3 UNIVERSITY OF
% PLYMOUTH & pearl

School of Engineering, Computing and Mathematics Theses
Faculty of Science and Engineering Theses

2010

A study of iterative capacity-approaching codes and their optimal
decoding algorithms.

Li Yang

Let us know how access to this document benefits you

General rights

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies.
Please cite only the published version using the details provided on the item record or document. In the absence of an open
licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Take down policy

If you believe that this document breaches copyright please contact the library providing details, and we will remove access to
the work immediately and investigate your claim.

Follow this and additional works at: https://pearl.plymouth.ac.uk/secam-theses

Recommended Citation

Yang, L. (2010) A study of iterative capacity-approaching codes and their optimal decoding algorithms..
Thesis. University of Plymouth. Retrieved from https://pearl.plymouth.ac.uk/secam-theses/461

This Thesis is brought to you for free and open access by the Faculty of Science and Engineering Theses at PEARL. It
has been accepted for inclusion in School of Engineering, Computing and Mathematics Theses by an authorized
administrator of PEARL. For more information, please contact openresearch@plymouth.ac.uk.

https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/secam-theses
https://pearl.plymouth.ac.uk/fose-theses
https://forms.office.com/e/bejMzMGapB
https://pearl.plymouth.ac.uk/about.html
https://pearl.plymouth.ac.uk/secam-theses?utm_source=pearl.plymouth.ac.uk%2Fsecam-theses%2F461&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pearl.plymouth.ac.uk/secam-theses/461?utm_source=pearl.plymouth.ac.uk%2Fsecam-theses%2F461&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:openresearch@plymouth.ac.uk

UNIVERSITY OF
w PLYMOUTH

PEARL

PHD

A study of iterative capacity-approaching codes and their optimal decoding
algorithms.

Yang, Li

Award date:
2010

Awarding institution:
University of Plymouth

Link to publication in PEARL

https://researchportal.plymouth.ac.uk/en/studentTheses/ef3c2920-260a-4971-a0b9-966512cf28ce

All content in PEARL is protected by copyright law.

The author assigns certain rights to the University of Plymouth including the right to make the thesis accessible and discoverable via the
British Library’s Electronic Thesis Online Service (EThOS) and the University research repository (PEARL), and to undertake activities to
migrate, preserve and maintain the medium, format and integrity of the deposited file for future discovery and use.

Copyright and Moral rights arising from original work in this thesis and (where relevant), any accompanying data, rests with the Author
unless stated otherwise™.

Re-use of the work is allowed under fair dealing exceptions outlined in the Copyright, Designs and Patents Act 1988 (amended), and the
terms of the copyright licence assigned to the thesis by the Author.

In practice, and unless the copyright licence assigned by the author allows for more permissive use, this means,

That any content or accompanying data cannot be extensively quoted, reproduced or changed without the written permission of the
author / rights holder

That the work in whole or part may not be sold commercially in any format or medium without the written permission of the author /
rights holder

* Any third-party copyright material in this thesis remains the property of the original owner. Such third-party copyright work included in
the thesis will be clearly marked and attributed, and the original licence under which it was released will be specified . This material is not
covered by the licence or terms assigned to the wider thesis and must be used in accordance with the original licence; or separate
permission must be sought from the copyright holder.

Download date: 28. Oct. 2024

This copy of the thesis has been supplied on condition that anyone who con-
sults it is understood to recognize that its copyright rests with its author and
that no quotation from the thesis'and no information derived from it may be
published without the authors prior consent.
© Li Yang, August 2010.

A STUDY OF ITERATIVE
CAPACITY-APPROACHING CODES AND THEIR

OPTIMAL DECODING ALGORITHMS
by
Li Yang

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Computing and Mathematics
Faculty of Technology

,
&
.
z <
o/

8

*Mo®

h
«\V Uy

August 2010

A Study of Iterative Capacity-Approaching Codes And
Their Optimal Decoding Algorithms
by
Li Yang

Abstract

Since the invention of turbo codes in 1993 and the rediscovery of
Gallager’s LDPC codes in 1999, Shannon’s determination of the ca-
pacity of memoryless channels has become touchable and achievable
by adopting these codes iterative decoding scheme. Theoretically,
turbo codes and LDPC codes have essentially revolutionised the cod-
ing field and become the most focused research topic in recent years.
Although these remarkable codes have demonstrated an asymptotic
performance close to.the Shannon limit, there exists a fact that the
practice still lags behind the theory by some margins, for instance,
the code constructional difficulty, decoding complexity and the hard-
ware or other implementation issues. In terms of the near optimum
decoding performance, it still seems infeasible in practice.

This research work endeavours to fill some of these gaps concerning
the design, analysis, application and algorithm optimisation of these
simple but good codes, which aims to provide a near optimum decod-
ing performance with much less computational complexity.

After the study of these codes and their iterative decoding scheme, we
introduce two hybrid decoding arrangements for the erasure channel
and the AWGN channel. Both decoding arrangements are designed
to achieve the near optimum or sub-optimal performance with much
less computational complexity compared to the maximum likelihood
decoder.

The second main contribution is to introduce an efficient algorithm
by exploring the codes tree representation to help analyse the codes
weight spectra and stopping sets. Furthermore, an extended decoding
method based on the state-of-art tree search is proposed to ensure the
optimum decoding performance for sparse structural codes in moder-
ate codeword length.

Contents

1 Introduction 1
1.1 A Brief History of Coding Theory 1
1.1.1 Turbo codes and LDPC codes 5
1.2 A General Model of Digital Communication System 6
1.2.1 Encoding 7
1211 Code. 7

1.2.1.2 Hamming Weight, Hamming Distance and Mini-
mum Distance 9
1.2.2 Channel Model 9
1.2.2.1 Binary Erasure Channel 10
1.2.2.2 The Additive White Gaussian Noise Channel . . 13
1.23 Decoding 14
1.3 Outlines of the Research Work 15
1.3.1 Objective and Scope of the Research 15
1.3.2 Organisation of the Dissertation 19
Nomenclature 1
I Iterative Decoding 23
2 Turbo Codes 25
2.1 Introduction 25
2.2 Convolutional Codes 25

iii

CONTENTS

2.2.2 'Trellis for Convolutional Codes 28
2.2.3 Decoding of Convolutional Codes 29
2.24 Likelihood functions 31
2.2.5 BCIJR Algorithm e e e 31
2.2.5.1 The a Recursion T 33

2.25.2 Thef Recursion 34

2.2.5.3 The Transition Probability 34

2.2.6 Implementation of BCJR Decoder 35
2.2.7 Tail Biting: the Terminology of Block Convolutional Codes 36
2.2.8 Numerical Results 36

23 TurboCodes. e 37
2.3.1 Turbo Codes Encoder e 38
2.3.2 Interleaver e 39
2.3.3 Turbo Decoder T 41
2.3.4 Numerical Results 44

24 Summaryo 46
3 LDPC Codes and Turbo Gallager Codes 49
3.1 Introduction 49
32 LDPCCodes 50
3.21 LDPC Codes Encoding 52
3.2.2 Belief Propagation Decoding 53
3.2.3 Numerical Results 55

3.3 Turbo Gallager Codes 56
3.3.1 Numerical Results 59

3.4 Summary e e 61
4 Iterative Decoding in the Erasure Channel . 63
4.1 Introduction 63
4.2 Complexity Analysis Considerations 64
4.3 Standard Turbo Decoding 65
4.3.1 Complexity Analysis, ... 65
4.3.2 Tteration Analysis, 66
4.3.3 Numerical Results 68

iv

CONTENTS

4.4 Belief Propagation Decoding 69
44.1 Complexity Analysis 70
4.4.2 Tteration Analysis, 71
4.4.3 Numerical Results 72

4.5 Optimised Iterative Decoding 73
4.5.1 Remark on the BCJR Algorithm for the Erasure Channel . 73
4.5.2 Remark on the Extrinsic Information 76
4.5.3 Look-Up Table Decoder 7
4.5.4 Tteration Analysis 78
4.5.5 Complexity Analysis 80
4.5.6 Numerical Results 82

4.6 Summaryo e e e 83

5 DVB-RCS Turbo Codes 85

5.1 Introduction P 85

5.2 The Parity-Check Matrix for DVB-RCS Turbo Codes 86

5.3 Interleaver Design for DVB-RCS Turbo Codes 90
5.3.1 Symbol-based Interleaver 90
5.3.2 Bit-based Interleaver 92
5.3.3 Remark on Bit-based Interleaver. 93
5.3.4 Numerical Results 95

5.4 Probabilistic based Guessing Algorithm 9%
5.4.1 Numerical Results by applying the Guessing Algorithm . . 98

55 Summary 101

IT TIterative Coding in Optimal Decoding Arrangement
103

6 Optimum Decoding of Iterative Decodable Codes in the Erasure

Channel 105
6.1 Introduction Lo 105
6.2 “In-Place” Decoding in the Erasure Channel 106

6.2.1 Complexity Analysis 107

CONTENTS

6.2.2 Numerical Results 108
6.3 Optimum Decoding Arrangements 108
6.3.1 Analysis on BCJR Decoding Output 110
6.3.2 Complexity Analysis of Hybrid Decoding Arrangements . . 110
6.3.3 Numerical Results, 114
6.4 Summary 119

7 Optimal Decoding for Iterative Codes in the AWGN Channel 121

7.1 Background 121

7.2 Decoding beyond Iterative Decoding for the AWGN Channel . . . 122

7.2.1 [Iterative Decoding 123
7.2.2 0OSD-i Decoding and Construction of Equivalent Generator

Matrices 123

7.3 BP Output Impact on OSD-¢ 124

7.3.1 Soft Iterative Output # 126

7.3.2 Conditioned iterative Output &/ 128

7.4 Numerical Results. 131

741 Well Known LDPC Codes L. 132

742 CyclicLDPCCodes 137

7.4.3 Simulation Remark on Cyclic LDPC Codes 140

7.5 Summary ... 144

IIT Exhaustive Tree Search in Code Spectra and De-

coding 147
8 Tree based Exhaustive Search 149
81 Background 149
8.2 Preliminaries 151
8.2.1 Code Representation 151

8.2.2 Codeword Set and Stopping Set 152

8.3 Tree-Search based Stopping Set Enumeration Algorithm 153
8.3.1 Bounded Tree Search 153

8.3.2 Tree-Search based Stopping Sets Enumeration 155

vi

CONTENTS

8.3.3 Simple Method of Computing the Lower Bound
8.3.4 Position Selection Lo L

84 Numerical Results

8.4.1 Well

Known LDPC Codes

842 WiMax LDPC Codes
8.4.2.1 Standard Construction
8.4.2.2 Modulo Construction [

8.5 Summary

9 Exhaustive Tree Search based Optimal Decoding

9.1 Introduction

9.2
9.3
9.4

Tree-Search based Codeword Set Enumeration Algorithm
Algorithm Inspired by Dorsch Decoding
Simplified Approach based on TCSE Algorithm

941 ComputingR'(F)on F

9.5 Numerical Results.

9.6 Summary

IV Conclusions and Future Research Work

10 Conclusions and Future Work

10.1 Conclusions

10.2 Future Work

References

167
167
168
169
172
173
175
178

181

183
183
186

202

A Proof on Relationship between Received Bit and Soft Output 203

B Sample of Stopping Set Representation over Parity-check Ma-

trix

C WiMax LDPC

D WiMax LDPC

Codes Weight Spectrum (Standard)

Codes Weight Spectra (Modulo)

vii

205

207

211

List of Figures

1.1
1.2
1.3
14

2.1
2.2
2.3
24
2.9
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5

4.1

Block Diagram of a Digital Communication System 7
Transition Diagram for Binary Erasure Channel Model 10
Relationship between Capacity and Probability Erasure in the BEC 12
An overview of the research work 15
Convolutional Code’s Encoder (7,5),v=3 27
Trellis Diagram of Convolutional Codes (7,5) 30
State Diagram of Convolutional Codes (7,5) 30
Results of Convolutional Codes with BCJR Decoder 37
Parallel Concatenation Turbo Encoder (15/13) with R, = £ 38
Trellis Diagram of Turbo Codes (15/13) 39
Iterative Decoding Scheme for Parallel Concatenated Turbo Codes 42
Principle Diagram of an Iterative Turbo Decoder 44
Results of Turbo Codes (5/7) with Different Iterations 45
Results of Turbo Codes (15/13) with Different Iterations 46
Results of Turbo Codes (15/13) with Different Interleavers 47
Comparison Results for LDPC Codes with BP Decoding 56
Tanner Graph for Turbo Codes S 58
The Results of TGCs (1536,512) by Turbo Decoder 59
The Results of TGCs (1536,512) by BP Decoder. 61
The Results of TGCs (1536,512) in the AWGN Channel 62

Relationship between Efficiency and Iterations for TGC (15/13),
(1536,512) with Turbo Decoder 67

ix

LIST OF FIGURES

4.2

4.3
4.4
4.5
4.6

4.7

4.8

4.9

5.1
5.2
5.3
9.4
9.9

5.6

5.7

6.1
6.2
6.3
6.4

6.5

6.6
6.7
6.8
6.9

Turbo Decoding Results of TGC (15/13) with length (3072, 1024)

at Different Iterations. 68
Results of TGC (15/13) with Turbo Decoder 69
Results of TGCs (1536, 512) with BP Decoder in the Erasure Channel 72
Sample Trellis for Turbo Code (15/13) 77
Relationship between Efficiency and Iterations for TGC (15/13),

(1536, 512) with Optimised Iterative LUT Decoder. 79
Relationship Between Probability Erasure and Iterations for TGC

(15/13), (1536,512) with Optimised Iterative LUT Decoder 80
Complexity Comparison between BCJR-based Decoding and BP

Decoding 82
LUT Decoding Results of TGC (15/13) and (141/103) 83
Encoder Scheme for DVB-RCS Turbo Codes 86
Trellis Diagram of DVB-RCS Turbo Codes (11,13/15) 92
Results of DVB-RCS Turbo Codes by BCJR Decoder 95
Iterative Numerical Results of DVB-RCS Turbo Codes 96
Results of DVB-RCS Turbo Codes with DVB-RCS Bit-based In-

terleavero L 99
Results of DVB-RCS Turbo Codes with S-random Bit-based In-

terleaver 99
Results of DVB-RCS Turbo Codes with DRP Bit-interleaver . . . 100
The Parity-Check Matrix for Turbo Codes (15/13) 107
ML Decoding for Turbo Codes (15/13) 109
Hybrid Decoding Scheme 110
Frequency Distribution of Erasures between Input and Output of

Turbo Decoder, e =0.60 111
Frequency Distribution of Erasures between Input and Output of

Turbo Decoder, e =0.52 112
Complexity Comparison between Hybrid Decoding and ML Decoding114
Results of TGC (15/13) (n =600,k =200) 115
Results of TGC (15/13) (n = 1536,k =512) 116
FER Performances of Turbo Gallager Codes 117

LIST OF FIGURES

6.10

7.1
7.2

7.3

7.4

7.5

7.6
7.7
7.8

7.9

7.10

7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22

8.1
8.2

Percentage of Packets for ML Decoder 118
The Proposed Decoding Structure 122
Comparison of Soft Output for Tanner Codes (155, 64, 20) at %=4dB
with Different Iterations 128
Comparison of Conditioned Output for Tanner Codes (155, 64, 20)

at Eb/No=4dB with Different Iterations 130

Comparison between Soft Output and Conditioned Output for
Tanner Codes (155,64, 20) at Eb/No=4dB with Different Iterations 131
Comparisons between Different Inputs to OSD-: for EG LDPC

Codes (255,175, 17) at Eb/No=4.5dB, Iteration=50 132
Comparison Results for Tanner Codes (155, 64, 20) (Part 1) 133
Comparison Results for Tanner Codes (155, 64,20) (Part 2) 133
Comparison Results for Regular Gallager Codes (204, 102, 8) (Part

1) o o 134
Comparison Results for Regular Gallager Codes (204, 102, 8) (Part

O) 135
Comparison Results for Regular Gallager Codes (200, 100, 9) (Part

L) e 135
Comparison Results for Regular LDPC Codes (200, 100, 9) (Part 2) 136
Comparison Results for PEG LDPC Codes (256,128,17) (Part 1) 137
Comparison Results for PEG LDPC Codes (256,128,17) (Part 2) 138
Comparison Results for EG LDPC Codes (255,175,17) (Part 1) . 139
Comparison Results for EG LDPC Codes (255,175, 17) (Part 2) . 140
Comparison Results for PG LDPC Codes (273,191, 18) (Part 1) . 141
Comparison Results for PG LDPC Codes (273,191, 18) (Part 2) . 141
Comparison Results for PG LDPC Codes (341,205, 16) (Part 1) . 142
Comparison Results for PG LDPC Codes (341, 205, 16) (Part 2) . 142
Comparison Results for EG LDPC Codes (255,175,17) (Revised) 143
Comparison Results for EG LDPC Codes (273,191, 18) (Revised) 144
Comparison Results for PG LDPC Codes (341, 205, 16) (Revised) 145
Comparison of Codeword Set and Stopping Set 153
Bounded Tree Search Example 154

xi

LIST OF FIGURES

8.3

9.1
9.2
9.3
9.4

Snapshot of Bounded Tree Search 155
FER Performance of EG LDPC Codes (63,37,9) 175
FER Performance of MacKay LDPC Codes (96,32,14) 177
FER Performance of MacKay LDPC Codes (120,56,10). 178

FER Performance of Tanner Codes (155,64,20) 179

Xii

List of Tables

1.1

2.1

3.1

4.1
4.2
4.3

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
9.3
5.4
5.5

Conditional Probabilities for the Binary Erasure Channel 11
Input and Output of Convolutional Code’s Encoder (7,5) 29
Partial stopping set distribution of codes (824,415) and (2048, 1024) 56

Number of Equivalent Additions Per Operation 64
Number of Computations for Standard Turbo Decoding Algorithm 66
Iterations Analysis of Standard Turbo Decoder in the Erasure

Channel 67
Computation Requirement of BP Decoding Algorithm 71
Iteration Analysis of BP Decoder over Erasure Channel 71
Transitions and States Relationship for Sgiere =1 74
Transitions and States Relationship for Sgiere =2 74
Transitions and States Relationship for Ssiere =4 74
Transitions and States Relationship for Sgiere =8 74
Transitions and States Relationship for Sg;p=2L, i€ N 75
Possible Product of Transition Probabilities 75
Iterations Analysis for the Optimised LUT Decoder 78

Number of Computations for Optimised LUT Decoding Algorithm 81

Polynomials for the Parity-Check Equation of W 87
First Part of the Parity-Check Matrix for Qutput W, L, =N .. 88
Polynomials for the Parity-Check Equationof Y 88

Second Part of the Parity-Check Matrix for OQutput Y, L, =N . . 89
Third Part of the Parity-Check Matrix for Qutput W/, L, =N . . 89

xiil

LIST OF TABLES

5.6
5.7
5.8
2.9
5.10

6.1

7.1

8.1
8.2
8.3
8.4
8.9

9.1

C.1
C.2
C.3
C.4
C.5
C.6

D.1
D.2
D.3
D.4
D.5
D.6

Fourth Part of the Parity-Check Matrix for Output Y/, L, =N . 89
The Parity-Check Matrix (4N x 6N) of DVB-RCS Turbo Codes . 90
Encoding Function of DVB-RCS Turbo Codes (11,13/15) 91
Symbol-based DVB-RCS Turbo Codes’ Permutation Parameters . 93
Sample of Extrinsic Information for Ez(d; = l|(A=a;, B=1b;)) . 94

Required Number of Operations for Different Hybrid Decoding Ar-

rangementsl o e e e e e e e 113
Stopping Set Distribution up to sy +4 137
Example of Computing Lower Bound 159

Low Weight Stopping Sets and Codewords of LDPC Codes (Part 1)161
Low Weight Stopping Sets and Codewords of LDPC Codes (Part 2)161

WiMax LDPC Codes’ dpni, and Sy (Standard) 162
WiMax LDPC Codes’ dpin, and spin (Modulo) 164
Codeword Set Weight Spectrum up to dyinn +4 175
WiMax LDPC Codes R, =1/2 207
WiMax LDPC Codes R, =2/3A 208
WiMax LDPC Codes R, =2/3B 208
WiMax LDPC Codes R, =3/4A 209
WiMax LDPC Codes R, =3/4B 209
WiMax LDPC Codes R, =5/6 210
WiMax LDPC Codes R, =1/2 (Modulo) 211
WiMax LDPC Codes R, = 2/3A (Modulo) 212
WiMax LDPC Codes R, =2/3B (Modulo) 212
WiMax LDPC Codes R, = 3/4A (Modulo) 213
WiMax LDPC Codes R, =3/4B (Modulo) 213
WiMax LDPC Codes R, =5/6 (Modulo) 214

xiv

List of Algorithms

S Ot W N

Tree-search based Stopping Set Enumeration (TSSE) 156
Modified Iterative Decoding 157
Simple Method to Find the Smallest Collection Set of Active Rows 159
Tree-search based Codeword Set Enumeration (TCSE) 169

Simplified Tree-search based Error-vector Set Enumeration (STESE)173
Lower Bound Algorithm to Find a Satisfied Position-Combination 174

XV

NOMENCLATURE

AWGN addictive white Gaussian noise

BSC binary symmetric channel
BEC binary erasure channel
ML mazimum likelihood

BP belief propagation

APP a posteriori probability
MAP mazimum a posteriori

PDF probability density function
LLR logarithm of likelihood ratio

RSC recursive systematic convolutional
BER bit error rate
FER frame error rate

LDPC low density parity check

TGC turbo Gallager code

LUT look up table

CRSC circular recursive systematic convolutional
OSD ordered statistics decoder

MRB most reliable bits

LRB least reliable bits

SNR signal noise ratio

EG Fuclidean geometry

PEG progressiwe edge growth

PG projective geometry

R, code rate

Ainin manimum distance of codewords
Smin minimum distance of stopping sets
H parity check matrix

G generator matrix

F a constraint set

N the set of natural numbers

R the set of real numbers

xvi

I would like to dedicate this thesis to my loving parents Mr Heping
Yang and Mrs Yingxin Li and my lovely fiancee Dr Jing Cai ...

Acknowledgements

First of all, I would like to thank my director of study Professor Martin
Tomlinson, second supervisor Dr. Marcel Adrian Ambroze and third
supervisor Dr. Mohammed Ahmed Zaki for their help and patience
during the research work. They are always supporting and encourag-

ing to make me confident.

I would like to thank my former MSc supervisor Dr. Licha Mued, the
research group colleagues Dr. Jing Cai, Dr. Cen Tjhai, Mr Ismail, Dr.
Purav Shah, Dr. Xin Xu, Mr Mubarack Jibril, Dr. Marco Gomes, Mr
Fan Wu, Dr. Zhong Peng, Miss Peng Zhao, Miss Tianlan Zhou, Mrs
Carmen, Miss Gina Tjhai and Mr Fudong Li for their patient help

and advice, you guys are the source of pushing me to work hard.

And thanks to each family member for their unlimited support and
love. Especially to my parents, they are not only supporting me in
finance, but also respecting my decision and teach me the right way

of becoming a mature man.

And also thanks the people, who have contributed on my research

work.

AUTHOR’S DECLARATION

At no time during the registration for the degree of Doctor of Philos-
ophy has the author been registered for any other University award

without prior agreement of the Graduate Committee.

The relevant scientific seminars and conferences were regularly at-
tended, three major IEEE conference papers ([131], [2], [132]) have
been published. And another paper [133] was submitted for IEEE
conferences. The author also participated the organised skill develop-

ment programme by University of Plymouth

Conference Publications:

e L. Yang, M. Ambroze and M. Tomlinson, “Comparison of De-
coding Turbo Gallager Codes in Hybrid Decoding Arrangements
with Different Iterative Decoders over the Erasure Channel”, the
11** IEEE International Conference on Communications Sys-
tems (ICCS), Nov, 2008, Guangzhou, China. The related work
and iterative decoding algorithms complexity analysis could be
referred to Chapter 4 and Chpater 6.

e M.Ambroze, M. Tomlinson and L. Yang, “Exhaustive Weight
Spectrum Analysis of some well known LDPC Codes”, the 10*
International Symposium on Communication Theory and Appli-
cations (ISCTA), July, 2009, Ambleside, Lake District, UK. The
related work and proposed algorithms could be referred to Chap-
ter 8.

e L. Yang, M. Tomlinson and M. Ambroze, “Decoding Low-Density
Parity-Check Codes with Error-Floor Free over the AWGN Chan-
nel” | the 2010 IEEE International Conference on Wireless Com-
munication, Networking and Information Security (WCNIS2010),
June, 2010, Beijing, China. The related decoding arrangement
algorithm could be referred to Chapter 7.

e L. Yang, M. Tomlinson and M. Ambroze, “Extended Optimum
Decoding for LDPC Codes based on Exhaustive Tree Search Al-
gorithm”, submitted to the 12" IEEE International Conference -
on Communications Systems (ICCS), November, 2010, Singa-
pore. The related tree search based decoding algorithm could be

referred to Chapter 9.

Word count of main body of thesis: (approximate) 47158

Signed ‘M—K

ie

Date ‘%/08//1,9/’

Chapter 1

Introduction

1.1 A Brief History of Coding Theory

Since the landmark paper was published by Shannon [108] in 1948, the researchers
in the field of information theory have been striving to discover the practical
coding schemes that could approach channel capacity, also called Shannon limit.
In the past decades, from “algebraic coding” to “probabilistic coding”, from the
famous “coding is dead” workshop to the “turbo revolution”, from the rediscovery
of “LDPC codes” to the near Shannon limit performances, pioneers in coding
theory have already successfully achieved the near Shannon limit performances
in practice.

The algebraic codes led in the first couple of decades due to their better correc-
tion and detection abilities, which were designed to approach the optimum decod-
ing performance by improving the minimum distance in a reasonable information
length k, due to the decoding complexity of searching 2* codewords. The first
single-error-correcting binary linear codes (31, 26, 3) were developed by Hamming
[50], which are “perfect” in the sense of providing a Hamming radius 1 over the
codes spheres to each of the 2 codewords. Meanwhile, Golay [46] introduced an-
other “perfect” binary linear codes (23,12, 7) with triple-error corrections, which
have Hamming radius 3 of the codes spheres, and also a double-error-correcting
ternary code (11, 6,5). Soon, another class of error-correcting codes, called Reed-
Muller (RM) codes, was introduced by Muller [87] and Reed [93] proposed its

1. INTRODUCTION

efficient decoding algorithm. For all those well known algebraic codes, the hard-
decision decoding algorithm is not sufficient to reach the Shannon limit target.
Thus the soft received value over the noisy channel was demanded to be adapted
for the modern coding scheme. The earliest soft-decision decoding algorithm,
called Wagner decoding was described by Silverman & Balser [109]. Since then,
the reliability of received channel output was gradually taken into account as
the soft decoding algorithm. In 1960s, it was the dominative period of cyclic
codes [91] inspired by RM codes. Cyclic codes are a class of codes that could be
invariant under cyclic shifts of n-tuple codewords. With such cyclic characteristic,
the invention of Bose-Chaudhuri-Hocquenghem (BCH) codes were independently
introduced by Hocquenghem [54] and Bose & Ray-Chaudhuri [14]. Meanwhile, a
class of non-binary BCH codes, recognised as Reed Solomon (RS) codes, was in-
vestigated by Reed & Solomon [94]. The more efficient decoding algorithm using
finite-field arithmetic was realised by Peterson [90] with complexity on the order
of d3,,. In 1969, Massey [83] interpreted the reduced complexity on the order
of d2,,, decoding algorithm devised by Berlekamp [7]. The Berlekamp-Massey
algorithm became the standard for the next decade. Since then, another ap-
proach of decoding block codes algorithm by adapting the channel measurement
information was introduced by Chase [19].

Upon the inspiration by Shannon’s probabilistic approach to coding, another
class of codes, which aimed to provide an intermediate decoding performance in
a balance between performance and computational complexity, was called convo-
lutional codes and invented by Elias [35]. Based on the tree structure of convolu-
tional codes, a sequential search decoding algorithm was proposed by Wozencraft
& Reiffen [129]. Then the fast sequential decoding with memory-free was devel-
oped by Fano [37]. Subsequently, Massey [82] proposed a very simple decoding
method for convolutional codes, called threshold decoding. In 1967, the “asymp-
totically optimal” decoding algorithm for convolutional codes , called Viterbi al-
gorithm (VA), was introduced by Viterbi [126]. The adaptation of soft decisions in
VA sparkled the light of the new approach to compute the a posteriori probability
(APP) based on the reliability information. Gallager [45] proposed an iterative

message-passing decoding algorithm by adapting the APP values for his invention

1.1 A Brief History of Coding Theory

LDPC codes. Meanwhile, Massey [82] developed an APP version of threshold de-
coding algorithm. In 1974, Bahl et al. [5] published the APP based decoding
algorithm originally for convolutional codes, called BCJR algorithm, which is a
forward-backward bidirectional decoding algorithm over the codes trellis rather
than the forward-only directional VA algorithm. BCJR algorithm as the first
soft-input and soft-output (SISO) algorithm became the key to trigger the turbo
decoding revolution. Since the concatenated structure introduced by Forney, Jr.
[40], the more successful VA decoding by adapting soft decisions in SISO, called
the soft-output Viterbi algorithm (SOVA), was proposed by Hagenauer & Hoeher
[48] in 1989.

With the BCJR algorithm as the basis decoding algorithm by using soft APP
values and the iterative decoding algorithm for concatenated codes [74], the rev-
olutionary class of codes, called turbo codes, was introduced by Berrou et al. [10]
in 1993. The parallel concatenated turbo codes structure ensures the state of
“random-like” code generation rule by permuting information sequence to gen-
erate a new sequence linked by a pre-defined interleaver. The idea of eztrinsic
information is introduced and used to exchange the additional reliable knowledge
about an information bit between each independent BCJR decoder during the
decoding iteration. Due to the small minimum distance of most turbo codes,
although the performance could easily approach probability 107 at low SNR by
. using a randomly constructed interleaver, the performance flattens out soon as
the increased SNR , such phenomenon is called error floor. Several approaches
were tried in order to lower the error floor. S.Benedetto et al. [105] proposed
the serial concatenation structure for turbo codes instead of using parallel con-
catenation. A multi-dimensional concatenated class of turbo codes was proposed
by Boutillon & Gnaedig [15] to eliminate the low-weight codeword set.

After the more than 30-year invention of LDPC codes by Gallager [45], MacKay
& Neal [81] “rediscovered” such LDPC codes with sparse parity-check matrix
structure. They showed that the near Shannon limit performance could be ob-
tained by long LDPC-type codes with the iterative decoding. LDPC codes could
be represented by a bi-partite graph, also called Tanner graph introduced by Tan-
ner [117]. In graphical representation, it shows that the check nodes and variable

nodes are defined by a fixed number of degrees corresponding to each parity-check

1. INTRODUCTION

equation, such codes are called regular LDPC codes. Luby et al. [77] proposed a
new class of LDPC codes with irregular graphs to optimise the degree sequences,
which determine the edge connections over the parity-check matrix and the spar-
sity of the code. The asymptotic results, by designing the irregular LDPC codes
with arbitrary degree sequences and following density evolution criteria proposed
by Richardson et al. [95], were presented in [23]. In such design structure, irreg-
ular LDPC codes could clearly outperform turbo codes in block length on the
order of 10° or more. For the erasure channel [36], the first iterative decoding
for LDPC codes was introduced by Luby et al. [75] in 1997. Since then, turbo
codes and LDPC codes have been extending their competition over the erasure
channel. Luby et al. [76] showed that the possibility of designing a LDPC code
to approach the channel capacity arbitrarily closely. The finite-length analysis
of LDPC codes over the erasure channel was described by Di et al. [32]. Due to
turbo codes near-capacity performance and low encoding complexity, they also
became a candidate for the erasure channel. It is shown by Rosnes & O.Ythehus
[100] that stopping sets also exist for turbo codes and that they characterise ex-
actly the performance of turbo decoding on the binary erasure channel. Turbo
codes are easier to design due to the existence of efficient weight spectrum al-
gorithms by Rosnes & O.Ythehus [99], however LDPC codes could potentially
have lower error floors [45, 89]. A new approach was proposed by Colavolpe
[24], which is a new code scheme that combines the advantages of turbo codes
with those of LDPC codes, now known as turbo Gallager codes, which can be
decoded either by BCJR algorithm or belief propagation (BP) algorithm. Besides
the random construction of LDPC codes in {45, 77, 81], another algebraic class of
LDPC codes based on finite geometries was introduced by Kou et al. [62], which
shows that such cyclic or quasi cyclic LDPC codes could be successfully decoded
by BP decoding algorithm with simple encoding complexity, especially most of
those codes with high code-rate in variable codeword length. The well structured
LDPC codes featured by the simple encoding complexity in cyclic format could
perform equally well as their equivalent random LDPC codes in terms of bit-error
performance, frame-error performance and error-floor collectively [72, 73]. In 60

years, Shannon’s idea “A Mathematical Theory of Communications” has suc-

1.1 A Brief History of Coding Theory

cessfully been developed into practice, which will fully accelerate the developing

rhythm of modern digital communication system.

1.1.1 Turbo codes and LDPC codes

Both classes of codes are characterised by the term of iterative decoding tech-
nique. Turbo codes as recursive systematic component codes in parallel, could
iteratively pass the decoded codeword to the other decoder in terms of evaluating
the soft output for each bit accumulated by the extrinsic information. But due
to the size of the interleaver, there exists the latency issue, which limits the capa-
bility of approaching the Shannon limit, since the shannon limit is approachable
if the latency is unlimited. For limited latency, Shannon subsequently showed
that capacity is further reduced, and at a latency of 320, this loss is equivalent to
nearly 2 dB. In practice, turbo codes scheme also suffers by a further issue: the
so-called error floor. This research work deals with the new efficient decoding al-
gorithm in terms of achieving optimum or sub-optimal decoding performance with
much less computational complexity for the practical channels, like the erasure
channel. Two main problems motivate this research. The first problem concerns
the fact that the optimum decoding performance is still infeasible in practice due
to some margins, like decoding complexity and the stopping sets from the itera-
tive decoding scheme. Since most of maximum likelihood decoding algorithm are
generally referred to be n? decoding complexity, the excellent iterative decoding
performance with well selected codes inspires a new hybrid decoding arrangement
by taking the iterative decoder as the initial decoder and the more complex max-
imum likelihood decoder becomes optional. Such idea is applied in the erasure
channel and the AWGN channel resulting with optimum performance achieve-
ment and lowered error floor. The second problem is an attempt to analyse the
codes weight spectra and stopping sets efficiently for LDPC codes. Based on the
introduced efficient algorithm, an extended decoding algorithm for LDPC codes

is proposed aiming to achieve an optimum decoding performance.

1. INTRODUCTION

1.2 A General Model of Digital Communication

System

A digital communication system aims to provide a cost-effective system for trans-

mitting information from a sender to an end-user at the rate and level of accuracy

that the user requires [85]. The technique of error correcting codes (ECC), plays

an important role in the achievement of accurate transmission of digital data.

It is designed to provide the functions of error detection and error correction by

appending the addition of redundant codes to the transmitted data. A digital

communication system could be simply described as a block diagram as shown

in Figure 1.1, it is generally comprised of seven elements as follows:

Information Source: it is the original data for transmission.

Encoder: it is the channel encoder, which converts the source informa-
tion data into format of information symbols with the corresponding parity
symbols as a complete codeword. Thus the error detection and correction
abilities could perform certain partial recovery for data receiving correct-

1ess.

Modulation: it is the process of transforming a signal as a waveform for
transmission over a medium channel. To be noted that, in this thesis, the
binary phase-shift keying (BPSK) modulation is applied during the AWGN

channel transmission, which is to map binary data from {1,0} to {1, —1}.

Channel: it is the transmission medium, which could produce the noise or

erasure to affect the original transmitted codeword.

Demodulation: it is the process of transforming the signals into symbols,

which is used for decoding and correction.

Decoder: it is the place of utilising the redundant symbols to detect and

correct the channel errors at the receiver end.

Information User: it is the destination end, where user receives the corrected

information data.

1.2 A General Model of Digital Communication System

Information Source - Encoder - Modulation
Noise
- Channel
Erasure
Information User Decoder Demodulation

Figure 1.1: Block Diagram of a Digital Communication System

1.2.1 Encoding

All the error correcting codes are based on the same basic principle: redundancy is
added to information in order to correct any error that may occur in the process of
storage or transmission [86]. In general, the redundant symbols are appended to
information symbols to obtain a coded sequence, which is also called a codeword.

A codeword with n symbols is basically comprised of two parts:

o The information symbols occupy the k positions of a codeword.

o The remaining n — k symbols in a codeword are functional to provide the

redundancy to enable the capabilities of error detection and correction.

The set of all coded sequences is called an error correcting code.

1.2.1.1 Code

According to the manner in which redundancy is added to information data, error

correcting codes are generally categorised into two categories:

o Block codes: in block codes, the information data is on a block-by-block
basis. The information sequence is divided into message blocks of k£ infor-
mation bits each. A message block is represented by the binary k-tuple
u = (ug,uq,...,ux-1), called a message or information bits. Each mes-
sage could be represented by (ag X ug, a1 X U1, ..., ag—1 X uk_1), where each
value of a;, is either 0 or 1. Thus there are 2* different possible mes-
sages. The encoder transforms each message u independently into an n-

tuple v = (vg,v1, ..., Un—1) of discrete symbols. Therefore, corresponding to

1. INTRODUCTION

the 2% different possible messages, there are 2* different possible codewords
at the encoder output. The set of 2 codewords of length n is called an (n, k)
block code. The ratio R. = k/n is called the code rate, which means the

number of information bits entering the encoder per transmitted symbol.

In a binary code, each codeword v is also in binary. For achieving an useful
binary code, it is necessary to have a different codeword assigned to each
message, k < n, or R, < 1. When k£ < n, n— k redundant bits are added in
each information message to form a codeword. The redundant bits enable
the code having the ability to correct the errors caused by the channel noise.
For a fixed code rate R, which means the ratio k/n should stay constant,
it is implemented by increasing the number of message bits k£ and the block

length n of the code to produce more redundant bits.

e Convolutional codes: in convolutional codes, the codeword is also comprised
of k-symbol blocks of the information sequence u and an encoded sequence
v of n-symbol blocks. Each encoded block does not only depend on the
corresponding k-symbol message blocks but also on M previous message
blocks. Hence, the encoder should have a memory order of M. Then the
set of all possible encoded output sequence produced by the encoder forms
the code. In a binary convolutional code, redundant bits are added to the

information sequence when k < n, or R, < 1.

Since block code is based on block-by-block scheme to treat each block of informa-
tion bits independently from others, block coding is considered as a memoryless
operation. In contrast, the output of a convolutional encoder does not only de-
pend on the current input information, but also on the previous input or output,
either on a block-by-block or a bit-by-bit basis. According to the research work
on the trellis structure of block codes [64] and the tail-biting structure of convolu-
tional codes 78], work on convolutional codes is sometimes referred to the block
codes as “codes with time-varying trellis structure”, and work on block codes is

to consider convolutional codes as “codes with a regular trellis structure” [86).

1.2 A General Model of Digital Communication System

1.2.1.2 Hamming Weight, Hamming Distance and Minimum Distance

1.1 Definition. The Hamming weight w(v) of an n-tuple v is defined as the number

of non-zero elements of v [70].

For instance, if vector v = (10010110001), the Hamming weight w(v) = 5.

1.2 Definition. Let u and v be two n-tuples. The Hamming distance d(u,v) be-
tween v and v is defined as the number of elements in which they differ [70].

For example, if v = (10010110001) and v = (11001010101), then the Hamming

distance d(u,v) between vectors u and v is 5.

1.3 Definition. Let u be a codeword of a code € with Hamming weight w(u), and
w(u) is the smallest Hamming distance of the entire 2% codewords of €. The

weight of w(u) is defined as the minimum distance of €, denoted as dy;n.

1.2.2 Channel Model

Let X be the g-ary input symbols from the encoder, where X = {zg, 21, ..., Zg-1},
Y be the Q-ary output symbols after the channel, where Y = {yo, 91, ..., yo-1}-
In a typical channel model called the discrete memoryless channel (DMC) based
on the input symbols X and output symbols Y, a set of conditional probabilities

called transition probabilities are defined as:
P(Y = y|X = ;) = P(yilz;) (1.1)
where ¢ € {0,1,...,Q — 1} and j € {0,1,...,qg — 1}.

An information measurement for general source is provided by Shannon [108],

it is called entropy function of H, which is defined as:

H(X)= —En:P(a:i)log P(z;) (1.2)

i=1

1. INTRODUCTION

where H(X) is the average self-information per source symbol, n represents the
number of output symbols. The entropy function H provides a measure of average

amount of information “produced” per symbol by the source [85].

1.2.2.1 Binary Erasure Channel

1.4 Definition. A discrete memoryless channel with binary-input and ternary-
output is called the binary erasure channel (BEC).

The binary erasure channel as another special case of DMC was first introduced
by Elias [36] in 1956. In recent years, the BEC has been shown to be useful in
evaluating an error correcting codes performance. The binary erasure channel is
depicted by the transition diagram in Figure 1.2, where ¢ represents the erasure
probability at which the received value of Y is erased, “?” denotes ambiguity or

erasure. In the BEC, each bit is erased at erasure probability €, or received cor-

0 I7e ® 0
9
1 1

1-¢€

Figure 1.2: Transition Diagram for Binary Erasure Channel Model

rectly at probability 1 — e. Currently, it is widely used to model the information

transmission over the Internet.

According to (1.1), the set of conditional probabilities for the erasure channel

are defined as:

PY=0X=0=PY =1X=1) = 1—¢
PY =2X=0)=P(Y =7X=1) = e (1.3)

10

1.2 A General Model of Digital Communication System

By extending (1.3) to compute the capacity of the erasure channel, Table 1.1

shows the probability transitions after passing the BEC. Let H(A) be the input

X=0 0|1—€|P(Y=0[X=0)= 1
PX=0=117] ¢ PY =1X=0)=:%
X=1 7] € PY=?X=1)=¢%
PX=1)=3|1|1-€e|PY=1X=1)= L=

Table 1.1: Conditional Probabilities for the Binary Erasure Channel

entropy, H(A, B) be the entropy during the channel and H(B) be the output

entropy. The entropy of input symbols H(A) is computed as follow:

P(X = 0)log, (F(‘XL—O)) + P(X =1)log, (WXl=_1)>

- % « log, (2) +% % log,(2) = 1

H(A)

The entropy of H(A, B) is obtained as:

H(A,B) = P(Y =0|X = 0)log,

P(Y =?7|X = 0)log, P =7[X =)) +
P(Y =7|X = 1)log, <P(Y _~71|X — 1)> +

P(Y =1|X =1)log, (P(Yz i|X -)>

2 2
= (1—¢) x log, (1—_—;) + ¢ x log, (Z)

Since P(Y = 0) = P(Y = 1) = 5 and P(Y =7) = £ + £ = ¢, hence the entropy

11

1. INTRODUCTION

of output symbols H(B) is obtained as:

H(B) = P(Y =0)log, (ﬁ) + P(Y = 1)log, (1)(%:1)) +
P =7)log, (ﬁ)

2 1
= (1—¢) xlog, (I——e> + € X log, (;)

Hence, the capacity Cggc is obtained as:

Cpec = H(A)+ H(B)—- H(A,B)
= 1+€xlog2<1>—exlog2(§):1—6 (1.4)

€

According to (1.4), Figure 1.3 shows the relationship between capacity of the

BEC and erasure probability €. From the curve, we can see the capacity is

...................... J AR F T S
. Capacity of BEC —— 3

0.8 o B

0.6

04

Channel Capacity

0.2

0 0.2 0.4 0.6 0.8 1
Erasure Probability

Figure 1.3: Relationship between Capacity and Probability Erasure in the BEC

12

1.2 A General Model of Digital Communication System

increased while the erasure probability € decreases. For ¢ = 0, which means the
erasure-free transmission, Cggc equals to one bit per transmitted symbol. This
erasure property is exactly same as the block or packet lost during the network
transmission, that is the reason why it is suitable to model the data transmission

over the internet transmission medium.

1.2.2.2 The Additive White Gaussian Noise Channel

1.5 Definition. A typical memoryless channel, which produces wide-band noise,
whose amplitude is normally Gaussian distributed random variable, to the trans-
mitted encoded data, is called the additive white Gaussian noise (AWGN) chan-
nel. ‘

Generally, when the encoded data is transmitted through the channel, the input
data is affected by the feature of the channel. Such so-called AWGN channel has
great theoretical and practical importance over the digital system design model.
In the AWGN channel, the output is produced by simply adding the input with
white Gaussian noise. In terms of input x and output y, the AWGN channel is
simply described as:

y=c+ng (1.5)

where ng is a zero-mean Gaussian random variable with variance o2 and the
input = can have any one of z discrete values, where 2z < 2. Thus the conditional

probability density function of the output ¥ given by an input z;, is obtained as:

1 —(y—z:
p(y|33 = 5131‘) = W@ (y—z:)?/20? (1.6)

1.6 Definition. A signal-to-noise ratio (SNR) is used to represent the ratio rela-

tionship between power and noise.

Then SNR is defined as:

Ep/No

SNR in power = 10710 (1.7)

1. INTRODUCTION

where E}/N, is in unit “dB”. Then variance o? is obtained as:

, 10
" 2%xSNR x R,

g

(1.8)

where R, is the code-rate. The AWGN channel is an accurate model for many
communication links, for instance: satellite and deep-space communications,
where the communication performance is only limited by the additive thermal
or galactic noise. Furthermore, the AWGN channel is also commonly used to
simulate background noise of the channel under study, in addition to multipath,

terrain blocking, and interference etc.

1.2.3 Decoding

In general, all the binary decoding algorithms are developed based on the hard-
decision outputs of the matched filter in the receiver demodulator,which means
the output for each signaling interval is quantised in two levels. The two levels are
denoted as “0” and “1”, which results in a hard-decision binary received sequence.
Hard-decision decoding is to process the hard-decision received sequence based
on a specific decoding method. It uses the algebraic structures and Hamming
distance as its metric. Hard-decision decoding aims to decode the hard-decision
received sequence to the closest codeword in the Hamming distance.

Since hard-decision decoding results in a loss of information, which could sig-
nificantly degrade the performance, and if the output of the matched filter are
unquantised or quantised into more than two levels, the soft-decision algorithms
is used to complement the weakness. Soft-decision is capable of providing a better
error performance than hard-decision decoding by using the additional informa-
tion contained in the unquantised received samples to recover the transmitted
codeword. The soft-decision decoding normally uses the likelihood function, Eu-
clidean distance correlation, and correlation discrepancy as the metric. Generally,
soft-decision maximum likelihood decoding of a code has about 3dB of coding gain
over the algebraic decoding of the code [71]. As the extrinsic information term
introduced, the soft output with accumulated additional reliable knowledge could

help determine a more accurate binary sequence in higher confidence.

14

1.3 Outlines of the Research Work

1.3 Outlines of the Research Work

1.3.1 Objective and Scope of the Research

In this research work, the entire investigations based on the study of turbo codes
and LDPC codes could be viewed as a development diagram as shown in Fig-

ure 1.4. As the diagram shown, the research work initiates from the study of

Analysis on
Stopping Sets

—{ Codes’ Weight Spectra]

DVB-RCS
Turbo Codes
—’[Exhaustive Tree Search)
Turbo Codes LDPC Codes —[Optimum Decoder }
\/ Hybrid Arrangement
Turbo Gallager Codes (BP + OSD)
Hybrid Arrangement

(BP + ““In—Place’’)
(BCJR + ““In—Place’’)

Figure 1.4: An overview of the research work

turbo codes and LDPC codes, and their iterative decoding schemes for the erasure
channel and the AWGN channel. In the design of optimisation and simplification
of iterative decoding algorithms, we investigate the corresponding BCJR algo-
rithm for turbo codes and BP algorithm for LDPC codes for the erasure channel.
For LDPC codes over the erasure channel, we consider the optimised BP decod-
ing algorithm introduced by Luby et al. [76] as the specified iterative decoder.
For turbo codes, the BCJR algorithm in terms of APP decoding is analysed and
optimised for the erasure channel. According to the analysis work on the com-

ponent convolutional codes in exact probability of erasure and the invention of

15

1. INTRODUCTION

the table look-up based approach by Kurkoski et al. [66], which is also detailed in
Chapter 5 of Kurkoski [65]’s dissertation, we propose a further simplified look-up
table (LUT) based decoding algorithm, which is the optimised replacement of
the standard BCJR algorithm. Following the same method of complexity anal-
ysis introduced by Wu [130], each iterative decoding algorithm’s computational
complexity is evaluated in terms of the equivalent additions, which is under the
assumption of logical and mathematical operations having similar complexity.
As it is well known that the mazimum likelihood (ML) decoder for the erasure
channel is practically realisable but with computational complexity proportional
to n®, where n is the length of the codeword. We propose a decoding scheme to
achieve same level of performance as ML decoder does with much less decoding
complexity. The hybrid decoding scheme is composed of an iterative decoder as
the initial decoder, which is designated to decode most of erasures in each frame.
Then the frame still containing erasures is passed to get corrected by a ML de-
coder. In our hybrid arrangement, a complexity reduced ML decoding algorithm
introduced by Cai et al. [16] by avoiding the need of column-permutations over
the parity-check matrix is considered as our optional optimum decoder. We focus
on the turbo Gallager codes, which could be reasonably decoded by either BP
decoder or LUT decoder. Then the proposed decoding scheme for turbo Gallager
codes over the erasure channel is evaluated with supporting analysis in terms of
number of iterations, convergent performance and computational complexity.
Due to the fact that the existing turbo codes stopping sets are the key im-
pact on the decoding performance [100] and the extensive analysis on turbo
codes weight spectra [99], our interest is focused on the DVB-RCS turbo codes
introduced by Berrou et al. [11] over the erasure channel. Although DVB-RCS
turbo codes characterise beneficially [18] in the digital video broadcasting (DVB)
standard [59], there still exists an issue in the design of symbol-based interleaver
for DVB-RCS turbo codes, which becomes more obvious on the erasure channel.
The BCJR algorithm with two binary-input as a pair of symbol is investigated.
Then the bit-based interleavers-in design of DRP and S-random [26, 33, 134] for
DVB-RCS turbo codes are evaluated, a phenomenon has been observed that there
exists a set of stopping sets, which affects the bit-based codes performance worse

than the symbol-based codes performance at high erasure probability. According

16

1.3 Outlines of the Research Work

to the analysis on the BCJR algorithm with two binary-input, a probabilistic
based algorithm is introduced to help break such set of stopping sets and the
decoding performance is improved close to the symbol-based codes performance
with lower error floor. |

According to the asymptotic performance introduced by Chung et al. [23],
LDPC codes, especially in irregular structure, could potentially have lower error
floors [45]. But LDPC codes as a class of code suitable for iterative decoding, also
have the similar issue as turbo codes have in the practical channels [32]. How to
lower the error floor caused by the stopping sets of LDPC codes in such simple
decoding algorithm becomes one of the most desirable challenge. According to
the knowledge and experience in the previous hybrid decoding arrangement, we
introduce a new decoding schedule by adopting ordered statistics decoder (OSD)
algorithm, which is different and much simpler than Fossorier [42]’s reliability-
based iterative decoding algorithm for LDPC codes. The proposed decoding
arrangement is composed of a BP iterative decoder followed by an OSD-:. Since
the objective of the arrangement is to lower the error-floor, the soft output from
BP decoder seems not sufficiently reliable to help break the stopping sets, which
could be due to the same soft output. Even though, the iterative BP decoding
algorithm provides the optimal output, if the Tanner graph of the code is a
tree [112, 113]. By directly adopting the soft output as input for a sub-optimal
decoding algorithm still seems destructive due to the highly scaled magnitude of
soft output, especially when the error frame contains a stopping set. By analysing
the iterative output distribution in magnitude, the conditioned iterative output
from iterative BP decoder is introduced instead of the standard soft output to
become the input to an OSD-7 decoder. Such iterative decoder coupled with OSD-
¢ decoder successfully makes the significant improvement than OSD-i decoder
alone. Furthermore it guarantees the decoding performance with lower error-
floor, even free for a range of LDPC codes.

With the design of code for more advanced property, like the higher minimum
distance, the problem of computing the minimum distance of an arbitrary binary
linear code was conjectured to be NP-hard [8, 124], which is hard to solve in
non-deterministic polynomial time. In the iterative coding scheme, for the raised

stopping sets issue, the problem of finding the minimum distance of stopping sets

17

1. INTRODUCTION

was also claimed to be NP-hard by Krishnan & Shankar [63]. The verdict of
NP-hardness does not stop researchers’ step to decrypt such a mystic puzzle. On
the contrary, different approaches were successfully achieved for computing the
minimum distance of a linear block code, in probabilistic approach [17, 52, 68,
115], and in error impulse approach [12, 31, 57]. In the meantime, the problem
of finding the minimum size of stopping sets was also established based on the
mentioned approaches of computing the minimum distance [53, 96, 127]. Based
on the success of the thorough analysis on the turbo codes stopping sets weight
distribution [100, 101], a markable paper was published by Rosnes & Ytrehus
[102] to find all the small size of stopping sets for LDPC codes. According to
Rosnes’ previous work, we investigate the novel algorithm and devise a new bound
algorithm, which helps restrict the search size and reduce the computational
complexity. A range of well known LDPC codes are evaluated, the previous
research results are confirmed and extended. Furthermore, the entire class of
WiMax LDPC codes [1] is extensively evaluated in standardised construction
and “modulo” construction as a complement for results in [103].

