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Abstract 

Coral reefs are high in species diversity with a low effective population size for most species and a high 

incidence of specific co-evolved relationships. Hermatypic corals are associated with, and attract a 

variety of, symbionts and commensals which helps to maintain coral reef biodiversity. However, little is 

known about such associations. Tropical tube-dwelling polychaetes provide an interesting surrogate in 

the enhancement of current understanding of such associations posing the question: what is the nature 

of the symbiotic association between tropical tube-dwelling polychaetes and their hermatypic coral 

hosts? This question is addressed by reviewing the life history and ecology of the conspicuous serpulid 

Spirobranchus giganteus (Pallas, 1766), an obligate associate of living hermatypic corals showing host 

species specificity. The distribution, life history and behavioural patterns of this taxon are suggestive of 

more than the currently perceived commensal association between its coral hosts. Most notably, recent 

studies have suggested the up regulation of Spirobranchus giganteus symbiotic association from 

commensalism to mutualism, with Spirobranchus giganteus protecting the coral host from predation, 

and increased water circulation to adjacent polyps facilitating coral recovery in algal dominated coral 

colonies. Such recent evidence illustrates the importance of associate organisms on coral reefs. 
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Introduction 

Coral reef communities are renowned for their ecological complexity, exemplified by a 

level of coevolution among interacting species (DeVantier et al, 1986). Understanding such 

interactions and subsequent associations helps understand coral reef biodiversity, trophic 

structure and biochemical cycling, therefore assisting in making informed decisions on coral 

reef conservation. Hermatypic (reef building) corals deposit a structural CaCO3 framework 

contributing up to 97% of the gross carbonate budget (GCP) of a coral reef (Mallela & Perry, 

2007). Corals provide secondary space to other organisms (Todd, pers.comm., 2007), 

attracting a variety of symbionts and commensals such as sponges, polychaetes, pyrgomatid 

barnacles, vermetid gastropods, bivalves, tunicates, and hydroids (Scott, 1987; Scott & Risk, 

1988; Kleemann, 2001; Tapanila, 2004; Floros et al. 2005; Scraps & Denis, 2007).  

The term symbiosis is „the living together of unlike organisms (symbionts)‟ (Bary, 1879 

in Moran, 2006). For the purpose of this review the following definitions are of significance: 

parasitism, where one party gains considerably at the expense of the host (Dales, 1957); 

commensalism, where one party (the commensal) benefits whilst the host suffers no 

deleterious effect; and mutualism, where two (or more) species reciprocally benefit from the 

presence of the other species (Martin & Britayev, 1998).  

It has been suggested that the species composition of associated polychaetes is a 

reflection of the surrounding environment (Bailey-Brock, 1976; Low et al. 1995). Polychaete 

tube-dwelling associates either bore into the coral matrix as bioeroders, or build a calcareous 

tube on the coral surface (Dai & Yang, 1995), contributing towards the reef‟s GCP as 

secondary carbonate producers (Bailey-Brock, 1976; Mallela & Perry, 2007). For example the 

composition of the polychaete boring community was seen to change with the increased 

degradation of Porites colonies (Pey-Clausade et al. 1992). Conversely sites with elevated 

sediment input have little, or no, serpulids (Perry & Smithers, 2006) due to the physical 

impairment of settlement, feeding, reproduction, and growth (Mallela & Perry, 2007).  

Little is known of the life cycles of commensal polychaetes (Nishi, 1996; Martin & 

Britayev, 1998; Kleemann, 2001), however what is known is based largely on the tube-dwelling 

serpulid Spirobranchus giganteus (Pallas, 1766), an obligate associate of living hermatypic 

corals found in tropical and subtropical waters (Smith, 1984a; Strathmann et al. 1984;  
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DeVantier et al. 1986; Marsden, 1984, 1986, 1987; Marsden & Meeuwig, 1990; 

Marsden et al. 1990; Hunte et al. 1990a, b; Dai & Yang, 1995; Martin & Britayev, 1998; Qian, 

1999;  Floros et al. 2005; Lewis, 2006). S. giganteus is a dioecious filter feeding heterotroph, 

with a planktonic larval phase of 9-12 days (Smith, 1984a; Marsden, 1987; Marsden et al. 

