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A neural network–based model for lower limb continuous

estimation against the disturbance of uncertainty

Wanting Li1, Keping Liu1,∗, Zhongbo Sun1, Chunxu Li2, Yuanyuan Chai1, Jian Gu1

1.Department of Control Engineering, Changchun University of Technology, Changchun 130012,
PR China

2.Centre for Robotics and Neural Systems, University of Plymouth, Plymouth PL48AA, UK

Abstract

In this paper, a novel prediction model is proposed to estimate human continuous
motion intention using a fuzzy wavelet neural network (FWNN) and a zeroing neural
network (ZNN). During walking, seven channel surface electromyography (sEMG)
signals and motion data of hip and knee are collected, and two signals are selected
and processed from the seven muscles based on physiological and correlation analysis.
Then, FWNN is built as an intention recognition model, with sEMG signals as input
and physical hip and knee information as output. Meanwhile, ZNN is exploited into
the FWNN model, forming a hybrid model to eliminate the prediction errors of the
FWNN model. Finally, comparative numerical simulations are established to indicate
the validity of the FWNN–ZNN model with root mean square error (RMSE), mean
absolute error (MAE) and coefficient of determination (R2) as evaluation indexes.
Results show that the proposed FWNN–ZNN model can more accurately estimate
human motion intention, which lays the theoretical foundation for the human–robot
interaction of rehabilitation robots.
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Correlation analysis, Zeroing neural network
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1. Introduction

With the development of signal detection technology, it has become a highly
concerned research via sEMG signals to evaluate the activity of neuromuscular in
recent years [1–3]. The sEMG is a comprehensive effect of superficial muscle and
nerve trunk electrical activity on skin surface, which contains a wealth of information
about human behavior. Decoding human behavior information effectively can not
only provide a solid theoretical basis for the study of human behavior change law, but
also provide effective information for human-computer interaction [4, 5]. The study
of sEMG has important practical value in the fields of clinical medicine, biological
engineering, sports science and rehabilitation medicine [6–8].

In the field of rehabilitation medicine, the rehabilitation robot is a successful ex-
ample, and the main research on sEMG is in three aspects. Firstly, sEMG signals are
effectively collected and extracted to provide accurate intention recognition [9, 10].
For the multi–classification problem, a two–step supervised learning method is pro-
posed, which can effectively deal with the challenges of weak robustness, insufficient
generalization ability and lack of training data in the study of EMG–based hand ges-
ture classification [9]. Second, the simple and optimized interactive control method
is designed for the robot [11–13]. In [11], a solar–powered wheelchair is designed,
which employs the intention recognized by the adaptive neuro–fuzzy system from the
sEMG signals as the control input of the wheelchair. The third aspect, muscle activ-
ity is utilized to evaluate human physiological indicators and the auxiliary effects of
wearable robot [14–16]. In order to ameliorate the efficiency of clinical evaluation, a
fuzzy logic–based method is displayed to automatically assess the impairment degree
of stroke patients via sEMG signals [14]. In particular, the precise intention recog-
nition based on sEMG is the premise of completing the other two studies. Thus,
intention recognition based on sEMG is the focus of research in the field of rehabil-
itation medicine, which needs to be studied intensively. Commonly, there are two
types of continuous motion intention recognition methods, including muscle model
and regression model. The basic framework of the muscle model is the joint dynam-
ics model, in which the input is sEMG signals and the output is the joint posture,
angular velocity, joint torque. As a muscle model, hill–based muscle model (HMM)
is widely applied in motor intention estimation [17, 18]. [17] combines joint dynam-
ics and HMM to establish a state-space model for continuous motion estimation.
Considering generalization, the synthesized maximum normalization is designed in
order to eliminate the dependence of prediction model on different external loads. It
is crucial to accurately identify the HMM parameters for motion intention recogni-
tion. However, it is difficult to construct the HMM for practical application owing
to some physiological parameters that cannot be directly measured. On the other
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hand, the regression model is constructed between the sEMG signals and joint mo-
tion information to predict human motor intention, among which neural network is
the most commonly applied [19–22]. In [19], continuous wavelet transform integrated
into back propagation neural network is proposed to estimate the continuous motion
intention of the upper limb via the sEMG signals under human-robot interaction,
but the correlation between the selected muscles and the recognized movements is
not considered. In [20], an improved fuzzy neural network is applied to the elbow
joint angle estimation, and the feasibility of this method is proved by comparative
experiments. To estimate the posture of the upper limb in continuous motion, the
SCA-LSTM algorithm is proposed, which reduces noise interference by custom max-
imum root mean square envelope preprocessing method [21]. Nevertheless, the linear
processing mode of long short–term memory leads to an increase in prediction time,
which hinders online application in human–robot interaction.