According to the APP version of threshold decoding algorithm introduced by
Massey [82], the optimum symbol-by-symbol based decoding rule was proposed
by Hartmann & Rudolph [51]. It is shown that the decoded codeword is max-
imised in terms of the cross-correlation, where every dual code is evaluated. But
in practice, such decoding rule could be used only if there exists a small set of
dual codes, which are very likely to be the high-rate codes. It is different from
the BCJR algorithm, which is a trellis-based intermediate algorithm. It performs
on the parity-check matrix to search for the maximised dual code, and it ensures
the optimum decoding performance, which BCJR decoding algorithm could not
achieve due to the existing stopping sets for turbo codes. Moreover, a relationship
between the erasure corrections of a binary linear code and its low-weight code-
words was discovered by Tomlinson et al. [122]. It is shown that the number and
weight of low-weight codewords of a binary linear code determine its decoding
performance on the erasure channel. Furthermore, for many linear block codes
(n, k), their average erasure corrections are almost n — k, which is significantly
larger than d,,;, —1. Based on such linear codes implicit significance, an extended

Dorsch decoder [34] for linear block codes was proposed by Tomlinson et al. [121]

18

1.3 Outlines of the Research Work

over the AWGN channel. Such decoder towards optimum decoding achievement is
designated to search the error-vector against a set of low-weight codewords based
on the received vector. Inspired by the idea of error-vector searching and the
efficient low-weight stopping sets search for LDPC codes, we devise the searching
algorithm to find the error-vector, which costs least in terms of cross-correlation.
Since the stopping sets search algorithm is more efficient and suitable for linear
codes with sparse parity-check matrix, it also determines that the error-vector
search algorithm is more suitable for the linear codes in very sparse structure,

especially fits the LDPC codes with moderate codeword length.

1.3.2 Organisation of the Dissertation

This dissertation is organised into four parts including nine chapters following

this introduction.
Part One: Iterative Decoding

Chapter 2 describes the detail of turbo codes, which includes the codes con-
struction and decoding algorithm. Section 2.2 introduces turbo codes component
code Convolutional code and its construction and properties. Its corresponding
soft-decision decoding algorithm BCJR algorithm is introduced in Section 2.2.5.
A range of convolutional code with variant memory orders are evaluated in Sec-
tion 2.2.8. Turbo codes are introduced in Section 2.3 with its preliminary informa-
tion. The BCJR based turbo decoder and related extrinsic information exchange
are described in Section 2.3.3. Section 2.3.4 shows a range of turbo codes simu-
lation results over the AWGN channel in terms of different interleavers, variant

iterations, and different memory orders.

Chapter 3 investigates LDPC codes and turbo Gallager codes in their codes
evaluations over the AWGN channel. Section 3.2 describes the preliminary in-
formation about LDPC codes encoder and the belief propagation (BP) decoding
algorithm. The iterative BP decoding algorithm is detailed in Section 3.2.2. Nu-

merical results of LDPC codes with block update and row update are shown in

19

1. INTRODUCTION

Section 3.2.3. Turbo Gallager codes is described in Section 3.3, where the numer-
ical results decoded by turbo decoder and BP decoder over the AWGN channel
are evaluated in Section 3.3.1.

Investigation of iterative decoding over the erasure channel is presented in
Chapter 4. The complexity considerations are generalised in Section 4.2, and the
complexity analysis for standard turbo decoder and iteration analysis are pre-
sented in Section 4.3. The BP decoding algorithm is analysed in Section 4.4 in
terms of the computational complexity. An optimised iterative Look-Up Table
(LUT) based decoder over the erasure channel is introduced in Section 4.5. The
BCJR algorithm is reviewed and analysed for the erasure channel in Section 4.5.1.
Based on the BCJR analysis, the look-up table based iterative decoder is intro-
duced in Section 4.5.3. The comparisons of simulation results by using different
iterative decoding algorithms for turbo Gallager codes over the erasure channel

are presented in Section 4.5.6.

The DVB-RCS turbo codes are investigated in Chapter 5. The corresponding
parity-check matrix construction is determined in Section 5.2. The interleaver
design in symbol-based and bit-based is investigated in Section 5.3. The sim-
ulation results for DVB-RCS turbo codes on the erasure channel are described
in Section 5.3.4. A probabilistic based algorithm is introduced according to the
observation on the bit-based interleaver in Section 5.4. The simulation results
by adopting the proposed algorithms for DVB-RCS turbo codes are shown in
Section 5.4.1.

Part Two: Iterative Coding in Optimal Decoding Arrangement

Chapter 6 presents the hybrid decoding scheme for turbo Gallager codes on
the erasure channel. The “In-Place” ML algorithm and its complexity analysis
is described in Section 6.2. The hybrid decoding arrangement is described in
Section 6.3. The analysis on iterative decoding output is shown in Section 6.3.1,
and the complexity analysis for different hybrid arrangements are presented in

Section 6.3.2. The numerical results for a range of iterative decodable codes by

20

1.3 Outlines of the Research Work

adopting hybrid decoding arrangements are evaluated in Section 6.3.3.

Chapter 7 describes the iterative decoding arrangement for linear block codes
with sparse parity-check matrices, like LDPC codes, over the AWGN channel to
help lower the error-floor. By analysing the soft iterative output from the BP de-
coder, the soft output is conditional selected to help break the error floor caused
by the BP stopping sets. Such conditioned output is treated as the input to OSD-
. The new proposed decoding arrangement for linear block code is described in
Section 7.2. The new revised iterative soft output is compared to standard soft
output with various supporting analysis in Section 7.3. The simulation results
by adopting different iterative output for a range of well known LDPC codes are
shown in Section 7.4. The remarked decoding results for cyclic LDPC codes over
the AWGN channel are presented in Section 7.4.3.

Part Three: Exhaustive Tree Search in Code Spectra and Decoding
Algorithm

The exhaustive tree search based algorithm is described in Chapter 8. The
code representation and the relevant code definitions are described in Section 8.2.
The exhaustive search algorithm for finding stopping sets based on the parity-
check matrix and its simplified bound algorithm are presented in Section 8.3. The
evaluated stopping sets weight spectra for well known LDPC codes and the class
of WiMax LDPC codes are shown in Section 8.4.

By adopting the efficient tree search algorithm, the extended optimum de-
coding scheme for linear block codes with sparse parity-check matrices over the
AWGN channel is detailed in Chapter 9. The tree search algorithm used to find
the error pattern according to the searched codeword in small weight, is presented
in Section 9.2. The new bounded decoding algorithm in terms of near-optimum
decoding scheme is described in Section 9.3. A further improvement on searching
the error-vector is introduced in Section 9.4. The optimum decoding results for

a range of LDPC codes are presented in Section 9.5.

21

1. INTRODUCTION

Part Four: Conclusions and Future Research Work

Chapter 10 describes conclusions and future work direction. Section 10.1 con-
cludes the entire research work. The immediate research direction and potential
research work are proposed in Section 10.2. A supplementary proof of the re-
lationship between the received vector and the iterative soft output is shown in
Appendix A. The sample of a stopping set, which gives a new representation
based on its parity-check matrix, is presented in Appendix B. The comprehensive
results for WiMax LDPC codes are shown in Appendix C and D. The submitted
and published technical papers for IEEE conferences are attached in Appendix E.

22

Part 1

Iterative Decoding

23

Chapter 2

Turbo Codes

2.1 Introduction

In this Chapter, we first describe the basis of turbo codes, the component code
convolutional code, and its soft decoding BCJR algorithm, which leads the success
of iterative turbo decoding and the usage of extrinsic information. In Section 2.2,
the parameters of convolutional codes are described, and different representative
diagrams depict the different graphical view of convolutional codes. The BCJR
decoding algorithm is described in Section 2.2.5. And the simulation results for
convolutional codes with different memory orders are presented in Section 2.2.8.
Section 2.3 describes the construction of turbo code and its trellis diagram for
recursive systematic convolutional code. The turbo decoding algorithm on how
to exchange the extrinsic information knowledge to help improve the confidence
on each information bit is detailed in Section 2.3.3. Section 2.3.4 presents the

simulation decoding performances for turbo codes over the AWGN channel.

2.2 Convolutional Codes

Convolutional codes as a class of codes differentiated from block codes were first
proposed by Elias [36]. They can be considered as a subset of the tree codes,
but have distinguishing feature as linear codes, regardless of codeword length. A

convolutional code has an encoding unit called shift-register produces a continuous

25

2. TURBO CODES

stream of encoded output by operating on the information data source. During
the encoding process, each information bit stored in the shift-register is capable

of affecting a finite number of consecutive symbols in the output stream.

2.2.1 Convolutional Codes Encoding

A convolutional code is primarily defined by three integer parameters (n, k, M),
where M denotes the memory size of the shift register, k¥ and n are slightly dif-
ferent from the definitions in block codes. Here k represents the size of the input
sequences corresponding to the shift register; and n determines the size of the
output sequences. Thus the ratio k/n denotes the code rate for convolutional
codes. Let v = M + 1 indicate the constraint length of the shift-register, it repre-
sents the number of k-tuple stages in the encoding shift register. The constraint
length represents the number of k-bit shifts over which a single information bit
can influence the encoder output. At each unit time ¢, k bits are shifted into the
first k stages of the register; all bits in the register are shifted k stages to the
right, and the output of n adders are sequentially sampled to yield the binary
code symbols or code bits. Since there are n code bits for each input group of k&
message bits, the code rate is also k/n message bit per code bit, where k < n.
For instance, in a shift register encoder with £ = 1, the message bits are shifted
into the encoder one bit at a time. At the i¢th unit of time, message bit m; is
shifted into the first shift register stage, all the previous bits in the register are
shifted by one stage to the right, and the output of the n adders are sequentially
sampled and transmitted. Since there are n code bits for each message bit, the
code rate is defined as 1/n. The n code symbols occurring at time ¢; comprise
the ith branch word, w; = {uy;, ug;, ..., un;}, where uy;, j € {1,2,...,n}, is the jth
code symbol belonging to the ith branch word.

Figure 2.1 shows a convolutional encoder with polynomial (7, 5) in octal, which
has constraint length v = 3, and shift register structure (111,101) in binary. For
such an encoder, there exist n = 2 modulo-2 adders and & = 1 information
bit, then the code rate of convolutional codes (7,5) is k/n = 1. A set of n

connection vectors is utilised to represent the encoder, each vector is for each

of the n modulo-2 adders. And each vector has dimension v and describes the

26

2.2 Convolutional Codes

u ; :First code symbol

Input bit m Output branch word
—_—]
O

U 5 :Second code symbol

Figure 2.1: Convolutional Code’s Encoder (7,5), v =3

connection of the encoding shift register to that modulo-2 adder. A value “1”
in a given position indicates that the corresponding stage in the shift register is
connected to the modulo-2 adder; and a value “0” indicates that no connection
exists between the stage and the modulo-2 adder. For example in Figure 2.1,
the connection vectors can be written as gy = 111 for the upper connection
and g, = 101 for the lower connection. The encoder connection also could be
represented by polynomial representation. Each polynomial is of degree M or
less and describes the connection of the encoding shift register to the modulo-2
adder. The coefficient of each term in the AM-degree polynomial is either 1 or
0, which depends on whether a connection does exist or not between the shift
register and the modulo-2 adder. Thus the above connection vectors could be
represented as ¢;(z) = 1+ z + 2% and gy(z) = 1 + 22. The generator matrix G

for this convolutional codes encoder is constructed as:

[11 10 11
11 10 11
G = 11 10 11

11 10 11

27

2. TURBO CODES

Then the generalised generator matrix G of a convolutional code with code rate

1/2 and input message size of m is constructed as follows:

[90[0]91[0] -+ go[m]gi[m]
90[0]1[0] e go[m]gi[m]
90[0]¢:1[0] e go[m]g1[m]

Then the output sequence is concluded as:

U(z) = m(x) - g1(x) interlaced with m(z) - go(x) (2.1)

For simulation work, the convolutional codes encoder is established by:

1.

2.

Defining the shift register with initialisation of all zeroes.
Generating the message by v elements.
Defining the connection vectors for g;, (0 < i < n).

Shifting the message sequence m;, (0 < i < k) to produce the elements u;,

(i < n) for each message sequence.

Constructing the encoded output until the shift register returns to all zeroes.

2.2.2 Trellis for Convolutional Codes

Due to the specific feature of convolutional codes encoder, it is possible to derive

the relationship between the state transitions. In general, the trellis diagram

is used to describe convolutional codes, it provides a more manageable encoder

description than the tree diagram by exploiting the repetitive structure. The

trellis construction is concluded:

e A solid line is to denote the output generated by an input bit zero.

e A dashed line is to denote the output generated by an input bit one.

e The node of the trellis characterises the encoder states. Each set of row

nodes corresponds to each distinct state.

28

2.2 Convolutional Codes

e At each unit of time, the trellis requires 2 sets of nodes to represent the

2M possible encoder states.

In the constructed trellis, one time-interval section of a fully-formed encoding
trellis structure completely defines the code. For instance, Table 2.1 shows all
the possible input and output values for a convolutional code (7,5) with % code

rate, where m;, 4 € {0,1, ..., M}, represents the data stored in the shift register.

Input (mg) | m; | ma | Output (u;) | Output (uy)
0 0 0 0 0
0 0 1 1 1
0 1 0 1 0
0 1 1 0 1
1 0 0 1 1
1 0 1 0 0
1 1 0 0 1
1 1 1 1 0

Table 2.1: Input and Output of Convolutional Code’s Encoder (7, 5)

And wu; and wu, are the corresponding output based on the input and state. The
relationship between the states, input and output could be obviously realised.
In Table 2.1, columns m; and my form the current state, and columns mg and
m, form the next state corresponding to the current state and input value. Ac-
cording to the relationship, Figure 2.2 depicts those state transitions in trellis
diagram, where the first digit before “/” represents the input value, followed by
the two outputs. The other representation about the relationship, called “state
diagram”, is shown in Figure 2.3, where the 3-digit number represents the input
data followed by the two output data.

2.2.3 Decoding of Convolutional Codes

The maximum likelihood hard-decision decoding algorithm, called Viterbi decod-
ing, for convolutional codes was first proposed by Viterbi [126], who introduced
an optimal recursive decoding algorithm to estimate the possible state sequence

by using Fuclidean distance as a metric. And a forward algorithm working on the

29

2. TURBO CODES

00 00

1/(1,1)
o1 0L

. 0/(0,1) \.

1/(1,0)

Figure 2.2: Trellis Diagram of Convolutional Codes (7, 5)

State | _ _
01 ~ .
N
\
011 100N,
010 Y
001
State | _ _ _ _ _ |- _____. »| State
000 00 111 10
}
1
/
101,/
7~y | State -7
‘ -
SINARE!

Figure 2.3: State Diagram of Convolutional Codes (7, 5)

trellis for finding the closest codeword was utilised in Viterbi algorithm proposed
by Forney [38]. According to the codes trellis, the soft-decision based BCJR
decoding algorithm was introduced by Bahl et al. [5]. Such decoding algorithm
is based on the formation of a posteriori probabilities (APPs), and chooses the
data-bit value that corresponds to the mazimum a posteriori (MAP) probability
for each data bit [111], thus it is also called MAP decoding. It aims to determine
the most likely information bit to have been transmitted at each bit time. The
BCJR algorithm could be considered by implementing the Viterbi algorithm in

both directions due to its forward and backward recursions.

30

2.2 Convolutional Codes

2.2.4 Likelihood functions

Based on the Bayes’ theorem [6], the a posteriori probability (APP) of a decision

in terms of a continuous-valued random variable x is expressed:

P(d = ifz) = 2214 :pi);;(d:i) i={1,2,..,L} (2.2)

and

L
p@)=§%ﬂﬂd=iﬂ%d=ﬂ (2.3)

i=
where P(d = i|z) is the APP value, and (d =) represents data d belonging to
the ith signal class from a set of L classes. p(z|d = ©) represents the probability
density function (PDF) of a received continuous-valued data-plus-noise signal z,
conditioned on the signal class (d = 4). And p(d = 4) called the priori probability,
is the probability of occurrence of the ith signal class. Since x is an “observable”
random variable or a test statistic that is obtained at the output of a demodulator
or some other signal processor. Therefore, p(z) is the pdf of the received signal

z, yielding the test statistic over the entire space of signal classes.

2.2.5 BCJR Algorithm

Let R¥ = {Ry,...,R;, ..., Ry} be a received vector corresponding to the output

sequence from the channel, where R, = {z,v;} is defined in

Ty = |dt - Zt| - (24)
Yo = |Y: — q (2.5)

where 2; and ¢; are two independent noises affected by variance o2, and Y; is the
parity bit corresponding to the information bit d;. For computing the probability

of a decoded bit d;, we have

P(d; = i) = P(d; = i|RY) (2.:6)

31

2. TURBO CODES

For each associated node in the trellis, the corresponding APP is defined by
P(Si=mIR}) (2.7)

where (S; = m) represents the current state m at time ¢t. The corresponding APP

of each associated branch in the trellis is defined by
P(St_l = ml, St = m|R}f) (28)

where (S;—1 = m/') represents the previous state m’ at time ¢ — 1 corresponding
to the current state m at time ¢t. Thus the probability is computed as the sum of
the probability of all transitions that are generated by d; = 7, then we have
P(dt = 'L) = Z P(St—l = m,, St = mlle) (29)
m/ m|di(m/ m)=i

By using Bayes’ Rule, we have

1
P(Rllc) m’,m|dt(27n',m)=i
where
/\t(m', m) = P(St_l = m,, St =m, Rllc) (211)

is the joint probability of S; = m and S;_; = m'. The term P(R}) could be
ignored due to its constancy. Then the A\;(m',m) can be expanded based on

Bayes’ rules as follow:

A(m!,m) = P(S;=m, S = m’, R¥)
= P(Rf+1|5t = m) . P(Sg =m, Rt|St—l = ml) .

P(S;-; =m/,Ri™) (2.12)

32

2.2 Convolutional Codes

We define the terms of au(m), Bi(m), v.(m',m) as follows:

a(m) = P(S;=m,RY)) (2.13)
B(m) = PR{,|S:=m) (2.14)
(m',m) = P(S, =m, RS =m) (2.15)

where ¢t € {0,...,k}. By applying the terms of ay(m), B;(m), v:(m’,m), we have
the joint probability

Ae(m!,m) = a1 (m') - w(m/,m) - Bs(m) (2.16)

where o computes the probability of state S;_; = m' based on the received data
vectors R before time ¢, # computes the probability of state S; = m based
on the received data vector Rf 1 after time ¢, and + is the transition probability

based on the current received value R;.

2.2.5.1 The a Recursion

By following the Bayes’ rule, the a value can be obtained recursively. Then we

have
a(m) = Y P(S1=m',S5,=mRj)
= Z P(St—l = m,a St =m, Ri—l, Rt)
= Z P(St =m, Rt, St—l = m', Rtl_l)
= Z P(St = m, RtISt—l = m', Ri-_l) . P(St_l - m', Ri——l) (217)

The events of S; and R after time t —1 do not depend on the knowledge of R{™1.
If S;_; is known, thus

a(m) = ZP (Se-1 =m',R{7Y) P(Sy =m, R|S;-y = m)

= Zat 1 Ye(m',m) (2.18)

33

2. TURBO CODES

2.2.5.2 The ¢ Recursion

Similarly, values of 3 also can be obtained recursively by using Bayes’ rule. Then

we have:
P(Rtl;-la St = m)
Bi(m) (S, = m)
Y P(RE,y, Ser1 =m0/, Riy1, Sy = m)
B P(S,=m)

Z P(Rf+2|5t+1 =m/, Ry, S = m) : P(St+1 =m/, Ri11,S = m)

P(St = ’)’n,)
= Z P(Rf+2lst+l = ’ITL/, Rt+1, St = m) .

P(St—l-l = m’, Rt+1|St = m) (219)

Similarly, the event of RY o after time ¢ does not depend on the knowledge of

Rt and S; = m. Then if S,4; is known, thus
Bi(m) = ZP(Rf+2|St+1 =m')- P(Si41=m/, Ri11]S; = m)

= Z, Ber1 (M) - Yera(m, m) (2:20)

2.2.5.3 The Transition Probability

The transition probability v;(m/,m) at time ¢ could be derived:

’yt(m', 'ITL) = P(St =m, Rt|St_1 = ml)
P(Rt, St =1m, St—l = m')

P(St_l = m')
_ P(RtISt =m, St——l = m’) . P(St =m, St—-l = m')
P(St_] = m’)

= P(RtISt =m, St—l = m') . P(St = m|St_1 = m') (221)

In (2.21), the first term is computed with the statistical description of the channel.
The second term is a “0” - “1” probability distribution based on the trellis, where

“1” indicates the possible transition, and “0” vice versa. If the condition of the

34

2.2 Convolutional Codes

transition is possible, then we have
Y(m',m) = P(Ry|S; = m, S;-1 = m) (2.22)
Since R; = {z:,y:}, then we have
Ye(m',m) = P(zy, 4| Sy = m, Sy = m') (2.23)
where z;, ¥; is mutually exclusive, then we have
Ye(m',m) = P(z4|S; = m, Sy = m') - P(y:]S; = m, S_y = m’) (2.24)

where the transition probability is defined by the product of the probability of
received information bit value z; and the probability of received parity bit value

¥ in condition of from state m’ to state m.

2.2.6 Implementation of BCJR Decoder

We conclude the steps of BCJR decoding algorithm implementation for binary
codes, where ¢ € {0, 1} as follows:

1. The first step is to calculate the channel probabilities of P(d; = 0) and
P(d; = 1) for each received information bit and corresponding parity bit.

2. Compute the v value for each transition in terms of probability at each

section.

3. Based on the trellis of the code, and the computed y value at each section,

implement the forward recursion to get o value for each state.

4. Based on the trellis of the code, and the corresponding computed ~ value
at each section, implement the backward recursion to get (value for each
state.

5. According to (2.16), get the soft output about each information bit.

6. Transform the soft output value into the decoded symbols.

35

2. TURBO CODES

2.2.7 Tail Biting: the Terminology of Block Convolutional
Codes

In general, additional bits are necessary for terminating the trellis during the
decoding process for convolutional codes. Consequently, it may cause a large
fractional code rate loss, a modified form of terminated code, called tail-biting
convolutional codes, was introduced by Ma & Wolf [78]. Such a modified class
of convolutional codes is capable of transforming convolutional codes into sized
block codes, which allows no code rate loss transmission. The tail-biting block
convolutional codes C'rp are those code sequences aésociated with paths in the
trellis that start from a state equal to the last m bits of an information vector
of k data bits [86]. Thus all codewords in Crp generated by the corresponding
encoder begin and end at the same state.

For example, a convolutional codes encoder (7, 5), which is with code rate 1/2
and memory of 2 for 5 message bits, could be modified to be a (10, 5) block code

with tail biting. Then the corresponding generator matrix G¢,, is given by

(11 10 11 00 00
00 11 10 11 00
Gepp = (00 00 11 10 11
11 00 00 11 10
10 11 00 00 11

2.2.8 Numerical Results

In general, in a given code rate, the performance of a convolutional code could be
viewed as a function of the codes constraint length, which is the error probability
is improved with the increased constraint length [128]. Thus the comparison
results between convolutional codes (7,5) with M = 2 and (133, 171) with M = 6,
(both codes have 200 binary input message bits), decoded by BCJR decoder
over the AWGN channel are shown in Figure 2.4. It provides a good evidence
that the convolutional codes (133,171) with M = 6 achieve significant better
performance than convolutional codes (7,5) with M = 2. And there exists exactly
2dB coding gain at Bit Error Rate (BER) 4 x 1077 between the two results. Such

36

2.3 Turbo Codes

Convolutlonal Code (7,5) ---%-- :
Convolutlonal Code (133,171) —E}— :

10’3

Bit Error Rate (BER)
3
H

-
S
(3]

-
S
(o2}

-
S
iy

Eb/No, (dB)

Figure 2.4: Results of Convolutional Codes with BCJR Decoder

improvement comes at the expense of increased decoder complexity, for instance,
larger memory of shift register defines more complicated number of states in trellis

representation, which could lead to more specific codewords.

2.3 Turbo Codes

In 1993, Berrou et al. [10] introduced a new class of codes, called turbo codes. Such
code could purportedly achieve near Shannon limit performance with modest de-
coding complexity. This new class code with significant performance stunned the
coding research community, and the “turbo revolution” was launched. Since then,
the new style decoding scheme jumped to the core of coding design, which was
the iterative decoding scheme by exchanging the extra soft information knowledge

between independent decoders during iterations.

37

2. TURBO CODES

2.3.1 Turbo Codes Encoder

With the successful usage of soft output during the decoding process for convo-
lutional codes by adopting the BCJR algorithm, the parallel concatenation and
serial concatenation of convolutional codes attracted huge interest during the dig-
ital communication design. Since the codes should be “random-like”, in the sense
that the distribution of distances from a typical codeword to all other codewords
should resemble the distance distribution in a random code [25]. The standard
turbo codes encoder is designated to comprise two parallel recursive systematic
convolutional (RSC) encoders and an interleaver which enables the turbo codes to
follow the somewhat “random-like” principles. Figure 2.5 shows a turbo encoder

structure in polynomials of (15/13), where u and « is the information bit and

u

=AM

u | ;
——= Interleaver ﬂ%ﬁ

Figure 2.5: Parallel Concatenation Turbo Encoder (15/13) with R, = 3

oY

-
3

%
3

the permuted information bit, p; and p, are the parity bits corresponding to the
first RSC encoder and the second permuted RSC encoder. Let ¢ be the code set
containing the information bit and two parity bits, ¢ = {u,p;,pe}. Figure 2.6
depicts turbo codes (15/13) in the trellis diagram and the input-output compu-
tations, where X is the hidden value in the end of the feedback shift register,
which is the input for forward shift register. And values of a, b and ¢ represent
the current state; X, a, b represent the next state stored in the shift register. In
the trellis diagram, the solid line indicates the “0” value input, and the value “1”
input is represented by the dashed line. The input and output values through
the shift register are depicted in form of “input/output” in Figure 2.6.

38

2.3 Turbo Codes

Trellis for Turbo codes 15/13 Data for trellis 15/13

000 90 000 Input X a b ¢ Output
T XNy BIURSE 0o 0 o0 0 0 0
001 V1w 001 0 1 0 0 1 0
o/ R sl 0 1 0 1 0 1
01010, ...+ 010 o 0 o0 1 1 1
o 0o o0 1 0 0 1
011 011 0 1 1 0 1 1
10 » o 1 1 1 0 0
100% ~ . 100 0 0 1 1 1 0
- 1 1 0 0 0 1
101 0 ™S 101 1 0 0 0 1 1
0T 1 0 o0 1 0 0
110" 110 1t 0 1 1 0
0/0 1 1 1 0 0 0
L T 110 10 10
n 1 0 1 1 0 1
1 1 1 1 1 1

Figure 2.6: Trellis Diagram of Turbo Codes (15/13)

2.3.2 Interleaver

The idea of designing interleaver was originally aimed to solve the error propa-
gation for the concatenation codes, which could cause an error occurrence results
in a number of data errors. The block interleaver consists of a two-dimensional
array, into which the data is read along its rows. Then the columns once the array
is full, thus the order of data is permuted. For turbo codes, the interleaver unit
with pseudo-random property is normally utilised in large block length of code-
word. It is required that the designed interleaver is able to break the patterns in
input sequence; break up almost all the bad patterns; and achieve the full effort
of spectral thinning in order to ensure that the low-weight parity sequences from
the first encoder get matched with high-weight parity sequence from the second
encoder.

At present, there are two types of interleaver that have been commonly in-

39

2. TURBO CODES

vestigated in terms of pseudo-random, they are random interleaver and so-called
S-random interleaver (33, 104]. For pseudo-random interleaving patterns, there

are some ways to design the interleaver.

e By using a primitive polynomial to generate a maximum-length shift regis-

ter sequence where cycle structure determines the permutation.

e An interleaver [71] uses a computationally simple algorithm based on the

quadratic congruence to generate an index mapping function ¢; — c¢; 4
mod K),

cizw+l)(mod K), 0<i< K, (2.25)

where K is the interleaver size, and 7 is an odd integer. For instance, for
K =16 and j = 1, we obtain

(co,c1,-++ ,c15) = (0,1,3,6,10,15,5,12,4,13,7,2,14, 11,9, 8)

which implies that index 0 (input bit %'y) in the interleaved sequence u’ is
mapped into index 1 in the original sequence u (i.e., ¥/o = u;), index 1 in
u’ is mapped into index 3 in u (i.e., 'y = u3), then we can get permutation

information bits index set.

1 =11,3,14,6,13,12,10,2,0,8,15,9,4,7,11,5|
16

e S-random interleaver is also called “spread” interleaver, it was recognised
early on that good spreading properties are desirable for both fast conver-

gence and good distance properties.

In order to attain highly spread property, Crozier [27, 30] introduced the dithered
golden interleavers with high spread and high distance for turbo codes. In order

to design a good interleaver, there are several criteria to satisfy:

e The interleaver bank should provide a wide range of interleaver lengths with

good resolution.

40

2.3 Turbo Codes

o The amount of memory required to define and store each interleaver should

be low

o The algorithm used to generate the interleaver indices should be simple to

accommodate the term of “on-the-fly”.

o The interleaver bank should provide good error rate performance for all

block lengths, which is the hardest part of interleaver design.

In order to satisfy the above criteria, Crozier & Guinand [28] proposed a new
class of interleavers, so called dithered relative prime (DRP), which provides a
good solution to the interleaver bank design for turbo codes. Especially such
class of interleaver could significantly improve the minimum distance in terms of
high-spread and high-distance. In this research work, most of the turbo codes
are designated by adopting the DRP interleaver designs [29]. Since the size of an
interleaver could be large, then this number of bits must inevitably be stored in
the interleaver in the encoder and/or the decoder at any given time. Thus there
exists a latency issue due to the large size of interleaver. It results in a delay
through the encoder/decoder combination. For instance, for an information rate
of 8kbit/s with interleaver size of 65536 bits (64k bits), which is appropriate for
speech transmission, there is a delay of 65536/8=, or more than 8 seconds. Such

delay is unacceptable in a telephone system.

2.3.3 Turbo Decoder

By adopting the BCJR algorithm [5], the optimal decoding scheme for the new
class of turbo codes was introduced by Berrou et al. {10]. In turbo decoding
scheme, a new term is suggested, called extrinsic information, which is desig-
nated to provide the confidence about each information bit during the iterative
turbo decoding process. Thus the updated reliable information knowledge about
the information bit is re-computed by each BCJR decoder at every iteration. In
general, the extrinsic information is the information knowledge which contains
the previous reliable knowledge to help compute the current reliable knowledge.
A turbo decoding scheme comprises two BCJR decoders for the constituent infor-

mation sequence and the permuted constituent information sequence. During the

41

2. TURBO CODES

decoding iterations, more and more reliable information knowledge is exchanged
between the BCJR decoders, and the most likely information bit is determined in
terms of the mazimum a posteriori probability for each information bit. The par-

allel concatenated iterative turbo decoder structure is shown in Figure 2.7, where

1
L.r L (v
Decoder 1

LA] LB Tl
(=)

W\
2
| Decoder 2 Le(wy)
— | BCR)
L. L(w)

Figure 2.7: Iterative Decoding Scheme for Parallel Concatenated Turbo Codes

“Decoder 1” and “Decoder 2” are the BCJR decoders, 7 is the same interleaver
function as used in the encoder, 77! is the deinterleaver. Let L'(u;) be the soft
output APP from decoder [, where j € {0,...,k — 1} and [€ {1,2}. And L.(u;)
represents the extrinsic information about bit u; from decoder I, it is passed as
a priori input to the other decoder. Let Lc’r;'- be the channel measurement from
received code set r;, where r; comprises of r? the received information bit, 7‘} and
7']2- the received parity bit and the received permuted parity bit corresponding to
set code c;. Since the channel measurement with a priori input has already been
known prior to the decoder, hence the extrinsic information provides additional
knowledge about the corresponding information bit at each iteration. When the
iterative decoder reaches the given maximum number of iterations, the soft output
should be more reliable than by only passing to one single BCJR decoder.

By taking the logarithm of the likelihood ratio, we obtain the log-likelihood

ratio (LLR) metric, which is a real number to represent a soft decision output.

42

2.3 Turbo Codes

It is described as:

szuﬂ] (2.26)

By following Bayes’ rule, it could be extended as:

L(dz) = log [
———q (2.27)

Then we have
L(d|z) = L(z|d) + L(d) (2.28)

where L(z|d) is the LLR of the channel measurement under the conditions that
(d = 1) or (d = 0) may have been transmitted, and L(d) is the a priori LLR of
the data bit d. At beginning, L(d) is always initialised as 0. For simplification,

(2.28) is rewritten as:
L'(d) = Le(z) + L(d) (2.29)

where Lc(z) is the result of a channel measurement made at the receiver. Ac-
cording to [10], Berrou has shown that for a systematic code the LLR soft output
of the decoder is equal to

L(d) = L'(d) + Lo(d) (2.30)
where L'(d) is the LLR of the input to the decoder. Le(d), called the eztrinsic
LLR, represents the extra knowledge that is gleaned from the iterative decoding
process. From (2.29) and (2.30), the output LLR of turbo decoder is obtained as:

L(d) = Le(z) + L(d) + L(d) (2.31)

Equation (2.31) shows that the output LLR of a systematic decoder can be
represented with three LLR terms:

43

2. TURBO CODES

e Channel measurement, L.(z)

e Priori knowledge of the data, L(d)

A

e Extrinsic LLR stemming solely from the decoder, L.(d)

During the iterative decoding, the channel measurement of L.(z) stays same,
which could be considered as a constant. And the priori knowledge is replaced by
the extrinsic knowledge L,(d) from the previous decoder. If the sign of L(d) due
to the decoding has the same sign as L.(z) + L(d), it acts to help improve the
reliability of L(d), otherwise vice versa. When reaching the maximum iterations,
the most reliable extra knowledge is accumulated with the channel measurement
to get the final output LLR of the data bit. The principle of the iterative decoding

process is depicted in Figure 2.8.

Feedback for the next iteration

: A,
v L(d) L (d)
i a priori extrinsic
E value in value out |
Detector a posteriori Soft-In Output LLR valus
LLR value X N
L(d=Ly(x)+L(d) | Soft-Out L(d)=L1d)+Le(d)
Decoder
L) L@
channe] ————= a posteriroi
value in value out

Figure 2.8: Principle Diagram of an Iterative Turbo Decoder

2.3.4 Numerical Results

The turbo decoding performances with different iterations for turbo codes (5/7)
with length (3074,1024) permuted by DRP [28] interleaver are shown in Fig-

44

2.3 Turbo Codes

ure 2.9. It clearly shows that the significant improvements are achieved by more

10° F—

Iteration=1 b
lteration=2 --®--]
Iteration=10 ---&3--

lteration=50 —e&— 73

[ERPPRE:

10" §

-
<
N

-
)
w

Bit Error Rate (BER)
=
L

L

...

Eb/No, (dB)

Figure 2.9: Results of Turbo Codes (5/7) with Different Iterations

decoding iterations.

The turbo decoding performances with different iterations for turbo code
(15/13) with length (3074,1024) permuted by DRP [28] interleaver are shown
in Figure 2.10. It does not only show the improved achievement over iterations,
but also shows better performance is achieved by using larger memory of (15/13)
than results of (5/7) in Figure 2.9.

The turbo decoding performances for turbo codes (15/13) with length (1368, 456)
and 50 iterations in different interleavers are shown in Figure 2.11. It clearly shows
that different interleaver could significantly affect the decoding performance, es-
pecially at high SNR. A well designed interleaver could asymptotically break most
of stopping set patterns to achieve a much lower error floor, like code DRP-rp-
r13-d38 than DRP-d35 and Srandom-r12-d32. Although their minimum distances
are close, but they perform quite different in the AWGN channel.

45

2. TURBO CODES

100 [sss: H BESEIEISERAEEEY EEEEEHS T e
i Iteration=1 * i
. : lteration=2 --®--]
10" ,; Iteration=10 ---£-- .!
& Iteratiqn=50 —a— i
103 : '
g oo -
o hi 3
B i e 4
@ 10% = iR s
s m i oo
{w o . ¥ p
W a5) &
— 10 N HEE
10 e ! 1
Py | y i
10 ; 1
10-8 1 1 1]
2 3 4 5
Eb/No, (dB)

Figure 2.10: Results of Turbo Codes (15/13) with Different Iterations

2.4 Summary

The SISO BCJR decoding algorithm for convolutional codes has been explained
and derived in equations in this Chapter. The extrinsic information has been
introduced for turbo codes and explained in equations to provide the benefit of
using extrinsic information to improve the confidence about each information
bit after certain iterations. And the simulation results over the AWGN channel
have been presented by adopting different interleavers, memory orders, codeword

lengths and iterations.

46

2.4 Summary

10° :
Srandom-r12-d32 ---%-- :
DRP-rp17-r13-d38 —=— -
DRP-d35 — -
-1
10
@
y
> 107
©
o
) 10'3
£
(0]
L
10
40°%
0 0.5 1 1.5 2 25 3
Eb/No, (dB)

Figure 2.11: Results of Turbo Codes (15/13) with Different Interleavers

47

Chapter 3

LDPC Codes and Turbo Gallager
Codes

3.1 Introduction

Low-density parity-check (LDPC) codes are one of the traditional types of lin-
ear block codes since their first introduction by Gallager [45] in 1963 and have
attracted a great deal of interest in recent years, following the rediscovery by
MacKay [80] in 1999. The so-called LDPC code with its sparse structure in
parity-check matrix shows its perfect match of message-passing algorithm. The
corresponding message passing decoding algorithm (also known as belief propa-
gation (BP) introduced by Pearl [88]) as an iterative decoding algorithm has suc-
cessfully brought traditional codes back into the modern digital communications
research area after the invention of turbo codes [10] in 1993. The competition be-
tween LDPC codes and turbo codes has probably peaked, although the outcome
is by no means clear. Following the introduction of irregular LDPC codes [95],
the asymptotic approach to the Shannon limit by LDPC codes coupled with iter-
ative decoding has proven the benefits of the approach [23]. In this chapter, the
construction and characteristic of LDPC codes are described in Section 3.2. The
classical low decoding complexity algorithm of message passing (BP) is detailed
in Section 3.2.2. Section 3.2.3 presents the simulation results over the AWGN
channel for LDPC codes following different extrinsic information update meth-

ods. The turbo Gallager codes, by combining the simplicity of turbo encoding

49

3. LDPC CODES AND TURBO GALLAGER CODES

feature and BP or BCJR decoding properties, are detailed in Section 3.3. Sec-
tion 3.3.1 presents a series of turbo Gallager codes evaluation results by adopting
BP decoding and BCJR decoding over the AWGN channel.

3.2 LDPC Codes

Low-Density Parity-Check (LDPC) codes were first introduced by Gallager [45] in
1960. Due to the high computational complexity of designing the code structure
and superior competition from concatenated Reed-Solomon and convolutional
codes, it was completely ignored for decades. In 1999, LDPC codes were redis-
covered by MacKay [80], it was shown that LDPC code was a suitable candidate
for iterative decoding with low decoding complexity. He also indicated that in
practice moderate-length LDPC codes (103 —10? bits) could attain near Shannon-
limit performance [81]. Whereas [110, 114] showed that in theory, as codeword
length n — oo, they could approach the Shannon limit with linear decoding com-
plexity. Besides the regular LDPC codes, the irregular LDPC codes, which have
varied column weights from column to column, have proved the channel-capacity
approachable performance [23, 95]. Comparing to turbo codes, LDPC codes are
featured by the following advantages:

e LDPC codes do not require a long interleaver to achieve good error perfor-

mance.
e LDPC codes generally have better frame error performance.

e LDPC codes could have a much lower error floor at low BER level (about
10-6 — 10~7).

e The corresponding BP decoding is not a trellis based iterative decoding

algorithm, which provides low decoding complexity.

Although Gallager proposed LDPC codes as a class of error correcting codes, he
did not provide a specific method on how to construct good LDPC codes alge-

braically and systematically. A method of constructing LDPC codes in terms

50

3.2 LDPC Codes

of pseudo-random was proposed in Gallager’s PhD thesis [45]. MacKay redis-
covered Gallager’s work and proved the possible random method of generating
good LDPC codes based on the sparse matrices MacKay [80]. Thus good random
LDPC codes have been largely found by computer generation, especially long
codes, but their encoding is very complex due to the lack of structure. In 2000,
Kou, Lin and Fossorier [61] proposed the first algebraic and systematic construc-
tion of LDPC codes based on finite geometries. Such large classes of LDPC codes
based on finite geometries have relatively good minimum distances, and contain
no short cycles on their Tanner graphs. These codes can be decoded with low
decoding complexity with good error performance. Besides the finite geometry
branch from the combinatorial mathematics, other combinatorial mathematics
are adopted to the construction of LDPC codes. Based on the Kirkman triple
systems, Johnson & Weller [60] introduced another approach of (3, k)-regular
LDPC codes, whose Tanner graph is free of 4-cycles for any k. Another construc-
tion of LDPC based on Steiner 2-designs was proposed by Vasic & O.Milenkovic
[125). Inspired by Vasic’s work, another class of quasi cyclic LDPC codes based
on the so-called balanced incomplete block design (BIBD) [13, 49], which forms
another branch of combinatorial mathematics, was introduced by Ammar et al.
[3]. Such BIBD-LDPC codes by exploiting decomposition techniques could sig-
nificantly reduce the number of cycles of length 6. Since these codes are either
cyclic or quasi-cyclic (QC) LDPC codes [21, 41], their encoding could be simply
implemented with linear shift registers, whose computational complexity is lin-
early proportional to the number of parity-check bits for serial coding and to the
code length for parallel encoding [69]. In general, long random LDPC codes per-
form closer to the Shannon limit than their equivalent structured LDPC codes,
but with high encoding complexity. On the other hand, structured LDPC codes,
especially cyclic or QC-LDPC codes, are featured by the simple encoding advan-
tage over random codes. In fact, for practical lengths, well designed structured
LDPC codes could perform equally well as their equivalent random LDPC codes
with less encoding complexity in terms of bit-error rate, frame-error rate and
error-floor collectively [72, 73]. The powerful capabilities of LDPC codes have
led to their recent inclusion in several standards, such as IEEE 802.16e (WiMax),
IEEE 802.20, IEEE 802.3, DVB-RS2.

o1

3. LDPC CODES AND TURBO GALLAGER CODES

LDPC codes are a class of linear block codes whose parity-check matrix is
sparse. Thus the structure of LDPC codes could be either described by the
generator matrix G or the parity-check matrix H. The capability of correcting
symbol errors in a codeword is determined by the minimum distance (dpp). In H
matrix, dnin is the least number of linearly dependent columns of the H matrix.
The regular LDPC code is designed by w, and w, (w. < w,), which has w,
ones in each column and w, ones in each row. Thus the parity-check matrix is
constructed by at least (n — k) independent rows and n columns, where £ is the

length of the information bits. The capacity of the codeword is defined by
RC= 1——11}6/11}7. (31)

Since the parity-check matrix of LDPC codes could be represented by a bipartite
graph, such a graph comprises a vertex set of variable nodes V. = {wy, ..., vn_1},
and a vertex set of check nodes C = {cy, ..., cm-1}. The variable nodes correspond
to the columns of H, and the check nodes correspond to the rows of H. Hj;
represents the connection relationship between the variable node v; and check

node c;.

3.2.1 LDPC Codes Encoding

According to [116], all block codes have the common properties, then the gener-

ator matrix G is constructed as
G = [I;|P] (3.2)

where I, is the kX k i¢dentity matriz, which only has “1”s in the diagonal positions,
P is a k X (n — k) matrix that determine the n — k redundant bits or parity bits.
Since G x H = 0, then the parity-check matrix H is defined by

H = [I,|P] (3.3)

where P7 is the transpose of P matrix with size of (n — k) x k, I,_; is the
(n — k) x (n — k) identity matrix. The design of the LDPC codes is normally

52

3.2 LDPC Codes

based on the parity-check matrix, which is not exactly same as the structure as
shown in (3.3). Gaussian elimination is an linear algebra algorithm which can be
used to find the rank of a matrix and calculate the inverse of an invertible square
matrix [4]. By using Gaussian elimination algorithm, the H matrix of LDPC
codes can be transformed into an echelon form, which satisfies the structure of
(3.3). By transposing the PT matrix into P, we can get the generator matrix G,
according to (3.2). Let C be a codeword vector, and X be a message information
vector, then the encoding process in terms of the generator matrix G, the parity-
check matrix H is defined:

C=XxG : (3.4)
CxH'=0 (3.5)

It is noted that the number of parity-check equations m might be larger than n—k&
for some types of LDPC codes, for instance Tanner codes (155,64, 20) by Tanner
et al. [118] having 93 parity-check equations. Thus the parity-check matrix H
could be represented by a m x n matrix, where m > (n — k) and there exists
n — k independent parity-check equations, which define the n — & parity bits, and
(m —n + k) dependent parity-check equations, which have been found that the
additional parity-check equations could help eliminate the low weight stopping
sets [2].

3.2.2 Belief Propagation Decoding

The belief propagation algorithm as an instance of message passing algorithm is
recommended by Gallager [45] for LDPC codes decoding. Here we describe the

general steps for the implementation:

1. Input: Computation of posteriori probabilities for Pr;(d; = 0) and Pr;(d; =
1) for each code bit ¢;, j € {0,1,...,(n — 1)}, where ¢ = {co,c1,...,Cn-1}

represents the code vector, and a maximum number of iteration is set as L

2. Initialisation: Set g;;(0) = Pr;(d; = 0) for all (h;; = 1), where hy; is the
edge value between variable node 7 and check node j of parity-check matrix
H, i€ {0,1,...,(m —1)}. Set ¢;;(1) = Pr;(d; = 1) for all (h;; = 1).

53

3. LDPC CODES AND TURBO GALLAGER CODES

3. Horizontal Computation:
(a) For each hi; = 1, computation of d¢g;; = ¢;;(0) — g;;(1) to form the dq
matrix; “0” is filled in the matrix, where h;; = 0.

(b) For each h;; = 1, let éry; be the product of 6q matrix elements along

its row 1, excluding the (¢, j) position.

orij = 11 0qir (3.6)
1€{0,1,...,(n-1)}\j

(c) Computation of 7;;(1) = (1 — dry;)/2 and r45(0) = (1 + dry;)/2.

4. Vertical Computation: For each h;; = 1, let ¢;;(0) be the product along
its column j, excluding position (2, j), then times Pr;(d; = 0), same criteria

is applied for ¢;;(1).

4:5(0) = aij X Pry(d; = 0) I1 r3(0) (3.7)
le{0,1,...,(m—1)}\i
Qij(l) = Oéij X P’I’j(dj = 1) H ng(l) (38)

le{0,1,....,(m—1)}\i

where a; is the factor in condition of ¢;;(0) + ¢;;(1) = 1.

5. Computation of probabilities ¢;(0) and g;(1)

2;(0) = a; x Prj(d; =0) T (0 (3.9)
1e{0,1,...,(m-1)}
g;(1) = oy x Prj(d; =1) I1 715(1) (3.10)

1€{0,1,....(m~1)}

where «; is the normalisation factor in condition of ¢;(0) + ¢;(1) = 1
6. Decision on ¢; = 1, if (g;(1) > 0.5), else ¢; = 0.

7. If HT x ¢ = 0, it means code vector c is a valid codeword. Otherwise repeat
steps from Horizontal Step, if number of iterations < maximum iteration

L, else a decoding failure is indicated.

o4

3.2 LDPC Codes

3.2.3 Numerical Results

There are two different schedules for passing the extrinsic information to the next

decoding process.

e Row Update: involves passing the extrinsic information about the bit
to the next equation, which has “1” at the same position, for getting the
latest posteriori probability value. The decoding proceeds from the top
equation to the bottom, each bit is decoded with the most updated extrinsic

information.

e Block Update: involves passing the extrinsic information about each bit
from last iteration to the current decoding round. At each equation, the
same extrinsic information for the bit is used to get the posteriori proba-
bility. The posteriori probability provides the current extrinsic information
and it is stored to get the average extrinsic information about the bit during
the current iteration. Then the accumulated average extrinsic information

is passed to the next iteration.

The results for QC-LDPC codes [22] (824,415) and regular LDPC codes [80]
(2048,1024) by following the row update and the block update are shown in
Figure 3.1. It is clear to see that there exist slight differences between block
update and row update, the different schedules of passing extrinsic information
may affect the performance slightly better or worse at different SNR. The LDPC
codes (2048,1024) with longer codeword length, which might indicate a larger
dmin after a well design, are capable of achieving a better performance than shorter
QC LDPC codes (824,415). But the longer codes have the error floor occurring
much earlier than the shorter codes, which might be due to the poor smaller size
of stopping sets, which might be poorly designed. And it reaches the error floor
at a very early stage of 2dB %, meanwhile QC LDPC codes (824, 415) achieve a
lower error floor. From the results, we can see that the well designed LDPC codes
are able to lower the error floor due to their better minimum distance d,,;, and
larger stopping sets’ weight. According to the partial stopping set distribution
for the testing codes as shown in Table 3.1, LDPC codes (2048, 1024) with poor

dmin 6 could not provide an ideal lower error-floor performance, since its small

99

3. LDPC CODES AND TURBO GALLAGER CODES

10°

10"

- -
e =
w N

Frame Error Rate (FER)
=)
A

10°°

10°® QC LDPC Codes (824,415) Row-Update ---©--
QC LDPC Codes (824,415) Block-Update —e—

: LDPC Codes (2048,1024) Row-Update ---w-- =

LlDPC Code? (2048'102:4) BIock-U?date e e

0 1 2 3 4 5 6 7
Eb/No, (dB)

Figure 3.1: Comparison Results for LDPC Codes with BP Decoding

multiplicity of the stopping sets distribution, they performs better at smaller
SNR. On the other hand QC codes (824,415) with higher d,,;, 9 successfully

provide a lower error floor than the longer codes.

COde Na'me Smin Nsmin Nsmin+1]\fsmi'n‘l"2 Nsmin+3 Nsmin+4
(824,415) | 9 | 1(0) | 18(0) | 36 (0) | 4146 (3296) | 4572 (0)
(2048,1024) | 6 |[1(1) | 1 (1) | 0(0) 3(3) 1(0)

Table 3.1: Partial stopping set distribution of codes (824, 415) and (2048, 1024)

3.3 Turbo Gallager Codes

In the modern digital communication system, LDPC codes and turbo codes are

the major competitors, which could achieve channel-capacity performance by

96

3.3 Turbo Gallager Codes

using the iterative decoding technique. In practical, the fundamental difference
between turbo codes and LDPC codes is

e Turbo codes tend to have low encoding complexity but high decoding com-
plexity. In contrast, LDPC codes tend to low decoding complexity but with
relatively high encoding complexity.

e The interleaver during the turbo codes design causes the latency issue, which
does not exist in the LDPC codes design. In addition, the corresponding
BP decoding algorithm for LDPC codes could be implemented in a fully
parallel manner, and can be closely approximated with decoders of very low
complexity. |

e Even though, both codes are suffered by the error-floor issue, the well struc-
tured LDPC codes could generally have a lower error-floor than turbo codes
in the AWGN channe].

The trade-offs between turbo codes and LDPC codes could vary based on the
specific system design requirements. Then an open question could be simply
asked? Is it possible to adapt the advantages from each type of code to design a
new class of codes in terms of low complexity? The answer is definite. In 2004,
Colavolpe [24] introduced a new class of codes, which is so called the Turbo Gal-
lager codes (TGC). It is a special type of turbo codes which can be successfully
decoded by means of the decoding algorithm used for LDPC codes by properly
choosing the component convolutional codes. Since BP decoding algorithms are
very simple and characterised by a decoding complexity which does not directly
depend on the component code constraint length, they can be used to decode
the turbo codes with a enlarged constraint length, and hence, potentially charac-
terised by a large free distance. The large free distance for turbo codes is hard to
implement in practical, since the BCJR decoding complexity grows exponentially
with the code constraint length. By using Forney’s normal graphs [39], common
features can be identified between LDPC codes and turbo codes. Both codes
can be represented in graph structure joined by a randomly selected permutation
w. This graphical representation also exposes the turbo decoding algorithm as

an instance of message passing decoding on code graph [84]. It was originally

57

3. LDPC CODES AND TURBO GALLAGER CODES

suggested by Tanner [117], that LDPC codes could be represented by bipartite
graphs, also called Tanner graph. These graphs include two sets of nodes, the
variable nodes, which represent the elements of a codeword; and the check nodes,
which correspond to the set of parity-check constraints, which define the code. By
considering turbo codes containing RSCs in the similar structure of regular LDPC
codes, the Tanner graph of turbo codes can be represented in Figure 3.2, where

ONJOJWONNO

Figure 3.2: Tanner Graph for Turbo Codes

v is the information sequence, p and p™ are the parity bits for the encoder and
the interleaved encoder respectively. As the figure shown, it is a graph for a rate
1/3 code. The component codes are rate 1/2 systematic codes, and for simplicity,
the code termination is ignored. Let p be the set of parity bits corresponding to
the systematic information bit u, where p; = {p;,pf} and i € {0,1,...,k — 1}.
And ¢; = {u;,p;}, where « € {0,1,...,k — 1}. In the upper part of the graph,
the information bits u; and the parity bits p; of the first component code are
connected by the corresponding check nodes. The permuted information bits uy
are also connected with the lower check nodes related to the second component
code having parity bits p7. Let ¢ be a code set corresponding to information w,
which comprises u and p. After transmission over the noise channel, the received
codeword set ¢’ is depicted as ¢’ = {u,§'}.

