ o d of time to
become prominent Model based solutions, on the other hand, by utilising analytical
redundancy in the form of a dynamic model of the system, have the capacity to detect faults as
soon as they manifest themselves in the signals.

With the industrial process nominated as a test-bed for this research (the Unilever Automated
Freezer), fast and accurate fault detection is essential Critical faults - which can result in the
automatic shutdown of the freezer - can often be cured by the intervention of the human
opo^tor before shutdown occurs, tho^by saving upon the costly downtime of the machinery.
In order for this to occiu*. however, the operator needs to be alened to - and reliably informed
as to the nature of - the fault before the critical point is reached. In addition, sofr failures, such
as slight offsets in sensor measurements or slight incremental drift in the readings, which can
ofren be missed by conventional fault detection techniques, can cause a reduction in the quality
of the produce, thereby proving costly as well. This research has concentrated on detecting and
isolating both of these types of fault by developing a solution which - whilst being tested on the
UAF - is essentially genmc and can be easily ported to otho- pieces of machinery which
possess the same type of time-varying phased startup.

This investigation has been interested in isolating faults during startup as - following a p^od
of idle standing time - the machinery components are prone to breaking dowa Once these
components have reached steady-state operation, the danger of them malfunctioning is reduced.

155

Concentrating on the startup regime allows the detection of faults before the production of die
commodity begins thus saving costs in raw materials. As startup is typically the most transient
and nonlinear period of a process' life cycle it also proves the most difficult period to detect
faults withia In additioa starting a process such as the UAF requires the greatest degree of
human mteraction during its operation. Within this period there exists the greatest danger of
incorrea set point information being entered or necessary valves not being opened. Agaia this
kind of problem reduces as steady-state conditions are achieved.

This chapter aims to review the derived FDI solution, discussing its strengths and weaknesses
and demonstrating how it has met the objectives identified at the outset of the research.

7.1. The Model.

7.1.1. Project Objectives.

With respea to the model, the project objectives were that litde or no explicit knowledge of the
process would be assumed, that no additional hardware would be required to build the model,
and that the model should be able to adapt itself to the particular process it was identifying.

7.1.1.1. An Explicit Quantitative Freezer Model.

A large bottleneck in the development of model-based systems is the production of the model
Ck)nventional systems rdy upon the model being explicitly derived: a process which can often
involve detailed study of the system, interaction between its components and - in the case of
chemical systems - knowledge of reactions which take place within the systeia This is often
time-consuming and ultimatdy relies upon a number of assiunptions and estimations being
made about the process which can lead to model mismatch.

By utilising a self-adjusting algorithm such as a neural network, the need for explicit
knowledge about the observed system diminishes as process dynamics can be learnt by the
neural network. This has been demonstrated using simple mathematical processes in Chapto-
2, and a real industrial process in Chapter 4. For simple time-invariant dynamic systems, it
was shown that given sufficient input information and hidden unit space a multilayo*
perceptron is able to learn process dynamics during a learning cyde. For more complex time-
varying systems, it is necessary to incorporate a degree of process knowledge into the design of
the model Howevo* this knowledge need only be a rudimentary awareness as to the nature of
the time-variance; be it smooth or piecewise. For the formo- it may be more sensible to
incorporate an explidt representation of time in order to transform the MLP into a time-
varying system, for the latto* a series of cascaded MLPs may be more suitable. The MLP

156

Cascade was adopted for this research, although this necessitated the inclusion of more explicit

process knowledge, namely the infonnation which governed when to switch from one MLP in

the cascade to the next. By utiUsing a device such as the genetic algorithm to optunise this

switching mechanism based upon empirical knowledge of the system, the role of this explicit

information can be reduced.

7.1.1.2, Further Sensory Inrormation.

For this research, it was important that the d^ved model did not rely upon additional sensory

information which would require the installation of additional sensor equipment thereby

increasing the cost of the solutioa It was therefore necessary to exclude such measurements as

the ammonia liquid pressure and ammonia suction pressure which are measiu^ during pilot

plant trials but not on the factory floor.

Each MLP in the cascade relied only upon the ice-cream pump speed, the camflex position, the
mix and air flows, the barrel pressure, the extrusion temperature, the ammonia evaporation
pressure and the motorload. All of these parameters are routinely measured on the factory
floor, as are the additional variables used as inputs for the switching MLP.

It should be borne in mind, however, that although the current model is adequate for fault

detection purposes at present, should the scope of the fault detection be expanded to include

more fault conditions, the model may not be able to detect or isolate these faults should their

symptoms not be present in the output signals. In such a case it may prove necessary to

include further sensory information in the composition of the model in order to reflea these

new faults. Additional sensory information - which could include visual and audio data - could

only serve to enhance the model should it be pertinent to the dynamics of the system.

7.1.1.3. Fine-Tuning Of The Model.

In order to reduce the number of extraneous variables in the e3q)erimental set-up of this work,
and allow die MLP access only to information relating to the UAF dynamics, certain
parameters wCTe kept constant These included

• The formulation of the product,

• The adopted procedure of cleaning the UAF prior to a production nm, and

• The physical UAF from which logged measurements were taken.

I f the proposed solution were to be effective, it would be necessary to ascertain whetho* the

model derived from the logged runs of one freezer would be adequate for a second freezer

whose dynamics may vary slightly due to ext^al or i n t ^ a l considerations. An example of

157

external influences upon the system dynamics would be variations in air pressure should the
pieces of equipment by geographically disparate, whereas internal influences may include
physically different components of the fteezer operating slightly at variance witii one another.
However - g i v ^ that the each piece of macJiinery is mostiy identical in composition - it is
unlikely tilat the dynamics would prove to be wildly dissimilar from one machine to the next.
In Uiis case it should be possible to produce a generic UAF model firom the logged
measurements of one machine and port it to other UAFs and allow the MLP model a period of
"fme-tuning" to the individual UAF it was identifying.

Section 2.2.7 outlined how two MLP models could be used to handle the phenomenon of
parameter variations within dynamic systems. A similar procedure could be adopted during die
fine-tuning phase of the FDI systems life cycle. The generic model would be duplicated to
allow the fu^t to r ^ a i n static and perform fault detection and isolation whilst the second was
allowed some training time to adjust itself to the individual UAF. Once the new dynamics had
been suffidendy learnt, the unchanged generic model could be discarded and the fine-tuned
model used m the FDI system.

7.1.2. Model EfTectiveness.

An important consideration in any model-based conQx)l or FDI system relates to the quality of
the model. Questions such as: how robust is it? Does it behave sensibly when exposed to
uiunodelled phenomena? What are its characteristics in the presence of faults? In short, just
how good a model is it?

In answering these questions it is important to review the quality of the information which is
used in constructing the model, and to highlight a fimdamental difference m the requirements of
the model in a control system and in a fault detection system.

Consider a dynamic system (System I) that can be desaibed by the state space equations (2.4
and 2.5) with two internal states - x(l) and x(2). Tlie complete range that these two states can
possibly be in will occupy a subset of the two dimensional space between these two
parameters, which can be refared to as A. HowevCT, under normal operating conditions die
two states will be resnicied to a further subset of this space, which can be refored to as A*. A
second dynamic system (System II) will also have a normal operating region (B*) which is a
subset of its complete operating range (B). These two systems are rq)resented diagramatically
in figure 7.1.

158

System I System I I

/

x(2) \ 1 x(2)

x(l) x(l)
Figure 7.1 Representation of the space two systems occupy. A subset of the total space for each system (A' and
B') represent normal operating conditions and are identical to one another.

These two subsets (A and B') may be identical, i.e. under normal operating conditions, the
dynamics of the two systems are indistinguishable from one another.

If an attempt is made to model System I using an MLP network provided with only normal
operating records, tiie MLP may perfectly rephcate A but this is no indication that it has
coirectiy identified System 1. It may be that if the model were tested outside this narrow
operating range it would be seen to more closely resemble System n. Indeed, if one considers
that System I and II would be only two of a myriad of systems that could occupy the same
region under normal operating conditions, it seems unUkely that the MLP model would - by
chance - have identified the correct system. This research adopts precisely this procedure in
training the model.

In a control system such a method could legitimately be viewed as a weakness, as it is desirable
that a the conu-oller behaves sensibly over die entire operating range of the system. Once die
system begins to move beyond its normal bounds, it is the controller's function to compensate
for any abnormalities in the system and anempt to bring the system back under control.

However, in an FDI system this method can be argued to be a strength. Whilst, the system is
behaving normally, it is desirable that the model be as accurate as possible. As a fault begins
to manifest itself and move the system into its abnormal q)erating r ^ o n , the model is required
to diverge from the systems behaviour. The greater tiiis divergence, the more sensitive will be
the FDI system in detecting faults. Therefore, outside of the normal operating region it is
advamageous that the MLP model represent a different system to that which has been modelled
in order to allow fault detection to occur. In addition, as the MLP model itself represents a
dynamic system, it is likely to respond similariy each time a particular fault is encountered,
allowing fault isolation to be performed.

159

A second consideration which needs to be addressed is how effective is the model when
compared to other (traditional) moddling techniques. Chapter 2 introduced two linear filtering
techniques which have foimd widespread application in many engmeering disciplines - the finite
and infinite impulse response fdto^. In order to allow a fair comparison to be made b^een
the MLP Cascade developed in Chapters 4 and 5, cotain aspects of the cascade which are
central to its effectiveness should - i f possible - be transferred to the linear technique. Such
factors would be:

• The use of historical output values in determining current output values. This would
imply that the filter wotild be an infinite impulse response (IBR) filt^.

• The use of several linked devices to allow the piecewise time-invariant nature of the
UAF to be modelled over its complete startup cycle.

• The use of expert knowledge m determining when to switch from one modelling device
to the next. The MLP Cascade uses this information in constructing an initial set of
moddling devices; further refinement is achieved by use of the Genetic Algorithm and
a further Switching MLP. Such a procedure would be unavailable for the OR model.

Comparison can thCTeforc be made between several linked infmite impulse response filters with
a rule-based switching mechanism and the MLP Cascade. Several IIR fdters were construaed
for each stage in the UAFs startup with the numbo* of time-delayed inputs and outputs
inoeasing by one each time a fi^h filter was built. Adjusmients to the IIRs coefficients was
achieved using a least-squares calculation as in section 2.5.2. As with the each MLP in die
cascade, the following parameters were used in building the IIR fdter:

Parameters for Filters 1 - 5. Inputs: Barrel Pressure Set Point

Camflex Positioa

Mix Flow.

Air Row.

Ice-cream Pump Speed.

Inputs: Barrel Pressure Set Point

Camflex Positioa

Mix Flow.

Air Row.

Ice-cream Pump Speed.

Outputs: Barrel Pressure.

Ammonia Evaporation Pressure.

Motorload.

Additional parameters for Filter 6. Input: Ice-cream Temperature Set Point

OuQ>ut: Ice-cream Temperature.

The numbCT of historic input and output parameters was inaeased until six of each were bang
used to configure the IIR - a number twice that needed to build an MLP in the cascade. Figure
7.2 and 7.3 shows how a series of six OR fdters each with six time-delays on each of the UAF
input and output channels is imable to accurately model the UAF.

160

uw
- - - a

9 8 ?

1. 8 9 8

— UAf

- n

Figure 72 Graphs demonstrating how a series of UR filters are unable to
accurately model the UAF. (x-axis restricted).

161

• •

9 8

S R R 9 8 S e •s—S- M 8 3-

8 9 B 5 R a «

Figure 73 Graphs demonstratuig how a series of lER filters are unable to
accurately model the UAF. (x-axis unrestricted).

162

7.2. The Fault Isolation Filters.

7.2.1. Project Objectives.

With respea to the fault detection filters, the main project objectives were that records of
currently known faults could be used to train a series of isolation filters whilst at the same time
the system should be able to detea faults upon which it bad not been a priori aware of.

7.2.1.1. Training The Filters.

A large number of faults able to occur in any system can be identified and simulated a priori to
the actual running of the system in a production capacity. The FDI system developed here is
designed to take advantage of this knowledge by utilising the residual signals generated for
each particular fault in the training of individual MLPs to recognise the fault. These residual
signals are utilised in conjimction with additional knowledge as to when the fault is most
evident in the signals to allow the MLP to accurately isolate the fault

By u-aining an individual MLP to recognise an individual fault, the system is incremental in
nature. This means that the FDI system can be put into use with a limited number of isolation
filters - perhaps for the most serious or regularly occurring faults - with additional ones being
added subsequently without the need, in the main, for retraining the others.

Furthermore, it should be possible to train the isolation fdters to be as detailed as necessary.
For example, two of the candidate faults for this research are associated with the flow of
ammonia through the UAF. It may be that for groupings of faults such as these, a single filter
wiU suffice - in this case indicating a problem has been encounto^ with the ammonia flow - or
individual filters can be built to provide more detailed information - in this case that liquid
anmionia hand valve is closed or that the camflex valve is disconneaed.

7.2.1.2. Previously Unencountered Faults.

The primary purpose of the model is to dififCTentiate between normal and abnormal process
operation, and as such can be considered a first pass filter in detecting faults. The isolation
filters, on the oth^ hand, are primarily concaned with recognising their specific fault in the
residual signal calculated as the difference between the model and the UAF. Once a smes of
fdters have been o-ained to recognise individual faults and are established in the FDI system, a
fault which was previously unknown may be encountered, and as a result no filter will have
been designed to isolate i t

163

It is still necessary to detea such a fault, however, and because it will - presumably - cause the
UAF to behave in an abnormal manner, it will cause the model's outputs to deviate from the
freezers and will thus be detected. Accurate isolation will not occur in the absence of a
dedicated filter (established filters may signal they recognise the fault), but it should now be
possible to train an additional filter to isolate this fault which can be added to the bank of
established filters without the need to retrain them.

Retraining of established filters may on occasion be necessary, howeva-. if a new filter is added
whose associated fault signature is similar to that of an established filter's fault. Figure 6.6
demonstrates how the training sets for the fault detection filters are split into two categories:
records which reflea the particular fault to be isolated, and records which do not. The latter is
subdivided into groups, consisting of normal records and records which reflea other faults
which are not to be isolated by the filter being trained. This recognises the fact that an
individual fault isolation filter should not be differentiating between normal and abnormal runs
- this is the purpose of the model - but should be identifying a particular fault whilst paying no
heed to other faults. However, i f a spedfic filter (Filter A) is trained to recognise a specific
fault's (Fault a) residual signal, it will have had records of other faults used in establishing that
a is not present. Once A is established and opiating in the FDI system, it may be that a
previously unencountered fault (Fault x) is recognised, and offline an additional filter (Filter X)
trained to recognise it. The training set for X will have records of a as being indicative that x is
not present, but because fault ;c was unknown diuing the training of filter A, it will not have
had records included in its training seL A problem could arise if the residual generated by x
is similar to that generated by a. It is likely that X will be able to distinguish between a and x
as it will have be^ trained using records from both, but A may genoate a false alarm each
time X is present, mistaking it for a. In such a situation, it will be necessary to retrain A using
details of A: in the training seL

7.2.2. The Effectiveness Of The FDL

The FDI system developed hoe is designed to be an advancement on that which is currently in
existence on the UAF without the need for additional hardware. By providing isolation
informatioa it can immediately be seen to be supmor as presently the UAF enters a holding
condition i f a problem is encountCTed. Further impnovonent the ANN based FDI system
affords can be gauged in two ways:

• Is it able to detect faults which the current system is unaware of?

• For faults which the current system does respond to, is it able to detea them soona?

164

The former is obviously important, and can be demonstrated by means of the barrel pressure
transducer fault. Here, the current system is unable to detect the fault whereas the ANN based
system can typically detect it within a minute of the UAF starting a production run.

Exterior

Lip Seal

Interior
This fault affects the quality of the
ice-cream produced, whereas otho-
potential faults - such as a poor lip
seal (figure 7.4) allowing ice-cream
mix to escape fix)m the barrel - will
result in the wasting of raw
materials and the potential hazard of

Figure 7.4 Cross section of the UAF barrel showing a Up seal ^^^^ ice-cream being present on the
factory floor. Such prohlons can be
minimised by the rapid isolation of

which encircles the dasher spindle and is designed to grip tighter factory floor. Such prohltans can be
as the ratio of pressure pj to pp mcreases ^

the fault

The importance of the second of the two classes can be demonstrated by considering the effects
of failing to open the liquid ammonia hand valve. Once the evaporation pressure needs to be
reduced, the sensor reading will already be low due to the valve being closed. This means that
stage 4 of the UAF startup should end quickly and stage 5 commence. As the flow of ammonia
is prevented, refrigeration will not occur in the freezer, and the load on the motor will not
match its set point. The control system will enter an iterative loop during which time the
motorload condition will be checked seva^ times. Ai to a period of some fifteen minutes, the
freezer will soimd an alarm and enter a holding conditioiL

From a production viewpoint, this condition results in the fifteen minutes loss of production
whilst die fiieezer is in its control loop plus the time spent by the operator in ascmaining what
is at fault following the freezers alarm. Obviously, a competent operator may be on hand
during the control system loop, recognise thoe is a problem with the startup and perform a
services check diuing which time he may notice that the liquid ammonia valve is closed. Hie
fault can then be rectified, and the startup continue normally. This presupposes that the
operator will be available for each piece of machinery on the factory floor - which of course he
may not. An automated FDI system such as the ANN based system - being able to detect the
fault long before the critical point where the holding condition is entered - will be able to aim
the opo-ator in order to have die fault rectified.

In the case of the liquid ammonia hand valve fault, detection and isolation typically occurs OIK
or two sampling points following the ammonia evaporation pressure check which signals the

end of stage 4. I f one therefore allows ten seconds for the fault to be detected subsequent to

165

this check, and 1 minute for the operator to respond and rectify the problem, production will be
postponed by 70 seconds. A comparison is shown in figure 7.5.

Normal Operation Production

5 6 7 8
Thne (mfnotcs)

17 18 19 20

Liquid NH3 Valve Fault (current system)
Stage S fBpidly succeeds
Stage 4.

UAF detects fault
and entera a hold
condition.

v^^<^-<^ Stage I.

ff-'i'Wm Stage 2.

Stages.

Stage 4.

Stages.

Stage 6.
(Production).

5 6 7 8
Tfane (mlnntcs)

Liquid NH3 Valve Fault (ANN based FDI system)
FDT system detects and
isolates fault Operator opens vaKe

and rectifies fnult.

5 6 7 8
Time (minutes)

^ i i
17 18 19 20

Production im^egirMj

Figure 7.5 Comparison of a UAF startup with a liquid ammonia hand valve fault. In the current system, the
freezer enters a holding condition; with the ANN based PDI system, production is postponed due to accurate fault
isolation information. Note: all times are approximate.

For the faults chosen as candidates for demonstrating the effectiveness of the FDI system, the
barrel pressure transduca* fault represents a class of fault which cannot be detected by the
currendy employed fault detection method, but can by the daived ANN based system. The
two anmionia valve faults cause the UAF to enter a holding condition and are therefore
delected by the current system. TVpically, for the camflex valve fault a fault is signalled by the
ANN based FDI system some four minutes before the fireezer halts startup, and for the liquid
ammonia hand valve some fiiteen minutes.

With the latter two faults, the current system affords only the detection of the fault The time
taken for fault isolation is dependam upon the expoience of the operator in knowing the range
of conditions which can result in the UAF halting startup, and the speed with which he or she
can investigate each one to determine which is currently in effect

7.2.3. The Accuracy Of The FDL

With an automated FDI system, accuracy is of great importance. This accuracy can be
measured in two ways:

166

• The ability of the FDI system to correcdy detect and isolate each fault that occurs in
the dynamic system, i.e. it should have a high hit rate and a low miss rate.

• The ability of the FDI system to determine whoi the dynamic systems behaviour is
normal and not report a fault, i.e. it should have a low false alarm rate.

