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Abstract

In this thesis, the evolution of adaptive behaviour in artificial agents is studied. More

specifically, two types of adaptive behaviours are studied: articulated and cognitive

ones. Chapter 1 presents a general introduction together with a brief presentation

of the research area of this thesis, its main goals and a brief overview of the exper-

imental studies done, the results and conclusions obtained. On chapter 2, I briefly

present some promising methods that automatically generate robot controllers and/or

body plans and potentially could help in the development of adaptive robots. Among

these methods I present in details evolutionary robotics, a method inspired on natural

evolution, and the biological background regarding adaptive behaviours in biological or-

ganisms, which provided inspiration for the studies presented in this thesis. On chapter

3, I present a detailed study regarding the evolution of articulated behaviours, i.e., be-

haviours that are organized in functional sub-parts, and that are combined and used

in a sequential and context-dependent way, regardless if there is a structural division

in the robot controller or not. The experiments performed with a single goal task, a

cleaning task, showed that it is possible to evolve articulated behaviours even in this

condition and without structural division of the robot controller. Also the analysis of the

results showed that this type of integrated modular behaviours brought performance

advantages compared to structural divided controllers. Analysis of robots’ behaviours

helped to clarify that the evolution of this type of behaviour depended on the charac-

teristics of the neural network controllers and the robot’s sensorimotor capacities, that

in turn defined the capacity of the robot to generate opportunity for actions, which in

psychological literature is often called affordances. In chapter 4, a study seeking to

understand the role of reactive strategies in the evolution of cognitive solutions, i.e.

those capable of integrating information over time encoding it on internal states that

will regulate the robot’s behaviour in the future, is presented. More specifically I tried to
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understand whether the existence of sub-optimal reactive strategies prevent the devel-

opment of cognitive solutions, or they can promote the evolution of solutions capable of

combining reactive strategies and the use of internal information for solving a response

delayed task, the double t-maze. The results obtained showed that reactive strategies

capable of offloading cognitive work to the agent/environmental relation can promote,

rather than prevent the evolution of solutions relying on internal information. The ana-

lysis of these results clarified how these two mechanisms interact producing a hybrid

superior and robust solution for the delayed response task.
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Chapter 1

Introduction

Robotics has fascinated humans since long time ago. Leonardo da Vinci, for instance,

designed complex automatons in the 15th century [113]. And other evidences point

self-operated machines being thought and realized in China even before Christ [115].

Nowadays, robotics has been used in different domains as industrial and house en-

vironments [47], and even in the outer space [157]. While its use in a tele-operated

way or in controlled environments, as in industry assembly lines, is very common, the

use of mobile robots providing services in highly dynamic and uncertain environments

is still a great challenge. This area, often called service robotics, has received much

attention in the last years.

In the context of service robotics, uncertainty, noise and completely unknown environ-

ments are common working conditions, and dealing with all these things is a require-

ment. This means that adaptability is a key feature, the machines should be versatile

in order to deal with these many different and unpredictable situations. The traditional

techniques that allowed the development of many successful applications in industrial

robots, strongly rely on accurate mathematical models describing the dynamics of the

environment, the task and the robot. The appropriate use of these mathematical tools

in the context of service robotics could be a very hard and even an unfeasible task.

For this reason the traditional approaches for developing robot control are not suffi-

cient anymore, at least not alone. Therefore becomes evident the necessity of new

methods that could automatically embed robots with the proper adaptive behaviours

for operating in this more dynamic and unpredictable scenario.
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Indeed one of the possible definitions of adaptive behaviour for both animals and ro-

bots says that it is a behaviour that maintain the animal alive or that keep the robot

functioning according to what it was designed for in these harsh conditions [109]. In

more specific terms for robotics scenarios we could say that the term adaptive beha-

viour means: behaving in a given way through the time, according to the encountered

environmental contexts, that will allow the agent to achieve a certain goal, given its sen-

sorimotor capabilities and respecting a given set of conditions and constraints. Broad-

ening the sense of this term, in the context of this thesis adaptive behaviour is used not

only for referring to behaviours that enable the robot to achieve a desired function(s) in

a given environment, but also behaviours organized in a way that facilitate the possibil-

ity to adapt to varying environmental conditions, and that facilitates the exploitation of

integrated behavioural and cognitive capabilities.

It is important to notice that it is not possible to find in the literature a single, precise

and widely accepted definition of adaptive behaviour. The definition of this term vary

among the different scientific disciplines, and even inside a single discipline. In psycho-

logy for example, adaptive behaviour may be defined as "the collection of conceptual,

social, and practical skills learned by people to enable them to function in their every-

day lives." [182, p. 105]. A broader definition, usually used in biology and artificial life

communities, says that adaptive behaviours are those that improve survival and repro-

duction rates of an individual [28, 74]. However it is noteworthy that the meaning of

adaptation may vary even inside a same discipline as, for example, in biology when

talking about evolution the meaning of adaptation is "any change in the structure or

functioning of an organism that makes it better suited to its environment" [37, p.13]

while in physiology it means "the alteration in the degree of sensitivity of a sense organ

to suit conditions more extreme than normally encountered" [37, p.13]. Given that a

precise and widely accepted definition of adaptation and adaptive behaviour is an open

issue, providing a contribution to this discussion is not in the scope of this thesis. The

definition adopted in the present work for is that presented in the previous paragraph.
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An approach that is strongly related with adaptive behaviour is the embodied intelli-

gence [26]. Differently from the traditional view of intelligence that works with symbolic

representation in a perceive-process-act loop, embodied intelligence takes into account

the fact that robots are situated and embodied agents that operate in a dynamic en-

vironment. The relation between the robotic controller - its ’brain’ - the physical parts

and the sensorimotor system - its body – and the environment is crucial for this way

of viewing of intelligence. So more specifically, embodied intelligence [135] refers to

the proper interactions among these elements that make the agent able to efficiently

and adaptively perform the tasks. Finding the interactions that will produce effective

behaviours, however, is not trivial for many reasons. For instance, manually program-

ming the robotic behaviours supposes that the designer knows a priori the task solu-

tion, which for many complex tasks is not the case. Another challenge is the different

perspective of the task with respect to the robot sensorimotor system and the human

sensorimotor system. Perception and action are bounded through the environment

which means that they mutually influence each other producing a loop, which is often

called sensorimotor loop [133]. The regularities present in this loop have an important

influence in which behavioural strategies an agent can perform for achieving a certain

goal. The importance of these regularities is illustrated in many different works in the

literature [8, 117, 124]. The strategies thought by a human tend to be limited by his

understanding of which regularities may be present in the robot’s sensorimotor sys-

tem and in the robot/environment relation. This fact tends to exclude any behavioral

strategy that could benefit of less evident regularities that are available to the robot.

Given these challenges, the use of adaptive methods, that enable the agents to develop

their skills autonomously while they interact with the environment, represents a prom-

ising alternative for the synthesis of embodied and situated agents. These methods

better explore the embodied intelligence that arises from the brain-body-environment

interaction, usually not requiring manual programming of the robot behaviours. Indeed,

the possibility to automatically discover the solution to a given problem, i.e. the neces-

sary strategy for solving it and the manner in which such strategy is realized, enables

9



to overcome the problems caused by the fact that human designers might be unable

to identify appropriate solutions even on the basis of a detailed analysis of the pro-

blem domain [119]. For the moment however, the complexity of the problems that can

be successfully tackled with these methodologies is still relatively limited. More spe-

cifically, the issue of whether and how adaptive methods can be scaled up to master

“complex” problems, those requiring the development of a rich repertoire of integrated

behavioural capabilities still represents an open challenge.

In the literature there are many works investigating the automatic generation of robot

controllers. For achieving this goal, different techniques are used including Reinforce-

ment Learning, Programming/Learning from Demonstration, Evolutionary Robotics and

so on. These methods will be better presented in the next section as well as some

works using these different techniques.

In this thesis I will focus on the study of the evolution of adaptive behaviours using Evol-

utionary Robotics techniques. These techniques use genetic algorithms for evolving ro-

bot controllers and/or body plans of situated and embodied agents in order to perform

a given task [123]. Genetic algorithms [70] are a metaheuristic based on natural evolu-

tion that are often used for solving optimisation problems. Since this kind of algorithm

usually operates without specific information about the problem dynamics, requiring

only a way to evaluate the candidate solutions, it is often characterized as a black-box

optimization technique.

Evolutionary Robotics though, might not be considered as a black-box optimization

method [40]. As we will see in detail in the next chapter, there are some key factors that

need to be defined by the designer and influence the outcome of the evolved solutions.

Therefore, knowing better the underlying behavioural principles and mechanisms that

could emerge from evolutionary methods may shed some light on how the designer

should make decisions for creating processes capable of evolving more complex and

effective behaviours without just simplifying the task or increasing the prior knowledge

used about the possible solution itself. Indeed all the knowledge that may lead to a

10



complexity increase of the learning tasks, and/or a reduction of the prior knowledge

and the handcrafting required tend to represent an improvement on the evolutionary

robotics field [116].

Evolutionary robotics methods have already presented interesting and effective beha-

vioural solutions for different tasks as phototaxis [172], obstacle avoidance [148] and

object categorization [14] among others. However, effectively using ER methods for

synthesising robots capable of operating in real world applications is still an open chal-

lenge. One of the interesting aspects that have to be better understood to reach this

milestone include the capability to display multiple behaviours and the behavioural se-

lection that is adaptive to the current robot/environmental context. Another one is the

capability to extract information from the environment and later use this information to

regulate the behaviour of the agent. These two aspects represent two forms of adaptive

behaviour, i.e. two forms of behaviour regulation.

In this context, this thesis will present studies that shed some light in the evolution of

these two interesting types of adaptive behaviours: articulated and integrated cognitive

ones. Despite the precise meaning of these terms will be clearer for the reader in the

next chapters, here I provide a brief explanation of them. By articulated behaviour, I

mean behaviour composed by sub-parts, or sub-behaviours with specialized functions,

that will be combined together, in a sequential and context-dependent manner. This

definition is inspired and aligned with the definition used by many biologists for char-

acterizing animal behaviour [11, 53, 111, 184, 185]. It is noteworthy that it is possible

to have a modular organization of the behaviour, without a modular and structural divi-

sion of the robot controller. This will be clearer after the results presented in the third

chapter of this thesis. By integrated cognitive behaviour I mean behavioural strategies

that combine two different types of behaviour: (i) those relying solely on immediately

perceived stimuli, therefore called reactive strategies, with (ii) those relying on informa-

tion integrated over time and encoded into internal states that are used to regulate the

robot’s behaviour, therefore called cognitive strategies.
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The second chapter of this thesis is intended to situate this work regarding the ro-

botics and artificial life community, provide the reader with the proper background for

fully appreciating the contributions provided by this thesis, and also to present the bio-

logical aspects that provided inspiration for the studies presented here. On the third

chapter, I present a detailed study regarding the evolution of articulated behaviours for

a single goal task and without the necessity of modular division of the robot controllers.

The experimental setup include a single goal task, a cleaning task, in which a robot

has to clean an unknown and varying environment. The evolutionary process is done

with different robots that have different sensory capacities and different artificial neural

networks architectures. The results obtained with this study indicate that it is indeed

possible to evolve modular behaviour, for a single goal task, even without the explicit

division of the robot controller in different modules. This type of articulated behaviour

brings performance advantages compared to non-articulated ones, and its evolution

and operation depends mainly on the robot’s sensorimotor richness, which in turn will

determine the robots capability to perceive and generate affordances, the main be-

havioural mechanism that allow the robot to produce long-term sub-behaviours and

to properly alternate the behaviours in a smooth and timely manner. The affordance

generation mechanism will be presented in details in the chapter 3.

In chapter 4, a study seeking to understand the role of reactive strategies in the ev-

olution of cognitive solutions, i.e. those capable of integrating information over time

encoding it on internal states that will regulate the robot’s behaviour in the future, is

presented. More specifically I tried to understand whether the existence of sub-optimal

reactive strategies prevent the development of cognitive solutions, or they can promote

the evolution of solutions capable of combining reactive strategies and the use of in-

ternal information for solving a response delayed task, the double t-maze. The exper-

imental setup included again robots with different artificial neural network controllers

that had to navigate in unknown and vayring environments in order to accomplish the

task. The results obtained showed that reactive strategies capable of offloading part

of the cognitive work to the agent/environmental relation can promote, rather than pre-

12



vent the evolution of solutions relying on internal information. The analysis of these

results clarified how these two mechanisms interact producing a hybrid superior and

robust solution for the delayed response task. Finally the last chapter provides the

general conclusions of this work, wrapping up and summarizing the main contributions

regarding the evolution of these two types of adaptive behaviour.
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Chapter 2

Background Knowledge

In this chapter the background knowledge regarding methods that automatically gen-

erate robot controllers and/or body plans will be presented, together with some of the

works found in the literature using each of the methods. Furthermore, references for

readers that could be interested in going down into the details of each them will be

provided. Besides, this chapter introduces some of the biological knowledge regarding

the evolution and use of adaptive behaviours in biological individuals, together with the

different methodological approaches to obtain adaptive behaviour using evolutionary

robotics methods found in the literature. Finally the last two sections of this chapter

will situate the reader with a brief introduction specific to the two types of adaptive

behaviours studied in this thesis in the remaining chapters: articulated and integrated

cognitive behaviour.

2.1 Automatically generated controllers

Robotic automation has been used for many decades in the industry, and in this con-

text robots are very common. We cannot state the same about mobile robots in the

everyday life, i.e. robots operating in more common and less constrained environ-

ments like houses, offices, hospitals and so on. Commercially, only few robotic appli-

cations related to service robotics are available for naïve users. A well-known example

of a commercial robotic application are the vacuum cleaner robots like, for instance,

Roomba [75].

If we look at the industrial robotics scenario, we can see that they usually operate in a

constrained and controlled environment, with very precise information about positions
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and velocities of objects and end effectors. In this industrial scenario, powerful math-

ematical tools are available, as for instance dynamical systems and control theory that

enable the designer to model and properly control the robots according to the desired

goals to be accomplished such as welding, moving objects from one point to another

and so on.

However, in the context of service robotics the application of these methods has some

severe limitations since it requires the knowledge of some aspects that are usually

unknown. First, an accurate model of the robot and the environment should be cre-

ated. This can be a hard task for both highly dynamic environments, like those in the

everyday life, and complex robot morphologies. Even in cases when it is possible to

acquire these models, it requires a great expertise from the designer, and since the

more complex is the robot and the environment to be modeled, the more complex are

the models to be created, this is also an error-prone task. Second, the sensory system

of mobile robots provides only partial observations of the environment, and these often

are continuous and noisy signals. So, in order to apply traditional control techniques,

additional methods that estimate important variables, for instance positions of robots

and objects, have to be used, increasing even more the complexity of these methods.

Finally, the designer has to know a priori the solution to be achieved in terms of ro-

botic behaviour, which for some tasks can be hard to know, if not impossible. A good

example of unknown optimal strategy are the commercial vacuum cleaner robots that

execute completely different cleaning strategies depending on the brand [1, 132].

An interesting alternative for the synthesis of controllers for mobile robots are methods

that automatically generate the controllers using demonstrations or the robot’s experi-

ence. These methods can be categorized in two groups: Learning from Demonstration

and Trial and Error methods. It is still possible to subdivide the trial and error methods

in two subgroups, the traditional reinforcement learning approach and its variations,

which are formalized as a Markov Decision Process (MDP) [168], and Evolutionary

Robotics methods [123]. Both subgroups rely on the robot’s interaction with the en-
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vironment in successive different trials. In this way, the methods progressively verify

which actions produce the best results according to an objective function provided by

the designer. This objective function is related with the task to be performed and usu-

ally does not require any information about the strategy to be performed by the robot.

So these methods do not require neither demonstrations nor mathematical models of

the robot and the environment.

2.1.1 Learning from Demonstration

In Learning from Demonstration (LfD) the controllers are synthesized based on a hu-

man teacher or a demonstration from another robot. In general, these methods are

classified as a subset of supervised learning [5] since they receive predefined input-

output mappings and the controller is generated in order to reproduce the previously

received mappings. Many factors influence the complexity of producing controllers

based on demonstrations. One of these aspects is, for instance, how the demonstra-

tion is provided, that is whether or not it is possible to create a direct mapping between

the demonstration and the robot’s sensorimotor system. Pure learning from demon-

stration methods have the requirement that the demonstrator has to know a priori the

solution in terms of which would be the optimal behaviour for that task, which can be

difficult for some tasks. Also the quality of the demonstrations, usually depending on

the teacher proficiency when executing the task, has a strong influence on the success

of the method. Since the demonstrator, often a human, has a very different perception

of the world compared to the robot, it is hard for the human to see which solutions are

feasible or not for the robot, or which solutions would be more or less effective con-

sidering the robot’s perception capabilities. Methods that combine demonstrations and

trial and error solutions remove this requirement, since the demonstration is used as

an starting point and the final solution is a fine tuned version of it. Also the number

of demonstrations in some cases can be a problem, since the fatigue factor has to be

considered when using human demonstrators.

Many researches have been done using LfD to develop robot control policies. Lin et
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al. [98] proposed a framework to learn fingertip force for grasping and manipulation

process from a human teacher with a force imaging approach. Konidaris et al. [89]

proposed an online algorithm for constructing skill trees from demonstrated trajectories.

Vakanski et al. [176] used demonstrations for performing the identification of key points

in order to make the robot able to learn and to reproduce complex trajectories.

2.1.2 Reinforcement Learning

Traditionally, reinforcement learning techniques are formalized as a Markov Decision

Process, which means that there exist a set of states, a set of actions, rules for transi-

tioning between states and rules that reward being in a state and performing a certain

action (sometimes only being on a state). So, the agent is let free to act in the en-

vironment having two main goals: explore and maximise the reward with its actions,

which is often called the exploration-exploitation trade-off. This characteristic makes

reinforcement learning a good option for online learning problems, where the agent

has to execute some task and improve its execution at the same time. While this tech-

nique works very well when dealing with discrete, finite, and not too big state and action

spaces, it suffers from the so called curse of dimensionality, where its applicability is

strongly compromised when the state and action spaces are too big or continuous.

Since in robotics, and even more in service robotics, high-dimensional, continuous,

and usually noisy, state and action spaces are common, fitting the traditional discrete

description of RL with this scenario in general does not produce good results [92]. For

this reason, much effort has been done in order to create techniques that allow the use

of RL techniques in the robotics field. The technique representing a great advance of

the RL application in robotics are the policy-search methods, where instead of search-

ing in a huge state/action space, a search is conduced in a much smaller space, the

space of parametrized policies [92]. For detailed information about each of the different

techniques involving RL see [85].

Some works that use reinforcement learning in robotics are [76] that uses brain activity

of a human user observing a robot trying to solve a learning task as reward signals
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for the learning process. Konidaris et al. [88] proposed a method that combines

reinforcement learning and decisions tree that enables a humanoid robot to learn a

task with only few trials making the learning process faster than usual. Kormushev

et al. [91] presented a reinforcement learning approach in order to minimise energy

consumption of the walking of a passively-compliant bipedal robot.

2.1.3 Evolutionary Robotics

Another class of trial and error methods that automatically generate robot control policies

are those involving Evolutionary Algorithms, this field is called Evolutionary Robot-

ics [123]. Despite the main idea is similar to Reinforcement Learning, i.e. developing

the control policy and/or the robot morphology through the robot’s interactions with the

environment, the mechanisms used in the evolutionary process are quite different. A

very common evolutionary algorithm used consists in starting with a random popula-

tion of individuals, representing candidate solutions, where each individual is encoded

in a genotype. The genotype will be transcoded in the control policy and/or the robot

morphology, and then evaluated. A fitness function defined by the designer is used

for performing the evaluation and the individuals with greater fitness values tend to re-

produce through mutation and/or recombination. This process is repeated for a given

number of times defined by the designer or until some solution achieves a predefined

fitness threshold. The idea behind the method is that the fitness function and the exper-

imental conditions create selective pressures that will favour the survival of the fittest

individuals, i.e. the individuals that best perform the learning task.

From a methodological point of view, at the end of the evolutionary process, if a satis-

factory solution has not been found, the designer usually has two choices: abandoning

the initial methodology and trying to develop the controllers in a different way. This was

done, for instance, in [41], where a combination of handcrafted and evolved controllers

was used. Or starting a trial and error process where the different parameters of the

evolutionary method are changed to check which ones produce good results. Indeed,

the less the knowledge of how the evolutionary process works and its underlying prin-
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ciples and mechanisms, the greater the designer blindness about the reasons why the

process did not work well at first, how the changes will affect it, and which of the pos-

sible changes in the process are more likely to produce improvements. So, acquiring

a greater knowledge about the fundamental aspects of ER techniques can lead to a

better designer-orientated process. With this knowledge the designer can first inves-

tigate the possible reasons for the fail in the synthesis of an effective controller, and

then, make the proper decisions about which aspects should be changed in order to

make the development of effective controllers feasible.

The specific details of the different algorithms used in ER may vary. The genotypes,

for instance, can be used for encoding the controllers in different ways, i.e. using dif-

ferent structures and techniques going from genetic programming [93] to fuzzy logic

controllers [141]. A recent and interesting approach is presented in [149] where de-

cision trees are used for evolving the controller of a flying robot. Currently, one of the

most common setups within the field of Evolutionary Robotics is Neuroevolution [94],

where the weights of an Artificial Neural Network (ANN) are defined by an evolutionary

method. In the last years some works extended this approach, and instead of evolving

only the ANN parameters, also the topology of the network is evolved as, for instance,

in the NeuroEvolution of Augmenting Topologies(NEAT) [160] and Hyper-NEAT ap-

proaches [159]. While ANNs have the benefits of naturally dealing with continuous

and non-linear dynamics, its combination with evolutionary techniques remove the re-

quirements of training datasets used in supervised learning techniques. These aspects

make the combination of ANNs and evolutionary computation a powerful tool.

The application of genetic algorithms to deterministic optimizations, for instance, in

some engineering applications like [143], can be considered a black-box technique.

This is mostly due to the fact that the fitness of each candidate solution is precisely

obtained with each evaluation. In robotics, otherwise, the natural stochasticity present

in this field has to be considered in the process. Due to the dynamic nature of en-

vironments, robots have to be able to deal with the performance of the learning task
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in different contexts, and to the fact that sensors and motors are noisy, it is not pos-

sible to perform a precise calculation of the individuals’ fitness. In other words, there

is intrinsic stochasticity in the evolutionary process which is an important difference

compared to the application of evolutionary computation to deterministic problems. So,

even with the execution of many different trials, it is only possible to estimate the fitness

of each individual. In which contexts the robot will be tested, and how the environment

varies along the different trials directly affect the generalization capacity of the robot

to perform the task, i.e. the capability to solve conditions not encountered during the

evolutionary process. Depending on the evolutionary algorithm used, testing the can-

didate solutions always in the same initial conditions tends to produce brittle solutions,

i. e. solutions that do not generalise well to untested and real-operation conditions,

therefore, varying the environment changing these conditions or adding random noise

to them is important for obtaining robust solutions [67, 175]. On the other hand, huge

variations among trials tend to prevent the process to converge to a good solution,

since too abrupt changes would make harder to find individuals adapted to all the dif-

ferent conditions [50]. Finding the proper balance is not an easy task, and in general

these parameters have to be adjusted by the designer according to the learning task.

Since artificial evolution tends to be a slow process that involves testing different in-

dividuals in millions of trials, apart from some simple tasks, in general it is unfeasible

to perform all the evolutionary process using real robots. So, all or at least the first

part of the process is often done through simulation. In order to successfully transfer

the simulated evolved solutions to real robots it is necessary to cross what, in the lit-

erature, is called the reality gap problem. This problem arises from the fact that even

with high quality simulators, those that have accurate models of the world, there will

always be differences between simulated and real world. These differences prevent

directly transferring the solutions found in simulation to real environments. In order to

deal with this problem, other than having simulators that are accurate and as close

to reality as possible, different approaches can be used. A first one is to model only

the essential parts of the simulator and to create a sort of envelope-of-noise around it.
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This can prevent that the simulated solutions rely on the specific simulated sensory-

motor characteristics or simulated world dynamics, that could prevent their use in real

robots. This approach was proposed and used in [79], and the simulated controllers

were successfully transferred to reality. Another approach is to sample the sensors and

motors activation on the real robot, and use these samples to fine tune the simulator

in order to avoid discrepancies between simulated and real sensors and actuators, as

done in [110]. In [90], simulated robots are evaluated not only based on how well they

perform the learning task in silico, but also on how well they perform it in the real world.

For doing so the individuals are occasionally tested in the real world, and based on

that the simulator is adjusted to accurately approximate how transferable is each in-

dividual. Following a similar approach but going even further, in [140] the simulator

used is completely created using real world data. The training sets are used to train

an artificial neural network for simulating the sensory-motor flows experienced by the

robot in the real world. The experiments presented in this thesis were performed only

on simulation and some of the techniques presented above were used, as the addition

of noise in the sensors and motors, and also the sensor sampling technique.

Another important aspect of ER is the fitness function used to evaluate the individu-

als. Although it is a scalar function, it involves many different aspects affecting the

selective pressures applied over the individuals. Nelson et al. [116] categorise the

different fitness functions based on the amount of prior knowledge added by the de-

signer. According to the author they can be writen in terms of the behaviour that should

be executed, the specific activation of sensors sets, or even in a binary way that says

if a trial was successfully executed or not. Adding prior knowledge can be a good way

to direct the search to a specific region of the search space. However, adding it could

also be risky since the search can be biased and converge to a local optimum region,

a problem usually called premature convergence or deception. Using less knowledge

about the learning task, for instance using a binary evaluation of success/fail, means

letting the process free to find the most effective behaviour that accomplishes the objec-

tive. However, depending on the complexity of the task, the initial candidate solutions
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could present an equally bad performance among individuals, and so a lack of fitness

gradient would prevent the process to select the intermediary candidates necessary for

finding the ultimate solution. This problem is usually called the bootstrap problem. So

also in this aspect, the decisions made by the designer, which will directly influence the

selective pressures, have a fundamental influence on the success of the evolutionary

process.

Ollion et al. [40] present an interesting review about selective pressures in ER and

some of the different aspects that exclude this field from the category of black-box

optimization method. A different categorization of fitness functions is proposed, con-

sidering if they are oriented to the refinement of the goal to be achieved or to facilitate

the exploration of the search space. They also propose a classification considering if

the functions are task-specific or task-agnostic. Some other aspects and techniques

related to Evolutionary Robotics used to tackle the deception and the bootstrap pro-

blems are also reviewed, like Novelty Search, Multi-objective Algorithms, Coevolution,

Interactive Evolution, just to cite some of them. For detailed information about each of

these aspects see [40].

Since there exist many different factors involved in the ER methods that require the

designer’s decision, a better understanding of the mechanisms and principles driving

the evolutionary process can lead to the development of more effective and complex

behaviours. This in turn, could make possible to scale up the complexity of the tasks

tackled by ER methods. In this thesis, I will analyse the conditions that can promote the

evolution of adaptive behaviours in artificial agents. More specifically those concerning

the evolution of articulated behaviours, i.e. behaviours that are realized by combining

different elementary behaviours, combined in sequence in a context-dependent man-

ner. And also the conditions that promote the evolution of integrated behavioural and

cognitive abilities. I believe that a better understanding of these aspects may enable

the synthesis of the adaptive behaviours necessary for tackling real world problems. In

the following section I briefly describe these aspects from a biological perspective.
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2.2 On the evolution of adaptive behaviour

Natural organisms are capable of displaying adaptive behaviours that allow them to

deal with different tasks and situations. The vast repertoire of behaviours found in nat-

ural organisms is the object of study of many different areas of biology as, for instance,

ethology, that specifically studies animal behaviour. Additionally, and of particularly

importance for the present work are those studies often found in evolutionary biology,

that aim to understand the evolutionary origins of the animal behaviours, especially the

complex ones.

Simple behaviour is considered to be a direct response of a stimulus, basically a

reflex, while complex behaviours are those regulated by many external and internal

factors [12, p. 27]. It is misleading to think that behavioural complexity is directly linked

to the complexity of the individual’s sensory-motor capabilities, as well as its neural

capacity. It is important to notice that it is possible to display behaviours with a certain

level of complexity even when the individual itself has limited capabilities. This is the

case, for instance, of the navigation behaviour of desert ants [183]. For the case of

artificial agents, for instance, intricate behaviours requiring the coordination of many

different mobile parts as walking can be reproduced with simple neural controllers [35],

or even with no active control at all [33].

A range of different factors can give origin to the dynamical processes we call adap-

tive behaviour. A first aspect is the existence of a rich environment that could offer

stable dynamics, and stimuli that could be perceived and used by the agents in order

to regulate their behaviour properly. In the case of the desert ant navigation beha-

viour, for instance, the polarized light patterns provided by skylight is used by the ant

as a sort of compass. This mechanism allows the ants to perform a path integration

strategy in order to estimate their position and perform a homing behaviour after the

foraging behaviour was performed. Other than the path integration strategy, the ants

are also able to use external landmarks, when available, in order to situate themselves

in the environment and effectively navigate thousands of times the length of their own
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body [183].

Actually, the example of the passive walker [33] is another very interesting case in

which the exploitation of the environment stable dynamics, the laws of physics, can

provide an effective way of performing behaviour without any control. Of course, this is

an extreme case considering the agent is completely passive. In this case, the external

environment should provide not only the fundamental characteristics as, for instance,

an inclined plane, but also the agent itself needs to be built with very precise and spe-

cific geometrical and material properties. With all these conditions met, the exploitation

of the laws of physics for the production of the proper walking behaviour becomes pos-

sible. However, in some works the concept of the passive walker have been combined

with active control, allowing the exploitation of the environmental characteristics and

extending its use through the capacity of actively controlling the agent [128, 167].

The richness of the environment is an important aspect not only from the operational

point of view, but also from the evolutionary one. Environments that provide differ-

ent alternatives for achieving the same goal tend to facilitate the evolution of more

elaborated behaviours, when those provide an advantage, compared to simpler envi-

ronments. The example of the desert ants navigation can be used again if we consider

that individuals capable of performing landmark-based navigation can be evolutionary

selected only when the environment provide such landmarks. If the landscape is com-

posed only by big flat portions of white sand with a blue sky, this kind of navigation will

not be expressed and thus will not be selected. Even the presence of environmental

noise can be exploited for the execution of effective behaviour. As in the case of an

araneophagic assassin bug [186] that use noisy situations, for example the noise on

the spider web caused by the wind, for moving through the web to reach its prey without

being detected. The availability of certain types of resources can induce innovative be-

haviours. For instance, a given species of bird in Barbados started to demonstrate an

opening sugar packets behaviour, due to the great availability of these in their region.

While Birds from the same species but from other regions, with originally no sugar
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packets in it, did not perform the same kind of behaviour even when the packets were

suddenly added in the environment [42]. A last good example of how the availability

of certain stimuli influences the individual’s evolution, in this case morphology, is eye

degeneration in cave fishes. The eyes of a certain species of fishes that live inside

caves, so with the absence of light, degenerate, clearly changing also its behavioural

responses [192, 193].

A second important aspect regarding the evolution and use of adaptive and complex

behaviours is the possibility to organise it in an articulated manner. Animal behaviours

are often organised in functionally specialised subunits governed by switch and de-

cision points [53]. Examples of elaborate behaviours including several different phases

regulated through a rich set of context-dependent rules include the courtship beha-

viour of the grasshopper [129], the reproduction behaviour of female canaries [69],

web construction and predation behaviours in spiders [44, 78]. Actually the possibility

of composing behaviours in a modular way in animals can represent a simple way of

building a vast behavioural repertoire as pointed by the evidences found, for instance,

in studies involving frogs, owls, turtles and cats [18].

Indeed, the possibility to organise behaviour through the combination of different sub-

units brings advantages from the point of view of adaptiveness. Reusing and adjusting

the smaller parts, that compose higher level behaviours, offer a flexibility that could

bring advantages when dealing with different contexts and tasks, making the individu-

als more adapted to different situations.