Unavoidably, there are non–ideal conditions in sEMG signals acquisition, such
as skin sweating, electrode movement and electrode shedding, which will reduce the
accuracy of intention recognition. The interactive system is a key solution to this
problem, which eliminates this interference while retaining useful information. For
discrete motion estimation, [23] developers a myoelectric pattern recognition based on
adaptive incremental hybrid classifier, which improved the robustness of myoelectric
pattern recognition against interference and has been proved by experiments. [24]
adopts information fusion technology by integrating multiple sensors to improve the
prediction accuracy of upper limb motion intention, but the algorithm complexity
is increased. Nevertheless, this problem has not been thoroughly discussed in the
identification of lower limb continuous motion intention. The traditional regression
model has disadvantages, such as strong randomness, error accumulation and unable
to eliminate interference, which leads to large forecasting errors. In addition, the
network parameters of the neural network are excessively dependent on the training
set. In other words, it is easy to cause the prediction error once the test data and
training data are different. However, the closed–loop system is essential to overcome
these problems. ZNN has exponential convergence in the framework of a closed–loop
system, which can be introduced into the estimation model to eliminate errors [25–
27]. In [25], the ZNN model is comprehensively interpreted, with the core idea
being the construction of an error function. Besides, a noise–tolerant zeroing neural
network model is proposed considering the nonlinear system with various noises [28–
31]. [31] surmounts the disadvantage that traditional solvers can only handle static
problems. The effectiveness and advancement of the two discrete–time ZNN models
proposed from both theoretical and numerical perspectives are proved by taking a
planar four–link manipulator as an example.
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In this paper, a novel prediction model combining FWNN and ZNN, named as the
FWNN–ZNN model, is developed to estimate lower limb motor intention by sEMG
signals. The salient points are summarized as follows. First, the muscles associated
with hip and knee joints are selected during walking according to physiology and
correlation analysis. Further, by analyzing the stability and convergence of ZNN,
the FWNN–ZNN model is utilized to eliminate the prediction error in the FWNN
model for the uncertain influence in the forecasting process. Finally, the availability
and superiority of the FWNN–ZNN model is verified by comparative experiments
with the FWNN model.

This paper is arranged as follows. Section 2 introduces the collection, process-
ing and selection of experimental data. In Section 3, by analyzing the stability and
convergence of ZNN, a novel neural network-based method via ZNN and FWNN is
developed for the estimation of lower limb motion intention. Section 4 characterizes
the performance of the FWNN–ZNN model by analyzing and comparing experimen-
tal results. Section 5 presents a summary and outlook.

2. Experimental

2.1. Signal acquisition
The purpose of this experiment is to estimate hip and knee angles during human

walking based on sEMG from leg muscles. Figure 1 shows the muscle distribution
of the left lower limb. The thigh muscles are divided into anterior, posterior and
medial groups [32]. The muscles of the anterior group are dominated by the femoral
nerve, which mainly controls hip flexion and knee flexion-extension. The anterior
group includes sartorius (SR), rectus femoris (RF) and lateral femoral (LF). The
muscles in the posterior group are innervated by the sciatic nerve, mainly controlling
hip extension and knee flexion. The posterior group consists of biceps femoris (BF),
semitendinosus (ST) and semimembranous (SM). The medial group was not stud-
ied because the muscles in the medial group controlled hip adduction and external
rotation.