The first of these is necessary i f faults are to be rectified to allow a normal opo'ating cycle,
whilst the second engenders confidence in the FDI system. If the FDI system persistendy flags
faults which are not present, a genuine alarm may result in no action being taken - the
assumption on the part of die operator being that it is another false alarm.

Normal Camflex Valve Barrel Pressure Liquid NH3 Hand
Transducer Valve

Name • X Name X Name • X Name X

10-7aJog • 3-12a Jog • 16-9aJag • 17-3iiog • / bptc
14-7aJog / excd 3-12bJog • 16-9b.log • 17-3jJog •
24-7a.log • 3-12cJog • 16-9cJog • 17-3Uog •
24-7bJog • ll-9a.log • 16-9dJog • 18-3g.log •
24-7c.log • ll-9bJog • 10-3aJog • 18-3h.log •
24-7d.log • ll-9c.log • 10-3cJog • 18-3iJog •
24-7e.log • ll-9d.Iog • 10-3d.log • 7-4e.log •
24-7fJog • ll-9eJog • 10-3e.log • 74fJog •
24-7g.log 17-3aJog • 10-3f.log • 7-4gJog •
24-7h.log • 17-3cJog • 10-3g.log • 7-4h.log •
li-9aJog • 17-3dJog • 10-3h.log • 7-4iJog •
ll-9bJog • 17-3eJog • 10-3iJpg • 74jJog
ll-9c.log • 17-3fJog • MgJog 7^kJog •
ll-9d.log • 17-3g.log • 7-4a.log • 8-4bJQg •
ll-9e.log • 17-3h.log • lAbXog • S^kJog •
18-3b.log • 8-4dJog 7-4c.log • S^jJog •
18-3c.lpg • 8-4fJog •
18-3d.log • 8-4gJog •
18-3eJog • 8-4h.log •
18-3f.log • 8-4i.log •
31-3a.log • 8-4j.Iog •
31-3b.log •
1-4a log •
l-4b.log •
l-4c.lQg •
l-4d.lQg
l-4e.log
7-4dJog fbptc
8-4a.log •
8-4e.log •
Table 7.1 A demonstration of how the FDI system performed for normal system operation and each of the
three candidate faults.

Table 7.1 demonstrates the accuracy of the FDI system for normal fine^er opo^on and each

of the three candidate faults in turn in die following way. For each situation the first column

lists the .log fdename (the table represents all the data available to the project).

167

The second column (v^) indicates whether or not the FDI system correctly ascertained the state
of the freezer. For normal system operation, a indicates no fault isolation filters were
activated and that the model outputs were reliably close to the actual UAF outputs, wh -̂eas a
X indicates that the FDI system bdieved a fault was present eitho- because an isolation filter
was activated or because the model outputs deviated from the plant outputs significantly. This
deviation was calculated in the manna- of the generalisation oror of the MLP Cascades
performance being the Euclidean distance of the estimated outputs to actual outputs summed
throughout the operating cycle. If an arbitrary threshold value of 10 was exceeded, the FDI
system could be said to have detected a fault. In terms of the above table this would indicate a
false alarm, but in a real opo'ating simation this could indicate the presence of a hitherto
unknown fault and would warrant further investigatioa For the isolation filters, a ^ indicates
that the correct filter has been activated and the fault has been conecUy isolated whoeas a «
indicates that the filter has not been activated.

The third column (») represents false alarm simations. Recorded in this column are any
instances whae a fault isolation filter unexpeaedly indicated its particular fault was present
when in reality it was not. Mnemonics are used to represent the each isolation filter m tiiis
column, where f_cmfx indicates the camflex valve fault filter, f_bp(c indicates the barrel
pressure transducer fault fdler./_/i/iJv indicates the liquid ammonia hand valve fault filter, and
t excd indicates that for normal operation the threshold value was exceeded.

As can be seen from the cable, for the three candidate faults there is a 100% hit rate. (i.e. when
each fault is present, the correct isolation information is derived). However, three false alarms
are reported for logs 14-7a. 1-^ and 17-3i. the first two of which are for normal runs, the
latter for a liquid anmionia hand valve fault.

For 14-7a the threshold boundary on the signal deviations is exceeded by a value of 3.243; no
isolation filter is niggled. It is mteresting to note that this particular log file was one of the
first to be gena-ated for tiiis research - some months before tiie majority of the rest - and the
difference between plant and model outputs may be due to either:

• Model mismatch due to the dynamics of the UAF altering slightiy between this
operating run being logged and subsequent ones. This could be due to component
degradation over time, or perhaps components being rq)laced in the UAF. i.e.
parameter variations.

• Model mismatch due. p^haps, to a differcm opo^aiing procedure being adopted to that
described in section 3.1.4.

168

• The presence in the UAF of some slight fault equivalent to that of the barrel pressure
transducer fault in that production was not affected except for a possible degradation
in the quality of the ice cream.

With no comparable logs to study in conjunction with 14-7a. it is difficult to ascertain which of
the above is true, although the time scales involved makes the first option the most likely.

The latter two false alarms are concerned with the barrel pressure transducer fault filter firing
when this particular fault is - apparendy - not present Closer investigation of 7-4d reveals that
the conditions described in section 3.2.2.1 for the transduco* fault are present in this log.
indicating that the faulty barrel pressure transducer may have been present in the UAF during
logging. Similarly - although the log clearly demonstrates that a liquid ammonia hand valve
fault was present - 17-3i also displays signs of the faulty transducer being present, most
noticeably the 0.3 bar offset at atmosphoic pressure. The first of tiiiese. thoefore. could
indicate that the logged run has been incorrecdy categorised prior to ML? training, whereas the
latto" is demonstrative of multiple faults in the system.

It is worth noting that, as both 14-7aJog and 7-4d.log where used in training the MLP
Cascade, the model was re-evaluated without the data contained in these files, although this
provided negligible improvemoit in the model.

7.3. The Combined System.

A numba- of the ANN based FDI systons reviewed in section 6.1 rdy on presenting togged
runs to a classification network as an offline process for categorisation. An important aspea
of tiiis work was that die FDI system should be able to work online and in real-time in order to
detect and isolate faults during production and reduce downtime in the machinery.

7.3.1. Online Real-Time Operation.

TbUAP cm, 1000

Printer

Expert System

OpCiutoD CQDSDIC

The principle adopted to ensure that any system
developed offline would work equivalentiy online
was to ensure that any data gath^ed to train the
model and isolation filters would be available in
exactiy the same format online. Currently die
CRLIOOO control computer intofaces to the UAF
and is designed to provide logged measurements of
several process parameters at (reliably) 5 second

Figure 7.6 RS232/R2485 serial communication intervals, as shown in figure 7 6
links between the UAF. CRLIOOO. and other
devices.

169

These parameters can be transmitted through an RS232 serial port to one of a variety of
componaits. typically an operators console or a printer at present. Prior to the commencement
of this research project, exploratory work had beai conducted by the Unilever Research
Laboratories into interfacing an expert system controller to UAF which again would be
interfaced with the CRLIOOO. The direction taken with this work was. therefore, to develop a
system which would be PC based and would draw its input values from either:

• a .log file generated by the CRLIOOO. if the FDI system was undergoing an ofiQine
training cycle, or

• directly from the CRLIOOO through a serial link if the FDI system was operating

in real-time.

In this way an identical format of values could be used in both testing and training the MLP
networks comprising the FDI system.

As with any real-time system of this nature, it is necessary to ensure that any processing
conducted by the PC can be achieved within the san^)ling time of the CRLIOOO.

A period of time was spent at the Unilevo- Colworth Laboratory to conduct field trials of the
developed software. One of the principle purposes here was to demonstrate that the system
could operate online, and was tested using a number of PCs of varying specifications from
relatively unsophisticated Intel 286 and 386SX based machines through to much faster Intel
486DX based machines. As the FDI system is complaely automated with no human
interaction necessary, the five second sampling time proved ample for the system to function
conecdy - often with much larger networks than those comprising the final MLP Cascade and
filters.

7.4. Future Work.

Although this research has resulted in a viable FDI system based upon neural computing

techniques, a number of issues have arisen which are beyond the scope of this projea to cover.

A number of considerations and ideas for future work are discussed below, both in terms of

extensions to the solution derived here, and with respea to dq)artures from the current scheme.

7.4.1. Extensions To The Current Solution.

This research is intended to be a pilot study to determine wh^her or not. in principle, a neural
network based system can be developed which is capable of detecting and isolating faults in an
industrial process without the need for additional sensory equipment

170

As the system has been demonstrated to work, it is important to consido* certain issues before
the system can be seriously considoed in a live environment

7.4.1.1. Increasing The Number Of Faults.

In order to demonsQ-ate that the neural network based FDI system is capable of detecting and
isolating faults, it was necessary to identify three potential faults and collect data pertaining to
them. It was considered necessary to choose at least three faults as this would allow the system
to distinguish between two completely dissimilar faults and two faults which were similar in
nature, but caused by differeiu events. A number of other factors w ^ considered in choosing
the candidate faults; both in ord^ to test other capabilities of the FDI system, as well as
practical considerations.

The practical consid^ations which were taken into account included - specific to the UAF - the
ability of the FDI system to isolate faults related to the flow of ammonia through the system, as
faults of this nature can be particularly troublesome on the factory floor, and the time and cost
necessary in producing a particular fault in the system. This latter point was important given
the limited resources available to the project

Should it prove desirable to pursue Uiis research further, it would be beneficial to extend the
number of faults which the FDI system is required to recognise. The important consideration
here would be the isolation filters abihty to distinguish between faults whose characteristics are
increasingly similar to one another. The two similar faults considered in this research concon
valves on titie ammonia line but which are on diffoem sides of the barrel, i.e. the liquid
ammonia hand valve is situated before die ammonia has entoed the barrel, whereas the
camflex valve is located on the outiet conduit. Figure 3.6 shows several valves which the
ammonia supply must pass through and it would be useful to determine wheth^ an isolation
fdter could determine the exact valve which was at fault, or whether it would only be possible
to isolate the fault to the ammonia inlet and oudet

A problem with increasing the numba of faults is that for each fault a number of fieezer nms
wiD be necessary to collea data upon which to train an isolation filter. For catain faults, diis
could prove expensive as gena-ating the fault data may result m wastage of raw materials. An
example of this would be die lip seal fault considered in section 7.2.2. Due to die nature of the
fault it would be necessary to allow a quantity of ice aeam mix to escape the barrel whilst the
CRLIOOO logged the various freezo" parameters. Once sufficient data was gathered, the UAF -
and surrounding area - would need to be cleaned. During the data collection cycle, this
procedure would need to be conducted several times, proving cosUy in both raw matmals and
time, before a sufficient number of datalogs were generated to team an isolation fUto".

171

7.4.1.2. Increasing The Scope Of The F D L

Currentiy the following types of faults have been investigated as part of tiiis research:

• Faults which are dissimilar to one another.

• Faults which are similar to one anotho".

• Actuator faults.

• Sensor faults.

• Faults which cause significant deviations from the normal operation of the system,
resulting in shutdowa

• Faults which manifest themsdves as small offsets in the systems signals thereby
allowing the system to operate, but with a reduced quality in the product

An issue that has not been specifically addressed is that of multiple faults, where a series of
faults occur simultaneously within the system. A competem FDI system should be able to
reliably isolate each fault, providing the operator with an accurate list of process components
which need attentioa

Although this system appears to have provided one instance where this appears to be the case
(see section 7.2.3), it would be necessary to investigate its capabilities fiirther as it would be
unlikely that during the course of an industrial processes life cycle, faults would present
themselves individually.

7.4.1.3. Testing The Model Using Other Product Formulations.

In ord^ to allow the model to concentrate on learning the dynamics of the UAF. it was
necessary to maintain consistency between a number of external factors. Of these factors, the
product formulation is likely to change from time to time, and it would be necessary to
determine how a change in formulation would be likely to affect the fi:eezer dynamics. At
worst, it may prove necessary to develop a sq)arate freezo- model for each formulation; the
correct one being seleaed prior to startup.

7.4.2. Alternative Solutions.

Currentiy. the study of the fault detection problem has centred around the use of the MLP
Network trained as an explicit input-output model Whilst such an approach is most readily
workable w h ^ dealing with single-input single-output (SISO) time-invariant processes, the
size of network needed to model more complex multi-input multi-ouq)ut (MIMO) systems
becomes considerable.

172

In additioa for real industrial processes - such as the Unilever Automated Freezer - which can
often prove to be time-varying with a staged startup procedure, it is unlikely that a single MLP
would be able to successfully model the process for all fault free conditions. Hiis seriously
questions the robustness of such an approach, and whilst the problem has be^ solved in this
research by using a number of cascaded MLPs in the model, an alternative would be to move
away fi-om a model reference system.

7.4.2.1. Non-model Based FDI .

In a non-model based FDI architecture, the need for an exphat model is e}\m\nntM\ as such a
system should be able to devdop an implicit model by learning the behaviour of the process
under normal operating conditions. Once such a r^resentation was formed, data obtained
from the plant would be classified as representing either a normal or abnormal run. the latter
indicating a fault. An extension to the architecture would take the abnormal records and
classify them providing fault isolation information, as detailed in figure 7.7.

Industrial
Process

Outputs

Fault Detection
Module

ActivBtinn
Signal

Fault Isolation
Module

Lsnlslinn
Signal

Figure 7.7 A non-model based architecture for fault detection and isolation.

Here, the fault detection module could comprise of an MLP network trained to issue a positive
output - thereby activating the fault isolation module - if the fiieezer run is abnormal. The
isolation module could consist of several MLP filters in much the same manno* as in die
derived solution, each of which is trained to recognise a specific fault

However, as the detection module is not being taught to rq}resent an explicit input-output
model, and as a danger exists that what may appear to the opo-ator to be a normal datalog may
contain a hitiierto undetected fault, it may prove beneficial to use a class of unsupervised ANN
to detomine whether the run is normal or not. Two such ANN architectures are the Kohonen
self-organising feature map. and the continuous adaptive resonance theory (ART2) network.

173

Self-organising Feature Maps.

Feature Maps (FMs) possess the ability to discover patterns in the input data for themselves,
and cluster this data into groups, i.e. they will self-organise themselves. FMs make use of the
principle of competitive learning (whae each processing elonent possesses self-exciting
recurrent connections and neighbour-inhibiting connections) to det^mine a 'winning'
processing element. This element is most excited by the input vector.

If a processing dement / receives many inputs xji from other processing elements, these inputs
and their associated weights can be described by tiie row vectors X,- and Wi respectively thus

The value XjWi^ can be thought of as a measure of distance between the input and weight
veaor. The winner is the processing dement whose weight vector is dosest to the input
Learning is achieved by updating each wdght in the vector by the value

AW. = a(X.-W.) (1.2)

where a is a learning coeffident. so that the weight veaor assodated with the winning

processing dement will be moved doser to the input veaor [4].

Similarly, FMs could be incorporated into the isolation module to allow faults of similar
dasses to duster together. An alternative to using the unsupervised rule on such networks is to
use a supervised learning vector quantization rule [3].

Adaptive Resonance Theory

Adaptive Resonance Iheory (ART) is an unsupervised learning rule devdoped by Carpenter
and Grossberg [1]. ART networks are able to self-organise tiiemsdves in response to a
sequence of input-patterns, and dassify these pattons by distinguishing between features in the
input. By using both long-term memory (storage for all dasses of pattens so far learnt) and
short-term memory (storage for the current input pattern, the dassification of that pattern and
the e?q)ected pattern) the network is able to classify each input pattern with respect to what is
afready hdd in long term monory, or i f the input panem is sufridendy differem to any yet
learnt, creates a new dass of pattern with the input veaor as its first member. ART uses
competitive learning to choose a wiiming dass of pattern from long term memory.

Once chosen, the significant features of the input pattern are added to long term monory

through either a process of slow learning, where the method of allowing the significant features

to seep into the weight matrix is refored to as resonance, or fast learning where the pattern is

encoded directly onto the weight matrix which is useful for new dasses of pattou

174

The ARTl network was used for encoding binary patterns, whereas ART2 [2] extended this
for continuous values.

An advantage that the ART networks have over FMs is their ability to incorporate firesh classes
into their composition without the need for retraining. Howevo* both forms of unsupervised
network could be used to implement an FDI system such as in figure 7.7. Two separate
networks would be needed; one trained offline to distinguish between normal and abnormal
operating records, whilst the other would classify abnormal records into fault categories.
Whilst operating online, should the detection module fail to recognise an input patton as bdng
normal process operation, a failure could be signalled and the record passed to the isolation
module for classification. Should this module fail to classify the record, an unknown fault
could be considered to have been encounto^ which could either be incorporated into the
module if based upon ART networks, or stored sq>arately for the later retraining of the FM.

7.4.2.2. An Integrated FDI/Control System.

As a final comment upon possible future directions for research into this area, it is worth
considering the potential for integrating the FDI system with a controllo- based upon neural
computing techniques. Neural Controllers are prevalent in the literature, a numbo- of which
[5] use model-reference systems. Here, two models are developed: one akin to the model used
in this research in order to determine how far actual plant outputs are off desired outputs; the
other an inverse model used to determine how much plant inputs need to be adjusted in order to
rectify any aberration in outputs.

Here, research would need to be conducted in how best to build this inverse model as well as
investigating the issues raised in section 7.1.2 pertaining to using a neural model in a control
system and how conflicts between the controller and the FDI system could be resolved.

References For Chapter 7.

[1] G A Carpenter & S Grossberg: A Massively Parallel Architecture For A Self-
Organising Neural Pattern Recognition Machine. Computer Vision, Graphics & image
Processing. Vol. 37. pp 54-115. 1987.

[2] G A Carpenter & S Grossberg: ART 2: Self-Organisation Of Stable Category
Recognition Codes For Analog Input Pattam. Applied Optics. Vol 26, No. 3. pp
4919-4930. December 1987.

[3] T Kohonen: Improved Versions Of Learning Vector Quantization. Neural Networks.
Vol. 1. Supplement 1. p. 303.1988.

[4] T Kohonen: The Self-Organising Map. Proceedings Of The IEEE. VoL 78, No. 9. pp
1464-1480. Septembo-1990.

175

[5] Q H Wu, B W Hogg & G W Irwin: A Neural Network Regulator For
Turbogenerators. IEEE Transactions On Neural Networks. VoL 3. No. 1. January
1992.

176

Chapter 8.

Concluding Remarks,

Historically, research into the many properties and features of artificial neural networks has
been something of a roller coaster ride: peiods spent in enthusiastic pursuit of the universal
machine, followed by virtual inactivity as the limitations of known models became evident.
However, the recent upsurge in interest from a wide variety of disciplines (psychology,
neurosdenoe. mathematics and computing science) has gained a momemum which j^pears
unstoppable. Indeed, as research activity into traditional networks such as the ML? nears
exhaustion, one need not look far to find the next generation of more biologically plausible
networks, whose dynamics are based upon more contemporary studies of the brain, which are
likely to occupy researchers for many years to come.

The role of the artificial neural network in engineering applications has similariy increased in
recent years, yet the same practice which has led to disillusionment in symbolic AI systems is
often prevalent in ANN research. This is. in the main, the use of the technology to solve
simplistic - often artificially derived - problems, with a foomote to the e£fea that similar
success is likely should the solution be scaled up for application in a real-life situation. The
flaw in this reasoning can be readily demonstrated by considaing the problem of modelling an
industrial process such as the Unilevo- Automated Freezer. The principle of building an MLP
model of a dynamic system was initially studied within the confmes of simulated mathematical
systems of both linear and nonlinear design. Several aspects pertinent to a model-based FDI
system (modelling parameter variations, detecting aberrations in die residual signals and the
like) wCTe investigated, and the theory - appearing sound - prepared for transfer to a practical
application. In retrospect it can be seen that it is at this point - wh^e a large proportion of
published literature considers the principle proven and the problem solved - that this work
seriously begins. Subsequent work has concentrated on designing a solution which would cope
with the piecewise time-invariant dynamics that the system exhibited, and which are likely to be
exhibited by any industrial process which employs a phased startup regime.