The third important aspect regarding complex behaviours is the possibility of combin-

ing and using internal and external information for behavioural regulation. This aspect,

which is also important in the case of articulated behaviours for subcomponents inte-

gration, switch and decision points, becomes fundamental when behaviours involving

cognitive capabilities are required. The possibility of integrating information over time,

enconding it into internal states, through conscious memory, physiologic states or even

unconscious neural activation, is a primary aspect for the performance of cognitive
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behaviours, as for instance communication, reasoning and so on.

It is interesting to point out that cognitive behaviours should not be considered as ex-

clusively internal processes, i.e., as processes based exclusively on internal or previ-

ously integrated information. Indeed, often the combination of internal stimuli with the

perceived external ones define the individual behaviour in a coupled way. This coupled

use of internal and external stimuli becomes clearer when we look at some evidences

of studies with male dogs and rats, in which the spinal connections to the brain were

lesioned, and still some copulatory responses happened normally when genital tac-

tile stimulation was performed [12, p. 31]. Also the clear division between perception

and action started to be challenged in the literature when the mirror neurons were dis-

covered. This type of neurons tightly links perception and action by showing that there

are brain regions that activate both when the individual performs a given action and

when it recognises another individual performing it [54].

Regarding human cognitive behaviour, besides some evidences that the human brain

use different sources of information for cognitive control, sensory stimuli, episodic, con-

textual memory and so on [86], the combination of internal and external behavioural

strategies is very frequently used by humans. This can be seen, for instance, in tasks

in which by performing a certain action, not directly related to the task, the load of in-

ternal, cognitive processing is reduced. For example the act of rotating the head for

reading a rotated text, reducing the necessity of mentally rotating it [146]. Another

case in which this kind of strategy is used is when a cook organises the ingredients of

a recipe before start cooking, based on the order and moment each ingredient have

to be used. This allows him to offload to the external environment, the necessity to

remember the ingredients order [174]. In the literature this is often called cognitive

offloading [145].

The decision of investigating the internal and external environmental aspects of be-

havioural evolution in robots was made for the following reasons: (i) the biological

inspiration by itself that produces the hypothesis that some of the interesting behavi-
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oural outcomes observed in natural systems could be produced also in artificial ones;

(ii) this direction is far less explored than others regarding the development of com-

plex and articulated behaviours (this will be better discussed in the next section), and

(iii) the interesting aspects observed in artificial evolution can also provide insights or

hints to biological studies aimed to better understand animal behaviour and its evolu-

tion. As mentioned above, I also believe that the progress in the comprehension of

these aspects will also improve our ability to tackle real life problems through the use

of Evolutionary Robotics.

2.2.1 Different Ways of Producing Complex Behaviours for Artificial Agents

Behaviours regulated by different environmental factors, internal and external, mainly

through an array of behavioural responses to different stimuli and environmental con-

texts, brings benefits compared with simple behaviours. This is not only confirmed by

biological studies, but also by the fact that we can find a considerable amount of dif-

ferent studies in the literature seeking this goal of developing articulated behaviours in

artificial agents [3, 6, 23, 24, 100, 103]. Although the goal is very clear, and there is

no discussion on the fact that having a proper and rich behavioural repertoire provides

a greater adaptability of the agents, how to develop this behavioural repertoire, which

should be the different behaviours involved and how to regulate them is still an open

challenge.

Many different approaches have been proposed for tackling these problems, an im-

portant and pioneering approach is called behaviour-based robotics [23], or the so

called subsumption architecture. In this architecture adaptive behaviours are produced

through the combined use of different simple and modular behaviours. Not only the res-

ults obtained with this approach are noteworthy, but it is also the influence it has had

from then to the present day in the robotics field. Despite the subsumption architecture

made a great contribution from the perspective of how to organise the robot control-

lers, some of the issues with this approach is that it leaves to the designer the complex

task of properly dividing the overall behaviour into lower-level modules. It also requires
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from the designer the definition on how the arbitration among behaviours should be

done. And finally since the modules are structurally separated in layers, reusing and

adapting already existing behaviours for the creation of new behaviours usually means

duplication, and so, the creation of redundant modules. It is important to notice that, as

the subsumption architecture, many of the approaches for providing complex and ar-

ticulated behaviours are based on a more engineered view where the designer usually

needs to know and define a considerable portion of the architecture, models, modules

and transition rules, which may not be feasible depending on the setup.

The combination of modular architectures with approaches capable of automatically

generating the controllers, as for instance Evolutionary Robotics, is a promising al-

ternative for tackling the problem of how to develop and arbitrate different robotic be-

haviours for a given task. Indeed, many researches can be found in this direction of

developing modular behaviours for artificial agents, and there are many different ways

of achieving that. One of them is through structural modular controllers, i.e., controllers

composed by different modules that are responsible for the production of corresponding

different behaviours that are grouped together and chosen through a specific arbitra-

tion mechanism usually operating in a context-based manner. In this category we could

cite [41] in which different behaviours are implemented through different modules which

could be manually programmed behaviours or evolved neural networks, and an arbitra-

tion mechanism that decided when to use each behaviour. Rahim et al. [142] evolved

a neural network controller responsible for choosing the robot motor commands using

as inputs the outputs produced by a set of pre-programmed modular controllers. In [22]

through a specific control architecture, boolean networks, the author demonstrates how

structural modularity can emerge spontaneously through an evolutionary method, and

so, present multiple differentiated behaviours. Similar to the work presented in [22],

in [73], through a modified version of the NEAT algorithm [160], the authors present an

evolutionary technique capable of creating neural networks in which structural modu-

larity emerges as a product of the evolutionary process, despite in this case there is

no explicit arbitration mechanism. In [25], the authors present two ways of producing
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structural modularity which they call (i) fixed and hardwired, where multiple modules

compete to control the robot, and (ii) dynamic, in which modules can be added through

a new evolutionary operator, and a module-duplication operation is introduced in the

evolutionary process. As conclusions this work shows how this new operator can facil-

itate functional specialisation through the development of multiple behaviours. The use

of multiple alternative neural modules and a gating mechanism modulating the altern-

atives in order to determine the proper output, as the works presented in [25, 178, 195],

is usually called neuromodulation.

Besides structural modularity and neuromodulation, some works seek to develop richer

behavioural capabilities using artificial neural networks (ANN) associated with a mech-

anism called synaptic plasticity. In the context of ANN’s the term neural plasticity refers

to the network capacity to dynamically change its synaptic connections, or weights,

making possible the execution of differentiated behaviours over time. Martin et al. [104]

show how the use of synaptic plasticity can allow the emergence of complex locomotion

patterns for a exploration task. In [63], besides a modular neural controller, synaptic

plasticity is used for creating a walking behaviour that can adapt to different contexts,

making it able to avoid obstacles and navigate in complex environments. Steingrube

et al. [164] showed how through the use of synaptic plasticity, a simple neural network

could be able to adapt and exhibit many different behaviours, as taxis, self-protection,

different gaits pattern and so on, even in a complex robotic setup of eighteen sensors

and eighteen motors. Synaptic plasticity is indeed an interesting way of producing ef-

fective behaviours and Floreano and Urzelai [52] present explicitly this idea, arguing

and showing some evidences about how encoding rules of synaptic plasticity in the

evolutionary process could contribute to the evolution of more complex and adaptive

behaviours.

Alternatively to the use of hierarchical and structural changes in the robot’s control-

lers, specifically regarding artificial evolution methods, there are different approaches

that seek to promote changes in the evolutionary algorithm as the main drive to ob-
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tain articulated and mainly more effective behaviours. In order to illustrate this kind

of approach, I will present here three different kinds of approaches that focus on the

evolutionary algorithms themselves, Evolution by Viability [102], Coevolutionary Ap-

proaches [121, 138, 161] and Novelty Search [96]. From these, the one that is currently

receiving much attention in the literature is novelty search [36, 95, 96, 179]. Proposed

in [96] the rationale behind this approach is that natural evolution does not work with

specific objectives, as the specific goal functions commonly used in artificial evolution.

So instead of evaluating individuals with an objective metric, the evolutionary selection

is performed based on a behavioural novelty metric that considers all the behaviours

found in the process. The main argument for doing this is that looking directly at the

goal can cause the artificial evolution to be stuck in local optima regions, the so called

deception or premature convergence problem. While the results presented in [95, 96]

confirm that novelty search in some cases can reduce the deception problem, allowing

the evolution of more effective behaviours, the development of the behavioural metrics

that are used to define novelty is not a simple task at all. Also as the task complexity

increases, developing behavioural metrics that produce effective behaviours can be-

come as hard or even harder than using objective fitness functions. Furthermore, from

the point of view of the inspiration by natural evolution, it is totally unrealistic keeping

a record of all behaviours already seen in the evolution with the purpose of selecting

new behaviours, despite this is not a central issue.

Another approach in this category that has proven to present effective results is co-

evolution [121]. In this approach two or more populations are evolved together and

their fitness’ depend on one another. The way in which the individuals interact defines

if the process is cooperative, i.e., the individuals are composed together and cooper-

ate to increase their fitness [138]. Or competitive, meaning that individuals compete,

so usually a fitness increase of a given individual means a fitness decrease of the com-

peting individual [51, 161]. A third approach called Evolution by Viability [102] focuses

on the evolutionary selection, it operates by selecting all individuals that are considered

viable based on a specific range of multiple fitness functions. The fitness range used
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to define if a individual is viable or not is progressively adapted based on the profi-

ciency of the whole population. The viable fitness range at the beginning is wider, and

when individuals start to become effective on performing the task, the range starts to

become more and more constrained, gradually putting more selective pressure on the

individuals.

Additionally, some noteworthy evolutionary approaches are open-ended evolution [158]

and incremental approaches [163]. Open-ended evolution approaches take the bio-

logical inspiration on natural evolution one step further, considering that on natural

systems we have an unconstrained reality. This in turn results on individuals and pop-

ulations that keep evolving through the time producing increased complexity as gen-

erations go on. So the main idea on this approach is approximating artificial evolution

to the natural one, removing the task-driven objective fitness function, and letting the

selection to be done by the environment in an open world in which its dynamics dictate

which individuals will survive and reproduce. Besides the interesting results obtained

with non-robotics simulators often used in the literature, as Tierra and Avida [158],

many works try to develop robot bodies and behaviours using open-ended evolution.

For example, Bianco and Nolfi [17] showed how interesting behaviours as chasing and

evading from other individuals or collective obstacle avoidance can emerge through

the use of elementary robotics units and open-ended evolution. In [97] a novel method

called ESP (encapsulation, syllabus and pandemonium) is proposed for creating beha-

vioural and body complexity in evolved virtual creatures using open-ended evolution.

Despite open-ended evolution is a promising approach it is not simple to use it for prac-

tical applications since in theory this kind of method is not directed to a specific goal.

For this reason some approaches as that presented in [126] try to combine open-ended

and task-driven evolution for obtaining evolved robots capable of solving specific tasks.

Incremental approaches try to reproduce the same incremental individual complexity

produced by natural evolution in a more straightforward way. Therefore, incremental ev-

olution approaches use task complexification for trying to push the evolutionary process
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to produce increasingly complex solutions. This can be done through the functional or

environmental complexification of the evolutionary process [10]. As presented in [10]

a functional complexification means increasing the rigor with which the individuals are

evaluated along the evolution, relaxed evaluations at the beginning and demanding

ones toward the end. Environmental complexification means increasing the complexity

of the environment and the environmental conditions along the evolution, simple cases

and tasks at the beginning and hard cases toward the end. For example, Stanton and

Channon [162] showed how through the environmental complexification of the task, di-

viding it in different levels of difficulty and incrementally using them along the evolution,

it is possible to evolve virtual agents in a 3D world to solve a rather complex task using

artificial neural networks. How to divide the task, and how to present the subdivision of

the task to the population is an important challenge to be tackled for using incremental

evolution. In [112] they use incremental evolution for creating virtual creatures capable

of crossing a wall of different heights, they provide an interesting analysis on how the

possible ways of dividing and presenting the environments to the creatures during the

evolutionary process can significantly change the outcome of the artificial evolution.

And in [45] the authors propose a method that automates the reconfiguration of the

test environment, allowing the use of incremental evolution in real robots without the

necessity of human intervention.

As we could see, changes in the control structures, the use of hierarchical or modular

structures, or in the evolutionary algorithm itself, i.e. changes in the fitness function or

in the evolutionary selection, can contribute to the production of complex and effective

behaviours. Indeed, besides the examples presented in this thesis, a great variety of

approaches can be found in the literature that fits in one of these categories. However,

in the context of Evolutionary Robotics, the investigation of potentially important arti-

ficial evolution aspects, that are present on natural evolution and biological systems,

as for instance the evolution of articulated and cognitive behaviour without the use of

specific algorithms or additional mechanisms introduced by the designer, is not a so

common direction taken. This is a promising direction for some reasons, first of all
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Figure 2.1: The overall behavioural architecture of evolved embodied agents show-
ing the organisation of articulated behaviour as a multi-level structure
achieved through the entangled combination and the interaction among
the elements as presented in [120]. Adapted from [120].

the fact it has not been extensively explored yet leaves room for the study of many

different aspects that are present in biology and that could apply to artificial evolution

as well leading to improved results when evolving adaptive behaviour for robots. An-

other aspect is the fact that, in the long term, the insights provided by artificial evolution

could help to shed some light, or at least to provide an additional tool for the study

of not well understood aspects of natural evolution, mainly regarding the evolution of

adaptive behaviour.

Actually the biological view of complex and articulated behaviours is well aligned with

the fields of embodied intelligence and evolutionary robotics. In these research fields,

behaviour is seen as the dynamic process that emerges from the interactions between

mind, the robot’s controller, its body and the external and internal environment [120,

135]. Furthermore, the possibility to build behavioural complexity building up on top

and reusing previously acquired behavioural capabilities, see figure 1.1, can lead to

the evolution of interesting and effective solutions as shown in [120].
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Considering the similarities regarding behaviour found in biological and evolutionary

robotics researches, drawing inspiration from biology in order to develop more effective

articulated behaviours in artificial agents seems to be a promising direction. Indeed,

natural evolution was capable of evolving biological creatures with amazing behavi-

oural capabilities and that are capable of dealing with different tasks and situations.

Considering that the ultimate goal of service robotics is to develop robots capable of

operating in complex, dynamic and often unknown environments, for providing specific

services, the biological inspiration might provide valuable insights for dealing with this

open challenge. In other words, different fields of biology as, for instance, evolutionary,

developmental and ethology, could point out interesting directions on how to tackle this

current open challenge: how to develop intelligent robots capable of operating in the

different environments of everyday life.

We know from ethology that the animal’s environment has a huge influence on its

behaviour [43]. Also from evolutionary biology we know that behaviour is a phenotypic

response of an organism [185], which means that it is co-determined by the individuals

genotype and the environment both internal, i. e. the characteristics and dynamics of

the individual itself, and external, the world in which the individual lives. As already

presented, these biological aspects are well aligned with the embodied intelligence

theory [135], which argues that adaptive behaviour arises from the interactions among

the robot’s body, mind, a.k.a its controllers, and the environment.

The analysis and experiments described in this thesis investigate to what extent these

aspects, often studied in the context of animal behaviour, are relevant for the evolution

of artificial agents displaying adaptive behaviour. More specifically, the first one regards

the evolution and fundamental aspects of behavioural plasticity in artificial agents. This

term refers to the individual’s capacity to present an array of behavioural responses

that will be used based on internal and external stimuli without the necessity of struc-

tural controller division or synaptic plasticity. The second aspect concerns the role of

cognitive offloading, i.e., reactive strategies that can extend the cognitive capabilities
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of an agent by offloading part of the cognitive work to the external environment, in

the evolution and operation of cognitive robots. These topics will be briefly presented

in the next sections, and the experiments and results regarding each of them will be

presented in detail in chapters 3 and 4.

2.2.2 The Evolution of Behavioral Plasticity

Phenotypic plasticity is a term that refers to the capacity of a genotype to be expressed

in different ways regarding its external and internal environmental conditions, i.e. in

response to different environments. Some of these changes are irreversible, as for

instance the sex determination driven by the environment in some reptile species [80].

Others are seasonally reversible [154] as for instance the colour of some species of

insects that change according to the period of the year, autumn or summer [68]. Fi-

nally, behaviour is a special case of phenotypic plasticity that is reversible and occurs

at a faster pace when compared with morphological plasticity [185, p. 27]. The main

point regarding phenotypic plasticity is that it could be an important feature for the

evolution of adaptive individuals able to deal with heterogeneous environments or dy-

namically varying environments [39]. A study that can illustrate this benefit in nature

is [64], which presents evidences that the behavioural adjustment of a specific spe-

cies of birds regarding singing in a anthropogenically noisy environment is done by

short-term adjustments instead of evolutionary adaptations, i.e. they adapt based on

behavioural plasticity. It is important to notice that behavioural plasticity should not

be mistaken by the developmental process that involves the adjustment of synaptic

connections among neurons, called synaptic plasticity.

Linking the concept of phenotypic plasticity to the evolution of intelligent robots seems

to provide an interesting direction, specifically concerning the development of beha-

vioural plasticity in evolving robots. An individual’s genotype capable of presenting

different behaviours according to the environment in which it operates is well aligned

with the goals pursued by roboticists, especially with respect to mobile robotics. So,

robots able to present articulated behaviours, those composed by different alternative
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sub-units regulated on the basis of internal and external environmental information,

may lead to an increased performance compared to robots performing uniform, i.e.

non-plastic, behaviours.

As previously presented, articulated behaviours in artificial agents have been developed

through different approaches. In this work however the objective is to check the pos-

sibility to evolve behavioural plasticity without the use of structural modularity, synaptic

plasticity or specific algorithms that could facilitate the emergence of modular beha-

viour. In chapter 3, this matter will be investigated in detail, showing how behavioural

plasticity can emerge in a single goal task, bringing performance advantages when

compared to non-plastic behavioural strategies. Furthermore, a detailed analysis of

the emergent modular behaviour will show the importance of connectedness and re-

latedness among behaviours, and also how the possibility to generate opportunity for

actions, i.e., affordances [55], is an important underlying mechanism allowing the ef-

fective evolution and use of this kind of behavioural strategy.

2.2.3 Cognitive offloading and the Evolution of Agents with Cognitive Capabil-

ities

The individual’s ability to display adaptive behaviour is increased if it is able to present

cognitive capabilities rather than only direct responses to environmental stimuli, i.e.

completely reactive behaviours. Since it is possible to find different meanings for the

term cognition in the literature, here the term is used in a wider sense. More specifically,

it means the capacity to integrate sensory-motor information over time, modifying so

the individual’s internal environment, and using the integrated information for behaviour

regulation. The combination of reactive behavioural strategies, i.e. those relying on

the immediate perception of external stimuli, with those relying on internal information

integrated over time, seems to be another important aspect in the evolution of complex

behaviours.

An important concept that lies at the interface between reactive behaviour and cognitive

capacities is cognitive offloading in which the information used to regulate the agent’s
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behaviour is not maintained in the agent’s internal states but rather in the agent/en-

vironmental relation (i.e. it is offloaded in the environment). It is common that these

actions and strategies might not be directly related to the goal task, but they have a

fundamental role in the main cognitive strategy. As the term suggests this kind of ac-

tion partially offloads to the external environment the cognitive workload required for

solving a given task. As examples of cognitive offloading we could cite ordering the

ingredients of a recipe before starting to cook, tilting our heads when trying to under-

stand a given image or even using paper and pen for solving mathematical equations.

There are evidences that show how offloading part of the cognitive process can extend

the cognitive capabilities of an individual, minimise efforts, and improve performance

in different domains as perception, memory, spatial reasoning and so on [145].

Specifically in artificial agents, cognitive offloading usually means acting in a way so as

to encode information in the external environment or in the agent/environment relation

in a way that it could be readily used for behavioural regulation. The use of cogni-

tive offloading strategies is often seen in reactive agents, those with controllers that

are structurally unable to integrate information over time, and so the only possibility to

overcome their limitations is adopting these strategies. To illustrate some examples

of this kind of strategy we could cite [16], in which a minimally cognitive agent cap-

able of catching objects with a given size while avoiding others in a categorisation task

used information offloading in order to properly perform the task. In this task, objects

moved vertically, falling down along the trial while the agent moved horizontally. The

behavioural solution find by the agent was travelling a certain distance proportionally

to the object size, and after not perceiving the object anymore it started to go back.

By behaving this way it stored the object size in its relative position to the environment

which guaranteed that it would catch only objects of a specific size while avoiding the

others. In [29] an evolved reactive agent, i.e. with no capacity to integrate information

over time, capable of placing and perceiving environmental markers becomes able to

perform a homing task through the use of a sort of breadcrumb navigation. In [118]

a khepera robot, with a simple reactive controller, becomes able to differentiate am-
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biguous stimuli when perceiving a food object and the walls. The robot developed a

behavioural pattern that explored the environmental regularities, and doing so its be-

haviour converged to a limit cycle that allowed the agent to remain close to the food

objects, but not the walls.

Although it is well known that this kind of strategy usually emerges for overcoming indi-

vidual’s cognitive limitations, as the ones presented before, it is not clear what is the re-

lation between the development and use of cognitive offloading and internally cognitive

strategies. Actually, according to some authors, the development of reactive solutions

blocks the development of cognitive capabilities. In particular, [127] claimed that reac-

tive solutions constitute hard to escape local optima that prevent the development of

cognitive solutions. Similarly, [95] claimed that the deception caused by the availability

of locally optimal reactive policies is one of the main factors that explains why it is dif-

ficult for cognitive policies to evolve. For these reasons the authors hypothesised that

the development of cognitive solutions necessarily requires specific selective cognitive

pressures such as fitness components that encourage the development of short-term

memory [127] or mechanisms for avoiding local optima, such as novelty search [95].

In a broader sense, we could say that the exploitation of the information that can be

extracted directly from the environment and the effects of situated actions do not only

affect the agents’ low-level capabilities. Embodied and embedded strategies co-exist

and interact with different strategies that are less dependent on agent/environmental

interactions and more dependent on internal processes at all levels of organisation [31].

However, the relation and the interaction among strategies and capabilities that differ

in that respect have not yet been investigated. Consequently, the question of how

these different types of strategies can be integrated from an operational and develop-

mental perspective is still open. In particular, one important question that needs to

be answered is the following: “Is cognition truly seamless – implying a gentle, incre-

mental trajectory linking fully embodied responsiveness to abstract thought and off-line

reason? Or is it a patchwork quilt, with jumps and discontinuities and with very different
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kinds of processing and representations serving different needs?” [31].

The present work, specifically in chapter 4, investigates the relation between the de-

velopment of reactive and cognitive capabilities. In particular, the objective is to inves-

tigate whether the development of reactive capabilities, specifically cognitive offloading

strategies, prevents or promotes the development of cognitive capabilities, and how

do they interact. For the scope of this work, cognition is defined as the ability to inte-

grate sensory-motor information over time into internal states, and to use these internal

states to regulate the way the agent reacts to perceived stimuli. The term cognition is

often used in a more restricted way. The above definition is focused on a fundamental

capacity being at the basis of all cognitive capabilities (e.g. perception, memory, atten-

tion, decision-making, reasoning, language, etc.). So in chapter 4 the results showing

the importance and the synergy provided by the early development of cognitive offload-

ing to the posterior development and use of cognitive strategies, that make use of both

external and internal information, will be presented in detail.
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Chapter 3

Behavioral Plasticity in Evolving Robots

As discussed in the previous chapters, an important aspect of adaptive behaviour is

modular organisation, i.e. the fact that behaviours can be organised into a set of

semi-independent sub-behaviours that are combined in a context dependent manner

to achieve the agent’s goals. Behaviour therefore can be organised into partially in-

dependent elements that can be recombined in a modular way even if they do not

necessarily correspond to different modules or parts of the agent’s nervous system.

The utilisation, in a context-dependent way, of behaviours organised in this manner

is indicated by biologists with the term behavioural plasticity. In this chapter we will

see how behavioural plasticity can emerge in evolving robots and the advantages it

provides.

More specifically, this chapter aims to study the possibility to evolve articulated be-

haviours even for a single goal task and without the necessity to divide the robot’s

nervous system into different modules. The experimental setup used is a cleaning

task, which has a single goal, where robots with different sensorimotor capabilities and

artificial neural networks architectures had to clean an unknown and changing over

time environment. The results confirmed the possibility to evolve this type of adaptive

behaviour even for a single goal task, and also that this behavioural plastic strategy

can bring performance advantages compared to non-plastic ones. Analysis of robots’

behaviours helped to clarify that the evolution of this type of behaviour depended on

the characteristics of the neural network controllers and the robot’s sensorimotor capa-

cities, that in turn determined the robot’s capacity to perceive and generate opportunity

for actions, which in psychological literature is often called affordances.
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3.1 Introduction

Behavioural plasticity is a special case of plasticity - “the ability of an organism to react

to internal or external environmental inputs with a change in form, state, movement, or

rate of activity” [185, p. 33]. It involves the capability to display multiple behavioural

responses, which might differ in a continuous or discontinuous way, in a condition-

sensitive manner [87].

This kind of plasticity can be seen as a key aspect of animal behaviour since it is

essential for enabling organisms to adapt to variations of their external and/or internal

environment. In that respect, it is important to consider that, from the point of view of the

adapting individuals, what matters is the organism’s perceptual environment (i.e. the

characteristics of the environment that the organism perceives given its sensory system

and its relative location in the environment). Since moving around an environment

with different characteristics will produce different perceptual stimuli to the agents, this

means that environments are mostly variable from the perspective of an organism that

is situated and performs actions in it, independently of whether or not they appear

variable from the perspective of an external observer.

A relevant concept for studying behaviour, especially in the context of this study, is af-

fordance. The term was coined by a psychologist called Gibson [55], and it provided

an important and alternative direction for studying behaviour and cognition. According

to Gibson [55] objects and the environment are perceived by an individual according

to which actions they do afford, i.e. opportunities for action. Furthermore, these af-

fordances are not mental representations that require cognitive processing for being

perceived, but they are directly perceived from the environmental stimuli. This alternat-

ive way of viewing behaviour and cognition, which strongly depends on the environment

and the individual and for this reason is often called ecological, challenged the tradi-

tional computational model of the mind, in which mental representations are built using

the external stimuli and all the processing and action selection is done over the men-

tal representations. In the last years, many studies in different areas focused on the
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study of the affordance concept and the creation of computational models for it [171].

The ecological view of affordances theory is well aligned with developmental robotics

and embodied intelligence theories and for this reason many works on these fields are

focusing on the study of affordances as well. For a extensive and recent review on

the different interpretations, models, and the use of affordances in the robotics field,

see [194].

This chapter presents a study that analyses experimentally how evolving robots can ac-

quire and display behavioural plasticity, i.e. a series of behaviours that are exhibited in

a context-dependent manner. In particular, we analyse whether behavioural plasticity

evolves during the course of the evolutionary process, which are the prerequisites for

its evolution, and which are the behavioural mechanisms through which it is realised.

The comparison of the results obtained in different experimental conditions indicates

that the most important prerequisites for the evolution of behavioural plasticity are the

possibility to generate and perceive affordances (i.e., opportunities for behaviour ex-

ecution), and the possibility to regulate, in a flexible manner, the alternation of the

different sub-behaviours and the transitions between sub-behaviours.

3.1.1 Behaviour, multiple behaviours and behavioural plasticity

For the sake of clarity, it is important to specify what we mean by behaviour, multiple be-

haviours and behavioural plasticity. In the context of embodied and situated agents, be-

haviour is the dynamical process that originates from agent/environmental interactions.

At any time step, the environment and the agent/environment relation co-determine the

body (imagine, for instance, a body moving with different friction values) and the motor

reaction of the agent that, in turn, co-determine how the agent/environment relation

and/or the environment vary. Sequences of interactions lead to a dynamical process

that extends for a certain period of time: the agent’s behaviour.

We use the term overall behaviour to indicate the entire behaviour displayed by an

agent, i.e., the behaviour displayed by an organism during its entire lifetime. Moreover,

we use the term function(s) to indicate the adaptive role of behaviour, e.g., the overall
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behaviour displayed by an organism can have the function of enabling the organism to

survive and reproduce.

The overall behaviour might be characterised by a modular organisation with somewhat

semi-discrete and semi-dissociable subunits [185], or sub-behaviours, playing different

functions (or sub-functions). When sub-behaviours display a modular organisation as

well, the behaviour displays a hierarchical organisation characterised by multiple-levels

(e.g., lower-level behaviours, higher-level behaviours, overall behaviour, see [119]). We

used the term semi-discrete and semi-dissociable to emphasise the fact that concep-

tualising sub-behaviours as a collection of independent subunits is misleading, since

sub-behaviours are only partially independent of each other. The modular organisation

of behaviour, therefore, is characterised by both discreteness and evidence of bounda-

ries between sub-behaviours and by connectedness and integration among them [185].

After all, even individual organisms are not completely independent units, given that

they also show a significant level of connectedness and interdependence with conspe-

cifics, in most of the species. Notice that the modular organisation of behaviour should

not be confused with the modular organisation of the agent’s nervous system.

The term multiple behaviours refers to behaviours characterised by a modular organ-

isation, i.e. characterised by the presence of multiple semi-independent sub-behaviours.

In behaviours displaying several levels of organisation, the presence of multiple semi-

independent behavioural units characterises all levels of organisation, except the level

of the overall behaviour. As an example, we can consider the behaviour of a ten-

nis player during a game that can be divided in a series of semi-independent sub-

behaviours such as serve and volley (in which the player serves and then charges

forward to the net), lob (a shot in which the ball is lifted high above the net) etc.

The term behavioural plasticity refers to agents that are not only capable of display-

ing behaviours characterised by a modular organisation, but are also capable of dis-

playing the capability to properly regulate the exhibition of the different sub-behaviours

on the basis of their internal and external environment. In the example of the tennis
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player, behavioural plasticity refers to the capability of displaying multiple behaviours

such as those described above and to the capability of selecting the appropriate be-

haviour depending on the game context, for example the ability to execute a drop shot

behaviour, that consists in hitting the ball just over the net, when the opponent is far

from it. The term behavioural plasticity should not be confused with neural plasticity,

e.g., fine-grained modifications of the connection weights of the agent’s nervous sys-

tem [122].

Whether behavioural units or sub-behaviours should be considered as real entities

eligible for scientific analysis or subjective entities that only exist in the eyes of the ob-

server represents an open question. Indeed, although many biologists assume that be-

haviour is organised in semi-discrete units with specialised functions [11, 53, 111, 184,

185], others consider behavioural units as useful fictions at best [46]. Within the Arti-

ficial Life and Robotics community, the notion of behavioural unit has a relatively clear

and non-controversial meaning in the context of behaviour-based architectures [23]

in which different modules or layers are responsible for the production of alternative

corresponding sub-behaviours (i.e., in a situation in which there is a one-to-one cor-

respondence between behavioural units and agent’s control modules and in which the

control modules are separated by clear boundaries). Whether robots operating on the

basis of non-modular neural controllers can properly make use of multiple behaviours,

as well, represents an open question [82, 119, 139]. The attempt to resolve this issue

is outside the scope of this study. For intellectual honesty, we clarify that, together

with several authors cited above, we assume that the behaviour of an agent can have

a modular organisation even when the behavioural units do not correspond to clearly

identifiable components of the agent. As argued by [185, p. 63], we believe that “it

would be foolish to deny the modular properties of phenotypic organization just be-

cause there are connections and indistinct borders around the subunits we recognise

as trait. There can be no doubt that there exists behavioural subroutines or subunits,

for they are distinguishable from others in form, function, and discreteness, and some-

times in gene expression . . . ”. Moreover, we assume that the presence or the lack of a
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modular behavioural organisation can have important consequences (e.g., on agents’

performance and on agents’ ability to develop new skills).

3.1.2 Related works

Evolutionary robotics [120, 123] concerns the synthesis of a population of embodied

and situated robots that develop their skills autonomously as a result of an evolutionary

process based on selective reproduction and variation. In this context, the study of

behavioural plasticity has been addressed indirectly in the following three research

lines.