All the muscles in the calf muscles control foot movement except for the gas-
trocnemius (GM), which controls knee flexion. As a result, sEMG of seven muscles
including SR, RF, LF, BF, ST, SM and GM are recorded at a frequency of 2,000 Hz
via the MP160 system (BIOPAC Systems Inc., American), as presented in Figure 2.
Simultaneously, hip and knee joint angles are sampled by a gyroscope sensor (Wit
Motion Co. Ltd., China) with a 100 Hz sampling rate to supply real-time data during
walking, as shown in Figure 2.

The experimental scenario is illustrated in Figure 2. An able-bodied subject
(male, 25 years old, 1.75 m, 65 kg) is invited to participate in the experiment. The
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Figure 1: The muscle distribution of the left lower limb.
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Figure 2: The experimental scenario.
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equipment for data acquisition is worn on the subject’s left limb to collect sEMG
signals and joint angles while the subject walks on the treadmill. Disposable gel
electrodes, attached to the muscles, are recommended by sEMG for the non-invasive
assessment of muscles guidelines [33]. The electrode has the advantages of strong
adsorption and is difficult to shift, but the signal acquisition principle makes the
collected signal easy to introduce adjacent muscles crosstalk [34]. Therefore, it is
crucial to determine the position and method of sticking the electrodes that will
affect the accuracy of continuous motion estimation. Electrodes are attached to
each muscle in pairs, about 2 cm apart (centre to centre). In particular, hair and
skin keratin are not cleaned in order to improve the practicality of the proposed
method. Figure 3 demonstrates the collected primary sEMG signals. The acquired
joint motion information is introduced in Figure 4.

Figure 3: The collected sEMG signal.

2.2. Signals processing

The acquired sEMG signals are weak signals and contain a variety of noises, which
can easily make the sEMG signals distortion. First, the sEMG signals collected from
the skin surface are inevitably influenced by physical factors such as hair, sebum, and
cross–talk from adjacent muscles. Moreover, the sEMG signals are also affected by
the electrode cables and power frequency interference during the acquisition process.
The noises make the acquired signals vibrate violently, which will affect the accuracy
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Figure 4: The angle, angular velocity and angular acceleration of joints are collected.

of the estimation. The sEMG power spectrum is mainly concentrated at 20–50 Hz.
Consequently, a band–pass filter and a notch filter (50 Hz) are necessary to eliminate
the noises from the primary sEMG signals. The primary sEMG signals after simple
noise elimination are named the preprocessed sEMG signals.

The preprocessed sEMG signals have frequent oscillations and random ampli-
tudes. To solve the problem, the digital processing of sEMG signals is carried out
by a full–wave rectification method. The process can be done by:

sEMGr(n) = |sEMGp(n)| (1)

where sEMGp(n) is the nth amplitude of the preprocessed sEMG signals, sEMGr(n)
is the nth amplitude sample of the signals though full–wave rectification, as shown
in Figure 5.

The sampling frequency of the gyroscope sensor is 100 Hz, while the sampling
frequency of sEMG acquisition equipment is 2000 Hz. The sEMG signals need to be
sub-sampled to ensure the input and output of the model are one-to-one mapping.
The sub-sampling can be expressed as

sEMGsub (n) =
1

N

nN∑
i=nN−N+1

sEMGr (i) (2)

where N is the time of sub–sampled required for the signals, sEMGsub (n) is the
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Figure 5: The collected sEMG signals are subjected to full-wave rectification and linear envelopes.

signals through sub–sampling. Considering the real–time performance, the Butter-
worth filter is adopted for low-pass filtering of the signals. The transfer function of
the Butterworth filter adopted is:

G2 (ω) = |H(jω)|2 =
G2

0

1 +
(
ω
5

)4 , (3)

where G0 is the DC gain. This filters out individual peaks, resulting in a smooth
linear envelope that reflects the magnitude of sEMG activity. Hereby, the linear
envelopes of signals are obtained and described in Figure 5. In the final stage,
the linear envelopes are normalized to the interval [0,1], which are treated as input
parameters for the estimation model.