According to the algebraic rules for selecting the proper turbo codes as turbo

Gallager codes (TGCs) [24], here we consider the turbo codes which are recursive

o8

3.3 Turbo Gallager Codes

convolutional codes of rate 1/n, where the codes polynomial exponent differences
are constrained to be distinct in order to ensure that message-passing decoding
can work successfully on the Tanner graph of the overall code due to the absence
of cycles of least length 4. For instance, the standard UMTS turbo code (15/13)
in binary is (1101/1011), which corresponds to the polynomials 1 4+ z + 23 and
1+ 2? + 23. For each polynomial the exponent differences are distinct and form
difference sets (1,2,3) and (2,1, 3). Hence, we consider the UMTS turbo codes
(15/13) as the basic turbo Gallager codes in this research work, due to its excellent

iterative performance and small memory in turbo decoding complexity.
3.3.1 Numerical Results

10° g

107"

107

1072

Frame Error Rate (FER)

10°® TGC (1513) —%—

TGC (31/23) - & 5
TOLBIAR] B~ recin o ittt st st sy
TGC (141/103) ~-&-- g — Th S
10-6 | 1 |
0 0.5 1 15 2

Eb/No, (dB)

Figure 3.3: The Results of TGCs (1536, 512) by Turbo Decoder

As turbo Gallager codes can be decoded by either turbo decoder or BP de-

coder, then we consider the UMTS turbo codes structure as the investigative

99

3. LDPC CODES AND TURBO GALLAGER CODES

code structure. By adding more “0”s in the middle of the shift register in struc-
ture of (11...1/1...11), the memory of the encoder is increased. Then the de-
signed turbo Gallager codes in size of (1536,512) with DRP [29] interleavers
include (15/13), (31/23), (61/43), (141/103) and (6001/4003). The results of
these codes excluding (6001/4003) decoded by turbo decoder with 50 iterations
over the AWGN channel are shown in Figure 3.3. From the comparison results,
we can see that most of the turbo Gallager codes achieve the similar performances
over the AWGN channel, excluding TGC (31/23) differing with 0.2 coding gain.
Thus turbo codes with turbo decoder don’t correspond the similar performance
as convolutional codes do that the performance is improved by increasing the
memory order of the shift register. The reason of having no improvement by
increasing the memory order could be due to the interleaver design, which has
not successfully separated the connected information bits after permutation and
resulted in a smaller weight of stopping sets or similar minimum distance. On
the other hand, the complexity of turbo decoder is exponentially increased by the
increment of shift register memory. Thus there should exist the convergence issue
between the iterative decoder and the design of turbo codes in terms of memory
order. Here we consider TGC (15/13), which includes a low decoding complexity,
as the reference performance for the further comparison.

The results of the set of “UMTS-like” codes decoded by BP decoder are shown
in Figure 3.4. As the results shown, by increasing the memory of the shift regis-
ter, the performance of BP decoder is improved for most cases. Furthermore, the
performance of TGC (141/103) seems to reach the best moderate performance in
BP decoder with maximum affordable memory for turbo decoder. Although the
performance of TGC (6001/4003) achieves lower error floor and starts outper-
forming since 3dB % by enlarging 5 memory orders, it is impossible for BCJR
decoder to decode. The reason of causing error-floor for codes with larger mem-
ory like (31/23) worse than codes (15/13) could be the low-weight BP stopping
sets for codes (31/23), which does not converge properly by using turbo codes
interleaver design for BP decoder.

According to [24], it was proposed a component code (0,3,4/0,14,34) for

code rate 1/n, where the integer number indicates the index of polynomial with

60

3.4 Summary

Frame Error Rate (FER)

TGC (15113) -~ % - —

TGC (31/23) --2--
TGC (61/43) -0~ =
TGC(141/103; —a— i M i e
TGC (6001/4003) -- - : i . |
1 7, 3 4 5 6

Eb/No, (dB)

Figure 3.4: The Results of TGCs (1536, 512) by BP Decoder

coefficient “1”. And such code is evaluated and compared in the following re-
search work, it is noted that such code with memory order 35 is only doable for
BP decoder. Then we compare the results of TGCs (15/13) and (141/103) by
BCJR decoder and BP decoder and the performance of code (0, 3,4/0, 14,34) by
BP decoder at the same size and number of iterations as shown in Figure 3.5.
The code (0, 3,4/0, 14, 34) achieves the best BP decoding performance than TGC
(141/103), the reason could be the longer memory order 35 of the code enables
the message passing work through the entire codeword [24]. However, the BCJR
decoding results for TGCs (15/13) and (141/103) still achieve the better perfor-
mances than the best BP result of code (0,3,4/0,14,34) with difference of at
least 1dB coding gain.

3.4 Summary

In this chapter, the LDPC codes have been described and its corresponding itera-

tive decoding algorithm has been explained. The simulations results have shown

61

3. LDPC CODES AND TURBO GALLAGER CODES

IAANEY. WIS i] T
S AR, e 3
oL]
i e
§ * A\ Q]
L Cimese e Q :
o . e
w .\‘ K : RiE ;,\\;>
- RN ,
B -!
: ‘ R
1 1 1
3 4 5 6
Eb/No, (dB)
TGC (15/13;, BCJR —¥— TGC (141/103;, BP ---&--
TGC (141/103), BCJR —&— TGC (0,3,4/0,14,34). BP ---& --

TGC (15/13), BP ---©--

Figure 3.5: The Results of TGCs (1536,512) in the AWGN Channel

the impact from error floor and update schedules on the decoding performance.
The turbo Gallager codes has been introduced in terms of the Tanner graph and
normal code graph. The simulation results over the AWGN channel for a range

of turbo Gallager codes have been compared by using BP decoder and BCJR
decoder.

62

Chapter 4

Iterative Decoding in the Erasure
Channel

4.1 Introduction

Chapter 2 and Chapter 3 describe the study of turbo codes, LDPC codes and
their iterative decoding algorithms over the AWGN channel. In this chapter,
the relevant decoding algorithms are analysed in terms of computational com-
plexity for the erasure channel. Section 4.2 is to clarify the various operations
in terms of equivalent additions to help analyse the algorithms’ computational
complexity. The standard turbo decoding complexity is analysed and discussed
in Section 4.3. The evaluations for a range of turbo codes with different iterations
over the erasure channel are presented in Section 4.3.3. Section 4.4 describes the
complexity analysis for belief propagation decoding algorithm over the erasure
channel. According to the feature of the erasure channel, the optimised look-up
table decoder for turbo codes is introduced in Section 4.5. The BCJR algorithm
is reviewed and analysed for the erasure channel in Section 4.5.1. The decoding
complexity analysis for LUT decoder is discussed and evaluated in Section 4.5.5.
The comparison numerical results for turbo Gallager codes over the erasure chan-
nel are presented in Section 4.5.6. The relevant decoding complexity analysis for

iterative BP decoder and BCJR decoder was presented in [131].

63

4. ITERATIVE DECODING IN THE ERASURE CHANNEL

4.2 Complexity Analysis Considerations

The purpose of the complexity analysis is to determine the relative speed of the
different decoders. The decoding algorithms considered for iterative decodable
codes are optimised LUT decoder, standard turbo decoder and belief propagation
decoder. The LUT decoder requires the look-up table to be constructed once,
and this has no impact on decoding speed. Consequently the look-up table con-
struction complexity is not included during the comparison of different decoding
algorithms. A decoding complexity analysis between MAP, Max-Log-MAP and
Log-MAP algorithms was presented by Robertson et al. [97]. In order to simplify
the comparison, it was assumed that logical and mathematical operations have
similar complexity. A more thorough investigation on turbo decoding algorithm
was performed by Wu [130], where each operation is quantified as a number of
equivalent additions. A re-derived complexity analysis for those decoding algo-
rithms was investigated by Chatzigeorgiou et al. [20]. In the erasure channel, the
iterative decoding algorithms are much simpler than the AWGN channel. In our
analysis, the basic operations performed by the various decoding algorithms in-
clude addition (ADD), subtraction (SUB), multiplication (MUL), division (DIV),
comparison (CP), assignment (ASSI) and table look-up (LKUP). The ASSI op-
eration is to assign a relative value to a variable. The LKUP operation is used in
the optimised LUT decoder, it corresponds to three equivalent additions, since
3 CP operations are used to map the input parameters to the decoded value
stored in the look-up table. The number of equivalent additions for the various

operations is shown in Table 4.1.

Operations Number of Equivalent Additions
Addition, Subtraction 1
Multiplication, Division 1
Comparison 1
Assignment 1
Table Look-up 3

Table 4.1: Number of Equivalent Additions Per Operation

64

4.3 Standard Turbo Decoding

4.3 Standard Turbo Decoding

4.3.1 Complexity Analysis

To determine the complexity of a coding scheme, the arithmetic complexity of
the iterative decoding algorithm is measured in terms of number of elementary
arithmetic operations per decoded bit. In general, the complexity of encoding is
neglected, as it is relatively small compared to decoding complexity. Due to the
properties of the erasure channel, the MAP algorithm is sufficient to provide the
accurate conditional probability for each data bit. Thus in this comparison, the
BCJR algorithm is considered as the standard turbo decoding algorithm. Let n,
be the number of data erasures at the input to the decoder, where 7, = (k - ¢),
k is the length of information bits. At each decoding iteration, the number of
erasures is reduced. Let n! be the number of erasures at iteration i, and 2™ be the
number of states in the trellis, where M is the encoder memory, N, represents the
required number of operations in equivalent additions, L is the maximum number
of iterations.

In standard turbo decoding algorithm, the required procedures are classified

as follows:

1. Branch Metrics Calculation (Proc. A), requires 2 CPs and 2 ASSIs
for each data bit and each corresponding parity bit, 1 MUL operation for
updating the data bit estimation. For each valid branch, it consists of 2
CPs and 1 MUL. There are 2! branches in total.

2. Forward Metrics Calculation (Proc. B), each state consists of 4 CPs,
2 MULs and 1 ADD for both branches. There are 2™ states in total.
Normalisation requires 2 — 1 ADDs and 2™ DIVs.

3. Backward Metrics Calculation (Proc. C), the computation is the same

as that in the forward metric calculation.

4. Soft Decoding (Proc. D), computation for d; = 1 includes 3 CPs and 2
MULs for each state, where d; is the data bit at time ¢; there are 2 states

in total. Computation for d; = 0 is same as d; = 1. The soft decision is

65

4. ITERATIVE DECODING IN THE ERASURE CHANNEL

summed by 2¥ — 1 ADDs for d; = £1. Normalisation includes 1 ADD and

2 DIVs.

Procedure ADD MUL DIV CP ASSI
Proc. A — 1+2x2M | — [4x2M 12| 2
Proc. B |[2x2M —1| 2x2M oM 4 x oM —
Proc. C | 2x2M —1| 2x2M oM 4 x 2M —
Proc. D |2 x2M —1 4 x oM 2 6 x 2M —

Table 4.2: Number of Computations for Standard Turbo Decoding Algorithm

The required computations for the turbo decoding algorithm in terms of the
number of equivalent additions are shown in Table 4.2. In a 1/3 code-rate turbo
decoding scheme, in decoding one frame, k trellis sections and 2 corresponding
BCJR decoders are required. The number of operations N in terms of equivalent

additions for & trellis sections with L iterations is obtained as:

NT(k) = ZLj(4k + T4k2M) (4.1)

i=1

4.3.2 Iteration Analysis

We define that the block successfully decoded by iterative decoder is denoted as
“Decoded”; the block contains erasures after iterative decoder is denoted as “Un-
decoded”. The required average maximum numbers of iterations are analysed for
both types of blocks. Table 4.3 shows the average maximum numbers of itera-
tions required for “Decoded” and “Undecoded” at different erasure probability ¢,
where “Avg. Iter.” represents the average maximum number of iterations.

The relationship between efficiency and iterations for TGC (15/13) in size of
(1536, 512) with standard turbo decoder is shown in Figure 4.1. It is apparent that
at iteration 6, the decoder has already achieved over 90% decoding performance.
According to Table 4.3 and Figure 4.1, an ideal maximum number of iterations
is provided for standard turbo decoder over the erasure channel, which is much
smaller than the number of iterations required in the AWGN channel without

performance degradation.

66

4.3 Standard Turbo Decoding

Erasure | Avg. Iter. | Avg. Iter. | Frame Error
Probability | Decoded | Undecoded Rate
0.63 9 2 0.981818
0.62 8 2 0.927272
0.61 7 3 0.790000
0.60 6 3 0.560000
0.59 5 3 0.236000
0.58 4 4 0.088333
0.57 4 4 0.022000
0.56 3 4 0.003160
0.55 2 4 0.000312
0.54 2 4 0.000018

Table 4.3: Iterations Analysis of Standard Turbo Decoder in the Erasure Channel

Efficiency

Number of Iterations

Figure 4.1: Relationship between Efficiency and Iterations for TGC (15/13),
(1536, 512) with Turbo Decoder

67

4. ITERATIVE DECODING IN THE ERASURE CHANNEL

4.3.3 Numerical Results

The results of TGC (15/13) in length of (3072,1024) with DRP [29] interleaver
decoded by standard turbo decoder at different iterations are shown in Figure 4.2.

It clearly shows that how the channel capacity could be achieved by increasing

10°

Bit Error Rate (BER)

Iteration=1 ---%-
lteration=2 &
lteration=10 =W~ it er it sk e
lteration=50 —&— - : d ; s

1 1 | | 1
0.3 0.35 04 0.45 0.5 0.55 0.6 0.65 0.7

Erasure Probability

Figure 4.2: Turbo Decoding Results of TGC (15/13) with length (3072, 1024) at
Different Iterations

the number of iterations of turbo decoder. Moreover, the required number of
iterations could be reduced to a small value to still attain the similar results.
The results of TGC (15/13) with standard turbo decoder at lengths (600, 200)
and (1536, 512) permuted by DRP [29] interleavers are shown in Figure 4.3. From
the results, we can see that the result with longer codeword length (1536,512)
at same code-rate 1/3 and code structure (15/13) is able to achieve a significant
improvement than result of codeword length (600,200). And the error floor starts
to occur at e = 0.52 for code (1536, 512) instead of € = 0.55 for code (600, 200).

68

4.4 Belief Propagation Decoding

Frame Error Rate (FER)

10® -
(n=600,k=200; —B— i3
(n=15|36,k=512 -
0.45 0.5 0.55 0.6 0.65
Erasure Probability

10°°

Figure 4.3: Results of TGC (15/13) with Turbo Decoder

4.4 Belief Propagation Decoding

In the erasure channel, the extrinsic probability may be represented by the value
of the codeword coordinate ¢,. ¢, = 1 or 0 (its data value), if probability 1; and
¢, = —1, if probability = 0.5 (erased bit). Based on the decoding algorithm for
BEC [75] and the simplicity of the computation of conditional probabilities of the
erasure channel, the belief propagation decoding algorithm may be simplified as

follows:
1. Initialise the extrinsic information for codeword c’.

2. Let H be the parity-check matrix, h;; be the position on the matrix, {0 <
i <m, 0 <j<n}, where i represents the row index, j is the column index,
n is the codeword length and m > n — k is the number of parity-check

equations including n — k independent parity-check equations and their

69

4. ITERATIVE DECODING IN THE ERASURE CHANNEL

corresponding parity bits. Select the positions h;; = 1, {i = 0,0 < j < n}
to construct a subset v;.

[vil

3. If there exists only one erasure in subset v;, the erasure ¢ = (> c)

J=0,5#t
mod 2, where |v;| is the number of “1”s at row 7. Then update the decoded
information ¢ as the extrinsic information for ¢. Otherwise, repeat step

2, to construct the next subset v;,7 =17+ 1.

4. Repeat the step 2 and 3 till ¢ = m — 1, where one decoding iteration

completes.

5. If there exists any erasure in the decoded sequence after the previous itera-

tion, repeat the Step 2 to 4 until maximum number of iterations is reached.

4.4.1 Complexity Analysis

If at row ¢, there exist more than one erasure, then there is insufficient information
to decode the intersected erasures. Thus these rows are not considered during
the computational complexity excluding checking the subset. Hence, only if sub-
set v; contains one erasure, this computation is counted regarding the decoding

complexity. Then the algorithm is classified as follows:

1. Equation Check (Proc. K), each equation consists of n CPs, there are
m = n — k equations in total, here m = n — k is assumed to simplify the

complexity computation.

2. Decoding Erasure (Proc. L), for equations containing only one erasure,
each of these requires n — 1 MULs and n — 2 ADDs.

The required equation computation for BP decoding algorithm in terms of the
number of equivalent additions is shown in Table 4.4. For 1/3 code-rate turbo
codes or turbo Gallager codes, n — k = 2k. Thus, to decode one frame, the
required number of operations N?¥ in equivalent additions in terms of n, with
L iterations for BP algorithm is obtained as:

&
NG"(ne) = (6K + (ng" —ng)(6k — 3)) (4.2)

i=1

70

4.4 Belief Propagation Decoding

Procedure | ADD | MUL | CP
Proc. K — - n—k
Proc. L |n—2|n-1 -

Table 4.4: Computation Requirement of BP Decoding Algorithm

For the purpose, again we assume n — k as the maximum number of erasures
decoded by BP decoder after L iterations, thus there exist maximum n—k (Proc.
L) for decoding one block, then the required number of operations N2 in terms

of k£ is obtained as:

NPPs (k) = 6K°L + 12k* — 6k (4.3)

4.4.2 Iteration Analysis

The similar statistics for iteration analysis is applied in BP decoding, Table 4.5
shows the required average maximum numbers of iterations for “Decoded” and

“Undecoded” blocks. It may be considered as a function of the overall FER to

Erasure | Avg. Iter. | Avg. Iter. | Frame Error
Probability | Decoded | Undecoded Rate
0.56 40 36 0.840336
0.55 46 21 0.584795
0.54 45 25 0.401606
0.53 49 24 0.171821
0.52 52 17 0.046816
0.51 38 25 0.009778
0.50 35 15 0.001701
0.49 34 21 0.000214

Table 4.5: Iteration Analysis of BP Decoder over Erasure Channel

indicate the decoding failure due to stopping sets, based on the required number

of maximum iterations.

71

4. ITERATIVE DECODING IN THE ERASURE CHANNEL

4.4.3 Numerical Results

The BP decoding performances for UMTS type of TGCs (15/13), (31/23), (61/43),
(141/103), and the reference code (0, 3,4/0, 14, 34) are shown in Figure 4.4. From

10°
107!

1072

Frame Error Rate (FER)

TGC (15113) —*%— :
TGC (31/23) ---B-- -
: TGC (61/43) o :

: TGC (141/103) -- -&--
........... TG T6C (0,3,410,14,34) -

04 042 044 046 048 05 052 054 056 058 0.6
Erasure Probability

Figure 4.4: Results of TGCs (1536, 512) with BP Decoder in the Erasure Channel

the results, it may be seen that the performance is improved by increasing the code
constraint length with the runs of “0” inside. When the longer code constraint
length is selected, some of the stopping sets caused by the shorter constraint
length code are broken and a lower error floor is realised. When the constraint
length is chosen at a certain distance, there is only slight improvement in the
waterfall region, like the results between TGC (61/43) and TGC (141/103) be-
fore € = 0.47. The result of code (0,3,4/0,14,34) does not achieve the best
performance as it does in the AWGN channel as shown in Figure 3.5. At erasure
probability € = 0.46, result of code (141/103) starts to reach the error floor region
due to the stopping sets, however the result of code (0,3,4/0, 14, 34) still hasn’t

72

4.5 Optimised Iterative Decoding

met the error floor, even at FER=1078. It also shows that by selecting a longer
memory of the shift register on design of TGC is able to ensure the message-
passing work well through the whole codeword in either the AWGN channel or
the erasure channel, which could obviously lower the error floor.

4.5 Optimised Iterative Decoding

4.5.1 Remark on the BCJR Algorithm for the Erasure
Channel

According to (2.18), we can see that the value of a;(m) only depends on the value
of y¢(m’,m), if oy_;(m’) is known. Similarly, from (2.20), the value of 8;(m) only
depends on the value of y;1(m, m’), if B1(m’) is known. If we only consider the

possible non-zero values during the computation, then we have some conditions
should be satisfied:

e oy;_1(m') is non-zero value.
® [i+1(m') is non-zero value.
© 7;(m,m’) is non-zero value.

In order to make sure y;(m,m’) is non-zero. We have some conditions to satisfy.
First of all, the transition should be possible which means P(S; = m|S;-; =
m’) = 1. The second is that the probabilities of both data and parity bits on the
transition should be non-zero, which means P(z:|S; = m,S;-; = m’) > 0 and
P(y| Sy =m, S;—; =m') > 0.

By analysing the state-transitions in the trellis based on different starting
states, we find the following relationships. The transition and state relationship
for Sgiare = 1 is shown in Table 4.6, where Sgyq,¢ is the number of start states,
d represents the bit is known, e is the bit is erased. The transitions and states
relationship for Sgiur¢ = 2 is shown in Table 4.7. The transitions and states
relationship for Ssirr = 4 is shown in Table 4.8. The transitions and states
relationship for Sgir = 8 is shown in Table 4.9. According to these analysis

and observations, we define Nyqre = 2¢ to represent the number of start states,

73

4. ITERATIVE DECODING IN THE ERASURE CHANNEL

Data/ | Number of | Number of | Number of Transition
Parity | End States | Transitions | for each ending state
d/d 1—1 1 1
d/e 1—1 1 1
e/d 1—-1 1 1
efe 1—2 2 1

Table 4.6: Transitions and States Relationship for Sgsers = 1

Data/ | Number of | Number of | Number of Transition
Parity | End States | Transitions | for each ending state
djd | 2—1, 2—2(4) | 1,2(4) 1
de) 2 1
e/d 2—2 2 1
efe | 2—2,2—4(4) 4 2,1(4)

Table 4.7: Transitions and States Relationship for S = 2

Data/ | Number of | Number of | Number of Transition
Parity | End States | Transitions | for each ending state
d/d | 4—2, 4—4(8) 2,4(8) 1
dJe 454 4 1
e/d 4—4 4 1
e/d | 4—4, 4—8(8) 8 2,1(8)

Table 4.8: Transitions and States Relationship for Sgspr: = 4

Data/ Number of Number of | Number of Transition
Parity End States Transitions | for each ending state
d/d | 8—4, 8—8(16) 4,8(16) 1
d/e 8—8 8 1
e/d 8—8 8 1
efe | 8—8, 8—16(16) 16 2,1(16)

Table 4.9: Transitions and States Relationship for Sgie: = 8

74

4.5 Optimised Iterative Decoding

where 4 € N. Thus we conclude the relationship between states and transitions
in Table 4.10. From Table 4.10, at conditions of d/d, d/e, e/d, there is only one

Data/ Number of Number of | Number of Transition
Parity End States Transitions | for each ending state
d/d 2 21’—1’ on _, 2i(2z‘+1) 2i—1(2i+1) 1
dfe 28— 2t 2t 1
e/d 2t — 2 2t 1
6/6 2 _, 21', 2% _, 2i+1(2i+1) 2i+1 2,1(2i+1)

Table 4.10: Transitions and States Relationship for Sg;e=2¢, 1 € N

possible transition available for each ending state. According to (2.18), we have

a(m) = a1(m)y(m’,m)

= at_l(m')P(mt|St —=m, St—l = m')P(yt|St =m, St—l = m') (44)

Similarly, according to (2.20), we have

Bi(m) = By (m') - P(ze|Se = m, Sepa = m') - P(yy|S; = m, Spyy =m') (4.5)

Since a;_1(m') and fBy41(m’) are known, thus can be considered as constant. For
the transition probability of P(z;) and P(y;), we have the possible product values
shown in Table 4.11. Since the transition probabilities only take the values of “0”

Data/Parity | Data (z;) | Parity (y;) | Transition Probability
d/d 1,0 1,0 1,0
d/e 1,0 05,0 0.5,0
e/d 0.5,0 1,0 0.5,0
efe 0.5,0 0.5,0 0.25,0

Table 4.11: Possible Product of Transition Probabilities

or the same non-zero value which is from the set of “{1,0.5,0.25}”. According
to (2.18) and (2.20), ax(m) or B;(m) if non zero, will be computed with the same

value. Hence during the o and g recursions, the non-zero values of o or 3 are

75

4. ITERATIVE DECODING IN THE ERASURE CHANNEL

equal at any given trellis section. At condition of e/e, there are two possible
transitions for each ending state. Since the transition probability is either 0 or
0.25 from Table 4.11, and m’ = 2, then we have

ay(m) =2 x ag_1(m’) x 0.25 (4.6)

Then it has been proved that non zero values of a;(m) or B;(m) at any condition,

are identical at any given trellis section.

4.5.2 Remark on the Extrinsic Information

Iterative decoding is based on the additional knowledge of previous information

knowledge to obtain better reliability. According to [10], the extrinsic information

.

L.(d) is defined as:

Le(d) = 1ngat(m) * Be(m) (4.7)

In Figure 4.5, it depicts an example of trellis with received constituent code
R; = {0.5,0}. The highlighted black dots represent the linked states with non-

zero value. The extrinsic information is calculated as:

Ezg = > af(m)-f(m)=2x0.125x 0.5
Ez, = Y a;(m)-B/(m)=2x0.125x%x0.5

After normalisation, Exzg = Fx; = 0.5. Thus the extrinsic information is not
helpful for the constituent code in the next decoder. But from the trellis, it is
clear to identify the data bit can be decoded as “1”. Thus we have in the erasure
channel, once the extrinsic information for the erasure has been determined, the
extrinsic information does not change any more during the further iterations.
In order to provide more accurate and reliable knowledge during the iterative

decoding process, the full information exchange might be realised instead. Then

76

4.5 Optimised Iterative Decoding

Trellis of Turbo Code (15/13)

input=0.5 output=0 o B
DT OIPTTT 000 158 0

o
1/8 00000

0 178 1/8 172
172 1/8 178 0
0 1/8 18 0
172 1/8 178 0
0 1/8 1/8 0
0 1/8 1/8 172
0 1/8 1/8 0

Figure 4.5: Sample Trellis for Turbo Code (15/13)

we have

Le(d) = log 3" cy(m) - ye(m) - Bu(m) (4.8)

4.5.3 Look-Up Table Decoder

The first look-up table based approach for decoding based on the syndrome trel-
lis was introduced by Schalkwijk & Vinck [106] for convolutional codes over the
binary symmetric channel. A fast LUT decoding algorithm working on the de-
coding trellis was introduced by Kurkoski et al. [66] for convolutional codes over
the erasure channel. The fast LUT decoding algorithm uses three LUTSs to rep-
resent the forward recursion o;, backward recursion §; and output probability
function. It is a simplification in complexity compared to the standard BCJR
decoder. However the LUT decoding algorithm might be further simplified. It

is shown in Section 4.5.1 that the non-zero values of a or 3 are always identical.

7

4. ITERATIVE DECODING IN THE ERASURE CHANNEL

Consequently the values of a; and ; may be represented by a single bit with
a “1” representing a non-zero value state and a “0” representing a zero value
state. Thus two binary vectors can be used to represent the values of o and 3 at
each trellis section and a more efficient decoding arrangement may be realised by
constructing a look-up table, which includes two vectors of binary numbers to rep-
resent the final transitions, and one vector to represent the conditions of received
bits. In the decoding process, the trellis section containing erased information is
converted to obtain the final transition binary numbers. By looking up the table,
it is possible to directly obtain the corrected information bit, or decoding failure.
For instance, assuming a trellis as shown in Figure 4.5, it depicts an example of
trellis. The received probabilities of information bit and parity bit are 0.5 and 0.
The highlighted black dots represent the linked states with non-zero value, which
are denoted as “1”, the rest of states with zero values are denoted as “0”. Thus
we have the starting binary number 00101000 and end binary number 01000010,
in decimal, 40 — 66. By looking up the table, with “40 — 66”, and information bit
is unknown, parity is known as 0, we can easily find the erasure of information
as value of “1”.

4.5.4 Iteration Analysis

Table 4.12, as a function of the erasure probability €, shows the average maximum
number of iterations for “Decoded” blocks and the average maximum number of
iterations needed for “Undecoded” blocks to indicate the decoding failure due to
the stopping sets at each corresponding Frame Error Rate (FER).

Probability | Avg. Iter. Avg. Tter. Frame Error
Erasure for Decoded | for Undecoded Rate
0.62 9 3 0.884955
0.61 9 4 0.746268
0.60 10 5 0.448430
0.59 10 5 0.220750
0.58 10 5 0.069156
0.57 10 5 0.014423
0.56 11 6 0.002180

Table 4.12: Iterations Analysis for the Optimised LUT Decoder

78

4.5 Optimised Iterative Decoding

By analysing the decoding efficiency at each iteration, we have Figure 4.6
showing the histogram between decoding efficiency and number of iterations

during the iterative decoding process. From the figure, we can see that at

Efficiency

0 2 4 6 8 10
Number of Iterations

PE=0.65 - -4-- PE=062 ® PE=0.58 —+—
PE=0.63 --%-- PE=0.61 ---&-

Figure 4.6: Relationship between Efficiency and Iterations for TGC (15/13),
(1536,512) with Optimised Iterative LUT Decoder

iteration = 10, LUT decoding has already achieved the best performance. At
iteration = 5, there is a slight difference comparing to the further iterations.
Thus maximum number of iterations is ideal to choose.

The relationship between the average iterations and erasure probability for
“Decoded” and “Undecoded” blocks is shown in Figure 4.7. From the results,
it shows the required average maximum number of iterations for “Decoded” is
reduced with the decreased erasure probability, whereas the average maximum
number of iterations for “Undecoded” is increased. However the maximum iter-

ations for all blocks can still be determined under 10 iterations.

79

4. ITERATIVE DECODING IN THE ERASURE CHANNEL

10

Average Number of Iterations

134835541 0526235804340 04 LR RA000 it RRas i

: ; Undecoded Frames ---E3-- -
________ e N ot oL e i

056 057 058 059 06 061 062 063 064 065 0.66
Erasure Probability

Figure 4.7: Relationship Between Probability Erasure and Iterations for TGC
(15/13), (1536,512) with Optimised Iterative LUT Decoder

4.5.5 Complexity Analysis

For the optimised iterative LUT decoder, the look-up table is constructed once
only. The decoding procedures including look-up table construction are classified

as follows:

1. Look-Up Table Construction (Proc. F), for each trellis section, there
are three possible conditions to be considered. The condition includes a)
both data and parity bits are erased; b) data is erased and parity is not
erased, parity is either 0 or 1. Each branch requires 2 CPs for its validation,
there are 2M+1 branches in total. One trellis section,inclbdes 2M+1 CPs to
decide the decoding success or failure. There are 2~Z <2) possible trellis

i
. i=0 2
sections.

80

4.5 Optimised Iterative Decoding

2. a Metric (Proc. G), each state requires 2 CPs and 1 ASSI for its validation,

there are 2M states in total.
3. 3 Metric (Proc. H), its computation is as same as the Proc. G.
4. Valid Trellis Construction (Proc. I), it consists of 1 ADD for each state.

5. Hard Decision (Proc. J), it requires 2*! — 2 ADDs and 2M+! MULs
for getting starting states and ending states; 2 CPs and 1 ASSI for getting
decoding options, and 1 LKUP and 1 ASSI to assign the decoded bit.

The required computations for the optimised LUT decoding algorithm in

terms of the number of equivalent additions are shown in Table 4.13. Thus

Procedure ADD MUL CP ASSI | LKUP
Proc. F - = | 9xg2¥H | — -
Proc. G — — gl oM -
Proc. H — - gl pM -
Proc. 1 oM - — — —
Proc. J | 2M+1_2 | oM+ 2 2 1
Table 4.13: Number of Computations for Optimised LUT Decoding Algorithm

in a 1/3 code-rate turbo decoding scheme, decoding one frame requires k trellis

sections, 2 corresponding LUT decoders and n! decoding operations at each iter-

ation. The required number of operations N*UT in equivalent additions in terms

of n. with L iterations for the optimised LUT decoding algorithm is obtained as:
L

N (ne) =Y (12k2M + (2M+2 + 5)n?)
i=1

(4.9)

For comparison, we assume k as the maximum number of data erasures decoded
by LUT decoder after L iterations. Thus there exist maximum % (Proc. J) for
decoding one block, then the required number of operations N2V7+ in terms of k
is obtained as:

NIVG(K) = 12K2M L 4 (2442 4 B)k: (4.10)

81

4. ITERATIVE DECODING IN THE ERASURE CHANNEL

The complexity comparison between different iterative decoders for decoding
one block, in size of (n = 1536,k = 512), is shown in Figure 4.8. From the

10°
ST ' ' '.A.A..“.A: ' B
: BP Decoding -~ *
BCJR Decoding, Iteration=15 ---£3-

Complexity (Number of Equivalent Additions)
S5 © o o o
[e]} [o<] [e] [e} [e]

-
o
~

2 4 6 8 10 12 14
Iterations (for BP) or Memory Order (for BCJR-based)

Figure 4.8: Complexity Comparison between BCJR-based Decoding and BP De-
coding

figure, it is clear that the complexity of the BCJR-based decoding algorithms
is exponential as a function of memory order, meanwhile, the complexity of BP
decoding is only increased by the number of iterations. Since the turbo decoder
and the LUT decoder both use the BCJR algorithm, their performance will be
identical. By ignoring the look-up table construction computation, the LUT
algorithm provides reduced complexity compared to the standard turbo decoding

algorithm.

4.5.6 Numerical Results

The BCJR-based decoding performances for TGC (15/13) and TGC (141/103)
permuted by DRP interleaver [29] are shown in Figure 4.9. According to Fig-

82

4.6 Summary

TGC (15/13) (600,200) - :
TGC (15/13) (1536,512) —e—
TGC (§12) ~am 2

Frame Error Rate (FER)

1070)]]]] [
0.45 0.5 0.55 0.6 0.65

Erasure Probability

Figure 4.9: LUT Decoding Results of TGC (15/13) and (141/103)

ure 3.3, result of TGC (141/103) achieves very similar performance as TGC
(15/13) in the AWGN channel. However in the erasure channel, TGC (141/103)
does not perform similar result as TGC (15/13). We can see that there should
exist the convergence issue between turbo Gallager codes and optimised iterative
decoder due to either the code design or the stopping sets. Furthermore, TGC
(15/13) with optimised iterative LUT decoder does not only achieve the best per-

formance, and also implement the algorithm at least computational complexity

due to its small memory order.

4.6 Summary

According to the analysis on the BCJR algorithm for the erasure channel, the
look-up table based BCJR decoding algorithm has been introduced. In terms of
the equivalent additions, the standard BCJR decoding algorithm, the optimised

83

4. ITERATIVE DECODING IN THE ERASURE CHANNEL

LUT decoding algorithm and the BP decoding algorithm over the erasure channel
have been analysed in computational complexity and derived in equations. The
simulation results by adopting different iterative decoding algorithms for turbo

Gallager codes have been presented over the erasure channel.

84

Chapter 5

DVB-RCS Turbo Codes

5.1 Introduction

According to the latest digital broadcasting standard [59], DVB-RCS turbo codes
(11,13/15) are adopted in the DVB-RCS system. The selected DVB-RCS turbo
codes are optimised to support a range of frame sizes from 12 bytes to 216 bytes.
A series of code rates are supported ranging from r, = 1/3 to r. = 6/7.

In order to ensure a best iterative BCJR decoding performance, the circular
recursive systematic convolutional (CRSC) codes were proposed by Berrou &
M.Jezequel [9], Berrou et al. [11]. CRSC codes are able to perform at the similar
concept of tail-biting by Ma & Wolf [78], where the ending state matches the
starting state during the decoding trellis to avoid the terminated bits’ losses. The
main advantage of using DVB-RCS turbo codes is that the trellis contains half as
many states as a binary code of identical constraint length (but the same number
of edges) and therefore only needs half as much memory. The detailed benefits
of using DVB-RCS turbo codes are described in {18]. In this chapter, the erasure
decoding performance for DVB-RCS turbo codes is evaluated in symbol-based
interleaver and bit-based interleaver. The corresponding parity-check matrix of
DVB-RCS turbo codes is discussed and derived in Section 5.2. The observation
of utilising bit-interleaver is realised and analysed in Section 5.3. Section 5.3.4
presents the numerical results by using different interleavers in symbol-based

and bit-based. According to the observation, an extended probabilistic guessing

85

5. DVB-RCS TURBO CODES

algorithm is introduced in Section 5.4. Improved results of using the guessing

algorithm are presented in Section 5.4.1.

5.2 The Parity-Check Matrix for DVB-RCS Turbo
Codes

As the standard defines, the encoding structure of DVB-RCS turbo codes (11, 13/15)
is depicted in Figure 5.1, where A, B are the input information sequences, I, I
and I3 are the input to each delay memory of the shift-register. And D is the delay
memory storage of the register, W and Y are the output sequences corresponding
to information A, B. For permuted information sequences A’, B’ generated by

the interleaver factor of m, we have the corresponding output sequences W’ and
Y’

A
5 1 b I
Tk

C

=@

)

o< L@D
»)

Y Y

Figure 5.1: Encoder Scheme for DVB-RCS Turbo Codes

According to the above figure, values of I, I and I3 could be represented in

terms of A, B, D and I,. The relationships are concluded as follows:

Is = LD+B=(L1D+B)D+B=1I,D*+BD+B (5.3)

86

5.2 The Parity-Check Matrix for DVB-RCS Turbo Codes

By putting (5.3) to replace I3, (5.1) is extended as:

I, = A+ B+ LD+ 1,D®+ BD*+ BD

L(1+D+D* = A+B(1+D+D?

A+ B(1+ D+ D?
ho = 1+ D+ D3 (5:4)

For output W, we have

W = L +13D
= A+ B+ LD+ 13D+ I3D

_ D(A+ B(1+ D + D?%)
= A+B+ 1+ D+ D3
(1+D*A+(1+D*»B
1+ D+ D3

Then we have the relationship in a parity-check equation,
(1+ D+ D> W +(1+D*)A+(1+D*»)B=0 (5.5)

According to (5.5), we have the polynomials for A, B and W as shown in Table 5.1.

Since output Y is independent of output W, in order to construct the parity-check

A B w
1+D3|1+D*|1+D+ D3
1001 1010 1101

Table 5.1: Polynomials for the Parity-Check Equation of W

matrix, the first part of the matrix representing the relationship between input
A, B and output W based on (5.5) and Table 5.1 is shown in Table 5.2, where N
is the length of the DVB-RCS information bits, L, represents the row length of

each column section, L, is the column length.

87

5. DVB-RCS TURBO CODES

AL.=N|B, L. =N|\W,L.=N\|Y,L,=N|\W, L. =N|Y' L =N
1001. .. 1010... 1101... All All All
1001... 1010... 1101... Zeros Zeros Zeros
M M . “O)) ccon “O”

Table 5.2: First Part of the Parity-Check Matrix for Output W, L, = N

For output Y, we have

Yy =

I+ LD+ LD
L+ (I, + B)D+(I,D*+ BD + B)D
L+ I,D*+ BD+1,D®+ BD?+ BD

L(1+ D*+ D% + BD?
[A+ B(1+ D+ D?)|(1 + D? + D®) + BD*(1+ D + D?)

1+D+ D3
(1+D?*+D)»A+(1+D+D*+D*B

1+ D+ D3

Then we have the parity-check equation for Y

(1+D*+D*»A+(1+D+D*+D*B+(1+ D+ D*)Y =0

(5.6)

According to (5.6), we have the polynomials for A, B and Y as shown in Table 5.3.

Consequently, we can construct the second part of the parity-check matrix for

A B Y
1+D?°+D3|14+D+D?+D*|1+D+ D3
1011 1111 1101

Table 5.3: Polynomials for the Parity-Check Equation of Y

output Y based on (5.6) and Table 5.3 as shown in Table 5.4.
Since output W’, which corresponds to the permuted information sequence,
only depends on the permuted input A’ and B’. Then we have the third part of

the parity-check matrix as shown in Table 5.5, where 7 represents the interleaver

88

5.2 The Parity-Check Matrix for DVB-RCS Turbo Codes

A L.=N|B,L,=N|\W,L.=N|Y,L.=N|\W,L=N|Y' L.=N
1011... 1111... All 1101... All All
1011... 1111... Zeros 1101... Zeros Zeros
M . «On . «0:) uon

Table 5.4: Second Part of the Parity-Check Matrix for Output Y, L, = N

function. Respectively, the fourth part of the parity-check matrix for output Y’

AL =N|B,L,=N|\W,L.=N|Y,L,=N\W,L=N|Y L.=N
Permuted | Permuted All All 1101... All
A'=7n(A) | B =n(B) Zeros Zeros 1101... Zeros

M . uon uon . ccon

Table 5.5: Third Part of the Parity-Check Matrix for Output W', L, = N

is shown in Table 5.6. Hence, we have the constructed parity-check matrix of

AL =N|BL=N|W,L=N|Y,L,=N|W,L, =N]|Y,L =N

Permuted | Permuted All All All 1101...

A'=7(A) | B =n(B) Zeros Zeros Zeros 1101...
: . “0’7 “0?7 “07) N

Table 5.6: Fourth Part of the Parity-Check Matrix for Output Y’, L, = N

DVB-RCS turbo codes (11,13/15) shown in Table 5.7.

The relationship between input A, B and output W, Y during the shift register

is shown in Table 5.8, where S represents the state, S € {0, 1, ..

LM —1) =17}

M = 3. And for each duo binary input (A, B), (S1, Ss, S3) represents the current
state, and (X, S1,S2) indicates the next state.
The trellis diagram of DVB-RCS turbo codes (11,13/15) is shown in Fig-

ure 5.2. It clearly shows that in the same number of distinct state transitions,
DVB-RCS turbo code only requires half number of states with 2™ to acquire

2M+2 pnumber of state transitions.

89

5. DVB-RCS TURBO CODES

AL =N|B,L, =N W,L,.=N|Y,L,.=N|\W L =N\|Y,L =N
1001. .. 1010. .. 1101... All All Al
1001... 1010... 1101... Zeros Zeros Zeros
4407) ccon 44037
1011... 1111... All 1101... All All
1011... 1111... Zeros 1101... Zeros Zeros
: zcov “0)7 “077
Permuted | Permuted All Al 1101. .. All
A'=7(A) | B =n(B) Zeros Zeros 1101... Zeros
: ccon «O’: “0”
Permuted | Permuted All All All 1101...
A'=n(A) | B =n(B) Zeros Zeros Zeros 1101...
N : (con «0)7 “0’7 N

Table 5.7: The Parity-Check Matrix (4N x 6N) of DVB-RCS Turbo Codes

5.3 Interleaver Design for DVB-RCS Turbo Codes

5.3.1 Symbol-based Interleaver

According to the DVB-RCS standard, the symbol-based interleaver is designed

for input sequence in pair, it normally includes two levels of interleaver.

level 1: the permutation is performed inside the pair of bits. Let j be the

index of information bit, j € {0,..., N — 1}, where N is the length of information

bits in pair.

if j mod 2=0, let (4, B) = (B, A) by inverting the pair

level 2

e if) mod4=0,then P=20

e if j mod4 =1, then P=N/2+ P,

e if j mod 4 =2,then P=P,

e if j mod4=3 then P=N/2+ P

90

(5.7)

5.3 Interleaver Design for DVB-RCS Turbo Codes

A B|X 5 S S |W Y A B| X 5 85 S|wW Y
S=0]0 0 0 0 O S=410 0 1 0 0
0 0 0 0 0 1 1 0 1 1
0 1 0 0 O 0 1 1 0 0
000 1 1 1 1 1 100 0 0 1 0 o0
1 0 0 0 O 1 0 1 0 0
1 0 0 1 1 0 1 o 0 0
1 1 0 0 O 1 1 1 0 0
0 1 1 0 0 1 0 1 1 1
S§=110 0 0 0 1 S=5{0 0 1 0 1
1 0 O 0 0 0 1 O 1 1
0 1 0 0 1 0 1 1 0 1
001 0 1 1 1 1 101 1 0 1 0 o0
1 0 0O 0 1 1 0 1 0 1
0 0 0 1 1 1 1 0 0 0
1 1 0 0 1 1 1 1 0 1
1 1 1 0 0 0 0 1 1 1
§=20 0 0 1 0 S=6|0 0 1 1 0
0 0 1 0 1 1 1 1 1 0
0 1 0 1 o0 0 1 1 1 0
010 1 1 0 1 0 110 0 0 O 0 1
1 0 0 1 0 1 0 1 1 0
1 0 1 1 0 0 1 1 0 1
1 1 0 1 0 1 1 1 1 0
6 1 O 0 1 1 0 0 1 0
§=310 0 0 1 1 S=7]10 0 1 1 1
1 0 1 0 1 0 1 1 1 0
0 1 0 1 1 0 1 1 1 1
011 0 1 o 1 0 111 1 0 0 0 1
1 0 0 1 1 1 0 1 1 1
0 0 1 1 0 1 1 1 0 1
1 1 0 1 1 1 1 1 1 1
1 1 0 0 1 0 0 O 1 0

Table 5.8: Encoding Function of DVB-RCS Turbo Codes (11,13/15)

Then we have the interleaver index ¢

i=(Pyxj+P+1) modN (5.8)

The pre-defined interleaver parameters [59] for each information frame size in

terms of F,, where q € {0,1,2, 3}, are shown in Table 5.9.

91

5. DVB-RCS TURBO CODES

(11,13/15) ABWY

0000 1011
000 000 o111 1100
0000 1011
001 001 6111 1100
0001 1010
010 010 o110 1101
0001 1010
ol O 5110 1101
0011 1000
100 100 6100 1111
0011 1000
101 01 9100 1111
0010 1001
10 10 6101 1110
0010 1001
i M o101 1110

0] ~--=m e

10 ..

11

Figure 5.2: Trellis Diagram of DVB-RCS Turbo Codes (11,13/15)

5.3.2 Bit-based Interleaver

For bit-based interleaver, it only includes one level permutation, which permutes
the k information bits into different positions, where (k = 2 x N) is the length of
information bits. The input sequence is arranged in form of {(aqg, bo), (a1, b1), ..,
(an—1,bn-1)}, and bit-based interleaver is functional to permute every bit into

a new position, then we have the permuted input sequences {(ag, b3), (a, b)), ...,

(a‘lN—l) b?V—l)}

92

5.3 Interleaver Design for DVB-RCS Turbo Codes

Frame size in bit | P, | {Pi, P, P}

N =96 11| {24,024}
N =128 7| {34,32,2}
N =424 13| {106,108, 2}
N = 440 23| {112,4,116}
N = 456 17 | {116, 72,188}
N =843 11 {6,8,2}

N =864 13 {0,4,8}
N = 830 13 {10,4,2}
N =1504 | 19 | {376,224,600}
N = 1696 19| {2,166}
N =1712 10 | {428,224, 652}
N = 1728 19| {2,16,6}

Table 5.9: Symbol-based DVB-RCS Turbo Codes’ Permutation Parameters

5.3.3 Remark on Bit-based Interleaver

For DVB-RCS turbo codes, the iterative decoder operates by passing two received
data bits and two received parity bits to the code trellis to compute the conditional
probability Pr(d; = I|(A = a;, B = b;)) and extrinsic information Ez(d; =
l|(A=ay, B="b)),1e€{00,01,10,11}. In symbol-based interleaver, the extrinsic
information can be directly used for the next decoder, since in any pair of data
bits, a; and b; are always together after two level permutations. But in bit-based
interleaver, a; and b, can not be guaranteed that they will be in a pair after
permutation. Thus the extrinsic information in condition of A = a; and B = b,
can not be directly used for the next decoder, since A = a; and B = b;. In
order to pass the most reliable extrinsic information to the next decoder, we
have to break the extrinsic information in pair into extrinsic information in bit.
During the transform, some of the extrinsic information are erased and can not
provide help for the other decoder. For instance, there are a series of extrinsic
information in pair for (at,b;) as shown in Table 5.10. In the table, for the
first four sets of extrinsic values, the split extrinsic information for bits are still
helpful to identify one correct data bit between a; and b;. But for the last two

sets of extrinsic information, since the non-zero extrinsic values are opposite to

93

5. DVB-RCS TURBO CODES

each other, for example, when Ez(d; = 00) = 0.5, Fz(d; = 11) = 0.5 and when
Ez(d, = 10) = 0.5, Ez(d; = 01) = 0.5. For getting the bit extrinsic information,
only 0.5 can be assigned to data bits a; and b;, which means both of those bits are
unknown. Hence it is not possible to provide any helpful information knowledge
for the other decoder.

Ez(d, = 00) | Ex(d; = 01) | Ez(d; = 10) | Ez(d; = 11)
0.5 0.5 0 0
0.5 0 0.5 0
0 0.5 0 0.5
0 0 0.5 0.5
0.5 0 0 0.5
0.0 0.5 0.5 0

Table 5.10: Sample of Extrinsic Information for Ez(d; = l|(A = a;, B = b))

In symbol-based interleaver, since a; and b; are always together in one pair,
the extrinsic information as shown in Table 5.10 still can be directly passed to the
next decoder, which might help provide useful information knowledge during the
decoding process. Regarding the discussed observation, we implement the sim-
ulation on same codeword with same interleaver in symbol-based and bit-based
decoded by iterative decoder at same number of iterations. As the numerical re-
sults shown in Figure 5.3, at any erasure probability e, there exists a performance
gap the same codes between bit-based interleaver and symbol-based interleaver,
which is an obvious evidence that the bit-based interleaver is affected by the loss
of extrinsic information exchange in pair than symbol-based interleaver. Mean-
while, the result of symbol-based interleaver is also suffered by the stopping sets,
as compared to the decoding performance of turbo codes (15/13) in the similar
code rate and codeword length. Then our research analysis is emphasised on if a
well designed symbol-based interleaver with larger hamming distance could break
the stopping sets as shown in Figure 5.3; or if a bit-based interleaver is able to
achieve an improved performance than the symbol-based interleaver. Thus the
well designed DRP interleaver and S-random interleaver are applied on the DVB-
RCS turbo codes design.

94

5.3 Interleaver Design for DVB-RCS Turbo Codes

Frame Error Rate (FER)

107

T Turbo Code (15/13) (1536 612) =3 .

Duo Turbo Code (11,13/15) (1368,456) DVB-RCS-Bit ~e— :
Duo Turbo Code (11,131 5) (1 368 ,456) DVB- RCS -Symbol - :
0.55 0.6 0.65 0.7

Erasure Probability

1078

10° 1

Figure 5.3: Results of DVB-RCS Turbo Codes by BCJR Decoder

5.3.4 Numerical Results

The BCJR iterative decoding results for DVB-RCS turbo codes in size of (n =
1368, k = 456) with 50 iterations over the erasure channel are shown in Figure 5.4.
At range of € = 0.56 to € = 0.66, DVB-RCS turbo codes with symbol-based in-
terleaver achieve the best performance, but the error floor starts from ¢ = 0.55
due to the stopping sets. The DRP-B interleaver is based on the DRP symbol-
based interleaver by doubling the index number of each symbol in terms of N
to construct the DRP bit-based interleaver. It is noted that such interleaver has
the same feature as DVB-RCS symbol-based interleaver has, that each paired
bits stay together after permutation. The other two bit-based interleavers are
S-random bit-based interleaver with d,,;, = 32, and DRP-A bit-based interleaver
with d,,;, = 38. The curves clearly show that both codes with bit-based inter-
leavers successfully lower the error floors. But at the same range of € = 0.56

to € = 0.66, their performances are still affected by the stopping sets, which

95

5. DVB-RCS TURBO CODES

10°

Frame Error Rate (FER)

DVB-RCS (Symbol) —*— -
S-random-d32 (Bit) ---m--
DRP-A (Bit) e
EL)RP-B (Sy;nbol) ——Ai—— :

0.5 052 054 056 058 0.6 062 064
Erasure Probability

Figure 5.4: Iterative Numerical Results of DVB-RCS Turbo Codes

could be partially due to the discovered observation of the bit-based interleaver
as discussed in Section 5.3.3. Furthermore, the DRP-B interleaver does make a
small change on lowering the error floor compared to the error floor caused by
DVB-RCS interleaver, but the performance still significantly get degraded from
e = 0.55 and flattens out.

5.4 Probabilistic based Guessing Algorithm

Since DVB-RCS turbo codes with either symbol-based interleaver or bit-based
interleaver are suffered by the existing stopping sets, a probabilistic based guess-
ing method might be realised to help bit-based interleaver to retrieve the helpful
extrinsic information from previous decoder.