The first research area concerns the study of the combination of evolution and learn-

ing [49, 122, 173]. Nolfi and Parisi [125], in particular, showed how evolving robots

manage to successfully vary their behaviour during the course of their life to adapt to

variations of objects reflectance. Floreano and Nolfi [51] showed how evolving pred-

ator robots vary their predation strategy on the basis of the behaviour displayed by the

escaping prey so as to successfully capture it. This is an effective way of acquiring

some degree of behavioural plasticity, i.e. adjusting an individual’s behaviour - the way

it responds to a given set of stimuli - according to changes in the environment.

The second line of research addresses the study of the potential advantage of evol-

utionary algorithms supporting the evolution of modular neural controllers. The ra-

tionale behind this is that the availability of separated neural modules can facilitate

the exhibition of behaviours characterised by a modular organisation. In some cases,

this objective was realised by providing the neural controllers with a varying num-

ber of neural modules arbitrated on the basis of a co-evolved arbitration mechan-

ism [25, 151]. In other studies, instead, it was realised by genetically encoding the

connectivity between the neurons, i.e., by enabling the evolutionary process to select

architectures displaying clusters of neurons with many intra-connections and few inter-

connections [22, 73, 180].

Finally, the third line of research concerns the study of action selection (behaviour se-

lection for consistency with the terminology we are using), i.e., the capacity to select
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between alternative behaviours afforded by the current organism/environmental con-

text [152]. In most of the cases, evolutionary studies conducted in this area concern

the evolution of an ability to arbitrate hand-designed control modules producing prede-

termined behaviours (e.g., [60, 142]). In other cases, however, the behaviours were

evolved as well [77, 134, 153, 189]. In these experiments, however, the synthesis and

the exhibition of multiple behaviours represented the only possible viable solution since

the evolving robots were required to carry on mutually exclusive tasks [e.g., eating or

avoid eating a specific food type [134, 153] or moving on the basis of a wheeled or

legged actuators [189]].

Aiming to study whether behavioural plastic solutions evolve, whether they provide ad-

vantages with respect to non-plastic solutions, and which are the factors that represent

necessary prerequisites for the evolution of behavioural plasticity a series of exper-

iments was performed. As we will see, the results indicate that behavioural plastic

solutions can evolve also when the adaptive task does not require the accomplish-

ment of multiple conflicting functions. Moreover, our results indicate that behavioural

plastic solutions might enable the evolving agents to achieve higher performance. The

analysis of our experiments indicates that the most important prerequisite for the evo-

lution of behavioural plasticity is constituted by the capability to perceive and generate

affordances, i.e., opportunities for behaviours [27, 55]. This capability depends on

the richness of the robot’s perceptual environment that, in turn, depends on the rich-

ness of the robot’s internal and external environments, the richness of the robot’s sen-

sory–motor system, and the ability to exploit sensory–motor coordination. Moreover,

the analysis indicates the importance of using flexible regulation mechanisms that rely

on both external and internal cues. Finally, the obtained results demonstrate the impor-

tance of the connectedness between sub-behaviours and the importance of providing

the agents with mechanisms that enable them to realise a smooth and effective transi-

tion between sub-behaviours. Details about the experiments, the results and detailed

analysis’ are presented in the next sections.
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3.2 The method

To study this issue, we decided to consider a cleaning experimental scenario in which

a wheeled robot needs to vacuum-clean the floor of an unknown in-door environment.

We chose this problem since it represents the first (and still the more significant) suc-

cessful application domain of autonomous robot solutions (Roomba, the first autono-

mous vacuum-cleaning robot developed by iRobots® under the supervision of Rodney

Brooks and commercialised from 2002, has been sold in more than 10 million units

to date, see [75]). Rather than designing the controller by hand, we studied whether

effective controllers can be developed from scratch through an evolutionary method

in which the evolving robots are selected on the basis of the portion of successfully

cleaned surface, i.e., on the basis of a scalar value that rates their overall ability to

perform the task.

It is important to point out that we chose this domain also because it involves the exe-

cution of a task with a single goal (cleaning the environment) that does not necessarily

require behavioural plastic solutions. This enables us to study whether and how be-

havioural plastic solutions evolve, whether and why they provide an advantage with

respect to non-plastic solutions, and eventually which are the characteristics and func-

tions of the evolved sub-behaviours. Domains involving multiple conflicting goals, such

as those used in the literature addressing the study of action selection cited above, in

fact, necessarily require the development of solutions characterised by multiple beha-

viours and, implicitly, constrain the number and type of required sub-behaviours.

The investigation of the cleaning problem also permits to compare our evolved solu-

tions with those developed by companies that sell cleaning robots. In that respect, the

fact that the behavioural policies displayed by different versions of the Roomba and by

similar robots produced by other companies significantly differ [1] demonstrates that

finding the optimal solution/s for this problem is far from trivial.
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3.2.1 The task, the environment and the robot

To evolve robots that are robust with respect to environmental variations, we evaluated

each robot for three trials or cleaning sessions. At the beginning of each trial, the initial

position and orientation of the robot in the environment, and the specific characteristics

of the environment, like dimensions and object positions, in which it was situated in

were randomly varied within limits.

Each trial lasted 6 min and 15 s. Although performing a precise comparison with the

time required by commercial robots to clean completely or almost completely a sur-

face with similar properties is impossible due to the lack of data (for some indications

see [132]), this represents a rather short period of time.

To compute the cleaning performance, we divided the environment in 20×20cm non-

overlapping cells, and calculated the number of cells visited by the robot at least once

during a trial. Equation 3.1 presents the fitness function where Ttn is the total number

of cells in each of the three trials, which is different for each trial since the environment

dimensions vary among the different trials. However, the same three trials are used for

all the individuals of the same generation.

f itness =
3

∑
tn=1

1
3

Ttn

∑
i=1

Ci, where Ci =

⎧⎪⎪⎨⎪⎪⎩
1 if Ci was visited by the robot

0 if Ci was not visited by the robot
(3.1)

The experiments have been repeated in two different types of environments. In the

first set of experiments, we used a concave environment (Fig. 3.1, left) constituted

by a large central area and by four peripheral corridors that represented a room-like

environment. The average environment had a central area with a size of 6.8m2 and four

corridors with a size of 3.78m2 in total. The exact size of the environment, however,

was randomly set at the beginning of each trial. This was realised by varying the

height and width of the central area and of corridors of ±33% and ±18%, respectively,

during different trials. In the second set of experiments, we used a convex environment
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(a) (b)

Figure 3.1: Examples of concave and convex environments, (a) and (b), respectively

(Fig. 3.1, right) constituted by a rectangular room-like area including furniture. The

rectangular area had a size of 12.2m2±33% and included: a first rectangular object

with an area of 0.93m2±10%, a second rectangular object with an area of 0.17m2, the

legs of a table, and the legs of chairs (the number of chairs was randomly varied in the

range [0, 4]). The x and y coordinates of all the objects located over the plane were

also varied during each trial within limits that prevented physical overlap.

The robot used was a MarXbot [20], a differential drive wheeled robot with a diameter

of 17cm. It was equipped with 24 infrared sensors evenly distributed along the robot’s

body and capable of detecting objects in a range of 10cm. Moreover, it was also

equipped with a rotating laser sensor capable of detecting obstacles at longer distance

(1m). Experiments were run in simulation using the FARSA open-software tool [106,

107] that includes an accurate simulator of the robot and the environment.

3.2.2 The robots’ neural controller

The robots were provided with a neural network controller. In all experiments, the ro-

bots were equipped with eight sensory neurons that encode the average activation

state of eight groups of three adjacent infrared sensors each and two motor neurons

that encoded the desired speed of the two robot’s wheels. The sensory neurons were

fully connected with the motor neurons and to hidden neurons (if present), and the
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(a) (b)

Figure 3.2: Simple Neural Network Controller with (b) and without (a) hidden neurons.
The output neurons W define the motor activation for left and right wheels
of the robot. Neurons with a white contour around it mean the presence of
a bias parameter.

hidden neurons were fully connected to the motor neurons. Hidden and motor neurons

were provided with biases. The states of the hidden and motor neurons were com-

puted on the basis of the logistic function. The state of the sensory neurons and the

desired speed of the robot’s wheels were updated every 50ms. Experiments have been

replicated in the following four experimental conditions:

(S) Simple: The robots were only provided with the infrared sensors (see Fig. 3.2)

(R) Range sensor: The robots were provided with an additional sensory neuron that

encoded the average distance of obstacles located within 1m detected through the

rotating laser range sensor. This sensor has been added to enable the robot to vary its

behaviour in narrow versus open areas (see Fig. 3.3)

(T) Time: The robots were provided with an additional sensory neuron that encoded

the time passed since the beginning of the current cleaning session (trial), i.e. whose

activation state linearly varies between 1.0 and 0.0 during the course of the trial. This

sensor has been added to enable the robot to vary the behaviour during the course

of cleaning sessions. Notice that this sensor enabled the robot to access information
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(a) (b)

Figure 3.3: Range Neural Network Controller with (b) and without (a) hidden neurons.
The output neurons W define the motor activation for left and right wheels
of the robot. Neurons with a white contour around it mean the presence of
a bias parameter. The input AvgL is the average activation of the rotating
long range sensor.

extracted from the robot’s internal environment (e.g., a robot clock situated inside the

robot body), while the other sensors enabled the robot to access information extracted

from the external environment (see Fig. 3.4)

(M) Modular: The neural controller was formed by three modules (each provided with

eight infrared sensors connected to the two motor neurons) that were used during

three subsequent phases of the trial of equal length. This modular neural controller was

used to enable the robot to freely differentiate its behaviour during the three successive

phases of the trial (see Fig. 3.5)

To investigate whether the addition of internal neurons could enable the robot to achieve

better performance, we carried out a second series of experiments in which the robots

were also provided with an additional layer with three hidden neurons that received

connections from all sensory neurons and projected connections to all motor neurons.

The connection weights and biases, that determine the robots’ behaviour, were initially

set randomly and evolved as described in the section below. The tool used to run

the experiment can be downloaded from https://sourceforge.net/projects/farsa/. The
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(a) (b)

Figure 3.4: Time Neural Network Controller with (b) and without (a) hidden neurons.
The output neurons W define the motor activation for left and right wheels
of the robot. Neurons with a white contour around it mean the presence
of a bias parameter. The input Ck is the internal clock that varies linearly
from 1 to 0 along the trial.

(a) (b)

Figure 3.5: Modular Neural Network Controller with (b) and without (a) hidden neur-
ons. The output neurons W define the motor activation for left and right
wheels of the robot. Neurons with a white contour around it mean the
presence of a bias parameter. In the first third of the trial output neurons
W0 and W1 define the motor output of the robot, in the second third neur-
ons W2 and W3 define the motor output and in the last part of the trial
neurons W4 and W5 define the motor output.
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source of the plugin that enables to replicate this experiment can be downloaded from

http://sourceforge.net/p/farsa/code/HEAD/tree/farsaPlugins/cleaningExperiment/.

To provide the robots with the modular controller (M) with a more flexible mechanism

for arbitrating between the three modules, we also ran additional experiments in which

the time duration of the three phases was encoded in additional evolvable parameters

or in which the arbitration between the modules was realised by the robot itself through

additional output neurons (as in [125]). However, all these experiments led to poorer

results with respect to the base (M) condition.

3.2.3 The evolutionary algorithm

The initial population consisted of 20 randomly generated genotypes, which encoded

the connection weights and biases of 20 corresponding individual robots (each para-

meter was encoded by 8 bits and normalised in the range [–5.0, +5.0]). Every genera-

tion, each individual was evaluated for three trials in environments that randomly varied

in dimension within the limits indicated above. The fitness of each trial was calculated

by counting the number of 20×20 cm portions of the environment that were visited by

the robot at least once during the trial. The total fitness was calculated by averaging the

fitness obtained during the three trials, see equation 3.1. All individuals were allowed

to generate an offspring that was also evaluated for three trials. The 20 offspring were

generated by creating a copy of the parent genotype and by mutating each bit with a

2% probability. The genotype of the offspring was used to replace the genotype of the

worst parents or discarded depending on whether or not offspring outperformed the

parents. The genotypes of the initial population were generated randomly. Each evolu-

tionary experiment was replicated 20 times starting from different randomly generated

initial populations and the evolution lasted for 500 generations in each replication.

3.3 Results

In “Performance and efficacy of plastic versus non-plastic behavioural solutions”, we

describe the performance achieved in the different experimental conditions. As we will
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see, the cleaning task in the convex environment admits a simple behavioural solution

that does not require the exhibition of multiple behaviours. Consequently, the perform-

ance obtained in the different experimental conditions is rather similar. On the contrary,

the cleaning task in the concave environment requires the exhibition of at least two sub-

behaviours that differ in forms and functions: an exploration behaviour that enables the

robot to explore the large central area and a wall-following behaviour that enables the

robot to explore the peripheral areas and the borders of the central area. The possibil-

ity to discover and to display these two behaviours rather than a single undifferentiated

behaviour crucially depends on the characteristics of the robots’ neural controller as

demonstrated by the fact that the behaviour and the performance significantly vary in

the four experimental conditions.

In “On the mechanisms supporting behaviour differentiation and arbitration”, we will

discuss the mechanisms that support behavioural differentiation and arbitration by ana-

lysing the behavioural solutions found in the different experimental conditions. As we

will see, the two most important mechanisms that support the evolution of behavioural

plastic solutions are the ability to perceive and to generate affordances (i.e., oppor-

tunities for behaviours) and the possibility to flexibly and properly handle behavioural

transitions.

3.3.1 Performance and efficacy of plastic versus non-plastic behavioural solu-

tions

By post-evaluating the best robot of the last generation of each replication for 500 tri-

als, we can see how in the concave environment, the evolved robots reach close to

optimal performance in the temporal (T) experimental conditions, good performance in

the modular conditions (M), and relatively low performance in the case of the simple

(S) and range sensor (R) conditions (Fig. 3.6, left). The performance of each experi-

mental condition statistically differs from all others conditions (Kruskal–Wallis ANOVA,

df = 3, p < 0.001—Bonferroni-corrected Mann–Whitney U, p < 0.0083) with the ex-

ception of (S) and (R) that do not differ significantly from each other (p = 0.82). The
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Figure 3.6: Box plots of performance in the concave environment. The left and right
figures report the results obtained without internal neurons and with in-
ternal neurons, respectively. The box plots display the performance of the
best robot of the last generation in the four experimental conditions, i.e., in
the single (S), temporal (T), modular (M), and range sensor (R) conditions.
Boxes represent the inter-quartile range of the data, while the horizontal
lines inside the boxes mark the median values. The whiskers extend to
the most extreme data points within 1.5 times the inter-quartile range from
the box. Circles mark the outliers. Each box displays the performance of
the best robot of 20 replications of each experiment. The performance is
indicated by the percentage of cleaned cells within the walls. The value
corresponding to optimal performance is unknown but is reasonably below
1.0 given that the robots have a rather limited cleaning time

performance obtained in the experiments in which the robots were also provided with

the internal neurons (Fig. 3.6, right) does not significantly differ from the experiments

without internal neurons (Mann–Whitney U, p>0.05).

The analysis of the behaviours displayed by the best robots of the last generation

indicates that the performance level correlates with the ability of the robots to display

multiple behaviours. This is clearly illustrated by the behaviour displayed by the best

(S) and (T) robots that achieved a fitness of 67.4% and 82.8%, respectively. While (S)

displays a single uniform behaviour along the trial, (T) is capable of performing two

well-differentiated behaviours (Fig. 3.7, top).

Indeed, the best robot with a simple architecture (S) always behaves in the same man-

ner during the successive phases of the trial (Fig. 3.7, top-left). In particular, it avoids

walls and obstacles by sharply turning with an angle of 45°–90° (depending on the

relative angle with which the robot approaches the obstacle) and moves straight when

it is far from obstacles. Through the exhibition of this behaviour, the robot manages
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(S) (T)

(M) (R)

Figure 3.7: Typical trajectories displayed by the best robots of the four experimental
conditions without hidden units in the concave environment. The portions
of the trajectory produced during the first, second, and third part of the trial
(i.e., from step 1 to 2500, from step 2501 to 5000, and from step 5001 to
7500, respectively) are shown with different colours and line style

to keep exploring the environment until the end of the trial by avoiding obstacles and

by keep moving in different portions of the environment. However, the robot spends

most of its time by exploring the large central portion of the environment. It explores

the peripheral areas only occasionally when it happens to approach them with a di-

rection that it is almost orthogonal to the entrance of the corridor. The robots of the

other replications of the experiments show qualitatively similar behaviours (results not

shown).

The best robot with the time neuron architecture (T), instead, shows two well-differentiated

behaviours: (1) an initial exploration behaviour that is realised by producing a progres-

sively larger curvilinear trajectory that enables the robot to explore the large central

portion of the environment, and (2) a wall-following behaviour that enables it to explore

all the peripheral areas of the environment (Fig. 3.7, top-right). Although the way in

which the exploration behaviour is realised varies in different replications of the exper-
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iment, well-differentiated exploration and wall-following behaviours are clearly observ-

able in all cases (results not shown). The high performance of these robots is due to

their ability to display different behaviours, which are specialised for the exploration of

large open areas and peripheral areas, and carefully tune the time duration of the two

behaviours. Indeed, the relative duration of the two behaviours determines whether

or not the robot spends enough time exploring the central large area while keeping

enough time to explore all the peripheral areas of the environment.

A qualitative analysis of the first ten replications showed that in the best two robots,

that clearly statistically outperform the best robots of the other eight replications, the

transition between the two behaviours occurs at 3.17±0.11min. This transition time is

optimal or nearly optimal as demonstrated by the fact that post-evaluation tests per-

formed by slowing down or speeding up the robot’s internal clock and, consequently,

the behaviour transition led to significantly worse performance (results not shown).

The best robot with the modular (M) architecture also shows an exploration behaviour

displayed during 4.17min, when the robot operates on the basis of the first and third

neural modules, and a wall-following behaviour displayed during 2.08min in which it

operates on the basis of the second neural module (Fig. 3.7, bottom, left). The lower

performance with respect to the best (T) robot is due to the fact that the transition

between the two behaviours is too abrupt and it is not able to finely tune the relative

duration of the two behaviours. The analysis of the robots of the other replications

shows qualitatively similar solutions although, in some cases, the differentiation of the

behaviour is less marked (result not shown). As mentioned above, we carried out a

series of additional experiments in which the genotype of evolving robots included three

additional genes that were used to determine the time duration of the three phases.

However, in this condition, the evolved robots relied on a single exploration behaviour,

as in the case of the (S) experimental condition (results not shown).

Finally, the analysis of the best robot in the case of the range sensor experimental

condition (R) also displays a behavioural plastic solution characterised by the exhibi-
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tion of an exploration behaviour and a wall-following behaviour (Fig. 3.7, bottom-right).

This robot alternates the two behaviours by switching either from the exploration to the

wall-following behaviour or from the wall-following to the exploration behaviour. The

achievement of lower performance with respect to the (T) experimental condition is

due primarily to the inability of this robot to precisely control the duration of behaviours,

as demonstrated by the high variability of the relative duration of the two behaviours

among trials (2.99±1.02min). The best robots of four other replications displayed qual-

itatively similar solution, while the best robot of the five remaining replications displayed

a single uniform exploratory behaviour similar to that shown by (S) robots (result not

shown). The behaviour of the second set of ten replications was not inspected.

In the convex environment, instead, the robots achieved similar performance in all ex-

perimental conditions (see Fig. 3.8, left). The differences among the four experimental

conditions are statistically significant (Kruskal–Wallis ANOVA, df = 3, p < 0.001). How-

ever, the pairwise comparison (Bonferroni-corrected Mann–whitney U) indicates that

this difference is due to the fact that (R) is significantly worse than (T) (p < 0.001) and

(M) (p = 0.00143). All other conditions do not statistically differ (p > 0.0083). The per-

formance obtained in the experiments in which the robots were also provided with the

internal neurons (Fig. 3.8, right) does not significantly differ from the basic experiments

for (T) and (M) (Mann–Whitney U, p > 0.05) with the exception of (S) and (R) in which

the performance of the experiments with internal neurons is significantly better in the

former, and worse in the latter case (Mann–Whitney U, p < 0.05).

Overall, these results can be explained by considering that in this type of environment,

the exhibition of a single behaviour is sufficient to achieve close-to-optimal perform-

ance. As a consequence, evolving robots do not develop multiple behaviours (see Fig.

3.9). In some cases, especially in the (M) condition, a weak differentiation is observed.

However, it does not provide an advantage in this type of environment.
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Figure 3.8: Box plots of performance in the convex environment. The left and right fig-
ures report the results obtained without internal neurons and with internal
neurons, respectively

(S) (T)

(M) (R)

Figure 3.9: Typical trajectory displayed by the best robots of the four experimental
conditions without hidden units in the convex environment

3.3.2 On the mechanisms supporting behaviour differentiation and arbitration

We have seen how behavioural plasticity, i.e., the ability to display and regulate multiple

behaviours, can enable the adaptive robots to achieve better performance in the con-

cave environment and that the emergence of behavioural plastic solutions depends on

the characteristics of robot’s neural controllers. We will now focus on the mechanisms
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supporting behaviour differentiation and arbitration. As we will see, evolving robots can

rely on different mechanisms to achieve behavioural plasticity. The efficacy of these

mechanisms and the facility with which they can be discovered explain the variations

in performance observed in the considered experimental conditions.

Before entering into this, it is important to point out that, as we mentioned in the in-

troduction, the behaviour displayed by an embodied and situated agent is a dynamical

process unfolding in time that results from the robot/environmental interactions. This

implies that the organisation of behaviour(s) varies at different timescales. Moreover,

this implies that the sensory states experienced by the robot at a given time step are co-

determined by the actions produced by the robot during previous robot/environmental

interactions. If we use the term affordance introduced by Gibson [55] to indicate sen-

sory states that elicit the production of behaviours, this implies that the affordances are

not only extracted through sensors from the internal and/or the external environment

but are also generated by the robot itself through actions.

The analysis of the behaviour exhibited by the robots at a short timescale (i.e., at

a timescale of seconds) indicates that, in all experimental conditions, robots tend to

exhibit at least two different low-level behaviours: (1) an obstacle-avoidance behaviour

that consists in turning while the robot detects an obstacle in its frontal side, and (2)

a move-forward behaviour that consists in moving straight or almost straight while the

robot does not detect obstacles in its frontal side (see Fig. 3.10). This implies that, at

this short timescale, all robots of all experimental conditions display behavioural plastic

behaviours. The reasons that explain why this type of behavioural plasticity always

evolves are that it plays a functional role (i.e., it enables the robot to avoid being stuck

and keep exploring the environment) and it is supported by the availability of always-

available and easy-to-use affordances. Indeed, independently of the way in which

the robot behaves, it will always experience a lack of activation on the frontal infrared

sensors when the robot/environment context affords a move-forward behaviour and an

activation on the frontal infrared sensors when the robot/environmental context affords

61



3.3. RESULTS

Figure 3.10: Exemplification of short-term behavioural plasticity in the case of an ex-
ploration behaviour that is realised by alternating a move-forward and an
obstacle-avoidance behaviour (shown in blue and red, respectively). The
former behaviour is elicited by perceptual states in which the frontal in-
frared sensors are not activated, i.e., a state affording the move-forward
behaviour. The latter behaviour is elicited by perceptual states in which
the frontal infrared sensors are activated, i.e., a state affording the
obstacle-avoidance behaviour

an obstacle-avoidance behaviour. The infrared sensors, therefore, always enable the

robot to perceive when the former or the latter behaviour should be produced and when

the transition between the two behaviours should occur.

This ideal situation, however, in which the robot can rely on robust and ready-to-use af-

fordance states only characterises few lucky cases (incidentally, this probably explains

why the combination of obstacle-avoidance and navigation behaviours represents a

widely used experimental scenario in robotics). In other cases, the affordance states

supporting behaviour differentiation and arbitration should be extracted through internal

elaboration and/or generated through the exhibition of appropriate behaviours.

This also implies that plasticity is not a binary but rather a continuous property. The

greater the number of behaviours/complexity of the sub-behaviours exhibited by a ro-

bot and the greater the range of timescales at which the robot exhibits differentiated

behaviours, the greater the behavioural plasticity of the robot. In the remainder of this

chapter, however, we focus exclusively on the longer timescale. Consequently, we use
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the term multiple behaviours and behavioural plasticity to indicate robots that exhibit

behaviour differentiation at this longer timescale, independently of whether they show

behaviour differentiation at shorter timescale. We do this since, at longer timescale, we

observe qualitatively and quantitatively different solutions in the context of our experi-

ments.

As we have seen in the previous section, the concave environment requires behavi-

oural diversification at the longer timescale, e.g., it requires the exhibition of an explo-

ration and a wall-following behaviour lasting for minutes. In this case, however, the

robot cannot rely on ready-to-use affordances that indicate when the robot should dis-

play the first or the second behaviour and when the robot should switch from one to

the other behaviour. To achieve this kind of behavioural plasticity, the evolving robots

should find a way to: (1) keep producing the same behaviour for a prolonged period

of time, (2) switch behaviour at the right moment, and (3) realise a suitable transition

during behaviour switch. We will illustrate in detail how the evolved robots manage to

master these requirements in the different experimental conditions in the next three

sub-sections.

Notice that the evolution of context-dependent behaviours requires the concurrent de-

velopment of two interdependent skills, the ability to produce a new behaviour and the

ability to regulate appropriately when the new behaviour should be exhibited [185, 188].

We will come back on this issue in the concluding section.

Producing behaviours for prolonged periods of time

All evolved robots solve the problem of producing a given behaviour for a prolonged

period of time by realising each behaviour in a way that ensures that they keep ex-

periencing stimuli of the right type during the execution of that behaviour. In cases in

which the robots should exhibit two differentiated behaviours, i.e. an exploration and a

wall-following behaviour, this implies that they should realise the former and the latter

behaviours in a way that ensures that they keep experiencing stimuli of type 1 and 2

while they exhibit the former or the latter behaviour, respectively, and should react to
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the stimuli of the two types by producing actions that enable them to keep producing the

former or the latter behaviours, respectively. The two classes of stimuli, thus, assume

the role of affordance for the first and for the second behaviours, respectively. These

affordances are not directly available from the environment, as in the case of the states

affording the obstacle-avoidance and move-forward behaviour discussed above, but

are generated by the robots themselves through their actions (i.e., through the ability

to realise each behaviour in a way that ensures that the robot keeps experiencing the

corresponding affordances). This form of dynamical stability presents some similari-

ties with the one that can be obtained in situated agents through homeokinesis [38], a

task-independent learning process that can enable situated robots to synthesise tem-

porarily stable behaviours, though the mechanism and the processes through which

this is realised are completely different. Notice that the dynamical systems theory

terms used here are referred to behavioral trajectories and not to the underlying neural

mechanisms.

All robots displaying multiple behaviours (i.e., (R), (M) and (T) robots) exploit this af-

fordance generation mechanism. However, the (T) and some of the (M) robots also

exploit other additional mechanisms that enable the robots to keep producing each be-

haviour for a prolonged period of time. Thus, let us start by describing the strategy

used by the best (R) robot that only relies on this affordance generation mechanism.

The best (R) robot realises the exploration behaviour by moving forward far from obstacles

and by turning left near obstacles located in its frontal and frontal-right side and real-

ises the wall-following behaviour by moving forward along walls when it perceives an

obstacle on its left side and by turning left when the activations of its left-side sensors

decrease (see Fig. 3.7, bottom left). By behaving in this way, the robot ensures that it

keeps experiencing sensory states of type 1 during the exploration behaviour and sen-

sory states of type 2 during the wall-following behaviour (where type 1 includes states

in which the infrared sensors are not activated or in which the frontal or right infrared

sensors are activated and type 2 includes states in which the left infrared sensors are
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activated). In other words, as we said above, the problem of keep producing the two be-

haviours for prolonged period of time is solved by producing each behaviour in a way

that ensures that the robot keeps experiencing stimuli affording the same behaviour

(i.e., stimuli that elicit actions which lead to the production of the same behaviour).

In (M) robots, the problem of producing the same behaviour for a prolonged period of

time is solved also through the development of neural modules specialised for the pro-

duction of the exploration or the wall-following behaviour. However, (M) robots rely on

affordance generation as well. Indeed, even in some (M) robots, the same neural mod-

ule enables the robot to produce either the exploration or the wall-following behaviour

and to keep producing the current behaviour for a prolonged period of time (Fig. 3.12).

In these cases, the behaviour that is initially triggered depends on the initial position

of the robot (i.e., depends on the behaviour afforded by the first experienced sensory

states).

In (T) robots, the cue provided by the temporal neuron co-determines the behaviour

produced by the robot and, consequently, is used to keep producing the current be-

haviour for a prolonged period of time. Indeed, whether the robot keeps producing

the exploration behaviour or switches to the wall-following behaviour also depends on

the state of the temporal neuron (see Fig. 3.13). On the other hand, the state of the

time neuron influences the duration of the exploration behaviour only during a critical

phase, i.e., when the state of the time neuron is smaller than 0.6 and greater than 0.4.

During the rest of the trial, the ability of the robot to keep producing the exploration be-

haviour or the wall-following behaviour relies on an affordance generation mechanism

analogous to that described above for the best (R) robot. Interestingly, in the case of

the best (T) robot, the temporal neuron is also used to progressively vary over time the

way in which the exploration behaviour is realised so as to regulate the probability that

the robot keeps experiencing sensory state affording the execution of this behaviour.

Indeed, by initially moving forward and turning left of several degrees, the robot elimi-

nates, completely, the possibility to encounter a wall on its left side (i.e., the possibility
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to experience stimuli affording the alternative wall-following behaviour). Then, by mov-

ing forward and progressively reducing the angle of turn over time, the robot becomes

progressively kinder with respect to the possibility of experiencing stimuli affording the

wall-following behaviour. This brings us to the question of how robots manage to switch

behaviour.

Switching between alternative behaviours

The problem of switching between different behaviours is also solved through afford-

ance generation. To understand how robots can act in a way that enables them to

experience both stimuli affording the current behaviour and stimuli affording the al-

ternative behaviour, we should reformulate the definition of affordance generation in

probabilistic terms. Evolved robots solve the problem of producing a given behaviour

for a prolonged period of time and the problem of switching behaviour by realising be-

haviours in a way that ensures that they keep experiencing stimuli affording the current

behaviour with a given high probability and stimuli affording the alternative behaviour

with a given low probability, respectively.

All evolved robots solve the problem of keep producing the same behaviour for a pro-

longed period of time and the problem of switching behaviour in this way. However,

some robots also rely on additional complementary mechanisms, as we illustrate be-

low.

In the case of the best (R) robot, the switches from the exploration behaviour to the

wall-following behaviour occur when the robot encounters a wall on its frontal-left side

during the execution of the exploration behaviour (see Fig. 3.11, left), a situation that

occurs with a low probability for the reason described in the previous section. Over-

all, this means that the exploration behaviour is realised in a way that the robot keeps

experiencing stimuli affording the exploration behaviour most of the time, while oc-

casionally experiencing stimuli affording the alternative behaviour. Clearly, this is an

example of how the simultaneous evolution of form and regulation can be solved. The

same mechanism is responsible for behaviour production (i.e., the prolonged produc-
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Figure 3.11: Illustration of how the best (R) robot switches from the exploration to the
wall-following behaviour and vice versa (left and right, respectively)

tion of the same behaviour) and for behaviour switch. The fact that this solution is

never found by (S) robots indicates that the availability of the additional cues provided

by the range sensors enables (R) robots to regulate, more effectively, the probability

with which the robots experience stimuli affording the current or the alternative beha-

viour. This affordance generation strategy enables the best (R) robot to switch from

the exploration to the wall-following behaviour at the optimal moment on the average

but with a high variability among trials (the robot switches at 2.99±1.02min). The high

variability negatively impacts its performance since it often leads to situations in which

the time dedicated to the two behaviours is unbalanced. The problem is particularly

serious when the switch from the exploration behaviour to the wall-following behaviour

occurs too early, since circling along the periphery of the environment for more than

one lap is useless. This probably explains why the best robot of the (R) experimental

condition also developed an ability to switch back from the wall-following behaviour to

the exploration behaviour when the robot encounters a wall frontally after exiting from a

peripheral corridor (see Fig. 3.11, right). This latter ability is lacking in the best robots

of the other replications that consequently achieve lower performance. In other words,

the best (R) robot is capable of displaying reversible behavioural switch.