2.3. Correlation analysis

There are many muscles associated with hip and knee movements in the lower
limbs. It is necessary to explore the correlation between muscles and moving joints
during walking. Finding the muscles most related to hip and knee motion can better
carry out the prediction experiment and obtain more valuable results for estimating
lower limb motion intention.

Correlation analysis is a statistical method to study whether there is such an
uncertain relationship between things or phenomena. CC is a variable that reflects
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the degree of linear correlation between variables. According to the different research
objects, CC is divided into simple CC, multiple CC and typical CC. It is a time series
analysis to estimate lower limb motor intention based on sEMG signals, in which the
relationship between sEMG signals and joint angles is non-deterministic. In this
paper, the simple CC is utilized to analyze the correlation between sEMG signals
and joint angles to find the most suitable muscles for the prediction experiment,
which is defined as

CCs =
Cov(x, ypre)√

Var(x)Var(ypre)
, (4)

where x represents the normalized linear envelope of sEMG signals, ypre denotes the
joint angle, Cov(x, ypre) is the covariance of x and ypre, Var(x) and Var(ypre) are the
variances of X and ypre, respectively.

Table 1: Correlation analysis between sEMG signals and joint angles.

ST SM GM SR BF LF RF

Anglehip 0.2432 0.0343 0.1983 0.1875 0.6009 0.2771 0.0444

Angleknee 0.3677 -0.0145 0.8182 -0.1502 0.3670 0.4073 -0.3943

Correlation analysis between sEMG signals and joint angles is demonstrated in
Table 1. Generally, the greater the CC, the stronger the relationship between the
sEMG signals and joint angles, the better the prediction effect. As it can be seen,
CC(BF, Anglehip) and CC(GM, Angleknee) are the values with the highest correlation
between sEMG signals and joint angles. Hereby, the estimation accuracy of lower
limb motion intention can be improved by selecting sEMG of BF and GM as the
input of prediction.

2.4. Skeletal dynamics model

Based on motion anatomy, the force generated by muscle contraction causes the
connected joints to produce torque, which pulls the bone and creates joint movement.
It is essential to establish the dynamic equation of the lower limb to study the change
of joint motion information during human walking. A skeletal dynamics model of
the lower limb is established considering only the motion of the hip and knee joints
around the frontal axis, which represents the relationship between joint torque and
joint angular velocity. Figure 6 displays the lower limb skeleton.
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Figure 6: Skeleton model of the left leg.

Based on the Lagrangian–Euler formulation, skeletal dynamics model of the left
leg can be reformulated as

M (q) q̈ + C (q, q̇) q̇ +G (q) = τm, (5)

where M is the inertia matrix, C denotes the centripetal and coriolis, q, q̇ and
q̈ indicate the angle, angular velocity and angular acceleration of joints, G is the
gravity matrix, τm is the torque applied on joints.

Accordingly, the relationship between angular velocity and torque can be ex-
pressed as {

q̇1 = q2,
q̇2 = −M−1 [C (q1, q̇1) q̇1 +G(q1)] +M−1τm,

(6)

where q1 and q2 represent the angle and angular velocity of joints.

3. Neural network–based model

3.1. FWNN model

Continuous motion recognition based on sEMG signals is challenging because
of its limited datasets, strong randomness, and difficult modeling. In this section,
the wavelet function and adaptive fuzzy neural network (AFNN) are combined to
form the FWNN to estimate lower limb motor intention. In this fuzzy system, the
relationship between sEMG signals and joint information values is interpreted as
decipherable fuzzy rules. FWNN combines the advantages of fuzzy logic, wavelet
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function and neural network, which can quickly and accurately estimate the contin-
uous motion of lower limbs. Wavelet functions aim to replace the linear functions
in the THEN part in order to improve the computing ability and computing time
of the fuzzy system. AFNN integrates the wavelet function into the IF–THEN rule,
which belongs to the Takagi–Sugeno–Kanag type with high learning accuracy, and
is expressed as:

Ri: if x1 is Ai
1, and x2 is Ai

2, . . . ,and xr is Ai
r,

then yi = ωj

r∑
j=1

ψij (xj) , (7)

where xj is the j-dimensional input variable of rule i, j = 1, 2, . . . , r,i = 1, 2, . . . , n
is the number of rules, yj and ωi are the output and weight coefficients of rule i, Ai

j

denotes the membership function of input, ψij is obtained by stretching and shifting
the wavelet mother function. It is defined as:

ψij(xj) = [1− (
1

bij
(xj − aij))2]exp

−(xj − aij)2

2b2ij
. (8)

Figure 7 introduces the structure of FWNN. To reduce the complexity of the
model, a simplified adaptive fuzzy reasoning system is applied to the model.

Layer 1: Input layer, which brings external data into network without informa-
tion processing.

Layer 2: Membership function layer. The number of nodes is obtained by
subtraction clustering algorithm. Gaussian function is selected, as shown in Equa-
tion (9):

Ai
j(xj)exp

−(xj − aij)2

2b2ij
. (9)

Layer 3: The fuzzy inference layer calculates the excitation intensity of each
rule. To simplify structure, the fuzzy rules and membership functions have the same
number. The output of the jth node is:

µj =
r∏

j=1

Ai
j(xj). (10)

Layer 4: The normalized layer, which aims to normalize the nodes of the previous
layer. The output is:

µj =
µj∑n
j=1 µj

. (11)
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Figure 7: Structure of FWNN.

Layer 5: Regular output layer, whose output is:

Wj = µjyj. (12)

Layer 6: Network output layer, the output is the sum of all the rule output.

y =
n∑

j=1

Wj. (13)

FWNN model is designed to estimate joints angles and angular velocites via
sEMG signals. Normalized envelopes of sEMG signals are taken as the input of the
model, which can be defined as:

xi = [xi,1, . . . , xi,s] , s = 1, 2, i = 4000, (14)

where s represents sEMG of BF and GM. The acquired data are taken as the expected
output,

yexp = [y1,j, . . . , yi,j] , j = 1, . . . , 6, (15)

where j represents joint angle, angular velocity and angular acceleration of two joints.
The output of FWNN can be defined as:

ypre = [y1,j, . . . , yi,j] , j = 1, . . . , 6. (16)

12



3.2. ZNN

The motion intention by the FWNN model is an open–loop system as visualized
in Figure 8. In general, the open-loop system without automatic correction capa-
bility results in increased prediction errors. The errors, such as assumptions about
physiological parameters, simplification of models and noise between sensors, will
lead to inaccurate estimates of lower limb motor intention. However, the effect of
cumulative error is able to be effectively eliminated by the closed-loop method.

ZNN has exponential convergence, which is derived from recurrent neural net-
work [27]. ZNN aims to construct an error function, such as making the prediction
error of the FWNN model approach zero. In [28, 29], the zero–finding problem is
defined as follow:

g(y(t), t) = 0 ∈ Rn×n , t ⊆ [0,+∞) , (17)

where y(t) ∈ Rn×n is the real time variable, g : Rn×n × [0,+∞) → Rn×n is the
nonlinear time-varying mapping function. Since the solution y∗(t) of zero–finding
problem exists at t ⊆ [0,+∞), the error function is expressed as:

E(t) = g(y∗(t), t)− g(y(t), t) = 0− g(y(t), t). (18)

In addition, the problem (17) and (18) can be transformed into the classical
nonlinear dynamical model{

ẏ = u(t),
ψ(t) = g(y(t), t) = −E(t),

(19)

where y(t) represents the time-varying state variable, u(t) and E(t) are the input
function and output function of a nonlinear dynamic model. Therefore, the error
function is designed to be Ė(t) = −λE(t) and a set of n × n decoupled differential
equations is equivalently generalized as