1990) and an estimated adult life span of over 30 years, one of the longest among marine 

annelids (Nishi & Nishihira, 1999). Its calcareous tube can be up to 20 cm in length and is 

usually deeply embedded in the coral skeleton (Nishi & Nishihira, 1999), which has often led to 

the misinterpretation that S. giganteus is a boring species (White, 1976; Nishi, 1996; Borger, 

2006; Scaps & Denis, 2007). However Smith (1984a) reported that larvae settle on exposed 

coral skeleton and extend their tubes towards the living tissue, which subsequently obscures 

the tube.  

The non-random distribution of Spirobranchus giganteus on specific coral species has 

been well documented (Bailey-Brock, 1976; Smith, 1984a; Scott, 1987; Marsden, 1987; Hunte 

et al. 1990a; Pey-Clausade et al. 1992; Dai & Yang, 1995; Nishi, 1996; Floros et al. 2005) and 

could be a consequence of larval preference at settlement or differential mortality following 

settlement (Connell, 1985; Hunte et al. 1990a). Much work therefore, has been done on the life 

history and ecology of Spirobranchus giganteus (Ten Hove, 1970; White, 1976; Strathmann et 

al. 1984; Smith, 1984a, b, 1991; DeVantier et al. 1986; Marsden, 1984, 1986, 1987; Marsden 

et al. 1990; Marsden & Meeuwig, 1990; Hunte et al. 1990a, b; Dai & Yang, 1995; Nishi & 

Nishihara, 1999; Floros et al. 2005), yet the relationship with its coral host is still unclear. 

Strathmann et al. (1984) and DeVantier et al. (1986) suggest that the coral-worm relationship 

is mutualistic, the coral providing the worm with support, nutrition and protection from predation 

by fish and Crustacea, and the worm enhancing water circulation for coral feeding and 

providing a refuge for polyps adjacent to the tube from predation and algal growth (Dai & Yang, 

1995; Ben-Tzvi et al. 2006). S. giganteus also appears to have unique factors within its 

ontogeny endearing it more suitable to tube-dwelling and a symbiotic existence than its 

Sabellid counterparts; a calcareous tube and thoracic membranes being the synapomorphic 

characters (Ten Hove, 1984; Smith, 1991), as well as reduced regenerative abilities (accept for 

the operculum) and increased specialization of the branchial crown (Smith, 1991). 

There are two currently recognized subspecies for Spirobranchus giganteus primarily 

based on operculum morphology (Ten Hove, 1970; Nishi, 1996): Spirobranchus giganteus  
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giganteus (Pallas, 1766) (Atlantic and Caribbean) with operculum spines emerging separately 

and highly variable; and Spirobranchus giganteus corniculatus (Grube, 1862) (Red Sea to 

Central Pacific) with operculum spines joined at a common base, being less variable. However, 

operculum variability observed within this taxon has caused much confusion (Ten Hove, 1970; 

Nishi, 1996). Therefore for the purpose of this review the two subspecies will be referred to 

collectively as S. giganteus unless specified otherwise. 

The aim of this review is to determine the symbiotic association between tropical tube-

dwelling polychaetes and their hermatypic coral host, through a critical evaluation of the life 

history and ecology of the conspicuous serpulid Spirobranchus giganteus (Pallas, 1766). 

 
Distribution 

The non-random distribution of Spirobranchus giganteus, on specific coral taxa, has 

been well documented even though the coral species colonized differ geographically (Bailey-

Brock, 1976; Smith, 1984a; Scott, 1987; Marsden, 1987; Hunte et al. 1990a; Pey-Clausade et 

al. 1992; Dai & Yang, 1995; Nishi, 1996; Marsden & Meeuwig, 1999; Floros et al. 2005). Dai & 

Yang (1995) suggest that S. giganteus may be morphologically selective of coral species; 

tabulate Acropora spp. provide an elevated platform which reduces sedimentation risk (Floros 

et al. 2005), foliaceous and branching forms often experience a higher rate of mortality than 

the massive form during natural disturbances. Coral species frequently colonized by S. 

giganteus, in both the Caribbean (Hunte et al. 1990a) and the Pacific are of massive form and 

occur in prominent positions (Strathmann et al. 1984; Hunte et al. 1990b; Martindale, 1992; Dai 

& Yang, 1995). Massive corals usually have a longer life span, for example: a colony of the 

frequently colonized host coral Porites lutea was estimated at being over 500 yrs (Dai & Yang, 

1995), therefore worms inhabiting such corals might have higher fitness (Hunte et al. 1990b). 