In the case of the robot evolved in the (M) experimental conditions, in which the three

neural modules control the robot during three successive phases of 2.08min, it is not

surprising that behavioural switching occurs primarily during the switch between the
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Figure 3.12: Trajectory produced by the best (M) robot which produces an exploration
behaviour under the control of the first neural module, an exploration and
then a wall-following behaviour under the control of the second neural
module, and a wall-following and then an exploration behaviour under
the control of the third neural module

first and the second module and/or between the second and the third module. The

rigidity of this mechanism, however, does not enable the robot to regulate the exact

moment in which the switch is realised. In most of the replications, the exploration be-

haviour is produced for 4.17min and the wall-following behaviour for 2.08min since two

modules specialise for the production of the former behaviour and the remaining mod-

ule specialises for the production of the latter behaviour. However, also these robots

use affordance generation to switch between behaviours. Indeed, as we mentioned in

the previous section, some of the best (M) robots also display an ability to switch be-

haviour while they operate on the basis of the same neural module through the same

affordance generation mechanism described above (see Fig. 3.12). The usage of this

strategy enables these robots to achieve a more balanced allocation of time to the two

behaviours that, in turn, enables it to achieve better performance with respect to the

best robots of the other replications.

In the case of the robot evolved in the (T) experimental condition, the switch is regulated

by both the stimuli experienced by the robot (i.e., by affordance generation) and the cue

provided by the robot’s internal clock. This double regulation enables the best (T) robot
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to carefully balance the time allocated to the two types of behaviour and to reduce the

variability among trials (i.e., the transition occurs 3.17±0.11min). The double regulation

process is demonstrated by the analysis of the trajectories produced by the robot during

a series of trials in which the robot always starts from the same position and in which

the orientation of the robot and the state of the time neuron are systematically varied

(Fig. 3.13). As shown in Fig. 3.13, whether or not the robot switches to the wall-

following behaviour depends both on the state of the internal clock and the state of

the infrared sensor that the robot experiences when it approaches the wall. Overall,

this shows that whether or not the switch between the two behaviours occurs depends

both on the state of the internal clock and the way in which the exploration behaviour

is realised which, in turn, influences the type of stimuli experienced by the robot. As

mentioned above, in the case of the best (T) robot, the state of the time neuron is

used not only to regulate the probability that the robot switches behaviour directly (the

probability that the robot initiates a wall-following behaviour in a given relative position

in the environment) but also to regulate the way in which the exploration behaviour is

realised which, in turn, influences the probability that the robot will later experience

stimuli affording the wall-following behaviour.

Realising suitable and effective behaviour transitions

The connectedness of behaviours, i.e., the fact that alternative behaviours are semi-

discrete and semi-dissociable units that are only partially independent, implies that

the transitions between behaviours should be handled with care. In the case of our

experiments, in particular, the transition between the exploration and the wall-following

behaviour requires special care since the latter behaviour can only be produced when

the robot is located near a wall and when the wall to be followed is located on a specific

side of the robot. Indeed, the analysis of the evolved robots shows that the way in

which the behaviour transitions are handled in evolved robots has an important impact

on robots’ performance.

The transition problem is particularly severe in the (M) experimental condition when
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Figure 3.13: Behaviour produced by the best (T) robot during different trials in which
it started from the same initial position with systematically varied orien-
tations and systematically varied state of the time neuron. The red and
blue lines represent the trajectories produced by the robot during trials in
which it switches or does not switch to the wall-following behaviour, re-
spectively. The black lines represent the walls. For sake of clarity, we only
show the local portion of the environment in which the robot is located

the behavioural switch typically occurs suddenly after 2.08 and 4.16 min as a result of

the neural module switch. The problem is so severe that in three out of the first ten

replications, the second control module specialises simply for handling the transition

(Fig. 3.14). In other words, these robots dedicate the second 2.08-min phase simply

to move towards a location from which the wall-following behaviour can be effectively

initiated.

Fig. 3.14 Trajectory produced by one of the three best (M) robots characterised by a

second module that is specialised for enabling a suitable transition from the exploration

to the wall-following behaviour

The smartest solution to the transition problem is that discovered by the best (T) robot

(see Fig. 3.7, right). Indeed, as we mentioned above, this robot exploits the cue

provided by the internal clock to gradually modify the exploration behaviour so as to

ensure that the robot will always reach a relative location with respect to the walls from
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Figure 3.14: Trajectory produced by one of the three best (M) robots characterized by
a second module that is specialized for enabling a suitable transition from
the exploration to the wall-following behaviour.

which the wall-following behaviour can be effectively triggered during the critical period

(i.e., during 3.17 ± 0.11 min). Overall, this leads to an extremely timely, smooth and

effective transition that enables this robot to outperform all other robots.

3.4 Discussion

In this chapter a detailed study showing how behavioural plasticity can emerge and can

make the evolving robots more adaptive was presented. Furthermore it was demon-

strated that it can emerge independently from whether or not the task requires to face

multiple conflicting goals, and also without the necessity of structural changes or ad-

ditional selective pressures that direct the process to evolve any kind of modularity.

Indeed, the solution of a task involving a single objective (e.g., cleaning a given area)

can also benefit from the utilisation and the combination of multiple differentiated be-

haviours.

Interestingly, the behaviours displayed by the best evolving robots show similarities

with those obtained in [61] through a minimal model based on intrinsic motivation in

which novelty is used as an intrinsic reward. More generally, the adaptive advantage

provided by the ability to display multiple behaviours suggests that a potential benefit of

task-independent fitness functions, which encourage the development of novel beha-
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viours (see [105, 130, 150]), consists in facilitating the synthesis of behavioural plastic

solutions.

The analysis of the obtained results indicates that the mechanisms supporting the ev-

olution of behavioural plastic solutions are the ability to perceive affordances (i.e., per-

ceptual states encoding opportunities for behaviours) and the ability to realise smooth

and effective transitions among different behaviours.

The perception of affordance constitutes a prerequisite for the possibility to develop

differentiated behaviours and effectively arbitrate them, i.e., selecting the appropriate

behaviour for the current robot/environmental context and regulating the duration of

each behaviour. Interestingly, the basic mechanism used by evolving robots to per-

ceive affordances is affordance generation, i.e., the ability to realise each behaviour

in a way that ensures that the robot keeps experiencing sensory state affording the

current behaviour with a given high probability and sensory states affording alternative

behaviours with a given low probability. While the importance of affordance percep-

tion and usage is widely recognised, the notion of affordance generation introduced in

this study and the description of how affordance generation supports the evolution of

multiple context-dependent behaviour are original contributions of this work.

The limitations of this affordance generation mechanism, e.g., the inability to finely tune

the duration of behaviours, are overcome by using additional regulatory processes that

rely on internal cues. In particular, in the case of the best evolved robot, this is real-

ised by complementing the basic affordance generation mechanism with two additional

regulatory processes. The second additional regulatory process consists in using the

state of the internal clock to progressively vary the way in which the exploration be-

haviour is realised so as to progressively increase the probability that the robot will

experience stimuli affording the wall-following behaviour (see Fig. 3.7, top-right). The

third additional regulatory process consists in using the state of the internal clock to

vary qualitatively the way in which the robot reacts to perceived stimuli (e.g., to avoid

obstacles by turning right or left which causes the robot to later perceive stimuli af-
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fording the exploration behaviour or the wall-following behaviour, respectively, see Fig.

3.13).

Overall, this implies that behaviour arbitration in the best evolved robots is realised

through the combined effects of multiple partially redundant regulatory processes that

operate through weak interactions. This type of organisation is advantageous from

both an evolutionary perspective, since it enables a gradual transformation [34, 84],

and a functional perspective, since it enables the robots to operate on the basis of

the combined effect of multiple factors. This type of organisation might, indeed, be

crucial to enable the concurrent evolution of form and regulation (sub-behaviours and

behaviour arbitration in the case of the presented experiment).

The need to realise smooth and effective transitions between behaviours originates

from the fact that behaviour is a dynamical process in which the state of the system

at time t critically influences the state of the system at time t+1. In other words, it

originates from the fact that the way in which a first behaviour is realised influences the

way in which the second following behaviour is realised. More generally, this implies

that, as claimed by [185], the modular organisation of behaviour is characterised by

subunits that are semi-discrete and semi-dissociable, i.e., that are not fully separable

and dissociable.

Also, from this perspective, the possibility to operate on the basis of multiple regulatory

processes, such as those described above, presents important advantages. In par-

ticular, the affordance generation mechanism that exploits the sensory state currently

experienced by the robot to determine the behaviour to be exhibited ensures that the

behaviour exhibited by the robot is always appropriate to the current robot/environ-

mental context. On the other hand, the regulation processes, carried out on the basis

of the state of the robot’s internal clock, ensure that behavioural switch will occur within

the appropriate time window.

In robotics, the objective of designing robots capable of displaying complex behaviours

is often pursued by designing modular controllers, eventually organised hierarchic-
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ally, in which each module is specialised for the production of a corresponding sub-

behaviour, and in which modules are alternated on the basis of some arbitration mech-

anism [7, 23, 71, 166]. In these works, the decomposition of the overall behaviour

into sub-behaviours and, consequently, the organisation of the modules, are usually

designed by the experimenter, while in other cases, it is learned [66, 169]. From this

perspective, the results presented in this chapter suggest that the utilisation of beha-

viour generation and arbitration mechanisms that are rigid and/or that do not support

the realisation of smooth and effective behaviour transitions might constitute a strong

limitation.
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Chapter 4

Cognitive Offloading Does Not Prevent But

Rather Promotes Cognitive Development

In this chapter a study investigating the factors that can promote the evolution of in-

tegrated cognitive behaviours in evolving robots are analised. Furthermore, the invest-

igation helps to clarifity how reactive strategies, those relying solely on immediately

perceived stimuli, can be combined with cognitive strategies, those relying on internal

information, for creating a hybrid and robust strategy that leads to the task solution.

The experimental setup chosen included a delayed response task, the double t-maze,

and robots with different neural network architectures. As we will see, the results ob-

tained indicate that the use of a reactive strategy called cognitive offloading, namely

the development of an ability to encode information extracted from the sensory-motor

states into the external environment, does not prevent but rather promote the evolution

of truly cognitive abilities. More generally we will show how the development of beha-

vioural capabilities that rely on direct sensory-motor rules constitute a prerequisite for

the development of cognitive capabilities that rely also on internal states.

4.1 Introduction

Developments in psychology, neuroscience, linguistics, robotics and philosophy have

clarified that cognition cannot be studied properly without taking into sufficient account

the role of the body, action and the external world [30, 31, 135, 137, 165, 170, 177]. The

agent’s body and the environment in which it is situated provide a great deal of struc-

ture that is used to operate appropriately. Consequently, in many cases the internal
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capabilities required are much simpler than those previously hypothesized within dis-

embodied accounts. For example, moving around in a city does not necessarily require

an elaborate representation of the city’s layout. The ability to recognise a limited num-

ber of turning decision points combined with the ability to just follow the street between

decision points might suffice [83]. Similarly, baseball players do not need to estimate

the trajectory of the flying ball to be intercepted through complex calculations. They

can simply adjust their running speed so as to maintain the relative angle between

their eyes and the ball constant [108].

Actually embodied cognition is an alternative approach for thinking about cognition

that, instead of considering it as a high level, completely internal, process operating

over abstract symbols, considers it as a situated activity meaning that the external ac-

tions are part of the cognitive process [2]. The above examples are just some cases

that are much better explained by the embodied cognition theory than by the traditional

computational theory of mind [72]. Some authors go beyond and claim that even ex-

ternal technological artifacts can be considered as an extension of the mind [32]. This

embodied way of looking at cognition creates many new unexplored possibilities, con-

sidering that actions can exploit the regularities present in the environment, and in the

sensory-motor loop. If action is indeed part of cognition it would be important to better

understand its role in the cognitive process.

The present study aims to investigate the relation between the development of reactive

and cognitive capabilities. In particular, the objective is to investigate whether the de-

velopment of reactive capabilities prevents or promotes the development of cognitive

capabilities. For the scope of this study cognition is defined as the ability to integrate

sensory-motor information over time into internal states and to use these internal states

to regulate the way the agent reacts to perceived stimuli. The above definition is fo-

cused on a fundamental capacity that is at the basis of all cognitive capabilities (e.g.

perception, memory, attention, decision-making, reasoning, language, etc.).

Evolutionary Robotics [120] is a suitable method for studying the relation between reac-
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tive and cognitive abilities in adaptive agents. Indeed, research carried out in this area

has demonstrated how evolving robots can master both problems that have reactive

solutions and problems that require the development of cognitive abilities (see for ex-

ample [13, 14, 29, 48, 57, 62, 65, 155, 195]). However, what has not been sufficiently

investigated to date is the relation between reactive and cognitive strategies.

Adaptive problems typically admit qualitatively different sub-optimal and optimal solu-

tions. Depending on the circumstances, the discovery of one type of sub-optimal solu-

tion might facilitate or block the discovery of better alternative solutions. Indeed, the

discovery of sub-optimal solutions that cannot be progressively transformed into better

solutions without loss of performance should retard or block the discovery of effective

solutions. On the contrary, the selection of sub-optimal solutions that can be trans-

formed into better solutions without causing significant performance loss can facilitate

the discovery of effective solutions. In the latter case, the strength of the facilitation ef-

fect would depend on the level of overlap or similarity between the first and the second

solutions.

Since reactive solutions are typically simpler than cognitive solutions from the point of

view of the complexity of the required control mechanisms, and since adaptation tends

to find the simpler solutions first, the question is the following: Can reactive solutions

be transformed into better solutions that also include the utilisation of internal states

without causing significant performance loss and what is the level of overlap/similar-

ity between sub-optimal reactive solutions and better solutions that include cognitive

capabilities?

According to some authors, the development of reactive solutions blocks the develop-

ment of cognitive capabilities. In particular, [127] claimed that reactive solutions con-

stitute hard to escape local optima that prevent the development of cognitive solutions.

Similarly, [95] claimed that the deception caused by the availability of locally optimal

reactive policies is one of the main factors that explains why it is difficult for cognitive

policies to evolve. For these reasons the authors hypothesised that the development
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of cognitive solutions necessarily requires specific selective cognitive pressures such

as fitness components that encourage the development of short-term memory [127] or

mechanisms for avoiding local optima, such as novelty search [95].

One aspect that is particularly relevant from the viewpoint of the relation between re-

active and cognitive strategies is cognitive offloading, i.e. the possibility of offloading

cognitive work onto the environment [101, 144, 190]. More specifically, the possibility

of acting so as to encode the states that can be used to regulate the agent’s beha-

viour onto the external environment and/or onto the relation between the agent and

the environment. Indeed, the possibility of encoding the required states internally or

externally suggests that cognitive strategies and reactive strategies (that rely on cog-

nitive offloading) represent two alternatives but functionally equivalent modalities. A

simple example of cognitive offloading related to everyday human life is crossing two

fingers so to avoid forgetting to perform a certain action [58, 59, 144]. An example of

cognitive offloading realized in a robotic scenario consists on dropping markers in the

environment in order to use them to find the way back to the home location [29].

Cognitive offloading is usually considered in the case of cognitive agents that already

possess cognitive abilities but offload information into the environment or into their

relation with the environment. In this work, instead, we focus on a perspective in which

the agents need to evolve a certain skill to adapt to their environment and can do so

by using a reactive strategy that relies on cognitive offloading, a cognitive strategy that

relies on internal states, or on a hybrid strategy that relies on both.

In the context of this work a series of experiments was performed in which a population

of robots provided with neural network controllers were evolved for the ability to master

a navigation problem in a double T-maze environment that required the exhibition of

delayed response behaviour. Analysis of the experiments revealed that the evolving

robots always selected reactive strategies that relied on cognitive offloading. The dis-

covery of these strategies did not prevent but rather facilitated the development of im-

proved strategies that also relied on the extraction and use of internal states. A detailed
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Figure 4.1: The T-Maze task. The bottom portion of the central corridor includes a
stimulus located on the left or the right side. The position of the stimulus
corresponds to the position of the target destination. Adapted from [99].

analysis of the results obtained in different experimental conditions provides evidence

that helps to clarify why, contrary to expectations, reactive and cognitive strategies tend

to have synergetic relationships.

4.2 Method

A paradigmatic class of problems that require cognitive skills is constituted by delayed

response tasks in which an agent has to act at a certain time t in a conditional depend-

ent manner on the basis of stimuli it encountered at a previous time (t - delay). A simple

example of a delayed response task is the so-called road sign task in which an agent

that is initially located at the bottom of a T-Maze environment needs to travel toward

the top-left or top-right destination by turning left or right at the T-junction depending

on whether it previously experienced a stimulus on the left or on the right side of the

central corridor, respectively (Figure 4.1). Therefore, this task was chosen by several

researchers to study the evolution of cognitive robots [4, 9, 41, 99, 127, 147].

Actually, as demonstrated by Ziemke and Thieme [195] this problem has a non-

cognitive solution, i.e. a reactive strategy in which the robot always acts on the basis

of its current sensory state. Indeed, the robot could solve the task by approaching the
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experienced stimulus, when visible, and then by following the nearby left or right wall.

The availability of simple and optimal reactive solutions of this type prevents the devel-

opment of cognitive solutions. These reactive solutions, indeed, are easy to discover,

optimal and, consequently, evolutionarily stable.

The question that remains open is whether cognitive solutions can evolve in experi-

mental settings that do not allow for optimal reactive solutions or whether the discovery

of sub-optimal reactive solutions prevents the discovery of better solutions [95, 127]

and consequently might drive the evolutionary process toward inescapable local op-

tima. To investigate this question we decided to carry out the evolutionary experiments

described in the following sub-sections.

4.2.1 The task, the environment and the robot

The environment consisted in a double T-Maze (Figure 4.2) that included four different

destinations and two types of stimuli that could be experienced in four different corre-

sponding patterns (left-left, left-right, right-left, right-right). The increase in complexity

with respect to the simple T-Maze environment was due to the fact that the number of

destinations to be reached was higher, the number of stimuli experienced was higher,

the number of stimuli-dependent decisions that had to be made was higher and the time

delay between the moment in which the stimuli were experienced and the moment in

which the stimuli-dependent decisions had to be made was longer.

To obtain solutions that were robust with respect to environmental variations, the initial

positions and orientations of the robot and the size of the environment were randomly

varied at the beginning of each trial. More precisely the length of the central corridor

and the two vertical corridors was randomly set during each trial within 4.5m±0.5m

and 5.5m±0.5m, respectively. The position between the two signals was also varied

proportionally with the length of the central corridor. The initial position of the robot

was selected randomly within a 50x45cm rectangular area located at the beginning of

the central corridor. The initial orientation of the robot was selected randomly with a

uniform distribution in the [-180, 180]° range. Robots were evaluated for 16 or 32 trials,
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Figure 4.2: The double T-Maze task. The blue cylinder, which represented the target
destination, was located at one of the four end points of the lateral cor-
ridors. The central corridor included two green stimuli located in the first
and the second part of the corridor on the left or the right side. The posi-
tion of the first and the second stimulus indicated whether the robot should
turn left or right at the first and the second junction, respectively, to reach
the target destination.

as explained below. Trials lasted up to 1 minute and were stopped as soon as the robot

turned in the wrong direction at one of the two junctions.

Complex T-Mazes have already been used in previous research. In particular [19]

evolved robots for the ability to navigate in T-Maze environments in multiple trials in

which the destination location remained stable. The authors manage to develop robots

that were able to “remember” the target location in simple T-Mazes but not in double

T-Maze environments. [131] evolved robots for the ability to navigate in a triple T-Maze

toward 8 alternative destinations. In these experiments, however, the robots were not

required to master a delayed response task. Indeed, they received and had access to

one of eight different corresponding patterns for the entire duration of each trial.

We used the MarXbot [20] agent, which is a circular robot with a diameter of 17cm

equipped with 24 infrared sensors, a rotating scanner sensor and an omnidirectional

camera. The experiments were run in simulation by using the FARSA open-software

tool that includes an accurate simulator of the robot and of the environment [106, 107].

FARSA has been used to successfully transfer results obtained in simulation to hard-
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ware in similar experimental settings (e.g., [62, 156]).

4.2.2 The robots’ neural controllers

Evolving robots were provided with neural network controllers. The sensory layer in-

cluded eight sensory neurons that encode the average activation state of eight groups

of three adjacent infrared sensors, 6 neurons that encoded the average activation of

the rotating scanner over 60 degrees, and 12 neurons that encoded the percentage of

red, green and blue pixels detected in four 90° sectors of the visual field of the cam-

era. The state of the sensory and motor neurons was normalized in the range [0.0,

1.0] and noise is simulated by the addition of random values selected with a uniform

distribution in the range [-0.05, 0.05]. The motor layer includes two motor neurons that

encode the desired speed of the two corresponding motors (normalised in the range

[-10.0,10.0]cm/s) that actuate the differential driving system of the robot.

The experiments were replicated in three different experimental conditions that varied

with respect to the architecture of the robots’ neural controller as described below:

(S) Simple: The robots were provided with a simple reactive neural network (that al-

ways responded in the same way to the same sensory state) in which the sensory

neurons were directly connected to the motor neurons (see Figure 4.3).

(C) Continuous: As in the case of the previous condition the neural network control-

ler included direct sensory-motor connections. In addition, the network included an

internal layer with 6 neurons that received connections from the sensory neurons and

projected connections to the motor neurons. The internal neurons were continuous,

i.e. their output state depended on both the activation received from the incoming

connections and on their previous activation state (see [15, 56]) (see Figure 4.4).

(CR) Continuous Recurrent: The neural network was identical to the previous condi-

tion, but the internal neurons were also interconnected through recurrent connections

(see Figure 4.5).

The state of the sensors, the neurons and the desired speed of the motors were up-
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Figure 4.3: Simple Neural Network Controller (S). The output neurons W define the
motor activation for left and right wheels of the robot. Neurons with a
white contour around it mean the presence of a bias parameter.

Figure 4.4: Continuous Neural Network Controller (C). Red filled neurons mean con-
tinuous neurons. Neurons with a white contour around it mean the pres-
ence of a bias parameter. The output neurons W define the motor activa-
tion for left and right wheels of the robot.
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Figure 4.5: Continuous Recurrent Neural Network Controller (CR). Red filled neurons
mean continuous neurons. Neurons with a white contour around it mean
the presence of a bias parameter. The output neurons W define the motor
activation for left and right wheels of the robot.

dated every 50ms. The architecture of the neural network controller was kept fixed.

These experimental conditions were chosen to enable us to verify whether and to

what extent the problem had reactive solutions, whether the possibility of integrating

sensory-motor information over time into internal neuron states would enable the ro-

bots to develop better solutions and whether reactive strategies could coexist with cog-

nitive strategies.

4.2.3 The evolutionary algorithm

The initial population consisted of 20 randomly generated genotypes that encoded

the connection weights, biases, and time constants of the neural network controllers

of 20 corresponding individual robots. Each parameter was encoded with 8 bits and

normalized in the range [–5.0, +5.0] in the case of connection weights and biases and

[0.0, 1.0] in the case of time constants of continuous neurons.

Each individual was allowed to generate one offspring, i.e. a copy of the parent geno-

type in which each bit was mutated with a given probability. Each offspring was eval-
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uated and was used to replace the genotype of the worst parent or was discarded

depending on whether or not it outperformed the worst parent.

Each experiment was repeated 10 times by starting with different randomly initialised

genotypes. The evolutionary process continued in two consecutive phases of 2,000

generations. During the first 1,000 generations, the mutation rate was set at 2% and

the evolving robots were evaluated in 16 trials. From generation 1,001 on the mutation

rate was set at 1%. From generation 1501 to 2000 on the individuals were evaluated

in 32 trials. In some of the experiments the robots were subjected to position and

orientation noise during the second phase, as described below.

The fitness of the individuals was computed by averaging the fitness obtained during

the different trials. The fitness of each trial corresponded to the inverse of the distance,

within the maze, between the robot and the target destination at the end of the trial.

In other words, the robots were rewarded for the ability to approach the appropriate

destinations. Equations 4.1 and 4.2 present the fitness equation used where T is the

total number of trials in each generation, which as presented above can be 16 or 32,

di is the distance within the maze between the robot and the target at the beginning of

the trial, and d f is the distance within the maze between the robot and the target at the

end of the trial.

f itness =
T

∑
t=1

1
T
∗ f1 (4.1)

f 1 =

⎧⎪⎪⎨⎪⎪⎩
0 if d f > di,

di−d f
di

otherwise
(4.2)

The experiments described in this chapter can be replicated by downloading and in-

stalling FARSA and the associated experimental plugin from

“https://sourceforge.net/projects/farsa/” and from

“http://laral.istc.cnr.it/cognoffpone/dtmaze.tgz”.
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4.3 Results

In this section we report the results obtained in the different experimental conditions

described in Section 4.2 and in additional control experiments described below that

were carried out to clarify the role of cognitive offloading in the development of cognitive

skills.

Overall the performance of the robots (i.e. the percentage of trials in which the evolved

robots reached the correct target destination) did not differ significantly between the

three experimental conditions in which they were provided with different neural con-

trollers (see Figure 4.6). By analysing the performance of the best robot obtained in

each experimental condition (Figure 4.6) we can see how the best (C) and (CR) ro-

bots managed to achieve close to optimal performance in 92.8% and 96.3% of the

trials, respectively, while the best (S) robot only achieved sub-optimal performance

(i.e. 71.7% success). The performance of the best (C) and (CR) robots did not differ

significantly (Fisher Exact Test, p=0.308). The performance of the (S) robot, instead,

was significantly worse than the performance of the (C) and (CR) robots (Fisher Exact

Test, p<0.001). The data were obtained by post-evaluating the best robot from the last

generation of each replication in 600 trials.

These results confirm that, at least in our experimental setup, the double T-Maze pro-

blem cannot be solved through simple reactive solutions, although the best reactive

robot (S) achieved a remarkably high performance (i.e. by navigating toward the cor-

rect destination in 71.7% of cases). Moreover, these results indicate that the possibility

of integrating sensory-motor information over time through continuous neurons (C) and

recurrent connections (CR) into internal states that are used to regulate the way the

robots react to sensory stimuli enables the evolving robots to achieve close-to-optimal

performances. On the other hand, the fact that close to optimal performances were

achieved in a minority of the replications indicates that the task is hard and there is

a high probability that evolution remains stuck in sub-optimal regions of the search

space.
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Figure 4.6: Performance (i.e. percentage of successful trials) of the best 10 robots
evolved in the (S), (C) and (CR) experimental conditions in 10 correspond-
ing replications of each experiment. Boxes represent the inter-quartile
range of the data and horizontal lines inside the boxes mark the median
values. The whiskers extend to the most extreme data points within 1.5
times the inter-quartile range from the box. Circles indicate the outliers.

By inspecting the trajectories produced by the best (S) robot, i.e. by means of a simple

reactive controller, we can see how the robot navigated correctly toward all four target

destinations most of the time, but erroneously navigated toward the left-left and right-

left destinations instead of the left-right destination in several trials (Figure 4.7, blue

trajectories). Surprisingly, this shows that the double T-Maze task can also be solved

to a large extent with a reactive solution in which the robot’s actions depend only on

the current robot’s input and in which the robot does not store any internal information

regarding previously experienced sensory states. This is achieved by offloading the

critical information into the environment (or more precisely into the robot/environmental

relationship).

Indeed, the behavioural analysis of the best (S) robot indicates that the experienced

signals are used to systematically alter the positions assumed by the robot at the end

of the central corridor (Figure 4.7). These positions influence the type of stimuli the

robot experiences at the first junction which, in turn, determine whether the robot will

turn left or right at the junction. The position of the robot at the end of the first corridor

also influences how the turning is realised, i.e. whether the robot produces a tight turn
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Figure 4.7: Trajectories produced by the best (S) robot over 300 trials. Full and dashed
lines indicate successful and unsuccessful trials, respectively. The color
indicates the corresponding target destination (magenta: left-bottom, blue:
left-top, cyan: right-bottom, and yellow: right-top).

or a wider one, and consequently the position assumed by the robot in the second

corridor. Indeed, after experiencing the right-right signals the robot assumes the right

most position at the end of the first corridor and then a right position in the second

corridor. By contrast, after experiencing the right-left signals the robot assumes the

central position at the end of the first corridor and then a left position in the second

corridor. This ability to differentiate the relative position assumed in the second corridor

on the basis of the position assumed at the end of the first corridor enables the robots to

turn in the appropriate direction also at the second junction. The same things happen

when the robots travel towards the other two left destinations.

This interpretation is confirmed by the result of an analysis in which the robot was

initially placed at the end of the first corridor with an orientation that systematically

varied in the range of [-55, 55]° with respect to the orientation of the first corridor

and a position that systematically varied along the x-axis between [-0.4, 0.4]m with

respect to the center of the corridor. As shown in Figure 4.8, the destination reached by

the robot depended primarily on the relative position along the x-axis and secondarily
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Figure 4.8: Behavior displayed by the best (S) robot placed initially at the end of the
first corridor in different positions (along the x-axis) and orientations. The
color of the trajectories corresponds to the destination reached (magenta:
left-bottom, blue: left-top, yellow: right-top, and cyan: right-bottom). Tra-
jectories that did not enable the robot to reach any target destination are
shown in red.

on the orientation of the robot at the end of the first corridor. This means that the

robot offloads the information encoding the destination to be reached in its position

and orientation. The ineffective behaviours shown in red, which are produced when

the robot is initially located near the right wall and oriented toward the right, occur only

occasionally in normal conditions (Figure 4.7) because the robot rarely reaches these

positions/orientations when it starts from the beginning of the central corridor.

The fact that the destination reached by the robot depended on the position and the

orientation of the robot at end of the first corridor is demonstrated by the fact that the

destination the robot will reach at the end of the trial can be predicted with 84% ac-

curacy on the basis of the position and the orientation the robot assumes in the first

corridor, 40cm before the first junction. This success rate was obtained by training a

feed-forward neural network through a backpropagation algorithm based on a cross-

entropy error function [114]. The network included two inputs neurons that encoded the
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x-position and the orientation of the robot, six hidden neurons and four winner-take-all

outputs neurons that encoded the four corresponding destinations. The training set

consisted of 6,000 position and orientation vectors and 6,000 corresponding destina-

tion vectors. The fact that the target destination could not be predicted in all cases can

be explained by considering the effects of noise on sensors and motors. Further evi-

dence demonstrating that the target destination reached by the best (S) and (C) robots

depended on the position and the orientation assumed by the robots from the end of

the first corridor on are reported below.

The four behaviours displayed by this robot (indicated by the trajectories shown in

magenta, blue, cyan and yellow in Figure 4.7) are dynamical processes that arise from

the robot/environmental interactions and that converge toward four fixed-point attrac-

tors. This can be appreciated by observing the four corresponding basins of attraction

in the 2D projection of the phase portrait (Figure 4.9). These basins of attraction en-

able the robot to reach four different destinations without varying the way it responds to

perceived stimuli (i.e. by using a reactive controller that always responds in the same

way to the same stimuli independently of the stimuli experienced before). This can be

explained by considering that the way in which the robot reacts to perceptual stimuli

and the way in which perceptual stimuli change (as a function of the action performed

by the robot and the characteristics of the local portion of the environment) ensure that

the robot keeps moving towards the current destination while remaining in the current

basin of attraction. To solve the problem, therefore, the robot only needs to enter into

the appropriate basin of attraction in the first corridor while it perceives the green stim-

uli. Notice that the dynamical systems theory terms used here and in the rest of this

chapter are referred to behavioral trajectories and not to the underlying neural mech-

anisms.

The basins of attraction also ensure that the behaviour of the robot is robust with re-

spect to perturbations caused by noise and environmental variations (within limits).