ėi,j(t) = −λei,j(t), (20)

where i, j ∈ {1, 2, 3, ..., n}, λ > 0 is related to the rate of convergence.
Theorem 1: When the error function ei,j(t) satisfies (20), the state variable y(t)

of nonlinear dynamic system (19) globally and exponentially converges to y∗(t), the
control law can be generalized as

u(t) = −
(
∂g(y(t), t)

∂y

)−1(
λ · g(y(t), t) +

∂g(y(t), t)

∂t

)
. (21)
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Proof: From formula (20), the Lyapunov function candidate can be defined as

νi,j (t) =
e2i,j (t)

2
> 0. (22)

The time derivative of formula (22) can be written as

ν̇i,j (t) =
dν (t)

dt
= ei,j (t) ėi,j (t) = −λe2i,j (t) 6 0. (23)

According to Lyapunov theory, as time t tends to infinity, starting from any ei,j(0),
ei,j(t) globally asymptotically stable and exponentially converges to zero with a rate
λ > 0. Further, by substituting Equation (20) into Equation (19), the following
implicit formula is obtained:

ξ(y(t), t)ẏ(t) = −λ(g(y(t), t))− ∂g(y(t), t)

∂t
(24)

The control law (21) can be obtained by substituting Equation (24) into classical
nonlinear dynamic system (19).

3.3. FWNN–ZNN model

The accuracy of intention recognition can be improved by introducing a ZNN–
based closed-loop system into the prediction model. When the predicted values
deviate from the expected values in the closed-loop system, the corresponding control
function will be gained to eliminate the error. Hence, the closed-loop system has the
characteristics of reducing interference and enhancing the ability of model prediction.
The structure of the FWNN–ZNN model is introduced in Figure 8.

Based on equation (5), the total torque τF,i estimated by the FWNN model can
be expressed as

τF,i = M (q1,i) q̈1,i + C (q1,i, q2,i) q2,i +G (q1,i) , (25)

where q1,i, q2,i and q̇2,i respectively represent the predicted joint angle, angular ve-
locity and angular acceleration predicted by the FWNN model.

According to the dynamic equation, the above equation can be converted into:{
q̇1,i = q2,i,
q̇2,i = −M−1 [C (q1,i, q̇1,i) q̇1,i +G(q1,i)] +M−1τF,i.

(26)

The nonlinear dynamic model (19) is discretized by first-order Euler difference,
and combined with the FWNN model (26), the FWNN–ZNN model can be expressed
as follow:

14
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Figure 8: Flowchart of motion intention estimation.

{
qk+1 = qk + q̇kTs,
q̇k+1 = g(qk, tk) + u(tk),

(27)

where Ts is the sampling time, qk = [qi,k; q̇i,k] denotes the time-varying state variable.
The g(qk, tk) can be described as

g(qk, tk) = [q2,i,k;−M−1 [C (q1,i,k, q̇1,i) q̇1,i,k +G(q1,i,k)] +M−1τi,k], (28)

Let e(tk) = qd,k − qk, combining the equation (21) and discrete time technique.
Here, qd,k = [q1; q2] in equation is the desired state variable, the controller can be
described as

uZNN(tk) = q̇d,k + γ(qd,k − qk)− g(qk, tk). (29)

The ZNN controller (29) provides the control framework to deal with the con-
vergence and robustness of the time series prediction model, which improves the
accuracy of motion intention recognition.

4. Results and analyses

To demonstrate the feasibility of the proposed FWNN–ZNN model, the continu-
ous motion estimation experiment of the lower limb is established based on the sEMG
signals and joint information. Keeping all parameters unchanged, the experiment is
randomly set in triplicates to avoid accidental phenomena and make the results more
reliable. In addition, the estimation experiments of the FWNN model are utilized
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to form comparative experiments, which explore the superiority of the FWNN–ZNN
model.