177

This research has resulted in the design of an FDI system which is as generic as the MLP upon
which it is based, but which has been tested and proven upon a real-life industrial process -
outperforming the existing fault detection system without the need for additional sensory
equipment The main aspect of the works originality is the MLP Cascade and its associated
switching mechanism, which has the ability to model time-varying systons such as the UAF,
although - naturally - the ultimate test of the designs imiversality would come with the porting
of the architecture to otho* applications. However, as the design does not rely upon e;q)lidt
detailed knowledge of the dynamic system, this portability should not be a significant problem;
the scaling up of the work to a live testbed having been achieved.

As a fmal word, some thought can be given to the practicality of the solution. As has already
been mentioned - for the UAF - the FDI system does not rely upon additional sensors bdng
installed and can therefore be considered an inexpensive solution. Howeva-. a problem
encountered in this research involved the collecdon of data to train the various MLPs
comprising the solution. In order for the freezer to behave normally, one needs to operate it as
though a production run were being initiated, which means using the raw mataials which
comprise the ice-creanL Therefore logging data of a normal run is instantly expensive -
especially if the freezCT is be'mg operated solely for the gathering of data for the FDI system
with none of the produced ice-cream being used. The problem is intensified y/hen collecting
fault data. Again the UAF needs to be operated as though ice-cream were to be produced, but
with a strategic valve closed or a substandard component used in the process. In this simadon.
it is unlikely that the ice-cream can be used in postproduction as it will imdoubtedly be
substandard. So the problem involves the cost of gathoing the data; a cost which could prove
prohibitive should the intention be to gather the data exclusively for training the MLPs.

In Unileva's case - who-e numa-ous fireezo" units exist worldwide - a practical solution would
be to initiate a programme whereby logged data was gathered as a matto- of routine: each time
a particular piece of machinery was started, values of process parameters could be logged and
forwarded to a central data storage facility. This would not only result in a larger quantity of
data being captured than would be possible running one fiieezer repeatedly, but the data would
be more natural, less artificial. For this research, data was gathered finom one machine by a
continual process of cleaning the UAF, starting it running, closing it down several minutes into
production and allowing it to settle to as close to initial conditions as possible before starting
again. It was thus possible to gatho* datalogs for as many as ten startups in one day.
Howevo". on the factory floor a fieezer is typically started once a day, allowed to produce its
quantity of ice-cream before bdng shutdown, cleaned and left idle ovemigbL If data could be
gathered from ten factory floor machinRS as a matter of routine, the same quantity of data
would be capmred. it would be more typical of UAF startup and die cost would be negligible.

178

Obviously, gathering data on fault conditions could then prove problematic - although should
any UAF on the factory floor develop a fault, so long as the paramet^ being logged, the
information necessary to train the isolation filters should be caught.

In summary, the main cost of implemming such a system would be incurred in the gathaing
of normal and abnormal records. This cost can, howevo*, be significantly reduced if it is
possible to gather the information in advance of the building of the FDI system during the
normal operation of the plant

To conclude, then, this work has led to the development of an artificial neural n^work based
fault detection and isolation system which can adapt itself to a mechanical processes. It has
been tested on a specific piece of industrial machinery which possesses a class of time-varying
dynamics typical of systems with a phased startup regime.

179

Appendix 1.

Glossary

The purpose of this appendix is to provide a glossary of technical tmns concerning aspects of
control and artificial neural network theory, as well as tominology specific to the Unilever
Automated Freezer used throughout this thesis.

Activation Function

Actuator

Al

Alarm

Ammonia (NH3)

ANN

Ar-tificial Intelligence

ArtiTicial Neural Network

Nonlinear transfer function between PE inputs and outputs,
often sigmoidal in shape.

A component of a plant that initiates a change, for example
the means to open and close a valve.

See artificial intelligence.

Audible and visual indication on the UAF showing thoe is a
problem with the freezer.

Colourless gas or liquid used as a refrigerant

See artificial neural network.

The use of technology to devdop automated devices to mimic
human reasoning processes.

A class of self organising system based upon the mechanisms
of the braiiL

Backpropagation A sup^ised training algorithm for fiilly connected
feedforward ANNs which moves actual network ou^uts
toward desired outputs in a gradient descent

180

Bar

Barrel

Measure of pressure.

Cylinda* in the UAF in which ice cream mix is frozen. Air
and mixture enter the rear of the barrel where it is cooled and
frozen by means of liquid ammonia. A dasher rotates inside
the barrel removing ice from the interior surface. Ice oeam is
extruded from the front of the barrel

Blade

Camflex

Chromosome

Control Loop

CRLIOOO

Crossover

Dasher

Dump Valve

Dynamic System

See scraper blade.

Type of suction control valve used with ammonia systsns.
The camflex valve is used to alter the rate and temperature at
which the ammonia evaporates, and thus controls the cooling
of the ice cream.

An individual potential solution handled by a genetic
algorithm.

A mechanism by which a controlled condition is measured and
compared with a desired value - or set point. Should a
difference between the two exist, the final part of the control
loop will attempt to limit or correct the deviation.

Type of process computer manufactured by Control &
Readout Ltd (now Control Techniques) used to control and
run the UAF. A keypad or keyboard can be used to set the
computer.

A genetic operator which combines two chromosomes.

An agitator fitted with scraper blades that rotates inside the
barrel of the UAF at about 240 rpm and removes ice from the
interior surface of the barrel. Several varieties of dasher exist
- each of which occupies a different volume of the barrel

Valve used to return ammonia to the ammonia plant following
shutdown of the UAF.

A system which contains some form of intonal memory such
that its current state dq)ends to some extent upon its previous
state.

181

Elitist Strategy

Epoch

Euclidean Distance

Evaporation Pressure

Extrusion Temperature

Fault Correction

Fault Detection

Fault Diagnosis

Fault Estimation

Fault Isolation

FDI

Type of genetic algorithm which always keeps the best
solution derived so far in the current population

Usually refo-s to one complete presentation of the training
data to the ANN.

Straight Une distance between two points in multidimensional
space.

The pressure at which the ammonia boils off in the UAF. A
high ammonia evaporation pressure implies a high ammonia
temperature and therefore a low cooling rate.

The temperature at which Ice oeam leaves the barrel of the
UAF.

The process of rectifying a fault

The process of determining that a system is at fault

The process of determining why a fault has occurred.

The process of determining the extent to which the fault has
affected a system.

The process of determining the source of a fault

Fault Detection and Isolation.

Finite Impulse Response System A dynamic system whose current state is dependant upon a
fmile number of prior states.

FIR

Fitness

Genetic Algorithm

Genetic Operators

Hand Valve

See finite impulse response system.

A measure of how good a solution a chromosome provides in
a genetic algorithm.

An optimisation technique based upon the principle of natural
selection.

Means of manipulating current monbers of the current
population (chromosomes) in a genetic algorithm,

TTie manually operated valve on the ammonia supply line.

182

Hold

Hopfield Network

Ice cream Pump

IIR

Temporary stoppage of the UAF. Restarting from a hold
condition is relatively straightforward.

Specific ANN architecture which uses an unsupervised
learning rule.

Used to pump ice aeam from the front of the barrel of the
UAF. The speed of the pump is used in controlling the barrel
pressure.

See infinite impulse response system.

Infmite Impulse Response System A dynamic system whose current state is dependant upon
all previous states through time to the initial conditions of the
system.

Knowledge Based System An artificial intelligence tool which mimics higher level
human reasoning.

Kohonen Network

Mix

Mix Pump

Specific ANN architecture which uses an unsupervised
learning rule.

Ice CTeam prior to fi-eezing in the UAF.

Used to pump hquid mix into the UAF barrel at a controlled
flow rate.

MLP

Model Based

Motorload

Multilayer Perceptron

Mutation

See multilayer perceptron.

A control or FDI system that relies upon an analytical model
of the system.

The measure of power needed to rotate the dasher within the
barrel of the UAF. This is related to the viscosity of tiie ice
cream in the barrel. A high motorload implies a high
viscosity.

Specific ANN architecture which is a fiilly connected
feedforward network often employing the baclqiropagation
algorithm to train it

A genetic operator which changes a small part of a single
chromosome.

183

NH3

Non-model Based

Overrun

PE

Population

Pressure Transducer

Processing Element

Quick Shut on* Valve

Residual Signal

Scraper Blade

Selection

Sensor

Set Point

Static System

See wnmonia.

A control or FDI system that does not rely upon an analytical
model of the system.

The measure of the volume of air within the ice cream. The
overrun is a measure of the ratio of the amount of air and
liquid mix used to make ice cream. An overrun of 100%
means that there is an equal volume of air and mix.

See processing element.

A collection of chromosomes on which genetic op -̂ators work
in a genetic algorithm

A device for detecting pressure, for example the barrel
pressure on the UAF.

Individual unit within a artificial neural network analogous to
a biological neurone.

Valve on the UAF which is used to halt freezing by removing
liquid ammonia from the evaporation cylinder.

The difference between the actual process signals and those
calculated by an explicit model in a model based system

A razor sharp blade attached to the dasher to remove ice
crystals from the int^or surface of the barrel

A m^hod of deciding which members of the current
population of a genetic algorithm proceed into the next
geno-ation, such as a simulated roulette wheel

Device for measuring some attribute of a plant, for exan ĵle a
pressure, temperature or flow rate. Signals from sensors can
be used to determine control decisions.

The desired values of certain process parametos that are to
be controlled.

A system which no intanal monory such that its current state
is independent of its previous state.

184

Supervised Learning

Symptom

Time Invariant System

Time Varying System

UAF

ANN learning paradigm which uses knowledge of the required
solution to the problem domain to influence outputs.

An mdication - usually in the sensor measurements - that a
fault has occurred in a system.

A dynamic system whose underlying functional dqjendenoe
remains constant with respect to time.

A dynamic system whose undo'lying functional dq>endaioe
varies with respect to time.

See Unilever Automated Freezer.

Unilever Automated Freezer A type of freezer developed by Unilever for the production of

icecream.

Unsupervised Learning

Viscosity

ANN learning paradigm which does not use knowledge of the
required solution to the problem domain to influence outputs.

A measure of the stiffness of - for example - ice cream.

185

Appendix 2.

C Library Routines,

The purpose of this appendix is provide a functional specification for the multilayer perceptron
code developed for this research. Although this appendix is by no means an exhaustive list of
all the code written to devdop the model based FDI solution, it provides the main building
blocks. It has been written with usabihty in mind, and can be readily utilised to encode an
ML? for application in many problem domains. A brief demonstration of encoding an ML? to
solve the XOR problem is provided.

In building the C library routines to implement the backpropagation training algorithm for the
MLP network, three major objectives have been borne in mind. These are:

(a) The code should be fast. As tiie MLP will often take a large number of
training epochs to learn suffidemly well, the need for speed in processing is
essential as inefficiendes in the code will greafly increase experimental time.
To this end pointers have beai extensively used to access monory during the
implementation of the algorithm equations to avoid time-consuming
duplication of data.

(b) The code should be compaa, and the MLP storage itself should be as littie as
possible. MLP networks are voy monory intensive in their storage
requirements. Large arrays of floating poim numbm are necessary to store
processing element output values, thresholds, delta thresholds, weight values
and delta weights. A common m^od of mxxiing MLP networks is by use of
tiiree dimensional arrays for Uie wdghts so that w[i]|j][k] refCTs to the value of
die weight connecting PE i m laya- j to PE k in laya- j-1. A drawback witii
this approach is that at compilation time the value of the i and k dimensions
must be defined to be large enough to store the layer with the most PEs in it
This means other layCTS with fewer PEs will stiU have this same large amount
of memory assigned, though a portion of it will be unused.

186

The method adopted in this code to assign a dynamic one dimensional array
for the entire weight matrix with a tmmber of additional overheads necessary
to determine where each weight is located within the MLP.

(c) The code should be flexible. All m^ory allocation for the MLP is poformed
at execution time, ensuring that the only constraints on the size of the MLP are
the memoiy capacity of the PC and Uie memory model used during
compilation In additioa all data pertaining to the MLP is stored in a
structure, meaning that several MLPs can be defined within one piece of code
with the minimum of confusion as to which data belongs to which network.

The code allows for the saving and loading of MLPs to disk. A stored MLP has the following
header information:

MLPName A string denoting the name of the MLP.

NoOfLayo^ An integer denoting the number of layers in the MLP.

LeamCoef MtmCoef Two doubles denoting the learning and momentum coefficients.

L I L2 .. Ln A series of integers denoting the number ofPEs in each layer.

There then follows a series of lines (one for each PE in the network) with the format:

t ThresholdValue TF Beta X->(Y. Z)

where t denotes the line represents a threshold value. ThresholdValue is a double representing
the value of the threshold. TF is a short r^resentiing the transfo' function. Beta is a double
representing the steq)ness of the transfo" function. X is an integer representing the absolute
position of the PE. and Y and 2 are local position and layer infonnatioa A series of lines (one
for each weight in the network) then follows with the format:

w ActiveFlag WeightValue X->(A, B)

where w denotes the line represents a weight value. ActiveFlag is a short indicating whether the
weight is active or not (1 = active, 0 = not active), WeightValue is a double representing die
value of the weight. X is an intego- representing the absolute position of the weight, and A and
B are information regarding which two PEs the weight connects.

If the fUe on disk is an MLP initialisation file, the function readmlpO will create an MLP of die
configuration specified and initialise it In order to construct an initialisation file, the
equivalent heads' mformation as above should be included, howevo- instead of the threshold
and weight information, a single line of the following form needs to be included:

187

x TF Beta SetAtOuput

where ;c denotes the file is an initialisation file. TF is a short intego- code for the transfM*
fimction at each processmg elem^t. Beta is a double representing the p (steepness) coefficient
of the transfer function, and SetAtOutput is a short integer set to 1 if the transfer function
specified by is to be applied at the output PEs. and set to 0 if a linear activation fimction is
to be applied.

In all cases, the following codes are used to represem transfer functions:

0: linear
1: Standard Sigmoid
2: Hyperbolic Tangent
3: Sine

The following sections provide a functional specification for the C library routines.

2.1. Structures

The following three structures are used in the composition of the MLP structure, and it is not
usually necessary to define variables in toms of them directiy.

struct pe Structure for each processing element

Fidds: pos Description: Integer denoting die local position of a PE within a
layer.

layo" Integer denoting the lay^ the PE is ia
threshold Double representing the threshold (or bias) of the PE.
delta Double representing the change necessary to the

threshold.
output Double representing the output value of the PE.
error Double rq)resenting the local part of the overall error

to which this PE is responsible.
tf Short representing which transfer (activation)

function is currentiy active for the PE.
beta Double rq)resenting what the P (steepness) coefficient

is for tills PE.

struct w Structure for each weight

Fields: fpe Description: Intego- denoting the absolute position of the PE the
coimection is from.

tpe Intego- denoting the absolute position of the PE the
connection is to.

value Double rq)resenting the value of the weight
delta Double representing the change necessary in the

weight

188

active Short denoting whether the weight is active or not

struct bp Structure to improve the speed of the backpropagation algorithm by holding

all values sequentially in an order to facilitate processing.

Fidds: err Description: Pointer to the double hdd in the PE structure
representing local error,

w Pomter to the double held in the weight structure
rq)resentLng the weight value,

act Pointer to the short held in the weight structure
rq)resenting whether the weight is active or not.

The following typedef defines the MLP, and a pointo- to a variable of this type needs to
declared in any C code which uses the library functions presented here.

typedef mlp Typedef for the MLP structure.

Fields: idn Description: Charaaer string holding the name of the MLP.
nol Integer rq)resenting the number of layas in the MLP.
nl Pointer to series of nol integers representing the

number of PEs in each layer of the MLP.
XDXpe IntegCT representing the total number of PEs in the

MLP.
totw Integer representing the total numba- of weights in the

MLP.
pe Pointer to a list of PE structures,
w PointCT to a list of weight structures,
bp Pointa- to a hst of backprop data structures.
Ic Double representing the learning coefficient of the

MLP.
m Double representing the momentum coefficiem of the

MLP.

189

2.2. Functions & Procedures For Defining & Running An
MLP.

2.2.1. DEFMLPO

Name: definlp Type Function

General Description

Returns the address of a newly defined MLP. This fimction uses the following functions and
procedures in defining the MLP: calctotpeQ. initpeO» calctotwQ* initwO, mitbpO. randwtQ.
and randthQ.

Argument Type Description

type char * Identifier string for the MLP.

11 im The number of PEs in the input layer.

12 int The number of PEs in the first hidden layer.

B int The number of PEs in the second hidden layer.

14 int The number of PEs in the output layer.

tf short Code for die transfa* fimction: 0 = linear, 1 = standard
sigmoid. 2 = hypa-bolic tangent, 3 = sine.

beta double Steepness of the gradient of the transfer function.

so short Flag to detomine whether the transf^ fimction specified
by tf is appUed to output layo- PEs. A value of 1 sets the
transfer function to tf. a value of 0 sets the transfer
function to the linear function.

Return Value mlp * Pointer to the newly created MLP.

Example

To create an MLP with 3 layo-s consisting of 10 input PEs» 5 PEs in the hidden layo* and 2
output PEs with a standard sigmoid (steepness of 0.5) and a linear transfer fimction at the
output layer:
mlp *MyMLP;

MyMLP = defimlpC'MLPName", 10.5.2.1,0.5,0);

190

2.2.2. CALCTOTPEO

Name: calctotpe Type Function

General Description

Returns the total number of PEs in an MLP. Used by defmlpQ.

Argument Type Description

nl int * Pointer to a list of the PEs in each lay^.

nol int The numbo* of layers.

RetiuTi Value int The total number of PEs in the MLP.

Example
To calculate how many PEs there are in a three layer MLP with structure 10-5-2:
int totpes, *nl, nol = 3;
nl = (int *) malloc(3 * sizeof(int));
*nl = 10; *(nl+l) = 5; *(nl+2) = 2;
totpes = calctotpe(nl, nol);

2.2.3. CALCTOTWO

Name: calctotw Type Function

General Description

Returns the total number of weights in an MLP. Used by defmlpQ.

Argument Type Description

nl int* Poimo" to a list of the PEs in each layer.

nol int The number of laya^.

Return Value int The total number of weights in the MLP.

Example
To calculate how many weights there are in a three layer MLP with structure 10-5-2:
im totpws. *nl, nol = 3;
nl = (int *) malloc(nol • sizeofCint *));
*nl = 10; *(nl+l) = 5; *(nl+2) = 2;

toq?ws = calctotw(nl, nol);

191

2.2.4. INITPEO

Name: initpe Type Procedure

General Description

Takes the uninitialised hst of PEs and gives them their identifying positions, transfer
functions, steepness coeffidents and initialises their threshold values.

Argument Type Description

strua pe * Points- to list of PEs.

nl mt Pointer to a list of PEs in each layer.

nol mt Numbo- of layers.

totpe mt The total number of processing dements.

short Code for the transfer function: 0 = linear, 1 = standard
sigmoid, 2 = hyperbolic tangent. 3 = sine.

beta double Steq)ness of the gradient of the transfer function.

seto short Flag to detoinine whether the transfer function specified
by tf is applied to output layer PEs. A value of 1 sets the
transfo" function to tf, a value of 0 sets the transfer
function to the linear fiinctioa

Return Value N/A

Example

For an example of tiiis procedure, refer to die source code for deftnlpQ. Undo- normal
circumstances, there is no need to direcdy access this procedure.

192

2.2.5. INITWO

Name: initw Type Procedure

General Description

Takes the uninitialised list of weights and gives them their identifying positions* and sets
their active flag to 1..