For a pair of bits, if both of bits are erased, we call the event with Ex(d; =
00) = Ez(d; = 11) = 0.5 as event a, and event with Fz(d; = 01) = FEx(d,

96

5.4 Probabilistic based Guessing Algorithm

10) = 0.5 as event 8. The different schedules by adopting the guessing algorithm

to help solve event « are proposed and implemented.

e During iterative decoding, if event « occurs, guess either Ez(d; = 00) = 1
or Ex(d; = 11) = 1, then pass the guessed extrinsic information value to
the other decoder. After certain iterations, less than 4, the decoder could
easily blow out due to the incorrect extrinsic value, or the decoder could
successfully decode all or most erasures due to its correctness.

e During iterative decoding, if event o occurs, guess either the first bit as 0
or 1, Then pass the new value to next decoder to check if the corresponding
second bit is same as 0 or 1. If they are same and it does not corrupt the

decoder, then the guess is correct , otherwise it is wrong.

By observing the different schedules during the guessing algorithm, the first
method of guessing the paired bits does not fit, since the incorrect extrinsic
information may mess up the entire iterative decoder, and it is unable to tell its
correctness. The appropriate schedule for the guessing algorithm based on the

second schedule may be realised:

e By guessing the first bit with 0, if it helps decode the entire erasures, then

the guess is definitely correct with value 0.

e By guessing the first bit with 0, if the number of erasures gets progressively
increased to the number of information bits as the decoding iterates, it

means the bits should be guessed as 1.

e By guessing the first bit with 0, if the second bit is not equal to 0, and the
final number of erasures after certain number of iterations is not equal to
the number of information bits, it is necessary to guess the first bit with 1,
and check the final number of erasures after certain iterations. If both final
number of erasures are same and not equal to the number of information
bits, it means the paired bits can not be guessed, it is advised to proceed

to the next event.

According to the above analysis and observation on the trails, the special features
of DVB-RCS turbo codes could be concluded as follows:

97

5. DVB-RCS TURBO CODES

o For the bits which are well connected during the permutation, if they are
erasures and correctly guessed, they must be able to help correct all or
most erasures. If those erasures are incorrectly guessed, it may cause the
number of erasures increased to the number of information bits after certain
iterations, which helps to confirm the opposite values are the correct values

and they should be able to help clear off the erasures.

e For the bits which are not well connected during the permutation, no matter

what values are guessed, there is no clear sign to tell the values’ correctness.

Consequently for event f, the similar criteria for the guessing algorithm is also

applicable by changing the paired values from (00, 11) to (10,01).

5.4.1 Numerical Results by applying the Guessing Algo-

rithm

Since event o and event J represent different extrinsic information exchange dur-
ing the bit-based interleaver, the corresponding solutions could lead more compu-
tational complexity. Hence the guessing schedule for single event «, we consider
it as “Guess 1”; and the guessing schedules for both events & and 3, we consider
it as “Guess 2.

The simulation results by adopting “Guess 1” and “Guess 2” for DVB-RCS
turbo codes in DVB-RCS bit-based interleaver are shown in Figure 5.5. For codes
with S-random bit-based interleaver, the simulation results by using “Guess 1”
and “Guess 2” are shown in Figure 5.6. And the results for codes with DRP-A
bit-based interleaver by using “Guess 1” and “Guess 2” are shown in Figure 5.7.
From the results, it is clear that the proposed guessing algorithm with either
schedule arrangement is able to help improve the decoding performance, which
also exposes the existing mentioned observation in the bit-based interleaver. The
results using ”Guess 2” achieve slightly better performance than results using
”Guess 17, which shows that events @ and § do exist during the iterative de-
coding for DVB-RCS turbo codes with bit-based interleavers. And the bit-based
interleaver does suffer from such stopping sets to result in a poor decoding per-

formance between € = 0.66 to ¢ = 0.56. Due to the failure of guessing on the

98

5.4 Probabilistic based Guessing Algorithm

10° -
10" i
-2 »‘
w ot
e, e e
()
2 10° E ,,,,,,,,,,,,
&
g oI
w 10
o :
1S o
E S
o405 [
10 i DVB-RCS (Symbol) ----
£ DVB-RCS (Bit) - * -
o i DVB-RCS (Bit) Guess1 ---E3--
N S—— DVB-RCS (Bit) Guess2 —=— -
10-7 1 1 1 1

0.54 0.56 0.58 0.6 0.62 0.64
Erasure Probability

Figure 5.5: Results of DVB-RCS Turbo Codes with DVB-RCS Bit-based Inter-

leaver

Frame Error Rate (FER)

= ‘ S S

6 i DVB-RCS (Symbol) --3<--
10 § i S-random-d32(Bit;]
4 o S-random-d32 (Bit) Guess1 ---&-- -

S-random-d32 (Bit) Guess2 —=&—
1 - -

0.54 0.56 0.58 0.6 0.62 0.64
Erasure Probability

Figure 5.6: Results of DVB-RCS Turbo Codes with S-random Bit-based Inter-
leaver

99

5. DVB-RCS TURBO CODES

10°

10!

1072

Frame Error Rate (FER)

: : o
107 E DRP-A (Bit) *
:] DRP-A (Bit) Guess1 ---E3-- -
5 DRP-A (Bit) Guess2 —=&— -
108 1 1 1 1

0.54 0.56 0.58 0.6 0.62 0.64
Erasure Probability

Figure 5.7: Results of DVB-RCS Turbo Codes with DRP Bit-interleaver

erasures, which are not well connected after the permutation, the best decoding
performance for bit-based interleaver by using “Guess 2” still can not achieve
a better performance than symbol-based interleaver at waterfall range between
€ = 0.64 and € = 0.57. Furthermore, beyond those bit-based interleavers, the
DVB-RCS symbol-based interleaver, which ensures paired bits to stay together,
still provides the best performance between € = 0.66 to € = 0.56. And such prop-
erty of unchanged bits in pair in interleaver design still benefits at earlier stage
of erasure probability before the error floor occurrence. Although the proposed
algorithm with bit-based interleaver reasonably helps the decoder to break the
stopping sets and lower the error floor, it still has not offered a comprehensive
candidate to completely replace the symbol-based interleaver during the DVB-
RCS turbo codes design. But the proposed guessing algorithm with either “Guess
1”7 or “Guess 2”7 does lower the error floor than symbol-based interleaver and pro-

vide better performance than using the bit-based interleaver without guessing.

100

5.5 Summary

The trade off between the improvement by using “Guess 2” than “Guess 1”7 and
the need of additional computational complexity of “Guess 2” could be another
convergent problem.

A sample of stopping set, which has Hamming weight of 16 for DVB-RCS
turbo codes (n = 384,k = 128), is shown in Appendix B. As the sample shows,
although the total number of parity-check equations is 256, the total number
of intersected parity-check equations is only 27. Moreover for most erasures,
the corresponding number of intersected parity-check equations is 3. There only
exist two erasures intersected by more than 10 parity-check equations. Such
erasure positions could be the key to break the stopping sets, also the ideal
guessing position for the discussed event o and 3. A fact may be realised that the
computational complexity for the erasure decoding method to break the stopping
sets, which is worked on the parity-check equations, could be largely reduced due

to the limited number of parity-check equations intersected by the erasures.

5.5 Summary

In this chapter, the DVB-RCS turbo codes have been described and the con-
struction of their parity-check matrix has been introduced. The issue between
symbol-based interleaver and bit-based interleaver has been observed and anal-
ysed, the corresponding solution has been introduced by using a probabilistic
based guessing algorithm, which partially helps solve the performance degrada-
tion for codes with bit-interleaver. The DVB-RCS turbo codes stopping sets over
the erasure channel has been analysed and a new representation between the

stopping sets and the parity-check matrix has been depicted.

101

Part 11

Iterative Coding in Optimal
Decoding Arrangement

103

Chapter 6

Optimum Decoding of Iterative

Decodable Codes in the Erasure
Channel

6.1 Introduction

Based on the analysis on iterative decoding algorithms over the erasure channel
in Chapter 4, this chapter presents a hybrid decoding scheme to evaluate differ-
ent arrangements of iterative decoders with a so-called “In-Place” ML decoder in
terms of the computational complexity and decoding performance. Section 6.2
describes the details of the “In-Place” decoding algorithm and its reduced compu-
tational complexity over the erasure channel. The ML decoding results for codes
in varied codeword lengths are presented in Section 6.2.2. The hybrid decoding
arrangement scheme is described in Section 6.3. The analysis on the output from
BCJR decoder at different erasure probabilities is shown in Section 6.3.1. The
computational complexity by adopting different iterative decoders for the hybrid
decoding arrangement is discussed in Section 6.3.2. And the optimum results by
using the hybrid arrangement are evaluated and presented in Section 6.3.3. The
computational complexity analysis for the “In-Place” algorithm and the complex-

ity analysis for the hybrid decoding arrangements were presented in [131]

105

6. OPTIMUM DECODING OF ITERATIVE DECODABLE CODES
IN THE ERASURE CHANNEL

6.2 “In-Place” Decoding in the Erasure Chan-

nel

The “In-Place” algorithm was first introduced by Cai et al. [16], which is a
Gaussian reduction algorithm avoiding the need of column-permutations over
the parity-check matrix. Such decoding algorithm does not only provide a com-
plexity reduced decoding algorithm operating the on parity-check matrix H, it
also achieves a similar asymptotic performance as the ML decoder. It was also
patented for erasure codes by Tomlinson et al. [120].

Let H be the parity-check matrix, and h;, ¢ € {0,1,...,m — 1} be the row
vector (the parity-check equation) of H with a subspace of n, where m is the
total number of parity-check equations, m > n — k. Let C = {co,c1,...ch_1} be a

codeword. Then we have for each parity-check equation h;

n—1
Z(Cj X h”) mod 2=10 (61)
5=0
The general steps of implementing the “In-Place” algorithm are described as

follows:

1. The partially erased code vector is received, and the set of erasures € are

substituted in the positions of erased bits in the parity-check matrix H.

2. First of all, an erasure ¢; is picked, the first picked equation containing
index j is flagged and subtracted with all the other unflagged equations

which contain erasure €;. Hence a new set of equations is produced.

3. The next step is to start with another erasure ¢, the first picked unflagged
equation containing ¢ is flagged and subtracted with all the other unflagged

equations which contain erasure ¢;.

4. The procedure continues until either all the equations have been flagged or
none of the unflagged equations contain the corresponding erasure ¢ as the

picked equation has.

106

6.2 “In-Place” Decoding in the Erasure Channel

5. According to (6.1), if ¢; is the only erasure at single parity-check equation,

then e; can be easily decoded as “0” or “1” for ;.

6. The decoded erasure c; is substituted back to the equations, where h;; = 1,

then it might cause more equations containing single erasure.

7. The procedure continues until all the decoded erasures are substituted back
as decoding success or there only exist equations with at least 2 erasures,

which leads to decoding failure.

6.2.1 Complexity Analysis

The parity-check matrix for turbo codes or turbo Gallager codes is depicted in

Figure 6.1, where k is the size of information bits. The parity-check matrix is

k k k
Information Parity One
Feedback Polynomial] Forward Polynomial
10110000...0 11010000...0
01011000...0 01101000...0 All Zeros
00101100...0 00110100...0
00010110...0 00011010...0
01100000...1 10100000...1
Interleaved Parity Two
Information Forward Polynomial
11010000...0
01101000...0
k All Zeros 00110100...0
00011010...0
10100000...1

Figure 6.1: The Parity-Check Matrix for Turbo Codes (15/13)
divided into two separate sections connected by the interleaver 7, since the two

corresponding parity bits are generated independently by an information bit and

a permuted information bit respectively. In the upper section, since the matrix

107

6. OPTIMUM DECODING OF ITERATIVE DECODABLE CODES
IN THE ERASURE CHANNEL

is constructed in diagonal order, there are a maximum M equation additions for

one equation. Thus the required number of equation additions N*? is defined as:
NP(ne) = M X n, ' (6.2)

In the lower section, since the columns of information bits are permuted by the in-
terleaver, we assume the maximum number of equation additions for one equation
as k — 1. Then the number of equation additions N'°¥ is obtained as:
ne—1
e ne — 1)(2k — n.
N = 3 (k=1 - i) = Le LR)

i=1

(6.3)

Each equation addition requires n ADDs, if using 32-bit integers to store the
equation information, then there are n/32 sub-blocks in one single equation. Thus
each equation addition requires n/32 ADDs. The hard decision of each decoded
bit requires n — 1 MULs and n — 2 ADDs. In decoding one frame, the required
number of operations NI in equivalent additions in terms of n, for the “In-Place”

decoding algorithm is computed as:

3k(ne — 1)(2k — n,) + 3kMn,

IP —
No™(ne) 64 32

+ ne(6k — 3) (6.4)

6.2.2 Numerical Results

The ML decoding performances for turbo code (15/13) in different codeword
lengths are shown in Figure 6.2, the codes interleavers all are in DRP [29] design.
It is clearly shown that the ML decoding performance is improved by increas-
ing the codeword length at same code rate, which enables the enlarged error
correction ability of n — k [122].

6.3 Optimum Decoding Arrangements

It is well known that for the erasure channel, any decoder that is able to solve
the parity-check matrix for the channel erasures achieves maximum likelihood de-

coding, for example see [98]. Thus the hybrid decoding scheme includes an inner

108

6.3 Optimum Decoding Arrangements

(24,8) -
(48,16) o
(96,32) ---m--

(192,64) - ©--
(600,200) —&—

Frame Error Rate (FER)

] \ 1 1]
0.2 0.3 0.4 0.5 0.6 0.7
Erasure Probability

Figure 6.2: ML Decoding for Turbo Codes (15/13)

iterative decoder which is focused on either optimised LUT decoder belief prop-
agation (BP) decoder. The “In-Place” decoder becomes optional and is applied
to break the corresponding stopping sets. The structure of the hybrid decoding
arrangement is shown in Figure 6.3, where u’ and p’ represent the received in-
formation bit and parity bits respectively, which correspond to the inputs to the
iterative decoder. L.(u') and L.(p’) represent the corresponding extrinsic infor-
mation for information « and parity p’. Djp(u’) and D;r(p’) are the decoded
information bit and parity bit from the iterative decoder. D;p(Dr(u’)) is the
decoded information bit from the “In-Place” decoder. The decoding process is
iterated by passing the extrinsic information between iterative decoders, until it
reaches a stopping set or it corrects all the information erasures. If a stopping
set has been reached, D;r(u') and D;(p') are passed to the “In-Place” decoder,

otherwise it is unnecessary to trigger the “In-Place” decoder.

109

6. OPTIMUM DECODING OF ITERATIVE DECODABLE CODES
IN THE ERASURE CHANNEL

u
Binary | p’ ; Iterative
Le(p’)_ Decoder
Erasure Le(w’)
Channel
\) u’)
In—Place if
) Decoder
D p(Dy(u)))

Figure 6.3: Hybrid Decoding Scheme

6.3.1 Analysis on BCJR Decoding Output

The frequency number of erasures distribution between input and output of turbo
decoder for turbo code (15/13) in size of (600,200) with 50 iterations at € = 0.6
is shown in Figure 6.4. The highest erasure number for information bits after the
erasure channel is nearly the same as € x k. And the highest erasure number for
information bits after turbo decoder is about 87. Thus most of the information
erasures can be easily decoded by the “In-Place” decoder with nearly (1— R,) x k
decoding ability [122].

The frequency number of erasure distribution between input and output of
the turbo decoder for the same code at ¢ = 0.52 is shown in Figure 6.5. The
highest erasure number for information bits after the erasure channel is similar
as Figure 6.4, which satisfied 0.52 x k. And the highest erasure number for
information bits after turbo decoder is reduced to about 68. Thus more number
of the information erasures could be easily decoded by the “In-Place” decoder,

which leads a lower error probability.

6.3.2 Complexity Analysis of Hybrid Decoding Arrange-

ments

Since the hybrid decoding arrangement includes an iterative decoder, the entire

complexity is equal to the complexity of the iterative decoder plus the complexity

110

6.3 Optimum Decoding Arrangements

Frequency Distribution

-
o N S (o)) (0] (@)
o'lrl|ll||I||||Il"l||llllllll'l"llllllll||||||l|
O_
£S5
T O
S =g =g
oy
(O]
L0 .0
C C
o O
3o
S -
b @D D
m%
£ o i
3 (@
O
[
-
(@]
*
M o -
g O
2]
=
®
[72]
-
o —
()
- AN
N —
(e
III||JllllllllllIIIllIIIIIIllllllllllllllllllllll

Figure 6.4: Frequency Distribution of Erasures between Input and Output of
Turbo Decoder, € = 0.60

111

6. OPTIMUM DECODING OF ITERATIVE DECODABLE CODES
IN THE ERASURE CHANNEL

Frequency Distribution

-_—
o N -h » (00} o

Ollllll"['l|I|IIIIII||||TIII|'llllll'l'lllllllll'
O—
S5
e o]
N S S
© X%
® O
L0 0
cC C
@ O
a2
5 884
_______ y
g (o) 5 TN — gt R S EE I |
5 ©OF .5
o T EFriizizizizaseizaocsc-o g
('_P‘ _____ Lh---ss--coeTsoissozczzzczzanananns 0
9.., LTIttt rrea~~ .E]
g ©8 B
2 ._________-_-_-_'_'_'_'_'_ =~ f]
a £ g
w
—
(e] -
SE -
~: ‘ a—
=) K)
—
N -
o
IIlIlIIllllllllIlIlI|llll|Illllllllllllllllllllll

Figure 6.5: Frequency Distribution of Erasures between Input and Output of
Turbo Decoder, € = 0.52

112

6.3 Optimum Decoding Arrangements

of the “In-Place” algorithm to solve the stopping sets, when stopping sets exist.
Thus the blocks decoded correctly by the iterative decoder only include the it-
erative decoding computational complexity. And the blocks, which can not be
decoded due to the residual erasures, include the iterative decoding complexity
and the “In-place” decoding computational complexity. Then the required num-
ber of operations for each hybrid decoding arrangement is shown in Table 6.1,

where L is the maximum number of iterations.

Hybrid Iteratively Maximum Likelihood
Decoders Decoded Blocks Decoded Blocks
Hybrid (Turbo Decoder) NI (k) NT(k) + NIF(nl)

Hybrid (LUT Decoder) NPT, NIUT () + NIP(nl)

Hybrid (BP Decoder) N5% () NPF(n,) + NIP(nk)

Table 6.1: Required Number of Operations for Different Hybrid Decoding Ar-
rangements

Since n’ is less than or equal to n?, which is the input number of erasures
to the iterative decoder, each hybrid decoding arrangement provides a reduced
complexity decoding scheme than the “In-Place decoder alone. The convergent
decoding performance of each arrangement in terms of computational complexity
only depends on the number of erasures remaining after the iterative decoder,
and also the iterative decoding performance. It should be noted that as all of
the decoders are maximum likelihood decoders, they all achieve the same opti-
mum performance. The differences are the computational complexity and the
impact on the decoding speed. This is primarily determined by the effectiveness
of the first stage iterative decoder: the better the performance of the iterative
decoder achieves, the less the computational complexity of the hybrid decoding
arrangement requires.

The computational complexity comparison between hybrid decoding arrange-
ments with different iterative decoders followed by an “In-Place” decoder and
ML decoder alone is shown in Figure 6.6. It is clear that both hybrid decoding
arrangements provide reduced complexity algorithm by combining either opti-
mised iterative LUT decoder or BP decoder with the “In-Place” decoder. The

113

6. OPTIMUM DECODING OF ITERATIVE DECODABLE CODES
IN THE ERASURE CHANNEL

Average Operations

0.56 0.58 06 0.62 0.64 0.66
Erasure Probability

TGC (141/103), (1536,512) with ML Decoder ——
TGC(141/103), (1536,512) with Hybrid (with BP) Decoder ---£3-

TGC(141/103), (15636,512) with Hybrid (with LUT) Decoder - ©
TGC(15/13), (1536,512) with Hybrid (with LUT) Decoder - ®

Figure 6.6: Complexity Comparison between Hybrid Decoding and ML Decoding

optimised iterative LUT decoding is capable of converging better with the “In-
Place” decoder for TGC (15/13) or TGC (141/103) in terms of reduced decoding

complexity.

6.3.3 Numerical Results

Computer simulations have been carried out to assess the performance of TGCs
by adopting different decoding arrangements. First of all, we compare the results
of TGC (15/13) with codeword length of (600, 200) with DRP [29] interleaver in
the arrangement of optimised iterative LUT decoder and an “In-Place” decoder
as shown in Figure 6.7. From the results, we can see that optimised iterative
LUT decoder paired with “In-Place” decoder achieves the optimum performance
as we expect. Furthermore, at € = 0.5, optimised LUT decoder nearly achieves

the similar performance as the “In-Place” decoder achieves differentiated by a

114

6.3 Optimum Decoding Arrangements

Frame Error Rate (FER)

LUT Decoder ~ *
In-Place + LUT Decoder —&—

ML Dec?der B SRR

1]
0.45 0.5 0.55 0.6 0.65 0.7
Erasure Probability

Figure 6.7: Results of TGC (15/13) (n = 600, k = 200)

small gap, which means most blocks should be able to be successfully decoded
solely by the optimised iterative LUT decoder.

Results of TGC (15/13) in size of (1536, 512) permuted by DRP [29] interleaver
with optimised iterative LUT decoder, hybrid decoder and ML decoder are shown
in Figure 6.8. From the results, we can see that hybrid decoder is able to achieve
the exactly same performance as ML decoder does. Furthermore, the performance
differences between ML decoder and optimised iterative LUT decoder get smaller
as the erasure probability decreases. By combining with an “In-Place” algorithm,
the hybrid decoder provides a solution to achieve ML performance with reduced
complexity due to the well performing optimised iterative LUT decoder.

Since the computational complexity of BP decoding does not directly depend
on the code constraint length of the shift register, it will enable the belief prop-
agation decoding algorithm capable of decoding turbo codes with constituent

convolutional codes in long constraint length, and hence be potentially charac-

115

6. OPTIMUM DECODING OF ITERATIVE DECODABLE CODES
IN THE ERASURE CHANNEL

10°

Frame Error Rate (FER)

1078 LUT Decoder —#— .
In Place + LUT Decoder ---&-- :

ML Decoder 4
1 1 1

-9 ::l 1
10
05 052 054 05 058 06 062 064 066 068 0.7
Erasure Probability

Figure 6.8: Results of TGC (15/13) (n = 1536, k = 512)

terised by a large free distance. The decoding complexity of the BCJR algorithm
grows exponentially with the code constraint length, the alternative iterative
decoder cannot be practically used for codes with long constraint lengths. In
order to compare and identify the performances of different iterative decoders
based on the same code, or code structure, we consider the proposed code TGC
(0,3,4/0,14,34) with DRP [29] interleaver as one of the reference code, which
can only be decoded by BP decoder due to its long constraint length. Since
the BP decoding performance of TGC (141/103) nearly reaches the best perfor-
mance in the class of UMTS codes, and its constraint length is still manageable
by the optimised LUT decoder, we consider this code as another key code for
comparison. Furthermore TGC (15/13) with optimised iterative LUT decoder
achieves better performance than TGC (141/103), it is also considered during
the comparison. The comparison between TGC (15/13), TGC (141/103) and
TGC (0,3,4/0,14,34) is shown in Figure 6.9. For all the testing codes in Fig-

116

6.3 Optimum Decoding Arrangements

10°
10"
~ 102
&
w10
2
S 10*
S , 5
E 10
£ 10
©
% 107
108
100 L1 -4
0.45 0.5 0.55 0.6 0.65 0.7
Erasure Probability
TGC (15/13), BP ---4 -- TGC(15/13), BCJR —v—
TGO (141/103;, BP ---v-- (n=1536,k=512), Hybrid ----
TGC (0,3,4/0,14,34),BP ---©-- (n=1536,k=512), ML ¥

TGC (141/103), BCJR —=&—

Figure 6.9: FER Performances of Turbo Gallager Codes

ure 6.9, they are constructed by using the same DRP interleaver with code size
(1536,512). From the results, it is apparent that optimised iterative LUT de-
coder provides significant improvement over the BP decoder due to its better
convergence over the erasure channel. There exists a coding gain difference of 0.1
in erasure probability for same TGC (141/103) with different iterative decoders.
TGC (15/13) achieves the best iterative decoders’ performance with less compu-
tational complexity. Especially, at erasure probability e = 0.55, there exists the
smallest performance difference between optimised iterative LUT decoder and
ML decoder, which means most of blocks could be successfully decoded by the
optimised iterative LUT decoder. The hybrid decoder achieves the exactly same
performance as ML decoding does. Since the performance of hybrid decoder only
depends on the length of the codeword, thus for same code with the same code
rate, the design of turbo Gallager codes does not affect the ML-like performance
achieved by the hybrid decoder. Hence TGC (15/13) with the best iterative per-

117

6. OPTIMUM DECODING OF ITERATIVE DECODABLE CODES
IN THE ERASURE CHANNEL

formance and the least decoding complexity becomes an ideal candidate to be
considered for the proposed encoding-decoding scheme in the erasure channel in
terms of optimum decoding achievement with less computational complexity.
We also analyse the relationship between the percentage of packets success-
fully decoded by the iterative decoders and the percentage of packets passed to
the hybrid decoder to achieve the ML performance. The comparison between
the different iterative decoders for TGC (15/13), (141/103) and (0, 3,4/0, 14, 34)
is shown in Figure 6.10. It is clear that the optimised iterative LUT decoder

TGC (15/1 3) BCJR based Decoders e :
8 : TGC (141/103) BCJR-based Decoders —&=— -
10 TGC (141/103) BP Decoder ---©
TGC (0,3,4/0,14,34) BP Decoder ---4 -

Number of Packets
— — -— -—
o o o o

w H [é,] [¢)]

-
o
N

10

05 0.52 : 05 058 06 062 064 066 0.8 07
Erasure Probability

Figure 6.10: Percentage of Packets for ML Decoder

requires less packets with residual erasures to be passed to the ML decoder. And
comparing to TGC (141/103), TGC (15/13) achieves the best convergence be-
tween code and the decoder. Especially at € = 0.55, when the other decoders need
to pass from 10* to 10® blocks to the ML decoder, TGC (15/13) with optimised
iterative LUT decoder only needs to pass less than 10 packets to the “In-Place”
ML decoder.

118

6.4 Summary

6.4 Summary

In this chapter, two different iterative decoding algorithms have been compared
by coupling with an “In-Place” ML decoder over the erasure channel for turbo
Gallager codes. Both hybrid decoding arrangements have provided reduced com-
plexity decoding compared to a stand alone “In-Place” decoder, and all decoders
have achieved ML performance. Due to the existing performance difference be-
tween the two iterative decoders, the BCJR-based decoders using low memory
order of turbo Gallager codes has provided the best trade-off between conver-
gent performance and computational complexity. Good performance has been
obtained for turbo Gallager code (15/13) with small memory, which could be
a good candidate for a hybrid decoding scheme using the LUT decoder with

significantly reduced complexity.

119

Chapter 7

Optimal Decoding for Iterative
Codes in the AWGN Channel

7.1 Background

In terms of the soft decision based optimal decoding performance for the AWGN
channel (also called mazimum-likelihood, ML), LDPC codes with ML decoding in
general is not feasible. In 1995, Fossorier proposed the sub-optimal decoder, called
ordered statistics decoder (OSD) [44], which aimed at searching the re-ordered
most-reliable k information bits for the maximised codeword with a constraint of
order i. Better performance was later achieved with the same order of 7 in 2002
by Fossorier [43]. Valembois & Fossorier [123] based on Fossorier’s previous work
proposed the “box and match techniques” to help further improve the decoding
performance. By adding the CRC check into the code to construct a concatenated
code with OSD decoder to help lower the error floor was proposed by Gounai &
Ohtsuki [47]. An extended Dorsch decoder [34] was proposed by Tomlinson et al.
[121] in 2007, aimed at achieving near optimal ML decoding for linear block codes
by searching the k information bits for error patterns, leading to differential low
weight codewords.

By following the hybrid decoding arrangements for turbo Gallager codes over
the erasure channel as discussed in Chapter 6, which combines an optimised it-
erative decoder using (BP or BCJR) and an ML “In-Place” decoder [16]. In this
chapter, a new decoding arrangement is considered for the AWGN channel using

121

7. OPTIMAL DECODING FOR ITERATIVE CODES IN THE
AWGN CHANNEL

linear block codes with sparse parity-check matrices, like LDPC codes. The corre-
sponding iterative BP decoder is used as the initial decoder, the iterative output
is conditioned so that it is best suitable as the input to the OSD-i instead of
using the traditional soft iterative output. As a consequence improved results are
obtained and successfully break the corresponding error floors caused by BP stop-
ping sets. The basis of the conditioning of the output from the iterative decoder
is explained with supporting analysis in Section 7.2. The difference between using
the standard iterative output from the BP decoder and the conditioned output
is analysed and compared in Section 7.3. Section 7.4 gives results showing the
relative performances of the OSD-¢, the new proposed decoding arrangement and
the BP decoder for some well known LDPC codes and a class of cyclic codes. The

related decoding algorithm aﬁd optimal performances will be presented in [132].

7.2 Decoding beyond Iterative Decoding for the
AWGN Channel

r o
BPSK .
Iterative BP
Le(r) Decoder Re—order
AWGN
Re—encoder
Channel
\ c’ c’
CW <—| Selection on highest c” OSD—i

Cross—Correlation Decoder

Figure 7.1: The Proposed Decoding Structure

Let € be a linear block code (n, k, dmin), the proposed decoding structure for
linear block codes over the AWGN channel is shown in Figure 7.1, where r is the
received signal vector plus the AWGN channel noise vector of variance o2. The

BP iterative decoder produces the output r’ after a given number of iterations.

122

7.2 Decoding beyond Iterative Decoding for the AWGN Channel

Then r’ is conditioned to become # which is permuted and re-encoded by the
corresponding generator matrix G™, where 7 is the index interleaver determined
primarily by the bit log likelihood ratios, and secondly by the column swaps to
achieve full rank. The new generated codeword ¢’ is passed to OSD-i to search

for the derived codewords c”

, which achieves the highest cross-correlation with
the received vector, under the constrained order 7. During the OSD-i decoding,
the cross-correlation of ¢’ based on # is used as a lower bound to limit the search
size of the OSD-i. If OSD-7 is unable to find any codeword with higher cross-
correlation than ¢, constrained by the codeword search size (':), then ¢’ is selected

as the output codeword “cw”.

7.2.1 Iterative Decoding

In the earlier approach introduced by Fossorier [42], OSD-i decoding was at-
tempted with each iteration switching back and forth between OSD decoding
and iterative decoding. Here we show that better results may be achieved by the
simpler approach of carrying out BP decoding at a fixed number of iterations L,
before invoking OSD-i decoding without switching back and forth. For LDPC
codes like linear block codes, whose parity-check matrices are sparse having few,
if any, cycles of length 4, the iterative BP decoder during most of the time is able
to improve the extrinsic information at each iteration. After L iterations, insteaa
of passing the output vector r’ directly to the OSD-i as in [42], the output vector
is conditioned to become # and then passed to the OSD-i. This is done to avoid
occasions when the iterative decoder destroys some of the received information

prior to passing it to the OSD-<.

7.2.2 OSD-i Decoding and Construction of Equivalent Gen-
erator Matrices

As in conventional OSD-i decoding, the decoding is based on determining infor-

mation sets, vectors of length k bits which can be used to generate codewords

of the code. We want the generated mn-bit codewords to be close in Fuclidean

distance to the input vector of length n. Correspondingly, the input vector ¥’

123

7. OPTIMAL DECODING FOR ITERATIVE CODES IN THE
AWGN CHANNEL

from the iterative decoder is permuted in order of reliability based on the log
likelihood ratio given by |&/| to become x plus second order considerations based
on the need of full rank achievement for the constructed generator matrix. The
permuted input is z,, = 7(7,,), where 7 denotes the required permutation. The
permuted x vector consists of almost the most reliable bits (MRB) from most
reliable, extreme left and the least reliable bits (LRB) from extreme right, where
{lzo| > |z1| >,...,> |Zn-1|}. In order to obtain full rank of the new generator
matrix G, Gaussian elimination is performed by starting from the most reliable
bit in LRB z; and progressing towards z,_;. At some point, there will be one bit,
Zr+s Which is not independent of the previously solved for bits and thus cannot
be solved for. It is not possible for this bit to be a parity bit, given the previ-
ous choices for parity bits. This is indicated by s, not being present in any
of the remaining, uncommitted parity-check equations. The procedure in this
circumstance is to skip bit zx,s and try to solve for the next more reliable bit
Tr+s-1, solving if possible, skipping if not, and continue in this way. In practice,
very few bits have to be skipped in this way and skipped bits have almost the
same reliability [121] as the bits that replace them in the LRB. Thus the ordered
received vector x is interleaved by index factor 7 as X, due to the column swaps.
Then we have the updated MRB from extreme left as {|Zo| > |Z1],..., > |Tre-1|}
and the LRB from extreme right as {|Zx| > |Zk11], -, > |Zn-1]}-

7.3 BP Output Impact on OSD-;

For the AWGN channel, an ML decoder searches for the codeword out of all
the possible codewords which has the highest cross-correlation, Y;,,, with the

received vector r.
n—1 4
Yinaz = Y Il (7.1)
=0
Let ¢ = (&, ¢y, ..., én—1) be the hard-decision binary code vector from r. It is

noted that the Y4, is achievable, if and only the code ¢ is a valid codeword. Let

C; be the transmitted codeword resulting in the received vector r, and Y (C,) its

124

7.3 BP Output Impact on OSD-:;

cross-correlation with r.
n—1
Y(Gl) = Z |7"j| . (1 - Glj @ é]) (72)
=0
For the decoder there exist a set of codewords Cq, where Y., > Y(Cs) > Y(Cy).

e Case A: If there exists any Cy with Y (Cy) > Y(C;), an ML type decoding

error will occur.

e Case B: If the best codeword C; with Y (Cy) = Y(Cy), the codeword with
maximum correlation with r is the transmitted codeword and the decoder

has achieved successful decoding.

For constrained codeword search, aiming to achieve convergent output perfor-

mance, there exist the following situations

e For case A, if there exists any G, with Y/(C3) > Y (C;) during the constrained
search, an ML decoding error is obtained. Otherwise if there exists Gy with
Y(Cy) = Y(C,), the transmitted codeword is found. If no codeword is
found that satisfied all of the parity-check equations, a non-ML decoding

€ITor occurs.

e For case B, there only exists that the transmitted codeword with Y (C,) =

Y (€z) corresponding to r is found or a non-ML decoding error is indicated.

Most codeword-search algorithms adopt various constraints aimed at achieving
near-optimum performance with smaller search size. With this aim, let ¢’ be
the re-encoded codeword based on re-ordered k information bits from r’. The
maximum attainable cross-correlation Y (c’) provides an upper bound which helps
limit the size of search. The re-encoded codeword may contain a smaller number
of errors in the MRB than the MRB corresponding to the received vector r. Thus
using input vector ¥’ leads to more successful decoding by an OSD with smaller

order 4 than using input vector r.

125

7. OPTIMAL DECODING FOR ITERATIVE CODES IN THE
AWGN CHANNEL

7.3.1 Soft Iterative Output ¥/

In general, the a posteriori probability (APP) value of L in logarithm for bit m

during the iterative decoding process is expressed as the sum of three terms [92]
L,=L+ L + L, (7.3)

where L, denotes the channel measurement, which is the effect of channel output
corresponding to bit m. L, represents the a priori value in logarithm, it is the
function of the a priori probability of bit m. The final term is the independent
extrinsic information about bit m. In terms of reliability, the relationship between
received bit r, and updated 7, according to the soft output r;, from the iterative

decoder is expressed as

=0|r]
PR 1 == ;) B (2 (7.4)
I) T
. n—1
which is derived in Appendix A. Thus as Y4, is limited to Z lf;|, and there
j=0

may exist }v"mm' # Yaz after a certain number of iterations. The cross correlation
of this vector with the transmitted codeword ¥ (C;) might result in a reduction
compared to the original received vector. Correspondingly the set of codewords
@, which produce ML decoding errors, will be increased in size as a new set Cs.

The following possibilities exist

o If Y(€,) is reduced, |G| > |Cz|, where |@q| denotes the size of the codeword
set Cs.

e Orif Y(€,) increases, |G| < |Gy

Let ¢ be a codeword generated by the corresponding generator matrix G, ¢ €
{€2\C;}. Then Y (G;) < Y(c) < Y(G;) < Y(@,), where Y denotes the cross-
correlation of a codeword based on ¥, and Y is the cross-correlation of the same
codeword based on r. Once a codeword c is found, with higher cross-correlation
than the transmitted codeword then there is an ML decoding error based on

¥'. However this is not a real ML decoding error because if the received vector

126

7.3 BP Output Impact on OSD-;

r is used the cross correlation of codeword c is less than the cross correlation
of the transmitted codeword. In practice, it has been observed that this is a
common event and the decoding performance is significantly degraded through
this mechanism.

Besides the above issue, there is another reason that the unconditioned soft
iterative output is not an ideal input for decoding. Stopping sets and trapping
sets, considered in the LDPC codes design has become a major issue due to the
degraded performance in the AWGN channel at high SNR [95]. These are not
only due to cycles of length 4, but also cycles of length 6 and 8. If there exists a
set of bits, which form a cycle, then the extrinsic information of these bits can be
destructive as the BP decoder iterates. Thus the sign and magnitudes of bit log
likelihood ratios can change for the worse as the BP decoder iterates leading to
some bits in the LRB of the received vector swapping for bits in the MRB of the
received vector leading to an increase in the number of bit errors in the MRB.
This will seriously affect the performance of OSD-i due to its order limitation.
The similar phenomenon was also observed in [121].

The frequency distributions of the number of bit errors in the MRB as a result
of iterative decoding after different iterations are shown in Figure 7.2. These were
obtained by evaluating 10° received vectors for Tanner codes (155, 64,20) [118] at
4dB IEV% The x-axis shows the number of errors in the MRB input to the OSD-1,
and the y-axis denotes the number of input vectors having the same number of
errors in MRB. First of all, as the iteration is increased, the number of blocks with
null error in MRB is increased. It clearly shows the better performance could be
achieved as more iterations are called. After the first iteration, the maximum
number of errors in MRB is only 3, but after 5 iterations, the maximum number
of errors in MRB is increased to 6. Furthermore at 10 iterations, it produces the
maximum number of errors as 8 in MRB, even after 50 iterations, the maximum
number of errors in MRB is still 7. Thus for the 10° blocks, all of them could be
successfully decoded after 1 iteration by OSD decoder up to 3, but part of them
might have to be decoded by OSD decoder up to 7 after 50 iterations. It clearly
shows that the discussed issue occurs more frequently as the BP decoder iterates.
And more error bits with higher magnitudes are shifted to the MRB.

127

7. OPTIMAL DECODING FOR ITERATIVE CODES IN THE
AWGN CHANNEL

_
o
[«2]

'.::::::::::::f:::::::::::::'::::::::::::E

-
o
[$,]

=i
(o]
=N

Number of Frames with Same Number of Errors
3. 3,

-
o
o

Number of Errors in MRB

Figure 7.2: Comparison of Soft Output for Tanner Codes (155, 64, 20) at %&=4dB
with Different Iterations

7.3.2 Conditioned iterative Output i’

In order to avoid the above issues, we need to maintain Y., and yet use the
iterative decoder output to assist OSD-i decoding, the conditioned output # of
the iterative decoder is used for OSD-i decoding. The conditioned output 7, is

defined as

Pm L ifm >0
P = fr:" (7.5)
—T'm ,if;g <0
Thus
. n—1
Ymaz‘ == |7A‘;I = Ymar (7 6)
7=0

128

7.3 BP Output Impact on OSD-;

According to (7.3), it is noted that the log likelihood ratio L, from ¥ is equivalent
to L,,. In this case, the extrinsic knowledge about bit m is evaluated as either
“1” or “~1”. Thus the conditioned iterative APP value L,, log likelihood ratio

is described as
L = L&, + L% + log(—1)bm (7.7)

where !, is the hard-decision binary bit, b, € {0, 1}, according to 7/,,.

Referring to (7.7), the magnitudes of L,, and Ly, can be significantly different.
The factor of L¢, for L, is ranged in the entire real field R. On the other hand,
the factor of L¢, for L, is only ranged in either —2(L¢, + L%) or 0, which just
changes the sign of the reliability. Thus the conditioned iterative output not only
ensures the constancy of maximum attainable cross-correlation, it also provides
an initial tight range for the OSD-i with the same MRB to help reduce the
codeword search size and computational complexity. Furthermore, the iterative
output help reduce the number of errors in MRB part, which also could shorten
the codeword search size.

The frequency distributions of the number of bit errors in the MRB as a
result of iterative decoding by using conditioned output after different iterations
are shown in Figure 7.3. These were obtained by evaluating 10° received vectors
for Tanner codes (155,64, 20) [118] at 4dB % As the iteration is increased, the
number of blocks with null error in MRB is increased. The number of frames with
same number of errors in MRB is reduced as the decoding iterates. Furthermore,
as the number of iterations increased, the number of frames with larger number
of errors in MRB progressively decreases. Especially, OSD-5 is required to get
error free after 1 iteration, on the other hand, OSD-4 is rarely required after 10
more iterations. It is a good evidence that the conditioned output helps to reduce
the number of frames with larger number of errors in MRB.

The comparisons between soft output and conditioned output from BP de-
coder for number of blocks with different number of errors in MRB are shown in
Figure 7.4 with different iterations. The simulated code is Tanner code (155, 64, 20)
at Eb/No=4dB. First of all, the iterative decoder helps significantly reduce the

129

7. OPTIMAL DECODING FOR ITERATIVE CODES IN THE
AWGN CHANNEL

-
(]
[«)}

12ZZZ2122311211322IIIIZIZZIZZZZZZIZ:‘.ZZZJZZZ
Iteration 1 = :
Iteration 5 czr7za -
Iteration 10 ==
Iteration 50

AAALL

-
o
[3,}

sl 44

-
o
=

Number of Frames with Same Number of Errors

10°

Number of Errors in MRB

Figure 7.3: Comparison of Conditioned Output for Tanner Codes (155, 64, 20) at
Eb/No=4dB with Different Iterations

number of errors among the MRB as the iterations are increased. And the num-
ber of blocks with conditioned output is reduced in the number of errors in MRB
as the iterations are increased. On the other hand, the number of errors in MRB
for soft output is spread and increased to maximum 7.

The frequency distributions of the number of bit errors in the MRB as a result
of iterative decoding, conditioned iterative decoding and no iterative decoding are
shown in Figure 7.5. These were obtained by evaluating 10° received vectors for
the Fuclidean geometry (EG) LDPC codes (255,175,17) [119] at 4.5dB 1% with
50 iterations of the iterative decoder. The number of errors j in the MRB dictates
the order 7 of the OSD-7 that is necessary for successful decoding. If j is greater
than 7, then decoding errors are certain. Thus Figure 7.5 may be used to estimate
the probability of decoding error for the different decoding arrangements. It can

be seen that the worst input is the output from the iterative decoder with the

130

7.4 Numerical Results

106 Ao seesl ZZZZZZII.‘Z‘IIZ::ZZZIIZ‘.ZZIZZIZII::ZIIIZ:ZI:I:I :I:Z:ZI:::ZZ::ZZ: :!ZII:IZZIIZZZZZ ZZZ'.ZZIZZIIZ:Z.'I I:ZZZZ:
=== Soft Output after 10 Iterations === :
ket Conditioned Output after 10 Iterations czzzzzi -
oo Soft Output after 50 Iterations == -

10° Conditioned Output after 50 Iterations =

Number of Frames with Same Number of Errors

3 4 5 6 7
Number of Errors in MRB

Figure 7.4: Comparison between Soft Output and Conditioned Output for Tanner
Codes (155,64, 20) at Eb/No=4dB with Different Iterations

highest number of errors in the MRB from 4 to 8. The best input with the
smallest number of errors in the MRB is the conditioned output from the iterative
decoder. There is another benefit of using the conditioned output in that the
number of blocks decreases faster as the number of errors in the MRB increases,
in comparison to the other inputs. It obviously provides a better convergent
performance in terms of decoding computational complexity and performance,
which means more error-blocks could be successfully decoded by using a smaller

OSD-i decoder with less search size.

7.4 Numerical Results

In this section, different decoding arrangements for some well known LDPC codes

are presented. For all the related iterative decoding, the maximum number of

131

7. OPTIMAL DECODING FOR ITERATIVE CODES IN THE
AWGN CHANNEL

-
o
[«

ZCC‘I22Z.':i:Z:ZZZI'::ZIZZZZZ'.ZIIZ'.‘I:ZIZ:::I:Z:Z‘ZZ::1::1112:I."IZ.'IIZZZZZZZ::'Z::ZZZ::::::Z
No lterative Decoding === ©

Iterative Decoding CZ2zzo -
Conditioned lterative Decoding s -

-t
o
[$,]

-
(o]
H

-
o
N

—
o—l

Number of Frames with Same Number of Errors
)
w

-
o
o

Number of Errors in MRB

Figure 7.5: Comparisons between Different Inputs to OSD-i for EG LDPC Codes
(255,175,17) at Eb/No=4.5dB, Iteration=>50

iterations is set as 50. The BP decoder paired with OSD-i decoder and the pro-
posed decoder paired with OSD-¢ decoder and OSD-i decoder alone are separately
illustrated. The partial stopping sets distribution for the well known LDPC codes
in the following section could be referred to Table 8.2 and Table 8.3.

7.4.1 Well Known LDPC Codes

The results achieved by different decoding arrangements for Tanner codes (155, 64, 20)
[118] are shown in Figure 7.6 and Figure 7.7. Due to the good d,;, and small
multiplicity of low weight codewords for Tanner codes, BP decoding performs
quite well with more than 1dB coding gain compared to the OSD-1 decoder.
The proposed decoder using OSD-i achieves significant improvements in perfor-
mance than the OSD-¢ decoder alone and has a lower error floor than the BP

decoder with OSD-i decoding. There nearly exists a 2dB coding gain between

132

7.4 Numerical Results

10°
R . T T T,
16
& 100 s
iy
& 10
8
5 STVER) OO OO SO OO . SO S . g,
A5
o 10 bttt e
§
T 107
BP —x—
108 BP + OSD-1 ---&-- .
BP+0SD2 -0
107 BP + OSD-3 ---4--
Proposed Decoder+OSD-2 - @ HHGE
Union Bound ---<#--
10-10 L 1
0 1 2 3 4 5 6
Eb/No, (dB)

Figure 7.6: Comparison Results for Tanner Codes (155, 64,20) (Part 1)

100
107!
102
& 10°
s
:)’ 10’4
E;
= 10°
i
o 10°
g 'BP
= -7
& 10 0SD-1 ---8--
Proposed Decoder + OSD-1 - =
10°® 0SD-2 ---©--
Proposed Decoder + OSD-2 @
10 OSD-3 ---&--
Proposed Decoder + OSD-3 -~ 4--
Union Bound --<--
10-10 | 1 1 1
0 1 2 3 4 5 6
Eb/No, (dB)

Figure 7.7: Comparison Results for Tanner Codes (155,64, 20) (Part 2)

133

7. OPTIMAL DECODING FOR ITERATIVE CODES IN THE
AWGN CHANNEL

the proposed decoder with OSD-1 and the OSD-1 decoder alone.
The results achieved by the different decoding arrangements for regular Gal-
lager codes (204, 102,8) [80] are shown in Figure 7.8 and Figure 7.9. Although

10° 4

Frame Error Rate (FER)

BP
BP + OSD-1 ---&--
BP + OSD-2 ---©--
Proposed Decode + OSD-2 o
Union lBound " R S

0 1 2 3 4 5 6
Eb/No, (dB)

Figure 7.8: Comparison Results for Regular Gallager Codes (204,102, 8) (Part 1)

the simulated code has a small d,,;,, it has totally 50 multiplicity in low weight
codewords up to hamming weight 15. Thus BP decoding performs quite well
with more than 1.5dB coding gain compared to the OSD-1 decoder and better
performance than the OSD-2 decoder before the error floor region. The proposed
decoder using OSD-1 achieves significant improvement in performance than the
OSD-1 decoder alone and guarantees the free error-floor performance than BP
decoder and BP decoder with OSD-2 decoding. There exists more than 1.5dB
coding gain between the proposed decoder with OSD-1 and the OSD-1 decoder
alone since 3dB %

The results achieved by different decoding arrangements for regular Gallager
codes (200, 100,9) are shown in Figure 7.10 and Figure 7.11. Such a code has

134

7.4 Numerical Results

Frame Error Rate (FER)

5 BP —%—
OSD-1 ---&--
Proposed Decoder + OSD-1 =
108 OSD:2 =0 i s
Proposed Decode + OSD-2 - @ - ==t Sl L
Union Bound --=#-- S rnamsss ey
100 L 1 1 1 1
0 1 2 3 4 5 6
Eb/No, (dB)

Figure 7.9: Comparison Results for Regular Gallager Codes (204, 102, 8) (Part 2)

10° grere
Ll T L T
22
= 10
w
o S e e i N SRR S
() -
R e
14
S
a 107
o
£
o
(TR T S S S
BP + OSD-2
10 BP + OSD-1 ---
BP + OSD-3 ---
Proposed Decoder + OSD 1
Union Bound --<-- ;
10-7 | 1 1 1 1 1 | |
0 1 2 3 4 5 6

Eb/No, (dB)

Figure 7.10: Comparison Results for Regular Gallager Codes (200, 100, 9) (Part
1)

135

7. OPTIMAL DECODING FOR ITERATIVE CODES IN THE
AWGN CHANNEL

10°

Frame Error Rate (FER)

BP
OSD-1 ---&
Proposed Decoder + OSD-1 =
0OSD-2 ---o-- &
Proposed Decoder + OSD-2 o
Union/Bound —==g—— sty
1 1]] | | }
0 1 2 3 4 5 6

Eb/No, (dB)

Figure 7.11: Comparison Results for Regular LDPC Codes (200, 100,9) (Part 2)

similar d,,;, of 9 as MacKay’s LDPC codes (204, 102, 8), but the high multiplicity
of its low weight codewords and stopping sets causes the BP decoder performing
similar as OSD-2 decoding performance, but start to reach the error-floor region
since bdb % But BP decoding still achieves nearly 1.5dB coding gain at 4.5dB
% than OSD-1. Furthermore, the output, which has been terribly affected, causes
the OSD-i to have the identical performance with the BP decoder. The proposed
decoder using OSD-1 achieves significant improvement in performance over the
OSD-1 alone and guarantees the free error-floor performance than BP decoder
and BP decoder with OSD-2 decoding. There exists more than a 1dB coding gain
between the proposed decoder with OSD-1 and the OSD-1 decoder alone since
3dB %

The progressive edge-growth (PEG) irregular LDPC code proposed by Hu [58],
provides a better performance with the similar codeword lengths due to its strong
dmin. The results for the PEG LDPC codes (256, 128, 17) are shown in Figure 7.12

136

7.4 Numerical Results

and Figure 7.13. The BP decoder achieves about 1dB coding gain at high SNR

Frame Error Rate (FER)

-9 ' w,
10 . Proposed Decoder + OSD-1

Uniorl1 Bound i i

10—10 _ 1
0 1 2 3 4 5 6
Eb/No, (dB)

Figure 7.12: Comparison Results for PEG LDPC Codes (256, 128,17) (Part 1)

from 3.5dB % than the OSD-2 decoder, but degrades due to the stopping sets
from 4.5dB]—%, where the error floor occurs. The proposed decoder paired with
OSD-1 produces significantly better performance than the OSD-2 decoder at any
SNR and successfully breaks the error floor caused by the BP decoder and BP
decoder paired with OSD-2.

7.4.2 Cyclic LDPC Codes

The stopping sets distributions for the cyclic LDPC codes constructed based on
[119] are shown in Table 7.1

LDPC code Smin N31nin N-Smin+1 Nsmi7l+2 Nsmm+3 Nsmm_}.‘;
EG LDPC (255,175) [119] | 8 | 2(0) | 0 (0) 0 (0) 5 (0) 52 (0)
EG LDPC (273,101) [119] | 11 | 4 (0) | 30 (0) | 444 (0) | 6537 (0) | 129402 (0)
PGLDPC (341,205)[119] | 16 | 4(0) | - (=) | - (=) | — () — i)

Table 7.1: Stopping Set Distribution up to S, + 4

137

7. OPTIMAL DECODING FOR ITERATIVE CODES IN THE
AWGN CHANNEL

100 g

Frame Error Rate (FER)

108 0SD-1 ---B ’
Proposed Decoder + OSD-1 = S
-9 0OSD-2 ---©-- 9
10 Proposed Decode + OSD-2 @ X

Union Bound --=--
10710 L 1 ! 1
0 1 2 3 4 5 6

Eb/No, (dB)

Figure 7.13: Comparison Results for PEG LDPC Codes (256,128, 17) (Part 2)

The finite geometry codes make good LDPC codes using belief propagation
decoding [62]. The results for the EG LDPC codes (255,175, 17) based on cyclo-
tomic idempotents are shown in Figure 7.14 and Figure 7.15. The BP decoder
achieves about 0.5dB coding gain at high SNR from 4.5dB % than the OSD-1
decoder, and the error floor occurs from 5.5dB % The proposed decoder paired
with OSD-1 produces significantly better performance than the OSD-2 decoder
after 5dB % and has a lower error floor than the BP decoder with OSD-2 and
OSD-3 decoder.