Simulation experiments are implemented via Matlab. The 4000 data points ex-
tracted are divided equally into two parts, and the model performance is trained
and tested. Combinating with Table 2 and Figures 9–12, the properties of the two
estimation models are discussed. To broadly evaluate the models’ performance, three
indicators RMSE, MAE and R2 are exploited to calculate the prediction accuracy of
the two models. RMSE can be expressed by the following formula:

RMSE =

√√√√ 1

2000

2000∑
i=1

‖yexp (i)− ypre (i)‖22. (30)

MAE can be written as follows

MAE =
1

n

n∑
i=1

|yexp − ypre| . (31)

R2 can be defined as

R2 = 1−
∑n

i=0 (yexp − ypre)2∑n
i=0 (yexp − ȳexp)2

, (32)

where ȳexp is the average of the expected output.
The performance values of three randomized experiments are introduced in Ta-

ble 2. The closer the R2 value is to 1, the better the estimated performance of the
model. However, for RMSE and MAE, the closer the value is to 0, the better the
prediction performance of the model. From Table 2, it can be intuitively shown
that the FWNN–ZNN model has better indicators, that is, better prediction perfor-
mance. It proved the validity of the established skeletal dynamics model and the
feasibility of the FWNN–ZNN prediction model. Moreover, the corresponding per-
formance values are essentially agreed based on the FWNN–ZNN model in the three
groups of simulation experiments. In this paper, continuous motion estimation of
lower limbs can be regarded as a nonlinear problem. Since ZNN (21) has high accu-
racy and strong robustness for solving nonlinear problems, FWNN–ZNN model (28)
has strong inhibition performance for uncertain factors. The discretization degree of
sample error can be evaluated by combining RMSE and MAE. Specifically, the larger
the difference between RMSE and MAE, the higher the dispersion degree of sample
error. This bias is mainly present in the prediction of angular velocity, especially
based on the FWNN model. Furthermore, the prediction effect of angular velocities
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Table 2: Evaluation of the predicted results under different models.

Part
RMSE MAE R2

FWNN FWNN–ZNN FWNN FWNN–ZNN FWNN FWNN–ZNN

#1

Anglehip 0.1224 0.0071 0.0820 0.0048 0.8308 0.9994

Angleknee 0.0803 0.0118 0.0587 0.0084 0.8213 0.9964

Angle velocityhip 0.3259 0.1544 0.2557 0.0734 0.7342 0.9463

Angle velocityknee 0.4976 0.1721 0.3578 0.1150 0.6284 0.9620

#2

Anglehip 0.1204 0.0071 0.1014 0.0048 0.7807 0.9994

Angleknee 0.0794 0.0118 0.0624 0.0085 0.8556 0.9964

Angle velocityhip 0.3260 0.1544 0.2445 0.0730 0.7250 0.9463

Angle velocityknee 0.4975 0.1731 0.3432 0.1147 0.6583 0.9615

#3

Anglehip 0.1278 0.0071 0.0936 0.0048 0.8135 0.9994

Angleknee 0.0843 0.0118 0.0559 0.0085 0.8549 0.9964

Angle velocityhip 0.3341 0.1544 0.2344 0.0720 0.6522 0.9465

Angle velocityknee 0.5321 0.1705 0.3495 0.1145 0.8186 0.9623

is worse than angles in the three experiments, and this phenomenon is more obvi-
ous in the prediction experiments of the FWNN model. This phenomenon reflects
that the FWNN–ZNN model has a low requirement for sample stability and strong
robustness.

In more detail, the superiority of the FWNN–ZNN model is analyzed with the first
group of experiments as an example. The predicted results of the first experiment
are described in Figures 9–12. In Figures 9–12, black solid lines represent the raw
data, while orange dotted lines and pink dashed lines represent the predicted results
of the FWNN model and FWNN–ZNN model, respectively.