There is no information in longevity of S. giganteus on different coral species (Hunte et al. 

1990b); however Smith (1984b) and Nishi & Nishihira (1999) suggested a life span of over 30 

yrs. Nishi & Nishihira (1999) further suggested that host corals are likely selected with a similar 

growth rate to that of the worm. S. giganteus regulates the growth rate of its tube by changing 

the wall thickness, yet settlement on rapidly growing species weakens the tubes, and 

settlement on slow growing corals resulting in stunted tubes. Hunte et al. (1990b) showed that 

spatial constraints did not appear to limit worm body size as coral species with the largest  
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worms were the most heavily colonized in the field, and were also preferred by worm larvae in 

the laboratory. They concluded that the non-random distribution of S. giganteus on corals 

results primarily from active habitat selection by planktonic larvae, and that habitat selection 

displayed by the larvae is probably adaptive (Hunte et al. 1990b). 

Both corallite (skeletal structure of a single polyp) size and morphology have been 

related to coral associate distribution (Scott, 1987; Dai & Yang, 1995; Wielgus et al. 2006a; 

Scaps & Denis, 2007). Wielgus et al. (2006a) showed that boring spionid worms generally 

infested plocoid (corallites with their own walls) coral species with small polyps. Such species 

have a high coenosteum to corallite ratio; which may facilitate infestation by providing a 

sufficient surface area. Similarly the boring bivalve Pedum spondyloideum has been shown to 

favour corals with small corallites such as Montipora, Porites and Cyphastrea (Kleemann, 

2001; Scaps & Denis, 2007). The same can be said for Spirobranchus giganteus as illustrated 

in Figure 1a and Table 1, where the majority of coral species with small corallite size were 

significantly (F13=2.55, P<0.005) inhabited by S. giganteus. Such corals are predominantly 

plocoid (Figure 1b & Table 1) and species such as Porites lutea and Porites lobata are  
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Figure 1: (a) Total number of worms vs corallite size of host coral colonies. 1-Way ANOVA; data square root transformed, 

F13=2.55, P<0.005 (Data from: Dai & Yang, 1995). (b) Colony morphology of host corals from the Pacific and Atlantic. Plocoid: 
Corallites with own walls; Ceroid: Corallites with shaired walls (Veron, 2000; Data from: Bailey-Brock, 1976; Marsden & 

Meeuwig, 1990; Hunte et al. 1990; Dai & Yang, 1995; Beaver et al. 2004). 
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extremely robust in terms of colony morphology as well as photochemistry (Henniger et al. in 

press). However Smith (1984a) observed that S. giganteus larvae successfully settled on the 

non-living edge of live corals and that larvae which did settle on the live coral tissue fell off after 

several days, unable to make a sufficient attachment. Juveniles found on live tissue away from 

the coral boundaries were suggested to be as a consequence of recent damage e.g. from 

scarid grazing scars (Smith, 1984a).   

The distribution and abundance of Spirobranchus giganteus, in different reef areas is 

likely affected by environmental factors and the availability of colonized substrate (Dai & Yang, 

1995). S. giganteus abundance has been shown to be highest between 6-18 m depth (Dai & 

Yang, 1995; Floros et al. 2005), yet mean worm density on individual coral species was found 

to be independent of the abundance, distribution and competitive dominance of available coral 

by Hunte et al. (1990a) and Marsden & Meeuwig (1990). Conversely, Dai & Yang (1995) found 

that coral species in Taiwan frequently colonized by the worms such as Porites lutea, Porites 

lobata, Porites lichen, Montipora informis, are competitively subordinate in terms of aggression 

(Dai, 1990). Very few species with high aggressiveness such as Mycedium elephantotus 

, Merulina ampliata and Galaxea astreata were successfully colonized by the worms (Table 1). 