The results for the projective geometry (PG) cyclic LDPC codes (273,191, 18)
are shown in Figure 7.16 and Figure 7.17. The iterative BP decoder achieves
more than 1dB coding gain over the OSD-1 decoder, and approaches closely to the
OSD-2 decoder, then the error floor occurs at 5.5dB % The proposed decoder
with OSD-1 performs better than all of the other decoding arrangements at %’1
values above 5dB, except for the proposed decoder with larger order OSD-i.

The results for the PG cyclic LDPC codes (341,205, 16) are shown in Fig-
ure 7.18 and Figure 7.19. The iterative BP decoder achieves more than 1dB

138

7.4 Numerical Results

Frame Error Rate (FER)

10°

107"
102

1073

=
A

10"

10

BP + OSD-1 ---&
BP + OSD-2 ---©--
BP + OSD-3 ---&-- =
Propos?d Decoder +IOSD-1 5 ll»»- -
3

0 1 2
Eb/No, (dB)

Figure 7.14: Comparison Results for EG LDPC Codes (255,175,17) (Part 1)

coding gain than the OSD-1 decoder at 4.5dB %, and closely approaches the

OSD-2 decoder at 5dB % At % value of 5.5dB, there is an evidence of an error

floor using BP decoding. The BP decoder with OSD-3 decoder also exhibits an

error floor. The proposed decoder with OSD-1 performs better than most of the

other decoding arrangements at % values above 4dB.

Those results provide good evidence that the proposed decoder with OSD-:

achieves better performance than OSD-i decoding alone and shows no sign of an
error floor unlike BP decoding coupled with OSD-i decoding or stand-alone BP
decoding. The proposed decoder with OSD-i crosses the OSD-(i + 1) decoding

performance at high SNR and is much less decoding complex.

139

7. OPTIMAL DECODING FOR ITERATIVE CODES IN THE
AWGN CHANNEL

10—
107
102
&
L 107
2
@
s 107
E
w
g 107°
o
o BP —x—
10 OSD-1 ---&--
Proposed Decoder + OSD-1 =
- 0SD-2 ---o--
107 Proposed Decode + OSD-2 e
OSD-3 ---&--
Proposed Decoder + OSD-3 -~ 4
10-8 | 1 1 1
0 1 2 3 4 5 6
Eb/No, (dB)

Figure 7.15: Comparison Results for EG LDPC Codes (255,175,17) (Part 2)

7.4.3 Simulation Remark on Cyclic LDPC Codes

For those cyclic codes, whose parity-check matrix could have n parity-check equa-
tions, which includes (n— k) independent parity-check equations and & dependent
parity-check equations. The BP decoding algorithm could evaluate their received
vector through the entire n parity-check equations instead of n — k at each it-
eration. Then the minimum stopping set weight might be improved due to the
additional equations’ support. Thus the performance of cyclic LDPC codes de-
coded by BP decoder could make a significant improvement.

The improved results for the EG cyclic (255,175,17) LDPC codes by follow-
ing the revised decoding process are depicted in Figure 7.20. It is clear that the
revised BP decoding performance approaches between OSD-2 and OSD-3 rather
than the standard BP performance between OSD-1 and OSD-2 as shown in Fig-
ure 7.15. But the error-floor occurs at 5dB %, then the increase in performance

flattens out. Moreover, the proposed decoder on n parity-check equations paired

140

7.4 Numerical Results

Frame Error Rate (FER)

BP + OSD-1 ---&
BP + OSD-2 ---©--
BP + OSD-3 ---&-- =~
Proposclad Decoder +IOSD-1 ll

3

0 1 2
Eb/No, (dB)
Figure 7.16: Comparison Results for PG LDPC Codes (273,191, 18) (Part 1)

10°

107"

1072

107

Frame Error Rate (FER)

<7
10 0SD-1 ---B
Proposed Decoder + OSD-1 ®
108 OSD-2 ---©--
Proposed Decode + OSD-2 e
A

Propos?d Decoder +lOSD-3

0 1 2 3 4 5 6
Eb/No, (dB)

Figure 7.17: Comparison Results for PG LDPC Codes (273,191, 18) (Part 2)

141

7. OPTIMAL DECODING FOR ITERATIVE CODES IN THE
AWGN CHANNEL

10"

Frame Error Rate (FER)

B

7 BP + OSD-1 ---E--
107 E BP + OSD-2 ---©-- SHEE
BP + OSD-3 ---&-- "
Proposed Decoder + OSD-1 -~ = 1 ;
10-8 | 1 | 1 1 1
0 1 2 3 4 5 6

Eb/No, (dB)

Figure 7.18: Comparison Results for PG LDPC Codes (341, 205, 16) (Part 1)

10° RGEE StEre e

Frame Error Rate (FER)

OSD-1 ---& : B
7 Proposed Decoder + OSD-1 = : .
107 F O8D-2 ---©-- s : i
Proposed Decoder + OSD-2 e e L
OSD-3 ---&-- ; &
1078 1] 1 1 1
0 1 2 3 4 5 6

Eb/No, (dB)

Figure 7.19: Comparison Results for PG LDPC Codes (341,205, 16) (Part 2)

142

7.4 Numerical Results

Frame Error Rate (FER)

OSD-1 ---&
Proposed Decoder + OSD-1 u

OSD-2 ---©--
Proposed Decode + OSD-2 e

OSD-3 ---&

BP +OSD-2 --0-- "

1 2 3 4
Eb/No, (dB)

Figure 7.20: Comparison Results for EG LDPC Codes (255,175,17) (Revised)

with the OSD-1 decoder makes an increasingly obvious improvement as the SNR
increases, and nearly approaches OSD-3 decoding performance at 4.5db 1%1; On
the other hand, the BP with OSD-¢ by exploring n parity-check equations seems
have more trouble on handling the soft output, resulting in nearly the identical
BP decoding performance.

The remarked results for the EG cyclic (273,191, 18) LDPC codes are depicted
in Figure 7.21. Since the computational complexity could be exponentially in-

3
nodes, which might be achieved by time-polynomial consumption. Then the pro-

creased by the higher order number 7, thus for this code, it involves (191) searching

posed decoder with OSD-1 actually provides a reduced complexity algorithm to
help achieve the similar results, which is a definite improvement over OSD-2 due
to the excellent BP decoding performance on n parity-check equations. And the
BP paired with OSD-i still suffers by the highly scaled magnitudes in MRB,
which hardly makes any improvement based on BP decoding output. Further-
more, the proposed decoder with OSD-1 successfully breaks the error-floor issue
as BP decoder has beyond 4.5dB %

143

7. OPTIMAL DECODING FOR ITERATIVE CODES IN THE
AWGN CHANNEL

10° g

10"

-
S
N

—_
S
w

=
7

-
S
(4]

Frame Error Rate (FER)

10-6 e e L EEE RSy Tt
OSD-1 ---8-- °
7 Proposed Decoder + OSD-1 = :
107 OSD-2 ---©-- s
Proposed Decode + OSD-2 - @ u
§ . BP +lOSD-2 e : i
10°
0 1 2 3 4 5 6
Eb/No, (dB)

Figure 7.21: Comparison Results for EG LDPC Codes (273,191, 18) (Revised)

The other revised results for the PG cyclic (341,205,16) LDPC codes are
depicted in Figure 7.22. First of all, the proposed decoder with OSD-7 outperform
than OSD-3 since 3.5dB % The BP decoder nearly achieves the similar results
as OSD-3 does, although such code has smaller d,,;, than other two cyclic codes.
The error-floor still occurs on BP decoder after 5dB %, which could be simply
solved by the proposed decoder with OSD-1.

7.5 Summary

In this chapter, a new decoding arrangement for linear block codes with sparse
parity-check matrices over the AWGN channel has been introduced, which uses
a conditioned output from a BP decoder instead of the standard soft output.
Simulation Results have been presented that the proposed decoder using OSD-1
completely solves the error floor problem associated with BP decoding of LDPC
codes. Also, compared to stand-alone OSD-i decoding, the proposed decoder

using OSD-(i — 1) decoding performs better at high SNR and involves much less

144

7.5 Summary

10°

107"

10®

Frame Error Rate (FER)

BP —x—

10 OSD ==
Proposed Decoder + OSD-1 =
7 0SD-2 ---o--
107 Proposed Decoder + OSD-2 - @
OSD-3 ---&-

BP 4 QSD-2 ~-0-- Saimiii . | S #
10-8 | 1

0 1 2 3 4 5 6
Eb/No, (dB)

Figure 7.22: Comparison Results for PG LDPC Codes (341,205, 16) (Revised)

decoder complexity.

145

7. OPTIMAL DECODING FOR ITERATIVE CODES IN THE
AWGN CHANNEL

146

Part 111

Exhaustive Tree Search in Code
Spectra and Decoding

147

Chapter 8

Tree based Exhaustive Search

8.1 Background

For a linear block code, one of the fundamental properties is the minimum dis-
tance, denoted as dp,in. The minimum distance generally decides the codes capa-
bility of detecting or correcting a number of errors. For instance, the minimum
distance has a major impact on the decoding starting from moderate SNR. There
is another parameter which is based on the d,,;, and helps define a further char-
acteristic of the codes, it is the so-called weight enumerators or weight spectrum.
Let C be a linear code with length n, and A; be the number of codewords in

~ weight of 4. Then the weight enumerator of C is defined as
We(z) =Y A2 (8.1)
i=0

where 2* represents the number of distinct non-zero distances between codewords,
and the sequence of {Ag, A1, ..., An} is referred to as the weight distribution of €.
For codeword’s spectrum, dp, is referred to be the smallest number of z; with
distinct non-zero distances between codewords.

In terms of code performance evaluation, the minimum distance might be the
first step to help know the property of the code. This could be one of the reasons
that it has attracted a great amount of interest in coding theory. In 1978, the

problem of computing the minimum distance of an arbitrary binary linear code

149

8. TREE BASED EXHAUSTIVE SEARCH

was conjectured to be NP-hard by Berlekamp et al. [8] due to the existence of
polynomial-time consuming algorithm. Such conjecture as a mystic puzzle was
decrypted in an affirmative way by Vardy [124] in 1997. Since then, different
effective methods have been introduced to find the small size of codewords for
a binary linear code. The probabilistic algorithm was introduced by Leon [68]
and Stern [115]. Based on Stern’s work, Canteaut & Chabaud [17] proposed an
efficient algorithm by operating on the subspace of the parity-check matrix instead
of the entire matrix. Then a specific probabilistic based algorithm to estimate
the small weight distribution for LDPC codes was proposed by Hirotomo et al.
[52]. Meanwhile, another approach to compute the minimum distance of linear
block codes called error impulse (EI) was introduced by Berrou et al. [12]. By
applying the EI technique, an effective modification algorithm for LDPC codes
was proposed by Daneshgaran et al. [31]. Furthermore Hu et al. [57] proposed a
new approach called the nearest non-zero codeword search (NNCS) by combining
the idea of EI method and the reliability-based list decoding from [42)].

The iterative decoding performance for LDPC codes is constrained by the
small size of stopping sets, especially the minimal stopping sets cause the error
floor occurring at early stage, which is the moderate SNR in the AWGN channel
or the high erasure probability € over the erasure channel. The problem of finding
the minimum size of stopping sets was focused on as an interesting topic. Thus
we have a new notable symbol s,,i,, which represents the minimum distance of
distinct stopping sets. Let § be a stopping set with length of n, and B; be the
number of stopping sets in weight of i. Then the corresponding weight enumerator

of § is designated
WS(S) = Z BiSi (82)

where s' represents the number of distinct non-zero distances between stopping
sets. The stopping sets’ weight distribution sequence starts from s,,;, to help
analyse the stopping sets impact over the corresponding iterative decoding per-
formance; for instance, the BP stopping sets of LDPC codes to the BP iter-

ative decoding performance, which could help explain the occurrence of error

150

8.2 Preliminaries

floor caused by stopping sets. On the other hand, the codeword weight enu-
merator (8.1) could be used in bound estimation, like Union Bound, to get the
optimum error performance over the AWGN channel or the erasure channel. The
problem of computing the minimum size of stopping sets for an arbitrary Tanner
graph of LDPC codes was also proved to be NP-hard by Krishnan & Shankar
[63]. But based on the knowledge of computing the minimum distance of LDPC
codes, some efficient algorithms for finding the minimum-size of stopping sets
for LDPC codes were introduced by applying different approaches. An EI based
algorithm to find the small size stopping sets was proposed by Richter [96]. Hiro-
tomo et al. [53] proposed a probabilistic based algorithm to find the minimum-size
stopping sets of LDPC codes. On the other hand, Wang et al. [127] proposed the
first exhaustive search based algorithm to find all the small size error-patterns,
which include codewords, stopping sets and k-out trapping sets, for LDPC codes.
Furthermore, based on Rosnes’ previous work {100, 101] of exhaustive search on
turbo codes stopping sets, he [102] proposed an efficient algorithm to find all the
stopping sets and codewords by a given threshold for LDPC codes. We investigate
the idea of considering qualified active rows in the tree representation structure
to propose our optimised algorithm by using a reduced complexity based upper
bound to achieve the same goal of finding all the stopping sets and codewords
in small size for LDPC codes. This chapter describes the detail of the related
algorithms and explanations. The code representation and related definitions are
described in Section 8.2. The tree search algorithm and the simple bound algo-
rithm are explained in Section 8.3. A series of weight spectrum results about some
well known LDPC codes and WiMax LDPC codes are illustrated in Section 8.4.
The proposed search algorithm and the corresponding bound were presented in

[2].

8.2 Preliminaries

8.2.1 Code Representation

Let C be a binary linear block code with length n, n € N, and k-dimensional
subspace of {0,1}" be the information bits with length k. The linear code € can

151

8. TREE BASED EXHAUSTIVE SEARCH

be represented by a m X n binary parity-check matrix H, where m > n — k. Let
x = {Zg,...,Zn-1} € {0,1}" be the transmitted vector, then bits z have to be
satisfied with H - x = 0. In equivalent graphical representation, the code € is
represented by a bipartite graph, called a Tanner graph [117]. A bipartite graph
comprises a vertex set of variable nodes V. = {vy,...,vn_1}, and a vertex set of
check nodes C = {cy,...,cm-1}- The variable nodes correspond to the columns
of H, and the check nodes correspond to the rows of H. Hj; represents the
connection relationship between the variable node v; and check node c;. It is
defined that there exists a connected edge between variable node v; and check
node ¢;, if H;; = 1.

For LDPC codes, the degree sequences of columns and rows of H specify the
property of the codes. Let A; be the degree of variable nodes, A4, is the maximal
degree of variable nodes, p; be the degree of check nodes and p,, is the maximal
degree of check nodes. If); is a fixed value with ¢ = d,,, and p; is a fixed value
with j = d,, then the codes are said to be regular (d,, d.) LDPC codes, otherwise
they are irregular LDPC codes.

8.2.2 Codeword Set and Stopping Set

o Codeword Set: A codeword set is a subset of {z, ..., Z,—1} with Hamming
weight d. Since Hx = 0 for all valid codeword, such that the set is said
to be a codeword if, and only if, the induced subgraph contains no check
node with odd degree. The minimal Hamming distance d,,;, is defined as

the minimal weight of the non-empty codeword sets.

e Stopping Set: A stopping set is a subset of {by,...,b,—1} with Hamming
weight s, where b = {bo, ...,b,—1} € {0,1}™. A set is defined as a stopping
set, if there.exists no check node with degree one on the induced subgraph.
The minimal stopping distance s,,;, is defined as the minimal size of the
non-empty stopping sets. By definition, a valid codeword set is also a
stopping Set, but a stopping set might not be a valid codeword set, thus
Smin < dmin is applied for all parity-check codes. By adding redundant
independent parity-check equations to the parity-check matrix H, it might

help improve the code structure. Thus some of the small size stopping sets

152

8.3 Tree-Search based Stopping Set Enumeration Algorithm

become valid codeword sets and the minimal stopping distance gradually
increases or reaches the minimal Hamming distance [107]. For instance, by
adding two more redundant parity-check equations, the minimal stopping
distance of the Tanner code (155,64) [118] is improved from 12 to 18.

The comparison example between a codeword set and a stopping set over the

parity-check matrix is shown in Figure 8.1. The left figure of a stopping set shows

Parity—Check Matrix Parity—Check Matrix
0 1 0 1 1 0 1 0 1 0
0 0 1 1 0 1 1 0 0 0
0 1 0 1 0 0 0 0 0 0
1 1 0 1 1 1 0 1 0 0
0 1 1 0 0 0 0 0 1 1
Stopping Set Codeword

Figure 8.1: Comparison of Codeword Set and Stopping Set

that there exists at least one check node with odd degree excluding one on the
induced parity-check matrix. Meanwhile, the right figure of a codeword set shows
that there only exist check nodes with even degree including zero. According to
the definition of a stopping set and a codeword set, the codeword set could be
viewed as a subset of the stopping set, which only contains check nodes with even

degree.

8.3 Tree-Search based Stopping Set Enumera-
tion Algorithm

8.3.1 Bounded Tree Search

A binary linear code could be viewed as a tree starting from the first index bit
with branches of value “0” and “1”. Thus a tree is capable of displaying the

entire combinations of the code up to length n, as resulting in 2" combinations.

153

8. TREE BASED EXHAUSTIVE SEARCH

Red Line—> Bounded, Backward /./ T _>. CW(0,1,4)

Green Line —> Forward
Dotted Line —> Branch 0
Solid Line —> Branch 1

0*/'(/CCW(05,6)

\ >.‘/->‘SS (1,2,3)

1 /0 CW(1,2,6)

1/—/“/>‘CW(135)

— 1/" SS (1,3,6)

SS (2,3,6)

Or

OI

0 g

Figure 8.2: Bounded Tree Search Example

By following the different routes of branches, some of the routes indicate the
valid codewords or stopping sets. The search complexity on the valid branches
exponentially increases with the increment of the code length. Thus the bounded
tree search algorithm is required to help constrain the set of searching branches by
a certain lower bound. The lower bound is to detect which branches are capable
of passing the threshold. Here an example is given of a bounded tree search for
Hamming codes (7,4) with threshold 3 to find all the codewords and stopping
sets. As the example is shown in Figure 8.2, each connected line from left to right
through eight nodes represents a codeword or stopping sets. The red node is the
node where the bound helps determine a codeword; the blue node is the node
which indicates a stopping set based on the bound. It is obviously shown that

the actual number of combinations, 10, which has been gone through, is much

154

8.3 Tree-Search based Stopping Set Enumeration Algorithm

smaller than 27, 128.

Constraint Set Active Rows

X7 X9 X13 X14 X17 X20 X23 X27 X32 X20 X22 X25 X27 X29 X31 X32

X110 X19 X23 X25 X26 X29 X3lI

X111 X13 X24 X27 X28 X29 X33

DCI‘iVCd X5 X1 X177 X1 X22 X27 X232

Parity Bits

——_———/

X7 X9 X1 X2 X27 X29 X32

~— e e e e e e e - - — e —

BLUE : Value "1"
RED : Value "0"

GREEN : Erasure, not in constraint set,

I
I
I
I
[
I
|
01
I
I
I
I
I
[
I
[
I
I
I
I
I
I
[
[
I
I or derived parity bit set

Figure 8.3: Snapshot of Bounded Tree Search

The Figure 8.3 shows a snapshot of the bounded tree search. The left of the
figure is a constraint set with values of “0” or “1”, each bit in the constraint
set may be linked with a set of derived parity bits according to the parity-check
matrix. The right of the figure shows how the constraint set is induced with
subgraph of parity-check matrix to construct the set of active rows. The involved
bit x; with blue represents value of “1”, and colour red represents value of “07,
colour green denotes bit as erasure excluded in constraint set or the derived
parity bit. According to the rule of Hx = 0, those active row structures could

help determine the potential bound or the decodable bits.

8.3.2 Tree-Search based Stopping Sets Enumeration

Inspired by the SSE algorithm from Rosnes & Ytrehus [102] and the exhaustive
algorithm by Wang et al. [127], we present an efficient algorithm, which is a tree-

155

8. TREE BASED EXHAUSTIVE SEARCH

search based algorithm with reduced complexity in computing the lower bound,
to search all the belief-propagation (BP) stopping sets and codeword sets up to
size of threshold 7 for any parity-check code C.

Algorithm 1 Tree-search based Stopping Set Enumeration (TSSE)
repeat
Pick one untouched branch as a constraint set F.
if |F| =n and w(F) < 7 then
Constraint set JF is saved, if F is valid
else
1). Pass JF to the modified iterative decoder (*) with erasures in the
unconstrained positions.
2). Construct a new constraint set ¥ with new decoded positions, which
is the extended branch.
if || =n and w(F') < 7 then
Constraint set F' is saved, if F is valid
else if No contradiction is found in H¥), and w'(¥) < 7 then
a). Pick an unconstrained position p.
b). Extending branch F to position p to get new branch F” =
F U{(p,1)} and branch F” = F U{(p,0)}.
end if
end if
until Tree has been fully explored

In the algorithm description, a constraint set F is used to represent the set of
searched known bits of a code €, which forms a branch of the tree during the tree
search. F is a set {(p;, sp,) : pis € '}, where I' C {0,...,n— 1} and s,, C {0,1}. p;
is the bit position with value 0 or 1. In the parity-check matrix H, a parity-check
equation is said to be an active row if, and only if, the row weight is exactly
one. Then the set of active rows in H is denoted by {ho,...,hs—1}, where ¢ is
the total number of active rows. A constraint set F with size n is said to be
valid if, and only if, there exists no active row in H). The pseudo-code of the
algorithm to find all the stopping sets and codeword sets by threshold 7 is given
in Algorithm 1. When the whole tree has been searched, constrained by the lower
bound, the list with the saved constraint sets with full size n is the whole set of

stopping sets and codeword sets up to size of 7.

156

8.3 Tree-Search based Stopping Set Enumeration Algorithm

The modified iterative decoding is operated on the Tanner graph, which re-
ceives a n-bit binary input vector with erasures in some of the positions. Let
7;(F) be the rank (ones) of row j, j € {0,...,m — 1} for the constrained position
{p: : (pi,1) € T} intersected by row j on H. And let 75(F) be the rank of row j
for the unconstrained position {p; : (p;,1) € {0,...,n — 1}\F} intersected by row
j on H. The modified iterative decoding algorithm based on belief-propagation
decoding algorithm over the binary erasure channel [76] is shown in Algorithm 2.

As noted in the line with marked (*), the modified iterative decoder is not neces-

Algorithm 2 Modified Iterative Decoding
Get rank r(¥F) and r'(F) for all the equation rows on H.
repeat
if 7; > 1 then
Row j is flagged
else if 7; = 1 and 7; = 0 then
Contradiction — Quit decoder
else if r; <1 and 7"; =1 then
1). Row j is flagged
2). The variable bit % is decoded as the XOR of the value of r;.
3). Update the value of r; and 77, if Hj; = 1.
end if
until No new unconstrained bit is decoded

sary to call, if the condition of r; <1 and r; = 1 is not met; or the branch with
constraint set F can be ignored, if condition of 7; = 1 and r} = 0 occurs. Thus
the computing complexity can be significantly reduced or neglected rather than
calling it for every new branch with the corresponding constraint set JF.

Thus, we conclude the following three actions based on the different situations.

e Contradiction: The parity-check equation has weight 1, one more bit

needed to complete the parity-check equation. -

In Constraint F
1 00 0 0 O

e Decodable Bits: For constraint set F, equation only has weight 0 or 1,

one more bit needed to complete the parity-check equation.

157

8. TREE BASED EXHAUSTIVE SEARCH

In In
Constraint F | Erasures
0 00 O 0
0 0 0 1 1

0
0

e No Action: For constraint set F, equation has weight larger than 1, there
is no action for one more bit or more than one bits needed to complete the

parity-check equation, since it aims to find the stopping sets.

In In
Constraint F | Erasures
1 01 0 1 No
1 0 1 1 1] Action

8.3.3 Simple Method of Computing the Lower Bound

In Rosnes’ algorithm [102], the complexity of computing the lower bound and
the position selection occupy the majority algorithm complexity. The simplex
method from linear programming (LP) is applied and provides the solution to
get the lower bound based on the constraint set in [102]. The complexity of the
simplex method depends on the number of involved unknown bits and the number
of active rows, since there exists a number of inner loops to process the “pivot”
operations. Although the LP is able to provide a tighter lower bound, which
helps reduce the total number of searching branches, there still exists a big trade
off between the complexity of computing the tighter bound and the complexity
of searching more constraint sets in terms of the time-domain. Thus we propose
a simple method with negligible computing complexity to get a reasonable tight
lower bound. The objective of getting the lower bound is changed to find a smaller
possible collection of active rows J(F) = {I;y(F), ..., I,_, (F)}, where I;;(F) is the
set of active rows with constraint set F corresponding to the igth column h;, of
H, and g is the number of intersected unknown bits. Let w(hﬁ" (3)) be the weight
of ones on the jth column of H, which is the number of active rows intersected
by the jth column. The worst situation of active rows collection is considered

that the I;(¥) with larger column weight of ones on the jth column is always

158

8.3 Tree-Search based Stopping Set Enumeration Algorithm

with value 1, then the active rows can be compensated by I;(F) and the total
number of active rows ¢ is reduced by w(h?(&r)) until ¢ < 0. Algorithm 3 shows
the pseudo-code of computing the smaller number of intersected unknown bits q,

which help compute the lower bound w/(¥F) = w(F) +¢.

Algorithm 3 Simple Method to Find the Smallest Collection Set of Active Rows
1. Arrange the set of J(F) in descending order, where hy is the column with
the maximal column weight corresponding to constraint JF.

2. q is initialised as 0.
while ¢ > 0 do
1). ¢ is subtracted by w(hy).
2). q is accumulated by 1.
end while

Since the lower bound is the key to constrain the total number of necessary
searching nodes, the lower bound algorithm is focused on the balance between the
efficiency and tightness. The aim of the lower bound algorithm is to find a combi-
nation of the unknown bits corresponding to the active rows with either value of
0 or 1, which produces the minimal weight of the set of unknown bits. Table 8.1
shows an example of active rows over the parity-check matrix corresponding to a

constraint set.

[=>]
o
fhany
3
o,
(]
o
o

Row \ Column

Js Jio Ji1s J1 22
hy 1 .0 1 0 1 1 0
h12 1 1 1 0 1 0 0
his 0 1 0 0 0 1 0
hog 1 0 0 1 0 0 0
h3o 0 1 0 1 0 0 1

Table 8.1: Example of Computing Lower Bound

159

8. TREE BASED EXHAUSTIVE SEARCH

According to the example, we can simply conclude the following inequalities:

Jis X Ts + J1,15 X Tis + 1,17 X T17 + Jr,20 X Tao

v Vv
e S S et

J12,5 X Ts + J12,10 X T1o + J12,15 X T15 + J12,17 X T17

J15,10 X 10 + J15,20 X T30

v

J26,5 X Ts + Jog,16 X T16

IV

730,10 X Z10 + J30,16 X Z16 + J30,22 X T2

The above problem aims to minimise the sum of all the involved (j; X z;), where

z; is the bit value at position 4, z; € {0,1}. Thus we have

min(Jsxs + J10Z10 + J15T15 + J16%16 + J17T17 + J20T20 + JoaToo)

By applying the Algorithm 3, the minimised integer value indicates the lower
bound of the specific constraint set.

8.3.4 Position Selection

Since in the proposed bound algorithm, all the selected unconstrained positions
are assumed with value 1, then the first position in the index list with maximal
column weight becomes an ideal selection. By comparing to the selection criteria
from [102], which is based on the simplex method, the position selection rule
based on the proposed simple method becomes much simpler with negligible
computation complexity. In practice, a more sophisticated method has been
found that choosing the position 7 at maximal column weight in information bit
rather than parity bit works even better.

8.4 Numerical Results

8.4.1 Well Known LDPC Codes

The algorithms above have been used to evaluate all of the low weight stopping
sets for some well known LDPC codes. The codes weight spectrum results of up to
(Smin +6) are given in Table 8.2 and Table 8.3. The total number of stopping sets

160

8.4 Numerical Results

Code Name Smin Soin N .41 N, ..o 42 Ng .. 43
Tanner (155, 64) [118] 18 465 (0) 2015 (0) | 9548 (1023) | 23715 (0)
QC LDPC (1024,512) [67] 15 1(1) 1 (0) 0 (0) 1(1)
PEG Reg (256,128) [58, 79 11 1 (0) 11 (7) 22 (12) 51 (28)
PEG Reg (504, 252) [58, 79 19 2 (0) 5(2) 8 (0) 27 (5)
PEG iReg (504, 252) [58, 79 13 2 (1) 1(1) 5 (5) 13 (11)
PEG iReg (1008, 504) [58, 79] 13 1(1) 0 (0) 0 (0) 3(3)
MacKay (504, 252) [79 16 1(0) 3 (0) 3 (0) 12 (0)
MacKay (204,102) [79 8 1(1) 2 (0) 3(1) 6 (0)
LDPC (200, 100) 9 100 (100) 0 (0) 100 (0) 0 (0)

Table 8.2: Low Weight Stopping Sets and Codewords of LDPC Codes (Part 1)

Code Name Smin N, i+4 Ns, . +5 Ns, i +6
Tanner (155, 64) [118] 18 | 106175 (6200) | 359290 (0) | 1473585 (43865)
QC LDPC (1024, 512) [67] 15 6 (1) 6 (2) 12 (4)
PEG Reg (256, 128) [58, 79 11 116 (46) 329 (113) 945 (239)
PEG Reg (504, 252) 58, 79 19 78 (0) 199 (26) - (=)
PEG iReg (504,252) [58, 79] 13 31 (16) 52 (28) 124 (60)
PEG iReg (1008,504) [58, 79] | 13 3(3) 4 (4) 5 (3)
MacKay (504, 252) (79 16 36 (2) 106 (0) 320 (22)
MacKay (204,102) [79 8 14 (5) 59 (0) 229 (43)
LDPC (200, 100) 9 100 (0) 0 (0) 200 (0)

Table 8.3: Low Weight Stopping Sets and Codewords of LDPC Codes (Part 2)

are shown for a given weight with the number of codewords in parentheses. The

minimum Hamming weights of stopping sets for Tanner coeds [118], MacKay

codes [79] and one of the PEG codes [58] exactly match the results shown on

[56, 102, 127]. Furthermore, more weight spectrum results are provided to help

analyse those codes properties. Interestingly, for Tanner code (155, 64) with dyun

20, it has 93 parity check equations, 2 more than the 91 parity-check equations

are required to encode the code. The reason has been found that if only 91

parity-check equations are used in the iterative decoder, then there is a stopping

set of weight 12 degrading the decoder performance, and s, is found with 18

by decoding with all 93 parity-check equations.

161

8. TREE BASED EXHAUSTIVE SEARCH

8.4.2 WiMax LDPC Codes

8.4.2.1 Standard Construction

n_ || 576 | 672 | 768 | 864 | 960 [1056 | 1152 | 1248 | 1344 [1440
Code Minimum Codeword Weight d,,;,

1/2 | 13|19 [20|19]19] 21 | 19 | 22 | 23 | 27
2/3A [10 9 | 8 |11 | 18] 10 | 14 | 18 | 14 | 138
2/3B || 12 | 11 | 14 |16 | 15 | 15 | 16 | 15 | 16 | 17
3/4Af 10 |10 | 10 |12 |12] 13 | 13 | 13 | 14 | 12
3/4B|| 8 | 8 | 9 |11 |11 | 9 |11 | 9 | 12 | 10
sl s |7 7] 77| 7 7 7 7T |7
Minimum Stopping Set Weight s,,;,
1/2 | 13 18[19]19] 19 | 19 [19 | 23 | 2/
2/3A | 10 | 9 | 8 | 9 |12] 10 | 18 | 18 | 14 | 13

ot
o 2]

2/3B || 10 | 11 | 13 | 15 | 14 | 15 16 15 16 17
3/4A || 9 § {10 | 11 | 12 | 12 10 12 12 12
3/4B | 8 8 9 |10 | 11 9 11 9 12 10
5/6 5 6 7 7 7 7 7 7 7 7

n 1536 [1632] 1728 | 1824 ‘ 1920 l 2016 | 2112 | 2208 [2304
Code Minimum Codeword Weight d,,;,,

1/2 20 27 21 19 25 27 28 23 31
2/3A 12 13 15 15 15 15 15 15 15
2/3B 15 18 15 15 16 15 16 20 15
3/4A || 14 13 17 13 17 17 15 20 19
3/4B 11 13 13 12 10 12 14 13 12
5/6 7 7 8 8 7 7 8 8 9
Minimum Stopping Set Weight s,
1/2 20 27 21 19 25 27 28 23 28
2/3A 12 12 14 15 14 15 15 15 15
2/3B 15 18 15 15 16 15 16 20 15
3/4A 12 12 12 12 12 12 12 12 12
3/4B 11 13 12 12 10 11 14 13 12
5/6 7 7 7 8 7 7 8 8 9

Table 8.4: WiMax LDPC Codes’ dyn, and 8y, (Standard)

WiMax LDPC codes [1] , as the IEEE 802.16e standardised LDPC codes, have

been fully explored at the low weight stopping sets in variety of code rates and

162

8.5 Summary

codeword lengths. Such LDPC codes are designed using a binary base matrix by
shifting the z X z identity matrix with different factors, which are based on the
size of the codeword length. Such WiMax LDPC codes in a variety of code rates
and codeword lengths are fully explored at the low weight of stopping sets up to
Smin + 4 as shown in Appendix C. Then the overall d,,;, and s,,;, for all range of

WiMax LDPC codes in variant code-rates are given in Table 8.4.

8.4.2.2 Modulo Construction

In this section, we present another class of WiMax LDPC codes based on the
modulo function, according to [1]. Such class of LDPC codes in a variety of code
rates and codeword lengths is fully explored at the low weight of stopping sets
up to Smin + 4 as shown in Appendix D, which provide more sufficient weight
spectrum about such WiMax LDPC class of codes as shown in [103]. The overall
Apnin and S, for all range of WiMax LDPC codes with modulo construction in
variant code-rates are given in Table 8.5.

In comparison between standard construction and modulo construction, the
value in bold indicates larger Hamming distance at the corresponding codeword
length and code-rate. And value in italic indicates the identical Hamming dis-
tance at the same codeword length and code-rate. In general, the codes in stan-
dard construction provide better or identical Hamming distances. In standard
construction, the code construction for code-rate 2/3A also follows the modulo
construction. Thus for all codes in code-rate of 2/3A with variant codeword
lengths, the d,in and s, are identical between standard construction and mod-
ulo construction. Furthermore, for codes in codeword length 2304, both construc-
tion methods are equivalent, thus their Hamming distances of d,;, and s, are

also identical between standard construction and modulo construction.

8.5 Summary

In this chapter, an efficient algorithm has been presented to evaluate all of the low
weight stopping sets and codeword sets for some well known LDPC codes, WiMax
standardised LDPC codes and WiMax LDPC codes under modulo construction.

163

8. TREE BASED EXHAUSTIVE SEARCH

n][576 [672 | 768 | 864 | 960 | 1056 | 1152 | 1248 | 1344 | 1440
Code Minimum Codeword Weight d,,.;,

1/2 16 | 13 | 14 | 17 | 14 20 16 17 24 24
2/3A || 10 9 8 11 | 18 10 14 13 14 13
2/3B || 10 8 12 | 14 | 13 14 15 15 15 15
3/4A 9 8 10 | 10 | 11 13 10 11 10 15
3/4B || 6 8 4 9 5 10 6 9 9 11
5/6 3 8 6 4 6 7 6 7 7 6

Minimum Stopping Set Weight S,

1/2 15 | 13 | 14 | 15 | 14 18 16 17 22 24
2/3A | 10 9 8 9 12 10 13 13 14 13
2/3B || 10 8 12 | 13 | 13 14 10 15 15 15
3/4A 6 | 8§ | 9 |10 10| 11 | 6 | 11 | 9 | 14
3/4B 6 6 4 9) 10 6 9 9 10
5/6 3 5 6 4 4 7 6 7 7 6

n_ || 1536 | 1632 | 1728 | 1824 | 1920 | 2016 | 2112 | 2208 | 2304
Code Minimum Codeword Weight d,in

1/2 24 24 19 22 25 26 20 24 31
2/3A 12 18 15 15 15 15 15 15 15
2/3B 15 15 15 15 15 15 15 15 15
3/4A 12 15 17 9 15 14 15 15 19
3/4B 8 12 12 11 10 12 13 12 12
5/6 6 8 7 8 7 8 8 8 9

Minimum Stopping Set Weight s,,in

1/2 23 24 19 20 23 26 20 24 28
2/3A 12 12 14 15 14 15 15 15 15
2/3B || 15 15 15 15 15 15 15 15 15
3/4A 12 12 14 9 15 14 15 15 12
3/4B 8 12 11 11 6 12 12 12 12
5/6 6 8 7 8 4 8 8 8 9

The related searching algorithm has been detailed with different graphical exam-
ples. And the proposed bound algorithm has been explained and indicated its low
computational complexity on computing the lower bound. Due to the efficiency
of the proposed exhaustive tree search algorithm, a potential research direction

has been realised, which could be to help decode for such linear block codes with

Table 8.5: WiMax LDPC Codes’ dynin and s (Modulo)

164

8.5 Summary

sparse parity-check matrices over the AWGN channel. Such a decoding method
by adopting the tree search based algorithm will be explained and detailed in
~ Chapter 9.

165

Chapter 9

Exhaustive Tree Search based

Optimal Decoding

9.1 Introduction

The searched error vector introduced by Tomlinson [121] consists of the hard-
decided received vector bit-wised by a codeword derived from a re-encoded code-
word according to the k nearly ordered most-reliable information bits and a code-
word with low-weight information. Processing this error vector produces the most
likelihood codeword with the closest Euclidean distance compared to the received
vector. In this chapter, based on the knowledge of finding small weight of stop-
ping sets and codeword sets introduced in Chapter 8, an algorithm for searching
all low-weight error patterns on a received vector for LDPC codes is proposed.
The codeword set and related representation for the modified codeword search
algorithm are described in Section 9.2. Section 9.3 introduces the modified ex-
panded Dorsch decoding algorithm coupled with branch and bound, exhaustive
search for finding low-weight codewords. Some considerations to optimise the
search algorithm are discussed. In Section 9.4, the extended algorithm for find-
ing low weight error vectors is described in terms of a new lower bound algorithm.
Section 9.5 compares results of iterative decoding performance, sub-optimal de-
coding performance and optimal decoding performance for some linear codes with

sparse structure and reasonable codeword length.

167

9. EXHAUSTIVE TREE SEARCH BASED OPTIMAL DECODING

9.2 Tree-Search based Codeword Set Enumera-
tion Algorithm

In common with Chapter 8, the similar notations and preliminaries are used
in this chapter as described in Section 8.2.1. Let § denote a subset of {0,1}",
the set of all binary vectors of length n. At any point during the tree search
process, a constraint set, F is defined to consist of bit positions p; and the states
of these bit positions s,,, s,, € {0,1}". The support set X(F) of the constraint
set F, is the set of positions where s, = 1 and the Hamming weight w(F) of
JF is the total number of such positions. The sub-matrix Hy (3 is defined by
consisting of all the columns of H where s,; = 1, and the row weight of h;x)
is the total number of 1's at row ¢. A row of h; is considered as an active row
of Hys), if w(hy (3)) has odd row weight. If a constraint set F with size of n
contains no active row of Hyg), thus the set F forms a codeword with weight
w(X(F)). Thus a codeword set is a subset of {zy, ..., z,_1} with Hamming weight
d, d = w(X(¥)), where the induced subgraph contains no check node with odd
degree. The minimal Hamming distance d,;, is defined as the minimal weight of
the non-empty codeword set. If there exist active rows, then F has either to be
appended with additional bit positions if |F| < n, or one or more states s,, need
to be changed to compensate the active rows with odd row weight.

Since this research work only aims to find codewords excluding stopping sets,
the criteria might be simplified based on Algorithm 1. The Tree-search based
Codeword Set Enumeration (TCSE) algorithm is designed to search all the code-
word sets up to size of threshold 7 for any parity-check code €.

In the equivalent graphical tree view representation, the constraint set can be
considered as a branch of the tree, which represents the set of searched known
bit-positions of a code C. |F| denote the size of F, representing the known depth
of the tree. Since the active row is defined as the row with odd weight, thus the
set of active rows in H is denoted by {ho, ..., hs—1}, where ¢ is the total number
of active rows. A constraint set F with size n is said to be walid if and only if
there exists no active row in H®, in other words, a codeword is found. The
pseudocode of the algorithm to find all the codeword sets by threshold size T is
given in Algorithm 4. When the whole tree has been explored, constrained by the

168

9.3 Algorithm Inspired by Dorsch Decoding

lower bound, the list of the saved constraint sets in full size n is the whole set of

codewords up to size of 7. The contradiction is considered as that if w(hix (5)) =1

Algorithm 4 Tree-search based Codeword Set Enumeration (TCSE)
repeat
Pick one untouched branch as a constraint set JF.
if |F| =n and w(X(F)) <7 then
Constraint set F is saved, if F is valid

else
1). Pass F to the iterative decoder with erasures in the unconstrained
positions.

2). Construct a new constraint set ¥ with new decoded positions, which

is the extended branch.

if |F'| =n and w(X(F")) < 7 then
Constraint set F' is saved, if 3’ is valid

else if No contradiction is found in Hy(gy, and w'(X(3")) < 7 then
a). Pick an unconstrained position p.
b). Extend the branch ¥ to position p to get new branch F" =
F U{(p,1)} and branch F" = F U{(p, 0)}.

end if

end if
until Tree has been fully explored by threshold 7

and w(h"™) = 0, where h;"® is the row weight of row % for the unconstrained
positions {p; : (p;,1)} € {0,1,...,n — 1}\F} intersected by row 7 on H. The
iterative BP decoder over the erasure channel [76] is considered as the candidate
iterative decoder. It should be noted that it is not necessary to call the iterative
decoder unless the condition of w(h;xm) = 1 is met. Thus it helps reduce the
computational complexity to call the decoder for every new branch F'. The lower
bound algorithm w'(F") and position selection criteria follow the same rule as in
Section 8.3.4.

9.3 Algorithm Inspired by Dorsch Decoding

Since the exhaustive tree-search based algorithm uses the parity-check matrix H,
then the dual codes €’ generated by the parity-check equations h corresponding to
linear block codes € are explored and limited by a threshold 7. Thus the Dorsch

169

9. EXHAUSTIVE TREE SEARCH BASED OPTIMAL DECODING

decoding algorithm is extended to search the bounded dual codes € instead of
the codes C, which is generated by the re-ordered nearly most-reliable k£ informa-
tion bits. The BPSK-modulated codeword x is transmitfed through the AWGN
channel and received as the vector r = {ro,...,7,—1} € R, which is affected by
noise with variance o?. A hard-decided received vector b € {0,1}" is derived
from the received vector r using bit-wise decisions. Usually, the binary vector b
is not a codeword. The re-encoded codeword X is produced by H according to
the binary information set of b. The maximum attainable correlation Y;,,, with

the received vector is given by

n—1
Yinaz = Y _ |15 (9.1)
=0

According to the extended Dorsch decoding algorithm [121], the codeword X;
with low weight is used to find the maximised codeword x; corresponding to the
received vector r, is given by

X; = X &) iz (92)

Then the corresponding binary error vector z; is given by
zi=b®RBX (9.3)
The first error vector Z is defined as
z=box (9.4)

Thus the cross-correlation cost Y (x;) is given by

Y(Xz) = Ymaz — YA(Xi) (95)
where Ya(x;) is defined by
n—1
YA(Xi) =2 Z(EJ @ iij) X |7‘j| (96)
§=0

170

9.3 Algorithm Inspired by Dorsch Decoding

In order to find the codeword x; with smallest cross-correlation reduction from
Yinaz, which is the smallest difference between Y;,,, and Y(x;), then we find the

smallest YA (Xmin), starting with Y (X)
YA (Xmin) = min(Ya(x;)) (9.7)

This may be achieved by searching for the low weight codeword x; using the
TCSE algorithm with the following modifications.

e Each new explored branch F will be checked with its Y (F) comparing to
YA (Xmin), where its position value s, is different from %,,, before checking

its size.

e A constraint set F is walid, if and only if there exists no active row with
w(X(F)) less than 7 and Ya(F) < Ya(Xmin). Then Ya(Xpmin) is updated as
YA(F).

The position criteria is further constrained by

e The new position p with value s, € {0,1} will be selected when (Y(F) +
IT5]) < Ya(Xmin), thus new branch ¥ = FU{(p,1)} and branch F =
FU{(p,0)} are expanded.

o If (Y(F)+ |rpl) > Ya(Xmin), then a new branch F = FU{(p, 2,)} is ex-
panded. It should be noted that it is different from [2], such that position p
can not be ignored during the codeword search, since it may miss a subset

of potential codeword x;.

In the simpler lower bound algorithm, for the set of active rows §, the uncon-
strained bit p;, (€ {0,...,n — 1}\F), is considered intersected by b;, where
H;; = 1. A further consideration can be revised that the bit position p; with
(Y(F) + |rp;]) < Ya(Xmin) might be prior considered in computing the lower
weight. In order to achieve a tighter bound, the integer linear programming al-
gorithm can also be used, but this involves an increase in complexity, requiring
iterative computations of pivot operations, even though H is a sparse parity-check
matrix of LDPC codes.

171

9. EXHAUSTIVE TREE SEARCH BASED OPTIMAL DECODING

9.4 Simplified Approach based on TCSE Algo-

rithm

At low SNR, the low weight codeword search has to proceed until the threshold is
reached, and the simple method bound does not provide a sufficiently tight lower
bound to limit the size of codeword search. Another approach based on the basic
algorithm is proposed. It is to use TCSE algorithm to search for an error vector
€;, which contains an index set Js, consisting of positions, where their values are

different from received binary vector b. Thus the error vector €; is given by

b; — 1|, if 'Gjéi
&, = oy =11t (9.8)
0, if jNJs, =
The cross-correlation difference Y (€;) corresponding to ¥,4, is given by
n—1
YA(ei) =2 Z(é%) X |7‘j| (99)
=0
The smallest cross-correlation difference Y (enmin) is given by
Ya(emin) = min(Ya(&)) (9.10)

Then the constraint set J is redefined as a set with s, = |b,, — 1|, which produces

151

extra cross-correlation cost R(F) =D (|ry,|). F is said to be valid if and only if
=0

H(é5 ®b) = 0, where &5 is the error vector corresponding to constraint set F

with extra cost less than threshold Ya(em,). In other words, there is no active
row for (5 @ b) on H. The simplified tree-search based error vector enumeration
(STESE) is depicted in Algorithm 5 to search all the error vectors with extra cost
up to Ya(€min), which might be initialised as Ya(2).

The simplified algorithm is designed to find all the potential error-vector sets
with extra cost less than threshold. Once a smaller error vector is found, then the
threshold is updated. Thus the search size of the error vectors is reduced as the
threshold decreases. R'(F) is designated to compute the lower bound of potential

cost corresponding to JF.

172

9.4 Simplified Approach based on TCSE Algorithm

Algorithm 5 Simplified Tree-search based Error-vector Set Enumeration
(STESE)
repeat
Pick one untouched branch as a constraint set JF.
if R(F) < Ya(emin) then
1). Constraint set F is picked, if F is valid.
2). And Ya(emin) is updated as R(F)
else
Active rows set hg is collected
if R’(g) S YA(emin) then
a). Pick an unconstrained position p.
b). Extend the branch F to position p to get new branch F =
FU{(p, b, — 1)}
end if
end if .
until Tree has been fully explored by updated Y (€min)

9.4.1 Computing R(F) on F

The simple method bound given in Algorithm 3 and [2] computes the intersected
positions by active rows ordered by column-weight. Each ordered position with its
column-weight is deducted from the total number of active rows ¢ until all active
rows are compensated. Thus the number of deducted positions is the least pos-
sible bound, which guarantees that no potential p missed. The proposed bound
algorithm is to estimate the potential coordinates where their column weights
could compensate the active rows, meanwhile their total cost has to be less than
the difference between threshold and R(F). Let J(F) = {I;y(F), ..., I;,_, (F)} be
the active rows index set, where I; (F) is the set of active rows on F correspond-
ing to the ¢pth column of H, and ¢ is the total number of intersected positions.
First of all, the bound is designed to order the intersected positions by their nor-
malised cost, which is its cost |r;,| divided by the column weight w(I;,). Then it
follows the same strategy, the least ordered position is picked. Its column weight
is deducted and the threshold is checked, it is repeated until all active rows are
compensated or threshold is exceeded. During observations, the lower bound al-
gorithm can not provide the least probable bound, as the normalised position can

not guarantee to attain all the potential error patterns. Such an issue could have

173

9. EXHAUSTIVE TREE SEARCH BASED OPTIMAL DECODING

arisen because the involved positions actually produce different combinations to
satisfy the check criteria without in any arranged order.

Thus a lower bound algorithm is realised to find a possible position combina-
tion to satisfy the requirement of all active rows’ compensations and extra allowed
cross-correlation cost. Let L be a list set € {0,...,n—1} to store positions’ indices.
n(L) is denoted as a flag set to flag the positions on L, it consists of the positions
selected in £ and the excluded positions. The excluded position is the position
p with (jrp| + R(F)) > Ya(emin). The position combination search algorithm
is inspired by the codeword search algorithm, which follows the similar strategy.
The proposed position-combination search algorithm as a lower bound is depicted
in Algorithm 6, where w(L) represents the total number of column weight cor-

responding to the positions in L. The allowed cross-correlation cost based on F

Algorithm 6 Lower Bound Algorithm to Find a Satisfied Position-Combination
repeat
Pick one unflagged position as a list set L.
if (R(L) + R(F)) < Ya(emin) and w(L) > ¢ then
1). The satisfied position-combination is found.
2). Exit.
else if w(L) < ¢ then
a). Pick an unflagged position p based on n(L), where (R(L) + R(F) +
[75]) < Ya(emin)-
b). Extend the list £ with position p to get new L’ and n(L') = (n(L)Up).
end if
until Combination is found or maximum iteration number is reached

decreases, as R(F) reaches the threshold. Once the qualified number of intersected
positions gets smaller, then the iterations in finding a position-combination gets
faster and easier to determine. At the beginning stage of extending the search
on the tree, there might exist a relatively large number of positions based on
the active rows, even though H is sparse. With the increase of the codeword
length, the complexity of computing the lower bound is significantly increased,
a limitation on the iteration is required to stay within a reasonable computa-
tional complexity. The position for the extended tree search from computing on
the lower bound is ideal to pick the position in the approved combination with

highest column-weight and least cost at the same column weight.

174

9.5 Numerical Results

9.5 Numerical Results

The related codeword weight spectra for some short length LDPC codes are shown
in Table 9.1, which are computed by Algorithm 4. The Union bounds based on the

weight spectrum for the codes are illustrated against the corresponding simulation

results.

LDPC code dmm Ndrnin. Ndmin+1 Ndnn'n+2 Nd"”."_*_;g Ndmin+4
Tanner code (155,64) [118] 20 1023 0 6200 0 43865
MacKay code (120,56,10) [79] | 10 3 0 51 0 399
MacKay code (96, 32, 14) [79] 14 7 0 24 0 127
EG code (63,37,9) [119] 9 1960 10584 9702 42042 179928

Table 9.1: Codeword Set Weight Spectrum up to d,;, + 4

Frame Error Rate (FER)

OSD-1 --8--
10'7 0OSD-2 --&--
: Optimum ---w--
© Union Bound - ¢
108 :
0 1 2 3 4 5 6
Eb/No, (dB)

Figure 9.1: FER Performance of EG LDPC Codes (63, 37,9)

Euclidean Geometry (EG) LDPC code (63,37,9) based on cyclotomic idem-
potents proposed by Tjhai et al. [119] is a short code with reasonable d,;, of 9 and

175

9. EXHAUSTIVE TREE SEARCH BASED OPTIMAL DECODING

sparse parity-check matrix. The corresponding results of the code with iterative
output, optimum output and sub-optimal OSD output are shown in Figure 9.1.
The iterative decoder output is with BP decoder after 50 iterations, which shows
EG codes with cyclic structure over the parity-check matrix can be well decoded
by BP decoder as shown in [62]. The OSD-2 decoder has nearly achieved the
optimum performance as the proposed decoder achieves. The optimum decoder
is with the proposed algorithm with limitation of 1 x 10% nodes search. Further-
more, the lower bound is limited to 50 iterations during the position combination
search, which is sufficient to find the maximised codeword.