This is because typically small alterations in the robot’s position and orientation do not
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Figure 4.9: 2D vector field displaying the velocity of the robot in varying positions of
the x/y plane for the (S) robot. For the sake of clarity, the vectors are shown
only for the positions and orientations reached by the robot in natural cir-
cumstances (i.e. the positions and orientation assumed by the robot in
300 trials). The multiple arrows displayed in each 75x75mm position cell
indicate how the direction and the magnitude of the velocity vector var-
ies as a function of the different orientations assumed by the robot in the
corresponding position.

cause a switch from one basin of attraction to another and consequently do not alter

the robot’s destination. Moreover, this is also because the effects of small alterations

tend to be automatically compensated over time by the convergent nature of the at-

tractors that drive the robot away from the borders that separate the different basins of

attraction. Note that, as shown in Figure 4.10, the state space includes three dimen-

sions (x position, y position and orientation). Consequently, the four basins of attraction

are separated also in areas in which they seem to overlap from the perspective of the

2D projection shown in Figure 4.9.

Selection of the appropriate behaviour (i.e. the convergence toward the appropriate

basin of attraction) is the result of the bifurcation process that occurs in the first corridor

and that is regulated by perception of the green stimuli. In other words, it is the result

of the fact that, while the robot travels along the first corridor, it varies its position and

orientation on the basis of the perceived green stimuli in a way that ensures that at the

end of the first corridor the robot assumes a position and orientation that enable it to
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(a) (b)

Figure 4.10: Phase portrait of the robot/environmental dynamics in the case of the
best (CR) robot. Data collected during in 300 trials. The vertical axis rep-
resents the orientation of the robot in the range [-90, 90]° with respect to
the direction of the first corridor. For the sake of clarity the plots refer only
to the first-junction portion of the environment. (a) displays a view from
which variation on the three dimensions can be appreciated. Instead,
(b) shows a 2D orthogonal projection in which one can appreciate only
variations along the vertical and horizontal x-axis that correspond to the
orientation of the robot and to the position of the robot along the x-axis,
respectively.

enter in the right basin of attraction.

For example, let us consider the trials in which the robots experience the right-right

signal (Figure 4.7, cyan trajectories). In these cases, the robot reacts to the two green

stimuli located on the right by moving toward the left side of the corridor. This enables

the robot to turn right at the first junction, because it turns right when it encounters a

wall ahead and a wall on its right side that is nearer than the wall on its left side, and

then to assume a specific position and orientation in the second corridor that enable

it to turn right also at the second junction. Thus, the proper movements produced in

response to the stimuli perceived in the first corridor ensure that the robot environment-

al/dynamics will enter into the basin of attraction of the right-right behaviour, that then

guide the robot toward the appropriate destination. During the trials in which the robot

experiences the right-left signal, instead, the robot reacts to the signals by moving first

right and then left so as to assume a central position within the first corridor (Figure

4.7, yellow trajectories). This makes the robot turn right at the first junction also in

this case. However, the right turn initiated from this position and orientation drives the

robot toward the left side of the second corridor. This in turn enables the robot to then
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turn left at the second junction. In other words, the position/orientation with which the

robot approaches the first junction influences not only whether it turns right or left, but

also the position/orientation taken after the turn in the second corridor, which finally

determines whether the robot will turn left or right at the second junction.

There are two reasons for the errors produced by the robot (Figure 4.7, dashed lines).

The first is that in some cases the bifurcation process fails, i.e. the robot is unable

to react to the stimuli experienced and, thus, assume the appropriate positions/orient-

ations at the end of the first corridor. Consequently, the robot/environmental system

enters into the wrong basin of attraction. This problem particularly affects some of the

trials in which the robot experiences the left-right signals. Indeed, in 10.7% of these

trials the best (S) robot erroneously navigates toward the right-left destination (Figure

4.7, top, dashed lines). This problem occurs when the robot starts from certain specific

positions and orientations and/or as a result of noise or when the robot occasionally

exits from the right basin of attraction and enters into another, wrong basin of attraction.

This typically occurs as a result of noise in areas in which the divergence between two

nearby basins of attraction is weak. In the case of the best (S) robot, this second type

of problem occurs particularly in the left corridor. Indeed, in this phase the robots trav-

eling toward the left-right destination erroneously enter into the behavioural attractor of

the left-left destination in 46.7% of the left-right trials (Figure 4.7, dashed lines).

The behaviours displayed by the best (C) and (CR) robots are qualitatively similar to

those displayed by the best (S) robot, see Figure 4.11. Indeed, also the robot/environ-

mental dynamic of these robots is characterised by four fixed-point attractors (Figure

4.12). Moreover, the trajectories of these robots also bifurcate in the first corridor to

ensure that the robot/environmental dynamic enters into the appropriate basin of at-

traction.

However, these robots make far fewer errors during the bifurcation phase than the

(S) robot thanks to their ability to converge toward similar positions and orientations

while they move along the first part of the first corridor (see Figure 4.11). Indeed, the
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(a) (b)

Figure 4.11: Trajectories produced by the best (C) and (CR) robots in 300 trials, left
and right pictures respectively. Full and dashed lines indicate success-
ful and unsuccessful trials, respectively. The color indicates the corre-
sponding target destination (magenta: left-bottom; blue: left-top, cyan:
right-bottom, and yellow: right-top).

variability along the x-axis of the positions assumed by (C) and (CR) robots one meter

before the green stimuli is significantly lower than the variability of positions assumed

by (S) robots (F-Test F(299,299) = 3.114, p<0.001 and F(299,299) = 2.845, p<0.001,

respectively). By assuming a relatively un-variant position and orientation before they

perceive the green stimuli, (C) and (CR) robots manage to achieve a more reliable

bifurcation process than (S) robots.

Also, the errors that occur when the robots exit from their current basin of attraction

and enter into another basin of attraction are reduced in (C) and (CR) robots. This is

achieved through the synthesis of attractor basins, which produces a greater separation

among the trajectories targeted toward different destinations that are produced by (C)

and (CR) robots (Figure 4.11) than among the trajectories produced by the (S) robot

(Figure 4.7).

Finally, in some cases the best (CR) robot also displayed the ability to re-enter into

the basin of attraction in which it was previously located when it erroneously moved to

another basin of attraction. This enables the robot to recover from some of the errors of

this type caused by noise. This is demonstrated by the results collected during a post-

evaluation test in which the robot was systematically displaced from its current basin

of attraction to another one. The basin of attraction which the robot was displaced to
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Figure 4.12: Vector field displaying the velocity of the robot in varying positions of the
x/y plane for the (CR) robot. For the sake of clarity, the vectors are shown
only for the positions and orientations reached by the robot in natural
circumstances (i.e. the positions and orientations assumed by the robot
in 300 trials). The multiple arrows displayed in each 75x75mm position
cell indicate how the direction and the magnitude of the velocity vector
varies as a function of the different orientations assumed by the robot in
the corresponding cell and/or as a function of the robot’s internal states.

was chosen randomly among the available ones, i.e. from the other three alternative

basins of attraction before the first T-junction or between the only alternative attractor

after the first T-Junction. The post-evaluation test was repeated in three conditions in

which the robot was allowed to move normally and in which it was blocked for 1 or 3

seconds after the displacement. Analysis of the results indicates that the best (CR)

robot was able to recover from this type of displacement in 60% of cases in which it

was allowed to move normally after the displacement and in 20% of cases in which it

was blocked in the displaced position and orientation for 1 second (Figure 4.13). The

best (S) and (C) robots, instead, were able to recover from displacements only in a

negligible percentage of cases (Figure 4.13). None of the robots were able to recover

from displacements after being blocked in the displaced position and orientation for 3

seconds.

Overall the data reported in this section indicates that all robots offloaded information

concerning the stimuli they experienced in the position and orientation they assumed
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Figure 4.13: Performance displayed by the best (S), (C), and (CR) robots during a
post-evaluation test in which they were randomly displaced from their
current basin of attraction into another one. The red, magenta and green
bars represent the performances of the best (S), (C) and (CR) robots,
respectively. Each bar represents the percentage of trials in which the
robots were able to reach the appropriate destination despite the dis-
placement. The “instant” condition refers to a situation in which immedi-
ately after the displacement the robots were allowed to move normally.
The “1 second” and “3 seconds” conditions refer to a situation in which
the robots were unable to move for 1 and 3 seconds, respectively. The
“no-displacement” condition refers to a normal situation in which the ro-
bots were not subjected to displacements. During each trial the robot
was displaced when it reached an imaginary line located 40cm before
the first junction, 40cm after the first junction, in the middle of the second
corridor or 40cm before the second junction. Data were collected from
2400 trials.
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from the end of the first corridor on and used this information to move toward the

appropriate destination and to preserve the relevant information (i.e. to maintain a

specific relative position and orientation with respect to the environment). (C) and (CR)

robots also exploited the possibility of integrating sensory-motor information over time

to regulate their motor behaviour in the very first portion of the first corridor so as to

reduce the variability with which they reached the green stimuli. Moreover, (C) and

(CR) robots also exploited the possibility of integrating sensory-motor information over

time to partially filter out the effect of noise affecting their sensors and motors and to

better separate the trajectories produced while they navigated toward different target

destinations.

The destination reached by (S) and (C) robots was determined by the position and

the orientation assumed by the robots from the end of the first corridor on and was

not affected by the type of stimuli experienced previously. Indeed, when these robots

were displaced from their current position inside a certain basin of attraction into a

position and an orientation located in a different basin of attraction, they navigated

towards the target destination corresponding to the second basin of attraction in 98%

of cases. The destination reached by (CR) robots, instead, also depended on the state

of the internal neurons that encoded information about previously experienced sensory

states. Indeed, displaced (CR) robots navigated toward the destination corresponding

to the basin of attraction in which they were located before the displacement in 60% of

cases. They managed to compensate the effect of the displacement by re-entering the

basin of attractions in which they had been previously located. They navigated toward

wrong destinations only in the remaining 40% of cases (see Figure 4.14).

4.4 Limiting cognitive offloading does not promote but rather prevents the

synthesis of effective solutions

Here we report a series of experiments carried out to verify whether the discovery of

sub-optimal reactive strategies that rely on cognitive offloading prevents the discovery

of better cognitive solutions. In other words, we verify the hypothesis that cognitive
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Figure 4.14: Trajectories displayed by the best (CR) robot at the first T-junction dur-
ing a post-evaluation test in which the robots were displaced into one
position and orientation located within one of the other three basins of
attraction. The displacement was performed when the robot reached a
distance of 40cm from the first junction. After the displacement the robot
was allowed to move immediately (i.e. it was not blocked). Data were
collected from over 200 trials, 50 for each combination of green stimuli.
The colors indicate the target destinations (magenta: left-bottom, blue:
left-top, cyan: right-bottom, and yellow: right-top). The black trajectories
indicate the trials in which the robot reached a wrong destination, i.e. was
unable to re-enter the correct basin of attraction after the displacement.
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offloading constitutes a sort of shortcut that enables evolving individuals to improve

their adaptive ability up to a certain level through the utilisation of solutions that are

parsimonious from the perspective of the control system of the robot but that prevent

the discovery of more complex and effective strategies. To achieve this objective we

analysed the solutions found by evolving robots in situations in which the possibility of

relying on cognitive offloading was reduced or prevented. One way to prevent the pos-

sibility of relying on cognitive offloading in the case of our experiments was to drastically

reduce the width of the corridors. As we have seen, in fact, robots offload information

concerning the type of green stimuli they have experienced by assuming different rela-

tive positions/orientations inside corridors. The utilisation of narrow corridors severely

restricts the possibility of carrying out this type of offloading.

Analysis of the results obtained in a series of control experiments in which the width

of the corridors was set to 29cm only indicates that, as expected, the use of highly

constrained environmental conditions prevents the exploitation of cognitive offloading,

i.e. the evolution of solutions analogous to that described in the previous section (res-

ults not shown). However, analysis of the performance of the robots evolved in this

condition indicates that the elimination of solutions based on cognitive offloading does

not lead to effective solutions. Indeed, it causes a drastic reduction of the robots’

performance with respect to the normal condition (Figure 4.15). This implies that the

elimination of solutions relying on cognitive offloading does not facilitate the evolution

of alternative cognitive solutions. In other words, the lack of evolution of effective cog-

nitive solutions cannot be explained simply by the availability of cognitive offloading

“shortcuts”.

Indeed, in most of the replications the best (Sn), (Cn) and (CRn) evolved robots were

able to navigate correctly to only one of the four destinations and consequently suc-

ceeded in about one fourth of the trials. The evolved robots managed to navigate to

one of the four correct destinations in most of the trials. Consequently, the impact of

the errors occurred when the robots remained stuck, navigated erroneously back to-
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Figure 4.15: Performances obtained in the control experiment with narrow corridors.
The boxplots show the percentage of successful trials carried out by the
best 10 robots evolved in the (S), (C), and (CR) experimental conditions
in 10 corresponding replications of the experiment. Boxes represent the
inter-quartile range of the data. The horizontal lines inside the boxes
mark the median values. The whiskers extend to the most extreme data
points within 1.5 times the inter-quartile range from the box. Circles mark
the outliers.

ward the central corridor or crashed into obstacles was marginal. We used (Sn), (Cn)

and (CRn) to indicate the robots evolved in the narrow corridor condition. In only two

replications, the best (CRn) robots managed to navigate correctly toward three out of

the four destinations by succeeding in about three fourths of the trials (Figure 4.15).

The performance of these two robots was similar to that achieved by the best (S) robot

(Fisher exact test, p=0.747 and p=0.797), which could only rely on reactive strategies

(Figure 4.7). However, it was significantly worse than that of the better (C) and (CR) ro-

bots, (Fisher exact test, p<0.001). Overall, the performance of the robots that evolved

in these control experiments (Figure 4.15) was significantly worse than the perform-

ance obtained in the standard experiments (Figure 4.7) (Mann-Whitney U, p<0.001 for

(S) and (C), and p=0.01 for (CR)).

Another mechanism that can be used to discourage evolving robots from relying on

cognitive offloading is to randomly vary the position and orientation of the robots while

they travel in the maze. To investigate the effect of this type of perturbation we carried
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out a series of control experiments in a standard maze in which every 50ms the position

and the orientation of the robot were perturbed with a 15% probability. The perturba-

tions were created by displacing the robot to the left or the right of a distance d and by

varying the orientation of the robot by an angle a, where d and a were selected ran-

domly with a uniform distribution within the range [3, 9]cm and [-15, 15]°, respectively.

This type of perturbation drastically reduces the utility (usefulness) of offloading infor-

mation in the relative positions and orientation of the robot in the environment. Once

again, the hypothesis under verification is whether the introduction of a constraint that

discourages the development of cognitive offloading solutions will favour the develop-

ment of alternative, and possibly better, solutions. We used (Sp), (Cp) and (CRp) to

indicate the robots evolved in the standard maze subjected to position and orientation

perturbations during evolution.

The fact that this form of perturbation drastically reduces the usefulness of cognitive

offloading is demonstrated by the fact that the performance of (Sp) robots, which can

only rely on reactive strategies, drops to very low levels (Figure 4.16). The introduction

of perturbations, however, causes a significant drop in performance with respect to the

experiments without perturbations also in the case of (Cp) and (CRp) robots (Mann-

Whitney U, p<0.001) (Figure 4.16). Notice that Figure 4.16 displays the results of a

post-evaluation test in which the robots are evaluated in the absence of position and

orientation perturbations.

Also in this case, therefore, the introduction of constraints that discourage the develop-

ment of reactive solutions relying on cognitive offloading does not promote the evolution

of effective cognitive solutions but rather prevents the possibility of synthesising good

solutions of any kind.

As we will show in the next section, this negative result is not due to the impossibility of

generating solutions that are able to compensate the effect of position and orientation

perturbations. Indeed, evolving robots can solve the navigation problem in a close to

optimal manner and can neutralise to a good extent the effect of position and orienta-

101



4.4. LIMITING COGNITIVE OFFLOADING DOES NOT PROMOTE BUT RATHER
PREVENTS THE SYNTHESIS OF EFFECTIVE SOLUTIONS

Figure 4.16: Performance obtained by robots that were subjected to position and ori-
entation perturbations in all trials during 4000 generations. Data were
obtained by post-evaluating the robots in a normal condition in which
they were not subjected to perturbations. The boxplots show the per-
centage of successful trials carried out by the best 10 robots evolved in
the (Sp), (Cp), and (CRp) experimental conditions in 10 corresponding
replications of the experiment. Boxes represent the inter-quartile range
of the data. The horizontal lines inside the boxes mark the median val-
ues. The whiskers extend to the most extreme data points within 1.5
times the inter-quartile range from the box. Circles mark the outliers.

tion perturbations, providing that the constraints which discourage the development of

cognitive offloading strategies are not too strong.

4.4.1 The acquisition of reactive strategies promotes the evolution of cognitive

capabilities

As demonstrated in the previous section, preventing or severely limiting the possibil-

ity of developing strategies based on cognitive offloading prevents the development

of effective solutions. In this section, we demonstrate how the acquisition of reactive

strategies promotes the evolution of cognitive solutions that enable the robots to ac-

complish their task also in conditions that cannot be mastered appropriately only by

using cognitive offloading strategies.

To verify this hypothesis we carried out a new series of experiments in which we

weakened the constraints that discourage the utilisation of cognitive offloading and

increase the demand for cognitive solutions. This was carried out by subjecting the
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Figure 4.17: Performances obtained in experiments in which the robots were sub-
jected to position and orientation perturbations in all cases (CRp), dur-
ing half of the trials (CRp2) and during the second evolutionary phase
(CRp3). Data obtained by post-evaluating the robots without position
and orientation perturbations. The boxplots show the percentage of suc-
cessful trials carried out by the best 10 robots evolved in each of the ex-
perimental conditions in 10 corresponding replications of the experiment.
Boxes represent the inter-quartile range of the data. The horizontal lines
inside the boxes mark the median values. The whiskers extend to the
most extreme data points within 1.5 times the inter-quartile range from
the box. Circles mark the outliers.

robots to position and orientation perturbations in only half of the trials (Figure 4.17,

CRp2 condition) or by subjecting the robots to perturbations only during the second

phase of the evolutionary process, i.e. from generation 2001 to 4000 (Figure 4.17,

CRp3 condition). Notice that the Figure 4.17 displays the results of a post-evaluation

test in which the evolved robots were not exposed to position and orientation perturba-

tions.

The performances of the robots that were subjected to perturbations in only half of

the trials are significantly better than the performances of the robots that experienced

perturbations in all trials (Figure 4.17, CRp2 and CRp, Mann-Whitney U, p=0.004).

The performances of the robots that were subjected to perturbations during the second

phase of the evolutionary process, instead, did not differ significantly from those of the

robots that were subjected to perturbations during all generations (Figure 4.17, CRp3
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and CRp, Mann-Whitney U, p=0.36).

The fact that the robots evolved in the CRp2 condition relied on effective cognitive

mechanisms can be demonstrated by post-evaluating the best robot in a control con-

dition in which it was systematically displaced from its current position and orientation

into another position and orientation located in a different basin of attraction through

the same procedure described in Section 3. As can be seen, unlike the best CR robot,

the best CRp2 robot is able to recover from the displacements in most cases, also

in the condition in which it is blocked for three seconds after being displaced (Figure

4.18). The robot compensates for the effect of displacement by re-entering into the

basin of attraction in which it was located before the displacement. This is carried out

by storing in its internal states information encoding the type of basin of attraction in

which it is located and by using this information to re-enter into the previous basin of

attraction, as shown in Figure 4.14. The best CR and CRp2 robots make use of the

internal states to neutralise the effects of this type of displacement (see Figures 4.13

and 4.18). However, the best CRp2 displays much better ability. This is not surprising,

because CRp2 robots were subjected to position and orientation perturbations during

evolution. In normal conditions, i.e. without displacements or perturbations, the per-

formances of the best CR and CRp2 controllers do not differ statistically (Fisher Exact

Test, p=0.308).

The fact that the development of cognitive offloading strategies supports the develop-

ment of effective cognitive abilities, such as those displayed by the best CRp2 robot,

is also demonstrated by the analysis of the course of the evolutionary process in the

case of the best replication of the experiment. In fact, the post-evaluation of the best

robots in every 50 generations indicates that the development of the ability to master

the trials not affected by displacements precedes the development of the ability to also

master the trials subjected to displacement (Figure 4.19). The performances in the

two conditions differed significantly from generation 1500 to 1800 with the exception

of generation 1700 (Fisher Exact Test, p<0.05). We focused on this 500 generations
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Figure 4.18: Performance displayed by the best (CR) and (CRp2) robots during a post-
evaluation test in which the robots were systematically displaced into a
position and orientation located in a different basin of attraction (red and
blue bars, respectively). Each bar represents the percentage of trials in
which the robots were able to reach the appropriate destination despite
the displacement. The “instant” condition refers to a situation in which the
robots were allowed to move normally immediately after the displace-
ment. The “1 second” and “3 seconds” conditions refer to situations in
which the robots were blocked for 1 and 3 seconds, respectively, after
the displacement. The “no-displacement” condition refers to a normal
situation in which the robots were not subjected to displacements. The
robots were displaced once during each trial. The displacement occurred
when they reached an imaginary line located 40cm before the first junc-
tion, or 40cm after the first junction, or in the middle of the horizontal
corridor, or 40cm before the second junction. Data collected in 2400
trials.
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Figure 4.19: Performance displayed by the best CRp2 during the course of the evolu-
tionary process in a no-displaced and displaced condition (black and red
lines, respectively). In the latter condition the robot was allowed to move
immediately after the displacement. Data were collected every 50 gener-
ations from generation 1500 to 2000 and averaged over 600 trials in the
case of the no-displacement condition and 2400 trials in the case of the
displaced condition. The displacement occurs when the robot reaches
an imaginary line located 40cm before the first junction, or 40cm after
the first junction, or in the middle of the horizontal corridor, or 40cm be-
fore the second junction.

period because in the case of the best replication this is the phase in which most pro-

gress occurs. Thus, the development of a strategy that operates primarily on the basis

of cognitive offloading and that enables the robots to handle the navigation task in the

normal condition but not in the condition with displacements supports the development

of a hybrid strategy that relies also on internal states and that enables the robots to

also master the trials affected by displacements.

Incidentally, the internal neurons of the (CR) and (CRp2) robots are somewhat similar

to the hippocampal cells of rodents located in maze environments that encode infor-

mation about the location of the animal in the maze and about the trajectory the animal

is performing and will perform to reach the target destination [136, 187, 191]. However,

a detailed analysis of the relation with these neurophysiological findings is outside the

scope of this study.

At this point we will try to explain why evolving robots: (i) always develop cognitive
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offloading strategies, (ii) are unable to develop effective strategies relying exclusively on

internal states even in conditions in which the possibility of using cognitive offloading is

completely ruled out, (iii) are able to extract internal states encoding target destinations

that are maintained over time and are used to compensate the effects of position and

orientation perturbations.

We believe that to explain these results we have to appreciate the full complexity of

the task. In particular, we must consider that the problem involves the ability to both

travel in the maze environment by avoiding collisions and inversions in the direction of

motion and the ability to turn in the appropriate direction at junction areas. The most

straightforward way of navigating in the maze and avoiding collisions is to use a reac-

tive strategy that regulates the direction of the robot on the basis of the current state

of the infrared sensors. In other words, the ability to navigate in the maze environment

necessarily requires use of a reactive strategy. The capacity to turn in the appropriate

direction at junction areas, instead, can be obtained by either exploiting primarily ex-

ternal cues generated through cognitive offloading or exploiting primarily internal cues

generated by integrating sensory-motor information over time. Using a mixed strategy

that operates on the basis of both reactive rules for the purpose of navigation and more

complex rules for the purpose of decision-making at junctions necessarily requires the

incorporation of mechanisms that sort out the conflicts arising between reactive and

non-reactive control rules.

As an example of conflict, let us consider the case of a robot that decides which direc-

tion to take at a junctions on the basis of its internal state. Moreover, let us imagine

that the robot is located at the beginning of the first junction and that it is traveling

toward one of the two left destinations. During the first and the third part of the junc-

tion negotiation the robot should not turn too sharply left to avoid colliding with the

left walls. During the central part of the junction negotiation, instead, the robot should

definitely turn left following the indication coming from its internal state. The conflict

arising between obstacle avoidance and the decision-making rules that control the di-
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rection of turns at junctions could be solved by regulating the relative importance of the

two rules on the basis of the relative position of the robot within the junction. However,

the robot does not have access to position information. It only perceives the proximity

of nearby obstacles. This implies that the robot would be forced to determine the rel-

ative importance of the two alternative control rules on the basis of the indirect, noisy,

and incomplete information provided by its sensors. Consequently, this implies that the

probability that the robot will fail as a result of ineffective regulation is not negligible.

Instead, the behavioural attractor strategies displayed by evolved robots do not require

differentiating the way in which the robots react to sensory states experienced in dif-

ferent portions of the environment. Indeed, once the robots enter into the right basin

of attraction, they just need to keep moving on the basis of simple reactive rules in

both corridors and junctions. One reason why evolving robots always select cognitive

offloading solutions is that these strategies are more robust and less prone to errors

with respect to strategies in which turning decisions are made on the basis of internal

states.

The second reason why evolution always converges toward cognitive offloading strategies

is that preparatory actions that anticipate in part the execution of the required behaviour

are adaptive and therefore tend to be selected. This implies that the individuals that

anticipate the movement toward the left or the right side of the corridor during the trials

in which they should turn toward that side at the first and/or at the second junctions

tend to be selected. This produces a progressive anticipation of the time when the

turning actions are initiated that ultimately leads to a situation in which they are initi-

ated up to the point when the robot perceives the green stimuli. This in turn eliminates

the need to extract and use internal states that encode information about previously

experienced stimuli. Indeed, we might say that in the evolved robots the left or right

turning behaviours produced at the first and second junctions are initiated already dur-

ing the first half of the first corridor, when the robot perceives the position of the green

stimuli. In other words, by anticipating action execution through preparatory actions,
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the robots manage to transform a time delay task into a simpler problem that does

not include any temporal offset between the perception of stimuli and the initiation of

the action afforded by the stimuli. Overall, this implies that the selection of cognitive

offloading strategies of this type is inevitable, at least in the case of the double T-Maze

experimental setting.

The tendency to anticipate behaviours through the execution of preparatory actions

provides two advantages: (i) it enables the execution of smoother transitions between

behaviours (i.e. between the navigation behaviour performed within the corridors and

the turning behaviour performed within the junctions), and (ii) it enables reducing and/or

eliminating the time delay between the moment when the stimuli affording a given be-

haviour are experienced and the moment when the behaviour afforded by the stimuli is

executed.

As we have showed above, however, the ability to solve the time-delay problem through

preparatory actions does not necessarily prevent development of the ability to extract

information encoding the type of basin of attraction in which the robot is currently lo-

cated or the green stimuli that the robot experienced and the development of an ability

to use these internal states to navigate to the appropriate destination. Indeed, as we

have seen, (CR) robots display the ability to re-enter into the basin of attraction in which

they were previously located after being displaced into another wrong basin of attrac-

tion. In the case of robots subjected to a moderate level of position and orientation

perturbation (CRp2), this cognitive capability is so effective that it enables the robots

to compensate for the effect of the displacement in most cases, even when the robots

are blocked for three seconds after the displacement. This type of redundant solution

enables these robots to exploit the advantage of preparatory actions and avoid the

problems caused by noise and by position perturbations.

Anticipation is a widespread phenomenon in sequential motor control. The preparatory

actions that support the realisation of effective grasping behaviours are an example of

this. These preparatory actions involve appropriate modification of the posture of the
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hand performed during execution of the reaching behaviour that precedes the grasp-

ing action [181]. A second example is constituted by the co-articulatory movements

produced by sign language interpreters engaged in fingerspelling. Indeed, the posture

of the hand used to indicate a letter is influenced by the posture that the hand should

assume later to indicate the following letters [81].

4.5 Discussion

The present chapter presented the results and analysis that clarify whether the de-

velopment of reactive solutions promotes or prevents the evolution of cognitive robots

in problems in which reactive control policies enable the achievement of sub-optimal

performance only. For this purpose a series of experiments were carried out in which

evolving robots had to solve a time-delay task in a double T-maze environment in which

the destination to be reached depended on the stimuli perceived by the robot dur-

ing the initial phase of the navigation. The problem chosen is qualitatively similar but

more complex than the tasks used in previous studies that investigated the evolution

of cognitive capabilities [4, 9, 29, 41, 99, 147]. The additional complexity is that the

task used here involves a greater number of different destinations, requires making

two subsequent stimuli-dependent decisions, involves a longer time delay between the

moment in which the robot experiences the stimuli and the moment in which it should

make the corresponding turning decisions, and involves variations affecting the initial

position and orientation of the robot, the position of the stimuli and the size of the

environment.

Analysis of the experiment in which the robots were provided with reactive controllers

confirmed that the problem does not allow for optimal, or close-to-optimal, reactive

solutions (Figure 4.6). Surprisingly, however, reactive robots managed to solve the

task to a large extent. Analysis of the solutions discovered by the evolving robots indi-

cate that this is achieved by exploiting cognitive offloading. Indeed, the evolved robots

display an ability to extract critical states, store these states in the robot/environmental

relations and regulate their behaviour on the basis of their relative position in the envi-
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ronment (Figure 4.7).

Analysis of the robots provided with richer neural controllers indicated that the possi-

bility of storing internal states enables the evolving robots to achieve close-to-optimal

performance, i.e. to achieve better performance with respect to reactive robots (Figure

4.6). Analysis of these experiments indicates that cognitive offloading also plays a key

role in these robots (Figure 4.11-4.13). The achievement of better results is due to the

development of additional cognitive capabilities that overcome the limitations displayed

by robots that operate on the basis of reactive controllers only. The results obtained

thus indicate that the development of the reactive strategies based on cognitive offload-

ing does not prevent the development of solutions that rely on cognitive capabilities.

This conclusion is further supported by results obtained in other experiments in which

the usefulness of cognitive offloading was reduced or eliminated by using an envi-

ronment formed by narrow corridors or by subjecting evolving robots to position and

orientation perturbations. As expected, the robots evolved in these conditions relied

less or not at all on cognitive offloading. This, however, did not enable the robots to

discover alternative strategies for solving the task. This simply led to the evolution of

robots displaying rather ineffective solutions (Figures 4.15 and 4.16). Overall, this indi-

cates that the elimination of cognitive offloading does not promote but rather prevents

the synthesis of effective solutions.

Finally, the results obtained demonstrated how the acquisition of reactive strategies

promotes the evolution of cognitive strategies, or better of hybrid strategies including

both cognitive offloading and cognitive mechanisms. These hybrid strategies enable

the robots to navigate toward the appropriate destination also after being displaced into

another basin of attraction and also after being blocked there for three seconds (Fig-

ures 4.17 and 4.18). This type of solution was obtained by weakening the constraints

that reduce the usefulness of cognitive offloading (i.e. by perturbing the position and

orientation of the robot in only half of the trials). This, indeed, creates the appropriate

demand for the development of cognitive abilities without preventing the development

111



4.5. DISCUSSION

of cognitive offloading strategies.

Overall, these results indicate that reactive strategies relying on cognitive offloading

do not necessarily constitute a dead end that might retard or prevent the evolution of

better cognitive strategies. On the contrary, they constitute an important component

of effective solutions and can co-exist and support the development of complemen-

tary cognitive capabilities. For results collected in human subjects that indicate how

cognitive offloading can favour the acquisition of abstract concepts see [174].

The importance of the incremental nature of the evolutionary process and of the ac-

quisition of reactive strategies in the synthesis of better cognitive strategies is further

demonstrated by the analysis of the course of the evolutionary process. Indeed, the

evolution of the cognitive offloading ability precedes the evolution of the cognitive ca-

pabilities that use internal states to determine the travel destination (Figure 4.19).

One question that remains open is whether solutions that are purely cognitive, i.e. that

do not rely also on cognitive offloading, exist and can be discovered. It is worth noting

that the existence of this type of solution cannot be taken for granted, at least in the

context of the domain considered in this study.