These facts indicate that planktonic larvae of S. giganteus may be susceptible to the 

nematocysts of aggressive corals (Dai & Yang, 1995). However Smith (1984a) observed that 

searching larvae (from the Great Barrier Reef) appeared immune from the polyps‟ nematocyst 

discharge. There appears to be disparity between the different coral species colonized relative 

to the two subspecies, thus geographic location. It is possible that Spirobranchus giganteus 

giganteus is more robust in terms of nematocyst defense and colonization selection than 

Spirobranchus giganteus corniculatus. Further data are necessary in order to observe any 

notable trends between the two regions. The Spirobranchus genus does confer a degree of 

immunity to nematocyst discharge (as observed by Smith, 1984a) as both subspecies are 

known to inhabit the aggressive hydrocoral Millepora spp. (Hunte et al. 1990a; Dai & Yang, 

1995; Lewis, 2006; Ben-Tzvi et al. 2006). This may, however be consequential, unlike 

Spirobranchus polycerus (Schmarda) which is constrained by adaptation through 

hermaphroditism, to a commensal existence primarily on Millepora complanata (Marsden, 

1993; Lewis, 2006). Interestingly larvae of the Caribbean boring bivalve Lithophagia bisulcata  
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Table 1: Coral species, corallite size, number of colonized colonies by Spirobranchus giganteus, total number of worms and 

colony morphology (Data in Taiwan, taken from Dai & Yang, 1995; Corallite size and Morphology from Veron, 2000). 
*Aggressive corals (Dai, 1990). 

 

Coral Species 
Corallite 

(mm) 
No. Colonized 

Total 
Worm Colony 

Colonies No. Morph 

Porites lutea 1.2 40 1138 Plocoid 

Porites lobata 1.5 35 450 Plocoid 

Montipora informis 1 33 53 Plocoid 

Porites lichen 1.1 21 134 Plocoid 

Montipora spongodes 1 7 26 Plocoid 

Montipora spumosa 1 6 21 Plocoid 

Montipora monasteriata 1 7 10 Plocoid 

Montipora venosa 1 3 6 Plocoid 

Favia speciosa 10 3 3 Plocoid 

Cyphastrea serailia 3 3 3 Plocoid 

Favites abdita 11.5 3 3 Plocoid 

Montipora foveolata 1 4 34 Plocoid 

Montipora tuberculosa 1 2 8 Plocoid 

Montipora grisea 1 4 18 Plocoid 

Montipora aequituberculata 1 2 3 Plocoid 

Montipora foliosa 1 2 2 Plocoid 

Millepora platyphylla 1 5 6 Plocoid 

Acropora loripes 2 1 9 Other 

*Galaxea astreata 3.5 1 8 Other 

Porites rus 0.6 1 6 Plocoid 

Favia pallida 8 1 5 Plocoid 

Seriatopora hystrix 1 1 3 Other 

Stylocoeniella armata 1.5 1 3 Other 

Montipora verrucosa 1 1 1 Plocoid 

Acropora digitifera 2 1 1 Other 

Porites annae 1.3 1 1 Plocoid 

Cyphastrea microphthalma 3 1 1 Plocoid 

Astreopora cucullata 2 1 1 Conical 

Barabatoia amicorum 10 1 1 Other 

*Mycedium elephantotus 15 1 1 Excert 

*Merulina ampliata 1 1 1 Valleys 

Stylophora pistillata 1 1 1 Conical 

Montipora undata 1 2 6 Plocoid 

Porites nigrescens 1.3 1 2 Plocoid 

Millepora tenera 1 1 3 Other 

Cyphastrea chalcidicum 3 1 1 Plocoid 

Acropora humilis 2 1 1 Other 

Acropora hyacinthus 2 1 1 Other 

Coeloseris mayeri 4 1 1 Ceroid 

Favites pentagona 8 1 1 Ceroid 
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(d‟Orbigny) are immune to its preferred host coral Stephanocoenia michelini nematocysts, yet 

stung by those rarely inhabited (Scott, 1988). 