MacKay LDPC code (96,32, 14) [80] is a regular LDPC code with (3,5) and
(2,4) mixture, which indicate the column weight with 5 or 4 and the row weight

with 3 or 2. Thus its parity-check matrix guarantees a very sparse structure at

1
3

iterative output, optimum output and sub-optimal OSD output are shown in

code rate with a good d,,;, of 14. The corresponding results of the code with

Figure 9.2. The iterative decoder output is with BP decoder after 50 iterations,
and it achieves a better result than OSD-1, with 0.5dB coding gain since 4dB
—]‘%. The optimum decoder is with the proposed algorithm with limitation of
1x 108 nodes search and 200 iterations of the position combination search for lower
bound. Such decoding configuration successfully achieves the optimum decoding
performance against the Union bound, especially after % 4db. Furthermore, it
is clearly shown that OSD-i with small order number, where i < 3, could not
achieve the optimum decoding performance under the maximum searching size
of (332) On the other hand, the proposed decoder shows its benefit and becomes
the ideal candidate for such sparse linear block codes.

MacKay LDPC code (120, 56,10) [80] is a % rate assorted regular Gallager
code with mixture of (3,6) and (3,5), which provides a sparse parity-check ma-
trix with row weight 3 and column weight 6 or 5 and reasonable d,,;, of 10. The
corresponding results of the code with iterative output, optimum output and
sub-optimal OSD output are shown in Figure 9.3. The BP iterative decoding
output is achieved with 50 iterations and has better performance than OSD-1
with 0.5dB additional coding gain at 4.5dB % The decoder uses the algorithm

described above with a limitation of 107 nodes search and 500 iterations of posi-

tion combination search for the lower bound. With such decoding arrangement,

176

9.5 Numerical Results

T
10"
1072
& 103
w
(0]
5 10
o]
E 105
£
& 10
L
107
OSD-2 --©--
1078 OSD-3 -4 --
: Optimum ---w--
> Union Bound ¢
1079 L L]
0 1 2 3 4 5 6
Eb/No, (dB)

Figure 9.2: FER Performance of MacKay LDPC Codes (96, 32, 14)

the decoder successfully achieves near-optimum performance compared to the
computed union bound.

Tanner code (155,64) is a (3,5)-regular LDPC code constructed by Tanner
et al. [118]. The underlying Tanner graph has girth 8 and its relatively large min-
imum distance of 20 makes the code an excellent candidate for iterative decoding.
The results of the code with iterative output, optimum output and sub-optimal
OSD output are shown in Figure 9.4. The optimum decoder is with the pro-
posed algorithm with limitation of 1 x 10® nodes search. Furthermore, the lower
bound is limited to 500 iterations during the position combination search, which
is sufficient to find the maximised codeword. From the results it can be seen that
the iterative decoding performance achieves similar results to the OSD-2 decoder.
As the order number 7 increases, the sub-optimal decoding performance is signifi-
cantly improved by more than 1dB additional coding gain for each increased order

number. And the near-optimum decoding performance is successfully achieved

177

9. EXHAUSTIVE TREE SEARCH BASED OPTIMAL DECODING

Frame Error Rate (FER)

e
osD-2 o
Proposed Optimum —v—

Union Bound - o--

0 1 2 3 4 5 6
Eb/No, (dB)

Figure 9.3: FER Performance of MacKay LDPC Codes (120, 56, 10)

by the proposed tree-search based error-vector searching decoder using 500 it-
erations of position combination search and 10® maximum nodes search. The
near-optimum decoding performance approaches closely to the computed union
bound at 4dB %

9.6 Summary

In this chapter, a new approach of achieving maximum-likelihood achievement
based on the Dorsch decoder has been introduced. The approach has utilised an
efficient exhaustive tree search algorithm to find a low-weight codeword, which is
used to find the closest codeword to the received vector. A further optimisation
has been described, which is based on the basic algorithm to exhaustively search
for a low weight error vector, in order to determine the closest codeword. The

practical simulation results have demonstrated that the proposed decoder algo-

178

9.6 Summary

Frame Error Rate (FER)

10° | o
: S

scsm i i

Proposed Optimum —v—

Unlion Bound —;o-—

10°°

1010

0 1 2 3 4 5 6
Eb/No, (dB)

Figure 9.4: FER Performance of Tanner Codes (155, 64, 20)

rithm is able to approach the near-optimum decoding using a bounded search
algorithm. Since the search has exploited the sparseness of the parity-check ma-
trix of the code, it is more suitable for linear block codes having very sparse

parity-check matrices, such as some range of LDPC codes.

179

9. EXHAUSTIVE TREE SEARCH BASED OPTIMAL DECODING

180

Part 1V

Conclusions and Future Reseafch
Work

181

Chapter 10

Conclusions and Future Work

10.1 Conclusions

This research work is dedicated to the designated decoding algorithms in terms
of sub-optimal or optimum decoding achievement with optimised computational
complexity for the codes, which can be decoded iteratively by updating the addi-
tional confidence knowledge. And these codes evaluations and stopping sets anal-
ysis are extensively analysed. According to the study of turbo codes and LDPC
codes, their iterative decoding performances have been evaluated and compared
for the AWGN channel. Such iterative decoding algorithms have been analysed
and optimised based on the characteristic of the erasure channel. Hence a further
optimised iterative decoding algorithm, called look-up table decoder, has been
introduced and investigated. The computational complexity of the proposed al-
gorithm and iteration comparison have been identified and analysed between the
standard turbo decoder and the LUT decoder.

As turbo Gallager codes named, such codes can be decoded either by a BCJR
decoder or a BP decoder. We consider a class of turbo Gallager codes, which are
based on the UMTS standard turbo codes structure as the testing codes for the
hybrid decoding arrangements in the erasure channel. Such hybrid decoder in-
cluding an iterative decoder followed by an “In-Place” decoder has been evaluated
and compared in using different iterative decoders. The computational complex-
ity in terms of optimum decoding for the proposed arrangements and an ML

decoder has been analysed and compared. The comparison has shown that the

183

10. CONCLUSIONS AND FUTURE WORK

proposed decoding arrangements have not only achieved the identical optimum
performance, but also converged well with much reduced computational com-
plexity. For the hybrid arrangement, under the affordable encoding complexity,
the optimised iterative LUT decoder with TGC (15/13) provides an significantly
improved performance comparing to other codes with iterative decoders. Thus
the two new decoding schemes using turbo Gallager codes have been proposed
for the erasure channel.

By following the turbo codes implementation over the erasure channel, the
DVB-RCS turbo codes (11,13/15) have also been evaluated over the erasure
channel. The issue between symbol-based interleaver and bit-based interleaver
has been realised that the probabilities of having state “11” and “00” are identical
for bit-based interleaver due to the pairing property of each DVB-RCS turbo codes
symbol. Since a BCJR decoder could not determine such mentioned output in
pair, then a probabilistic based guessing algorithm has been introduced to help
break such type of stopping sets. The improvement has been achieved by adopting
the proposed algorithm for codes with bit-based interleaver. Furthermore, the
stopping sets of DVB-RCS are analysed and represented in a new form of induced
parity-check matrix.

Due to the existing fact that the iterative decoding performance of LDPC
codes are seriously interfered by the BP stopping sets resulting in an error-floor,
we have analysed the soft output from the BP decoder and proposed a new decod-
ing arrangement to help lower the error-floor. The proposed decoding algorithm is
conditioned on the soft output and an OSD-i decoder becomes optional. A series
of analysis has been established, which support the benefit of the proposed decod-
ing arrangement. And the numerical results have clearly shown its advantage and
breakthrough of the lowered error-floor. Moreover, a class of cyclic LDPC codes
has been evaluated and remarked by utilising n parity-check equations instead
of n — k independent parity-check equations, the significant improvements have
shown the suitability of using BP decoding, especially with error-floor free. Due
to the excellent performance of BP output, the proposed decoder with OSD-1
could easily make significantly better performance than an OSD decoder with

higher order.

184

10.1 Conclusions

Inspired by Rosnes’ remarkable paper on finding all the low weight stopping
sets of LDPC codes, the modified fast algorithm with ideal trade off between the
tightness of the lower bound and the number of nodes search has been introduced.
The proposed lower bound features with low complexity computation on the
intersected active rows, has provided a reasonable estimation to help limit the
exhaustive tree search size. Some well known LDPC codes have been evaluated
by adopting the efficient algorithm, the evaluated stopping sets and codeword
weight spectra correctly match the previous published results. Moreover the
WiMax LDPC codes in variety of code-rates and codeword lengths have been
extensively evaluated.

By adapting the efficient exhaustive tree search algorithm, an extended Dorsch
decoding algorithm has been realised and introduced by generating low weight
codeword to help find the error vector based on the noisy received vector from the
AWGN channel. An improvement to the proposed decoding algorithm to search
the error-vector with lowest cross-correlation cost in stead of the codeword with
highest cross-correlation has been devised. The simulation results have shown
that the proposed decoding algorithm with certain constraints of the tree search
size could achieve nearly optimum decoding performance for a range of linear
block codes, which have very sparse parity-check matrix, in a moderate codeword
length.

The major contributions of this research work include:

e A UMTS structure based class of turbo Gallager codes has been evaluated
by using both iterative decoding algorithms including BCJR algorithm and
BP algorithm for the erasure channel.

e The BCJR algorithm has been investigated and a look-up table based de-
coder algorithm has been introduced with much less computational com-

plexity for the erasure channel.

e The hybrid decoding arrangements for turbo Gallager codes on the erasure
channel have shown the optimum decoding performance with much less

computational complexity, especially for TGC (15/13) with LUT decoder.

185

10. CONCLUSIONS AND FUTURE WORK

e DVB-RCS turbo codes have been analysed on the erasure channel. The
issue between the symbol-based and bit-based interleavers has been raised
and analysed. A solution to such issue by using bit-based interleavers has

been proposed to help lower the error floor.

e By analysing the soft output from iterative BP decoder, the conditioned
output has been devised to couple with OSD-i. Such converging arrange-
ment has shown its great significance that the compound performances for
a range of LDPC codes have successfully lowered the error floor, even error-
floor free in some of the LDPC codes in moderate codeword length. Such
significant improvement could have been achieved by simply applying the
OSD-1 with k£ more codeword search. Moreover, because of the excellent
iterative performance of LDPC codes, the arrangement of iterative decoder
coupled by OSD-1 could achieve much better performance than OSD-2
alone, even OSD-3 for some of the LDPC codes, with much less compu-

tational complexity.

e Based on Rosnes’ outstanding work in the stopping sets search, we have
followed his novelty and devised a new bound algorithm with negligible
computational complexity. Some well known LDPC codes have been eval-
uated and extended the results from previous work. Especially, the entire
range of WiMax LDPC codes have also been explored, which could be a
supplement for the use of WiMax standard.

e An extended decoding algorithm has been proposed by taking the stopping
sets search algorithm as the basis. The new proposed decoding algorithm of
searching the error vector with least cross correlation cost has been evalu-
ated for a range of LDPC codes, which have very sparse parity-check matrix

and reasonably moderate codeword lengths.

10.2 Future Work

A few immediate research directions might be realised according to this research

contributions of the iterative decoding algorithm for turbo codes in erasure chan-

186

10.2 Future Work

nel, DVB-RCS turbo codes stopping sets analysis, tree search based weight spec-

trum search and optimum decoding algorithm as follows.

e As the look-up table based decoding algorithm introduced in Section 4.5,
the majority issue is the memory of the look-up table could be out of usage
as the memory size of the shift register gets increased. Thus, enabling of
using larger memory size of the shift register for LUT decoder might be a
research direction to store multi-trellis sections as one unit instead of one
trellis section as one unit in the look-up table. Thus the LUT decoder
could process turbo codes in larger memory order to decode the erasure by
looking up the shortened table, which is created in the main memory of the
system. Such algorithm might require the help from the interleaver which
could ideally rearrange a set of parity bits into a redundant area during the
decoding process. The criteria of designing punctured turbo codes might

be an ideal reference start.

e For DVB-RCS turbo codes, the symbol-based DVB-RCS interleaver code
still achieves the best decoding performance at high erasure probability,
thus a more advanced bit-interleaver by using DRP algorithm or S-random
algorithm paired with the probabilistic algorithm might be a good direction
to help achieve a better performance over the erasure channel at any erasure

probability e.

o According to the evaluations of a range of well known LDPC codes and a set
of cyclic LDPC codes as shown in Chapter 7, the simulation results for most
of the evaluated codes have shown significant improvements by applying the
proposed decoder paired with OSD-1. Since most of these codes are in a
relative short to moderate length, a further evaluation for a range of LDPC
codes in larger size will be an ideal implementation in order to achieve a
better convergent performance, the WiMax LDPC codes [1] with size of at
least 576 and the well structured quasi-cyclic LDPC codes [3, 55], which
have girths at least 6 and less encoding complexity, will be considered as

the candidates.

187

10. CONCLUSIONS AND FUTURE WORK

e As Chapter 8 introduces a fast algorithm based on exhaustive tree search,
the efficiency of the algorithm in terms of speed is mainly relied on the
lower bound algorithm and the bit selection. Comparing to Rosnes’ bound
algorithm [102] by using “simple method’ of linear programming, which
could involve “pivot” inner loop operations, Algorithm 3 could not provide
similar tight enough bound to reduce the search size, but it guarantees
all the potential branches allowed to proceed over the entire code tree, es-
pecially with negligible computing complexity. Thus a research direction
could be led to design a moderate bound algorithm, which could provide
much tighter bound with small further computational complexity. Further-
more, the position selection criteria could be considered in the history of

such position’s activity over the different set of active rows.

e According to the research work in Chapter 9, a more sophisticated lower
bound algorithm could be realised as an immediate research direction to
provide tighter lower bound with less limitation. The intersected bits in-
volved by the set of active rows are exponentially increased as the parity-
check matrix gets slightly dense, which could be the increased weight of row.
Thus the bit-combination search size to satisfy the threshold could easily
be enlarged. The modified or specified linear programming, or inter pro-
gramming, algorithm might be another appropriate candidate to help solve
the multi-inequality problem. A faster algorithm is expected to help deter-
mine the optimum decoding performance for LDPC codes with much longer
codeword length, for instance, the WiMax [1] LDPC codes with least 576
of 1/2 code-rate and the well structured quasi-cyclic LDPC codes [3, 55],
which have girths at least 6 and less encoding complexity, will be considered

as the candidates. .

188

References

[1]

2]

[3]

802.16E, I.S. (2005). Wimax ldpc codes, air interface for fixed and mobile
broadband wireless access systems, ieee std 802.16e-2005. Available from
http://standards.ieee.org/getieee802/download/802.16e-2005.
pdf. 18, 162, 163, 187, 188

AMBROZE, M., TOMLINSON, M. & YANG, L. (2009). Exhaustive weight
spectrum analysis of some well known ldpc codes. In the 10* IEEE Interna-
tional Communication Theory and Applications (ISCTA 09), Lake District,
UK. xix, 53, 151, 171, 173

AMMAR, B., HoNARY, B., Kou, Y., Xu, J. & LiN, S. (2004). Construc-
tion of low-density parity-check codes based on balanced incomplete block
designs. IEEE Transactions on Information Theory, I'T-50, 1257-1269. 51,

187, 188

[4]

[5]

[6]

[7]

ATKINSON & KENDAL.A (1989). An Introduction to Numerical Analysis.
John Wiley & Sons, Inc., New York, USA, 2nd edn. 53

BaHL, L.R., COCKE, J., JELINEK, F. & Raviv, J. (1974). Optimal de-
coding of linear codes for minimising symbol error rate. IEEE Transactions
on Information Theory, IT-20, 284-287. 3, 30, 41

BayEgs, T. & PRICE, R. (1763). An essay towards solving a problem in the
doctrine of chances. Transactions of Royal Society of London, 53, 370-418.
31

BerLEKAMP, E.R. (1968). Algebraic Coding Theory. McGraw-Hill, New
York, United States of America. 2

189

REFERENCES

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

BERLEKAMP, E.R., McELIECE, R.J. & vaN TIiLBORG, H.C.A. (1978).
On the inherent intractability of certain coding problems. IEEE Transac-
tions on Information Theory, 24, 384-386. 17, 150

BERROU, C. & M.JEZEQUEL (1999). Non binary convolutional codes for
turbo coding. FElectronics Letters, 35, 39-40. 85

BERROU, C., GLAVIEUX, A. & THITIMAJSHIMA, P. (1993). Near shannon
limit error-correcting coding: Turbo codes. In Proc. IEEE International
Conference on Communications, 1064-1070, Geneva, Switzerland. 3, 37,
41, 43, 49, 76

BERROU, C., DOUILLARD, C. & JEZEQUEL, M. (1999). Multiple parallel
concatenation of circular recursive convolutional (crsc) codes. Annals of
Telecommun., 54, 166-172. 16, 85

BEeERRrROU, C., VATON, S., JEZEQUEL, M. & DOUILLARD, C. (2002). Com-

puting the minimum distance of linear codes by the error impulse method.
In Proc of IEEE Globecom, 1017-1020, Taipei, Taiwan. 18, 150

BLAKE, I.LF. & MULLIN, R. (1975). The mathematical theory of coding.
Academic, New York. 51

Bose, R.C. & RAy-CHAUDHURI, D.K. (1960). On a class of error-
correcting binary group codes. Information and Control, 3, 68-79. 2

BouTtiLLoN, E. & GNAEDIG, D. (2005). Maximum spread of d-

dimentional multiple turbo codes. IEEE Transactions on Communications,
53, 1237-1242. 3

Ca1, J., Tinal, C., TOMLINSON, M., AMBROZE, M. & AHMED, M.Z.
(2005). An efficient solution to packet loss: Erasure correcting codes. In 4
IASTED, Communication Systems and Networks, Spain. 16, 106, 121

CANTEAUT, A. & CHABAUD, F. (1998). A new algorithm for finding mini-
mum weight words in a linear code: Application to mceliece’s cryptosystem
and to narrow-sense bch codes of length 511. IEEE Transactions on Infor-
mation Theory, IT-44, 367-378. 18, 150

190

REFERENCES

[18]

[19]

[20]

[21]

22]

[24]

[25]

[26]

C.BERROU, JEZEQUEL, M., DOUILLARD, C. & KEROUEDAN, S. (2001).
The advantages of non-binary turbo codes. In IEEE Information Theory
Workshop, Caims, Australia. 16, 85

CHASE, D. (1972). A class of algorithms for decoding block codes with
channel measurement information. IEEE Transactions on Information The-
ory, I'T-18, 170-182. 2

CHATZIGEORGIOU, I., RODRIGUES, M.R.D., WasseL, 1.J. & CARr-
RASCO, R. (2005). A comparison of convolutional and turbo coding schemes
for broadband fwa systems. In Proc. 12" International Conference on

Telecommunications, Cape Town, South Africa. 64

CHEN, L., DJurDJEVIC, 1., XU, J., LIN, S. & GHAFFAR, K.A. (2004).
Construction of qc-ldpc codes based on the minimum-weight codewords of

rs codes. In IEEE International Symposium on Information Theory, 239,

Chicago, IL, USA. 51

CHEN, L., Xu, J., DJurDJEVIC, 1. & LIN, S. (2004). Near-shannon-limit
quasi-cyclic low-density parity-check codes. IEEE Transactions on Commu-
nications, 52, 1038-1042. 55

CHUNG, 5.Y., JR., G.D.F., RICHARDSON, T.J. & URBANKE, R. (2001).
On the design of low-density parity-check codes within 0.0045 db from the
shannon limit. JEEE Communication Letters., 5, 58-60. 4, 17, 49, 50

CoLAvOLPE, G. (2004). Design and performance of turbo gallager codes.
IEEE Transactions on Communications, 52, 1901-1908. 4, 57, 58, 60, 61

CosTELLO, D.J. & FORNEY, G.D. (2007). Channel coding: The road to
channel capacity. Proceedings of the IEEE, 95, 1150-1177. 38

CROZIER, S. (2000). New high-spread high-distance interleavers for turbo
codes. In in Proc. of the 20th Biennial Symposium on Communications,

3-7, Queens’ University, Kingston, Ontario, Canada. 16

191

REFERENCES

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

CROZIER, S. (2000). New high-spread high-distance interleavers for turbo-
codes. In in Proc. 20th Biennial Symposium on Communications, 3-7,

Kingston, Ontario, Canada. 40

CROZIER, S. & GUINAND, P. (2001). High-performance low-memory in-

terleaver banks for turbo codes. In in Proc. IEEE Vehicular Technology
Conf., 2394-2398, Atlantic city, NJ, USA. 41, 44, 45

CROZIER, S. & GUINAND, P. (2003). Distance upper bounds and true
minimum distance results for turbo codes designed with drp interleaver. In
in Proc. 8rd Int. Symp. Turbo Codes Related Topics, Brest, France. 41, 60,
68, 82, 108, 114, 115, 116

CROZIER, S., LODGE, J., GUINAND, P. & HuNT, A. (1999). Performance
of turbo codes with relative prime and golden interleaving strategies. In n
Proc. sizth International Mobile Satellite Conference (IMSC’99), 268275,
Ottawa, Canada. 40

DANESHGARAN, F., LADDOMADA, M. & MoNDIN, M. (2006). An algo-
rithm for the computation of the minimum distance of ldpc codes. European

Transactions on Telecommunications, 17, 57-62. 18, 150

D1, C., PROIETTI, D., TELATAR, [.LE.; RICHARDSON, T. & URBANKE,
R. (2002). Finite-length analysis of low-density parity-check codes on the
binary erasure channel. IEEE Transactions on Information Theory, 48,
1570-1579. 4, 17

DOLINAR, S. & DivsaALAR, D. (1995). Weight distributions for turbo
codes using random and nonrandom permutations. TDA Progress Report,
42, 122. 16, 40

DORSCH, B. (1974). A decoding algorithm for binary block codes and j -ary
output channels. IEEE Transactions on Information Theory, 20, 391-394.
18, 121

ELias, P. (1955). Coding for noisy channels. IRE Conv. Rec., 4, 37-46. 2

192

REFERENCES

[36] ELIiAS, P. (1956). Coding for two noisy channels. In Third London Sympo-

stum on Information Theory, Academic Press, New York. 4, 10, 25

[37] FANO, R.M. (1963). A heuristic discussion of probabilistic decoding. IEEE
Transactions on Information Theory, IT-9, 64-74. 2

[38] FORNEY, G.D. (1973). The viterbi algorithm. Proceeding of the IEEE, 61,
268-278. 30

[39] ForNEY, G.D. (2001). Codes on graphs: normal realizations. IEEE Trans-
actions on Information Theory, 47, 520-548. 57

[40] FOrNEY, JR., G.D. (1966). Concatenated Codes. MIT Préss, Cambridge,
MA, United States of America. 3

[41] FOSSORIER, M. (2004). Quasi-cyclic low-density parity-check codes from

circulant permutation matrices. IEEE Transactions on Information Theory,
50, 2346-2348. 51

[42] FossoriER, M.P.C. (2001). Iterative reliability-based decoding of low-
density parity-check codes. IEEE Journal on Select. Areas in Commun,
19, 908-917. 17, 123, 150

[43] FossoriER, M.P.C. (2002). Reliability-based soft-decision decoding with
iterative information set reduction. IEEFE Transactions on Information The-
ory, 48, 3101-3106. 121

[44] Fossorier, M.P.C. & LiIN, S. (1995). soft-decision decoding of linear
block codes based on ordered statistics. IEEFE Transactions on Information
Theory, 41, 1379-1396. 121

[45] GALLAGER, R.G. (1963). Low-Density Parity-Check Codes. Cambridge,
MA: MIT Press. 2, 3, 4, 17, 49, 50, 51, 53

[46] GoLAYy, M.J.E. (1949). Notes on digital coding. Proc. IRE, 37, 657. 1

[47] GouNal, S. & OHTSUKI, T. (2006). Lowering error floor of irregular Idpc
codes by crc and osd algorithm. Trans. of IEICE, E89-B, 1-10. 121

193

REFERENCES

[48]

[49]

[50]

[51]

[52]

[53]

[54]

5]

[56]

HAGENAUER, J. & HOEHER, P. (1989). A viterbi algorithm with soft-
decision outputs and its applications. In IEEE Globecom, vol. 3, 1680-1686.
3

HamaDA, N. (1973). On the p-rank of the incidence matrix of a balance
or partial balanced incomplete block designs and its applications to error
correcting codes. Hiroshima Math. J., 3, 153-226. 51

HaMMING, R.W. (1950). Error detecting and error correcting codes. Bell
Syst. Tech. J., 29, 147-160. 1

HarTmANN, C.R.P. & RupoLpH, L.D. (1976). An optimum symbol by
symbol decoding rule for linear codes. IEEE Transactions on Information
Theory, IT-22, 514-517. 18

HiroTOMO, M., MOHRI, M. & MORII, M. (2005). A probabilistic com-
putation method for the weight distribution of low-density parity-check

codes. In IEEE International Symposium on Information Theory, 2166—
2170, Adelaide, Australia. 18, 150

HiroTOMO, M., KONisHI, Y. & MoRIi, M. (2008). A probabilistic al-
gorithm for finding the minimum-size stopping sets of ldpc codes. In Proc.
IEEE Information Theory Workshop, 66-70, Porto, Portugal. 18, 151

HOCQUENGHEM, A. (1959). Codes correcteurs d’erreurs. Chiffres, 2, 147-
"156. 2
HoNARY, B., MOINIAN, A. & AMMAR, B. (2005). Construction of well-

structured quasi-cyclic low-density parity check codes. IEE Proceedings,
152, 1081-1085. 187, 188

Hu, X.Y. & ELEFTHERIOU, E. (2006). A probabilistic subspace approach
to the minimal stopping set problem. In Proc. 4th Int. Symp. Turbo Codes
and Related Topics, Munich, Germanay. 161

194

REFERENCES

[57]

[58]

[59]

[62]

[63]

[64]

[65]

Hu, X.Y., Fossorier, M.P.C. & ELEFTHERIOU, E. (2004). On the
computation of the minimum distance of low-density parity-check codes. In
Proc of IEEE Int. Conf. Commun. (ICC), vol. 2, 776-771, Paris, France.
18, 150

Hu, X.Y., ELerTHERIOU, E. & ARNOLD, D.M. (2005). Regular and
irregular progressive edge-growth tanner graphs. IEEE Transactions on In-
formation Theory, 51, 386-398. 136, 161

InsTiTUTE, E.T.S. (2003). Digital video broadcasting (dvb); interaction
channel for satellite distribution systems. ETSI EN 301 790 v1.3.1 (2003-
03). 16, 85, 91

JOHNSON, S. & WELLER, S. (2001). Regular low-density parity-check

codes from combinatorial designs. In IEEE Information Theory Workshop,
90-92. 51

Kou, Y., LN, S. & FossORIER, M. (2000). Low density parity check
codes based on finite geometries: a rediscovery. In IEEF International Sym-

posium on Information Theory, Sorrento, Italy. 51

Kou, Y., LN, S. & FOSSORIER, M. (2001). Low density parity check
codes based on finite geometries: a rediscovery and new results. IEEE
Transactions on Information Theory, 47, 2711-2736. 4, 138, 176

KRISHNAN, K.M. & SHANKAR, P. (2007). Computing the stopping dis-
tance of a tanner graph is np-hard. IFEE Transactions on Information
Theory, 53, 2278-2280. 18, 151

KSCHISCHANG, F.R. & SOROKINE, V. (1994). On the trellis structure
of block codes. In IEEFE International Symposium on Information Theory,
Trondheim, Norway. 8

KURKOSKI, B.M. (2004). Algorithms and Schedules for Turbo Equlization.
Ph.D dissertation, Department of Electrical Engineering (Communication
Theory and Systems), University of California, San Diego, United States of
America. 16

195

REFERENCES

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

(74

Kurkoski, B.M., SieGeL, P.H. & Worr, J.K. (2003). Exact proba-
bility of erasure and a decoding algorithm for convolutional codes on the
binary erasure channel. In Proc. IEFE GLOBECOM, vol. 3, 1741-1745,
San Francisco, CA. 16, 77

LaN, L., ZENG, L., LEL, Y.Y., CHEN, L., LIN, S. & ABDEL-GHAFFAR,
K. (2007). Construction of quasi-cyclic ldpc codes for awgn and binary era-
sure channels: A finite field approach. IEEE Transactions on Information
Theory, 53, 2429-2458. 161

LeoN, J.S. (1988). A probabilistic algorithm for computing minimum
weights of large error-correcting codes. IEEE Transactions on Information
Theory, I'T-34, 1354-1359. 18, 150

L1, Z., CHEN, L., ZENG, L., LiN, S. & Fonag, W. (2005). Efficient encod-
ing of quasi-cyclic low-density parity-check codes. In IEEE GLOBECOM
Conf.. 51

LiN, S. (1970). An introduction to ERROR-CORRECTING CODES.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 9

LN, S. & CosTELLO, JR., D.J. (2004). Error Control Coding: Funda-

mentals and Applications. Pearson Education, Inc, 2nd edn. 14, 40

LN, S., Xu, J., DJurDJEVIC, 1. & TANG, H. (2002). Hybrid construction
of Idpc codes. In in Proc. 40th Annu. Conf. Communication, Control, and
Computing, Monticello, IL, USA. 4, 51

LN, S., CHEN, L., Xu, J. & DJjurbpJevic, I. (2003). Near shannon
limit quasicyclic low-density parity-check codes. In in Proc. 2003 IEEE
GLOBECOM Conf., San Francisco, IL, USA. 4, 51

LoODGE, J., HOEHER, P. & HAGENAUER, J. (1992). The decoding of mul-
tidimensional codes using separable map ‘filters’. In in Proc. 16th Biennial

Symposium on Communications, 343-346, Kingston, ON, Canada. 3

196

REFERENCES

[75] LuBy, M., MITZENMACHER, M., SHOKROLLAHI, A., D.SPIELMAN
& V.STEMANN (1997). Practical loss-resilient codes. 29* annual ACM
Symp. Theory of Computing, 150-159. 4, 69

[76] LuBY, M.G., MITZENMACHER, M., SHOKROLLAHI, M.A. & SPIELMAN,
D.A. (2001). Efficient erasure correcting codes. IEEE Transactions on In-
formation Theory, 47, 569-584. 4, 15, 157, 169

[77] LuBy, M.G., MITZENMACHER, M., SHOKROLLAHI, M.A. & SPIEL-
MAN, D.A. (2001). Improved low-density parity-check codes using irregular
graphs. IEEE Transactions on Information Theory, 47, 585-598. 4

[78] MA, H.H. & WoLr, J.K. (1986). On tail biting convolutional codes. IEEE
Transactions on Communications, 34, 104-111. 8, 36, 85

[79] MAcKAy, D.J.C. (1999). Encyclopedia of sparse graph codes. Available:
http://www.inference.phy.cam.ac.uk//codes/data.html. 161, 175

[80] MAcKAY, D.J.C. (1999). Good error correcting codes based on very sparse
matrices. IEEE Transactions on Information Theory, 45, 399-431. 49, 50,
51, 55, 134, 176

[81] MACKAY, D.J.C. & NEAL, R.M. (1997). Near shannon limit performance
of low-density parity-check codes. Electronic Letters, 33, 457-458. 3, 4, 50

[82] MasseY, J.L. (1963). Threshold Decoding. MIT Press, Cambridge, MA,
United States of America. 2, 3, 18

[83] MAssEY, J.L. (1969). Shift-register synthesis and bch decoding. IEEE
Transactions on Information Theory, IT-15, 122-127. 2

[84] McCELIECE, R.J., MACKAY, D.J. & CHENG, J. (1998). Turbo decoding
as an instance of pearl’s belief propagation algorithm. IEEE Journal on
Selected Areas in Communications, 16, 140-152. 57

[85] MICHELSON, A.M. & LEVESQUE, A.H. (1985). Error-Control Techniques
for Digital Communication. John Wiley & Sons, Inc., United States of
America. 6, 10

197

REFERENCES

[86]

(87]

[88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

MORELOS-ZARAGOZA, R.H. (2002). The Art of Error Correcting Coding.
John Wiley & Sons, Inc., Chichester, England. 7, 8, 36

MULLER, D.E. (1954). Application of boolean algebra to switching circuit
design and to error detection. IRFE Trans. FElectron. Comput., EC-3, 6-12.
1

PEARL, J. (1988). Probabilisitic reasoning in intelligent systems: networks
of plausible inference. Morgan Kaufmann Publishers Inc., Morgam Kauf-
mann, San Mateo, CA. 49

PEROTTI, A. & S.BENEDETTO (2004). A new upper bound on the mini-

mum distance of turbo codes. IEEFE Transactions on Information Theory,
50, 2985-2997. 4

PETERSON, W.W. (1960). Encoding and error-correction procedures for
the bose-chaudhuri codes. IRE Trans. Inform. Theory, I'T-6, 459-470. 2

PETERSON, W.W. (1961). Error-Correcting Codes. MIT Press, Cam-
bridge, MA. 2

PRroakis, J.G. (2000). Digital Commaunications. McGraw-Hill, New York,
4th edn. 126 "

REED, I.S. (1954). A class of multiple-error-correcting codes and the de-
coding scheme. IRE Trans. Inform. Theory, IT-4, 38-49. 1

REED, I.S. & SoLoMoN, G. (1960). Polynomial codes over certain finite
fields. Journal of the Society for Industrial and Applied Mathematics, 8,
300-304. 2

RICHARDSON, T.J., SHOKROLLAHI, A. & URBANKE, R.L. (2001). De-
sign of capacity-approaching irregular low-density parity-check codes. IEEE
Transactions on Information Theory, 47, 619-637. 4, 49, 50, 127

RICHTER, G. (2006). Finding small stopping sets in the tanner graph of
ldpc codes. In Proc. 4% Int. Symp. on Turbo Codes & Related Topics, Mu-
nich, Germany. 18, 151

198

REFERENCES

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104)

[105]

ROBERTSON, P., VILLEBRUN, E. & HOEHER, P. (1995). A comparison
of optimal and sub-optimal map decoding algorithms operating in the log
domain. In IEEE Int. Conf. Comm., vol. 2, 1009-1013, Seattle, WA, USA.
64

ROMAN, S. (2000). Introduction to Coding and Information Theory.
Springer. 108

Rosngs, E. & O.YTHEHUS (2005). Improved algorithms for the determi-
nation of turbo-code weight distributions. IEEE Transactions on Commu-
nications, 53, 20-26. 4, 16

RosnEs, E. & O.YTHEHUS (2007). Turbo decoding on the binary erasure
channel: finite-length analysis and turbo stopping sets. IEEE Transactions
on Information Theory, 53, 4059-4075. 4, 16, 18, 151

RosnEs, E. & YTREHUS, O. (2005). Turbo stopping sets: The uniform

interleaver and efficient enumeration. In IEEF International Symposium on
Information Theory, 1251-1255, Adelaide, SA, Australia. 18, 151

RosnEes, E. & YTREHUS, O. (2007). An algorithm to find all small-size
stopping sets of low-density parity-check matrices. In IEEFE International
Symposium on Information Theory, Nice, France. 18, 151, 155, 158, 160,
161, 188

Rosnes, E. & YTREHUS, O. (2009). An efficient algorithm to find all
small-size stopping sets of low-density parity-check matrices. IEEE Trans-
actions on Information Theory, 55, 4167-4178. 18, 163

S.BENEDETTO & MONTORSI, G. (1996). Unveilling turbo codes: some
results on parallel concatenated coding schemes. IEEE Transactions on
Information Theory, 42, 409-428. 40

S.BENEDETTO, D. DIVSALAR, G.M. & POLLARA, F. (1998). Serial con-
catenation of interleaved codes: performance analysis, design, and iterative
decoding. IEEE Transactions on Information Theory, 44, 909-926. 3

199

REFERENCES

[106] SCHALKWLIK, J.P.M. & VINCK, A.J. (1975). Syndrome decoding of con-
volutional codes. IEEE Transactions on Communications, 23, 789-792. 77

[107) ScHWARTZ, M. & VARDY, A. (2006). On the stopping distance and the
stopping redundancy of codes. IEEE Transactions on Information Theory,
52, 922-932. 153

[108] SHANNON, C.E. (1948). A mathematical theory of communication. Bell
Syst. Tech. J., 27, 379-423, 623-656. 1, 9

[109] SiLVERMAN, R.A. & BALSER, M. (1954). Coding for constant-data-rate
systems. IRE Trans. Inform. Theory, PGIT-4, 50-63. 2

[110] SipsERr, M. & SPIELMAN, D.A. (1996). Expander codes. IEEE Transac-
tions on Information Theory, 42, 1710-1722. 50

[111] SKLAR, B. (2001). Digital Communications: Fundamentals and Applica-
tions. Prentice Hall, Upper Saddle River, New Jersey, 2" edn. 30

[112] SoLJaNIN, E. & OrFER, E. (2001). Ldpc codes: a group algebra formu-
lation. In In Proc. Internat. Workshop on Coding and Cryptography WCC.
17

[113] SoLJaNIN, E. & OFFER, E. (2003). Bit-optimal decoding of codes whose
tanner graphs are trees. Discrete Applied Mathematics, 128, 293-303. 17

[114] SpiELMAN, D.A. (1996). Linear-time encodable and decodable error-
correcting codes. IEEE Transactions on Information Theory, 42, 1723~
1731. 50

[115] STERN, J. (1988). A method for finding codewords of small weight. Proceed-
ings of the 3rd International Colloguium on Coding Theory and Applications
in Lecture Notes in Computer Science; Vol. 388, 106-113. 18, 150

[116] SWEENY, P. (2002). Error Control Coding: from theory to practice. John
Wiley & Sons, Inc. 52

200

REFERENCES

[117]

[118]

[119]

[120]

[121]

122]

[123]

[124]

[125]

TANNER, R.M. (1981). A recursive approach to low complexity codes.
IEEE Transactions on Information Theory, IT-27, 533-547. 3, 58, 152

TANNER, R.M., SRIDHARA, D. & Fujia, T. (2001). A class of group-
structured ldpc codes. In Proc. Int. Symp. on Commun. Theroy and Appl.
(ISCTA), Ambleside, England. 53, 127, 129, 132, 153, 161, 175, 177

Tinal, C., TOMLINSON, M., AMBROZE, M. & AHMED, M. (2005). Cy-
clotomic idempotent-based binary cyclic codes. Electron. Lett., 41, 341-343.
130, 137, 175

TomLiNsON, M., Carl, J., TiHal, C., AMBROZE, M. & AHMED, M.
(2004). System for Correcting Deleted or Missing Symbols. UK Patent Ap-
plication 0428042.6. 106

TomLINsON, M., TynAl, C. & AMBROZE, M. (2007). Extending the
dorsch decoder towards achieving maximum-likelihood decoding for linear
codes. IET Communications, 1, 479-488. 18, 121, 124, 127, 167, 170

TOMLINSON, M., Tynal, C., CAl, J. & AMBROZE, M. (2007). Analysis
of the distribution of the number of erasures correctable by a binary linear

code and the link to low-weight codewords. IET Communications, 1, 539-
548. 18, 108, 110

VALEMBOIS, A. & FossoriER, M.P.C. (2004). Box and match techniques

applied to soft-decision decoding. IEEFE Transactions on Information The-
ory, 50, 796-810. 121

VARDY, A. (1997). The intractability of computing the minimum distance
of a code. IEEE Transactions on Information Theory, 43, 1757-1766. 17,
150

Vasic, B. & O.MILENKOVIC (2004). Combinatorial constructions of low-
density parity-check codes for iterative decoding. IEEE Transactions on
Information Theory, 50, 1156-1176. 51

201

REFERENCES

(126] VITERBI, A.J. (1967). Error bounds for convolutional codes and an asymp-

totically optimum decoding algorithm. IEEE Transactions on Information
Theory, IT-13, 260-269. 2, 29

[127] WaNG, C.C., KULKARNI, S.R. & Poor, H.V. (2009). Finding all small
error-prone substructures in ldpc codes. IEEE Transactions on Information
Theory, 55, 1976-1999. 18, 151, 155, 161

[128] WELLS, R.B. (1999). Applied Coding and Information Theory for Engi-
neers. Prentice Hall. 36

[129] WOZENCRAFT, J.M. & REIFFEN, B. (1961). Sequential Decoding. MIT
Press, Cambridge, MA, United States of America. 2

[130] Wu, P.Y. (2001). On the complexity of turbo decoding algorithms. In
Proc. 58™ Vehicular Technology Conference,, vol. 2, 1439-1443. 16, 64

[131] YANG, L., AMBROZE, M. & TOMLINSON, M. (2008). Comparison of de-
coding turbo gallager codes in hybrid decoding arrangements with different
iterative decoders over the erasure channel. In the 11** IEEE International

Conference on Commaunications Systems (ICCS), Guangzhou, China. xix,
63, 105 '

[132] YANG, L., ToMLINSON, M. & AMBROZE, M. (2010). Decoding low-
density parity-check codes with error-floor free over the awgn channel. In
the 2010 IEEE International Conference on Wireless Communication, Net-
working and Information Security (WCNIS2010), Beijing, China. xix, 122

[133] YANG, L., TOMLINSON, M. & AMBROZE, M. (2010). Extended optimum
decoding for ldpc codes based on exhuastive tree search algorithm. In the
12" IEEE International Conference on Communications Systems (ICCS),
Singapore. xix

[134] YuaN, J., VuceTic, B. & FENG, W. (1999). Combined turbo codes and
interleaver design. IEEE Transactions on Communications, 47, 484-487.
16

202

Appendix A

Proof on Relationship between
Received Bit and Soft Output

The relationship between received bit r,, affected by the noise factor ¢ in the

AWGN channel and the probability in ratio of % can be simply expressed
as 0 —(rm+1)?/20?
p(cm _ |7'm) _ € (A.l)

p(cm = llrm) T e (rm—1)2/202

By adding logarithm on both sides,

Plem =0lrm) —(rm+1)2+ (rm — 1) =21y,
o8 plem = 1rm) 202 - o? (4-2)

Since ¢ is a constant, then r,, is proportional to log Z—Ezlm"g(l){:—:—g.

203

Appendix B

Sample of Stopping Set
Representation over Parity-check
Matrix

Erasure Pattern: Hamming weight = 16, Code = DVB-RCS Turbo Code (384, 128, 26), Interleaver=DRP-
rpl3-rsl7

The set of erasure indices: 51 52 53 54 55 57 115 116 119 120 121 179 243 244 313 371

The related parity-check equations:

(R=1, R’=48) 48 50 51 304 307 369 371 —1 (2/7)
(R=2, R’=49) 49 51 52 305 308 370 372 —1 (2/7)
(R=3, R’=50) 50 52 53 306 309 371 373 —1 (3/7)
(R=4, R’=51) 51 53 54 307 310 372 374 —1 (3/7)
(R=5, R’=52) 52 54 55 308 311 373 375 —1 (3/7)
(R=6, R'=53) 53 55 56 309 312 374 376 —1 (2/7)
((3/7)
((2/7)
(
(
(

R=8, R'=
R=9, R'=

55 57 58 311 314 376 378 —1 (2/7

57 59 60 313 316 378 380 —1 (2/7)

53)
R=7, R’=54) 54 56 57 310 313 375 377 —1 (3/7
55)
57)

1

R=10, R’=112) 112 114 115 304 305 307 368 369 370 371 —1 (2/10)
R=11, R’=113) 113 115 116 305 306 308 369 370 371 372 —1 (3/10)
(R=12, R’=114) 114 116 117 306 307 309 370 371 372 373 —1 (2/10)
(R=13, R’=115) 115 117 118 307 308 310 371 372 373 374 —1 (2/10)
(R=14, R’=116) 116 118 119 308 309 311 372 373 374 375 —1 (2/10)
(R=15, R’=117) 117 119 120 309 310 312 373 374 375 376 —1 (2/10)

(

(R=16, R’=118) 118 120 121 310 311 313 374 375 376 377 —1 (3/10)

205

B. SAMPLE OF STOPPING SET REPRESENTATION OVER
PARITY-CHECK MATRIX

(R=17, R’=119) 119 121 122 311 312 314 375 376 377 378 —1 (2/10)
(R=18, R’=120) 120 122 123 312 313 315 376 377 378 379 —1 (2/10)
(R=19, R’=121) 121 123 124 313 314 316 377 378 379 380 —1 (2/10)
(R=20, R’=176) 176 178 179 262 304 313 332 —1 (2/7)

(R=21, R’=177) 177 179 180 275 314 354 371 —1 (2/7)

(R=22, R’=179) 179 181 182 313 333 342 371 —1 (3/7)

(R=23, R’=240) 240 242 243 262 275 304 313 332 354 383 —1 (2/10)
(R=24, R’=241) 241 243 244 275 304 314 332 345 354 371 —1 (3/10)
(R=25, R'=242) 242 244 245 263 292 313 332 345 354 371 —1 (3/10)
(R=26, R’=243) 243 245 246 292 313 314 332 333 342 371 —1 (3/10)
(R=27, R'=244) 244 246 247 263 292 301 314 320 342 371 —1 (2/10)

The number of H-Matrix equations involved with each erasure in format of (Index of Era-
sure: Number of Equations) are shown as follows:

51:
52:
53:
54:
55:
57
115:
116:
119:
120:
121:
179:
243:
244:
313:
371:

W W W ww w
W W W W wWwww w

— =
N O

206

Appendix C

WiMax LDPC Codes Weight

Spectrum (Standard)

The results of WiMax LDPC codes in code rate of 1/2 are given in Table C.1 with threshold
up t0 Smin + 4. The results of WiMax LDPC codes in code rates of 2/3A and 2/3B are given
in Table C.2 and Table C.3 with threshold up to s;.;; + 4. The results of WiMax LDPC codes
in code rates of 3/4A and 3/4B are given in Table C.4 and Table C.5 with threshold up to

Smin + 4.

n Smin Ns,.... Ns,int1 | Ns a2 | Ng .43 Ns, i +4
576 13 24(24) 0(0) 0(0) 24(24) 0(0)
672 18 56(0) 140(56) 56(56) 308(84) 420(168)
768 18 32(0) 0(0) 96(64) 128(32) 192(96)
864 19 36(36) 36(36) 144(0) 324(36) 828(180)
960 19 120(80) 120(40) 160(0) 280(160) | 400(120)
1056 19 44(0) 0(0) 44(44) 132(0) 220(88)
1152 19 48(48) 0(0) 0(0) 0(0) 0(0)
1248 19 52(0) 0(0) 0(0) 52(52) 52(0)
1344 23 112(112) 56(0) 280(224) | 560(224) | 1008(280)
1440 24 60(0) 60(0) 60(0) 180(60) 720(300)
1536 20 64(64) 0(0) 0(0) 64(64) 64(0)
1632 27 68(68) 408(0) 476(136) | 748(272) | 1836(816)
1728 21 72(72) 0(0) 0(0) 0(0) 0(0)
1824 19 76(76) 0(0) 0(0) 0(0) 0(0)
1920 25 160(80) 240(80) | 240(240) | 400(160) | 1040(160)
2016 27 84(84) 84(84) 756(168) | 518(182) | 1260(336)
2112 28 264(264) 88(0) 440(264) | 616(264) | 1144(440)
2208 23 92(92) 0(0) 0(0) 0(0) 0(0)
2304 28 96(0) 96(0) 288(0) 288(96) 624(336)

Table C.1: WiMax LDPC Codes R, = 1/2

207

C. WIMAX LDPC CODES WEIGHT SPECTRUM (STANDARD)

n Smin N, oin Ns,intl N, int2 N, int3 Ns, .+4
576 10 72(48) 24(24) 192(120) 792(360) 2724(1118)
672 9 28(28) 28(0) 84(28) 336(84) 1512(588)
768 8 64(64) 0(0) 0{0) 128(128) 160(128)
864 9 36(0) 36(0) 72(72) 72(0) 504(216)
960 12 80(0) 440(280) | 1400(400) | 3080(840) | 8440(2320)
1056 10 44(44) 0(0) 44(44) 44(0) 352(88)
1152 13 48(0) 48(48) 144(144) 768(240) 1968(1056)
1248 13 104(104) 208(0) 572(312) 1352(572) | 3484(1404)
1344 14 224(168) | 168(112) | 336(112) | 1736(1008) | 5012(1764)
1440 13 180(180) 60(0) 300(120) 240(0) 1380(780)
1536 12 64(64) 0(0) 0(0) 192(64) 448(320)
1632 12 68(0) 136(68) 0(0) 204(136) 340(204)
1728 14 72(0) 216(144) 144(72) 432(216) 2196(1008)
1824 15 76(76) 228(152) | 228(152) 988(760) 2660(1064)
1920 14 80(0) 80(80) 160(160) 320(240) 960(640)
2016 15 84(84) 252(0) 168(168) 504(336) 1680(840)
2112 15 88(88) 0(0) 176(88) 352(176) 1144(352)
2208 15 92(92) 0(0) 92(92) 460(276) 1012(644)
2304 15 96(96) 0(0) 96(96) 480(384) 768(384)

Table C.2: WiMax LDPC Codes R, = 2/3A
n Smin Nspin Ngpint1 Nspint2 Nspint3 N pinta
576 10 24(0) 0(0) 48(48) 264(24) 1056(168)
672 11 28(28) 56(28) 112(56) 196(0) 1540(252)
768 13 32(0) 64(64) 256(64) 760(168) | 2176(256)
864 15 72(0) 315(45) 648(72) 2434(400) | 7776(828)
960 14 40(0) 40(40) 295(95) 880(80) 2460(440)

1056 15 44(44) 88(0) 0(0) 440(176) | 2640(792)

1152 16 96(48) 432(48) | 1008(336) | 1824(240) | 4896(480)

1248 15 52(52) 0 104(104) 156(104) 728(312)

1344 16 63(63) 56(56) 196(56) 560(168) | 1568(196)

1440 17 120(60) 120(0) 300(240) 975(195) | 1200(300)

1536 15 64(64) 0(0) 0(0) 0(0) 128(0)

1632 18 204(68) | 272(68) 289(221) 952(136) | 1224(136)

1728 15 72(72) 0(0) 0(0) 72(0) 0(0)

T804 | 15 || 76(76) | 0(0) 0(0) 0(0) 0(0)

1920 16 80(80) 80(0) 160(0) 0(0) 240(0)

2016 15 84(84) 0(0) 0(0) 0(0) 84(84)

2112 16 88(88) 88(0) 0(0) 0(0) 264(0)

2208 20 92(92) 92(0) 92(0) 276(92) 1012(276)

2304 15 96(96) 0(0) 0(0) 0(0) 0(0)

Table C.3: WiMax LDPC Codes R, = 2/3B

208

n Smin N, ... Ns .+l Ns, 42 Ns . 43 D\
576 9 72(0) 228(84) | 1488(336) | 7032(1416) | 35808(4512)
672 8 28(0) 0(0) 112(56) 476(168) 2352(602)
768 10 128(64) | 512(256) | 1744(512) | 6336(1152) | 32592(4032)
864 11 180(0) | 468(234) | 2376(324) | 9360(1134) | 38232(3888)
960 12 140(80) | 360(120) | 2180(540) | 8840(2080) | 37440(5440)
1056 | 12 22(0) 308(88) | 814(242) | 3300(792) | 13926(2376)
1152 | 10 43(0) 0(0) 24(0) 240(48) 528(288)
1248 | 12 26(0) 156(52) | 260(104) | 2132(416) | 6500(1092)
1344 | 12 28(0) 112(0) 224(168) 952(280) 1960(336)
1440 | 12 90(60) 60(0) 180(60) 372(192) 960(420)
1536 | 12 32(0) 0(0) 128(128) 192(64) 1152(192)
1632 12 34(0) 68(68) 0(0) 0(0) 612(68)
1728 | 12 36(0) 0(0) 0(0) 0(0) 72(0)
1824 | 12 38(0) 76(76) 0(0) 76(76) 228(0)
1920 | 12 40(0) 80(0) 160(0) 240(0) 240(0)
2016 | 12 42(0) 0(0) 0(0) 0(0) 0(0)

2112 | 12 44(0) 0(0) 0(0) 88(88) 0(0)

2208 | 12 46(0) 0(0) 0(0) 0(0) 0(0)

2304 | 12 48(0) 0(0) 0(0) 0(0) 0(0)

Table C.4: WiMax LDPC Codes R, = 3/4A

n Smin Nepin Nomint1 Nopint2 Nsoin+3 Nopmintd
576 8 48(48) 96(48) 408(240) 1942(816) 8252(3076)
672 8 14(14) 0(0) 140(112) 588(252) 3626(1568)
768 9 64(64) 96(64) 416(224) 2613(1232) 9625(2624)
864 10 36(0) 252(144) | 1188(612) | 4752(1944) | 20064(6642)
960 11 400(280) | 760(320) | 4000(1840) | 13653(4120) | 55141(14360)
1056 9 44(44) 0(0) 220(176) 616(352) 1760(748)
1152 | 11 144(48) | 528(240) | 1440(624) | 5532(2064) 19016(7344)
1248 9 52(52) 52(52) 52(52) 312(156) 988(416)
1344 | 12 560(392) | 616(224) | 1736(616) 7553(2968) | 28043(11172)
1440 | 10 60(60) 60(60) 130(10) 540(240) 2190(810)
1636 | 11 64(64) 128(128) 128(64) 960(640) 3648(1408)
1632 | 13 272(204) | 748(544) | 2992(1564) | 8730(3536) | 27731(9248)
1728 | 12 72(0) 576(432) | 576(216) 2520(936) 7200(3528)
1824 | 12 228(228) | 380(304) | 988(836) 2812(836) 9500(3724)
1920 | 10 80(80) 0(0) 0(0) 0(0) 640(480)
2016 | 11 84(0) 84(84) 336(168) 546(294) 1260(588)
2112 | 12 44(0) 0(0) 0(0) 88(88) 0(0)
2208 | 13 184(92) 92(92) 1012(644) 1610(874) 6072(2300)
2304 | 12 16(16) 96(96) 0(0) 672(480) 1824(768)