In general, analysis of the characteristics of evolved strategies suggests that reactive

and cognitive components of control policies should not be considered as neatly sepa-

rable entities performing well-differentiated functions. Regulation of the robot’s actions

performed on the basis of internal states should always be integrated with regulation

of the robot’s actions, which is carried out on the basis of currently perceived states.

In the context of the presented experiments this implies that the efficacy of a cognitive

component of the robot policy that determines the turning direction at T-junctions on

the basis of internal states strongly depends on the way the robot reacts to perceived

stimuli independently of the value of its internal states, and vice versa. Moreover, the

use of a cognitive offloading strategy for the purpose of storing information about pre-

viously experienced stimuli does not necessarily conflict with use of internal states that

have the same function. On the contrary, the combined use of two alternative mech-
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anisms with different characteristics for achieving the same function might provide ad-

vantages. If we embrace a less simplified view of the relation between reactive and

cognitive components we see fewer reasons to expect interferences and more reasons

to expect synergies, like those we found in the presented experiments.
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Robotics is a field that has already changed our world substantially with industrial ro-

botics, and that still has the potential to change it even more with service and mobile

robots. However, operating on everyday life environments poses many challenges due

to the fact that they are highly dynamic and uncertain environments. So, dealing with

these challenges requires a research effort for developing and understanding the in-

novative methods that could embed artificial embodied agents, aka robots, with some

sort of intelligence for being adaptive.

A key aspect for mobile robots dealing with complex environments is the capacity of

displaying adaptive behaviours. It can enable robots to achieve the required function(s)

and display a behavioural organization that facilitates the possibility to adapt to varying

environmental conditions. Particularly some interesting types of adaptive behaviour

that seem to bring these benefits are the capability to rely on multiple behavioural

and cognitive capabilities in an integrated manner. As presented in the first chapter,

adaptive behaviours can originate from the exploitation of environmental complexity,

behaviours composed by interconnected and interdependent subunits, aka articulated

behaviours, and also from the capacity of using internal information integrated over

time in combination with external stimuli, aka cognitive behaviours.

Among the different approaches that could contribute to the development of adaptive

robots are those relying on artificial evolution, which can synthesise not only robot

controllers but also body-plans. These methods allow the so called design by emer-

gence [135], the possibility to exploit behavioural properties that originate from the

interaction among environment, body and mind. However, the outcome of the evolu-

tionary process depends on the characteristics of the agents, and the environment in

which the agents evolve, and these are determined by the experimenter. Understand-

ing how these characteristics should be set so to maximise the results of evolution is

far from trivial.

In this thesis I analyzed some of the aspects that can promote the evolution of adaptive

behaviour, i.e. behaviour that permit to achieve certain functions but that also present
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an organization that facilitates the adaptation to varying environmental conditions, and

the exploitation of different capabilities in an integrated manner. The results presented

showed how behavioural plasticity and the development of integrated behavioural and

cognitive capabilities can enable evolving robots to achieve better solutions. Moreover I

analyzed the mechanisms that can promote the development of plastic behaviours and

the development of robots that operate on the basis of integrated behavioural and cog-

nitive capabilities. For example I clarified the importance of affordance generation and

the sensory-motor and neural characteristics that can promote affordance generation.

The kind of behavioural plasticity evolved and analysed in the chapter 2 differs from

neural plasticity in which there is synaptic weights adjustment for modifying the overall

behaviour. It differs also from the approaches that structurally divide the robot control-

lers in order to explicitly produce articulated behaviours. As confirmed by the results

presented, the benefits of this functional type of modularity is that the connectedness

among behaviours produces smooth and effective behavioural integration. This overall

produces more effective behaviours compared to non-plastic behaviours, or structurally

modular behaviours in which there is a sharp switch. We saw that the main mechanism

behind the evolution and production of the behavioural plasticity was the affordance

generation. This mechanism allowed the combination of different type of stimuli, in-

ternal and external, to arbitrate and regulate the execution of the different behaviours,

and to precisely define the switch point among them.

Regarding the evolution of cognitive agents, i.e. those capable of integrating infor-

mation over time and using it for decision making, we saw that the use of reactive

strategies, more specifically those that offload part of the cognitive process to the en-

vironment, can promote cognitive development rather than prevent it. Furthermore, we

saw that this kind of strategy can be combined with cognitive solutions, those relying

on internal states, in order to compose an effective behaviour. According to the res-

ults presented in chapter 3, encoding part of the information and offloading part of the

cognitive work into the external environment can facilitate the development of cognitive
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agents. This is confirmed by the fact that the evolution of cognitive offloading precedes

the development of strategies that actively use internal information for regulating the

behaviour. And this happens even in the experiments in which there is a stronger pres-

sure for selecting individuals that rely more on the use of internal information, as in the

experiment with a moderate level of position noise. Furthermore, when the possibility

to evolve cognitive offloading was removed, narrow corridors or extreme position noise,

no effective solution was found by the evolutionary process.

While in the literature it is common to find studies investigating how to develop effective

solutions using artificial evolution through changes in the fitness function [71, 95, 151],

or in the structure of the genetic algorithm [21, 138, 141], enlightening specific as-

pects of the artificial evolution that can provide an evolvability increase regarding the

development of adaptive and effective behaviours is a less explored direction, and the

one chosen in this thesis. Building knowledge about these aspects can represent a

promising step for taking Evolutionary Robotics approaches to the next level, i.e. ef-

fectively creating robots capable of operating and providing services in the real world.

Additionaly, the inspiration on evolutionary biology and ethology may not only provide

insights and help the guidance on which research directions to follow, but also in the

other way around, provide a small contribution also to those fields, allowing to check if

artificial agents are capable of presenting characteristics observed in biological ones,

and also to compare and study the resulting mechanisms.

4.6 Contribution to knowledge

Summarising the contributions to knowledge provided by this thesis, we can say that:

• the studies presented in this thesis show that there is an alternative and quite

unexplored way, other than focusing on algorithms, fitness functions or particular

types of robot controller, for generating adaptive robotic behaviour. The studies

presented here shed some light in important aspects of evolutionary processes

that can lead to the evolution of adaptive behaviours, more specifically those
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regarding articulated and cognitive ones, without proposing any modification in

the evolutionary process that could create pressure or bias the development of

these types of behaviours.

• the results and analysis presented on chapter 2 show how behavioural plastic

robots can evolve and effectively perform even in a single goal task;

• behavioural plasticity can be evolved even without the use of synaptic plasticity

or structural division of the robot controllers;

• the lack of a sharp division among modules, allows a high level of interconnect-

edness leading to smooth and effective transitions among behaviours;

• in a behavioural plastic strategy, the possibility of arbitrating the sub-behaviours

based on multiple stimuli, internal and external, allow smoother and more adap-

tive switches, i.e. the transitions happen in the precise time leading to the most

effective task performance;

• the possibility to generate affordances for maintaining or switching sub-behaviours,

through the robot’s action, represents an important mechanism that enables the

evolution of behavioural plasticity in evolving robots;

• the results and analysis presented on chapter 3 clarified the important role that

reactive strategies, specifically cognitive offloading, have in the evolution and op-

eration of minimally cognitive robots;

• contrary to what some authors claim, that cognitive offloading could prevent the

development of cognitive capabilities, these strategies may in fact precede the

development of strategies relying on internal information, and the possibility of

using cognitive offloading may promote the evolution of cognitive capabilities.

• the best cognitive solutions found are actually a combination of cognitive offload-

ing and the use of internal information integrated over time. These strategies are

complementary, i.e., internal states are reinforced by the stimuli differentiation
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created by the cognitive offloading strategy, conversely, the internal information

is used to correct disturbances and maintain the robot in the proper attractors

created by the reactive strategy. This overall suggests that reactive and cognitive

strategies can be less separable than one could initially think, instead, they may

work together in the composition of a hybrid superior solution as was the case of

the results presented in this work.

• it is possible to bias the evolution to create solutions that rely more on internal

information than on external stimuli by reducing the reliability of external infor-

mation, adding position noise for instance, but these solutions may not bring any

performance advantage.
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Abstract In this paper, we show how the development of

plastic behaviours, i.e., behaviour displaying a modular

organisation characterised by behavioural subunits that are

alternated in a context-dependent manner, can enable

evolving robots to solve their adaptive task more efficiently

also when it does not require the accomplishment of mul-

tiple conflicting functions. The comparison of the results

obtained in different experimental conditions indicates that

the most important prerequisites for the evolution of

behavioural plasticity are: the possibility to generate and

perceive affordances (i.e., opportunities for behaviour

execution), the possibility to rely on flexible regulatory

processes that exploit both external and internal cues, and

the possibility to realise smooth and effective transitions

between behaviours.

Keywords Behavioural plasticity � Evolutionary robotics �
Multiple behaviours � Autonomous robotics � Modularity �
Action switching

Introduction

Behavioural plasticity is a special case of plasticity—‘‘the

ability of an organism to react to internal or external

environmental inputs with a change in form, state, move-

ment, or rate of activity’’ (West-Eberhard 2003, p. 33). It

involves the capability to display multiple behavioural

responses, which might differ in a continuous or discon-

tinuous way, in a condition-sensitive manner (Komers

1997).

Behavioural plasticity constitutes a key aspect of animal

behaviour. Indeed, behaviours are often organised in

functionally specialised subunits governed by switch and

decision points (Gallistel 1980). Examples of elaborate

behaviours including several different phases regulated

through a rich set of context-dependent rules include the

courtship behaviour of the grasshopper (Otte 1972), the

reproduction behaviour of female canaries (Hinde 1970),

web construction and predation behaviours in spiders

(Eberhard 1988; Jackson and Wilcox 1993).

Behavioural plasticity is essential for enabling organ-

isms to adapt to variations of their external and/or internal

environment. In that respect, it is important to consider that

what matters, from the point of view of the adapting

individuals, is the organism’s perceptual environment (i.e.,

the characteristics of the environment that the organism

perceives given its sensory system and its relative location

in the environment). This means that all environments are

variable, from the perspective of an organism that is situ-

ated and performs actions in an environment, indepen-

dently of whether they appear variable or not from the

perspective of an external observer.

In this paper, we analyse experimentally how evolving

robots can acquire and display behavioural plasticity, i.e., a

series of behaviours that are exhibited in a context-
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dependent manner. In particular, we analyse whether

behavioural plasticity evolves during the course of the

evolutionary process, which are the prerequisites for its

evolution, and which are the mechanisms through which it

is realised. The comparison of the results obtained in dif-

ferent experimental conditions indicates that the most

important prerequisites for the evolution of behavioural

plasticity are the possibility to generate and perceive

affordances (i.e., opportunities for behaviour execution),

and the possibility to regulate, in a flexible manner, the

alternation of the different sub-behaviours and the transi-

tions between sub-behaviours.

Behaviour, multiple behaviours and behavioural

plasticity

For the sake of clarity, it is important to specify what we

mean by behaviour, multiple behaviours and behavioural

plasticity. In the context of agents that are embodied and

situated, behaviour is the dynamical process that originates

from agent/environmental interactions. At any time step,

the environment and the agent/environment relation co-

determine the body and the motor reaction of the agent

that, in turn, co-determine how the agent/environment

relation and/or the environment vary. Sequences of inter-

actions lead to a dynamical process that extends for a

certain period of time: the agent’s behaviour.

We use the term overall behaviour to indicate the entire

behaviour displayed by an agent, i.e., the behaviour dis-

played by an organism during its entire lifetime. Moreover,

we use the term function/s to indicate the adaptive role of

behaviour, e.g., the overall behaviour displayed by an

organism can have the function of enabling the organism to

survive and reproduce.

Behaviour might be characterised by a modular organ-

isation with somewhat semi-discrete and semi-dissociable

subunits (West-Eberhard 2003), or sub-behaviours, playing

different functions (or sub-functions). When sub-be-

haviours display a modular organisation as well, the

behaviour displays a hierarchical organisation charac-

terised by multiple-levels (e.g., lower-level behaviours,

higher-level behaviours, overall behaviour, see Nolfi

2009). We used the term semi-discrete and semi-dissocia-

ble to emphasise the fact that conceptualising sub-be-

haviours as a collection of independent subunits is

misleading, since sub-behaviours are only partially inde-

pendent from each other. The modular organisation of

behaviour, therefore, is characterised by both discreteness

and evidence of boundaries between sub-behaviours and by

connectedness and integration among them (West-Eber-

hard 2003). After all, even individual organisms are not

completely independent units, given that they also show a

significant level of connectedness and interdependence

with conspecifics, in most of the species. Notice that the

modular organisation of behaviour should not be confused

with the modular organisation of the agent’s nervous

system.

The term multiple behaviours refers to behaviours

characterised by a modular organisation, i.e., characterised

by the presence of multiple semi-independent sub-be-

haviours. In behaviours displaying several levels of

organisation, the presence of multiple semi-independent

behavioural units characterises all levels of organisation,

except the level of the overall behaviour. As an example,

we can consider the behaviour of a tennis player during a

game that can be divided in a series of semi-independent

sub-behaviours such as serve and volley (in which the

player serves and then charges forward to the net), lob (a

shot in which the ball is lifted high above the net) etc.

The term behavioural plasticity refers to agents dis-

playing behaviours characterised by a modular organisa-

tion and displaying the capability to regulate the exhibition

of the different sub-behaviours on the basis of their internal

and external environment. In the example of the tennis

player, behavioural plasticity refers to the capability of

displaying multiple behaviours such as these described

above and to the capability to select the appropriate

behaviour depending on the game context, for example the

ability to execute a drop shot behaviour, that consists in

hitting the ball just over the net, when the opponent is far

from it. The term behavioural plasticity should not be

confused with neural plasticity, e.g., fine-grained modifi-

cations of the connection weights of the agent’s nervous

system (see Nolfi and Floreano 1999).

Whether behavioural units or sub-behaviours should be

considered as real entities eligible for scientific analysis or

subjective entities that only exist in the eyes of the observer

represents an open question. Indeed, although many biol-

ogists assume that behaviour is organised in semi-discrete

units with specialised functions (Mitchell 1990; Barlow

1977; Gallistel 1980; Wenzel 1993; West-Eberhard 2003),

others consider behavioural units as useful fictions at best

(Fentress 1983). Within the Artificial Life and Robotics

community, the notion of behavioural unit has a relatively

clear and non-controversial meaning in the context of

behaviour-based architectures (Brooks 1986) in which

different modules or layers are responsible for the pro-

duction of alternative corresponding sub-behaviours (i.e.,

in a situation in which there is a one-to-one correspondence

between behavioural units and agent’s control modules and

in which the control modules are separated by clear

boundaries). Whether robots operating on the basis of non-

modular neural controllers can properly make use of mul-

tiple behaviours, as well, represents an open question (see

Tani and Ito 2007; Prescott 2008; Nolfi 2009). The attempt

to resolve this issue is outside the scope of this paper. For
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intellectual honesty, we clarify that together with several

authors cited above, we assume that the behaviour of an

agent can have a modular organisation even when the

behavioural units do not correspond to clearly identifiable

components of the agent. As argued by West-Eberhard

(2003, p. 63), we believe that ‘‘it would be foolish to deny

the modular properties of phenotypic organization just

because there are connections and indistinct borders around

the subunits we recognize as trait. There can be no doubt

that there exists behavioural subroutines or subunits, for

they are distinguishable from others in form, function, and

discreteness, and sometimes in gene expression …’’.

Moreover, we assume that the presence or the lack of a

modular behavioural organisation can have important

consequences (e.g., on agents’ performance and on agents’

ability to develop new skills).

Relation to the state of the art

Evolutionary robotics (Nolfi and Floreano 2000; Nolfi et al.

2016) concerns the synthesis of population of embodied

and situated robots that develop their skills autonomously

as a result of an evolutionary process based on selective

reproduction and variation. In this context, the study of

behavioural plasticity has been addressed indirectly in the

following three research lines.

The first research area concerns the study of the com-

bination of evolution and learning (Nolfi and Floreano

1999). Nolfi and Parisi (1997), in particular, showed how

evolving robots manage to successfully vary their beha-

viour during the course of their life to adapt to variations of

objects reflectance. Floreano and Nolfi (1997) showed how

evolving predator robots vary their predation strategy on

the basis of the behaviour displayed by the escaping prey

so as to successfully capture it.

The second line of research addresses the study of the

potential advantage of evolutionary algorithms supporting

the evolution of modular neural controllers. The rationale

behind this is that the availability of separated neural

modules can facilitate the exhibition of behaviours char-

acterised by a modular organisation. In some cases, this

objective was realised by providing the neural controllers

with a varying number of neural modules arbitrated on the

basis of a co-evolved arbitration mechanism (Calabretta

et al. 2000; Schrumand and Miikkulainen 2012). In other

studies, instead, it was realised by genetically encoding the

connectivity between the neurons, i.e., by enabling the

evolutionary process to select architectures displaying

clusters of neurons with many intra-connections and few

inter-connections (Bangard 2011; Verbancsics and Stanley

2011; Huizinga et al. 2014).

Finally, the third line of research concerns the study of

action selection (behaviour selection for consistency with

the terminology we are using), i.e., the capacity to select

between alternative behaviours afforded by the current

organism/environmental context (Seth et al. 2012). In most

of the cases, evolutionary studies conducted in this area

concern the evolution of an ability to arbitrate hand-de-

signed control modules producing predetermined beha-

viours (e.g., Gonzales et al. 2000; Rahim et al. 2014). In

other cases, however, the behaviours were evolved as well

(Izquierdo and Bührmann 2008; Seth 2012; Petrosino et al.

2013; Williams and Beer 2013). In these experiments,

however, the synthesis and the exhibition of multiple

behaviours represented the only possible viable solution

since the evolving robots were required to carry on mutu-

ally exclusive tasks [e.g., eating or avoid eating a specific

food type (Seth 2012; Petrosino et al. 2013) or moving on

the basis of a wheeled or legged actuators (Williams and

Beer 2013)].

In this paper, we run a series of experiments that aim to

study whether behavioural plastic solutions evolve, whe-

ther they provide advantages with respect to non-plastic

solutions and which are the factors that represent necessary

prerequisites for the evolution of behavioural plasticity. As

we will see, our results indicate that behavioural plastic

solutions can evolve also when the adaptive task does not

require the accomplishment of multiple conflicting func-

tions. Moreover, our results indicate that behavioural

plastic solutions might enable the evolving agents to

achieve higher performance. The analysis of our experi-

ments indicates that the most important prerequisite for the

evolution of behavioural plasticity is constituted by the

capability to perceive and generate affordances, i.e.,

opportunities for behaviours (Gibson 1979; Chemero

2011). This capability depends on the richness of the

robot’s perceptual environment that, in turn, depends on

the richness of the robot’s internal and external environ-

ments, on the richness of the robot’s sensory–motor sys-

tem, and on the ability to exploit sensory–motor

coordination. Moreover, the analysis indicates the impor-

tance of using flexible regulation mechanisms that rely on

both external and internal cues. Finally, the obtained results

demonstrate the importance of the connectedness between

sub-behaviour and the importance of providing the agents

with mechanisms that enable them to realise a smooth and

effective transition between sub-behaviours.

The method

To study this issue, we decided to consider a cleaning

experimental scenario in which a wheeled robot need to

vacuum-clean the floor of an unknown in-door environ-

ment. We choose this problem since it represents the first

(and still the more significant) successful application
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domain of autonomous robot solutions (Roomba, the first

autonomous vacuum-cleaning robot developed by

iRobots� under the supervision of Rodney Brooks and

commercialised from 2002 has been sold in more than

10 million units to date, see iRobot 2013). Rather than

designing the controller by hand, we studied whether

effective controllers can be developed from scratch through

an evolutionary method in which the evolving robots are

selected on the basis of the percentage of successfully

cleaned surface, i.e., on the basis of a scalar value that rates

their overall ability to perform the task.

It is important to point out that we choose this domain

also because it involves the execution of a task with a

single goal (cleaning the environment) that does not nec-

essarily require behavioural plastic solutions. This enables

us to study whether and how behavioural plastic solutions

evolve, whether and why they provide an advantage with

respect to non-plastic solutions, and eventually which are

the characteristics and functions of the evolved sub-be-

haviours. Domains involving multiple conflicting goals,

such as those used in the literature addressing the study of

action selection cited above, in fact, necessarily require the

development of solutions characterised by multiple beha-

viours and, implicitly, constrain the number and type of

required sub-behaviours.

The investigation of the cleaning problem also permits

to compare our evolved solutions with those developed by

companies that sell cleaning robots. In that respect, the fact

that the behavioural policies displayed by different ver-

sions of the Roomba and by similar robots produced by

other companies significantly differ (Ackerman 2010)

demonstrates that finding the optimal solution/s of this

problem is far from trivial.

The task, the environment and the robot

To evolve robots that are robust with respect to environ-

mental variations, we evaluated each robot for three trials

or cleaning sessions. At the beginning of each trial, the

initial position and orientation of the robot in the envi-

ronment, and the specific characteristics of the environ-

ment, like dimensions and object positions, in which it was

situated in were randomly varied within limits.

Each trial lasted 6 min and 15 s. Although performing a

precise comparison with the time required by commercial

robot to clean completely or almost completely a surface

with similar properties is impossible due to the lack of data

(for some indications see Ackerman 2010), this represents

a rather short period of time.

To compute the cleaning performance, we calculated the

percentage of 20 9 20 cm non-overlapping areas visited

by the robot at least once during a trial.

The experiments have been repeated in two different

types of environments. In the first set of experiments, we

used a concave environment (Fig. 1, left) constituted by a

large central area and by four peripheral corridors that

represent a room-like environment. The average envi-

ronment had a central area with a size of 6.8 m2 and four

corridors with a size of 3.78 m2 in total. The exact size

of the environment, however, was randomly set at the

beginning of each trial. This was realised by varying the

height and width of the central area and of corridors of

±33 and ±18 %, respectively, during different trials. In

the second set of experiment, we used a convex envi-

ronment (Fig. 1, right) constituted by a rectangular room-

like area including furniture. The rectangular area has a

size of 12.2 m2 ± 33 % and includes: a first rectangular

object with an area of 0.93 m2 ± 10 %, a second rect-

angular object with an area of 0.17 m2, the legs of a

table, and the legs of chairs (the number of chairs was

randomly varied in the range [0, 4]). The x and y coor-

dinates of all the objects located over the plane were also

varied during each trial within limits that prevented

physical overlap.

The robot used was a MarXbot (Bonani et al. 2010), a

differential drive wheeled robot with a diameter of 17 cm.

The robot is equipped with 24 infrared sensors evenly

distributed along the robot’s body and capable of detecting

Fig. 1 Examples of concave

and convex environments, left

and right, respectively
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objects in a range of 10 cm. Moreover, it is equipped with a

rotating laser sensor capable of detecting obstacles at

longer distance. Experiments were run in simulation using

the FARSA open-software tool (Massera et al. 2013) that

includes an accurate simulator of the robot and of the

environment.

The robots’ neural controller

The robots are provided with a neural network controller.

In all experiments, the robots are equipped with eight

sensory neurons that encode the average activation state of

eight groups of three adjacent infrared sensors each and

two motor neurons that encode the desired speed of the two

robot’s wheels. The sensory neurons are fully connected

with the motor neurons and to hidden neurons (if present),

and the hidden neurons are fully connected to the motor

neurons. Hidden and motor neurons are provided with

biases. The state of the hidden and motor neurons is

computed on the basis of the logistic function. The state of

the sensory neurons and the desired speed of the robot’s

wheels are updated every 50 ms. Experiments have been

replicated in the following four experimental conditions:

(S) Simple: The robots are only provided with the

infrared sensors

(R) Range sensor: The robots are provided with an

additional sensory neuron that encodes the average

distance of obstacles located within 1 m detected

through the rotating laser range sensor. This sensor

has been added to enable the robot to vary its

behaviour in narrow versus open areas

(T) Time: The robots are provided with an additional

sensory neuron that encodes the time passed since the

beginning of the current cleaning session (trial), i.e.,

whose activation state linearly varies between 1.0 and

0.0 during the course of the trial. This sensor has been

added to enable the robot to vary the behaviour

during the course of cleaning sessions. Notice that

this sensor enables the robot to access information

extracted from the robot’s internal environment (e.g.,

a robot clock situated inside the robot body), while

the other sensors enable the robot to access informa-

tion extracted from the external environment

(M) Modular: The neural controller is formed by three

modules (each provided with eight infrared sensors

connected to the two motor neurons) that are used

during three subsequent phases of the trial of equal

length. This modular neural controller was used to

enable the robot to freely differentiate its behaviour

during the three successive phases of the trial

To investigate whether the addition of internal neurons

could enable the robot to achieve better performance, we

carried out a second series of experiments in which the

robot was also provided with an additional layer with

three hidden neurons that received connections from all

sensory neurons and projected connections to all motor

neurons.

The connection weights and biases, that determine the

robots’ behaviour, are initially set randomly and evolved as

described in the section below. The tool used to run the

experiment can be downloaded from https://sourceforge.

net/projects/farsa/. The source of the plugin that enables to

replicate this experiment can be downloaded from http://

sourceforge.net/p/farsa/code/HEAD/tree/farsaPlugins/clea

ningExperiment/.

To provide the robots with the modular controller

(M) with a more flexible mechanism for arbitrating

between the three modules, we also ran additional experi-

ments in which the time duration of the three phases was

encoded in additional evolvable parameters or in which the

arbitration between the modules was realised by the robot

itself through additional output neurons (as in Nolfi 1997).

However, all these experiments led to poorer results with

respect to the base (M) condition. The results obtained in

these further tests are not included in the paper for reason

of space.

The evolutionary algorithm

The initial population consists of 20 randomly generated

genotypes, which encode the connection weights and

biases of 20 corresponding individual robots (each

parameter is encoded by 8 bits and normalised in the

range [–5.0, ?5.0]). Every generation, each individual is

evaluated for three trials in environments that randomly

varied in dimension within the limits indicated above. The

fitness of each trial is calculated by counting the per-

centage of 20 9 20 cm portions of the environment that

are visited from the robot at least once during the trial.

The total fitness is calculated by averaging the fitness

obtained during the three trials. All individuals are

allowed to generate an offspring that is also evaluated for

three trials. The 20 offspring are generated by creating a

copy of the parent genotype and by mutating each bit

with a 2 % probability. The genotype of offspring is used

to replace the genotype of the worst parents or discarded

depending on whether or not offspring outperform the

parents. The genotypes of the initial population were

generated randomly. Each evolutionary experiment was

replicated 20 times starting from different randomly

generated initial populations.
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Results

In ‘‘Performance and efficacy of plastic versus non-plastic

behavioural solutions’’, we describe the performance

achieved in the different experimental conditions. As we

will see, the cleaning task in the convex environment

admits a simple behavioural solution that does not require

the exhibition of multiple behaviours. Consequently, the

performance obtained in the different experimental con-

ditions is rather similar. On the contrary, the cleaning task

in the concave environment requires the exhibition of at

least two sub-behaviours that differ in forms and func-

tions: an exploration behaviour that enables the robot to

explore the large central area and a wall-following

behaviour that enables the robot to explore the peripheral

areas and the borders of the central area. The possibility

to discover and to display these two behaviours rather

than a single undifferentiated behaviour crucially depends

on the characteristics of the robots’ neural controller as

demonstrated by the fact that the behaviour and the per-

formance significantly vary in the four experimental

conditions.

In ‘‘On the mechanisms supporting behaviour differen-

tiation and arbitration’’, we will discuss the mechanisms

that support behavioural differentiation and arbitration by

analysing the behavioural solutions found in the different

experimental conditions. As we will see, the two most

important mechanisms that support the evolution of beha-

vioural plastic solutions are the ability to perceive and to

generate affordances (i.e., opportunities for behaviours)

and the possibility to flexibly and properly handle beha-

vioural transitions.

Performance and efficacy of plastic versus non-

plastic behavioural solutions

By post-evaluating the best robot of the last generation of

each replication for 500 trials, we can see how in the

concave environment, the evolved robots reach close to

optimal performance in the temporal (T) experimental

conditions, good performance in the modular conditions

(M), and relatively low performance in the case of the

simple (S) and range sensor (R) conditions (Fig. 2, left).

The performance of each experimental condition statisti-

cally differs from all others conditions (Kruskal–Wallis

ANOVA, df = 3, p\ 0.001—Bonferroni-corrected

Mann–Whitney U, p\ 0.0083) with the exception of

(S) and (R) that do not differ significantly from each other

(p = 0.82). The performance obtained in the experiments

in which the robots were also provided with the internal

neurons (Fig. 2, right) does not significantly differ from the

experiments without internal neurons (Mann–Whitney U,

p\ 0.05).

The analysis of the behaviours displayed by the best

robots of the last generation indicates that the performance

level correlates with the ability of the robots to display

multiple behaviours. This is clearly illustrated by the

behaviour displayed by the best (S) and (T) robots that

achieved a fitness of 67.4 and 82.8 %, respectively. While

(S) displays a single uniform behaviour along the trial,

(T) is capable of performing two well-differentiated

behaviours (Fig. 3, top).

Indeed, the best robot with a simple architecture (S) al-

ways behaves in the same manner during the successive

phases of the trial (Fig. 3, top-left). In particular, it avoids

Fig. 2 Box plots of performance in the concave environment. The left

and right figures report the results obtained without internal neurons

and with internal neurons, respectively. The box plots display the

performance of the best robot of the last generation in the four

experimental conditions, i.e., in the single (S), temporal (T), modular

(M), and range sensor (R) conditions. Boxes represent the inter-

quartile range of the data, while the horizontal lines inside the boxes

mark the median values. The whiskers extend to the most extreme

data points within 1.5 times the inter-quartile range from the box.

Circles mark the outliers. Each box displays the performance of the

best robot of 20 replications of each experiment. The performance is

indicated by the percentage of cleaned cells within the walls. The

value corresponding to optimal performance is unknown but is

reasonably below 1.0 given that the robots have a rather limited

cleaning time
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walls and obstacles by sharply turning with an angle of

45�–90� (depending on the relative angle with which the

robot approaches the obstacle) and moves straight when it

is far from obstacles. Through the exhibition of this

behaviour, the robot manages to keep exploring the envi-

ronment until the end of the trial by avoiding obstacles and

by keep moving in different portions of the environment.

However, the robot spends most of its time by exploring

the large central portion of the environment. It explores the

peripheral areas only occasionally when it happens to

approach them with a direction that it is almost orthogonal

to the entrance of the corridor. The robots of the other

replications of the experiments show qualitatively similar

behaviours (results not shown).

The best robot with the time neuron architecture (T),

instead, shows two well-differentiated behaviours: (1) an

initial exploration behaviour that is realised by producing a

progressively larger curvilinear trajectory that enables the

robot to explore the large central portion of the environ-

ment, and (2) a wall-following behaviour that enables it to

explore all the peripheral areas of the environment (Fig. 3,

top-right). Although the way in which the exploration

behaviour is realised varies in different replications of the

experiment, well-differentiated exploration and wall-fol-

lowing behaviours are clearly observable in all cases (re-

sults not shown). The high performance of these robots is

due to their ability to display different behaviours, which

are specialised for the exploration of large open areas and

peripheral areas, and to carefully tune the time duration of

the two behaviours. Indeed, the relative duration of the two

behaviours determines whether the robot spends enough

time exploring the central large area while keeping enough

time to explore all the peripheral areas of the environment

or not.

A qualitative analysis of the first ten replications showed

that in the best two robots, that clearly outperform the best

robots of the other eight replications, the transition between

the two behaviours occurs at 3.17 ± 0.11 min. This tran-

sition time is optimal or nearly optimal as demonstrated by

the fact that post-evaluation tests performed by slowing

down or speeding up the robot’s internal clock and, con-

sequently, the behaviour transition led to significantly

worse performance (results not shown).