The distribution of Spirobranchus giganteus therefore, is host specific, due to differential 

mortality following settlement or pre-settlement larval preference, which has been found to 

respond positively to water-borne exudates of corals commonly colonized by S. giganteus 

(Marsden, 1987; Marsden et al. 1990; Marsden & Meeuwig, 1990). Interestingly, larvae may 

also be attracted to conspecifics as adults cluster on some Porites colonies for example, while 

adjacent colonies may be devoid of worms (Smith, 1984a). A reproductive strategy that infers 

maximum gamete fertilization and overall survival on the reef (Dai & Yang, 1995, Rodriguez et 

al. 1993, Pawlik, 1991). 

Larval Settlement & Development 

Resettlement preferences are reflected in adult distribution (Hunte et al. 1990b). During 

the planktonic stage, larval responses to biological factors: conspecifics, sympatric species, 

biofilms, prey species, and environmental factors such as water flow, light intensity, chemical 

cues and properties of the substrate may have a great influence on larval dispersion and 

settlement (Pawlik et al. 1991; Rodriguez et al. 1993; Qian, 1999). Larval settlement of the 

polychaete Capitella sp I, for example, was significantly enhanced by sulphide enriched 

sediments (Cuomo, 2005). Spirobranchus giganteus larvae exhibit active preference in the 

laboratory for the coral species most heavily colonized in the field (Marsden, 1987; Marsden et 

al. 1990; Marsden & Meeuwig, 1990).  

Smith (1984a, b, 1991) and Marsden (1984, 1986, 1987) in a series of studies on the 

larvae of Spirobranchus giganteus, attributed various developmental and behavioural 

characteristics to the association between S. giganteus and its host coral. S. giganteus is 

dioecious with a 9-12 day planktotrophic larval phase (Smith, 1984a; Marsden, 1987; Marsden 

et al. 1990). Within the first 24 hrs the first larval ocelli (compound eyes) develop (Smith, 

1984a, b) facilitating positive phototaxis to visible light of wavelengths shorter than 590nm 

(Marsden, 1984). Smith (1984b) found that simple cerebral ocelli photoreceptor cells display a 

close structural and functional relationship between ciliary rootlets and specialized 

mitochondria that exhibit a level of structural advancement only otherwise seen in the lancelet 

Branchiostoma. Olsson (1962) proposed that they were trapping energy produced by the  
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mitochondria as a role in receptor conformation. Furthermore, gradual development of the light 

response reflects stages in ocelli photoreceptor development (Smith, 1984a, b) and the 

establishment of functional neural connections developing in 24-48 hrs larvae (lacalli, 1984). 

Interestingly, the activity patterns within the nervous systems of the nudibranch larvae Phestilla 

sibogae changed in response to their coral prey exudates (Leise & Hadfield, 2000). Marsden 

(1987) found that the 1-4 day trochophore larvae of S. giganteus showed significant chemical 

preference to host coral, indicating chemosensory behaviour.  

The early development of such structures in the trochophore larvae may, therefore, 

confer to the attraction towards conspecific or coral exudates, mucus or a combination of these 

cues. Wild et al. (2004) reported that up to 80% of released mucus is dissolved, thus 

illustrating that mucus derived chemicals habituate the water column. Moreover simultaneous 

positive photo and chemotaxis during the planktonic stage might have the net effect of 

maintaining larvae below the surface waters over the coral reef, suggesting that the role of this 

stage in the life history of the worm is more than one of passive dispersal (Marsden, 1987).  

The exact role, if any, of ocelli receptors for chemosensory behaviour is unresolved. 

What is clear is Spirobranchus giganteus larvae respond to biophysical cues from adults or 

adult sites (Hunte et al. 1990b). Such cues mask the photoresponse at the demersal stage, 

immediately prior to metamorphosis which is not completed until after settlement (Smith, 

1984a; Marsden, 1984, 1986). Smith (1984a) observed that larvae enter a searching phase, 

swim over the substrate, pause and flex the abdomen from side to side across the substratum. 