Table C.5: WiMax LDPC Codes R, = 3/4B

209

C. WIMAX LDPC CODES WEIGHT SPECTRUM (STANDARD)

The results of WiMax LDPC codes in code rate of 5/6 are given in Table C.6 up to sy, +4.

n Smin Noin Nomint1 Nsmin+2 Nopint3 Nepin+4
576 5 24(24) 24(0) 600(312) 3276(1248) 31320(10272)
672 6 28(0) 308(168) | 2170(924) | 15484(5040) | 146566(37590)
768 7 160(128) | 1200(688) | 6816(3264) | 55408(16048) | 500000(108960)
864 7 324(144) | 856(360) | 5148(1944) | 32634(10332) | 264528(64332)
960 7 120(80) | 500(300) | 2880(1440) | 18120(6360) | 142840(38760)
1056 7 132(44) | 286(242) | 2200(836) | 13156(4620) 87208(24024)
1152 7 192(96) | 384(240) | 2400(1200) | 15768(5616) 93312(27264)
1248 7 156(156) | 338(338) | 1820(676) 9880(4056) 59852(18252)
1344 7 168(112) | 252(84) 1512(840) 9744(4844) 51296(16688)
1440 7 180(180) | 600(360) | 2520(1020) | 10350(3510) 54720(15840)
1536 7 128(128) | 352(224) 704(384) 3520(1344) 19008(6016)
1632 7 68(68) 34(34) 204(68) 816(680) 5372(2040)
1728 7 72(0) 72(72) 216(144) 2088(720) 9936(3960)
1824 8 38(38) 152(0) 874(570) 5016(2280) 24453(8721)
1920 7 160(80) | 160(160) 240(80) 1040(160) 6720(2640)

2016 7 84(84) 168(0) 252(84) 588(336) 3612(1596)
2112 8 132(132) | 176(88) 880(264) 3344(1848) 20306(7062)
2208 8 138(46) 0(0) 460(0) 1564(736) 7337(2415)
2304 9 192(192) 288(0) 1920(672) 8616(2424) 43296(13632)

Table C.6: WiMax LDPC Codes R, = 5/6

210

Appendix D

WiMax LDPC Codes Weight
Spectra (Modulo)

The results of WiMax LDPC codes in code rate of 1/2 are given in Table D.1 with threshold
up to Spip + 4. The results of WiMax LDPC codes in code rates of 2/3A and 2/3B are given
in Table D.2 and Table D.3 up to spin + 4. The results of WiMax LDPC codes in code rates
of 3/4A and 3/4B are given in Table D.4 and Table D.5 up to sy + 4.

n Smin N pin Nopiint1 | Nspint2 | Nopinss No,pinta
576 15 8(0) 288(192) 72(0) 288(72) 816(216)
672 13 28(28) 0(0) 0(0) 0(0) 28(0)

768 14 32(32) 32(0) 0(0) 32(0) 32(0)

864 15 36(0) 36(0) 36(36) 126(36) 216(36)
960 14 40(40) 0(0) 0(0) 0(0) 0(0)

1056 18 44(0) 0(0) 44(44) 44(0) 44(44)
1152 16 48(48) 0(0) 0(0) 0(0) 96(0)

1248 17 156(52) | 208(52) | 364(104) | 156(156) 104(52)
1344 22 112(0) 112(0) 560(168) | 392(168) | 1092(252)
1440 24 120(60) 60(0) 180(120) | 480(60) 780(120)
1536 23 64(0) 64(64) 128(0) 192(192) | 320(128)
1632 24 68(68) 68(68) 136(136) | 544(204) | 544(204)
1728 19 72(72) 0(0) 0(0) 0(0) 0(0)

1824 20 76(0) 0(0) 76(76) 0(0) 114(114)
1920 | 23 || 160(0) | 0(0) | 80(80) | 80(0) | 320(240)
2016 26 84(84) 0(0) 0(0) 252(4) 252(0)
3112 | 20 || 88(88) | 0(0) 0(0) | 88(0) 0(0)

2208 24 92(92) 0(0) 184(92) 184(92) 184(92)
5304 | 38 || 96(0) | 96(0) | 288(0) | 288(36) | 624(336)

Table D.1: WiMax LDPC Codes R, = 1/2 (Modulo)

211

D. WIMAX LDPC CODES WEIGHT SPECTRA (MODULO)

n Smin N, i Ns, i1 Ns, 42 Ns, int3 Ny, itd
576 10 72(48) 24(24) 192(120) 792(360) 2748(1188)
672 9 28(28) 28(0) 84(28) 336(84) 1512(588)
768 8 64(64) 0(0) 0(0) 160(128) 160(128)
864 9 36(0) 36(0) 108(72) 108(0) 576(216)
960 12 80(0) 440(280) | 1400(400) | 3080(840) | 8440(2320)
1056 10 44(44) 0(0) 44(44) 44(0) 352(88)
1152 13 43(0) 48(48) 144(144) 768(240) 1968(1056)
1248 13 104(104) 208(0) 572(312) 1352(572) | 3484(1404)
1344 14 224(168) | 168(112) | 336(112) | 1736(1008) | 5012(1764)
1440 13 180(180) 60(0) 300(120) 240(0) 1380(780)
1536 12 64(64) 0(0) 0(0) 192(64) 448(320)
1632 12 68(0) 136(68) 0(0) 204(136) 340(204)
1728 14 72(0) 216(144) 144(72) 432(216) 2196(1008)
1824 15 76(76) 228(152) | 228(152) 988(760) 2660(1064)
1920 14 80(0) 80(80) 160(160) 320(240) 960(640)
2016 15 84(84) 252(0) 168(168) 504(336) 1680(840)
2112 15 88(88) 0(0) 176(88) 352(176) 1144(352)
2208 15 92(92) 0(0) 92(92) 460(276) 1012(644)
2304 15 96(96) 0(0) 96(96) 480(384) 768(384)

Table D.2: WiMax LDPC Codes R, = 2/3A (Modulo)

n Smin Nopin Nspint1l | Nspint2 Nspint3 Ny pin+4
576 10 36(12) 72(0) 176(56) 864(240) | 3336(672)
672 8 7(7) 0(0) 0(0) 140(28) 294(126)
768 12 64(64) 128(64) 384(96) | 1120(224) | 3128(408)
864 13 72(0) 270(144) | 732(156) | 1449(261) | 5400(504)
960 13 40(40) 80(40) 120(40) 400(160) | 1280(320)
1056 14 132(44) | 264(220) | 924(132) | 1848(352) | 6908(704)
1152 10 48(0) 0(0) 0(0) 0(0) 48(0)
1248 15 52(52) 104(52) 260(52) 208(0) 1092(104)
1344 15 112(112) 7(7) 224(168) | 504(224) | 2016(168)
1440 15 60(60) 0(0) 0(0) 150(90) 540(240)
1536 15 64(64) 64(64) 64(64) 64(64) 192(0)
1632 15 204(136) 136(0) 408(136) | 340(136) | 1292(408)
1728 15 72(72) 0(0) 0(0) 72(72) 432(72)
1824 15 76(76) 76(76) 76(0) 152(76) 228(228)
1920 15 80(80) 0(0) 80(0) 80(80) 80(0)
2016 15 84(84) 0(0) 0(0) 84(84) 84(0)
o112 | 15 || 88(s8) | 0(0) 0(0) 88(0) | 176(0)
2208 15 92(92) 0(0) 0(0) 0(0) 0(0)
2304 15 96(96) 0(0) 0(0) 0(0) 0(0)

Table D.3: WiMax LDPC Codes R, = 2/3B (Modulo)

212

n_ | Smin || Newin | Nopint1 | Nopint2 | Nopinss N pin+d
576 6 24(0) 0(0) 0(0) 24(24) 192(96)
672 8 28(28) | 84(28) | 336(224) | 1204(280) | 6048(980)
768 | 9 32(0) | 128(32) | 576(128) | 2102(384) | 9472(1024)
864 | 10 || 72(36) | 360(36) | 612(144) | 2232(576) | 9576(1044)
960 | 10 40(0) | 280(160) | 560(120) | 2160(280) | 8500(1420)
1056 | 11 || 88(0) | 132(0) | 396(176) | 1122(132) | 4356(792)
1152 | 6 48(0) 0(0) 0(0) 0(0) 48(48)
1248 | 11 52(52) | 104(52) 156(0) 520(156) | 2028(520)
1344 | 9 56(0) 56(56) 56(0) 448(168) 840(168)
1440 | 14 180(0) | 660(180) | 1860(360) | 6000(900) | 22200(2100)
1536 | 12 || 64(64) | 128(0) | 128(0) | 704(128) | 2240(192)
1632 | 12 || 68(0) 0(0) 0(0) 272(204) | 476(136)
1728 | 14 || 144(0) | 144(0) | 216(0) | 1008(288) | 3696(1080)
1824 | 9 76(76) 0(0) 0(0) 0(0) 76(0)
1920 | 15 || 240(80) | 80(0) | 1040(320) | 2880(320) | 11600(1040)
2016 | 14 || 84(84) | 0(0) 84(0) 252(0) | 1260(168)
2112 | 15 || 88(88) | 176(0) | 616(83) | 968(0) | 1760(352)
2208 | 15 || 92(92) | 184(184) | 1012(184) | 1196(368) | 4048(460)
2304 | 12 48(0) 0(0) 0(0) 0(0) 0(0)

Table D.4: WiMax LDPC Codes R. = 3/4A (Modulo)

n Smin Nopin Ngpint1 Nopint2 Nspnin+3 Nspin+a
576 6 8(8) 72(48) (72) 504(264) 1992(648)
672 6 28(0) 0(0) 84(28) 784(168) 2408(616)
768 4 16(16) 0(0) 0(0) 32(0) 216(184)
864 9 72(36) 144(36) 720(504) | 2639(1278) | 12769(4140)
960 5 40(40) 160(40) 120(40) 360(160) 909(320)
1056 | 10 132(44) | 352(264) | 1628(550) | 4180(1364) | 15324(4488)
1152 | 6 16(16) 0(0) 0(0) 144(48) 192(96)
1248 9 104(52) 0(0) 156(0) 1092(520) 3368(1300)
1344 | 9 112(56) | 168(56) | 448(168) 644(112) 3111(672)
1440 | 10 60(0) 120(60) 300(180) 960(360) 3480(1740)
1536 | 8 16(16) 64(0) 64(64) 64(64) 384(256)
1632 12 340(204) | 544(272) | 2176(1326) | 6114(2584) | 19530(6664)
1728 | 11 72(0) 216(72) 216(0) 1800(1080) | 3187(1368)
1824 | 11 76(76) 171(171) 76(76) 836(608) 2508(1140)
1920 | 6 80(0) 7(0) 8(0) 0(0) 56(56)
2016 | 12 84(84) | 336(84) | 504(168) | 1848(1176) | 6048(2604)
2112 | 12 88(0) 176(88) 440(176) 1584(1056) | 3432(1760)
2208 | 12 92(92) | 276(184) | 184(92) 1380(644) | 2944(1288)
2304 | 12 16(16) 96(96) 0(0) 672(480) 1824(768)

Table D.5: WiMax LDPC Codes R, = 3/4B (Modulo)

213

D. WIMAX LDPC CODES WEIGHT SPECTRA (MODULO)

The results of WiMax LDPC codes in code rate of 5/6 are given in Table D.6 up to spin +4.

n Smin Ns,in N, i+l Ns, .42 N, ... +3 N, o4
576 3 24(24) 12(12) 96(96) 972(564) 4200(1224)
672 5 28(0) 112(56) 1288(560) 8876(2632) 71176(14336)
768 6 96(96) 672(352) 5312(1552) | 36192(8832) 274624(51184)
864 4 54(54) 72(0) 66(48) 756(324) 5634(2574)
960 4 40(0) 0(0) 80(40) 400(320) 4440(1580)
1056 7 44(44) 572(260) | 3588(1508) 19344(6032) | 125580(28548)
1152 6 72(24) 480(240) | 1788(780) 9360(2976) 56976(13776)
1248 7 156(104) | 572(260) 3588(1508) | 19344(6032) 125580(28548)
1344 7 224(168) | 224(112) | 1064(448) 9380(3304) 54880(14560)
1440 6 60(60) 120(0) 420(120) 1860(420) 10812(3132)
1536 6 64(64) 64(64) 64(0) 256(64) 3328(1344)
1632 8 136(68) | 408(204) 4624(1496) | 22780(6120) | 123012(29886)
1728 7 72(72) 126(54) 1464(600) 4680(1944) 24408(6912)
1824 8 152(76) 9(532) 10(1368) 9196(3116) 50274(12502)
1920 4 80(0) 0(0) 0(0) 80(80) 320(240)
2016 8 84(84) 336(336) 504(84) 5880(2436) 18018(6132)
2112 8 88(88) 176(88) 616(264) 2552(1232) 13728(3784)
2208 8 92(92) 92(92) 460(92) 2852(828) 9660(3128)
2304 9 192(192) 288(0) 1920(672) 8616(2424) 43296(13632)

Table D.6: WiMax LDPC Codes R, = 5/6 (Modulo)

214

Appendix E

Publications

The submitted and published papers for IEEE conferences are presented in the followings:

e L. Yang, M. Ambroze and M. Tomlinson, “Comparison of Decoding Turbo Gallager
Codes in Hybrid Decoding Arrangements with Different Iterative Decoders over the
Erasure Channel”, the 11" IEEE International Conference on Communications Systems
(ICCS), Nov, 2008, Guangzhou, China.

e M.Ambroze, M. Tomlinson and L. Yang, “Exhaustive Weight Spectrum Analysis of some
well known LDPC Codes”, the 10" International Symposium on Communication Theory
and Applications (ISCTA), July, 2009, Ambleside, Lake District, UK.

e L. Yang, M. Tomlinson and M. Ambroze, “Decoding Low-Density Parity-Check Codes
with Error-Floor Free over the AWGN Channel”, the 2010 IEEE International Confer-
ence on Wireless Communication, Networking and Information Security (WCNIS2010),
June, 2010, Beijing, China.

e L. Yang, M. Tomlinson and M. Ambroze, “Extended Optimum Decoding for LDPC
Codes based on Exhaustive Tree Search Algorithm”, submitted to the 12th IEEE Inter-
national Conference on Communications Systems (ICCS), November, 2010, Singapore.

215

Comparison of Decoding Turbo Gallager Codes in
Hybrid Decoding Arrangements with Ditferent
Iterative Decoders over the Erasure Channel

Li Yang, Marcel Ambroze, Martin Tomlinson
Fixed and Mobile Communications Research
University of Plymouth
PL4 8AA, United Kingdom
Email: li.yang, marcel.ambroze, martin.tomlinson@ plymouth.ac.uk

Abstract—1In this paper, different iterative decoders for turbo
Gallager codes are optimised and compared for the binary
erasure channel. The complexity and performance differences
between turbo decoder, BCJR-based Look-Up Table decoder and
belief propagation decoder are analysed and evaluated. A hybrid
decoding arrangement, which uses an iterative decoder followed
by a maximum likelihood “In-Place” matrix inversion algorithm,
is compared for the different iterative decoders. Results are
presented which show that the BCJR-based iterative decoders
achieve better performance than using the belief propagation
decoder for turbo Gallager codes in the erasure channel. When
small encoder memory is selected, the optimised Look-Up Table
decoder provides a good balance between convergence perfor-
mance and complexity.

I. INTRODUCTION

In recent years, the Binary Erasure Channel (BEC) [1], has
been shown to be useful in evaluating an error correcting
code’s performance. The erasure channel is characterised by
the bit erasure probability €, where 0 < e < 1.

In 1993, turbo codes, which have been shown to be capable
of achieving near-Shannon limit performance with affordable
decoding complexity, were first introduced by Berrou [2]. The
turbo encoder is formed by a parallel concatenation of two
convolutional encoders interconnected through an interleaver.
The corresponding decoding process is based on an iterative
decoding algorithm in which each component decoder passes
the extrinsic information to the other to realise successful
decoding. Another class of codes which were able to exhibit
similar performance and characteristics was called low-density
parity-check (LDPC) codes [3]. The first iterative decoding
algorithm for LDPC codes over the erasure channel was
proposed by Luby [4], who showed that channel capacity can
be approached arbitrarily closely. The Finite-length analysis of
LDPC codes over the BEC was described in [5], which showed
that the performance of iterative belief-propagation decoding
of LDPC codes over BEC can be characterised in terms of
stopping sets. From [6], it was shown that stopping sets also
existed for turbo codes and that they characterised exactly the
performance of turbo decoding on the erasure channel. Turbo
codes are easier to analyse due to the existence of efficient
weight spectrum algorithms [7], however it is thought that

LDPC codes could potentially have lower error floors [3].

In order to achieve low encoding and decoding complexity,
Colavolpe proposed a new class of codes which combined
the advantages of turbo codes with those of LDPC codes,
now known as turbo Gallager codes (TGC) [8]. An optimised
hybrid decoding arrangement, which uses an iterative decoder
followed by a maximum likelihood “In-Place” decoder for
turbo Gallager codes over the erasure channel was proposed
by Yang et al [9]. Since turbo Gallager codes can be decoded
by either BCJR-based decoders, which include turbo decoder
and optimised Look-Up Table (LUT) decoder, or belief propa-
gation (BP) decoder, the complexity and performance of each
type of iterative decoder for turbo Gallager codes is compared
and analysed together with the complexity and performance
of the hybrid decoding arrangement.

The rest of the paper is organised as follows: in Section
I, we give the background of turbo Gallager codes, and
discuss code constraints necessary for the absence of cycles
of length 4. General complexity considerations are given.
Section ITI describes the iterative turbo decoder, LUT decoder
and the simplified belief-propagation decoder in the erasure
channel. Their complexities in terms of equivalent additions
are analysed and compared. In Section IV, the complexity
of the hybrid decoding arrangement combining each iterative
decoder is analysed and discussed. Section V presents the
numerical results of some turbo Gallager codes showing the
differences between different iterative decoders and hybrid
decoding arrangements over the erasure channel. Section VI
presents the conclusions of the paper.

II. PRELIMINARIES
A. Turbo Gallager Codes

Turbo Gallager codes are a special type of turbo codes
which can be successfully decoded by means of the decoding
algorithm used for LDPC codes by properly choosing the
component convolutional codes. According to the algebraic
rules of selecting the proper turbo codes as TGCs [8], we
consider different constituent encoders which are recursive
convolutional codes, the codes’ polynomial exponent dif-
ferences are constrainted to be distinct in order to ensure

TABLE I
NUMBER OF EQUIVALENT ADDITIONS PER OPERATION

Operations Number of Equivalent Additions
Addition, Subtraction 1
Multiplication, Division

Comparison

Assignment

Table Look-up

Q| | | =

TABLE 11
NUMBER OF COMPUTATIONS FOR STANDARD TURBO DECODING
ALGORITHM
Procedure ADD MUL DIV CP ASSI
Proc. A - 1+2x2M = 4x2M 42 2
Proc. B | 2x2M 1 2 x 2M oM 4 x 2M —
Proc. C | 2x2M 1 2 x 2M oM 4 x 2M —
Proc. D | 2x2M 1 4 x 2M 2 6 x 2M —

that message-passing decoding can work successfully on the
Tanner graph of the overall code due to the absence of cycles
of length four. As an example, the standard UMTS turbo codes
(15/13), corresponding to the polynomials 1 + = + 3 and
1 + 22 + 23, are suitable as turbo Gallager codes, because
for each polynomial the exponent differences are distinct and
form the perfect difference sets (0,1,3), (0,2,3) of size 1.

B. Complexity Analysis Considerations

The purpose of the complexity analysis is to determine
the relative speed of the different decoders. The decoding
algorithms considered for TGC decoding are optimised LUT
decoder, standard turbo decoder, belief propagation decoder
and “In-Place” decoder. The LUT decoder requires the look-
up table to be constructed once, and this has no impact on
decoding speed. Consequently the look-up table construction
complexity is not included, when comparing the different
decoders. A MAP decoding algorithm complexity analysis
was presented in [10]. A more thorough investigation on
turbo decoding algorithms was performed in [11], where each
operation is quantified as a number of “equivalent additions”
and logical and mathematical operations have similar com-
plexity. In our analysis, the basic operations performed by
the various decoding algorithms in erasure channel include
addition (ADD), subtraction (SUB), multiplication (MUL),
division (DIV), comparison (CP), assignment (ASSI) and table
look-up (LKUP). The ASSI is to assign a relative value to
variable. The LKUP is used in the LUT decoder, it corresponds
to three equivalent additions, since 3 CPs are used to map
the input parameters to the decoded value stored in the look-
up table. The number of equivalent additions for the various
operations are shown in Table I.

I1I. COMPARISON OF ITERATIVE DECODERS
A. Turbo Decoder

Due to the properties of the erasure channel, the MAP
algorithm is sufficient to provide the accurate conditional prob-
ability for each data bit. Thus MAP algorithm is considered as
the turbo decoding algorithm. Let n be the length of codeword,
ne be the number of data erasures at the input to the decoder,
where 17, = (k - €), k is the length of information bits. With
each iteration of the iterative decoder, the number of erasures
is reduced. Let né be the number of erasures at iteration 7,
and 2M be the number of states in the trellis, where M is
the encoder memory, N, represents the required number of
operations in equivalent additions, n; is the maximum number
of iterations.

For the turbo decoding algorithm, the required procedures
are classified as follows:

1) Branch Metrics Calculation (Proc. A), requires 2 CPs
and 2 ASSIs for each data bit and parity bit, 1 MUL
for updating data bit estimation. For each valid branch,
it consists of 2 CPs and 1 MUL. There are 2 x 2M
branches in total.

2) Forward Metrics Calculation (Proc. B), each state con-
sists of 4 CPs, 2 MULs and 1 ADD for both branches.
There are 2M states in total. Normalisation requires
2M — 1 ADDs and 2 DIVs.

3) Backward Metrics Calculation (Proc. C), the computa-
tion is the same as that in the forward metric calculation.

4) Soft Decision of the decoded bit (Proc. D), computation
for d; = 1 includes 3 CPs and 2 MULs for each state,
where d, is the data bit at time ¢; there are 2 states in
total. Computation for d; = 0 is same as d; = 1. The
soft decision is summed by 2V — 1 ADD:s for d; = +1.
Normalisation includes 1 ADD and 2 DIVs.

The required computations for the turbo decoding algorithm
are shown in Table II. In a 1/3 rate turbo decoding scheme,
decoding one frame, k trellis sections and 2 corresponding
MAP decoders are required. The number of operations N
for k trellis sections with n; iterations is obtained as:
ni
NI (k) = (4k + 74k2") (1)
i=1

B. Optimised LUT Decoder

Based on the earlier invention of the table look-up based
approach for decoding on trellis for convolutional codes [12]
over the erasure channel, a further simplified LUT decoding
algorithm for turbo Gallager codes over the erasure channel
was proposed by Yang [9]. Since non-zero values of « or 3
are always identical, where « is the forward metric, and 3 is
the backward metric. Consequently the values of «; and f;
may be represented by a single bit with a “1” representing a
non-zero value state and a “0” representing a zero value state.
Thus two binary vectors can be used to represent the values of
« and 3 at each trellis section and a more efficient decoding
arrangement may be realised by constructing a Look-Up table,
which includes two vectors of binary numbers to represent
the final trellis transitions, and one vector to represent the
conditions of received bits. In the decoding process, the trellis
section containing erased information is processed by looking
up the table to directly obtain the corrected information bit,
or to indicate decoding failure. For the optimised iterative

TABLE 111
NUMBER OF COMPUTATIONS FOR OPTIMISED LUT DECODING

ALGORITHM
Procedure ADD MUL CP ASSI | LKUP
Proc. F - - 9 x 2M+I — —
Proc. G - - 2N+ oM -
Proc. H - - 2M+1 2M =
Proc. 1 2M - — - -
Proc. J oM+ _ o [oM+ 2 2 1

LUT decoder, the look-up table is constructed once only. The
decoding procedures including look-up table construction are
classified as follows:

1) Look-Up Table Construction (Proc. F), for each trellis
section, there are three possible conditions to be con-
sidered. The condition includes a) both data and parity
bits are erased; b) data is erased and parity is not erased,
parity is either 0 or 1. Each branch requires 2 CPs for
its validation, there are 2™*! branches in total. One
trellis section includes 2" +! CPs to decide the decoding
success or failure. There are 2 x 0 (2;,-,) possible
trellis sections.

2) a Metric (Proc. G), each state requires 2 CPs and 1
ASSI for its validation, there are 2™ states in total.

3) [Metric (Proc. H), its computation is as same as the
Proc. G.

4) Valid Trellis Construction (Proc. I), it consists of 1 ADD
for each state.

5) Hard Decision of the decoded bit (Proc. J), it requires
2M+1 _ 2 ADDs and 2M+! MULs for getting starting
states and ending states; 2 CPs and 1 ASSI for getting
decoding options, and 1 LKUP and 1 ASSI to assign
the decoded bit.

The required computations for the optimised LUT decoding
algorithm are shown in Table III. Thus in a 1/3 rate turbo de-
coding scheme, decoding one frame requires k trellis sections,
2 corresponding LUT decoders and n! decoding operations at
each iteration. The required number of operations NXUT with
n; iterations is obtained as:

ni
NFUT(ne) =) (12k2M + (2M*2 4 5)ni))
i=1
For comparison, we assume £ as the maximum number of data
erasures decoded by LUT decoder after n; iterations. Thus
there exist maximum £ Proc. J for decoding one block, then
the required number of operations NXUT: in term of k is
obtained as:

NIUT: (k) = 12k2Mnt + (2M+2 4 5)k 3)
C. Simplified Message-Passing Decoding

Due to the simplicity of the computation of conditional
probabilities over the erasure channel, the belief propagation
decoding algorithm may be simplified based on [4]. If at row
1, there exists more than one erasure, then there is insufficient
information to decode each erasure. Thus these rows are

TABLE IV
COMPUTATION REQUIREMENT OF BP DECODING ALGORITHM
Procedure | ADD MUL CP
Proc. K - — n—k
Proc. L n—-2 | n-1 -

T T T T T T T
n i ; ;
[-4 3 3
2 : : : :
g z e
5 K
[; z et 3
5 G o ik B
e - : B 1
S i = 3
3 i 3
E H]
=1 : 3
£ ;]
2z ; 3
o : LY 3
a i |
£ ey -
S e " St i 24 i i . i
8 = 405 s : e

T B e -mw—o"? 1 1 o

2 4 6 8 10 12 14

Iterations (for BP) or Memory Order (for BCJR based)
BP Decoding oe Ko
Turbo Decoding, Iteration=15 --3---
LUT Decoding, Iteration=15 ---0---

Fig. 1.
Decoding

Complexity Comparison between BCJR-based Decoding and BP

not calculated during the complexity computation excluding
checking the subset. Hence, only if subset ¢; contains one era-
sure, these computations are counted regarding the decoding
complexity. Then the algorithm is classified as follows:

1) Equation Check (Proc. K), each equation consists of n
CPs, there are n — k equations in total.

2) Decoding Erasure (Proc. L), for equations containing
only one erasure, each of these requires n — 1 MULSs
and n — 2 ADDs.

The required computations for the BP decoding algorithm is
shown in Table IV. For 1/3 rate turbo Gallager codes, n —
k = 2k. Thus, to decode one frame, the required number
of operations N2 in terms of n. with n; iterations for BP
algorithm is obtained as:

ni
NJP(ne) =) (6K + (ni™' —ni)(6k—3)) (4)
=1
For comparison purpose, again we assume n — k as the
maximum number of erasures decoded by BP decoder after
n; iterations, thus there exist maximum n — k Proc. L for
decoding one block, then the required number of operations
NBP: in term of k is obtained as:

NP (k) = 6k*n; + 12k — 6k ©)

The comparison between different iterative decoders for de-
coding one block, which is n = 1536,k = 512, is shown
in Fig. 1. From the figure, it is clear that the complexity
of the BCJR-based decoding algorithms is exponential as a
function of memory order, meanwhile, the complexity of BP
decoding is only increased by the number of iterations. Since
the turbo decoder and the LUT decoder both use the BCJR

algorithm, their performance will be identical. Ignoring the
look-up table construction computation, the LUT algorithm
provides reduced complexity compared to the turbo decoder.

IV. MAXIMUM LIKELIHOOD HYBRID DECODER

As it is well known that the Maximum Likelihood decoder
(ML) for the erasure channel is practically realisable but with
complexity proportional to n3, we consider the “In-Place”
algorithm as the maximum likelihood decoding algorithm
with reduced complexity [13]. The hybrid decoder scheme
includes an inner iterative decoder based on either BCJR based
decoding or BP decoding. The iterative decoder is followed by
the “In-Place” matrix inversion algorithm, which works on the
residual erasures left after iterative decoding.

“In-Place” Algorithm: The “In-Place” algorithm, which is
able to achieve maximum likelihood performance [13], is a
Gaussian reduction algorithm avoiding the need for column-
permutations over the parity-check matrix. Since the parity-
check matrix structure of turbo Gallager codes is exactly
the same as turbo codes, each encoder is independent from
each other. The corresponding parity bits are independent,
and the parity-check matrix is divided into two independent
sections. For the upper section, since the matrix is constructed
in diagonal order, there are maximum M equation additions
for one equation. For the lower section, since the information
columns are permuted by the interleaver, we assume the
maximum number of equation additions for one equation is
k — 1. Each equation addition requires n ADDs, and by using
32 bit integers to store the equation information, there are
n/32 sub-blocks in one single equation. Hence each equation
addition requires n/32 ADDs. Hard decision of each decoded
bit requires n — 1 MULs and n — 2 ADDs. In decoding one
frame, the required number of operations N!¥ for “In-Place”
algorithm is computed as:

3k(ne — 1)(2k — ne) . 3kMn,

+ ne(6k — 3)
(6)
Complexity of Hybrid Decoding Arrangements: Since the
hybrid decoder includes the iterative decoder, the entire com-
plexity is equal to the iterative decoder plus the complexity
of the “In-Place” algorithm to solve the stopping sets, when
stopping sets exist. The blocks decoded correctly by iterative
decoder only include the iterative decoding complexity; and
the blocks, which are unable to be decoded due to the residual
erasures, include the iterative decoding computations and the
“In-place” decoding computations. The required number of
operations for each arrangement by adapting each iterative
decoder is shown in Table V. Since n] is less than or equal to
nY, which is the input number of erasures to the decoder, each
hybrid decoding arrangement provides a reduced complexity
decoding scheme than the “In-Place”decoder on its own. The
convergence performance of each hybrid decoder in term of
complexity only depends on the number of erasures remain-
ing after the iterative decoder, and depends on the iterative
decoder’s performance. It should be noted that as all of the
decoders are maximum likelihood decoders, they all achieve

TABLE V
REQUIRED NUMBER OF OPERATIONS FOR DIFFERENT HYBRID
DECODING ARRANGEMENTS

Hybrid Iteratively Maximum Likelihood
Decoders Decoded Blocks Decoded Blocks
Hybrid (Turbo Decoder) NT (k) NT (k) + NIF(n7?)
Hybrid (LUT Decoder) NLUT (n,) NIUT (n.) + NIP(nl’
Hybrid (BP Decoder) NEFP(n.) NEP(ne) + NIF(nl?)

the same performance. The only difference is the complexity
and how this affects the decoding speed. This is primarily
determined by the effectiveness of the first stage iterative
decoder: the better the performance of the iterative decoder,
the less the complexity of the hybrid decoder arrangement.

V. NUMERICAL RESULTS

Computer simulations have been carried out to assess the
performance of some example turbo Gallager codes using dif-
ferent decoders on the erasure channel. Since the complexity
of BP decoding does not directly depend on the code constraint
length, it is capable of decoding turbo Gallager codes having
constituent convolutional codes with long constraint lengths,
and hence potentially characterised by a large free distance.
Meanwhile the decoding complexity of the BCJR-based algo-
rithm grows exponentially with the constituent convolutional
code’s constraint length, the alternative iterative decoder can-
not be practically used for codes with long constraint lengths.
In order to compare the different iterative decoders under
the same conditions, we consider the UMTS turbo codes’
structure as the basic code structure, where the code constraint
length is increased by adding more “0” in the middle of the
generator polynomials. For comparison purposes, we consider
the (0,3,4/0,14,34) [8] component code as the reference code,
but it should be noted that this code may only be decoded by
BP decoder, due to the codes’ constraint length.

The simulation is implemented for turbo Gallager codes,
n = 1536,k = 512, in structure of (11..1/1..11) with DRP
interleaver, the results of BP decoder are shown in Fig. 2.
From the results, it may be seen that the decoding performance
is improved by increasing the code constraint length with the
runs of “0” inside. When the longer code constraint length
is selected, some of the stopping sets caused by the shorter
constraint length code are broken and a lower error floor
is realised. When the constraint length is chosen to obtain
a certain minimum Hamming distance, there only exists the
difference of error floors, for instance the difference between
TGC (61/43) and TGC (141/103).

Since the performance of TGC (141/103) decoded by BP
decoder nearly reaches the best performance in the UMTS
structure, and its constraint length is still manageable by turbo
decoder, the TGC (141/103) is considered for comparison. The
turbo decoding results of codes TGC (15/13) and (141/103)
and their BP performances are compared and their hybrid
decoding performance and ML performance are shown in
Fig. 3. Since turbo decoder and LUT decoder achieve the same
performance as they both are based on the BCJR algorithm,

10 T
10"k
102 T
3 e
3[.*,&‘
10 E- : ,}?J'—* 1
F **‘
« -4
w 10 r
10° E
10° a :
o £ TGC (15/13) ¥
107 Fusmmmnntas s TGC (31/28) -6 -
; - TGC (61/43) - ©- -
TGC (141/103) - - --
10-8 | 1 1
0.35 0.4 0.45 0.5 0.55 0.6
Erasure Probability
Fig. 2. Results for TGC in (11..1/1..11) Structure with BP Decoder

2
[
o
S
£
w
o
€
©
=
0.45 0.5 0.55 0.6 0.65 0.7
Erasure Probability

TGC (15/13), BP Decoder ---4 -

TGC (141/103), BP Decoder ---w--

TGC (0,3,4/0,14,34), BP Decoder ---© --

TGC (141/103), BCJR-based Decoder ---4--

TGC(15/13), BCJR-based Decoder v

(n=1536,k=512), Hybrid Decoder --- ®---

(n=1536,k=512), ML Decoder --- *- --

Fig. 3. Results Comparison between Iterative Decoders and Hybrid Decoders

we use BCJR-based decoder performance to describe both
decoders’ performances. According to the results, it is realised
that TGC (141/103) may be a better code compared with
TGC (0,3,4/0,14,34) due to its better performance with BP
decoder, although TGC (0,3,4/0,14,34) has a lower error floor
due to its long constraint length. At the other side, the BCJR-
based decoders achieve impressive coding gain improvements
for both TGC (15/13) and TGC (141/103) compared to the
BP decoder. The TGC (15/13) with small encoder memory
achieves the best iterative decoder performance. It is clearly
seen that for turbo Gallager codes on the erasure channel,
BCJR-based decoders converge much better than the BP
decoder. This is in contrast to the AWGN channel where turbo
Gallager codes with BCJR-based decoding or BP decoding
produce similar results.

VI. CONCLUSION

In this paper, we have compared different iterative decoding
algorithms for examples of turbo Gallager codes. Unlike the
AWGN channel, we have shown that there exists a perfor-
mance difference for turbo Gallager codes between BCIR-
based decoding and BP decoding on the erasure channel. The

iterative decoding algorithms’ complexity have been compared
between MAP decoding, LUT decoding and belief propagation
decoding in terms of number of equivalent additions. Ignoring
the complexity of look-up table construction, the LUT decoder
is able to achieve a reduced complexity than MAP decoder
and should operate faster in practical decoder implementations.
Although both BCJR-based iterative decoders suffer from an
exponential increase in complexity with encoder memory, the
numerical results have shown that BCJR-based decoding algo-
rithms are able to achieve better performance than BP decoder
in erasure channel for same turbo Gallager codes. Both hybrid
decoding arrangements using the “In-Place” decoder provide
reduced complexity decoding compared to a stand alone “In-
Place” decoder, and all decoders achieve ML performance. The
BCJR-based decoders using low memory turbo Gallager codes
provide the best trade-off between convergence performance
and complexity. Good performance was obtained for the TGC
(15/13) with small memory and is a good candidate for a
hybrid decoding scheme using the LUT decoder with reduced
complexity.

REFERENCES

[1] P. Elias, “Coding for two noisy channels,” in Proc. 3" London
Symposium on Information Theory, London, England, 1955, pp. 61-76,
Academic Press, New York.

[2] C. Berrou A. Glavieux and P. Thitimajshima, “Near shannon limit
error-correcting coding and decoding: Turbo codes,” in Proc. IEEE
International Conference on Communications, Geneva, Switzerland,
May 1993, pp. 1064-1070.

[3]1 R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, MA:
MIT Press, 1963.

[4] M. Luby M. Mitzenmacher M. Shokrollahi and D. Spielman, “Efficient
erasure correcting codes,” IEEE Transactions on Information Theory,
vol. 47, Feb 2001.

[5] D. Proietti I. E. Telatar T. Richardson C. Di and R. Urbanke, “Finite-
length analysis of low-density parity-check codes on the binary erasure
channel,” IEEE Transactions on Information Theory, vol. 48, pp. 1570~
1579, Jun 2002.

[6] E. Rosnes and O. Ytrehus, “Turbo decoding on the binary erasure
channel: Finite-length analysis and turbo stopping sets,” in /EEE
International Symposium on Information Theory, Feb 2006.

[7] E. Rosnes and O. Ytrehus, “Improved algorithms for the determination
of turbo-code weight distributions,” IEEE Transactions on Communica-
tions, 2005.

[8] G. Colavolpe, “Design and performance of turbo gallager codes,” IEEE
Transactions on Communications, vol. 52, no. 11, Nov 2004.

[9] L. Yang M. Ambroze and M. Tomlinson, “Decoding turbo gallager codes

for the erasure channel,” Submitted to IEEE Communication Letter, Feb

2008.

P. Robertson E. Villebrun and P. Hoeher, “A comparison of optimal

and sub-optimal map decoding algorithms operating in the log domain,”

in IEEE Int. Conf. Comm., Seattle, WA, USA, June 1995, vol. 2, pp.

1009-1013.

PH.-Y. Wu, “On the complexity of turbo decoding algorithms,” in

Proc. 53" Vehicular Technology Conference,, Spring 2001, vol. 2, pp.

1439-1443.

B. M. Kurkoski P. H. Siegel and J. K. Wolf, “Exact prbability of erasure

and a decoding algorithm for convolutional codes on the binary erasure

channel,” in Proc. IEEE GLOBECOM, San Francisco, CA, Dec 2003,

vol. 3, pp. 1741-1745.

[13] J. Cai C. Tjhai M. Tomlinson M. Ambroze and M. Z. Ahmed, “An

efficient solution to packet loss: Erasure correcting codes,” in Proc.
4" IASTED International Conference Communication Systems and
Networks, Spain, 2005, pp. 224-229, ACTA Press.

[10]

[11]

[12]

Exhaustive Weight Spectrum Analysis of some well
known LDPC Codes

Marcel Ambroze, Martin Tomlinson, Li Yang
Fixed and Mobile Communications Research
University of Plymouth
PL4 8AA, United Kingdom
Email: marcel.ambroze, martin.tomlinson, li.yang@plymouth.ac.uk

Abstract—The indicative performance of an LDPC
code may be determined from exhaustive analysis of the
low weight spectral terms of the code’s stopping sets
which by definition includes the low weight codewords. In
a landmark paper in 2007, Rosnes and Ytrehus showed
that exhaustive, low weight stopping set analysis of codes
whose parity check matrix is sparse is feasible using a
bounded tree search over the length of the code with
no distinction between information and parity bits. For
an (n,k) code the potential total search space is of size
2" but a good choice of bound dramatically reduces this
search space to a practical size. Indeed the choice of
bound is critical to the success of the algorithm. It is
shown in this paper that an improved algorithm can be
obtained if the bounded tree search is applied to a set of
k information bits since the potential total search space
is initially reduced to size 2k, Since such a restriction will
only find codewords and not all stopping sets a class of
bits is defined as unsolved parity bits and these are also
searched as appended bits in order to find all low weight
stopping sets. Weight spectrum results are presented for
a commonly used WiMax LDPC code plus some other
well known LDPC codes.

I. INTRODUCTION AND PRELIMINARIES

In a landmark paper in 2007, Rosnes and Ytrehus
showed that exhaustive, low weight stopping set anal-
ysis of codes whose parity check matrix is sparse is
feasible using a bounded tree search over the length of
the code with no distinction between information and
parity bits [1]. A previous paper on the same topic of
exhaustive search of stopping sets of LDPC codes by
Wang et al, [2] used a different and much less efficient
algorithm. In common with these two papers we use
similar notation and preliminaries.

The code C is defined to be binary and linear of
length n and dimension k and is a k-dimensional
subspace of {0,1}", and may be specified as the null
space of a m X n binary parity check matrix H of rank
n — k. The number of parity check equations, m of H
satisfies m > (n—k). It should be noted , as illustrated
in the results below, that the number of parity check
equations m in excess of n — k can have a dramatic
effect on the stopping set weight spectrum, excluding
codewords of course as these are not affected.

As in [1], S is used to denote a subset of {0,1}", the

set of all binary vectors of length n. At any point in the
tree search, a constraint set, F is defined consisting of
bit positions p; and the states of these bit positions sy,
sp; € {0,1}™. The support set x(F) of the constraint
set, F, is the set of positions where s,, = 1, and the
Hamming weight of F is the number of such positions.
The sub matrix H,(r) consists of all the columns of
H where s,, = 1, and the row weight of H, () is the
number of 1’s in that row. An active row of H, () is a
row with unity row weight. It is obvious that if all rows
of H, (r) have even row weight then F is a codeword,
noting that for an iterative decoder codewords are also
stopping sets. If at least one row has odd weight, 3 or
higher and there are no active rows then F is a stopping
set but not a codeword. If there are active rows then F
has either to be appended with additional bit positions
or one or more states sp, need to be changed to form
a stopping set. With this set of basic definitions, tree
search algorithms may be described which carry out
an exhaustive search of {0,1}" using a sequence of
constraints F to find all stopping sets whose Hamming
weight is < 7.

II. AN EFFICIENT TREE SEARCH
ALGORITHM

The constraint set F is used to represent the set
of searched known bits of a code C, which forms a
branch of the tree in the tree search. The set of active
rows in H is denoted by {bo,...,hs_1}, where ¢ is
the total number of active rows. A constraint set F
with size n is said to be valid if and only if there
exists no active rows in H(F), The pseudocode of a
particularly efficient algorithm to find all the stopping
sets including codeword sets with weight equal to or
less than 7 is given in Algorithm 1 below. The found
stopping sets are stored as the algorithm progresses.

The modified iterative decoding is carried out on
a n-length binary input vector containing in some of
the positions. Let r;(F) be the rank (ones) of row
j, 3 € {0,...,m — 1} for the constrained position
{pi : (ps,1) € F} intersected by row j on H. And
let 3 (F') be the rank of row j for the unconstrained
position {p; : (p;,1) € {0, ..., n—1}\F} intersected by

Algorithm 1 Tree-search based Stopping Set Enumer-
ation (TSSE)
repeat
Pick one untouched branch as a constraint set F.
if |F| = n and w(F) < 7 then
Constraint set F' is saved, if F is valid
else
1). Pass F to the modified iterative decoder (*)
with erasures in the unconstrained positions.
2). Construct a new constraint set F’ with
new decoded positions, which is the extended
branch.
if |F'| = n and w(F’) < 7 then
Constraint set F is saved, if F” is valid
else if No contradiction is found in H(F '), and
w'(F') < 7 then
a). Pick an unconstrained position p.
b). Extending branch F’ to position p to get
new branch F” = F'|J{(p,1)} and branch
F'" = F! U{(p’ O)}
end if
end if
until Tree has been fully explored

row 7 on H. The modified iterative decoding algorithm
based on belief-propagation decoding algorithm over
the binary erasure channel is shown in Algorithm 2.
As noted in the line with marked (*), the modified
iterative decoder is not invoked if the condition of
i <1 and r; = 1 is not met; or the branch with
constraint set F’ has condition of r; = 1 and 7} = 0.

J
This significantly speeds up the tree search. As noted in

Algorithm 2 Modified Iterative Decoding

Get rank r(F) and r/(F') for all the equation rows
on H.
repeat
if ; > 1 then
Row j is flagged
else if r; = 1 and r; = 0 then
Contradiction — Quit decoder
else if r; <1 and r; =1 then
1). Row j is flagged
2). The variable bit ¢ is decoded as the XOR
of the value of r;.
3). Update the value of 7; and 77, if Hyj; = 1.
end if
until No new unconstrained bit is decoded

the line with marked (*), the modified iterative decoder
is not necessary to call, if the condition of r; < 1
and r;- = 1 is not met; or the branch with constraint
set F' can be ignored, if condition of r; = 1 and

r;. = 0 occurs. Thus the computing complexity can

be significantly reduced than calling it for every new
branch with the corresponding constraint set F.

A. Efficient lower bound

The tree search along the current branch may be
terminated if the weight necessary for additional bits
to produce a stopping set plus the weight of the current
constraint set F' exceeds 7. Instead of actually evalu-
ating these bits it is more effective to calculate a lower
bound on the weight of the additional bits. The bound
uses the active rows I(F) = {I;j(F),....,I;,_, (F)},
where I;; (F') is the set of active rows with constraint
set F' corresponding to the igth column h;, of H,
and ¢ is the number of intersected unknown bits. Let
w(hﬁj (F)) be the weight of ones on jth column of H,
which is the number of active rows intersected with jth
column. Under a worst case assumption, the I;(F') with
larger column weight of ones on jth column is always
with value 1, then the active rows can be compensated
by I;(F) and the total number of active rows ¢ is
reduced by w(h? (F)) until ¢ < 0. Algorithm 3 shows
the pseudocode of computing the smallest number of
intersected unknown bits ¢ in order to produce no
active rows. The lower bound w'(F) = w(F) + q is
the result.

Algorithm 3 Simple method to find the smallest col-
lection set of active rows
1. Arrange the set of Z(F') in descending order,
where hi(f) is the column with the maximal column
weight corresponding to constraint F'.
2. q is initialised as 0.
while ¢ > 0 do
1). ¢ is subtracted by w(h;,).
2). q is accumulated by 1.
end while

B. Best coordinate position selection

In the evaluation of the lower bound above, the
selected unconstrained positions are assumed to have
value 1. Correspondingly, the first position in the index
list has maximal column weight and is the best choice
for the coordinate to add to the constraint set F.

III. RESULTS

The algorithms above have been used to evaluate all
of the low weight stopping sets for some well known
LDPC codes. The results are given in Table 1. The
total number of stopping sets are shown for a given
weight with the number of codewords in parentheses.
Interestingly the Tanner code has 93 parity check
equations, 2 more than the 91 parity check equations
needed to encode the code. If only 91 parity check
equations are used in the iterative decoder there is

a stopping set of weight 12 degrading the decoder
performance.

A. WiMax LDPC codes

WiMax LDPC codes [4] , as the IEEE 802.16e
standard LDPC codes, have been fully explored and the
low weight stopping sets for all combinations of code
rates and lengths have been found. Detailed results for
WiMax LDPC codes of code rates 1/2, 2/3A4, 2/3B,
3/4A, 3/4B are given in Table II, III, IV, V, VL
In these tables, the code index ¢ is linked to the
code length N by the formula N = 576 + 96:. The
minimum weight of non-codeword stopping sets (s;,)
and codeword stopping sets (d,,,) for all WiMax LDPC
codes is given in Table VII.

IV. CONCLUSIONS

An efficient algorithm has been presented which
enables all of the low weight stopping sets to be
evaluated for some common LDPC codes. Future work
will explore the determination of efficient algorithms
for use with multiple computers operating in parallel
in order to evaluate all low weight stopping sets for
codes several thousand bits long. Future work will also
explore the performance improvements obtainable by
using a number of additional parity check equations
over n — k.

REFERENCES

[1] E. Rosnes and O. Ytrchus, “ An algorithm to find all small-
size stopping sets of Low-Density Parity-Check Matrices”, ISIT
2007. IEEE International Symposium on Information Theory,
pp- 2936 - 2940, June 2007.

[2] C. C. Wang, S.R.Kulkarni and H.V.Poor, “Exhausting Error-
Prone Patterns in LDPC Codes”, submitted to IEEE Trans-
actions on Information Theory, available from http:/arxiv.org/
abs/cs.IT/0609046.

[3] R. M. Tanner, D. Sridhara and T. Fuja, “A class of group-
structured ldpc codes”, in Proc. Int. Symp. on Commun. Theroy
and Appl. (ISCTA), Ambleside, England, July 2001.

[4) “WiMax LDPC codcs, Air interface for fixed and mobile
broadband wireless access systems, IEEE Std 802.16¢-2005”,
available from http://standards.icce.org/getieee802/download/
802.16¢-2005.pdf.

[5] Lan Lan, Lingqi Zeng, Y.Y.Tai, Lei Chen, Shu Lin and K.
Abdel-Ghaffar, “Construction of Quasi-Cyclic LDPC Codcs
for AWGN and Binary Erasurc Channcls: A Finite Field
Approach”, IEEE Transactions on Information Theory, vol. 53,
Issue 7, July 2007 Page(s):2429 - 2458.

[6] D.J.K. MacKay, “Encyclopedia of sparsc graph codes [On-
line]”, Available: http//www.inference.phy.cam.ac.uk/mackay/
codes/data.html.

[7] X. Y. Hu, E. Eleftheriou and D. M. Amold, “Regular and
irrcgular progressive cdge-growth tanner graphs”, JEEE Trans-
actions on Information Theory, vol. 51, pp. 386-398, Jan 2005.