The best robot with the modular (M) architecture also

shows an exploration behaviour displayed during 4.17 min,

when the robot operates on the basis of the first and third

Fig. 3 Typical trajectories displayed by the best robots of the four

experimental conditions without hidden units in the concave

environment. The portions of the trajectory produced during the first,

second, and third part of the trial (i.e., from step 1 to 2500, from step

2501 to 5000, and from step 5001 to 7500, respectively) are shown

with different colours and line style (colour figure online)
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neural modules, and a wall-following behaviour displayed

during 2.08 min in which it operates on the basis of the

second neural module (Fig. 3, bottom, left). The lower

performance with respect to the best (T) robot is due to the

fact that the transition between the two behaviours is too

abrupt and to the fact that it is not able to finely tune the

relative duration of the two behaviours. The analysis of the

robots of the other replications shows qualitatively similar

solutions although, in some cases, the differentiation of the

behaviour is less marked (result not shown). As mentioned

above, we carried out a series of additional experiments in

which the genotype of evolving robots included three

additional genes that were used to determine the time

duration of the three phases. However, in this condition, the

evolved robots relied on a single exploration behaviour, as

in the case of the (S) experimental condition (results not

shown).

Finally, the analysis of the best robot in the case of the

range sensor experimental condition (R) also displays a

behavioural plastic solution characterised by the exhibition

of an exploration behaviour and a wall-following beha-

viour (Fig. 3, bottom-right). This robot alternates the two

behaviours by switching either from the exploration to the

wall-following behaviour or from the wall-following to the

exploration behaviour. The achievement of lower perfor-

mance with respect to the (T) experimental condition is due

primarily to the inability of this robot to precisely control

the duration of behaviours, as demonstrated by the high

variability of the relative duration of the two behaviours

among trials. The best robots of four other replications

displayed qualitatively similar solution, while the best

robot of the five remaining replications display a single

uniform exploratory behaviour similar to that shown by

(S) robots (result not shown). The behaviour of the second

set of ten replications was not inspected.

In the convex environment, instead, the robots achieve

similar performance in all experimental conditions (see

Fig. 4, left). The differences among the four experimental

conditions are significant (Kruskal–Wallis ANOVA,

df = 3, p\ 0.001). However, the pairwise comparison

(Bonferroni-corrected Mann–whitney U) indicates that this

difference is due to the fact that (R) is significantly worse

than (T) (p\ 0.001) and (M) (p = 0.00143). All other

conditions do not statistically differ (p[ 0.0083). The

performance obtained in the experiments in which the

robots were also provided with the internal neurons (Fig. 4,

right) does not significantly differ from the basic experi-

ments for (T) and (M) (Mann–Whitney U, p[ 0.05) with

the exception of (S) and (R) in which the performance of

the experiments with internal neurons is significantly better

in the former, and worse in the latter case (Mann–Whitney

U, p\ 0.05).

Overall, these results can be explained by considering

that in this type of environment, the exhibition of a single

behaviour is sufficient to achieve close-to-optimal perfor-

mance. As a consequence, evolving robots do not develop

multiple behaviours (see Fig. 5). In some cases, especially

in the (M) condition, a weak differentiation is observed.

However, it does not provide an advantage in this type of

environment.

On the mechanisms supporting behaviour

differentiation and arbitration

We have seen how behavioural plasticity, i.e., the ability to

display and regulate multiple behaviours, can enable the

adaptive robots to achieve better performance in the con-

cave environment and that the emergence of behavioural

plastic solutions depends on the characteristics of robot’s

neural controllers. We will now focus on the mechanisms

supporting behaviour differentiation and arbitration. As we

will see, evolving robots can rely on different mechanisms

to achieve behavioural plasticity. The efficacy of these

mechanisms and the facility with which they can be

Fig. 4 Box plots of performance in the convex environment. The left and right figures report the results obtained without internal neurons and

with internal neurons, respectively
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discovered explain the variations in performance observed

in the considered experimental conditions.

Before entering into this, it is important to point out that,

as we mentioned in the introduction, the behaviour dis-

played by an embodied and situated agent is a dynamical

process unfolding in time that results from the robot/en-

vironmental interactions. This implies that the organisation

of behaviour/s varies at different timescales. Moreover, this

implies that the sensory states experienced by the robot at a

given time step are co-determined by the actions produced

by the robot during previous robot/environmental interac-

tions. If we use the term affordance introduced by Gibson

(1979) to indicate sensory states that elicit the production

of behaviours, this implies that the affordances are not only

extracted through sensors from the internal and/or the

external environment but are also generated by the robot

itself through actions.

The analysis of the behaviour exhibited by the robots at

a short timescale (i.e., at a timescale of seconds) indicates

that in all experimental conditions, robots tend to exhibit at

least two different low-level behaviours: (1) an obstacle-

avoidance behaviour that consists in turning while the

robot detects an obstacle on its frontal side, and (2) a move-

forward behaviour that consists in moving straight or

almost straight while the robot does not detect obstacles in

its frontal side (see Fig. 6). This implies that at this short

timescale, all robots of all experimental conditions display

behavioural plastic behaviours. The reasons that explain

Fig. 5 Typical trajectory displayed by the best robots of the four experimental conditions without hidden units in the convex environment

Fig. 6 Exemplification of short-term behavioural plasticity in the

case of an exploration behaviour that is realised by alternating a

move-forward and an obstacle-avoidance behaviour (shown in blue

and red, respectively). The former behaviour is elicited by perceptual

states in which the frontal infrared sensors are not activated, i.e., a

state affording the move-forward behaviour. The latter behaviour is

elicited by perceptual states in which the frontal infrared sensors are

activated, i.e., a state affording the obstacle-avoidance behaviour

(colour figure online)
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why this type of behavioural plasticity always evolves are

that it plays a functional role (i.e., it enables the robot to

avoid being stuck and to keep exploring the environment)

and that it is supported by the availability of always-

available and easy-to-use affordances. Indeed, indepen-

dently from the way in which the robot behaves, it will

always experience a lack of activation on the frontal

infrared sensors when the robot/environment context

affords a move-forward behaviour and an activation on the

frontal infrared sensors when the robot/environmental

context affords an obstacle-avoidance behaviour. The

infrared sensors, therefore, always enable the robot to

perceive when the former or the latter behaviour should be

produced and when the transition between the two beha-

viours should occur.

This ideal situation, however, in which the robot can

rely on robust and ready-to-use affordance states only

characterises few lucky cases (incidentally, this probably

explains why the combination of obstacle-avoidance and

navigation behaviours represents a widely used experi-

mental scenario in robotics). In other cases, the affordance

states supporting behaviour differentiation and arbitration

should be extracted through internal elaboration and/or

generated through the exhibition of appropriate

behaviours.

This also implies that plasticity is not a binary but rather

a continuous property. The greater the number of

behaviours/complexity of the sub-behaviours exhibited by

a robot is and the greater is the range of timescales at which

the robot exhibits differentiated behaviours, the greater the

behavioural plasticity of the robot is. In the rest of the

paper, however, we focus exclusively on the longer time-

scale. Consequently, we use the term multiple behaviours

and behavioural plasticity to indicate robots that exhibit

behaviour differentiation at this timescale, independently

of whether they show behaviour differentiation at shorter

timescale. We do this since at longer timescale, we observe

qualitatively and quantitatively different solutions in the

context of our experiments.

As we have seen in the previous section, the concave

environment requires behavioural diversification at the

longer timescale, e.g., it requires the exhibition of an

exploration and a wall-following behaviour lasting for

minutes. In this case, however, the robot cannot rely on

ready-to-use affordances that indicate when the robot

should display the first or the second behaviour and when

the robot should switch from one to the other behaviour. To

achieve this kind of behavioural plasticity, the evolving

robots should find a way to: (1) keep producing the same

behaviour for a prolonged period of time, (2) switch

behaviour at the right moment, and (3) realise a suit-

able transition during behaviour switch. We will illustrate

in details how the evolved robots manage to master these

requirements in the different experimental conditions in the

next three sub-sections.

Notice that the evolution of context-dependent beha-

viours requires the concurrent development of two inter-

dependent skills, the ability to produce a new behaviour

and the ability to regulate appropriately when the new

behaviour should be exhibited (Williams 1966; West-

Eberhard 2003). We will come back on this issue in the

concluding section.

Producing behaviours for prolonged periods of time

All evolved robots solve the problem of producing a given

behaviour for a prolonged period of time by realising each

behaviour in a way that ensures that they keep experiencing

stimuli of the right type during the execution of that

behaviour. In cases in which the robots should exhibit two

differentiated behaviours, i.e., an exploration and a wall-

following behaviour, this implies that they should realise

the former and the latter behaviours in a way that ensures

that they keep experiencing stimuli of type 1 and 2 while

they exhibit the former or the latter behaviour, respectively,

and should react to the stimuli of the two types by pro-

ducing actions that enable them to keep producing the

former or the latter behaviours, respectively. The two

classes of stimuli, thus, assume the role of affordance for

the first and for the second behaviours, respectively. These

affordances are not directly available from the environ-

ment, as in the case of the states affording the obstacle-

avoidance and move-forward behaviour discussed above,

but are generated by the robots themselves through their

actions (i.e., through the ability to realise each behaviour in

a way that ensures that the robot keeps experiencing the

corresponding affordances). This form of dynamical sta-

bility presents some similarities with the one that can be

obtained in situated agents through homeokinesis (Der and

Martius 2012), a task-independent learning process that can

enable situated robot to synthesise temporarily stable be-

haviours, though the mechanism and the processes through

which this is realised are completely different.

All robots displaying multiple behaviours (i.e., (R),

(M) and (T) robots) exploit this affordance generation

mechanism. However, the (T) and some of the (M) robots

also exploit other additional mechanisms that enable the

robots to keep producing each behaviour for a prolonged

period of time. Thus, let us start by describing the strategy

used by the best (R) robot that only relies on this affor-

dance generation mechanism.

The best (R) robot realises the exploration behaviour by

moving forward far from obstacles and by turning left near

obstacles located in its frontal and frontal-right side and

realises the wall-following behaviour by moving forward

along walls when it perceives an obstacle on its left side
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and by turning left when the activations of its left-side

sensors decrease (see Fig. 3, bottom left). By behaving in

this way, the robot ensures that it keeps experiencing

sensory states of type 1 during the exploration behaviour

and sensory states of type 2 during the wall-following

behaviour (where type 1 includes states in which the

infrared sensors are not activated or in which the frontal or

right infrared sensors are activated and type 2 includes

states in which the left infrared sensors are activated). In

other words, as we said above, the problem of keep pro-

ducing the two behaviours for prolonged period of time is

solved by producing each behaviour in a way that ensures

that the robot keeps experiencing stimuli affording the

same behaviour (i.e., stimuli that elicit actions which lead

to the production of the same behaviour).

In (M) robots, the problem of producing the same

behaviour for a prolonged period of time is solved also

through the development of neural modules specialised for

the production of the exploration or of the wall-following

behaviour. However, (M) robots rely on affordance gen-

eration as well. Indeed, even in some (M) robots, the same

neural module enables the robot to produce either the

exploration or the wall-following behaviour and to keep

producing the current behaviour for a prolonged period of

time (Fig. 8). In these cases, the behaviour that is initially

triggered depends on the initial position of the robot (i.e.,

depends on the behaviour afforded by the first experienced

sensory states).

In (T) robots, the cue provided by the temporal neuron

co-determines the behaviour produced by the robot and,

consequently, is used to keep producing the current beha-

viour for a prolonged period of time. Indeed, whether the

robot keeps producing the exploration behaviour or

switches to the wall-following behaviour also depends on

the state of the temporal neuron (see Fig. 9). On the other

hand, the state of the time neuron influences the duration of

the exploration behaviour only during a critical phase, i.e.,

when the state of the time neuron is smaller than 0.6 and

greater than 0.4. During the rest of the trial, the ability of

the robot to keep producing the exploration behaviour or

the wall-following behaviour relies on an affordance gen-

eration mechanism analogous to that described above for

the best (R) robot. Interestingly, in the case of the best

(T) robot, the temporal neuron is also used to progressively

vary over time the way in which the exploration behaviour

is realised so as to regulate the probability that the robot

keeps experiencing sensory state affording the execution of

this behaviour. Indeed, by initially moving forward and

turning left of several degrees, the robot eliminates, com-

pletely, the possibility to encounter a wall on its left side

(i.e., the possibility to experience stimuli affording the

alternative wall-following behaviour). Then, by moving

forward and progressively reducing the angle of turn over

time, the robot becomes progressively kinder with respect

to the possibility of experiencing stimuli affording the

wall-following behaviour. This brings us to the question of

how robots manage to switch behaviour.

Switching between alternative behaviours

The problem of switching between different behaviours is

also solved through affordance generation. To understand

how robots can act in a way that enables them to both

experience stimuli affording the current behaviour and

stimuli affording the alternative behaviour, we should

reformulate the definition of affordance generation in

probabilistic terms. Evolved robots solve the problem of

producing a given behaviour for a prolonged period of time

and the problem of switching behaviour by realising

behaviours in a way that ensures that they keep experi-

encing stimuli affording the current behaviour with a given

high probability and stimuli affording the alternative

behaviour with a given low probability, respectively.

All evolved robots solve the problem of keep producing

the same behaviour for a prolonged period of time and the

problem of switching behaviour in this way. However,

some robots also rely on additional complementary

mechanisms, as we illustrate below.

In the case of the best (R) robot, the switches from the

exploration behaviour to the wall-following behaviour

occur when the robot encounters a wall on its frontal-left

side during the execution of the exploration behaviour (see

Fig. 8, left), a situation that occurs with a low probability

for the reason described in the previous section. Overall,

this means that the exploration behaviour is realised in a

way that the robot keeps experiencing stimuli affording the

exploration behaviour most of the time, while occasionally

experiencing stimuli affording the alternative behaviour.

Clearly, this is an example of how the simultaneous evo-

lution of form and regulation can be solved. The same

mechanism is responsible for behaviour production (i.e.,

the prolonged production of the same behaviour) and for

behaviour switch. The fact that this solution is never found

by (S) robots indicates that the availability of the additional

cues provided by the range sensors enables (R) robots to

regulate, more effectively, the probability with which the

robots experience stimuli affording the current or the

alternative behaviour. This affordance generation strategy

enables the best (R) robot to switch from the exploration to

the wall-following behaviour at the optimal moment on the

average but with a high variability among trials (the robot

switches at 2.99 ± 1.02 min). The high variability nega-

tively impacts on performance since it often leads to situ-

ations in which the time dedicated to the two behaviours is

unbalanced. The problem is particularly serious when the

switch from the exploration behaviour to the wall-
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following behaviour occurs too early, since circling along

the periphery of the environment for more than one lap is

useless. This probably explains why the best robot of the

(R) experimental condition also developed an ability to

switch back from the wall-following behaviour to the

exploration behaviour when the robot encounters a wall

frontally after exiting from a peripheral corridor (see

Fig. 7, right). This latter ability is lacking in the best robots

of the other replications that consequently achieve lower

performance. In other words, the best (R) robot is capable

of displaying reversible behavioural switch.

In the case of the robot evolved in the (M) experimental

conditions, in which the three neural modules control the

robot during three successive phases of 2.08 min, not

surprisingly behavioural switching occurs primarily during

the switch between the first and the second module and/or

between the second and the third module. The rigidity of

this mechanism, however, does not enable the robot to

regulate the exact moment in which the switch is realised.

In most of the replications, the exploration behaviour is

produced for 4.17 min and the wall-following behaviour

for 2.08 min since two modules specialise for the produc-

tion of the former behaviour and the remaining module

specialises for the production of the latter behaviour.

However, also these robots use affordance generation to

switch between behaviours. Indeed, as we mentioned in the

previous section, some of the best (M) robots also display

an ability to switch behaviour while they operate on the

basis of the same neural module through the same affor-

dance generation mechanism described above (see Fig. 8).

The usage of this strategy enables these robots to achieve a

more balanced allocation of time to the two behaviours

that, in turn, enables it to achieve better performance with

respect to the best robots of the other replications.

In the case of the robot evolved in the (T) experimental

condition, the switch is regulated by both the stimuli

experienced by the robot (i.e., by affordance generation)

and by the cue provided by the robot’s internal clock. This

double regulation enables the best (T) robot to carefully

balance the time allocated to the two types of behaviour

and to reduce the variability among trials (i.e., the transi-

tion occurs 3.17 ± 0.11 min). The double regulation

Fig. 7 Illustration of how the best (R) robot switches from the exploration to the wall-following behaviour and vice versa (left and right,

respectively)

Fig. 8 Trajectory produced by

the best (M) robot which

produces an exploration

behaviour under the control of

the first neural module, an

exploration and then a wall-

following behaviour under the

control of the second neural

module, and a wall-following

and then an exploration

behaviour under the control of

the third neural module
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process is demonstrated by the analysis of the trajectories

produced by the robot during a series of trials in which the

robot always starts from the same position and in which the

orientation of the robot and the state of the time neuron are

systematically varied (Fig. 9). As shown in Fig. 9, whether

the robot switches or not to the wall-following behaviour

depends both on the state of the internal clock and on the

state of the infrared sensor that the robot experiences when

it approaches the wall. Overall, this shows that whether the

switch between the two behaviours occurs or not depends

both on the state of the internal clock and on the way in

which the exploration behaviour is realised which, in turn,

influences the type of stimuli that the robot experiences. As

mentioned above, in the case of the best (T) robot, the state

of the time neuron is not only used to regulate the proba-

bility that the robot switches behaviour directly (the

probability that the robot initiates a wall-following beha-

viour in a given relative position in the environment) but is

also used to regulate the way in which the exploration

behaviour is realised which, in turn, influences the proba-

bility that the robot will later experience stimuli affording

the wall-following behaviour.

Realising suitable and effective behaviour transitions

The connectedness of behaviours, i.e., the fact that alter-

native behaviours are semi-discrete and semi-dissociable

units that are only partially independent, implies that the

transitions between behaviours should be handled with

care. In the case of our experiments, in particular, the

transition between the exploration and the wall-following

behaviour requires special care since the latter behaviour

can only be produced when the robot is located near a wall

and when the wall to be followed is located on a specific

side of the robot. Indeed, the analysis of the evolved robots

shows that the way in which the behaviour transitions are

handled in evolved robots has an important impact on

robots’ performance.

The transition problem is particularly severe in the

(M) experimental condition when the behavioural switch

typically occurs suddenly after 2.08 and 4.16 min as a

result of the neural module switch. The problem is so

severe that in three out of the first ten replications, the

second control module specialises simply for handling the

transition (Fig. 10). In other words, these robots dedicate

the second 2.08-min phase simply to move towards a

location from which the wall-following behaviour can be

effectively initiated.

The smartest solution to the transition problem is that

discovered by the best (T) robot (see Fig. 3, right). Indeed,

as we mentioned above, this robot exploits the cue pro-

vided by the internal clock to gradually modify the

exploration behaviour so as to ensure that the robot will

always reach a relative location with respect to the walls

Fig. 9 Behaviour produced by the best (T) robot during different

trials in which it started from the same initial position with

systematically varied orientations and systematically varied state of

the time neuron. The red and blue lines represent the trajectories

produced by the robot during trials in which it switches or does not

switch to the wall-following behaviour, respectively. The black lines

represent the walls. For sake of clarity, we only show the local portion

of the environment in which the robot is located (colour figure online)
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from which the wall-following behaviour can be effec-

tively triggered during the critical period (i.e., during

3.17 ± 0.11 min). Overall, this leads to an extremely

timely, smooth and effective transition that enables this

robot to outperform all other robots.

Conclusions

In this paper, we demonstrated that behavioural plasticity

can evolve in artificial robots, independently from whether

the task does or does not require to face multiple con-

flicting goals. Indeed, the solution of a task involving a

single objective (e.g., cleaning a given area) can also

benefit from the utilisation and the combination of multiple

differentiated behaviours. Moreover, we demonstrated how

the exploitation of behavioural plasticity enables evolving

robots to achieve better performance.

Interestingly, the behaviours displayed by the best

evolving robots show similarities with those obtained by

Gordon et al. (2014) through a minimal model based on

intrinsic motivation in which novelty is used as an intrinsic

reward. More generally, the adaptive advantage provided

by the ability to display multiple behaviours suggests that a

potential benefit of task-independent fitness functions,

which encourage the development of novel behaviours (see

Schmidhuber 1990; Oudeyer et al. 2007; Martius et al.

2014), consists in facilitating the synthesis of behavioural

plastic solutions.

The analysis of the obtained results indicates that the

mechanisms that support the evolution of behavioural

plastic solutions are the ability to perceive affordances (i.e.,

perceptual states encoding opportunities for behaviours)

and the ability to realise smooth and effective transitions

between different behaviours.

The perception of affordance constitutes a prerequisite

for the possibility to develop differentiated behaviour and

for the possibility to effectively arbitrate them, i.e.,

selecting the behaviour that is appropriate for the current

robot/environmental context and regulating the duration of

each behaviour. Interestingly, the basic mechanism that is

used by evolving robots to perceive affordances is affor-

dance generation, i.e., the ability to realise each behaviour

in a way that ensures that the robot keeps experiencing

sensory state affording the current behaviour with a given

high probability and sensory states affording alternative

behaviours with a given low probability.

The limitations of this affordance generation mecha-

nism, e.g., the inability to finely tune the duration of

behaviours, are overcome by using additional regulatory

processes that rely on internal cues. In particular, in the

case of the best evolved robot, this is realised by comple-

menting the basic affordance generation mechanism with

two additional regulatory processes. The second additional

regulatory process consists in using the state of the internal

clock to progressively vary the way in which the explo-

ration behaviour is realised so as to progressively increase

the probability that the robot will experience stimuli

affording the wall-following behaviour (see Fig. 3, top-

right). The third additional regulatory process consists in

using the state of the internal clock to vary qualitatively the

way in which the robot reacts to perceived stimuli (e.g., to

avoid obstacles by turning right or left which causes the

robot to later perceive stimuli affording the exploration

behaviour or the wall-following behaviour, respectively,

see Fig. 9).

Overall, this implies that behaviour arbitration in the

best evolved robots is realised through the combined

effects of multiple partially redundant regulatory processes

that operate through weak interactions. This type of

organisation is advantageous both from an evolutionary

perspective, since it enables a gradual transformation

(Conrad 1990; Krischner and Gerhart 2005), and from a

functional perspective, since it enables the robots to

Fig. 10 Trajectory produced by

one of the three best (M) robots

characterised by a second

module that is specialised for

enabling a suitable transition

from the exploration to the wall-

following behaviour
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operate on the basis of the combined effect of multiple

factors. This type of organisation might, indeed, be crucial

to enable the concurrent evolution of form and regulation

(sub-behaviours and behaviour arbitration in the case of

our experiment).

While the importance of affordance perception and

usage is widely recognised, the notion of affordance gen-

eration that we introduced in this paper and the description

of how affordance generation supports the evolution of

multiple context-dependent behaviour are original, to our

knowledge.

The need to realise smooth and effective transitions

between behaviours originates from the fact that behaviour

is a dynamical process in which the state of the system at

time t critically influences the state of the system at time

t ? 1. In other words, it originates from the fact that the

way in which a first behaviour is realised influences the way

in which the second following behaviour is realised. More

generally, this implies that, as claimed by West-Eberhard

(2003), the modular organisation of behaviour is charac-

terised by subunits that are semi-discrete and semi-disso-

ciable, i.e., that are not fully separable and dissociable.

Also, from this perspective, the possibility to operate on

the basis of multiple regulatory processes, such as those

described above, presents important advantages. In partic-

ular, the affordance generation mechanism that exploits the

sensory state currently experienced by the robot to deter-

mine the behaviour to be exhibited ensures that the beha-

viour exhibited by the robot is always appropriate to the

current robot/environmental context. On the other hand, the

regulation processes, carried out on the basis of the state of

the robot’s internal clock, ensure that behavioural switch

will occur within the appropriate time window.

In robotics, the objective of designing robots capable of

displaying elaborate behaviours is usually pursued by

designing modular controllers, eventually organised hier-

archically, in which each module is specialised for the

production of a corresponding sub-behaviour, and in which

modules are alternated on the basis of some arbitration

mechanism (Brooks 1986; Stone and Veloso 2000; Van

Hoorn et al. 2009). In these works, the decomposition of

the overall behaviour into sub-behaviours and, conse-

quently, the organisation of the modules, are usually

designed by the experimenter, while in other cases, it is

learned (Tani and Nolfi 1999; Haruno et al. 2001). From

this perspective, our results suggest that the utilisation of

behaviour generation and arbitration mechanisms that are

rigid and/or that do not support the realisation of smooth

and effective behaviour transitions might constitute a

strong limitation.
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Abstract
We investigate the relation between the development of reactive and cognitive capabilities.

In particular we investigate whether the development of reactive capabilities prevents or

promotes the development of cognitive capabilities in a population of evolving robots that

have to solve a time-delay navigation task in a double T-Maze environment. Analysis of the

experiments reveals that the evolving robots always select reactive strategies that rely on

cognitive offloading, i.e., the possibility of acting so as to encode onto the relation between

the agent and the environment the states that can be used later to regulate the agent’s

behavior. The discovery of these strategies does not prevent, but rather facilitates, the

development of cognitive strategies that also rely on the extraction and use of internal

states. Detailed analysis of the results obtained in the different experimental conditions pro-

vides evidence that helps clarify why, contrary to expectations, reactive and cognitive strat-

egies tend to have synergetic relationships.

Introduction
Developments in psychology, neuroscience, linguistics, robotics and philosophy have clarified
that cognition cannot be studied properly without taking into sufficient account the role of the
body, action and the external world [1–7]. The agent’s body and the environment in which it is
situated provide a great deal of structure that is used to operate appropriately. Consequently, in
many cases the internal capabilities required are much simpler than those previously hypothe-
sized within disembodied accounts. For example, moving around in a city does not necessarily
require an elaborate representation of the city’s layout. The ability to recognize a limited num-
ber of turning decision points combined with the ability to just follow the street between deci-
sion points might suffice [8]. Similarly, baseball players do not need to estimate the trajectory
of the flying ball to be intercepted through complex calculations. They can simply adjust their
running speed so as to maintain the relative angle between their eyes and the ball constant [9].

Exploitation of the information that can be extracted directly from the environment and of
the effects of situated actions do not only affect the agents’ low-level capabilities. Embodied
and embedded strategies (like those described above) co-exist and interact with different strate-
gies that are less dependent on agent/environmental interactions and more dependent on
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internal processes at all levels of organization [5]. However, the relation and the interaction
between strategies and capabilities that differ in that respect have not yet been investigated.
Consequently, the question of how these different types of strategies can be integrated from an
operational and developmental perspective is still open. In particular, one important question
that needs to be answered is the following: “Is cognition truly seamless–implying a gentle,
incremental trajectory linking fully embodied responsiveness to abstract thought and off-line
reason? Or is it a patchwork quilt, with jumps and discontinuities and with very different kinds
of processing and representations serving different needs?” [5].

In this paper we investigate the relation between the development of reactive and cognitive
capabilities. In particular we investigate whether the development of reactive capabilities pre-
vents or promotes the development of cognitive capabilities. For the scope of this paper we
define cognition as the ability to integrate sensory-motor information over time into internal
states and to use these internal states to regulate the way the agent reacts to perceived stimuli.
The term cognition is often used in a more restricted way. In the above definition, we focus on
a fundamental capacity that is at the basis of all cognitive capabilities (e.g. perception, memory,
attention, decision-making, reasoning, language, etc.).

Evolutionary Robotics [10] is a suitable method for studying the relation between reactive
and cognitive abilities in adaptive agents. Indeed research carried out in this area has demon-
strated how evolving robots can master both problems that have reactive solutions and prob-
lems that require the development of cognitive abilities (see for example [11–19]). However,
what has not been sufficiently investigated to date is the relation between reactive and cognitive
strategies.

Any adaptive problem typically admits qualitatively different sub-optimal and optimal solu-
tions. Depending on the circumstances, the discovery of one type of sub-optimal solution
might facilitate or block the discovery of better alternative solutions. Indeed, the discovery of
sub-optimal solutions that cannot be progressively transformed into better solutions without
loss of performance should retard or block the discovery of effective solutions. On the contrary,
the selection of sub-optimal solutions that can be transformed into better solutions without
causing significant performance loss can facilitate the discovery of effective solutions. In the lat-
ter case, the strength of the facilitation effect would depend on the level of overlap or similarity
between the first and the second solutions.

Since reactive solutions are typically simpler than cognitive solutions from the point of view
of the complexity of the required control mechanisms, and since adaptation tends to find the
simpler solution first, the question is the following: Can reactive solutions be transformed into
better solutions that also include the utilization of internal states without causing significant
performance loss and what is the level of overlap/similarity between sub-optimal reactive solu-
tions and better solutions that include cognitive capabilities.

According to some authors, the development of reactive solutions blocks the development
of cognitive capabilities. In particular, [20] claimed that reactive solutions constitute hard to
escape local optima that prevent the development of cognitive solutions. Similarly, [21] claimed
that the deception caused by the availability of locally optimal reactive policies is one of the
main factors that explains why it is difficult for cognitive policies to evolve. For these reasons
the authors hypothesized that the development of cognitive solutions necessarily requires spe-
cific selective cognitive pressures such as fitness components that encourage the development
of short-term memory [20] or mechanisms for avoiding local optima, such as novelty search
[21].

One aspect that is particularly relevant from the viewpoint of the relation between reactive
and cognitive strategies is cognitive offloading, i.e., the possibility of offloading cognitive work
onto the environment [22–24]. In particular, the possibility of acting so as to encode the states
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that can be used to regulate the agent’s behavior onto the external environment and/or onto
the relation between the agent and the environment. In fact, the possibility of encoding the
required states internally or externally suggests that cognitive strategies and reactive strategies
(that rely on cognitive offloading) represent two alternative but functionally equivalent modali-
ties. A simple example of cognitive offloading related to everyday human life is crossing two
fingers so to avoid forgetting to perform a certain action [24–26]. An example of cognitive off-
loading realized in a robotic scenario consists of dropping markers in the environment that are
used to find the way back to the home location [19].

Cognitive offloading is usually considered in the case of cognitive agents that already possess
cognitive abilities but offload information into the environment or into their relation with the
environment. In this work, instead, we focus on a developmental perspective in which the
agents need to develop a certain skill to adapt to their environment and can do so by using a
reactive strategy that relies on cognitive offloading, a cognitive strategy that relies on internal
states, or on a hybrid strategy that relies on both.

In this paper we report a series of experiments in which a population of robots provided
with neural network controllers were evolved for the ability to master a navigation problem in
a double T-maze environment that required the exhibition of delayed response behavior. Anal-
ysis of the experiments reveals that the evolving robots always selected reactive strategies that
relied on cognitive offloading. The discovery of these strategies did not prevent but rather facil-
itated the development of improved strategies that also relied on the extraction and use of
internal states. A detailed analysis of the results obtained in different experimental conditions
provides evidence that helps clarify why, contrary expectations, reactive and cognitive strate-
gies tend to have synergetic relationships.

Method
A paradigmatic class of problems that require cognitive skills is constituted by delayed response
tasks in which an agent has to act at a certain time t in a conditional dependent manner on the
basis of stimuli it encountered at a previous time (t—delay). A simple example of a delayed
response task is the so-called road sign task in which an agent that is initially located at the bot-
tom of a T-Maze environment needs to travel toward the top-left or top-right destination by
turning left or right at the T-junction depending on whether it previously experienced a stimu-
lus on the left or on the right side of the central corridor, respectively (Fig 1). Therefore, this
task was chosen by several researchers to study the evolution of cognitive robots [20, 27–31].

In reality, as demonstrated by [15] this problem has a non-cognitive solution, i.e., a reactive
strategy in which the robot always acts on the basis of its current sensory state. Indeed, the
robot could solve the task by approaching the experienced stimulus, when visible, and then by
following the nearby left or right wall. The availability of simple and optimal reactive solutions
of this type prevents the development of cognitive solutions. These reactive solutions, in fact,
are easy to discover, optimal and, consequently, evolutionarily stable.

The question that remains open is whether cognitive solutions can evolve in experimental set-
tings that do not allow for optimal reactive solutions or whether the discovery of sub-optimal
reactive solutions prevents the discovery of better solutions [20–21] and consequently might
drive the evolutionary process toward inescapable local optima. To investigate this question we
decided to carry out the evolutionary experiments described in the following sub-sections.