Argument Type Description

w strua w * PointCT to list of weights.

pe strua pe * Pointer to a list of PEs.

Dl int * Pointer to list of numb^ of PEs in each layer.

totpe int The total number of processing elements.

Return Value N/A

Example

For an example of this procedure, refer to the source code for defmlpQ. Undo* normal
circumstances, there is no need to directly access this procedure.

193

2.2.6. BVITBPO

Name: initbp Type Procedure

Genera] Description

Initialises tiie backpropagation reference list that is used to speed up processing. When the
list of weights and PEs are initialised, they are in an order in the array for fast calculations
during the feedforward cycle. To allow the same speed during backpropagation, an
additional list is constructed which points to the necessary values in an order which is correa
for backpropagation.

Argument Type Description

bp struct bp * Pointer to badq)ropagation reference list

Pe struct pe * Pointer to hst of PEs.

w strua w * PointCT to list of weights.

nl int* Pointer to a list of PEs in each layer.

nol int Number of layers.

totpe int The total number of processing elements.

totwt int The total number of weights in the MLP.

Return Value N/A

Example

For an example of this procedure, refo- to the source code for defmlpQ. Undo* normal
circumstances, there is no need to directiy access this procedure.

194

2.2.7. RANDTHO

Name: randth Type Procedure

General Description

Randomises the threshold values of the PEs in the range ±1 and initialises the deltas to zero.

Argument Type Description

mlp * Pointer to the mlp structure.

Return Value N/A

Example
In order to randomise the thresholds in a predefmed mlp called *MyMLP:
randth(MyMLP);

2.2.8. RANDWTO

Name: randw Type Procedure

General Description

Randomises the weight values of the PEs in the range ±1 and initialises the deltas to zero.

Argument Type Description

mlp mlp * Pointer to the mlp structure.

Return Value N/A

Example

In order to randomise the weights in a predefined mlp called *MyMLP:
randwt(MyMLP);

195

2.2.9. WRANDO

Name: wrand Type PunctioD

General Description

Returns a random floating point numbo* in the range ±1. Used when initialising thresholds

and weights.

Argument Type Description

N/A

Return Value double Random number in the range ± 1

Example
To obtain a random number using this function:
double smallrandnum;
smallrandnum = wrandQ;

2.2.10. FFO

Name: f f Type Procedure

General Description

This procedure feeds a predetoroined input vector through the MLP.

Argument Type Description

iv double * Pointer to the input vector.

mlp mlp * Pointer to the MLP structure.

Return Value N/A

Example

To feed a 2 part input vector comprising of 0.3 and -0.8 through a predefined 2-2-1 MLP
called MyMLP:
double ^inputs;

inputs = (double *) malloc(2*sizeof(double *));
•inputs = 0.3; *(inputs+l) = -0.8;
ff(inputs, MyMLP);

196

2.2.11. BPO

Name: bp Type Function

General Description

Performs the backpropagation algorithm through the ML? given a desired output vector. It
returns the Euclidean Distance as the global error of t network.

Argument Type Description

ov double * Pointer to the output vector.

mlp mlp * Pointer to the MLP structure.

Return Value double Euclidean Distance between the desired an actual outputs.

Example
To propagate a 1 pan output vector with the value 0.5 through a predefined 2-2-1 MLP
called MyMLP:
double desired, OTor;
desired = 0.5;

2.2.12. CALCERRO

Name: calcerr Type Function

General Description

Returns the Euclidean Distance as the global oxor of the network without performing the
backpropagation algorithm.

Argument Type Description

ov double * Pointo" to the output vector.

mlp mlp * Pointer to the MLP structure.

Return Value double Euclidean Distance between the desired an actual outputs.

Example

To calculate the enor for 2 part output vector comprising the value 0.5 and 0.7 of a
predefined 4-2-2 MLP called MyMLP:
double *desired. error,

desired = (double *) malloc(2*sizeof];double *));

•desired = 0.5; *(desired+l) = 0.7;

error = calcerr(desired, MyMLP);

197

2.2.13. TRANSO

Name: trans Type Function

General Description

Returns the result of performing a transfo' - or activation - function on a value.

Argument Type Description

X double The value to apply the function to.

t short Code for the transfer function: 0 = linear. 1 = standard
sigmoid, 2 = hyperbolic tangent, 3 = sine.

beta double Steepness of the gradient of the transf^ function.

Return Value double The result of the transfer function.

Example
To find the corresponding sigmoid function value (steq)ness 0.2) of 1.456:
double result;
result = trans(1.456, 1.0.2);

2.2.14. DTRANSO

Name: dd'ans Type Function

General Description

Returns the result of performing the doivative of a transfer - or activation - function on a
value.

Argument Type Description

double The value to apply the function to.

short Code for the transfer function: 0 = linear, 1 = standard
sigmoid, 2 = hypa-bolic tangent, 3 = sine.

beta double Steq}ness of the gradient of the transfer fiinctioa

Return Value double The result of the daivative of the transfer functioa

Example

To find the corresponding derivative hyperbolic tangent function value (steepness 0.4) of
1.456:
double result;

result = dtrans(1.456, 2,0.4);

198

2.2.15. FREEMLPO

Name: fieemlp Type Procedure

General Description

Frees the memory allocated by either defmlpO or readmlpO-

Argument Type Description

mlp mlp * Pointer to the MLP structure.

Return Value N/A

Example

To &ee the memory allocated to a predefined MLP called MyMLP:
freemlp(MyMLP);

23. Procedures For Displaying M L P Information.

2.3.1. DISPMLPO

Name: dispmlp Type Procedure

General Description

Displays gena-al information about an MLP to a file stream. The information includes: the
MLP identifier name, its structure, its learning and momentum coefficients, and its current
status.

Argument Type Description

mlp mlp * Pointer to the MLP structure.

where FILE* Pointer to the file stream.

1 short Flag indicating current status of the MLP: 1 = training, 0 =
generalising.

Return Value N/A

Example

To print details of a predefined MLP called MyMLP which is currently training to the
standard output device:
dispmlp(MyMLP, stdout. 1);

199

2.3.2. DISPPEO

Name: disppe Type Procedure

General Description

Displays geno-al information about a specific PE to a file stream. The information includes
the PEs absolute identifier, position in the network, threshold and delta threshold values,
output and error values, and the transfer function and p coefficient of the PE.

Argument Type Description

mlp mlp * Pointer to the MLP structure.

whoie FILE* Pointer to the file stream.

pe int The absolute position of the PE in the PE list structure
within the mlp structure.

Return Value N/A

Example

To print details of the fourth PE in die first hidden laya- (layer 1) of a predefined MLP

called MyMLP to a predefined file whose pointer is fp:
disppe(MyMLP, fp, abspe(MyMLP, 3, 1));
N,B. For a description of the function abspe(), see below.

200

2.3.3. DISPWO

Name: dispw Type Procedure

General Description

Displays general information about a specific weight to a file stream. The information
includes the weights absolute id^tifier, the two PEs it connects, value and delta value, and
its status (i.e. whetho- active or not).

Argument Type Description

mlp mlp * Pointer to the MLP structure.

where FILE* PointQ" to the fde stream.

w int The absolute position of the weight in the weight list
structiuie within the mlp structure.

Return Value N/A

Example
To print details of the weight connecting the third PE in the input layer Oayer 0) to the fourth
PE in the first hiddoi layo* Qayer 1) in a predefmed MLP called MyMLP to the standard
output device:

dispw(MyMLP, stdout, absw(MyMLP, 2,0,3,1));
N.B. For a description of the function abswQ, see below.

201

2.4. Functions & Procedures For Saving & Loading MLPs.

2.4.1. READMLPO

Name: readmlp Type Function

Genera] Description

Reads an MLP definition file and returns the address to the opened MLP. If the MLP

definition file is an initialisation file as opposed to a stored file, a new MLP is created using

definlpO*

Argument Type Description

fa char * The filename to be opened. If the file cannot be opened, a
value of NULL is returned by readmlpQ.

mlp mlp * Pointo" to the MLP structure to which the file contents are
to be read. If this argument is NULL, a new address is
created and returned using definlpQ. If an address is given
and the mlp pointed to does not match the structure of the
MLP on file, a value of NULL is returned by readmlpQ.

Return Value mlp * Pointo* to the MLP which has been read in from file. A
NULL pointer wiU be returned if the file is not successfully
read.

Example
To read an MLP initialisation file called MLPINTT.NND:
mlp *MyMLP;
MyMLP = readmlpC'MLPINIT.NND". NULL);

202

2.4.2. WRTTEMLPO

Name: writemlp Type Procedure

General Description

Writes the details of an MLP to file in a format readable by readmlpQ.

Argument Type Description

fn char* The filename to be opened for writing.

mlp mlp * Pointer to the MLP structure whose contents are to be
written to file.

Return Value N/A

Example
To write a predefined MLP called MyMLP to a file called TESTMLP.NND:
writemlpC'TESTMLP.NND". MyMLP);

2.5. Additional Functions & Procedures.

2.5.1. ABSPEO

Name: abspe Type Function

General Description

Returns the absolute position of a PE in the PE list structure given its local position in its
layer.

Argument Type Description

mlp mlp * Pointer to the MLP stmctiu^.

pe int Position of PE in its layer.

1 im Layer the PE is in.

Return Value int The absolute position of the PE. or -1 i f the PE spedfied
by pe and 1 does not exist.

Example

To return the absolute position of the eighth PE in the output layer of a four layer predefined
MLP caUed MyMLP;
int pos;

pos = abspe(MyMLP, 7. 3);

N.B. As the count for each PE in a layer and each layo* be^ns from z^o, the dghth PE is
referenced by 7, and the fourth layer by 3.

203

2.5.2. ABSWO

Name: absw Type Function

General Description

Returns the absolute position of a weight in the weight structure given which two PEs it

connects.

Argument Type Description

mlp mlp * Pointer to MLP structure.

fpe int Number indicating which PE the connection is fix>m.

f l int Numba" indicating which layer the connection is from.

tpe int Number indicating which PE the connection is to.

a int Numbo* indicating which layer the connection is to.

Return Value int Absolute position of the weight, or -1 i f the weight
specified by fpe, fl, tpe and tl does not exist

Example

To return the absolute value of the weight connecting the fourth PE in the first hidden layer
to the first PE in the second hidden layer of a predefined four layo- MLP called MyMLP:
int pos;
pos = absw(MyMLP, 3, 1,0, 2);

N.B. Al l coimting of PEs and layers be^ns firom zero. Therefore the fourth PE is referred to
as numt>er 3 etc.

204

2.5.3. ADDRPEO

Name: addrpe Type Function

General Description
Returns the address of a certain attribute of a certain PE.

Argument Type Description
mlp mlp * Pointer to the MLP structure.
pe int Absolute position of the PE in the PE list structure within

the MLP structure.
attr char Codt indicating which attribute is required: 't' = threshold,

'd' = delta threshold, V = output, and 'e' = local OTor.

Return Value double * Pointer to the particidar attribute required.

Example
To find the address of the output of a predefmed 6-3-1 MLP called MyMLP, where die
output is the output attribute of the first PE in the output layer Gayer 2):
double *output;

ou^ut = addrpe(MyMLP, abspe(MyMLP, 0. 2), 'o*);

N.B. For a description of the function abspeO. see above.

2.5.4. ADDRWO

Name: addrw Type Function

General Description
Returns the address of a certain attribute of a certain weight

Argument Type Description

mlp mlp * Pointer to the MLP structure.
w int Absolute position of the weight in the weight list structure

within the MLP structure.
attr char Code indicating which attribute is required: V = value, *d'

= delta value.

Return Value double * Pointer to the particular attribute required.

Example

To find the address of the delta value of the weight coimecting the foiuth PE in the input
laya- to the ninth PE in the first hidden layo" in a predefined MLP called MyMLP:
double *delta;

delta = addrw(MyMLP, absw(MyMLP, 3,0. 8, 1). 'd');
N.B. For a description of the function abswQ. see above.

205

2.5.5. ALTPEO

Name: altpe Type Procedure

General Description

Allows an attribute of a PE to be altered given the absolute value of the pe and an attribute
code.

Argument Type Description

mlp mlp * Pointer to the MLP structure.

pe mt Absolute position of the PE in die PE list structure within
the MLP structure.

attr char Code indicating the attribute to be changed: T = transfer
fimction (values 0 = linear, 1 = sigmoid, 2 = hyperbolic
tangent, 3 = sine), 'b' = steepness coefficient of the transfer
fimctioa

newval double New value of the attribute. The new value needs to be
passed as a double, with any necessary conversion to other
types performed by the procedure.

Return Value N/A

Example

To change the transfo* function of the seventh PE in the first hidden layer (layer I) to die
hyperbolic tangent in a predefined MLP called MyMLP:

altpe(MyMLP, abspe(MyMLP, 6, 1), T, (double) 2);

N.B. For a description of die fimction abspeO. see above.

206

2.5.6. ALTWO

Name: altw Type Procedure

General Description

Allows an attribute of a weight to be changed given the absolute position of the weight and
an attribute code. Currently the only attribute which can be changed is the active flag.

Argument Type Description

mlp mĴ Pointer to the MLP structure.

Absolute position of the weight in the weight list structure
within the MLP structure.

w mt

attr char Code indicating the attribute to be changed. The only
currentiy available value is 'a' for activating or deactivating
a wdght

Return Value N/A

Example

To deactivate the weight connecting the fourth PE in the second hidden layer (layo* 3) to the
first PE in the output layo* Qayer 4) in a predefined MLP called MyMLP:

altw(MyMLP. absw(MyMLP, 3, 3,0,4), 'a');

N.B. The same command will reactivate the weight, as tiie active flag is toggled. For a
description of the function abswQ. see above.

2.6. Example: The XOR Problem.

One of the strengths of the MLP network is to learn complex nonlinear mappings between
input-output pairs, and solve problems tiiat are not linearly sq)arable. One problem that does
not possess a linearly separable solution is tiie logical Exclusive-OR (XOR) function that has a
positive output if one or otho* of the inputs is positive, but not both. Although this problem
appears trivial to the human mind, early self-adjusting systans were not able to determine the
relationship between the iiqjuts and tiie outputs for themselves.

207

For such a problem, the training set consists of four pattons:

Inputs Output

Pattern 1 0 0 0

0 1 1

1 0 1

1 1 0

Pattern 2
0 0 0

0 1 1

1 0 1

1 1 0

Patterns

0 0 0

0 1 1

1 0 1

1 1 0 Pattern 4

0 0 0

0 1 1

1 0 1

1 1 0

Upon each of these patterns being presented to the MLP. one epoch can be said to have
occurred. As the sigmoid activation fimction satiu^ies towards 0 and 1 but neva- actually
reaches them, it is prefa-able to use values which are close to these to represent them. Because
this problem deals with only O's and I's as inputs and outputs, the values 0.1 and 0.9 will be
used to represent them as they are sufficiently dissimilar from one another not to be confiised.

The following program can then be used to solve the XOR problem.

/ / include <stdio.h>
//include <stdl ib .h>
//include "mlpdefs.h"

tfdefi ne stopping_condi t ion
//define t s e t s i z e

((epoch = 100000) | [(e rror < O.OOOOD)
4 / * Size of t r a i n i n g set * /

void main(void)
{
mlp *xornilp;
double * i v :
double desout;
double *output:
double error = 1.0:
double t r n s e t [4] [3]
long epoch = 0:
i n t pat tern;

/ * The MLP * /
/ * The input vector * /
/ * The desired output * /
/ * The actual MLP output * /
/ * The global error of the MLP for each epoch * /
/ * The t ra in ing set information * /
/ * Epoch counter * /
/ * Pattern counter * /

/ * Load the t r a i n i n g set with the information in the form:
/ * t O . n C O . l] [0 . 1]
/ * [O . n C O . 9] [0 . 9]
/ * [0 . 9] [0 . 1] [0 . 9]
/ * [0 . 9] [0 . 9] [0 . 1]
t r n s e t [0] [0] = 0.1
t r n s e t [l] [0] = 0.1
t r n s e t [2] [0] = 0.9
t r n s e t [3] [0] = 0.9

t r n s e t [0] [l] = 0 . 1 : t r n s e t [0] C 2] = 0.1
t r n s e t [l] [n = 0 . 9 : t r n s e t [l] [2] = 0.9
t r n s e t [2] [l } = 0 .1 ; t r n s e t [2] [2] = 0.9
t r n s e t [3] [l] = 0 .9 ; t r n s e t t 3] [2] = 0.1

/ * Use the randomize function to i n i t i a l i s e the random number generator. * /
randomize();

/ * Define a 2-2-1 MLP with a standard sigmoid a c t i v a t i o n function * /
/ * applied at each PE in the network. * /
xormlp = defmlpCXORSolution". 2. 2. 0. 1. 1. 0 .5 . 1) ;
/ * Set the learning and momentum c o e f f i c i e n t s . * /
xorinlp->lc = 0 .5 ; xormlp->m = 0 .9;

/ * Al locate memory for the input vector . * /
iv - (double *) malloc(2 * s izeof(double *)) :

/ * Main program loop * /
while (!stopping_condit ion)

{

208

/ * T r a i n the HLP on each p a t t e r n i n the t r a i n i n g se t i n t u r n . * /
f o r (p a t t e r n = 0 . e r r o r = 0 . 0 ; p a t t e r n < t s e t s i z e : p a t t e r n + +)

{

/ * Load the i n p u t v e c t o r w i t h the c u r r e n t i n p u t p a t t e r n . * /
* i v = t r n s e t [p a t t e r n] [0] : * (i v + l) = t r n s e t [p a t t e r n] [l] :
/ * Set the d e s i r e d o u t p u t . * /
desout = t r n s e t [p a t t e r n] [2] :

/ * Feed the i n p u t v e c t o r fo rward and backpropagate the * /
/ * d e s i r e d o u t p u t . * /
f f (i v . x o r m l p) ;
e r r o r += bp(&desout , x o r m l p) :

I
epoch++;

)
p r i n t f C F i n i s h e d t r a i n i n g a f t e r %ld epochs. \ n \ n " . epoch) :

/ * Tes t t he MLP. Set o u t p u t t o the o u t p u t a t t r i b u t e o f the o u t p u t PE. * /
ou tpu t = addrpeCxormlp. abspe(xormlp . 0, 2) , * o ') ;
f o r (p a t t e r n = 0; p a t t e r n < t s e t s i z e : p a t t e r n + +)

{

/ * Load the i n p u t v e c t o r w i t h the c u r r e n t i n p u t p a t t e r n . * /
* i v = t r n s e t [p a t t e r n] [0] : * (i v + l) = t r n s e t [p a t t e r n] [l] ;
/ * Feed the i n p u t v e c t o r f o r w a r d . * /
f f (i v . x o r m l p) ;
p r i n t f C P a t t e r n Xd: 1 2 . I f X 2 . 1 f - - > 1 2 . I f (a c t u a l) X 2 . 1 f (p r e d i c t e d) . \ n '

p a t t e r n + 1 . * i v , * (i v + l) . t r n s e t [p a t t e r n] [2] . * o u t p u t) :
}

/ * Save the MLP t o d i s k . * /
writemlpCXORMLP.NND-. x o r m l p) :
/ * Free a l l a l l o c a t e d memory. * /
f r e e (i v) ;
f r e e m l p (x o r m l p) ;

1

If the file is saved as XOR.CPP. compilation can be achieved using the Borland C command
line compiler as follows:

bee -G -fT xor.cpp mlp.cpp

resulting in the executable file XOR.EXE (for compiler options, please refer to Borland
documentation). When run, the programs output is equivalem to:

Fin i shed t r a i n i n g a f t e r 1202 epochs

Pa t t e rn 1 : 0 .1 0 .1 - - > 0 .1 (a c t u a l) 0 1 (p r e d i c t e d) .
Pa t t e rn 2: 0 .1 0 .9 - - > 0 .9 (a c t u a l) 0 9 (p r e d i c t e d) .
Pa t t e rn 3: 0 .9 0 .1 - - > 0 .9 (a c t u a l) 0 9 (p r e d i c t e d) .
P a t t e r n A: 0 .9 0 .9 - - > 0 . 1 (a c t u a l) 0 1 (p r e d i c t e d) .