Marsden (1986) suggest such behaviour maybe concerned with the development of coral 

species recognition. Settlement eventually takes place even in the absence of a suitable 

substratum, triggering the final phase of metamorphosis. Development must proceed therefore, 

according to a genetic programming (Smith, 1984a), unlike the Phestilla sibogae larvae which 

metamorphose only in response to a natural exudate from its prey Porites compressa (Leise & 

Hadfield, 2000). S. giganteus larvae forced to settle on a glass surface completed 

metamorphosis with no further development and died after two days (Smith, 1984a), indicating 

that survival of S. giganteus in dependent on its live coral host. Thus a number of sensory 

modalities are probably employed by the settling larvae, especially chemo-, thigmo-, and 

photosensation (Smith, 1984b).  
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On settlement Spirobranchus giganteus secrete a mucus tube, the basis for rapid 

carbonate (calcite or aragonite; Smith, 1985; Rouse & Pleijel, 2001) deposition towards and 

across the living coral surface (Smith, 1984a). The coral surrounds the tube and incorporates it 

within its skeleton. The settled worms rapidly grow and initially put down at least a body length 

of tube (0.5-1 mm) per day (Smith, 1984a). Palps soon develop and keep the tube opening 

smooth and moist preventing the overgrowth of host coenosteum tissue (Lewis, 2006). Larval 

ocelli are retained throughout metamorphosis and are initially responsible for the withdrawal 

response within 24 hours of tube construction, until the development of branchial 

photoreceptors and the operculum within 1-2 weeks (Smith, 1984b). The paired branchial eyes 

of S. giganteus represent the most complex photoreceptor organs yet described in the 

Sabellida and are probably the closest rivals to the compound eyes of arthropods (Smith, 

1984b). Such an advanced adaptation to tube-dwelling existence is considered of phylogenetic 

significance (Smith, 1984b).  

 

Spawning 
 

Natural spawning of Spirobranchus giganteus has seldom been observed (Smith, 

1984a). However, mass spawning events have recently been documented from the Gulf of 

Mexio (Beaver et al. 2004; Hickson, 2007). In both cases simultaneous spawning of male and 

female S. giganteus and host corals (Montastraea annularis, M. aveolata, M. cavernosa, M. 

franksi, Diploria strigosa), occurred in the evening during slack neap tides with nominal wind 

and wave action (Beaver et al. 2004; Hickson, 2007). Such conditions minimize gamete 

distribution by water turbulence and wave action, increasing the chances of fertilization. 

Simultaneous spawning may increase the likelihood of successful settlement, potentially due to 

coral exudates remaining in the adjacent water column. Such reproductive strategies have 

been shown to be successful in predation swamping (Gladstone, 2007); however this may also 

result in gamete dilution and sperm limitation. Interestingly, Biermann (1998) demonstrated 

positive selection for interspecific divergence in the gamete recognition proteins in six species 

of the sea urchin genus Strongylocentrotus. Variations in receptor proteins occurred due to an 

excess of and divergence in non-synonymous changes in DNA sequences between the six 

urchin species, facilitating successful fertilization without hybridization in urchins which have  
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overlapping ranges and spawning (Biermann, 1998). Biermanns work, however, could 

potentially illustrate what might be occurring between S. giganteus and its varying operculum 

types. It would be intriguing to see if variations in operculum morphology were host coral 

specific and clustered in distribution, thus intra specific divergence. 

The drag produced by winds blowing over the sea surface, and water flowing over a 

stationary bottom, creates strong vertical gradients in both magnitude and direction of 

horizontal flow (Eckman, 1996) which disperse pre-competent larvae (larval development 

before settlement) and water-borne exudates. The timing of spawning events and a preference 

by young Spirobranchus giganteus larvae for a substance diffusing from coral &/or 

conspecifics, acting together with a known positive phototaxis, may be adaptive helping to 

maintain larvae in surface waters over the reef in the vicinity of a specific coral until 

competency (Marsden, 1987). 