Figure 9 shows the comparison of the raw angle data with the estimated value.
It can be seen that the dashed line representing the FWNN–ZNN model is highly
coincident with the solid line representing the original value, while the dotted line
is oscillating. For the FWNN model, the prediction effect is disappointing at the
curve wave peak. For example, the dotted prediction of hip deviates significantly
from the solid line at 5–6s but only slightly at 7–8s. The FWNN model adopts the
gradient correction method to adjust the network weight and the parameters of the
wavelet basis function, which leads to the inevitable phenomenon. From Table 2,
the RMSE of predicting hip and knee angles using the FWNN–ZNN model is 0.0071
and 0.0118, which are both lower than the FWNN model, while the R2 of predicting
hip and knee angles utilizing FWNN–ZNN model is 0.9994 and 0.9964, which are
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Figure 9: Compare the raw angle data with the estimated value.
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Figure 10: Compare the raw angular velocity with the estimated value.
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both higher than the FWNN model. Figure 10 illustrates the comparison of the
raw angular velocity with the estimated value. Similarly, the prediction effect of the
FWNN–ZNN model for angular velocity is better than that of the FWNN model. It
indicates that the FWNN–ZNN model based on ZNN is advanced and can effectively
improve the prediction precision.
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Figure 11: The angle errors of the two estimation models.

Figures 11–12 depicts the joint angle and angular velocity errors of two estimation
models, where blue dashed and orange solid lines represent the prediction errors
of the FWNN model and the FWNN–ZNN model. As observed, the estimation
errors of the FWNN model are able to be effectively reduced by introducing the
ZNN model. However, it is worth noting that the prediction effect of the FWNN
model for angular velocity is weaker than that of joint angle. Uncertainties in the
modeling process of the FWNN model result in differences, such as the periodicity
of original data samples and the randomly initialized wavelet factors, which can
affect the accuracy of estimation. From Figures 10, it can be seen that the original
angular velocity curves have many oscillations. The large fluctuation of the original
angular velocity values is also reflected in the difference between RMSE and MAE in
Table 2. This phenomenon indicates that the prediction of FWNN model depends on
the raw data, whereas the FWNN–ZNN model does not. It fully illustrates that the
constructed error function (20) can effectively eliminate errors caused by randomness
and indeterminacy in the FWNN model and improve the prediction accuracy. It is
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Figure 12: The angular velocity errors of the two estimation models.

further proved that the proposed FWNN–ZNN model is stable and superior.
The prediction time of the model is also the criterion to evaluate the model’s

performance. The prediction time of the FWNN–ZNN model is about seven times
that of the FWNN model, in which the FWNN–ZNN model takes 54.2166s and
the FWNN model takes 7.8091s. The complex structure of the FWNN–ZNN model
increases the prediction time. However, in this experiment, the model is established
to estimate lower limb motor intention under off-line conditions, so the prediction
speed is not strictly required.

The evaluation indicates that the FWNN–ZNN model has strong uncertainty
rejection performance, which greatly reduces the influence brought by uncertain fac-
tors. The proposed model can be effectively applied to practical work, for instance,
biomedical engineering, clinical medicine, human–robot information interaction.

5. Conclusions

In this paper, a novel prediction model formed by FWNN and ZNN has been
designed to predict humans walking on the treadmill based on sEMG signals. A
healthy man has been invited to complete a walking experiment in which seven
sEMG signals and two joint data have been collected from his left leg. Correlation
analysis has been made between the normalized linear envelopes extracted from the
sEMG signals and the angle data of two joints, and two muscles with high CC have
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been selected as the input of the prediction model. By comparative experiments,
the overall performance of the FWNN–ZNN model has been better than the FWNN
model, which proves the proposed prediction model has strong robustness to the
uncertain factors and can be extended to practical application.

In fact, real–time online intention recognition is more widely applied in biological
engineering, which requires high precision and speed of model prediction. The next
work focuses on collecting clinical data from patients for motor intention recogni-
tion, improving the performance of the estimation model and applying the intention
recognition algorithm combined with human-robot interaction control to the actual
lower limb exoskeleton robot.
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