The output file, XORMLP.NND, has the foUowing contents:

XORSolution
3
0.500000 0.900000
2 2 1
t 0.062767 1 O.&OOOOO 0 X 0 . 0)
t -0.069308 1 0.500000 I X l . O)
t 2.847186 1 0.500000 2 - X O . l)
t 5.256626 1 0.500000 3 - X l . l)
t -3.282526 1 0.500000 4 - X 0 . 2)
w 1 -5.229600 0 - X 0 . 2)

209

w 1 -6.226864 1 - X 1 . 2)
w 1 -3.875745 2 - X 0 . 3)
w 1 -3.875199 3 - X 1 . 3)
w 1 -7.194473 4 - X 2 . 4)
w 1 7.152833 5 - X 3 . 4)

which can be read using further programs with the function readmlpO-

2.7. C Source Code.

The following subsections list the source code both for the MLPDEFS.H header file and the
MLP.CPP file of library routines. Comments are provided throughout the code, but additional
information is contained above.

2.7.1. MLPDEFS.H

/ * - - *
/ * m l p d e f s . h *
/ * - *
/ * Header f i l e f o r M u l t i l a y e r Perceptron a p p l i c a t i o n s . Contains c o n s t a n t s . *
/ * s t r u c t u r e s , t y p e d e f s . f u n c t i o n and procedure d e c l a r a t i o n s used w i t h *
/ * HLP.CPP *
/ * *
/ * Vers ion 2 . 1 (C) Edward J . W i l l i a m s Last Update: Dec 4 t h . 1992. *
/ * *

i f !defined(_MLPDEFS_H)
/ /de f ine _MLPDEFS_H

/ * Constants - D e f a u l t va lues f o r an mlp d e c l a r a t i o n . * /
/ * ~ V

//def i ne d e f _ n o l 4 / * No o f l a y e r s i n mlp * /

/ / d e f i ne d e f _ l l 2 / * No o f pe ' s i n l a y e r 1 * /
/ / de f ine def_12 4 / * No o f pe ' s i n 1 ayer 2 * /
/ / d e f i ne def_13 4 / * No o f pe ' s i n 1 ayer 3 * /
/ / d e f i ne def_14 1 / * No o f pe ' s i n l a y e r 4 * /

/ / d e f i ne d e f _ l c 0 .1 / * Learn ing coef */
/ / d e f i ne def_m 0.8 / * Momentum coef */

/ * s t r u c t u r e s * /
/ * — = * /

s t r u c t pe {
i n t pos;
i n t l a y e r ;
double t h r e s h o l d
double d e l t a :
double o u t p u t :
double e r r o r ;
s h o r t t f ;
double be ta :

/ * S t r u c t u r e f o r p rocess ing e lement .
/ * P o s i t i o n * /

In l a y e r * /
Threshold o r b ias * /
Change i n t h r e s h o l d * /
Output o f pe * /

/ * E r r o r a t pe * /
/ * T r a n s f e r f u n c t i o n * /
/ * Steepness o f t r a n s f e r f u n c t i o n * /

/ *
/ *
/ *
/ *

s t r u c t w {
i n t
i n t
double
double

f p e :
t p e ;
va lue :
d e l t a :

/ * S t r u c t u r e f o r w e i g h t . * /
/ * From pe * /
/ * To pe * /
/ * Value o f the we igh t * /
/ * Change due to e r r o r * /

210

s h o r t a c t i v e : / * 1 i f a c t i v e . 0 o t h e r w i s e * /

s t r u c t bp {
double * e r r i
double *w;
s h o r t *act;

/ * S t r u c t u r e f o r backprop r e f e r e n c e l i s t . * /
/ * Po in te r t o e r r o r i n PE s t r u c t u r e . * /
/ * Po in te r t o we igh t va lue i n we igh t s t r u c t u r e . * /
/ * Po in te r t o a c t i v e f l a g i n we igh t s t r u c t u r e . * /

t ypedef s t r u c t {
char * i d n ;
i n t nol ;
i n t * n l ;
i n t t o t p e :
i n t t o t w :
s t r u c t pe *pe:
s t r u c t w *w:
s t r u c t bp *bp:
double I c :
double m:
} mlp :

/ * MLP s t r u c t u r e , * /
/ * Name o f the mlp . * /
/ * No o f l a y e r s . * /
/ * Pe's i n each l a y e r * /
/ * To ta l no o f pe ' s i n mlp * /
/ * To ta l no we igh t s i n mlp * /
/ * Po in t e r to pe ' s * /
/ * Po in t e r to a l l the we igh t s * /
/ * Reference to the we igh t s f o r bp * /
/ * Learn ing c o e f f i c i e n t * /
/ * Momentum c o e f f i c i e n t * /

/ * Funct ions and Procedures * /
/ * = ™ * /

mlp *de fmlp (cha r * . i n t , i n t . i n t . i n t . s h o r t , doub le , s h o r t) ; / * D e f i n e s the
mlp . * /

i n t c a l c t o t p e d n t * . i n t) : / * Ca lcu l a t e s the t o t a l no o f p e ' s . * /
i n t c a l c t o t w (i n t * . i n t) : / * Ca lcu l a t e s the t o t a l no o f w e i g h t s . * /

v o i d i n i t p e (s t r u c t pe * . i n t * . i n t . i n t . s h o r t , doub l e , s h o r t) : / * I n i t i a l i s e s the
p e ' s . * /

v o i d i n i t w (s t r u c t w * . s t r u c t pe * . i n t * . i n t) ; / * I n i t i a l i s e s the w e i g h t s . * /
v o i d i n i t b p C s t r u c t bp * . s t r u c t pe * . s t r u c t w * . i n t * . i n t . I n t . i n t) :

/ * I n i t i a l i s e s the bp r e f e r e n c e l i s t . * /
v o i d randwtCmlp *) : / * Randomises the w e i g h t s . * /
v o i d r and th (mlp *) : / * Randomises the t h r e s h o l d s . * /

double wrandCvoid) : / * Returns random double: 1 < X < 1

v o i d f f (d o u b l e * . mlp *) : / * Feeds v e c t o r fo rward th rough the mlp . * /
double bp(double * , mlp *) : / * Propagates e r r o r back through the mlp . * /
double c a l c e r r (d o u b l e * . mlp *) : / * Ca lcu l a t e s the e r r o r o f the network w i t h o u t

backprop. * /

double t r a n s (d o u b l e . s h o r t , d o u b l e) : / * T rans f e r f u n c t i o n s . * /
double d t r a n s (d o u b l e . s h o r t , d o u b l e) ; / * D e r i v a t i v e s o f t r a n s f e r f u n c t i o n s . * /

v o i d d i spmlp (mlp * , FILE * , s h o r t) ; / * D i sp l ay general mlp da t a . * /
v o i d d i sppe(mlp * , FILE * . i n t) ; / * D i sp l ay pe da t a . * /
v o i d d ispw(mlp * . FILE * . i n t) : / * D i sp l ay we igh t da t a . * /

v o i d f r e e m l p (m l p *) : / * Frees mips a l l o c a t e d memory * /

i n t abspe(mlp * , i n t . i n t) ; / * Returns abs p o s i t i o n va lue o f pe * /
i n t absw(mlp * , i n t . i n t , i n t . i n t) : / * Returns abs p o s i t i o n value o f w e i g h t * /

v o i d a l t p e (m l p * , i n t . cha r , d o u b l e) ; / * A l t e r s a t t r i b u t e s o f pe * /
v o i d a l t w (m l p * . i n t . c h a r) ; / * A l t e r s a t t r i b u t e s o f we igh t * /

double *addrpe(mlp * . i n t . c h a r) : / * Returns address o f a pe a t t r i b u t e * /
double *addrw(mlp * , i n t , c h a r) : / * Returns address o f a we igh t a t t r i b u t e * /

mlp *readmlp(char * , mlp *) ; / * Reads an mlp f r o m f i l e . * /
v o i d w r i t e m l p (c h a r * . mlp *) ; / * Wr i t e s an mlp t o f i l e . * /

//endi f

211

2.7.2. MLP.CPP
/ * - *
/ * mlp .cpp *
/ * •
/ * Generic code f o r the d e f i n i t i o n and running o f a M u l t i l a y e r P e r c e p t r o n . *
/ * and i t ' s t r a i n i n g w i t h the backpropaga t ion a l g o r i t h m . *
/ * - - - - - - *
/ * Vers ion 2 .1 (C) Edward J . W i l l i a m s Last Major Update: Apr 3 r d , 1992. *
/ + - - *
/ * Minor r e v i s i o n : Sept 1 2 t h . 1993. *
/ * Update o f b p () and c a l c e r r O f u n c t i o n s to r e t u r n the *
/ * g l o b a l e r r o r c a l c u l a t e d as the Eucl idean D i s t a n c e . *
/ * - *

tfif ! d e f i n e d (_ S T D I O _ H)
/ / i nc lude < s t d i o . h >
tfendif
/ / i f ! d e f i n e d (_ S T D L l B _ H)
/ / inc lude < s t d l i b . h >
//endi f
/ / i f ! d e f i n e d (MATH_H)
/ / inc lude <math.h>
//endi f
/ / i f !de f ined(_STRING_H)
/ / inc lude < s t r i n g . h >
/ / end i f

/ / i f !defined(_MLPDEFS_H)
/ / inc lude "mlpde f s -h"
//endi f

/ * F u n c t i o n : Returns the abso lu t e va lue o f a process ing element i n the * /
/ * a r r a y o f PEs g iven i t s l o c a l p o s i t i o n i n i t s l a y e r . * /
/ * Returns -1 i f no such PE e x i s t s . * /
i n t abspeCmlp *mlp . i n t pe. i n t 1)
{

i n t c n t . va lue = - 1 :

f o r (c n t = 0 : cn t < m l p - > t o t p e : cn t++)
i f (((* C m l p - > p e + c n t)) . p o s == pe) && ((* (m l p - > p e + c n t) > . 1 a y e r = 1))

va lue = c n t :

r e t u r n v a l u e ;
}

/ * F u n c t i o n : Returns the abso lu t e p o s i t i o n o f a weigh t i n the a r r a y o f * /
/ * we igh t s g iven i t s which two PEs i t connects . * /
/ * Returns -1 i f no such weight e x i s t s ,
i n t absw(mlp *mlp . i n t f p e . i n t f 1 , i n t t p e . i n t t l)

i n t c n t . va lue = - 1 ;

f o r (c n t = 0 : cn t < m l p - > t o t w : cn t++)
i f (((* (m l p - > p e + (* { m l p - > w + c n t)) . f p e)) . p o s = f p e) &&

((* (m l p - > p e + (* (m l p - > w + c n t)) . F p e)) . l a y e r = f 1) &&
((* (m l p - > p e + (* (m l p - > w + c n t)) . t p e)) . p o s = tpe) &&
((* (m l p - > p e + (* (m l p - > w + c n t)) . t p e)) . l a y e r = t l))

va lue c n t :

r e t u r n v a l u e ;
}

/ * F u n c t i o n : Returns the address o f a c e r t a i n a t t r i b u t e o f a c e r t a i n PE when*/
/ * g iven the abso lu t e value o f t he PE and a c h a r a t e r code f o r the * /
/ * a t t r i b u t e r e q u i r e d . Permissable codes a re : * /
/ * ' f : Threshold * /
/ * ' d ' : De l ta Threshold * /

212

/ * ' o ' : Output * /
/ * ' e ' : Local E r r o r * /
double *addrpe(mlp *mlp . i n t pe. char a t t r)
(
double *address;

s w i t c h (a t t r)
{
case • f : address

break:
= &((* (mlp ->pe+pe)) t h r e s h o l d)

case • d ' : address
break;

= &(C*(m1p->pe+pe)) d e l t a) :

case • o ' : address
break:

= &(C*Cmlp->pe+pe)) o u t p u t) :

case •e ' : address
break;

= &((* (mlp ->pe+pe)) e r r o r) ;

r e t u r n address :
)

I * F u n c t i o n : Returns the address o f a c e r t a i n a t t r i b u t e o f a c e r t a i n weigh t * /
/ * g iven the abso lu te va lue o f the we igh t and a cha rac t e r code * /
/ * f o r the a t t r i b u t e r e q u i r e d . Permissable codes a r e : * /
/ * ' V : Value * /
/ * - d ' : Del ta Value * /
double *addrw(mlp *ni lp . i n t w, char a t t r)
{
double *address:

s w i t c h (a t t r)
\
case ' v ' : address = & C (* (m l p - > w + w)) . v a l u e) ;

break;
case - d ' : address = & ((* (m l p - > w 4 «)) . d e l t a) :

break;
I

r e t u r n address :
I

/ * Procedure: Al lows an a t t r i b u t e o f a PE t o be changed g iven the abso lu te * /
/ * va lue o f the PE and an a t t r i b u t e code, where v a l i d codes a re : * /
/ • ' f : T r a n s f e r Func t ion * /
/ * ' b ' : Beta c o e f f i c i e n t * /
/ * The new va lue o f the a t t r i b u t e i s passed i n as a double and * /
/ * conver ted to the new data type w i t h i n the procedure . * /
v o i d a l t p e (m l p *mlp . i n t pe. char a t t r . double newval)
(

s w i t c h (a t t r)
i
case * f ' : (* (m l p - > p e + p e)) . t f = (s h o r t) newva l :

b reak:
case ' b ' : (* (mlp->pe+pe)) .be ta = newval :

b reak:
}

}

Procedure: A l l o w s an a t t r i b u t e o f a we igh t t o be changed g iven the * /
abso lu t e va lue o f the weigh t and an a t t r i b u t e code. C u r r e n t l y * /
the on ly v a l i d code i s : * /

' a ' : A c t i v e f l a g . * /
At present no i t i s not necessary to pass a value to t h i s * /
procedure f o r changing the a t t r i b u t e as i s r e q u i r e d i n * /
a l t p e O . * /

v o i d a l t w (m l p *mlp . i n t w, char a t t r)

s w i t c h (a t t r)

213

case 'a*: i f ((* (m l p - > w + w)) . a c t i v e)
(* (m l p - > w + w)) . a c t i v e = 0;

e l s e
(* (m l p - > w + w)) . a c t i v e = 1 :

b reak;
)

1

/ * F u n c t i o n : This f u n c t i o n performs the backpropaga t ion a l g o r i t h m on the * /
/ * MLP g i v e n a de s i r ed ou tpu t v e c t o r . I t r e t u r n s the g l o b a l e r r o r * /
/ * (Euc l i dean Dis t ance) o f the ne twork . * /
double bp(double *ov . mlp *mlp)
{

i n t i . j . k ;
i n t * n l ;
s t r u c t pe *pe:
s t r u c t w *w;
s t r u c t bp *bp:
double cumle r r = 0 . 0 , sumerrs:

/ * I n i t i a l i s e bp and w p o i n t e r . * /
bp = mlp->bp;
w = mlp->w;

/ * I n i t i a l i s e p o i n t e r s t o f i n a l l a y e r , pe, and o u t p u t v e c t o r e lement . * /
n l = mlp ->n l + mlp->nol - 1 :
pe = mlp->pe + m l p - > t o t p e - 1 ;
ov += * n l - 1 :

/ * C a l c u l a t e the e r r o r s a t the ou tpu t neurons, a d j u s t the * /
/ * t h r e s h o l d s , and cumulate the e r r o r s . * /
For (j = * n l ; j > 0; j - . o v - - , p e - -)

i
p e - > e r r o r = d t r a n s (p e - > o u t p u t , p e - > t f . pe->beta) * (*ov - p e - > o u t p u t) ;
pe ->de l t a = m l p - > l c * pe->er ror + (mlp->m * p e - > d e l t a) ;
p e - > t h r e s h o l d += p e - > d e l t a :
cumle r r -•-= (*ov - pe ->ou tpu t) * (*ov - p e - > o u t p u t) :

}
n l - - :

/ * Per form the backprop a l g o r i t h m through the m l p . * /
f o r (i = mlp->nol - 1 : i > 1; i - - . n l - -)

f o r (j = * n l : j > 0; j - . p e - -)
I
sumerrs = 0 . 0 ;
f o r (k = * (n l 4 - I) : k > 0; k - - . bp++)

sumerrs += *(bp->w) * * (b p - > e r r) * (d o u b l e) * (b p - > a c t) ;
p e - > e r r o r = d t r a n s (p e - > o u t p u t , p e - > t f . pe ->be ta) * sumerrs ;
pe ->de l t a = m l p - > l c * pe ->e r ro r + (mlp->m * p e - > d e l t a) ;
p e - > t h r e s h o l d + " p e - > d e l t a ;
}

t* C a l c u l a t e the d e l t a w e i g h t s and a d j u s t the w e i g h t v a l u e s . * /
f o r (k = 0; k < m l p - > t o t w : k-H-. w++)

\
w - > d e l t a = ((m l p - > l c * (* (m l p - > p e + (w - > t p e))) . e r r o r *

(* (m l p - > p e + (w - > f p e))) . o u t p u t) + (mlp->ni * w - > d e U a)) *
w - > a c t i v e ; / * w i t h momentum * /

w->value += w - > d e l t a ;

/ * Return the Eucl idean d i s t ance e r r o r o f the ne twork . * /
r e t u r n s q r t (c u m l e r r) ;

}

/ * F u n c t i o n : This f u n c t i o n c a l c u l a t e s the g l o b a l e r r o r (Euc l idean Dis t ance) * /
/ * o f the network w i t h o u t p e r f o r m i n g the backprop a l g o r i t h m . * /
double c a l c e r r (d o u b l e *ov. mlp *mlp)
{

i n t * n l :

214

s t r u c t pe *pe:

i n t i ;
double cumle r r = 0 . 0 :

/ * I n i t i a l i s e p o i n t e r s to f i n a l l a y e r , pe. and o u t p u t v e c t o r e lement . * /
n l = mlp ->n l + mlp->nol - 1 ;
pe = mlp->pe + m l p - > t o t p e - 1 :
ov 4^ * n l - 1 :

/ * C a l c u l a t e the e r r o r * /
f o r (i = * n l : i > 0; i - - . o v - - . p e - -)

cumle r r += (*ov - pe ->ou tpu t) * {*ov - p e - > o u t p u t) ;

/ * Return the Eucl idean d i s t ance e r r o r o f the ne twork . * /
r e t u r n s q r t (c u m l e r r) ;

1

/ * F u n c t i o n : Returns the t o t a l number o f PEs i n an MLP g iven the number o f * /
/ * PEs i n each l a y e r and the number o f l a y e r s . * /
i n t c a l c t o t p e (i n t * n l . i n t n o l)
(

i n t t o t n = 0 .
c n t :

f o r (c n t = 0; cn t < n o l : cnt-H+. nl-H-)
t o t n 4= * n l :

r e t u r n t o t n ;
}

/ * F u n c t i o n : Returns the t o t a l number o f we igh t s i n an HLP g iven the number • /
/ * o f PEs i n each l a y e r and the number o f l a y e r s . * /
i n t c a l c t o t w (i n t * n l . i n t n o l)
{

i n t t o tw = 0 .
c n t :

n l -H-:
f o r (c n t = 1 : cn t < n o l ; cnt-H-. nl-M-)

t o tw += * n l * * (n l - l) :

r e t u r n t o t w :
}

/ * F u n c t i o n : Returns the address o f a newly d e f i n e d MLP. In order to d e f i n e * /
/ * the MLP a s t r i n g i d e n t i f i e r , the number o f PEs i n the f o u r * /
/ * a l l o w a b l e l a y e r s , a t r a n s f e r f u n c t i o n code, a steepness * /
/ * c o e f f i c i e n t , and a f l a g i n d i c a t i n g whether the t r a n s f e r * /
/ * f u n c t i o n i s to be a p p l i e d at the o u t p u t l a y e r needs to be * /
/ * p r o v i d e d . Permissable t r a n s f e r f u n c t i o n codes a r e : * /
/ * 0
/ * 1
/ * 2
/ * 3