Code Name Sm N, Ny, +1 Ny, +2 Ny, +3 Ny, +4 Ny, +5 N,, +6
Tanner (155, 64) [3] 18 | 465(0) | 2015(0) | 9548 (1023) | 23715 (0) | 106175 (6200) | 359290 (0) | 1473585 (43865)
QC LDPC (1024, 512) [5) 15 1(1) 1(0) 0 (0) 1(1) 6 (1) 6 (2) 12 (4)
PEG Reg (256, 128) [6], [7] 11 1(0) 11 (7) 22 (12) 51 (28) 116 (46) 320 (113) 945 (239)
PEG Reg (504, 252) (6], [7] 19 2 (0) 5 (2) 8 (0) 27 (5) 78 (0) 199 (26) 0
PEG iReg (504, 252) (6], [7] 13 2 (1) 1(1) 5 (5) 13 (11) 31 (16) 52 (28) 124 (60)
PEG iReg (1008, 504) (6], [7] | 13 1 (1) 0 (0) 0 (0) 3 (3) 3(3) 4 (4) 5(3)
MacKay (504, 252) [6] 16 1 (0) 3 (0) 3 (0) 12 (0) 36 (2) 106 (0) 320 (22)
TABLE 1
LOW WEIGHT STOPPING SETS AND CODEWORDS OF KNOWN CODES.
T | Smin Nooin Nepintl | Nogint2 | Nopin43 [Nopoga | Nopoogs | Noooo46 Nspin+7 Nopint+8
0 13 24(24) 0(0) 0(0) 24(24) 0(0) 24(0) 120(72) 312(96) 0O
1 18 56(0) 140(56) 56(56) 308(84) 420(168) 756(224) | 2296(476) | 5460(1288) 0O
2 18 32(0) 0(0) 36(64) 128(32) 192(96) 704(352) 992(224) 1888(672) 0
3 19 36(36) 36(36) 144(0) 324(36) 828(180) 810(162) | 2304(576) 0 0
4 19 120(80) 120(40) 160(0) 280(160) 400(120) | 880(120) | 1760(560) 0 [¢)
5 19 44(0) 0{0) 44(44) 132(0) 220(88) 176(44) 176(132) 0 [4)
6 19 48(48) 0(0) 0(0) 0(0) 0(0) 48(0) 144(144) 0 0
7 19 52(0) 0(0) 0(0) 52(52) 0 0) 0 0
8 23 112(112) 56(0) 280(224) | 560(224) | 1008(280) 0 0 0 0
9 24 60(0) 60(0) 60(0) 180(60) 720(300) 0 0 0 0
10 20 64(64) 0(0) 0(0) 64(64) 64(0) 0(0) 96(96) 256(128) [0)
11 27 68(68) 408(0) 0 0 0 0 (0 0
12 21 72(72) 0(0) 0(0) 0(0) 0(0) 0(0) 216(216) 144(0) [0)
13 19 76(76) 0(0) 0(0 0(0) 0(0) 0(0) 0(0) 76(76) 76(76)
14 25 160(80) 240(80) | 240(240) | 400(160) 0O 0 0 0 0
15 27 84(84) 84(84) | 756(168) | 518(182) 0 0 0O 0 0
16 28 264(264) 88(0) 440(264) 0 0 0 0 0 0
17 23 92(92) 0(0) 0(0) 0(0) 0(0) 276(92) 0 0 0O
18 28 96(0) 96(0) 288(0) 288(96) 624(336) 0 [4] 0)
TABLE 11
WIMAX 1/2 LDPC CODES
i Smin Nsmin Nsmin+1 Nsmin+2 Namin+3 Nsmin+4 Nsmin+5 Nsmin+6
13115 [76(76) | 228(152) 0 0] 0 0 0
14 14 80(0) 80(80) 160(0)) 0O 0 0
15 | 15 || 84(84) | 252(0) 0 0] 0 0 0
16 | 15 || 88(88) 0(0) 0 0 0 0 0
17 15 92(92) 0(0) 92(92) 460(276) 0 0O 4]
18 15 96(96) 0(0) 96(96) 480(384) 0 0O 0O
TABLE 111
WiMax 2/3A LDPC CoDEs
i | Smin Nspin | Nspint1 | Nsvin42 | Nopin43 | Nopinta N, int5 | Ns . 46
6 16 96(48) 432(48) 0)
7 15 52(52) 0(0) 104(104) | 156(104) [728(312) | 2041(533) ()
8 16 63(63) 56(56) 196(56) | 560(168) | 1568(196) () 0
9 17 120(60) 0 0 0 0 0] 0]
10 15 64(64) 0(0) 0(0) 0(0) 128(0) 384(64) 0
11 | 18 || 204(68) 0] 0 0] Q 0 0]
12 15 72(72) 0(0) 0(0) 72(0) [¢) 0 0
13 15 76(76) 0(0) 0(0) 0(0) 0(0) 76(0) 0
4] 16 80(80) 80(0) 0 0 0 0 0]
15 15 84(84) 0(0) 0(0) 0(0) 84(84) 294(168) 0
16 | 16 88(88) 88(0) 0 0] 0] 0] Q
17 20 92(92) 92(0) 92(0) [§) 0 0
18 15 96(96) 0(0) 0(0) 0(0) 0(0) 144(96) 0
TABLE IV

WIMAX 2/3B LDPC CODES

t | Smin || Nspin | Nspsnt1 | Nsooa2 | Nsoooa3 | Nsoioaa | Nopoas | Nointe

6 10 48(0) 0(0) 24(0) 240(48) | 624(288) [0) 0

7 12 26(0) 156(52) | 260(104) | 2184(416) () [§) 0

8 12 28(0) 112(0) 224(168) | 952(280) 0 0 0

9 12 90(60) 60(0) 180(60) 372(192) 0 0 0

11 12 34(0) 63(68) 0(0) 0(0) 0O 0 0

12 12 36(0) 0(0) 0(0) 0(0) 72(0) 504(144) 0

13 12 38(0) 76(76) 0(0) 76(76) 0O 0 0

14 12 40(0) 80(0) 160(0) 240(0) 240(0) 800(160) [§)

15 12 42(0) 0(0) 0(0) 0(0) 0(0) 168(84) 0

16 12 44(0) 0(0) 0(0) 88(88) 0 0 0O

17 12 46(0) 0(0) 0(0) 0(0) 0(0) 0(0) 0O

18 12 43(0) 0(0) 0(0) 0(0) 0(0) 0(0) 96(0)

TABLE V
WIMAX 3/4A LDPC CODES

[Smin Nsmin Nsmin+1 Nsmin.+2 N31n'in+3 Nsmin+4 Nsmin+5 Nsmin+6
7 9 52(52) 52(52) 52(52) 312(156) 988(416) 3094(1274) | 11180(3952)
8 12 560(392) | 616(224) 1792(616) | 7784(2968) 0 0
9 10 60(60) 60(60) 130(10) 540(240) 2190(810) | 7440(2940) 0]
10 11 64(64) 128(128) 128(64) 960(640) 3648(1408) 0O 0
11 13 272(204) | 748(544) | 2992(1564) 0 0 0 0
12 12 72(0) 576(432) 576(216) 2520(936) [§) 0 ()
13 12 228(228) | 380(304) 988(836) 2888(836) [4) () 0
14 10 80(80) 0(0) 0(0) 0(0) 640(480) 2416(1216) ()
15 11 84(0) 84(84) 336(168) 546(294) 1260(588) 0 ()
16 14 176(88) | 968(792) 4] () () 0 ()
17 13 184(92) 92(92) 1012(644) 0O 0 0 ()
18 12 16(16) 96(96) 672(480) 0 [¢) () 0

WIMAXx 3/4B LDPC CODES

TABLE VI

Code Length N = 576 + 961

1 0 1 2 3 4 5 6 7 8 9

N 576 | 672 | 768 | 864 | 960 | 1056 | 1152 | 1248 | 1344 | 1440

Code Rate Minimum Codeword Weight d,,

1/2 13 | 19 [20 | 19 | 19 21 19 22 23 27
2/3A 10 9 8 11 | 13 10 14 13 14 13
2/3B 12 [11 | 14 | 16 | 15 15 16 15 16 17
3/4A 10 | 10 | 10 | 12 | 12 13 13 13 14 12
3/4B 8 8 9 11 | 11 9 11 9 12 10

5/6 5 7 7 7 7 7 7 7 7 7

Minimum Stopping Set Weight s,,,

1/2 18 | 18 [18 | 21 | 19 19 24 19 24 24
2/3A 10 | 10 { 11 9 12 13 13 14 14 14
2/3B 10 [12 | 13 | 15 | 14 16 16 18 18 17
3/4A 9 8 10 | 11 | 12 12 10 12 12 12
3/4B 9 10 | 10 | 10 | 11 11 11 12 12 12

5/6 6 6 7 7 7 7 7 9 7 8

Code Length N = 576 + 961
i 10 11 12 13 14 15 16 17 18
N 1536 | 1632 | 1728 | 1824 | 1920 | 2016 | 2112 | 2208 | 2304
Code Rate Minimum Codeword Weight d,,

1/2 20 27 21 19 25 27 28 23 31
2/3A 12 13 15 15 15 15 15 15 15
2/3B 15 18 15 15 16 15 16 20 15
3/4A 14 13 17 13 17 17 15 20 19
3/4B 11 13 13 12 10 12 14 13 12

5/6 7 7 8 8 7 7 8 8 9

Minimum Stopping Set Weight s,,,

1/2 24 28 28 28 25 29 29 28 28
2/3A 15 12 14 16 14 16 17 18 18
2/3B 19 18 18 20 17 20 17 21 20
3/4A 12 12 12 12 12 12 12 12 12
3/4B 13 13 12 13 14 11 14 13 15

5/6 8 9 7 9 7 8 9 8 10

TABLE VII

WIMAX CODES [4] WEIGHT SPECTRUM

Decoding Low-Density Parity-Check Codes with
Error-Floor Free over the AWGN Channel

Li Yang, Martin Tomlinson, Marcel Ambroze

Abstract—We propose a new soft decision decoding arrangement
for LDPC codes over the AWGN channel with error-floor free. The
iterative belief propagation decoder is used as the initial decoder with
the iterative output conditioned prior to OSD decoding. Improved
results are obtained to break the corresponding error floors caused
by the stopping sets. The basis of the conditioning of the iterative
output is explained with supporting analysis. Some practical examples
of performance are presented for some well known LDPC codes and
it is shown that the proposed decoder with OSD-i does not only
produce better results than a stand-alone OSD-(z + 1) decoder with
considerable reduction in decoder complexity, but also guarantees the
error-floor free.

Keywords—LDPC, error-floor, OSD, conditioned

I. INTRODUCTION

Ow-density parity-check (LDPC) codes are one of the

traditional types of linear block codes since their first
introduction by Gallager [1] in 1963 and have attracted a
great deal of interest in recent years, following the rediscovery
by MacKay [2] in 1999. The corresponding message passing
decoding algorithm (also known as belief propagation, BP)
as an iterative decoding algorithm has successfully brought
traditional codes back into the modern digital communications
research area after the invention of turbo codes [3] in 1993.
The competition between LDPC codes and turbo codes has
probably peaked although the outcome is by no means clear.
Following the introduction of irregular LDPC codes [4], the
asymptotic approach to the Shannon limit by LDPC codes
coupled with iterative decoding has proven the benefits of the
approach [5].

In terms of the optimal soft decision decoding performance
for the AWGN channel (also called maximum-likelihood, ML),
LDPC codes with ML decoding in general is not feasible.
In 1995, Fossorier proposed the sub-optimum decoder, called
ordered statistics decoder (OSD) [6], which aimed to search
the re-ordered most-reliable & information bits for the maxi-
mized codeword with constraint of order 7. Better performance
was later achieved with the same order of ¢ in 2002 [7].
Valembois [8] based on Fossorier’s previous work proposed
the “box and match techniques’ to help further improve the
decoder performance. An extended Dorsch decoder [9] was

Li Yang is the PhD student with the Fixed and Mobile Communica-
tions Research, University of Plymouth, PL4 8AA, United Kingdom, email:
li.yang @plymouth.ac.uk

Professor M. Tomlinson is the leader of the Fixed and Mobile Communica-
tions Research, University of Plymouth, PL4 8AA, United Kingdom, email:
martin.tomlinson@plymouth.ac.uk

Dr. M. Ambroze is the lecturer with the Fixed and Mobile Communica-
tions Research, University of Plymouth, PL4 8AA, United Kingdom, email:
marcel.amborze @plymouth.ac.uk

~proposed by Tomlinson [10] in 2007, aimed at achieving near

optimal ML decoding for linear block codes by searching the
k information bits for error patterns, leading to differential low
weight codewords.

A hybrid decoding arrangement for the erasure channel
using turbo Gallager codes was proposed by Yang {11], which
combines an optimized iterative decoder using (BP or MAP)
with a ML decoder. In this paper, a new decoding arrangement
is considered for the AWGN channel using LDPC codes with
sparse parity-check matrices. The iterative belief propagation
decoder is used as the initial decoder, the iterative output is
conditioned so that it is best suitable as the input to OSD
decoder instead of using the traditional soft iterative output. As
a consequence improved results are obtained and successfully
break the corresponding error floors.

The basis of the conditioning of the output of the iterative
decoder is explained with supporting analysis in Section II.
The difference between using the standard iterative output
from the BP decoder and the conditioned output is analyzed
and compared in Section III. Section IV gives results showing
the relative performances of the OSD decoder, the new decoder
and the BP decoder for some well known LDPC codes.
Section V gives the conclusions.

II. DECODING BEYOND ITERATIVE DECODING FOR THE
AWGN CHANNEL

The proposed decoding structure for linear, (n,k), block
codes over the AWGN channel is shown in Figure 1, where
r is the received signal vector plus AWGN with variance
o2. The BP iterative decoder produces the output r’ after a
given number of iterations. Then r' is conditioned to become
£ which is permuted and re-encoded by the corresponding
generator matrix G”, where 7 is the index interleaver deter-
mined primarily by the bit log likelihood ratios, and secondly
by column swaps to achieve full rank. The new generated
codeword ¢’ is passed to OSD-¢ decoder to search for derived
codewords c” achieving highest cross-correlation with the
received vector, constrained by order ¢. During the OSD-i
decoding, the cross-correlation of ¢’ based on ¥’ is used as
a lower bound to limit the search size of the OSD-¢ decoder.
If OSD-i is unable to find any codeword with higher cross-
correlation than ¢’, constrained by the search size (’:), then ¢/
is selected as the output codeword.

A. Iterative Decoding

In the earlier approach [12], OSD-¢ decoding was attempted
with each iteration switching back and forth between OSD

)

T r
BPSK _
Iterative BP
Le(r) Decoder Re-order
AWGN
G Re—encoder
Channel
c’ ¢’
CW<—— Selection on highest e’ OSD-i |
Cross—Correlation Decoder
Fig. 1. The Proposed Decoding Structure

decoding and iterative decoding. Here we show that better
results may be achieved by the simpler approach of carrying
out a fixed number of iterations N, before invoking OSD-i
decoding with no switching back and forth. For LDPC codes,
whose parity-check matrices are sparse having few, if any,
cycles of length 4, the iterative BP decoder most of the time is
able to improve the extrinsic information with each iteration.
After N iterations, instead of passing the output vector, r/,
directly to the OSD-¢ decoder as in [12], the output vector
is conditioned to become ' and then passed to the OSD-3
decoder. This is to avoid occasions when the iterative decoder
destroys some of the received information prior to passing it
to the OSD-¢ decoder.

B. OSD-i decoding and construction of equivalent generator
matrices

As in conventional OSD-:¢ decoding, decoding is based on
determining information sets, vectors of length & bits which
can be used to generate codewords of the code. We want the
generated n bit codewords to be close in Euclidean distance
to the input vector of length n. Correspondingly, the input
vector ' from the iterative decoder is permuted in order
of reliability based on the log likelihood ratios given by
|#'| to become x plus second order considerations based on
needing to achieve full rank for the constructed generator
matrix. The permuted input is z,, = w(7,,), where = denotes
the required permutation. The permuted x vector consists
of almost the most reliable bits (MRB) from most reliable,
extreme left and the least reliable bits (LRB) from extreme
right, where {|zo| > |z1| >,...,> |Zn-1|}. In order to obtain
full rank of the new generator matrix G, Gaussian elimination
is performed by starting from the least reliable bit z,,_; and
progressing towards xj. At some point, there will be one bit,
Z+s Which is not independent of the previously solved for bits
and thus cannot be solved for. It is not possible for this bit to be
a parity bit, given the previous choices for parity bits. This is
indicated by x4, not being present in any of the remaining,
uncommitted parity check equations. The procedure in this
circumstance is to skip bit zx4s and try to solve for the next
more reliable bit zx45-1, solve if possible, skipping if not,
and continue in this way. In practice, very few bits have to
be skipped in this way and skipped bits have almost the same
reliability [10] as the bits that replace them in the LRB. Thus
the ordered received vector x is interleaved by index factor

7 as X, due to the column swaps. Then we have the updated
MRB from extreme left as {|Zo| > |Z1],...,> |Tx—1|} and the
LRB from extreme right as {|Zx| > |Zx+1ly .., > |Zn-1]}-

ITI. BP oUTPUT IMPACT ON OSD DECODER WITH
CONDITIONED SOFT DECISIONS

For the AWGN channel, the ML decoder searches for the
codeword out of all the possible codewords which has the
highest cross-correlation, Y., with the received vector r.

n—1
Ymaz = Iy (1)
j=0 :

Let € be the hard-decided binary code vector from r. Let C;
be the transmitted codeword resulting in the received vector
r, and Y(Cy) its cross-correlation with r.

n—1
Y(C) = Inl-(1-Cy 08) 2)
j=0

For the decoder there exist a set of codewords C2, where
}/max 2 Y(CQ) 2 Y(Cl)

o Case A: If there exists any Cy with Y(C2) > Y (C1), a
ML type decoding error will occur.

o Case B: If the best codeword Co with Y(C3) = Y (C,),
the codeword with maximum correlation with r is the
transmitted codeword and the decoder has achieved suc-
cessful decoding.

For constrained codeword search, aiming to achieve conver-
gent output performance, there exists the following situations

o For case A, if there exists any C; with Y(C) > Y(C1)
during the constrained search, a ML decoding error is
obtained. Otherwise if there exists C2 with Y(C2) =
Y (Cy), the transmitted codeword is found. If no codeword
is found satisfied all parity check equations, a non-ML
decoding error occurs.

« For case B, there only exists that the transmitted code-
word with C; = Cy corresponding to r is found or a
non-ML decoding error is indicated.

Most codeword-search algorithms adopt various constraints
aimed at achieving near-optimum performance with smaller
search size. With this aim, let ¢’ be the re-encoded codeword
based on re-ordered k information bits from r’. The maximum
attainable cross-correlation Y (c’) provides an upper bound
which helps limit the size of search. The re-encoded codeword
may contain a smaller number of errors in the MRB bits than
the MRB bits corresponding to the received vector r. Thus
using input vector # leads to more successful decoding by an
OSD decoder with smaller order 7 than using input vector r.

A. Soft Iterative Outpur ¥/

In general, the a posteriori probability (APP) value of L in
logarithm for bit m during the iterative decoding process is
expressed as the sum of three terms.

Ly =L+ LS + LS, 3)

where L7, denotes the channel measurement, which is the
effect of channel output corresponding to bit m. L2, represents

the a priori value in logarithm, it is the function of the a priori
probability of bit m. The final term is the independent extrinsic
knowledge about bit m. In terms of reliability, the relationship
between received bit r,,, and updated 7/, according to the soft
output r/, from the iterative decoder is expressed as

log ((cm—O]rm)>

P—— o \plem=1rn)) P Li’” @)
" log (J_—OJ__Z) ™ Le, + Le,
plem=1|rm)

Thus as Yjnq, is limited to Z;:o |f; , and there may exist
Yinaz # Ypnae after a certain number of iterations. The
cross correlation of this vector with the transmitted codeword
Y (C;) might result in a reduction compared to the original
received vector. Correspondingly the set of codewords Ca,
which produce ML decoding errors, will be increased in size
as a new set Co. The following possibilities exist

. IfY(C]) ~|>|Cz,

size of the codeword set Ca.
o Orif Y(Cy) increases, |Ca| < [Ca|.

Let ¢ be a codeword generated by the corresponding generator
matrix G, ¢ € {C2\C2}. Then Y(C;) < Y(c) < Y(C1) <
Y (Cy), where Y denotes the cross-correlation of a codeword
based on ¥/, and Y is the cross-correlation of the same
codeword based on r. Once a codeword c is found, with
higher cross-correlation than the transmitted codeword then
there is a ML decoding error based on . However this is
not a real ML decoding error because if the received vector
r is used the cross correlation of codeword c is less than
the cross correlation of the transmitted codeword. In practice,
it has been observed that this is a common event and the
decoding performance is significantly degraded through this
mechanism.

Besides the above issue, there is another reason that the
unconditioned soft iterative output is not an ideal input for
decoding. Stopping and trapping sets, considered in the LDPC
codes’ design has become a major issue due to the degraded
performance in AWGN channel at high SNR [4]. These are
not only due to cycles of length 4, but also cycles of length 6
and 8. If there exists a set of bits, which form a cycle, then
the extrinsic information of these bits can be destructive as the
BP decoder iterates. Thus the sign and magnitudes of bit log
likelihood ratios can change for the worse as the BP decoder
iterates leading to some bits in the LRB of the received vector
swapping for bits in the MRB of the received vector leading
to an increase in the number of bit errors in the MRB. This
will seriously affect the performance of OSD-7 due to its order
limitation. The similar phenomenon was also observed in [10].

The frequency distributions of the number of bit errors in the
MRB as a result of iterative decoding after different iterations
are shown in Figure 2. These were obtained by evaluating 10°
received vectors for Tanner codes (155,64,20) [13] at 4dB
f,—i. The x-axis shows the number of errors in the MRB input
to the OSD-i decoder, and the y-axis denotes the number of
input vectors having the same number of errors in MRB. First
of all, as the iteration is increased, the number of blocks with
null error in MRB is increased. It clearly shows the better
performance could be achieved as more iterations are called.

where |Cz2| denotes the

T T
Iteration 1 ===0
Iteration 5 £zzzza

Iteration 10—
Iteration 50 ="

Number of Frames with Same Number of Errors

L Z
w

4
Number of Errors in MRB

Fig. 2. Soft iterative output from BP decoder for Tanner codes (155, 64, 20)
at Eb/No=4dB

After the first iteration, the maximum number of errors in
MRB is only 3, but after 5 iterations, the maximum number of
errors in MRB is increased to 6. Furthermore at 10 iterations,
it produces the maximum number of errors as 8 in MRB,
even after 50 iterations, the maximum number of errors in
MRB is still 7. Thus for the 105 blocks, all of them could be
successfully decoded after 1 iteration by OSD decoder up to
3, but part of them might have to be decoded by OSD decoder
up to 7 after 50 iterations. It clearly shows that the discussed
issue occurs more frequently as the BP decoder iterates. And
more error bits with higher magnitudes are shifted to the MRB.

B. Conditioned iterative Output '

In order to avoid the above issues, we need to maintain
Ymaz and yet use the iterative decoder output to assist OSD-¢
decoding, the conditioned output ¥ of the iterative decoder
is used for OSD-i decoding. The conditioned output 7/,
defined as

m In >
fo= {2 5)
—Tm zf;';.L <0
Thus
R n—1
Ymaz = |A_;| - Ymaz (6)
=0

According to (3), it is noted that the log likelihood ratio
L,, from ¥ is equivalent to L,,. In this case, the extrinsic
knowledge about bit m is evaluated as either “1” or “—1".
Thus the conditioned iterative APP value L, log likelihood
ratio is depicted as

L =L, + L% + log(—1)bm)

where b/, is the hard-decided binary bit, b, € {0,1},
accordmg to 7,

Referring to (7) the magnitudes of L,, and Lm can be
significantly different. The factor of Le for L,, is ranged
in the entire real field R. On the other hand, the factor of
Le, for L, is only ranged in {—2(LS, + L%),0}, which
just changes the sign of the reliability. Thus the conditioned

1 T 3

! No Iterative Decoding LL;:: E
Iterative Decoding £zzzzo]
Conditioned lterative Decoding s

i

Number of Frames with Same Number of Errors

s

o
~ E
»
©

3 4 5
Number of Errors in MRB

Fig. 3. Comparisons between different inputs to OSD Decoder for EG LDPC
codes (255,175,17) at Eb/No=4.5dB, iteration=50

iterative output not only ensures the constancy of maximum
attainable correlation, it also provides an initial tight range
for the OSD decoder with the same MRB to help reduce
the search size and computation complexity. Furthermore, the
conditioned output reduces the number of errors in MRB,
which also reduces the codeword search size.

The frequency distributions of the number of bit errors
in the MRB as a result of iterative decoding, conditioned
iterative decoding and no iterative decoding are shown in
Figure 3. These were obtained by evaluating 10° received
vectors for the (255,175,17) [14] Euclidean geometry (EG)
LDPC codes at 4.5dB —L with 50 iterations of the iterative
decoder. The number of errors j in the MRB dictates the
order 7 of the OSD- that is necessary for successful decoding.
If 7 is greater than 7 then decoder errors are certain. Thus
Figure 3 may be used to estimate the probability of decoder
error for the different decoding arrangements. It can be seen
that the worst input is the output from the iterative decoder
with the highest number of errors in the MRB from 4 to 8.
The best input with the smallest number of errors in the MRB
is the conditioned output from the iterative decoder. There
is another benefit of using the conditioned output in that the
number of blocks decreases faster as the number of errors
in the MRB increases, in comparison to the other inputs. It
obviously provides a better convergent performance in terms
of decoder computation complexity and performance, which
means more error-blocks could be successfully decoded by
using a smaller OSD-i decoder with less search size.

IV. RESULTS

The results achieved by the different decoder arrangements
for regular Gallager codes (204,102,8) [2] are shown in
Figure 4. The iterative BP decoder uses 50 iterations. Although
the simulated code has a small d,;,;,,, it has small multiplicity
of 50 in total, in low weight codewords up to hamming weight
15. Thus BP decoding performs quite well with more than
1.5dB coding gain compared to the OSD-1 decoder and better
performance than the OSD-2 decoder before the error floor re-
gion. The proposed decoder using OSD-1 achieves significant

i}

¥ o

FER

BP % .]

10 OSD-1 8- "]
Proposed Decoder + OSD-1 @ : 3

0SD-2 o~ ! 3

BP+OSD-1 -0 i

10-7 1 1 1 1 1
0 1 2 3 4 5 6
EbNo

Fig. 4. Comparison results for the regular Gallager codes (204,102, 8)

10° g

107

102 3
107 3
o
w
= -4
10 »1:
[
10° 3
BP - 3
10°® 0OSD-1 .
Proposed Decoder + OSD-1 3
0OSD-2]
BP + OSD-2
107 1
0 1 2 3 4 5 6
EbNo
Fig. 5. Comparison results for PEG LDPC codes (256,128, 17)

improvements in performance than the OSD decoder alone and
guarantees the free error-floor performance than BP decoder
and BP decoder with OSD-2 decoding. There exists more than
1.5dB coding gain between the proposed decoder with OSD-1
and OSD-1 decoder alone since 3dB E".

The progressive edge-growth (PEG) LDPC code proposed
by Hu [15], provides a better performance within the similar
codeword length due to its strong d,n;,. The results for the
PEG LDPC code (256, 128,17) using 50 iterations for the BP
decoder are shown in Figure 5. The BP decoder achieves about
1dB coding gain at high SNR from 3. 5dB than the OSD-
2 decoder, but degrades due to the stoppmg sets since 4.5dB
1’;3, , where the error floor occurs. The proposed decoder paired
with OSD-1 produces significantly better performance than
the OSD-2 decoder at any signal-noise-ratio and successfully
breaks the error floor caused by the BP decoder and BP
decoder paired with OSD-2.

The results for the Projective geometry (PG) cyclic
(341,205,16) LDPC codes [14] are shown in Figure 6. The
iterative BP decoder is achieved by exploring the entire n
parity-check equations based on the codes’ cyclic property,
thus the improvement is significant with more than 1dB coding

Frame Error Rate (FER)

&5 [i

7 OSD-1 ---&-- 1
10" E Proposed Decoder + OSD-1 ~® - @i i
0SD-2 ---©-- 3

BP + OSD-2 --¢-- i

108 1 1 1 1
0 1 2 3 4 5 6

Eb/No, (dB)

Fig. 6. Comparison results for the PG LDPC code (341,205, 16)

gain than the OSD-1 decoder from 3dB 11;3,—’; The error-floors
using BP decoding and BP decoding paired with OSD-3 occur
at 5dB %‘L The proposed decoder with OSD-1 achieves the
best decoding performance with free error-floor.

Those results provide good evidence that the proposed
decoder with OSD-7, especially OSD-1, achieves better per-
formance than OSD decoding alone and shows no sign of an
error floor unlike BP decoding coupled with OSD decoding or
stand-alone BP decoding. The proposed decoder with OSD-¢
crosses the OSD-(i + 1) decoding performance at high SNR
and involves much less decoder complexity.

V. CONCLUSIONS

A new decoding arrangement for LDPC codes with sparse
parity-check matrices over AWGN channel has been intro-
duced which uses a conditioned output from a BP decoder
instead of the standard soft output. Results have been pre-
sented which show that the proposed decoder using OSD-
1 completely solves the error floor problem associated with
BP decoding of LDPC codes. Also, compared to stand-alone
OSD-i decoding, the proposed decoder using OSD-(z — 1)
decoding performs better at high SNR and involves much less
decoder complexity.

REFERENCES

[1] R. Gallager, Low-Density Parity-Check Codes, Cambridge, MA: MIT
Press, 1963.

[2] D. MacKay, “Good error correcting codes based on very sparse
matrices,” IEEE Transactions on Information Theory, vol. 45, pp. 399-
431, Feb 1999.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correcting coding: Turbo codes,” in Proc. IEEE International
Conference on Communications, Geneva, Switzerland, 23-26 May 1993,
pp. 1064-1070.

[4] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of
capacity-approaching irregular low-density parity-check codes,” IEEE
Transactions on Information Theory, vol. 47, pp. 619-637, Feb 2001.

[5] S. Y. Chung, G. D. Forney, Jr. T J. Richardson, and R. L. Urbanke,
“On the design of low-density parity-check codes within 0.0045db of
the shannon limit,” IEEE Comm. Letters, vol. 3, pp. 58-60, Feb 2001.

[6] M. P. C. Fossorier and S. Lin, “soft-decision deocidng of linear block
codes based on ordered statistics,” IEEE Transactions on Information
Theory, vol. 41, no. 5, pp. 1379-1396, Sep 1995.

[71 M. P. C. Fossorier, “Reliability-based soft-decision decoding with
iteartive information set reduction,” IEEE Transactions on Information
Theory, vol. 48, no. 12, pp. 3101-3106, Dec 2002.

[8] A. Valembois and M. P. C. Fossorier, “Box and match techniques applied
to soft-decision decoding,” IEEE Transactions on Information Theory,
vol. 50, no. 5, pp. 796-810, May 2004.

[9] B. Dorsch, “A decoding algorithm for binary block codes and j -ary

output channels,” IEEE Transactions on Information Theory, vol. 20,

pp- 391-394, May 1974.

M. Tomlinson, C. Tjhai, and M. Ambroze, “Extending the dorsch

decoder towards achieving maximum-likelihood decoding for linear

codes,” IET Communications, vol. 1, no. 3, pp. 479-488, 2007.

Li Yang, Marcel Ambroze, and Martin Tomlinson, “Comparison of

decoding turbo gallager codes in hybrid decoding arrangements with

different iterative decoders over the erasure channel” in the 11"

IEEE International Conference on Communications Systems (ICCS),

Guangzhou, China, Nov 2008.

M. P. C. Fossorier, “Iterative reliability-based decoding of low-density

parity-check codes,” IEEE J. Select. Areas of Commun, vol. 19, pp.

908-917, May 2001.

R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured

Idpc codes,” in Proc. Int. Symp. on Commun. Theroy and Appl. (ISCTA),

Ambleside, England, July 2001.

C. Tjhai, M. Tomlinson, M. Ambroze, and M. Ahmed, “Cyclotomic

idempotent-based binary cyclic codes,” Electron. Lett., vol. 41, no. 3,

pp. 341-343, 2005.

X. Y. Hu, E. Eleftheriou, and D. M. Amold, “Regular and irregular pro-

gressive edge-growth tanner graphs,” IEEE Transactions on Information

Theory, vol. 51, pp. 386-398, Jan 2005.

[10]

[11]

[14]

[15]

Li Yang (S’08) was born in Beijing, China, in 1982. He received his first
degree in Computing and master degree in Network System Engineering
both from the University of Plymouth, UK, in 2005 and 2006, respectively.
Since Oct 2006, he joined the Fixed and Mobile Communications Research
Center as a PhD research student. His research interests are in the area of
information theory and its applications, which are mainly in turbo codes and
LDPC codes design, and their corresponding optimal decoding technique by
adapting the iterative decoding algorithms in both binary erasure channel and
AWGN channel.

Martin Tomlinson (M’96) is best known for the invention of the Tomlinson
Harashima precoding technique. He received his PhD from Loughborough
University in 1970 on the subject of adaptive equalisation for data transmission
and worked at Plessey Telecommunications Research Ltd until 1975 in digital
communication and satellite transmission. He then spent seven years in
the Satellite Communications Division of RSRE (now Qinetiq). Professor
Tomlinson is currently Head of Fixed and Mobile Communications Research,
leading research projects in communications, coding, signal processing, and
watermarking. He has published over 200 papers and 50 patents in the fields of
Digital Modulation and Coding, Signal Processing, Video Coding and Satellite
Communications, as well as contributing to various standards such as the
DVB-RCS standard for small terminals.

Marcel A. Ambroze (M’01) received the BEng degree from Technical
University of Cluj-Napoca, Romania in 1996 and the PhD in concatenated
codes with iterative decoding for data transmission from the University of
Plymouth, UK in 2000. He worked as a Research Fellow for two EPSRC
projects in Digital Watermarking and Signal Processing for Small Satellite
Earth Terminals at the University of Plymouth until 2003. Since 2003 he
was employed as a Lecturer in Digital Communications Systems at the
University of Plymouth. He is currently a member of the Fixed and Mobile
Communications Research at the University of Plymouth, lead by Professor
Martin Tomlinson. He has published over 30 papers in the fields of Error
Correction Coding, Watermarking and Satellite Communications. His current
research interests are in error correction coding and iterative decoding,
signal processing and coding for wireless systems and watermarking as
communications with side information at the transmitter.

Extended Optimum Decoding for LDPC Codes
based on Exhaustive Tree Search Algorithm

Li Yang, Martin Tomlinson, Marcel Ambroze
Fixed and Mobile Communications Research
University of Plymouth
PL4 8AA, United Kingdom
Email: li.yang, martin.tomlinson, marcel.ambroze @ plymouth.ac.uk

Abstract—A maximum-likelihood decoding algorithm inspired
by information set decoding is realised for LDPC codes or
linear block codes with sparse parity-check matrices of moderate
codeword lengths over the AWGN channel. The extension involves
an exhaustive branch and bound tree-search based algorithm for
finding all small Euclidean distance error vectors. It provides
an approach of searching on the bounded n-bit positions, which
involves 2° combinatorial dual codes based on the corresponding
parity-check matrix, to achieve the near-optimum decoding
output with attainable computational complexity. Soft decision
decoding results are presented for some well-known LDPC codes
demonstrating near-optimum maximum-likelihood performance.

I. INTRODUCTION

Low-density parity-check (LDPC) codes as classical linear
block codes were first introduced by Gallager [1] in 1963,
and such class of codes attracted a great deal of interest
in recent years following their rediscovery by MacKay [2]
in 1999. Using message passing decoding algorithm (belief
propagation, BP) in iterative decoding performance, the results
are comparable to turbo codes’ [3].

In terms of the optimal decoding performance or maximum
likelihood (ML), LDPC codes with ML decoding in general
is not feasible. For the AWGN channel, most of the optimal
or near optimal decoding algorithms are only practical for
relatively short codes. In 1995, Fossorier rediscovered the
information set decoder proposed by Dorsch [4], with the
name called “ordered statistics decoder” (OSD) algorithm [5],
it was to search the ordered most-reliable % information bits
for the maximised codeword with constraint of order i. A
better arrangement improving the performance with same
order of ¢ was proposed in [6]. Valembois [7] based on
Fossorier’s previous work proposed the “box and match”
technique to further improve the decoder performance. An
extended Dorsch decoder was proposed by Tomlinson [8] in
2007, it was towards achieving the optimal or near-optimum
decoding performance for linear block codes by generating
a series of low weight error vectors in the information part
to incrementally search the closest codeword according to the
cross correlation with the received vector.

Recently different effective methods have been introduced
to find low weight codewords for a binary linear block code.
Based on the knowledge of computing the minimum distance
of LDPC codes, some efficient algorithms for finding the
minimum-size stopping sets of LDPC codes were introduced

by following different approaches. An “error impulse” (EI)
based algorithm to find the small size stopping sets was pro-
posed by Richter [9]. Hirotomo [10] proposed a probabilistic
based algorithm to find the minimum-size stopping sets of
LDPC codes. The probabilistic methods were superseded by
Wang [11] who proposed the first exhaustive search based
algorithm to find all low weight vectors, which include code-
words, stopping sets and k-out trapping sets, for LDPC codes.
Furthermore, based on previous work [12], [13] concerning
an exhaustive search for turbo codes’ stopping sets, Rosnes
proposed an efficient algorithm to find all the low weight
stopping sets, including codewords, for LDPC codes [14].
The idea was taken further by Ambroze [15], optimising the
algorithm in a tree search branch and bound approach.

The searched error vector introduced by Tomlinson [8]
consists of the hard-decided received vector bit-wised by a
codeword derived from re-encoded codeword according to
the k£ nearly ordered most-reliable information bits and a
codeword with low-weight information. Processing this error
vector produces the most likelihood codeword with the closest
Euclidean distance compared to the received vector. In this
paper an algorithm for searching all low-weight error patterns
of a received vector for LDPC codes is proposed.

This paper is organised as follows: general code represen-
tations and definitions are described and the exhaustive search
algorithm for low weight codewords is described in Section II.
Section III introduces the modified expanded Dorsch decoding
algorithm coupled with branch and bound, exhaustive search
for finding low-weight codewords. Some considerations to
optimise the search algorithm are discussed. In Section IV,
the extended algorithm for finding low weight error vectors
is described in terms of a new lower bound algorithm. Sec-
tion V compares results of iterative decoding performance,
sub-optimum decoding performance and optimal decoding
performance for some linear codes with sparse structure and
reasonable codeword length. Section VI concludes the research
work.

II. PRELIMINARIES

In common with earlier papers [14], [15], similar notations
and preliminaries are used in this paper.

A. Code Representation

Let C be a binary linear code with length n, n € N, and
k-dimensional subspace of {0,1}". The linear code C can
be represented by a m x n binary parity-check matrix H,
where m > n — k. Let x = {zg,...,zn—1} € {0,1}" be the
transmitted vector, then bits x satisfy Hx = 0. In equivalent
graphical representation, the linear block code C, especially for
LDPC codes, may be represented by a bipartite graph, called a
Tanner graph [16]. A bipartite graph comprises a vertex set of
variable nodes V = {vg, ..., v—1}, and a vertex set of check
nodes C = {cg, ..., tm—1}. The variable nodes correspond to
the columns of H, and the check nodes correspond to the rows
of H. h; represent the ith parity-check equation of H, Hj;
represents the connection relationship between the variable
node v; and check node c;. It is defined that there exists an
connected edge between variable node v; and check node ¢;,
if Hjj = 1.

Let S denote a subset of {0, 1}, the set of all binary vectors
of length n. At any point during the tree search process, a
constraint set, F is defined to consist of bit positions p; and
the states of these bit positions sp,, sp; € {0,1}. The support
set X (F) of the constraint set F, is the set of positions where
Sp; = 1 and the Hamming weight w(F) of F is the total
number of such positions. The sub-matrix Hy () is defined
by the columns of H where s,; = 1, and the row weight
of hf(}-) is the total number of 1's at row i. A row of
h; is considered as an active row of HX(].-), if w(hf(]:))
has odd row weight. If a constraint set F with size of n
contains no active rows of Hy(x), then the set F forms
a codeword with weight w(F). Thus a codeword set is a
subset of {zo, ..., Z,—1} with Hamming weight d, d = w(F),
where the induced subgraph contains no check node with odd
degree. The minimal Hamming distance dn, is defined as the
minimal weight of the non-empty codeword set. If there exist
active rows, then J has either to be appended with additional
bit positions if |[F| < n, or one or more states sp, need to be
changed to compensate the active rows with odd row weight.

B. Tree-search based Codeword Set Enumeration Algorithm

Since we aim to find codewords excluding stopping sets, the
search criteria can be simplified based on [15]. The algorithm
termed, the Tree-search based Codeword Set Enumeration
(TCSE) algorithm is designed to search all the codeword set
up to size of threshold 7 for any parity-check code C.

In the equivalent graphical tree view representation, the
constraint set can be considered as a branch of the tree, which
represents the set of searched known bit-positions of a code
C. |F| denote the size of F, representing the known depth
of the tree. Since the active row is defined as the row with
odd weight, thus the set of active rows in H is denoted by
{bo,..-,hp—1}, where ¢ is the total number of active rows.
A constraint set F with size n is said to be valid if and
only if there exists no active row in Hy(r), in other word, a
codeword is found. The pseudocode of the algorithm to find all
the codeword sets by threshold size 7 is given in Algorithm 1.

Algorithm 1 Tree-search based Codeword Set Enumeration
(TCSE)
repeat
Pick one untouched branch as a constraint set F.
if |F| =n and w(F) <7 then
Constraint set F is saved, if F is valid
else
1). Pass F to the iterative decoder with erasures in the
unconstrained positions.
2). Construct a new constraint set 7' with new decoded
positions, which is the extended branch.
if | F'| =n and w(F’) < 7 then
Constraint set ' is saved, if 7' is valid
else if No contradiction is found in H x(7), and
w'(F') < 7 then
a). Pick an unconstrained position p.
b). Extend the branch F’ to position p to get new
branch 7’ = F'|J{(p,1)} and branch F"’ =
F U{(p,0)}.
end if
end if
until Tree has been fully explored by threshold 7

When the whole tree has been explored constrained by the
lower bound, the list of the saved constraint sets in full size n
is the whole set of codewords up to size of 7. The contradiction
is considered as that if w(hf f)) =1 and w(h;X(f)) =0,
where hix(}_) is the row weight of row ¢ for the unconstrained
positions {p; : (p;,1)} € {0,1,...,n — 1}\F intersected by
row 7 on H. The iterative BP decoder over the erasure channel
is considered as the candidate iterative decoder. It should be
noted that it is not necessary to call the iterative decoder unless
the condition of w(hgx(f)) = 1 is met. Thus it helps reduce
the computing complexity to call the decoder for every new
branch F’. The lower bound algorithm w'(F")and position

selection criteria follow the same rule as in [15].

III. ALGORITHM INSPIRED BY DORSCH ALGORITHM

The codeword search approach of the proposed algorithm is
different from the the approaches in [4], [8], a set of codewords
satisfying the parity-check matrix H is explored instead of
the codes generated by the re-ordered nearly most-reliable &
information bits. Furthermore, the number of search size might
be constrained by a updated threshold. The BPSK-modulated
codeword x is transmitted through the AWGN channel and
received as the vector r = {ro,...,rn_l} € R, which is
affected by noise with variance o2. A hard-decided received
vector b € {0,1}" is derived from the received vector r
using bit-wise decisions. Usually, the binary vector b is not
a codeword. The re-encoded codeword X is produced by H
according to the binary information set of b. The maximum
attainable correlation Y;,,, with the received vector is given

by
n—1
Ymaz = Y Il 00
=0

According to the extended Dorsch decoding algorithm [8], the
codeword X; with low Hamming weight is used to find the
closest codeword x;, which has the highest cross-correlation
corresponding to the received vector r, such codeword is given
by

X =XDX; 0))

Then the corresponding binary error vector z; is given by
zZ,=bdXd%; 3)
The first error vector Z is defined as
2=bax @
Thus the cross-correlation cost Y (x;) is given by
Y (%) = Yimaz — Ya(x:) (&)
where YA (x;) is defined by

n—1
Ya(xs) =2 (2 @%;,) x Iy ©6)
j=0

In order to find the codeword x; with smallest cross-correlation
reduction from Y,,,4., which is the smallest difference between
Yinaz and Y'(x;), then we find the smallest Y (Xynin), starting
with Y (X)

Ya (xmin) = min(YA (xi)))]

This may be achieved by searching for the low weight code-
word x; using the TCSE algorithm.

IV. SIMPLIFIED APPROACH BASED ON TCSE ALGORITHM

Atlow SNR, the low weight codeword search has to proceed
until the threshold is reached, and the simple method bound
does not provide a sufficiently tight lower bound to limit
the size of codeword search. Another approach based on the
basic algorithm is proposed. It is to use TCSE algorithm to
search for an error vector &;, which contains an index set T,
consisting of positions, where their values are different from
received binary vector b. Thus the error vector €; is given by
s {|b] 1|, ifj€Ts, @

i = .
0, otherwise

The cross-correlation difference Ya(€;) corresponding to
Yraz is given by

n—1
Ya(@)=2) (&;) x |r)])
j=0

The smallest correlation difference Y (em;n) is given by
Y (emin) = min(Ya(&;)) (10)

Then the constraint set F is redefined as a set with s,, =
|bp; — 1|, which produces extra correlation cost R(F) =

Algorithm 2 Simplified Tree-search based Error-vector Set
Enumeration (STESE)
repeat
Pick one untouched branch as a constraint set F.
if R(F) < Ya(emin) then
1). Constraint set F is picked, if F is valid.
2). And YA (emin) is updated as R(F)
else
Active rows set hr is collected
if R/ (.7:) < YA (emin) then
a). Pick an unconstrained position p.
b). Extend the branch F to position p to get new
branch F' = F | J{(p, |bp — 1])}.
end if
end if
until Tree has been fully explored by updated Yo (emin)

(I, 1). F is said to be valid if and only if H(é5 & b) =
0, where éx is the error vector corresponding to constraint
set F with extra cost less than threshold YA (€55). In other
words, there is no active row for (éx @b) on H. The
simplified tree-search based error vector enumeration (STESE)
is depicted in Algorithm 2 to search all the error vectors
with extra cost up to Ya(emis), which might be initialised
as Ya(2). The simplified algorithm is designed to find all the
potential error-vector sets with extra cost less than threshold.
Once a smaller error vector is found, then the threshold is
updated. Thus the search size of the error vectors is reduced
as the threshold decreases. R'(F) is designated to compute
the lower bound of potential cost corresponding to F.

A. Computing R'(F) on F

The simple method bound given in [15] computes the
intersected positions by active rows ordered by column-weight.
Each ordered position with its column-weight is deducted
from the total number of active rows ¢ until all active rows
are compensated. Thus the number of deducted positions is
the least possible bound, which guarantees that no potential
p missed. The proposed bound algorithm is to estimate the
potential coordinates where their column weights could com-
pensate the active rows, meanwhile their total cost has to be
less than the difference between threshold and R(F). Let
I(F) = {Liy(F), ..., Ii,_,(F)} be the active rows index set,
where I;, (F) is the set of active rows on JF corresponding to
the igth column of H, and q is the total number of intersected
positions. First of all, the bound is designed to order the
intersected positions by their normalised cost, which is its cost
73| divided by the column weight w(I;,). Then it follows
the same strategy, the least ordered position is picked. Its
column weight is deducted and the threshold is checked, it
is repeated until all active rows are compensated or threshold
is exceeded. During observations, the lower bound algorithm
can not provide the least probable bound, as the normalised
position can not guarantee to attain all the potential error
patterns. Such issue could be the involved positions actually

Algorithm 3 Lower bound algorithm to find a satisfied
position-combination
repeat
Pick one unflagged position as a list set L.
if (R(L) +R(F)) < Ya(emin) and w(L) > ¢ then
1). The satisfied position-combination is found.
2). Break.
else if w(L) < ¢ then
a). Pick an unflagged position p based on 7(L), where
(R(L) + R(F) + Irpl) < Ya(emin)-
b). Extend the list £ with position p to get new £’ and
n(L") = m(L)Up).
end if
until Combination is found or maximum iteration number
is reached

could produce different combinations to satisfy the check
criteria without in any arranged order.

Thus a lower bound algorithm is realised to find a possible
position combination to satisfy the requirement of all active
rows’ compensation and extra allowed cost. Let £ be a list set
€ {0,...,n — 1} to store positions’ indices. 7(L) is denoted
as a flag set to flag the positions on L, it consists of the posi-
tions selected in £ and the excluded positions. The excluded
position is the position p with (|rp| + R(F)) > Ya(€min)-
The position combination search algorithm is inspired by
the codeword search algorithm, which follows the similar
strategy. The proposed position-combination search algorithm
as a lower bound is depicted in Algorithm 3, where w(L)
represents the total number of column weight corresponding to
the positions in L. The allowed cost based on F decreases, as
the R(F) reaches the threshold. Once the qualified number of
intersected positions gets smaller, then the iterations in finding
a position-combination gets faster and easier to determine. At
the beginning stage of extending the search on the tree, there
might exist a relative large number of positions based on the
active rows, even though H is sparse. With the increase of
the codeword length, the complexity of computing the lower
bound is significantly increased, a limitation on the iteration is
required to stay within a reasonable computational complexity.
The position for the extended tree search from computing on
the lower bound is ideal to pick the position in the approved
combination with highest column-weight and least cost at the
same column weight.

V. NUMERICAL RESULTS

The simulated code is the assorted (3,6) regular Gallager
code (120,56,10) [2], [17], which provides a very sparse
parity-check matrix. The corresponding results of the code
with iterative output, optimum output and sub-optimal OSD-:
output are shown in Fig. 1. The BP iterative decoding output
is achieved with 50 iterations and has better performance than
OSD-1 with 0.5dB additional coding gain at 4.5dB % The
decoder uses the algorithm described above with a limitation
of 107 nodes search and 500 iterations of position combination

10° g

Frame Error Rate (FER)
oL

Proposed Optimum —w»—
Uni|on Bound - ol

1
0 1 2 3 4 5 6
Eb/No, (dB)

Fig. 1. FER Performance of Assorted Regular Gallager Code (120, 56, 10)

10° =

10" |
102 |
103 |
10
10

10®

Frame Error Rate (FER)

Proposed Optimum —v— 1
Urion Bound -;-:~~—

0 1 2 3
Eb/No, (dB)

Fig. 2. FER Performance of Tanner Code (155, 64,20)

10710

search for the lower bound. With such decoding arrangement,
the decoder successfully achieves near-optimum performance
compared with the computed union bound.

The Tanner code (155,64) is a (3,5)-regular LDPC code
constructed by Tanner [18]. The underlying Tanner graph has
girth 8 and its relatively large minimum distance of 20 makes
the code an excellent candidate for iterative decoding. The
results of the code with iterative output, optimum output and
sub-optimal OSD-7 output are shown in Fig. 2. The optimum
decoder is with the proposed algorithm with limitation of
1 x 108 nodes search. Furthermore, the lower bound is limited
to 500 iterations during the position combination search, which
is sufficient to find the maximised codeword. From the results
it can be seen that the iterative decoding performance achieves
similar results to the OSD-2 decoder. As the order number % in-
creases, the sub-optimal decoding performance is significantly
improved by more than 1dB additional coding gain for each
increased order number. And the near-optimum decoding per-
formance is successfully achieved by the proposed tree-search
based error-vector searching decoder using 500 iterations of
position combination search and 10® maximum nodes search.

The near-optimum decoding performance approaches closely
to the computed union bound at 4dB %

VI. CONCLUSION

In this research, a new approach of achieving maximum-
likelihood achievement based on the Dorsch decoder is in-
troduced. The approach utilises an efficient exhaustive tree
search algorithm to find a low-weight codeword, which is
used to find the closest codeword to the received vector. A
further optimisation has been described, which is based on
the basic algorithm to exhaustively search for a low weight
error vector, in order to determine the closest codeword.
The practical simulation results have demonstrated that the
proposed decoder algorithm is able to approach the near-
optimum decoding using a bounded search algorithm. Since
the search exploits the sparseness of the parity-check matrix
of the code, it is more suitable for linear block codes having
very sparse parity-check matrices, such as LDPC codes.

REFERENCES

[1] R. Gallager, Low-Density Parity-Check Codes, Cambridge, MA: MIT
Press, 1963.

[2] D. MacKay, “Good error correcting codes based on very sparse
matrices,” IEEE Transactions on Information Theory, vol. 45, pp. 399—
431, Feb 1999.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near shannon limit
error-correcting coding: Turbo codes,” in Proc. IEEE International
Conference on Communications, Geneva, Switzerland, 23-26 May 1993,
pp. 1064-1070.

[4] B. Dorsch, “A decoding algorithm for binary block codes and j -ary
output channels,” IEEE Transactions on Information Theory, vol. 20,
pp- 391-394, May 1974.

[5] M. P. C. Fossorier and S. Lin, “soft-decision deocidng of linear block
codes based on ordered statistics,” IEEE Transactions on Information
Theory, vol. 41, no. S, pp. 1379-1396, Sep 1995.

[6] M. P. C. Fossorier, “Reliability-based soft-decision decoding with
iteartive information set reduction,” IEEE Transactions on Information
Theory, vol. 48, no. 12, pp. 3101-3106, Dec 2002.

[7] A. Valembois and M. P. C. Fossorier, “Box and match techniques applied
to soft-decision decoding,” IEEE Transactions on Information Theory,
vol. 50, no. 5, pp. 796-810, May 2004.

[8] M. Tomlinson, C. Tjhai, and M. Ambroze, “Extending the dorsch
decoder towards achieving maximum-likelihood decoding for linear
codes,” IET Communications, vol. 1, no. 3, pp. 479-488, 2007.

[9] G. Richter, “Finding small stopping sets in the tanner graph of ldpc
codes,” in Proc. 4" Int. Symp. on Turbo Codes & Related Topics,
Munich, Germany, Apr 2006.

[10] M. Hirotomo, Y. Konishi, and M. Morii, “A probabilistic algorithm for
finding the minimum-size stopping sets of ldpc codes,” in Proc. IEEE
Information Theory Workshop, Porto, Portugal, May 2008, pp. 66-70.

[11] C. C. Wang, S. R. Kulkami, and H. V. Poor, “Finding all small error-
prone substructures for ldpc codes,” IEEE Transactions on Information
Theory, vol. 55, pp. 1976-1999, May 2009.

[12] E.Rosnes and O. Ytrehus, “Turbo stopping sets: The uniform interleaver
and efficient enumeration,” in [EEE International Symposium on
Information Theory, Adelaide, SA, Australia, Sep 2005, pp. 1251-1255.

[13] E. Rosnes and O.Ythehus, “Turbo decoding on the binary erasure chan-
nel: finite-length analysis and turbo stopping sets,” IEEE International
Symposium on Information Theory, Feb 2006.

[14] E. Rosnes and O. Ytrehus, “An algorithm to find all small-size stopping
sets of low-density parity-check matrices,” in IEEE International
Symposium on Information Theory, Nice, France, June 2007.

[15] Marcel Ambroze, Martin Tomlinson, and Li Yang, “Exhaustive weight
spectrum analysis of some well known ldpc codes,” in the 10" IEEE
International Communication Theory and Applications (ISCTA 09), Lake
District, UK, March 2009.

[16] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Transactions on Information Theory, vol. IT-27, pp. 533-547, September
1981.

[17] D. J. C. MacKay, “Encyclopedia of sparse graph codes,” Available:
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html.

[18] R. M. Tanner, D. Sridhara, and T. Fuja, “A class of group-structured
Idpc codes,” in Proc. Int. Symp. on Commun. Theroy and Appl. (ISCTA),
Ambleside, England, July 2001.

	A study of iterative capacity-approaching codes and their optimal decoding algorithms.
	Recommended Citation

	tmp.1730156120.pdf.VDUuu