 

Trophic Interactions 

Spirobranchus giganteus like most coral associates, is a filter feeding heterotroph 

creating aboral (bottom up) feeding currents due to laterofrontal cilia but depends on ambient 

currents to prevent multiple re-filtration of its own excurrent stream through its branchial crown 

(Strathmann et al. 1984). Strathmann et al. (1984) demonstrated that currents created by the 

branchial crown draw water up from the coral surface. This may enhance water circulation and 

consequentially, the arrival rate of food particles to the coral polyps (Floros et al. 2005; Dai & 

Yang, 1995; Hunte et al. 1990), as well as providing nutrition for the worm. 

Improved water circulation close to the coral surface would decrease susceptibility to 

bleaching (Nakamura et al. 2003), improve dispersal of waste products of the coral host, and 

increase nutrient availability from waste materials excreted by the associated fauna (Mokady et 

al. 1998). The boring bivalve Lithiphaga simplex has been shown to produce considerable 

amounts of ammonium as nitrogenous waste products which are recycled by the coral host 

and may account for a significant portion of the coral/zooxanthellae nitrogen requirements 

(Mokady et al. 1998). Mokady et al. (1998) further considered that the symbiotic association 

between the bivalve and host coral to be mutualistic, however Lithophaga also colonizes dead 

coral substrata (Kleemann, 2001). Interestingly Rotjan & Lewis (2006) found that selective  
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Figure 2: S. giganteus with coral mucus (arrowed) in tentacle whorls (© Sonia Rowley). 

 
 

grazing by scaridae fish favoured colonies with high densities of associates. They further 

revealed that coral tissue associated with Spirobranchus giganteus had significantly higher 

nitrogen content compared to grazed and intact massive Porites colonies (Rotjan & Lewis, 

2006). Yet Kicklighter and Hay (2006) demonstrated that due to retraction and conspicuous 

branchial colouration, predation risk on S. giganteus was significantly reduced regardless of 

being significantly more palatable than other polychaetes. 

Biological systems that conserve or recycle nitrogenous materials are an advantage in 

oligotrophic waters typical of coral reef environments (Mokady et al. 1998). Fitt (1985) found 

that the zooxanthellae Symbiodinium microadriaticum were only attracted to nitrogenous 

compounds ~1 cm from source. He further noted that S. microadriaticum strains varied in 

chemosensory ability inferring preservation in strain selection between the host and 

dinoflagellate. Also Grover et al. (2006) using 15N-urea showed that urea uptake was at least 

4x higher in the coral than zooxanthellae, and 5x higher in the light, demonstrating the 

involvement of nitrogenous substances in the calcification process. Thus elevated nitrogen 

evident of coral associates such as Spirobranchus giganteus may assist in zooxanthellae  
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acquisition and calcification.  

Coral mucus is an important carrier of energy and nutrients with high concentrations of 

Ca2+ (Marshall & Wright, 1998; Clode & Marshall, 2002). Clode and Marshall (2002) suggested 

that coral mucus maintains a Donnan equilibrium (medium which separates an unequal 

distribution of diffusible ions between two ionic solutions) at the oral-sea-water interface 

facilitating Ca2+ uptake. Spirobranchus giganteus precipitates CaCO3 from glands adjacent to 

the coral surface, therefore it is possible that Ca2+ present in the mucus is taken up and used 

by the worm. Furthermore Wild et al. (2004) noted that up to 50% of photosynthate was lost to 

coral mucus. Coral mucus uptake (as illustrated by Strathmann et al. 1984; Figure 2) and 

utilization by S. giganteus, resulting in nitrogen secretion, subsequent use by the host coral 

and zooxanthellae with a possible increase in mucus Ca2+ concentration  further utilized by the 

worm may be occuring. To test this hypothesis, the use of 45Ca and 14C (as used by Marshall & 

Wright, 1998) and 15N (as used by Gresty & Quarmby, 1991) may ascertain any trophic 

recycling &/or niche partitioning (Tapanila, 2004) occurring between S. giganteus, host coral 

and its zooxanthellae. 

The microbial composition of coral mucus has also been well documented (see Brown & 

Bythell, 2005). Comparative analyses of the microbial content of coral mucus, worm gut 

content and exhalent using rpo PCR, DGGE, sequencing and clone library techniques (Bourne 

& Munn, 2005) may indicate if any microbes are being utilized by the worm with a potential 

view to pathogen removal.  