L inear * /
Standard Sigmoid * /
H y p e r b o l i c Tangent * /
Sine * /

/ * P r i o r to r e t u r n i n g , a l l we igh t s and t h r e s h o l d s are i n i t i a l i s e d . * /
mlp *de fmlp (cha r * t y p e . i n t 1 1 . i n t 12. i n t 13. i n t 14. s h o r t t f . double b e t a , s h o r t
so)
(
mlp *MLP:
s t r u c t pe *pe:
s t r u c t w *w;
s t r u c t bp *bp:
i n t * n l , n o l . t o t p e . t o t w :
char * i d n :

/ * A l l o c a t e memory f o r nl and ass ign va lues . * /
i f ((1 1 > 0) && (12 > 0) && (13 > 0) && (14 > 0))

I
nol = 4 ;

215

n l = Cin t *) c a l l o c C n o l . s i z e o f (* n l))
* n l = 11
* (n l + l) = 12
* (n l + 2) = 13
* (n l + 3) = 14

)
e l s e i f ((1 1 > 0) && (12 > 0) && (13 = 0) && (14 > 0))

I
nol = 3:
n l = (i n t *) c a l l o c (n o l . s i z e o f (* n l)) ;
* n l = 1 1
* (n l + l) = 12
* (n l + 2) = 14

)
e l s e i f C d l > 0) && (12 = 0) && (13 = 0) && (14 > 0))

{

nol = 2 ;
nl = (i n t *) c a l l o c C n o l . s i z e o f (* n l)) ;
*n l = 1 1 :
* (n l + l) = 14;

)
e l se

r e t u r n NULL;

/ * A l l o c a t e memory f o r i d e n t i f i e r , and i n i t i a l i s e . * /
i d n = (char *) c a l 1 o c (s t r l e n (t y p e) , s i z e o f (* i d n)) ;
s p r i n t f (i d n , " I s " , t y p e) ;

/ * A l l o c a t e memory f o r the p rocess ing elements and i n i t i a l i s e * /
t o t p e = c a l c t o t p e (n l . n o l) ;
pe = (s t r u c t pe *) c a l l o c (t o t p e . s i z e o f (* p e)) ;
i n i t p e (p e . n l , n o l . t o t p e . t f . be t a , s o) ;

/ * A l l o c a t e memory f o r the we igh t s and i n i t i a l i s e * /
t o t w = c a l c t o t w (n l . n o l) :
w = (s t r u c t w *) c a l l o c (t o t w , s i z e o f C * w)) :
i n i t w (w . pe. n l . t o t p e) :

/ * A l l o c a t e memory f o r backprop r e fe rence l i s t and i n i t i a l i s e * /
bp « (s t r u c t bp *) c a l l o c (t o t w , s i z e o f (* b p)) :
i n i t b p (b p , pe, w. n l . n o l . t o t p e . t o t w) :

/ * A l l o c a t e memory f o r the mlp and se t va lues . * /
HLP ° (mlp *) c a l l o c d , s i zeof (*MLP)) ;

MLP->idn = i d n :
MLP->nol = n o l :
MLP->nl = n l ;
MLP->totpe = t o t p e ;
MLP->totw = t o t w :
MLP->pe = pe:
MLP->w = w;
HLP->bp = bp;
MLP->lc = d e f _ l c :
MLP->m = def_m:

/ * Randomize the we igh t s and t h r e sho lds o f the mlp * /
randwt(MLP):
r and th (HLP) :

/ * Return the address o f the mlp * /
r e t u r n MLP;

)

/ * Procedure: D i s p l a y s general i n f o r m a t i o n about the MLP t o a f i l e s t ream. * /
/ * I f the argument ' 1 ' i s se t t o one, the legend LEARNING i s * /
/ * p r i n t e d , o the rw i se P r e d i c t i n g i s . * /
v o i d d i spmlp(mlp *mlp , FILE *where. s h o r t 1)
I
char s t r i n g [2 0] :

216

char s p a c e s [2 0] :

i f (mlp->no l = 4)
s p r i n t f C s t r i n g . "Xd-Xd-Xd-Jd

* (m l p - > n l + 3)) ;
e l s e i f (mlp ->no l = 3)

s p r i n t f (s t r i n g . " J d - i d - X d " . * (m l p - > n l) . * (m l p - > n l + l)
e l s e i f (mlp ->no l = 2)

s p r i n t f (s t r i n g . - X d - X d " , * (m l p - > n l) . * (m l p - > n l + l)) ;

* (m l p - > n l) . * (m l p - > n l + l) . * (m l p - > n l + 2)

(m l p - > n l + 2)) :

s p r i n t f C s p a c e s . '
s p a c e s C s t r l e n (m l p - > i d n)] \0

f p r i n t f (w h e r e , "MLP name: Xs.
f p r i n t f (w h e r e , 'Xs
f p r i n t f (w h e r e . "Xs
f p r i n t f (w h e r e . "Xs
i f (1)

f p r i n t f (w h e r e , -LEARNINGVnXn"):
e l s e

f p r i n t f (w h e r e . " P r e d i c t i n g \ n \ n ")

S t r u c t u r e
Learning coef
Momentum coef
S ta tus

X s . \ n ' . m l p - > i d n , s t r i n g)
X f . \ n " . spaces, m l p - > l c) :
X f . \ n " . spaces. mlp->m) :
" . spaces) ;

/ * Procedure: Di sp lays general i n f o r m a t i o n about a s p e c i f i c PE t o a f i l e
/ * s t ream.
v o i d d i sppe{mlp *mlp . FILE *where, i n t pe)
{

Processing Element: X d \ n " , p e) ;
P o s i t i o n : X d \ n - , (* (m l p - > p e + p e)) . p o s) :

f p r i n t f (w h e r e
f p r i n t f (w h e r e
f p r i n t f (w h e r e . * Layer: Xd\n"
f p r i n t f (w h e r e . " Th re sho ld : X f \ n "
f p r 1 n t f (w h e r e . • D e l t a : X f \ n "
f p r i n t f (w h e r e . " Output : X f \ n '
f p r i n t f (w h e r e . " E r r o r : X f \ n "
f p r i n t f (w h e r e . ' Trans Func: ") ;
s w i t c h ((* (m l p - > p e + p e)) . t f)

{

(* (m l p - > p e + p e)) . l a y e r) ;
(* (m l p - > p e + p e)) . t h r e s h o l d)
(* (m l p - > p e + p e)) . d e l t a) ;
(* (m l p - > p e + p e)) . o u t p u t) :
(* (m l p - > p e + p e)) . e r r o r) ;

case 0: f p r i n t f { w h e r e . "No t r a n s f e r f u n c t i o n X n ")
break:

case 1 : f p r i n t f (w h e r e , "Standard S i g m o i d X n ') ;
break;

case 2: f p r i n t f (w h e r e , " H y p e r b o l i c TangentXn") :
b reak:

case 3: f p r i n t f (w h e r e . "S ineXn") ;
break;

}

f p r i n t f (w h e r e Steepness: X f \ n \ n " . (* (m l p - > p e + p e)) . b e t a)

* /
* /

/ * Procedure: D i sp l ays general i n f o r m a t i o n about a s p e c i f i c w e i g h t t o a f i l e * /
/ * s t ream. * /
v o i d d ispw(mlp *mlp . FILE *where. i n t w)
{

f p r i n t f (w h e r e ,
f p r i n t f (w h e r e .
f p r i n t f (w h e r e .
f p r i n t f (w h e r e .
f p r i n t f (w h e r e ,
f p r i n t f (w h e r e ,
f p r i n t f (w h e r e ,
f p r i n t f (w h e r e .
f p r i n t f (w h e r e .
f p r i n t f (w h e r e .

Weight X d \ n ' . w) :
From PE: X d " . (* (m l p - > p e + (* (m l p - > w + w)) . f p e)) . p o s) ;

(PE X d) \ n - . (* (m l p - > w + w)) . f p e) ;
Layer: X d \ n " , (* (m l p - > p e + (* (m l p - > w + w)) . f p e)) . 1 a y e r)

' To PE: X d " , (* (m l p - > p e + (* (m l p - > w + w)) , t p e)) . p o s) :
(PE X d) \ n - , (* (m l p - > w + w)) . t p e) :

I d V n " , (* (m l p - > p e + (* (m l p - > w H w)) . t p e)) . l a y e r)
(* (m l p - > w + w)) . v a l u e) :
(* (m l p - > w + w)) . d e l t a) :

Layer
Value :
D e l t a :
S t a tus :

X f \ n "
X f \ n "
•) :

i f ((* (m l p - > w + w)) . a c t i v e)
f p r i n t f (w h e r e . " A c t i v a t e d X n V n ") ;

e l s e
f p r i n t f (w h e r e . ' D e a c t i v a t e d \ n \ n ')

/ * F u n c t i o n : Returns the d e r i v a t i v e o f the t r a n s f e r f u n c t i o n , g i v e n a

217

/ * t r a n s f e r f u n c t i o n i d e n t i f y i n g code. Permissable codes are;
/ * 0
/ * 1
/ * 2
/ * 3

Linear *
Standard Sigmoid *
H y p e r b o l i c Tangent *
Sine *

double d t r a n s (d o u b l e x . sho r t t . double be ta)
{
double v a l u e :

s w i t c h (t)
{

case 0: va lue = 1 :
break:

case 1 : va lue = (2 . 0 * beta * x * (1 . 0 - x)) :
b reak:

case 2 : va lue = (beta * (1 . 0 + x) * (1 . 0 - x)) :
b reak:

case 3: va lue = c o s (x) ;
break:

)

r e t u r n v a l u e ;
)

/ * Procedure: Feeds an i n p u t v e c t o r f o r w a r d th rough the MLP. * /
v o i d f f (d o u b l e * i v . mlp *mlp)
{

i n t i . j . k ;
s t r u c t pe *pe;
s t r u c t w *w:
double suminps:

/ * Use temporary address p o i n t e r s f o r the PEs and weights * /
pe = mlp->pe:
w = mlp->w;

/ * Load the i n p u t v e c t o r i n t o the i n p u t l a y e r o f the HLP * /
f o r (j = 0; j < * (m l p - > n l) ; i v + + . pe+-^)

pe->output = * i v :

/ * Feed the values fo rward through the HLP * /
f o r (i = 1 : i < m l p - > n o l ; i + +)

f o r (j = 0 : j < * (m l p - > n l + i) ; pe++)
{

suminps = 0 . 0 ;
f o r (k - 0 ; k < * (m l p - > n l - K i - l)) : k++. w++)

suminps += w->value * (* (m l p - > p e + (w - > f p e))) . o u t p u t
* (double) w - > a c t i v e :

pe ->outpu t = t rans(suminps + p e - > t h r e s h o l d . p e - > t f . p e - > b e t a) ;
)

)
/ * Procedure: Frees a l l the memory a l l o c a t e d t o the MLP by e i t h e r d e f m l p O * /
/ * r e a d m l p O . * /
v o i d f r e e m l p (m l p *mlp)
(

f r e e (m l p - > i d n) ;
f r e e (m l p - > n l) ;
f r e e (m l p - > p e) :
f r e e (m l p - > w) ;
f r e e (m l p - > b p) :
f r e e (m l p) ;

1

/ * Procedure: I n i t i a l i s e s the backpropaga t ion s t r u c t u r e used t o speed the * /
/ * implementa t ion o f the backp ropa t ion a l g o r i t h m . • /
v o i d i n i t b p (s t r u c t bp *bp. s t r u c t pe *pe. s t r u c t w *w. i n t * n l , i n t n o l . i n t t o t p e
i n t t o t w)
I

218

s t r u c t pe * p e r e f :
i n t pecn t . went ;

pe re f = pe:

/ * Set the pe p t r to l a s t pe i n p e n u l t i m a t e l a y e r . * /
pe ^ (t o t p e - * (n l + n o l - l) - 1) ;

/ * Assign the values t o bp r e f e r ence l i s t . * /
f o r (pecn t = t o t p e - * (n l + n o l - l) - 1 ; pecnt >= 0; p e c n t - - . p e - -)

f o r (went = to tw - 1 ; went >= 0: w e n t - -)
i f ((* (w + w c n t)) . f p e = pecnt)

\
bp->e r r = & ((* { p e r e f + (* (w + w c n t)) . t p e)) . e r r o r) :
bp->w = & ((* (w + w c n t)) . v a l u e) ;
bp->act = & ((* { w - H t f c n t)) . a c t i v e) :
bp++:

1
}

/ * Procedure: Takes the u n i n t i a l i s e d l i s t o f PEs and g ives them t h e i r * /
/ * i d e n t i f y i n g p o s i t i o n s , t r a n s f e r f u n c t i o n s , steepness c o e f f s * /
/ * and i n i t i a l i s e s t h e i r t h r e s h o l d v a l u e s . • /
v o i d i n i t p e (s t r u c t pe *pe. i n t * n l . i n t n o l . i n t t o t p e . s h o r t t f . double b e t a , s h o r t
s e t o)
(

i n t pos = 0 . l a y e r « 0 . c n t :

/ • I n i t i a l i s e the pe"s. * /
f o r (c n t = 0 : cn t < t o t p e ; cnt+-f^)

(
(* (p e + c n t)) . p o s = pos:
(* (p e + c n t)) . l a y e r = l a y e r :
(* (p e - H c n t)) . t h r e s h o l d = w r a n d () :
(* (p e + c n t)) . o u t p u t •= 0 . 0 ;
i f ((l a y e r = (no l - 1)) && ! se to)

(* (p e + c n t)) . t f » 0;
e l s e

(* (p e + c n t)) . t f = t f :
i f (* { n l - H a y e r) - 1 = pos)

{
pos = 0;
+-t-layer;

}

e l se
-H-pos:

(*(pe- f -cn t)) .be ta = be ta :

1

/ * Procedure: Takes the u n i n t i a l i s e d l i s t o f we igh t ss and g ives them t h e i r * /
/ * i d e n t i f y i n g p o s i t i o n s , and se t s t h e i r a c t i v e f l a g t o 1 . * /
v o i d i n i t w (s t r u c t w *w. s t r u c t pe *pe. i n t * n l . i n t t o t p e)
{

i n t f p e .
t p e .
wno = 0;

/ * I n i t i a l i s e the w e i g h t s . * /
f o r (t p e = * n l : tpe < t o t p e : tpe-H-)

f o r (f p e = 0: fpe < t p e : fpe-H+)
{

i f ((* (p e - H f p e)) . l a y e r = (* (p e + t p e)) . l a y e r - 1)
{

(* (w + w n o)) . f p e = f p e ;
(* (w+wno)) . t pe = t p e ;
(* (w + w n o)) . a c t i v e = 1;
wno++;

1
)

219

)

/ * Procedure: Randomises a l l the t h re sho lds i n an mlp t o the range [- 1 . + 1] . * /
/ * and i n i t i a l i s e s the d e l t a s t o ze ro . * /
v o i d r and th (mlp *mlp)
{

i n t c n t :

f o r (c n t 0; c n t < m l p - > t o t p e ; cn t++)
{

(* (m l p - > p e + c n t)) . t h r e s h o l d = w r a n d O ;
(* (m l p - > p e + c n t)) . d e l t a = 0 . 0 :

)
}

/ * Procedure: Randomises a l l t he we igh t s i n an mlp t o the range [- 1 , + 1] , * /
/ * and i n i t i a l i s e s the d e l t a s to ze ro . * /
v o i d randwt(mlp *mlp)
(

i n t c n t :

f o r (c n t •= 0; cn t < m l p - > t o t w : cnt-H-)
{

(* (mlp ->w+-cn t)) . va lue = w r a n d O :
(* { m l p - > w + c n t)) . d e l t a •= 0 . 0 :

1
}

/ * F u n c t i o n : Reads a mlp d e f i n i t i o n f i l e and r e t u r n s the address to the MLP.*/
/ * I f the mlp argument to the f u n c t i o n i s HULL, a new address i s * /
/ * c r e a t e d o the rwi se the same address i s r e t u r n e d as i s g i v e n . * /
/ * I f the MLP d e f i n i t i o n f i l e i s an i n i t i a l i a l i s a t i o n f i l e as * /
/ * opposed to a s t o r ed f i l e , the MLP i s c rea ted us ing d e f m l p O . * /
mlp *readmlp(char * f n , mlp *o ldmlp)
{

FILE * f p :
mlp *newmlp:
char * i d n , f c h a r ;
i n t f i n t . 11 = 0 , 12 = 0 . 13 = 0 . 14 = 0 . c n t . i n i t = 0;
double f f l . f f l 2 . beta = 0 . & :
s h o r t f s h . t f = 1 . se to = 1 :

i d n = (char *) c a l l o c (2 0 , s i z e o f (* i d n)) ;

/ • Return NULL i f unable t o open f i l e . * /
i f ((f p = f o p e n (f n , " r ')) = NULL)

{

pr int fC_REAOMLP() : Unable to open f i l e : %s \n ' , f n) ;
r e t u r n NULL:)

/ * Check to see i f nnd f i l e i s an i n i t i a l i s a t i o n f i l e * /
f s c a n f (f p . "%*s %d 3;* l f I * l f - . A f i n t) ;
f o r (: f i n t > 0: f i n t - -)

f s c a n f (f p . • X * d ") :
f s c a n f (f p . ' \ n l c - , & f c h a r) ;
i f ((f c h a r = ' x ') | | (f c h a r = ' X '))

{
f s c a n f { f p , "Shd % l f %hd ' . & t f . Abeta . & s e t o) :
i n i t = 1 ;

}
r e w i n d (f p) :

f s c a n f (f p . '%s Xd I l f X l f . i d n . i f i n t . &f f 1 . & f f l 2) :

/ * Return NULL i f the s p e c i f i e d HLP and the MLP s t o r e d on f i l e a re no t the * /
/ * same s t r u c t u r e . * /
i f (o ldmlp != NULL)

i f (o l d m l p - > n o l ! - f i n t)
{

220

p r i n t f (' _ R E A D H L P () : Def ined mlp and mlp i n 2s are i n c o m p a t i b l e X n " . f n) ;
r e t u r n NULL:

1

s w i t c h (f i n t)
{

case 2: f s c a n f (f p . "%d X d \ n ' . A l l , &14) ;
break;

case 3: f s c a n f (f p . " I d I d X d \ n " . fill. &12. & 1 4) ;
b reak :

case 4 : f s c a n f (f p . " I d I d %6 %d\n". & 1 1 . &12. &13. & 1 4) :
b reak :

1

i f (o ldmlp = NULL)
newmlp = d e f m l p (i d n . 1 1 . 12. 13. 14. t f . be ta , s e t o) ;

e l s e
newmlp = o l d m l p ;

newmlp->lc = f f l ;
newmlp->m = f f l 2 ;

/ * I f the f i l e i s not an i n i t i a l i s a t i o n f i l e , read i n the s t o r e d va lues . * /
i f (M n i t)

{

f o r (c n t = 0: cn t < newmlp->totpe; cnt-H-)
{

f s c a n f (f p . '%*c X l f Xhd % l f %*s\n-. & f f 1 . & f s h . & f f l 2) :
(* (n e w m l p - > p e + c n t)) . t h r e s h o l d = f f 1 ;
(* (n e w m l p - > p e + c n t)) . t f = f s h ;
(* (newmlp->pe+cn t)) . be t a = f f l Z ;

1
f o r (c n t = 0; cn t < newmlp->totw: cnt++)

(
f s c a n f (f p . '%*c I h d X l f S*s\n". & f s h . & f f l) :
(* (newmlp ->w+cn t)) . va lue = f f l :
(* (n e w m l p - > w + c n t)) . a c t i v e = f s h ;

)
1

f c l o s e (f p) :

r e t u r n newmlp:
}

/ * F u n c t i o n : Returns the va lue o f the t r a n s f e r f u n c t i o n , g iven a t r a n s f e r * /
/ * f u n c t i o n i d e n t i f y i n g code. Permissable codes a re : * /
/ * 0: L inear * /
/ * 1 : Standard Sigmoid * /
/ * 2: H y p e r b o l i c Tangent * /
/ * 3: Sine * /
double t r a n s (d o u b l e x , s h o r t t . double beta)
{

double v a l u e :

s w i t c h (t)
(
case 0: va lue = x ;

break:
case 1 : va lue = 1.0 / (1 . 0 + e x p (- (2 . 0 * beta * x))) ;

b reak;
case 2: va lue = (1 . 0 - e x p (- (2 . 0 * beta * x))) / (1 . 0 + e x p (- (2 . 0 * beta * x)))

break;
case 3: va lue = s i n (x) ;

b reak :
}

r e t u r n va lue
)

221

/ * F u n c t i o n : Returns a random f l o a t i n g p o i n t number i n the range [- 1 . + 1] . * /
/ * Used when i n i t i a l i s i n g th resho lds and w e i g h t s . * /
double w r a n d (v o i d)
{

double n ;

n = ((d o u b l e) r a n d O / ((d o u b l e) RAND_MAX / Q . D) :
i f (r a n d O X 101 X 2 = 1)

n = n * - 1 . 0 :

r e t u r n n ;
1

* Procedure: W r i t e s an MLP to f i l e i n a format readable by r e a d m l p O . *
* F i l e fo rma t i s : *
* H L P I d e n t i f i e r (_ S t r i n g) *
* N o O f L a y e r s { _ I n t e g e r) *
* Lea rn ingCoef (_doub le) MomentumCoef(_double) *
* P E s I n F i r s t L a y e r { _ I n t e g e r) . . . P E s I n L a s t L a y e r (_ I n t e g e r) *
* t Th re sho ld (_doub le) TransFunc<_short) fleta(_double) *
* t Thresho ld (_doub le) TransFunc(_shor t) Be ta (_doub le) e tc *
* w A c t i v e (_ s h o r t) WeightValue(_double) *
* w A c t i v e (_ s h o r t) WeightValue(_double) e t c *

v o i d w r i t e m l p (c h a r * f n , mlp *mlp)
{

FILE * f p :
char i n f o C l ?] :
i n t c n t ;

i f ((f p = f o p e n (f n . " w ")) = NULL)
p r i n t f (" _ W R I T E M L P () : Unable to open f i l e : X s \ n " . f n) ;

e lse
I

f p r i n t f (f p . "Xs\nXd\nXf X f X n " , m l p - > i d n . m l p - > n o l . m l p - > l c . mlp->m):
f o r (c n t = 0: c n t < m l p - > n o l ; cnt-H-)

f p r i n t f (f p . "Xd " . * (m l p - > n l + c n t)) :
f p r i n t f (f p . " \ n ") ;

f o r (c n t = 0: cn t < m l p - > t o t p e : cn t++)
(

s p r i n t f C i n f o . " X l d - > (X l d . X l d) " . c n t . (* (m l p - > p e + c n t)) . p o s .
(* (m l p - > p e + c n t)) . l a y e r) :

f p r i n t f (f p . " t Xf Xhd Xf X s \ n " . (* (m l p - > p e + c n t)) . t h r e s h o l d .
(* (m l p - > p e + c n t)) . t f . (* (m l p - > p e + c n t) > . b e t a , i n f o) :

}
f o r (c n t = 0 : cn t < m l p - > t o t w ; cnt-H-)

(
s p r i n t f (i n f o . " X l d - X X l d . X l d) " . c n t . (* (m l p - > w + c n t)) . f p e .

(* (m l p - > w + c n t)) . t p e) ;
f p r i n t f (f p . "w Xhd Xf X s \ n " . (* (m l p - > w + c n t)) . a c t i v e .

(* (m l p - > w + c n t)) . v a l u e , i n f o) :
1

f c l o s e (f p) :
)

222

Appendix 3.

UAF Datalogs.

The purpose of this appendix is to provide, in graphical format, a complete list of all the data
used in training the MLP Cascade, the MLP Switch, and the Fault Isolation Filters which
comprise the model based FDI solutioa

Each set of data was gathCTed finom the Unilever Automated Freezer via the CRLIOOO control
computer connected to a PC by a serial link, The fteezer was operated using the technique
detailed in section 3.1.4. to enable similar startup conditions before each nm. Usually several
runs were logged in any one day. and the log name indicates the date and the sequence of the
run; for example ll-9b.log. 11-9cJog and ll-9dJog refer to the 3rd. 4th and 5th datalogs
gathered on September 1 Ith.

All freezer inputs and outputs have been scaled to between ±1 for use with an MLP network
according to their maximum possible values detailed in section 3.1.1. A complete results list
detailing how the FDI system behaved for each datalog is provided in section 7.2.3.

223

3.1. Normal Operation.

10-7A.LOG

Inputs

1 n

-05

-1 ->

•C
4 so 60 70 80 90 100 110 120 130

Mix F to*

- - - - All Flow

" — Ice-aeon PumpSpeed

— " ~ CCmflex Poslttcn

Tims

Outputs

-1

80 • -90 ' H80. - JaO. 130

Bard Pressue

toe-aeam T ernperdu e

NH3 Evqxrtfion Pres&ue

Mooaload

Time

224

rnputs

0^

/ \

10 50 60 70 80 90 100 110 120 130

•OA

Time

Outputs

MlxFlowf

- - - - Air Flow

— — loe-<iecm Pump Speed

~ - ~ C o n f l o i Poeltton

no - " i a ^ -

•OJS
— Bore l Pressixe

* loe-a-ecmTemperctire

~ NH3 Evcpcr t f lcn Pressife

- M c t f a k x r i

T ime

225

24-7A.LOG

05

0 H

-05

10

05 -f

05

Inputs

1 ^ -

60 70 eo 90 100 110 120 130

MIX Flow

- - Ai l Flow

- loe-aecrn P u m p Speed

- - CCTTiftet Position

Time

Outputs

Bore l Pressue

loe-aecm T e m p e r t f u e

NH3 Evcixrctfion Pressve

Moraload

226

?4-7P.LOG

05

1 °

-05

to

Inputs

I j x r -

60 60
'I
70 80

Time

Outputs

90 100 110 120 130

MX Flew

Ab F l t M

Ice -oean Pump Speed

Ccmflet Position

Bore! Pressixe

loe-aeciTi T e m p e r c ^ e

NH3 Evcportf lon Pressue

Moraioad

T ime

227

24-7CXOG

rnputs

0 ^

i) , . . ^ - - .

10 60 70 80 90 ICO 110 120 133

•0£ H

Tlm«

Outputs

MbcFkJw

— - - • Al l Flow

— — l o e - a e c m P u n p Speed

— • ~ Ccjnnex Position

I

l i m e

BtTTd Pressue

loe-aean T e m p a t t i i e

NH3 Evcpof<*ion Pressixe

Motffloacj

228

24-7P.1UQG

1 -1

Inputs

0 5

"8 °
10

n /
» •

r
- I 1 1 1 1 1 1 1 1 1 1 r

60 70 80 90 100 110 120 130

-05 H

Time

Outputs

Mix Flo*/

- - • - AJr Flow

• ~ ~ l oe - aecmPu i rpS

~ " • ~ Cemflot Position

0 5

r w " T a o T30-

-05 H
BciTd Pressire

Ice-aeern T e n T » c t f u e

NH3 E v t p a c t k r t Pressu^e

Mota load

Time

229

0 5

I
1 0

•05

Inputs

T 1 P

10 20 30 dO. SO 60 70 80 90 100 110 12Q 130

Mix Flow

- - - - A t Flow

loc~oCkiik Pur rpSp66d

— • ~ Ccmflex PoslTlcn

Time

Outputs

-05

60 70 • " f t T " - " V D ' • * l O D — r i f f — l a r — l a c r

• BoreJ PressiFe

" " " ice-o-ecmTemperdi /e

" ~ NH3Evcpa(t lGnPre5StJe

- - - MOttJkxU

Time

230

24-7FXOG

Inputs

0 ^ f 7- — .
r\ r

60 70 60 90 100 110 120 130

-05

•1 J

Mix Flow

- - - - Air Flow

• ~ ~ IcD-aecm P u m p s

~ • ~ Ccmflex Position

Outputs

rao-- -n tJ • -128 '

-05
B o r d PresBif e

' ice-aecm T oTTicictf i ie

• NH3 Evcfx rc f l cn Pressue

- Mota lood

Timo

231

24-7G.LOG

-Oi

- I

-05

Inputs

:/
I

10 20 30 ^ . 50 70 80 90 100 110 120 130

PJtlxFlou/

Air Flow

Ice-aecjn Pur rp Speed

Ccmficx PcBlttan

Time

Outputs

Bore] Pressue

loe-aeoTi Te i rperc l i f e

NH3 Evcpcfction Pressire

Moratood

l i m e

232

M-7n.hOG

Inputs

0 H

-05

/

10 20 30 40 !50 (X>

T ' I > I r -

70 80 90 100 110 12D 130

Mix Flow

- - - - Air Flow

~ ~ toeKTecm PurrpSpeed

— - - Canflex Position

Outputs

05

a
5 °

-05

I I I • ! • I I f T I T I 1 ~ r

a o - - - - T O - - - t o o - - - - I T O - - - i » - • t 3 0 - - -

Bcnel Press i x e

toe-crecjTi T e n v B d i i e

NH3 E v q x r t f l o n Pressve

MoftTlood

Time

233

n - 9 A X 0 G

Inputs

05 H

a

1 ° ! • I I I 1 ' 1 1 r -

70 80 90 tCX) 110 120 I X

05

T > I r -

i r f , 50 60

Mix Flow

- - - - Air Flow

~ ~ lce-<iecm P u m p Speed

— • ~ ComfteK Position

Outputs

-05 H

90- --100-

Bar el Pressife

Ice-aecm Temperc<ue

NH3 Evqpciciion Pressife

M o t f f l o a d

Time

234

Inputs

-05

10

X , ^

50 60 70 80 90 ICS n o 120 130

Mix Flow

- - - - Air Flow

— — Ice-aecm Pump Speed

~ - ~ C c m f l a Position

Outputs

-05

m - - 129 -

Bare l Pressu-e

" • Ice-crecm Temperc fue

~ NH3 E v q x r c f k v i Pressue

- - Mota lood

T ime

235

OS

1 °

-05

- I

Inputs

20 3 0 ; « f ; 50 60 70 80 90 100 n o 120 130

— Mix Flow

— - - - A t Flow

— — lce-<jecm Pump Speed

~ " — Ccjnflot PoElflon

Time

Outputs

BCTTd Pressire

loe<rean T e r r p a c t u e

NH3 Evcpacl ion Presstf e

MOiCTiOaCl

Time

236

U-9P-LQG

-05

05

-05

Inputs

A

40 J 50 60 70 80 90 100 110 120 130

MbcFlow

- - Al l Flow

I c e ^ e o n Pump S peed

- - Ccjnflex Position

Time

Outputs

20 30 40 60 70 ffiT"- • K » - • - t i e - - i io - - - lao* •

Time

— Bore) Press i fe

" " loe-aecm T empe i t f ixe

~ NHS Evcpcrdlon Pressife

- - Mota lood

237

11-9R.LOG

0 5

-05

Inputs

10 20
U I ,
•30 • ^ 1 SO 70 80 90

TImo

Outputs

100 110 120 130

Mix Flow

- - - - AJr Flow

— — loe -aeonPumpSpeed

— Ccmflen PcEirkn

-05
Bore l Press i F e

" " * " iCTxrecm T emperct i /e

~ ~ N H S E v g o a d k n Pressue

~ - - MOtCTlOCXl

l i m e

238

18.3B.LOG

0J5

OA

40 %

-05 H

Inputs

r
60 70 80 90 100 110 laD 130

MlxFiow

- - - - Air Flow

loe -ae tm Pump Speed

— CcmfJex Position

T ime

Outputs

T I I r -

TO Un . . i l O . . . I Z L . . l a i . .

B a r d Pressixe

Ice-aecm T e m p a c ^ e

NH3 Evcpactfcvi Pressue

Mota load

T ime

239

Inputs

-05

60 70 80 90

— I • 1 1 1 1 1—

100 no)2D I X

Mix Flow

- - - - Air Flow

~ ~ ~ " Ice-cjecTTi Pump Speed

— CCTTiflex Position

T t m «

Outputs

1 n

« 0 U n . _ J I O 12D UQ.

-05
Bore l Pressire

loe-aecm T e m p a t f u e

NH3 Evcfxict f icn Pressire

Motcf lood

Time

240

18-3P.LQG

0 ^

I
1 °

Inputs

50 60 12D

MbtFlOW

— - - - Air Flow

— — ice-aecm Pump Speed

— - - Canflex Poalttan

TIma

Outputs

- 05

. . . s a m .110 . . . uo,

B a r d Presstf e

• " " loe-aetanTempertfire

• ~ NH3 Evcfxrcftcn Pressise

- - - Moffftood

Time

2 4 1

18-3E.LOG

» 40

Inputs

/ " " ' • ' " C : ;

I I ' I ^ — ' — • — ' — ' — • ' • ' ' ' ^

50 60 70 eO 90 100 110 120 130

MixFIOM

Air Flaw

Ice-aecxn PumpSpeed

Cannot Position

Time

Outputs

e o - . - oa . . . i o o l . . no . .120.

B o l d Presstf e

loe-aecjn T enpa-cTij-e

NH3 E v c p a d i c n Pressire

Motaload

I lmo

2 4 2

I8-3F.LOG

Inputs

OA

0

i ; : ^ . : ^

10 V 4 0 50 60 70 60 90]00 110 130 130

•0J5 Mix Flow

- - - - Air Flew

— — Ice-aocm Pump Speed

— CoTtriex Position

Outputs

JOO. . . UQ . . J2Du. . iXL

•05

-1

~ Bcnel PtaziMc

" loe-aecmTerTipercfu-e

• NH3Evc^< i lonPress t fe

Time

2 4 3

rnputs

• 40 so 00 90

TImo

Outputs

100

Mix FkJW

• - - - AJr Flow

" ~ Ioe-<jcKTTi PuiTipSpeed

— Ccmflex Position

BoreJ Pressixe

loe-aecTTt T empactfue

NH3 E v c ^ c t l o n PreisiFC

Matakxxi

Trma

2 4 4

31-3P.LOG

Inputs

05

-05

Time

Mix Flow

— - - - Ail Flow

— — loe -aecmPunpSpeed

— • - Ccmflex PcBltlon

Outputs

u a . . j a o .

•05 i
Borel Presstf e

loe-aeom Tenv»ctu-e

NH3 Evcpoctlon Pressue

Motor load

Time

2 4 5

Inputs

70 80 90

•05

•1

MbiFtow

- - • - Air Flow

I o c ^ e o n Pump Speed

— Conflac Position

Tlm«

Outputs

90 i f t r • - - w a . . . i X L . . u o . .

•05
Bore! Presstf e

t o e ^ e c m T erripertfue

NH3 Evqpacflon Prcssue

MoTdload

2 4 6

MP.LOG

Inputs

• £0 50 60 80 90 100 no 120 130

-05 H

Ab Flow

— — Ice-aeciT) Pump Speed

— - - Cemftec Poslftcn

Tlmo

Outputs

•OJSt
Bene) Pressixe

• " loe-aecin T emperctije

~ NH3 E v o p a c A n Pressif e

• - Motorloexl

2 4 7

Inputs

OA J:
50 60 70 60 90 100 110 120 130

•05

-1

MbtFKw

— - - - All Flaw

— — loe-aeam Purnp Speed

— - - Ccmfiex PoBlttoi

l i m a

Outputs

Borel Pressure

loe-aecjn TOTperctue

NH3 EvqxrcMon Pressue

Motdlood

2 4 8

1-4D.LOG

Inputs

0 5 -{

40 /

•05

Time

Outputs

MbcFkM

Air Flow

loe-aeon PurrpSpeed

Ccmflex Position

0 5

1 G D . . . U 0 . . 1 2 0 . . J 3 > . .

-05

TImo

8 Orel Press i r e

loe-aecm T OTpercXixe

NH3 Evtpatf lon Presfiue

Motakxxj

2 4 9

11-4E.L0G

Inputs

r .

r

1 ' ? ' I
60 70 80 90 100 no 120 130

-05

Time

Outputs

MixFtow

- - - - Air FtOftf

loe-aecjn Pump Speed

* ~ Ccmflex Position

-05

-1 J

Bore) Pressixe

" " loe-aocm T empercJue

— NH3Evcpae«onPre38iFe

• - Mctforkxxj

Time

2 5 0

OUJIi

g j i s s j d tjotPJ0Ct>A3 CHN _ _

sindino

peedsdLund ui»x>-a)| _

«>ld J1V . . . _

iindu]

S-4A.IU0G

Inputs

t

r V

10 ast so 70 80 90 100 110 120 130

-05

-1 J

Time

Outputs

Mix Flow

- - - - Air Flaw

lae-crecm Pump Speed

— - - Ccmflea Position

I -1

9(5 " " T e n — n o * - - ra)--T3o--

-05 -{
BtjrcJ Pressu^e

loe-aeam T errfjattue

NH3 Evcpact lcn Pressue

Motcrlood

Time

2 5 2

0 5

•05

Inputs

1 ^

/ 40 • 50 60 70

Time

Outputs

60 90 100 no 120 130

Mix Flow

" - - - Air Flow

ice-ciecTTi Pump Speed

— " ~ C c i n f l a Posltton

05 H

-05 H

J» J C D . . . i 1 0 12Pi L X) .

Bore* Pressi^e

" " " " loe-CTeciT)TenT3er(tue

— ~ NHSEvqsact lonPressue

- - Motoflood

Time

2 5 3

3.2. Barrel Pressure Transducer Fault.

]i<>-9A.lUQG

0 5

-05

0 5

e
a

-05

Inputs

/

» 9

, j , . .

•{r^^
9 9 9 9 9

MixFkM

- - - - Air Flow

" — loe-aecm Pump Speed

— - - Conflex Poslttan

Time

Outputs

~ Bore) Pressue

" loe-aecm Tenyert f i fe

• NH3 Evcporetlon Pressue

~ Motor load

Time

254

H6-9P.)UQG

OS

0 5 H

-I

Inputs

'"Xrr-

11 11 11 11 11 11 11

l i m e

Mix Flow

- - - - Air Flow

— — ice^jeCTTi Pump Speed

~ Ccmflex Position

Outputs

0 5

6 10 I I I I 11 11 I I I I 11 I I - • H i - . . J l l U . - . U

-05
~ Boie i Pressu^e

" loe-aecmTernpercfije

" NH3 Evcpa-tfton Pressire

- Marortood

Time

2 5 5

16-9C.LOG

Inputs

0 5

15 \ IS 15 15 15 15

-05

Time

Outputs

Mix Flaw

AH Flow

loe-aocm PumpSpeed

OdTrflot Position

Borel Pressu-e

loe-aeon T erperctfire

NH3 Evcfxrtftcn Pressire

Motortood

Time

2 5 6

]i6-9P>l.QG

Inputs

1 1

05 H

•0J&

-1

\/--

13 # 13 13 13 13 13 13 13

— MbtFlow

- Air Flow

• loe-aeanPumpSpeed

~ Ccmflex PcGltlon

Outputs

1 -1

Of,

e

I
1 °

•0J5
— B o l d Preseire

* loe-aecjnTempertfi/e

~ NH3 Evcfxrttkn PresKue

*" Motartood

Time

257

853

OUill

«>ld flV

ttndul

OOTVC-OI

10-3C.LOO

05

0 -

-05

-1

Inputs

/

n I I

Time

Outputs

MbcFkw

Air Flow

loe-aecm Punp S peed

Ccmflex PcBltlon

05

-05

10.