Therefore, the relationship between Spirobranchus giganteus and coral host may 

benefit from niche partitioning strategies including differing dietary requirements and vertical 

tiering (Tapanila, 2004). No alteration in corallite size or polyp density is also suggestive of a 

reduction in spatial competition between S. giganteus and its coral host, with its branchial 

whorls sufficiently above the substratum (Tapanila, 2004; Martin & Britayev, 1998). This is 

unlike boring spionids, which are shown to have marked decrease in polyp density immediately 

adjacent to their tubes (Wielgus et al. 2006a).  

Several associates benefit the hosts by preying upon the larvae of boring animals, by 

removing detritus and coral mucus, and even by attacking potential predators of the corals 

(Nogueira, 2003; DeVantier et al. 1986). DeVantier et al. (1986) suggested that a predator- 
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induced selection may be operating as an ecological mechanism in the development of the 

interaction from the Spirobranchus giganteus commensalism into facultative mutualism. 

Predation by Acanthaster planci on a colonized Porites colony induced retraction followed by 

immediate reappearance of S. giganteus. The operculum and branchial crown pushed against 

the tube feet and arms of the star fish, causing the predator to rapidly move away (DeVantier 

et al. 1986). Observations two years after this predation event revealed areas of living polyps 

beneath the worm‟s branchial crowns showing evidence of regrowth above the surrounding 

algal covered skeleton, with asexual budding occurring in the outermost polyps (DeVantier et 

al. 1986). Polyp recovery has also been documented on the faviid coral Cyphastrea 

chalcidicum which was covered in turf algae, apart from three small areas of living tissue 

surrounding S. giganteus tubes (Ben-Tzvi et al. 2006). After one year the coral tissue had 

rapidly grown, a phenomenon also observed in bleached Favia favus and predated Favia laxa 

colonies (Ben-Tzvi et al. 2006). Conversely, Borger (2005) stated that all Dark Spot Syndrome 

(DSS) Type III blemishes were caused by irritation of the coral surface from S. giganteus and 

horseshoe worms. Recent work by Renegar et al. (2007), suggest that DSS is likely a stress 

response instead of a true disease although S. giganteus was not specified. The consequence 

of DSS is of serious consideration as it has been shown to progress the more destructive Black 

Band Disease and White Plague (Rosenberg & Loya, 2004; Borger, 2005). 

 

Conclusion 

On reflection of the empirical evidence presented in this review there are clear adaptive 

responses to both a tube-dwelling and symbiotic existence expressed by the serpulid 

Spirobranchus giganteus. The nature of its symbiotic association with its coral host still 

remains to be seen. However, there are strong implications as to why this may be more than 

just a commensal association as is commonly perceived, probably a reflection of the current 

lack of knowledge in this area (Martin & Britayev, 1998).  

 Spirobranchus giganteus shows a non-random distribution on specific coral hosts 

(Bailey-Brock, 1976; Smith, 1984a; Scott, 1987; Marsden, 1987; Hunte et al. 1990a; Pey-

Clausade et al. 1992; Dai & Yang, 1995; Nishi, 1996; Floros et al. 2005), clustering within 

specific colonies. Such ecology has been shown to relate to coral morphology (Floros et al.  
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2005), aggressiveness (Dai, 1990), corallite size (Dai & Yang, 1995) and conspecifics (Smith, 

1984a). S. giganteus is uniquely adapted to tube-dwelling life possessing a specialized 

branchial crown and photoreceptors (Smith, 1991), spawning synchronicity (Beaver et al 

 

 
 

Figure 3: Clustering: Mutualism, commensalism or parasitism? (© Sonia Rowley). 

 

  
. 2004; Hickson, 2007), trophic interactions, predator defense and polyp growth (DeVantier et 

al. 1986; Ben-Tzvi et al. 2006). Yet such interpretations should be treated with caution, as the 

important issue is not the presence or absence of benefits and damages to each of the 

participants, but the balance between them (Mokady et al. 1998). Therefore evolutionary 

trends may exist within the term „symbiosis‟ between S. giganteus and its coral host (Figure 3). 
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