Borel Press ixe

l<»<recin T OTpercfue

NH3 Evcpatflm Pressue

Motorlooa

TImo

259

I0-3P.IL,OG

Inputs

1 1

/ ,

I J U Z l "

/12 12 12 12 12 12 12

-03

l ime

Outputs

•"MJxFlOW

- AJr Flew

• loe-aecmPunpSpeed

- Ocjitflex PcGlTion

03

10, 1 2 . . .

-03

TImo

Bcrrel Pressue

loe-oecm Tempactif e

NH3 Evcporctlon Pressive

Motload

260

10-3E.LOG

Inputs

• v

13 4
^ T I I I

13 13 13 13 13

•05 MlxFlow

- - - - Air Flow

— Ice-aecm Pump Speed

— " ~ CCTTrtlex PoolTlon

Outputs

05

•05 H

TIrrw

Bard Pressue

• • • • loe-creciTiTempercfu'e

" ~ NHSEvcpcrdlonPressu'e

— • - Motortood

261

10-3F,LOG

Inputs

1 1

OA

1 °

•05

10

\ y

13 13 13 13 13

MlxF lw

13

- - - - Air Flow

lce-<ietxn Purrp Speed

— " - Comnot Position

T(m«

Outputs

05

3
5

-05

10 13

Boiej Presve

l o e ^ a m T enrxrctue

NH3 Ev<pa'ctflon Pressife

MotakJod

rime

262

io-.iri.i,ori

Inputs

03

10

. / ' v

• 1

M

1 ^ r
M Id 14 14 14

-03

Tlma

Outputs

— Mix Flow

- AH Flow

" loo~oocm PumpSpsod

~ Ccmflex PoBlttcn

03

44 J4.

-03 H

Time

Qarei Pressu^e

loe-aeon TerrpercTij-e

NH3 EvcTxrcXton Presstxe

Motor load

263

10-3HXOG

(nputs

OA

10 IS \

V' — . s .

r s
• • — — — — 'I

15 15 15 15 IS 15

•05 Mix Flow

- - AH Flow

~ ice-aeamPurrpSpeed

- ~ Ccmfla Pcsltlcn

Time

Outputs

05

10 15 15 IS IS 15 IS l a - ' - H S - . - i a - . - i s u - -

-05

TImo

BcrreJ Press u^e

Ice-aeon T emperdire

NH3 EvQxrcflan PressiFe

Motor toad

264

10-3I.LQG

Inputs

05

10 IS

,-\ V — •

r—
15 15 15 15 15

•05 MlxFlow

— - - - Air Flow

— — iceMaeon Pump Speed

— - - Ccjnflest Position

Outputs

05

10 « • 15

-05
Bore* Press v e

• " • " loe-aecjn Temperctixe

~ ~ ~ NH3 EvcpcTdtcn Preosu-e

— - - Motolood

265

05 H

-05 H

Inputs

13 13 13 13 13

MtxFkM

— - - - AJr Flow

— loe-aecjTj Pump Speed

— • - OmfleK PoBlttan

Time

Outputs

1 n

05

z . ^ ^ ; ^ i „ j _ _ - - - _ - .

-05

10 13 13 13 13 13 13 13 13 " ' • K>. - - . 13-- - .13 J3 - - ,

BtrreJ Pressue

• - • • loe-aeanTempertfue

~ ~ NH3 Ev^orcrionPressue

— - - Morcrload

Time

266

OUJJl

sindino

posdsduunducsD-soi _

«»IJ flV . . - .

AOIdXIW

e u j i i

\- s-o-

6 \ 6
,•• . • t tr «•
/ • • • t

W 1 I «
*

*
•

/

\- ffO

s(ndu|

DDTVFZ

892

O U I l l

POOIUJDW _ . _

3xipjadu0iiu»i>eoi

0 I
ffO

sindino

eu i i i

peedsduundU£»x>-aoi .

- ^ I J flV _ _ - -

«oidiqw

01 01

r l -

Ot 01 01 0 1 / 01

7,
01

s-0-

— ^ i

' I •

/'•.;
/ *

ffO

s(ndu)

7-4C.1LOG

Inputs

05

10 11

-05 i

Time

Outputs

UJxFl

• Air Flow

• loe-CTetmPumpSpeed

~ Ctmflex Position

05

- 1 1 U

•05
Borel Pressu^e

loe-aecm Terrpeictu'e

NH3 EvQpcrctfkJi Pressire

Mamioad

269

3.3. Camflex Valve Fault

3-XM.LQG

05

-05

05 H

•05 H

10 10

/
/
I

Inputs

\ 10 10 10 10 10 10 Id 26

Mix Flow

- - - - Ab Flow

— — loe-aeam Pump Speed

~ CcxTrftex Postnon

Time

Outputs

10 10 10 10 16 26

Bene* Pressixe

loe-aecm T emper^ciire

NH3 Evcfxrctflon Pressue

Mcrtaload

270

3-12P.1UQG

Inputs

0 3

/

10 11 11 11 I I 14 24

-03

Time

Outputs

MxFlow

- - - - Air Flow

— — Ice-aeam Pump Speed

~ Cc¥nflc(PoBlflon

0 3

to 11 24

•03

TImo

B a i d Pressire

" • loe-aecm T errfKrctfue

NHSEvcTxrtflonPressife

- " Mcitalocxl

271

05

1 0

-05 H

Inputs

Time

Outputs

13 23

Mix Flow

- - - - At Flow

lce-crecn-> Pump Speed

— " ~ Ccmflex Poeinon

I -I

05

I
1 °

-05
BoreJ Pressue

loe-aecm T en^tiue

NH3 Evcportfton Presaue

Moforlood

l lmo

272

n-9A.l,QG

Inputs

05

0 +
to n

•05 H

Time

Outputs

Ait Flow

IceKTeczn PumpSpoed

Gcmflex PoslTton

05

10 n 11 19 29

•05

0

BcjreJ Pressu^e

loe-aecm Terrpermxe

NH3 EvqxTctficn Pressixe

Motofload

Tlma

273

n-9P.LQG

Inputs

1 -I

I I

•05

•1 -»

Outputs

MIxFlcw

Atr Flow

loe-aetm P u n p S p e e d

Ckjiiflcx Position

05

10 n 20

•05

TIm«

Bore) P r e s s u e

" loe-aean T empertfire

~ NH3 Evqxrct lcn Pressi /e

- Motakxjd

274

0 5

a

- 05

1

0 5

-05

-1

10

Inputs

11

MbtFlow

Air Flow

loe-oeon PumpSpeed

Ccmflac Position

Time

Outputs

29

Borel Pressif e

• " " " lae-oecTnTerrperctue

~ ~ NH3 Evqxrctflcn Pressue

— - - Motakxxi

Time

275

9LZ

9Z 91 01 01

I
/ 90

e u j i i

uouiaod louuxo

peedsdujnduoo£>-soi _

«>ld JW . _ _ _

p I-

^ ffo-

« 91 01 01 01 OL 01 01 ; 01 I 01
n.

01 01

L /

ffO

11.9E.LOG

0 5

•05

0 5

-05

Inputs

10 13 13 * 13 13 13 13 18

MbcFkM

• - - - Afr Flow

Ice-crecm Purrp Speed

— - - CcTTtflex PoBlttm

Outputs

16

BoreJ Pressu^e

• • l o e - a e c i n T e r r p e i (^ e

~ NH3 EvqxrtftonPresBife

- - Motcftotn

TImo

277

2LZ

O U I l l

ffO^

92 91 01 01

sindtno

poodsctund u i » j > a o i

«OtJiFV

S'O-

9Z 91 01 01 CL 01

' ' • M \

L ^

stndu)

ffO

117-3C.LQG

0 5

1 °

-05

-1

0 5

e

I

-05

•1 J

Inputs

117 I I I I n n I I 11 20

Outputs

L L

10 11 11 11 I I I I

Time

- - - - Air Flow

loe-<fooTi PumpSpiccd

Ccmflex PoalHon

J
I

•

1
I I 11

Bare* Pressure

loe-aecm TerrpercSue

NHS Evqpcrtftan Pressue

MatakKxi

279

17-3D.LOG

Inputs

0 H

-05

-1

10 11 11 I I 14 24

— M x F k w

- At Flow

•• IceKxecmPurnpSpeed

~ CCnr to Pcsinon

Outputs

•05
Borel Pressise

" loe-aeamTerTf]crctfue

• NH3 EwTXJrttan Pressue

" MotCT toad

Time

280

17-3E.I.QG

Inputs

0 5

1 2 I 1 2 ; 12 12 1 2 2 2

- 05

Time

MlxFkM

Air Flow

Ice-aecjn PunnpSpeed

Ccznflat Pooltlon

Outputs

0 5

-05

-1 J

Boie l Presstf e

loe-aecm T envKrctfi/e

NH3 EvcTXTctfkn Pressue

Motcrioad

TImo

281

17-3FXOG

Inputs

0 5

12 > 12/ 12 12 12 24

-05 Mix Flow

- - - - Air Flow

— loe-aecmPumpSpeed

~ • ~ Ccmnex PoBltkn

Outputs

•05
B o T d Pressu^e

• " Ice-aecm T empertfife

~ NH^EvcpcTCtflonPressue

- - Motolood

t ime

282

n-3Q.hOG

Inputs

0 5

13 13 23

-05

Time

Outputs

MbcFkM

- - - - Air Flow

~ ~ loe-aecm PumpSpeed

Gtmflot PoBltlon

0 5 i

-05
Bare) P ros txe

Ice-aecm I empercrue

MH3 EvqxTtflon PresBise

Mulutood

283

li7-3H.l.OG

OS H

0 -

-05 H

I 1

0 5

1 °

•05

Inputs

13 • 13 13 13 18

MlxFtow

- - - - Air Flow

— — Ice-aecxn P u n p Speed

~ Cannflot Poaltlon

Outputs

16

~ — Bore! P r e s s u e

• " loe-CTecmTefrpeKli/e

~ NH3 EvcpcTtftan Pressif e

- - Motuioad

Time

284

8-4D.LOG

Inputs

10 10 10 10 18

•05

Time

Outputs

Mix Flow

Air Flow

loe-aeoti PurrpSpeed

Ccmflex ROB man

0 5 H

10 18 28

-05
B a r d Pressif e

• " Ice-aeon T empertfixe

~ NH3 Evcpo-dlon Pressue

- - Motatood

285

Inputs

0 5

I I

-05 MbcFkiw

- - - - Air Flow

— — loe-aecm PumpSpeed

~ Ccrnflex Pcoition

Outputs

0 5

29

-05 H
Borel P r e s s u e

loe-aeon T empercfixe

NH3 Evcpcrc^ton Pressue

Mororload

l i m e

286

8-4G.LOG

Inputs

0 5

I I 11 11 16 26

-05 H

Time

Outputs

MIX Flow

- - - - Air Flow

— — loe-aecm Punip Speed

~™ " ~ Contiex Posttton

0 5 H

16 26

•05
Btuei P r e s s u e

Ice-aecm TernpeKtire

NH3 Evqptrcflon Prcssi ie

Motor load

287

8-4H.LOG

Inputs

0 5

r

"}2 12 12 17 27

K35 H

Time

Outputs

Mix Flow

AbFlotf

loe-oecm PumpSpeed

Ccintet Poolflon

0 5 H

1 °

— 1

-05 H
Barel Pressu^e

Ice-aecm Tenperctij-e

NH3 Evcportfion Pressixe

Motor load

Time

288

Inpxits

0 ^

I 0

-05

•1

r •

Jo 70 80 90 1G0 110 12D 130

Mix Flow

— - - • Air Flow

— — loe-aecm Purrp Speed

— - - Ccmfiex Position

Tlm«

Outputs

0 5

123 I M

•05
~ BcTTd Presstre

" loe-aecm T empdcti fe

NH3 Evqx jc t lcn Pressife

- MotakxzJ

289

8-4.T.LOG

Inputs

0 5

10 20 30 130

-05

Time

Outputs

Mix Flow

— - - • At Flow

— — loe-aecm Pump Speed

— • ~ Ccmftet Pooltlon

0 5 H

120 130

•05
Borel P r e s s u e

tae-aecin T errpercrue

NH3 EvQpCTChan Pressue

Motoflood

290

3A. Liquid Ammonia Hand Valve Fault.

17-3I,lfOG

1 1

•05

1 1

•05 H

-1

10

Inputs

20 30 40 SO 60 70 00 100 110 12D 130

MbcFiow

— - - - Air Flow

— — loe-oecjn Pump Speed

— - - Canflex Position

Outputs

90 100 110 12D 130

B a r d Pressire

loe-aecm Tenvsertfi/e

NH3 Evopo-ctlon Pressue

Time

291

ouxii

aJV)»JU»lUJDOI«D| . . , .

GCl C E l Otl OOt 06 09 OZ 09 OS OP

sjndTO

poQdsciijndui39o-soi _

»Dld W - - . _

"AOIdXIW

011 001 06 08 09 OS 07

*

s(ndu|

17-3K.LOG

Inputs

•05

50 60 70 80 90 110 12D 130

Mix Flow

- - - - At Flow

loe-aecxn Pump Speed

— CoTillex PcBltton

Time

Outputs

1 ^

-05
~ Bore) Pressue

• loe -aecmTerrperc^e

• NH3 Evcportflon Pressire

- Moftnoad

Tim©

293

18-3G.LOG

Inputs

0 5 H

-05

V • ^

50 60 70 80 90 100 110 12D 130

MbcFkM

- - - - Air F l w

— — loe-aecm Pump Speed

" ~ CoiiUac Pcslrton

Ttmo

Outputs

•05 H
Bare) Pressise

lo&oeom I efrvxrctue

NH3 Ev<patftan Pressue

Time

294

18-3H.LOG

Inputs

1 -I

OA

0 1

-05 H

% 40 50 to 70 90 100 110 120 I X

MX Flow

- • • - Air Flow

— loe-aecm Pump Speed

— " — CcrnfJex PoGlItan

Timo

Outputs

-05 H
Bare) P r e s s u e

• • " • loe-aeomTenpcrct i je

~ ~ NH3 Evqporcftji Pressue

— - - MottTtoad

295

Inputs

OJS> H

40 < 50 60 eo 90 1G0 110 lao 130

Mix Flow

— - - - Air Flow

— — i c e - a e a n P u n p S p e e d

— • ~ Camflex Position

Time

CXitputs

0 ^

I
1 °

-1

20 30 40 50 60 80 90 100 110 120 130

B a r d Pressu^e

" " loe-aetxn T empeic<ixe

~ NH3 Evqxrtf lon Pressue

- - Motakxxi

Time

296

Inputs

0 5

5 °
t 40 60 70 80 90 ICO 110 12D 130

-05 Mix Flow

Air Flow

— — loe-oecTTi Pump Speed

— • ~ CcrnflcK Pooltlon

Outputs

1 T

0 5

10 60 80 100 110 I2D 130

-05

•I -»

Bore) Pres8i*e

" " • " loe-aecmTerrperctfue

~ ~ NH3 Evcpo-ctloi Pressue

— - - Motcrlood

Time

297

7-4F.LQG

Inputs

1 n

• 1 r - — I
•

40 GO 60 70 90 1G0 110 12D I X

MbiFlow

Air Flow

Ice-aecm PurrpSpeed

Ccznnec PoBltlon

Tlm«

Outputs

1 1

0 5

50 60 70 80 90 1GQ 110 120 I X

•05 H

•1

Boie i Pressif e

laeKTecm Tenpert f i re

NH3 EvcperotkJi Pressue

Morakxzj

Time

298

7-4G.LOG

Inputs

0 5 H

0

10 40 7 50 60 eo 90 100 110 12D 130

OA

Time

Outputs

Mix Flow

— - - - AJr Fl<w

— — Ice-aecxn Purrp Speed

— • - Ccmftex PoDlttan

•OJb
Bore) Pressue

" " " " loe-aecmTenTie^cSi/e

~ ~ NH3 EvcfXTdionPressife

— - - Motatood

299

7-4H.)UQG

Inputs

•05

40 50 60 70 90 100 110 120 130

Mix Flow

- - - - Air Flow

~ ~ ~ ~ loe-aecm PumpSpeed

— " ~ CCTTiflec PcGltlcn

TImo

Outputs

•05
Bore) PressiFc

loe-aeon T empactxie

NHS Evqaorctlon Pressive

Motahxxi

TImo

300

7-4I,LQG

Inputs

0 5

10 so 60 70 60 90 100 110 I2D 130

-05 Mix Flow

— - - - Air Flow

— — loe-aeon Pump Speed

— - - CCmftex PoBltlon

Outputs

I 1

0 5

10 20 30 50 60 90 100 110 130

•05
Scire* Pressif e

loe-oecm T enrx rc tue

NH3 EvqDcrtflon Press if e

MOtCTlOOd

Time

301

7-4,I.LQG

Inputs

1 n

-05

• • r - —

so
1 I 1 I t • [• I I I I [I 1

60 70 80 90 100 110 12D I X

Mix Flow

- - - - Air Flow

loco'cuii PumpSpcod

~ " ~ Ccznflex Poslflon

Tima

Outputs

-05
BmeJ Pressixe

- - - - loe-aeamTerrpcrdi ie

~ ~ NH3 Evqpffctflon Pressve

— - MoratooJ
TInw

302

7-4K,LOG

Inputs

0 5

10 50
I ' I • I 1 • I I i I I I I

AO 70 80 90 100 110 12D 130

-05

Time

Outputs

Mix Flow

— - - - AJr Flow

— — loe-aecm PurrpSpeed

— - - Canaex PoBlttan

0 5

10 20 30 40 50 60 80 90 1G0 110 120 130

-05 H

-1 -*

Borel Pressue

Ice-aecm Tenipertfire

NH3 ivcpaakn Pressue

Monrload

Time

303

S-4B.LOG

Inputs

0 5

10 40 ' / 60 60 70 80 90 100 110 12D 130

•05 Mix Flow

- - - - Afr Flow

— — loe-cecm Purrp Speed

~ - ~ Camftet Position

Outputs

OS H

10 60 80 90 100 110 120 130

•OA
Bare) Pressue

* loe-oecmTeniperctu'e

~ NH3 Ev<porctian Pressue

- MotorKxU

Time

304

8 - 4 K . I . Q G

Inputs

1 n

OA

•05

•1 -«

20

t • • *
•

I t • •
(• I *

• • > \

30 40 / 60 70 90 1CD no 120 I X

MtxFtOM

- - - - Air Flow

— — loe-creamPurrpSpeed

~ ~ " ~ Ccmflex Position

Tlm«

Outputs

0&

3 °
80 90 100 110 120 130

Borei Pressue

• " loe-aecm T empertfue

NH3 Evcpcjdlan Presstfe

" ~ Moreitood

Time

305

8-4 .T,LOG

rnputs

40 50 60 70 90 ICQ no lao lao

— MtxFkMf

- Air Flow

" loe-aecmPumpSpced

~ Ccmftoc Position

Time

Outputs

-05

Time

— Bard Pressue

• " loe-aeamTernperttue

— NH3 Ewpercllon Pressi^e

— - Motatood

306

	A NEURAL NETWORK BASED APPROACH TO FAULT DETECTION IN INDUSTRIAL PROCESSES
	Recommended Citation

	tmp.1730156331.pdf.IinS7