The robot, the environment, and the task
The environment consisted of a double T-Maze (Fig 2) that included four different destinations
and two types of stimuli that could be experienced in four different corresponding patterns
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(left-left, left-right, right-left, right-right). The increase in complexity with respect to the simple
T-Maze environment was due to the fact that the number of destinations to be reached was
higher, the number of stimuli experienced was higher, the number of stimuli-dependent deci-
sions that had to be made was higher and the time delay between the moment in which the sti-
muli were experienced and the moment in which the stimuli-dependent decisions had to be
made was longer.

Fig 1. The T-Maze task. The bottom portion of the central corridor includes a stimulus located on the left or
the right side. The position of the stimulus corresponds to the position of the target destination. Adapted from
[29].

doi:10.1371/journal.pone.0160679.g001

Fig 2. The double T-Maze task. The blue cylinder, which represented the target destination, was located at one of the four end
points of the lateral corridors. The central corridor included two green stimuli located in the first and the second part of the
corridor on the left or the right side. The position of the first and the second stimulus indicated whether the robot should turn left or
right at the first and the second junction, respectively, to reach the target destination.

doi:10.1371/journal.pone.0160679.g002
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To obtain solutions that were robust with respect to environmental variations, the initial
positions and orientations of the robot and the size of the environment were randomly varied
at the beginning of each trial. More precisely the length of the central corridor and the two ver-
tical corridors was randomly set during each trial within 4.5m±0.5m and 5.5m±0.5m, respec-
tively. The position between the two signals was also varied proportionally with the length of
the central corridor. The initial position of the robot was selected randomly within a 50x45cm
rectangular area located at the beginning of the central corridor. The initial orientation of the
robot was selected randomly with a uniform distribution in the [-180, 180]° range. Robots were
evaluated for 16 or 32 trials, as explained below. Trials lasted up to 1 minute and were stopped
as soon as the robot turned in the wrong direction at one of the two junctions.

Complex T-Mazes have already been used in previous research. In particular [32] evolved
robots for the ability to navigate in T-Maze environments in multiple trials in which the desti-
nation location remained stable. The authors manage to develop robots that were able to
“remember” the target location in simple T-Maze but not in double T-Maze environments.
[33] evolved robots for the ability to navigate in a triple T-Maze toward 8 alternative destina-
tions. In these experiments, however, the robots were not required to master a delayed response
task. Indeed, they received and had access to one of eight different corresponding patterns for
the entire duration of each trial.

We used the MarXbot [34] agent, which is a circular robot with a diameter of 17cm equipped
with 24 infrared sensors, a rotating scanner sensor and an omnidirectional camera. The experi-
ments were run in simulation by using the FARSA open-software tool that includes an accurate
simulator of the robot and of the environment [35]. FARSA has been used to successfully transfer
results obtained in simulation to hardware in similar experimental settings (e.g., [17, 36]).

The robots’ controllers
Evolving robots are provided with neural network controllers. The sensory layer includes eight
sensory neurons that encode the average activation state of eight groups of three adjacent infra-
red sensors, 6 neurons that encode the average activation of the rotating scanner over 60
degrees, and 8 neurons that encode the percentage of green and blue pixels detected in four 90°
sectors of the visual field of the camera. The state of the sensory and motor neurons is normal-
ized in the range [0.0, 1.0] and noise is simulated by the addition of random values selected
with a uniform distribution in the range [-0.05, 0.05]. The motor layer includes two motor neu-
rons that encode the desired speed of the two corresponding motors (normalized in the range
[-10.0,10.0]cm/s) that actuate the differential driving system of the robot.

The experiments were replicated in three different experimental conditions that varied with
respect to the architecture of the robots’ neural controller as described below:

(S) Simple: The robots were provided with a simple reactive neural network (that always
responded in the same way to the same sensory state) in which the sensory neurons were
directly connected to the motor neurons.

(C) Continuous: As in the case of the previous condition the neural network controller
included direct sensory-motor connections. In addition, the network included an internal
layer with 6 neurons that received connections from the sensory neurons and projected con-
nections to the motor neurons. The internal neurons were continuous, i.e., their output
state depended on both the activation received from the incoming connections and on their
previous activation state (see [37–38]).

(CR) Continuous Recurrent: The neural network was identical to the previous condition, but
the internal neurons were also interconnected through recurrent connections.
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The state of the sensors, the neurons and the desired speed of the motors were updated
every 50ms. The architecture of the neural network controller was kept fixed.

These experimental conditions were chosen to enable us to verify whether and to what
extent the problem had reactive solutions, whether the possibility of integrating sensory-motor
information over time into internal neuron states would enable the robots to develop better
solutions and whether reactive strategies could coexist with cognitive strategies.

The evolutionary process
The initial population consisted of 20 randomly generated genotypes that encoded the connec-
tion weights, biases, and time constants of the neural network controllers of 20 corresponding
individual robots. Each parameter was encoded with 8 bits and normalized in the range [–5.0,
+5.0] in the case of connection weights and biases and [0.0, 1.0] in the case of time constants of
continuous neurons.

Each individual was allowed to generate one offspring, i.e., a copy of the parent genotype in
which each bit was mutated with a given probability. Each offspring was evaluated and was
used to replace the genotype of the worst parent or was discarded depending on whether or not
it outperformed the worst parent.

Each experiment was repeated 10 times by starting with different randomly initialized geno-
types. The evolutionary process continued in two consecutive phases of 2,000 generations.
During the first 1,000 generations, the mutation rate was set at 2% and the evolving robots
were evaluated in 16 trials. From generation 1,001 on the mutation rate was set at 1%. From
generation 1501 to 2000 on the individuals were evaluated in 32 trials. In some of the experi-
ments the robots were subjected to position and orientation noise during the second phase, as
described below.

The fitness of the individuals was computed by averaging the fitness obtained during the
different trials. The fitness of each trial corresponded to the inverse of the distance, within the
maze, between the robot and the target destination at the end of the trial. In other words, the
robots were rewarded for the ability to approach the appropriate destinations.

The experiments described in this paper can be replicated by downloading and installing
FARSA and the associated experimental plugin from “https://sourceforge.net/projects/farsa/”
and from “http://laral.istc.cnr.it/cognoffpone/dtmaze.tgz”.

Results
In this section we report the results obtained in the different experimental conditions described
in Section 2.2 and in additional control experiments described below that were carried out to
clarify the role of cognitive offloading in the development of cognitive skills.

Overall the performance of the robots (i.e. the percentage of trials in which the evolved
robots reached the correct target destination) did not differ significantly between the three
experimental conditions in which they were provided with different neural controllers (see Fig
3). By analyzing the performance of the best robot obtained in each experimental condition
(Fig 3) we can see how the best (C) and (CR) robots managed to achieve close to optimal per-
formance in 92.8% and 96.3% of the trials, respectively, while the best (S) robot only achieved
sub-optimal performance (i.e. 71.7% success). The performance of the best (C) and (CR) robots
did not differ significantly (Fisher Exact Test, p = 0.308). The performance of the (S) robot,
instead, was significantly worse than the performance of the (C) and (CR) robots (Fisher Exact
Test, p<0.001). The data were obtained by post-evaluating the best robot from the last genera-
tion of each replication in 600 trials.
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These results confirm that, at least in our experimental setup, the double T-Maze problem
cannot be solved through simple reactive solutions, although the best reactive robot (S)
achieved a remarkably high performance (i.e. by navigating toward the correct destination in
71.7% of cases). Moreover, these results indicate that the possibility of integrating sensory-
motor information over time through continuous neurons (C) and recurrent connections (CR)
into internal states that are used to regulate the way the robots react to sensory stimuli enables
the evolving robots to achieve close-to-optimal performances. On the other hand, the fact that
close to optimal performances were achieved in a minority of the replications indicates that the
task is hard and there is a high probability that evolution remains stuck in sub-optimal regions
of the search space.

By inspecting the trajectories produced by the best (S) robot, i.e., by means of a simple reac-
tive controller, we can see how the robot navigated correctly toward all four target destinations
most of the time, but erroneously navigated toward the left-left and right-left destinations
instead of the left-right destination in several trials (Fig 4, blue trajectories). Surprisingly, this
shows that the double T-Maze task can also be solved to a large extent with a reactive solution
in which the robot’s actions depend only on the current robot’s input and in which the robot
does not store any internal information regarding previously experienced sensory states. This
is achieved by offloading the critical information into the environment (or more precisely into
the robot/environmental relationship).

In fact, the behavioral analysis of the best (S) robot indicates that the experienced signals are
used to systematically alter the positions assumed by the robot at the end of the central corridor
(Fig 4). These positions influence the type of stimuli the robot experiences at the first junction
which, in turn, determine whether the robot will turn left or right at the junction. The position
of the robot at the end of the first corridor also influences how the turning is realized, i.e.,
whether the robot produces a tight turn or a wider one, and consequently the position assumed

Fig 3. Performance (i.e. percentage of successful trials) of the best 10 robots evolved in the (S), (C) and (CR)
experimental conditions in 10 corresponding replications of each experiment. Boxes represent the inter-quartile range of
the data and horizontal lines inside the boxes mark the median values. The whiskers extend to the most extreme data points
within 1.5 times the inter-quartile range from the box. Circles indicate the outliers.

doi:10.1371/journal.pone.0160679.g003
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by the robot in the second corridor. Indeed, after experiencing the right-right signals the robot
assumes the right most position at the end of the first corridor and then a right position in the
second corridor. By contrast, after experiencing the right-left signals the robot assumes the cen-
tral position at the end of the first corridor and then a left position in the second corridor. This
ability to differentiate the relative position assumed in the second corridor on the basis of the
position assumed at the end of the first corridor enables the robots to turn in the appropriate
direction also at the second junction. The same things happens when the robots travel towards
the other two left destinations.

This interpretation is confirmed by the result of an analysis in which the robot was initially
placed at the end of the first corridor with an orientation that systematically varied in the range
of [-55, 55]° with respect to the orientation of the first corridor and a position that systemati-
cally varied along the x-axis between [-0.4, 0.4]m with respect to the center of the corridor. As
shown in Fig 5, in fact, the destination reached by the robot depended primarily on the relative
position along the x-axis and secondarily on the orientation of the robot at the end of the first
corridor. This means that the robot offloads the information encoding the destination to be
reached in its position and orientation. The ineffective behaviors shown in red, which are pro-
duced when the robot is initially located near the right wall and oriented toward the right,
occur only occasionally in normal conditions (Fig 4) because the robot rarely reaches these
positions/orientations when it starts from the beginning of the central corridor.

The fact that the destination reached by the robot depended on the position and the orienta-
tion of the robot at end of the first corridor is demonstrated by the fact that the destination the
robot will reach at the end of the trial can be predicted with 84% accuracy on the basis of the
position and the orientation the robot assumes in the first corridor, 40cm before the first junc-
tion. This success rate was obtained by training a feed-forward neural network through a back-
propagation algorithm based on a cross-entropy error function [39]. The network included
two inputs neurons that encoded the x-position and the orientation of the robot, six hidden

Fig 4. Trajectories produced by the best (S) robot over 300 trials. Full and dashed lines indicate successful and
unsuccessful trials, respectively. The color indicates the corresponding target destination (magenta: left-bottom, blue: left-top,
cyan: right-bottom, and yellow: right-top).

doi:10.1371/journal.pone.0160679.g004
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neurons and four winner-take-all outputs neurons that encoded the four corresponding desti-
nations. The training set consisted of 6,000 position and orientation vectors and 6,000 corre-
sponding destination vectors. The fact that the target destination could not be predicted in all
cases can be explained by considering the effects of noise on sensors and motors. Further evi-
dence demonstrating that the target destination reached by the best (S) and (C) robots
depended on the position and the orientation assumed by the robots from the end of the first
corridor on are reported below.

The four behaviors displayed by this robot (indicated by the trajectories shown in magenta,
blue, cyan and yellow in Fig 4) are dynamical processes that arise from the robot/environmen-
tal interactions and that converge toward four fixed-point attractors. This can be appreciated
by observing the four corresponding basins of attraction in the 2D projection of the phase por-
trait (Fig 6). These basins of attraction enable the robot to reach four different destinations
without varying the way it responds to perceived stimuli (i.e. by using a reactive controller that
always responds in the same way to the same stimuli independently from the stimuli experi-
enced before). This can be explained by considering that the way in which the robot reacts to
perceptual stimuli and the way in which perceptual stimuli change (as a function of the action
performed by the robot and of the characteristics of the local portion of the environment)
ensure that the robot keeps moving towards the current destination while remaining in the cur-
rent basin of attraction. To solve the problem, therefore, the robot only needs to enter into the
appropriate basin of attraction in the first corridor while it perceives the green stimuli.

The basins of attraction also ensure that the behavior of the robot is robust with respect to
perturbations caused by noise and environmental variations (within limits). This is because
typically small alterations in the robot’s position and orientation do not cause a switch from
one basin of attraction to another and consequently do not alter the robot’s destination. More-
over this is also because the effects of small alterations tend to be automatically compensated
over time by the convergent nature of the attractors that drive the robot away from the borders

Fig 5. Behavior displayed by the best (S) robot placed initially at the end of the first corridor in different
positions (along the x-axis) and orientations. The color of the trajectories corresponds to the destination reached
(magenta: left-bottom, blue: left-top, yellow: right-top, and cyan: right-bottom). Trajectories that did not enable the
robot to reach any target destination are shown in red.

doi:10.1371/journal.pone.0160679.g005
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that separate the different basins of attraction. Note that, as shown in Fig 7, the state space
includes three dimensions (x position, y position and orientation). Consequently, the four
basins of attraction are separated also in areas in which they seem to overlap from the perspec-
tive of the 2D projection shown in Fig 6.

Selection of the appropriate behavior (i.e. the convergence toward the appropriate basin of
attraction) is the result of the bifurcation process that occurs in the first corridor and that is

Fig 6. 2D vector field displaying the velocity of the robot in varying positions of the x/y plane for the (S) robot. For the
sake of clarity, the vectors are shown only for the positions and orientations reached by the robot in natural circumstances (i.e.
the positions and orientation assumed by the robot in 300 trials). The multiple arrows displayed in each 75x75mm position cell
indicate how the direction and the magnitude of the velocity vector varies as a function of the different orientations assumed by
the robot in the corresponding position.

doi:10.1371/journal.pone.0160679.g006

Fig 7. Phase portrait of the robot/environmental dynamics in the case of the best (CR) robot. Data collected during in 300 trials. The vertical axis
represents the orientation of the robot in the range [-90, 90]° with respect to the direction of the first corridor. For the sake of clarity the plots refer only to the
first-junction portion of the environment. (a) displays a view from which variation on the three dimensions can be appreciated. Instead, (b) shows a 2D
orthogonal projection in which one can appreciate only variations along the vertical and horizontal x-axis that correspond to the orientation of the robot and
to the position of the robot along the x-axis, respectively.

doi:10.1371/journal.pone.0160679.g007
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regulated by perception of the green stimuli. In other words, it is the result of the fact that
while the robot travels along the first corridor, it varies its position and orientation on the basis
of the perceived green stimuli in a way that ensures that at the end of the first corridor the
robot assumes a position and orientation that enable it to enter in the right basin of attraction.

For example, let’s consider the trials in which the robots experience the right-right signal
(Fig 4, cyan trajectories). In these cases, the robot reacts to the two green stimuli located on the
right by moving toward the right side of the corridor. This enables the robot to turn right at the
first junction, because it turns right when it encounters a wall ahead and a wall on its right side
that is nearer than the wall on its left side, and then to assume a specific position and orienta-
tion in the second corridor that enable it to turn right also at the second junction. Thus, the
proper movements produced in response to the stimuli perceived in the first corridor ensure
that the robot environmental/dynamics will enter into the basin of attraction of the right-right
behavior that then guide the robot toward the appropriate destination. During the trials in
which the robot experiences the right-left signal, instead, the robot reacts to the signals by mov-
ing first right and then left so as to assume a central position within the first corridor (Fig 4, yel-
low trajectories). This makes the robot turn right at the first junction also in this case.
However, the right turn initiated from this position and orientation, drives the robot toward
the left side of the second corridor. This in turn enables the robot to then turn left at the second
junction. In other words, the position/orientation with which the robot approaches the first
junction influences not only whether it turns right or left but also the position/orientation that
it takes after the turn in the second corridor, which finally determines whether the robot will
turn left or right at the second junction.

There are two reasons for the errors produced by the robot (Fig 4, dashed lines). The first is
that in some cases the bifurcation process fails, i.e., the robot is unable to react to the stimuli
experienced and, thus, assume the appropriate positions/orientations at the end of the first cor-
ridor. Consequently, the robot/environmental system enters into the wrong basin of attraction.
This problem particularly affects some of the trials in which the robot experiences the left-right
signals. Indeed, in 10.7% of these trials the best (S) robot erroneously navigates toward the
right-left destination (Fig 4, dashed lines). This problem occurs when the robot starts from cer-
tain specific positions and orientations and/or as a result of noise or when the robot occasion-
ally exits from the right basin of attraction and enters into another, wrong basin of attraction.
This typically occurs as a result of noise in areas in which the divergence between two nearby
basins of attraction is weak. In the case of the best (S) robot, this second type of problem occurs
particularly in the left corridor. Indeed, in this phase the robots traveling toward the left-right
destination erroneously enter into the behavioral attractor of the left-left destination in 46.7%
of the left-right trials (Fig 4, dashed lines).

The behaviors displayed by the best (C) and (CR) robots are qualitatively similar to those
displayed by the best (S) robot, see Fig 8. Indeed, also the robot/environmental dynamic of
these robots is characterized by four fixed-point attractors (Fig 9). Moreover, the trajectories of
these robots also bifurcate in the first corridor to ensure that the robot/environmental dynamic
enters into the appropriate basin of attraction.

However, these robots make far fewer errors during the bifurcation phase than the (S) robot
thanks to their ability to converge toward similar positions and orientations while they move
along the first part of the first corridor (see Fig 8). Indeed, the variability along the x-axis of the
positions assumed by (C) and (CR) robots one meter before the green stimuli is significantly
lower than the variability of positions assumed by (S) robots (F-Test F(299,299) = 3.114,
p<0.001 and F(299,299) = 2.845, p<0.001, respectively). By assuming a relatively un-variant
position and orientation before they perceive the green stimuli, (C) and (CR) robots manage to
achieve a more reliable bifurcation process than (S) robots.
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Also, the errors that occur when the robots exit from their current basin of attraction and
enter into another basin of attraction are reduced in (C) and (CR) robots. This is achieved
through the synthesis of attractor basins, which produces a greater separation among the tra-
jectories targeted toward different destinations that are produced by (C) and (CR) robots (Fig
8) than among the trajectories produced by the (S) robot (Fig 4).

Finally, in some cases the best (CR) robot also displayed the ability to re-enter into the basin
of attraction in which it was previously located when it erroneously moved to another basin of
attraction. This enables the robot to recover from some of the errors of this type caused by

Fig 8. Trajectories produced by the best (C) and (CR) robots in 300 trials, (a) and (b) pictures respectively. Full and dashed lines indicate successful and
unsuccessful trials, respectively. The color indicates the corresponding target destination (magenta: left-bottom; blue: left-top, cyan: right-bottom, and
yellow: right-top).

doi:10.1371/journal.pone.0160679.g008

Fig 9. Vector field displaying the velocity of the robot in varying positions of the x/y plane for the (CR) robot. For the
sake of clarity, the vectors are shown only for the positions and orientations reached by the robot in natural circumstances (i.e.
the positions and orientations assumed by the robot in 300 trials). The multiple arrows displayed in each 75x75mm position
cell indicate how the direction and the magnitude of the velocity vector varies as a function of the different orientations
assumed by the robot in the corresponding cell and/or as a function of the robot’s internal states.

doi:10.1371/journal.pone.0160679.g009
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noise. This is demonstrated by the results collected during a post-evaluation test in which the
robot was systematically displaced from its current basin of attraction to another one. The
basin of attraction in which the robot is displaced is chosen randomly from among the other
available ones, i.e., from the other three alternative basins of attraction before the first T-junc-
tion or between the only alternative attractor after the first T-Junction. The post-evaluation
test was repeated in three conditions in which the robot was allowed to move normally and in
which it was blocked for 1 or 3 seconds after displacement. Analysis of the results indicates that
the best (CR) robot was able to recover from this type of displacement in 60% of cases in which
it was allowed to move normally after the displacement and in 20% of cases in which it was
blocked in the displaced position and orientation for 1 second (Fig 10). The best (S) and (C)
robots, instead, were able to recover from displacements only in a negligible percentage of
cases (Fig 10). None of the robots were able to recover from displacements after being blocked
in the displaced position and orientation for 3 seconds.

Overall the data reported in this section indicate that all robots offloaded information con-
cerning the stimuli they experienced in the position and orientation they assumed from the
end of the first corridor on and used this information to move toward the appropriate destina-
tion and to preserve the relevant information (i.e. to maintain a specific relative position and
orientation with respect to the environment). (C) and (CR) robots also exploited the possibility
of integrating sensory-motor information over time to regulate their motor behavior in the
very first portion of the first corridor so as to reduce the variability with which they reached the
green stimuli. Moreover, (C) and (CR) robots also exploited the possibility of integrating

Fig 10. Performance displayed by the best (S), (C), and (CR) robots during a post-evaluation test in which they were
randomly displaced from their current basin of attraction into another one. The red, magenta and green bars represent
the performances of the best (S), (C) and (CR) robots, respectively. Each bar represents the percentage of trials in which the
robots were able to reach the appropriate destination despite the displacement. The “instant” condition refers to a situation in
which immediately after the displacement the robots were allowed to move normally. The “1 second” and “3 seconds”
conditions refer to a situation in which the robots were unable to move for 1 and 3 seconds, respectively. The “no-displacement”
condition refers to a normal situation in which the robots were not subjected to displacements. During each trial the robot was
displaced when it reached an imaginary line located 40cm before the first junction, 40cm after the first junction, in the middle of
the second corridor or 40cm before the second junction. Data were collected from 2400 trials.

doi:10.1371/journal.pone.0160679.g010
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sensory-motor information over time to partially filter out the effect of noise affecting their
sensors and motors and to better separate the trajectories produced while they navigated
toward different target destinations.

The destination reached by (S) and (C) robots was determined by the position and the ori-
entation assumed by the robots from the end of the first corridor on and was not affected by
the type of stimuli experienced previously. Indeed when these robots were displaced from their
current position inside a certain basin of attraction into a position and an orientation located
in a different basin of attraction, they navigated towards the target destination corresponding
to the second basin of attraction in 98% of cases. The destination reached by (CR) robots,
instead, also depended on the state of the internal neurons that encode information about pre-
viously experienced sensory states. Indeed, displaced (CR) robots navigated toward the destina-
tion corresponding to the basin of attraction in which they were located before the
displacement in 60% of cases. They managed to compensate the effect of the displacement by
re-entering the basin of attractions in which they had been previously located. They navigated
toward wrong destinations only in the remaining 40% of cases (see Fig 11).

Limiting cognitive offloading does not promote but rather prevents the
synthesis of effective solutions
Here we report a series of experiments carried out to verify whether the discovery of sub-opti-
mal reactive strategies that rely on cognitive offloading prevents the discovery of better cogni-
tive solutions. In other words, we verify the hypothesis that cognitive offloading constitutes a
sort of shortcut that enables evolving individuals to improve their adaptive ability up to a cer-
tain level through the utilization of solutions that are parsimonious from the perspective of the

Fig 11. Trajectories displayed by the best (CR) robot at the first T-junction during a post-evaluation test in which
the robots were displaced into one position and orientation located within one of the other three basins of
attraction. The displacement was performed when the robot reached a distance of 40cm from the first junction. After the
displacement the robot was allowed to move immediately (i.e. it was not blocked). Data were collected from over 200
trials, 50 for each combination of green stimuli. The colors indicate the target destinations (magenta: left-bottom, blue: left-
top, cyan: right-bottom, and yellow: right-top). The black trajectories indicate the trials in which the robot reached a wrong
destination, i.e. was unable to re-enter the correct basin of attraction after the displacement.

doi:10.1371/journal.pone.0160679.g011
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control system of the robot but that prevent the discovery of more complex and effective strate-
gies. To achieve this objective we analyzed the solutions found by evolving robots in situations
in which the possibility of relying on cognitive offloading was reduced or prevented.

One way to reduce the possibility of relying on cognitive offloading in the case of our experi-
ments was to drastically reduce the width of the corridors. As we have seen, in fact, robots off-
load information concerning the type of green stimuli they have experienced by assuming
different relative positions/orientations inside corridors. The utilization of narrow corridors
severely restricts the possibility of carrying out this type of offloading.

Analysis of the results obtained in a series of control experiments in which the width of the
corridors was set to 29cm only indicates that, as expected, the use of highly constrained envi-
ronmental conditions prevents the exploitation of cognitive offloading, i.e., the evolution of
solutions analogous to that described in the previous section (results not shown). However,
analysis of the performance of the robots evolved in this condition indicates that the elimina-
tion of solutions based on cognitive offloading does not lead to effective solutions. In fact, it
causes a drastic reduction of the robots’ performance with respect to the normal condition (Fig
12). This implies that the elimination of solutions relying on cognitive offloading does not facil-
itate the evolution of alternative cognitive solutions. In other words, the lack of evolution of
effective cognitive solutions cannot be explained simply by the availability of cognitive offload-
ing “shortcuts”.

Indeed, in most of the replications the best (Sn), (Cn) and (CRn) evolved robots were able
to navigate correctly to only one of the four destinations and consequently succeeded in about
one fourth of the trials. The evolved robots managed to navigate to one of the four correct des-
tinations in most of the trials. Consequently, the impact of the errors that occurred when the
robots remained stuck, navigated erroneously back toward the central corridor or crashed into

Fig 12. Performances obtained in the control experiment with narrow corridors. The boxplots show the percentage of
successful trials carried out by the best 10 robots evolved in the (S), (C), and (CR) experimental conditions in 10 corresponding
replications of the experiment. Boxes represent the inter-quartile range of the data. The horizontal lines inside the boxes mark
the median values. The whiskers extend to the most extreme data points within 1.5 times the inter-quartile range from the box.
Circles mark the outliers.

doi:10.1371/journal.pone.0160679.g012
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obstacles was marginal. We used (Sn), (Cn) and (CRn) to indicate the robots evolved in the
narrow corridor condition. In only two replications, the best (CRn) robots managed to navigate
correctly toward three out of the four destinations by succeeding in about three fourths of the
trials (Fig 12). The performance of these two robots was similar to that achieved by the best (S)
robot (Fisher exact test, p = 0.747 and p = 0.797), which could only rely on reactive strategies
(Fig 3). However it was significantly worse than that of the better (C) and (CR) robots, (Fisher
exact test, p<0.001). Overall, the performance of the robots that evolved in these control exper-
iments (Fig 12) was significantly worse than the performance obtained in the standard experi-
ments (Fig 3) (Mann-Whitney U, p<0.001 for (S) and (C), and p = 0.01 for (CR)).

Another mechanism that can be used to discourage evolving robots from relying on cogni-
tive offloading is to randomly vary the position and orientation of the robots while they travel
in the maze. To investigate the effect of this type of perturbation we carried out a series of con-
trol experiments in a standard maze in which every 50ms the position and the orientation of
the robot was perturbed with a 15% probability. The perturbations were created by displacing
the robot to the left or the right of a distance d and by varying the orientation of the robot by
an angle a, where d and a are selected randomly with a uniform distribution within the range
[3, 9]cm and [-15, 15]°, respectively. This type of perturbation drastically reduces the utility
(usefulness) of offloading information in the relative positions and orientation of the robot in
the environment. Once again, the hypothesis under verification is whether the introduction of
a constraint that discourages the development of cognitive offloading solutions will favor the
development of alternative, and possibly better, solutions. We used (Sp), (Cp) and (CRp) to
indicate the robots evolved in the standard maze subjected to position and orientation pertur-
bations during evolution.

Fig 13. Performance obtained by robots that were subjected to position and orientation perturbations in all trials during
4000 generations. Data were obtained by post-evaluating the robots in a normal condition in which they were not subjected to
perturbations. The boxplots show the percentage of successful trials carried out by the best 10 robots evolved in the (Sp), (Cp),
and (CRp) experimental conditions in 10 corresponding replications of the experiment. Boxes represent the inter-quartile range
of the data. The horizontal lines inside the boxes mark the median values. The whiskers extend to the most extreme data points
within 1.5 times the inter-quartile range from the box. Circles mark the outliers.

doi:10.1371/journal.pone.0160679.g013
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The fact that this form of perturbation drastically reduces the usefulness of cognitive off-
loading is demonstrated by the fact that the performance of (Sp) robots, which can only rely on
reactive strategies, drops to very low levels (Fig 13). The introduction of perturbations, how-
ever, causes a significant drop in performance with respect to the experiments without pertur-
bations also in the case of (Cp) and (CRp) robots (Mann-Whitney U, p<0.001) (Fig 13).
Notice that Fig 13 displays the results of a post-evaluation test in which the robots are evaluated
in the absence of position and orientation perturbations.

Also in this case, therefore, the introduction of constraints that discourage the development
of reactive solutions relying on cognitive offloading does not promote the evolution of effective
cognitive solutions but rather prevents the possibility of synthesizing good solutions of any
kind.

As we will show in the next section, this negative result is not due to the impossibility of gen-
erating solutions that are able to compensate the effect of position and orientation perturba-
tions. Indeed, evolving robots can solve the navigation problem in a close to optimal manner
and can neutralize to a good extent the effect of position and orientation perturbations, provid-
ing that the constraints which discourage the development of cognitive offloading strategies
are not too strong.

The acquisition of reactive strategies promotes the evolution of cognitive
capabilities
As demonstrated in the previous section, preventing or severely limiting the possibility of
developing strategies based on cognitive offloading prevents the development of effective solu-
tions. In this section, we demonstrate how the acquisition of reactive strategies promotes the
evolution of cognitive solutions that enable the robots to accomplish their task also in condi-
tions that cannot be mastered appropriately only by using cognitive offloading strategies.

To verify this hypothesis we carried out a new series of experiments in which we weakened
the constraints that discourage the utilization of cognitive offloading and increase the demand
for cognitive solutions. This was carried out by subjecting the robots to position and orienta-
tion perturbations in only half of the trials (Fig 14, CRp2 condition) or by subjecting the robots
to perturbations only during the second phase of the evolutionary process, i.e., from generation
2001 to 4000 (Fig 14, CRp3 condition). Notice that the Fig 14 displays the results of a post-eval-
uation test in which the evolved robots were not exposed to position and orientation
perturbations.

The performances of the robots that were subjected to perturbations in only half of the trials
are significantly better than the performances of the robots that experienced perturbations in
all trials (Fig 14, CRp2 and CRp, Mann-Whitney U, p = 0.004). The performances of the robots
that were subjected to perturbations during the second phase of the evolutionary process,
instead, did not differ significantly from those of the robots that were subjected to perturba-
tions during all generations (Fig 14, CRp3 and CRp, Mann-Whitney U, p = 0.36).

The fact that the robots evolved in the CRp2 condition relied on effective cognitive mecha-
nisms can be demonstrated by post-evaluating the best robot in a control condition in which it
was systematically displaced from its current position and orientation into another position
and orientation located in a different basin of attraction through the same procedure described
in Section 3. As can be seen, unlike the best CR robot, the best CRp2 robot is able to recover
from the displacements in most cases, also in the condition in which it is blocked for three sec-
onds after being displaced (Fig 15). The robot compensates for the effect of displacement by re-
entering into the basin of attraction in which it was located before the displacement. This is
carried out by storing in its internal states information encoding the type of basin of attraction
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in which it is located and by using this information to re-enter into the previous basin of attrac-
tion, as shown in Fig 11. The best CR and CRp2 robots make use of the internal states to neu-
tralize the effects of this type of displacement (see Figs 10 and 15). However, the best CRp2
displays much better ability. This is not surprising, because CRp2 robots were subjected to
position and orientation perturbations during evolution. In normal conditions, i.e., without
displacements or perturbations, the performances of the best CR and CRp2 controllers do not
differ statistically (Fisher Exact Test, p = 0.308).

The fact that the development of cognitive offloading strategies supports the development
of effective cognitive abilities, such as those displayed by the best CRp2 robot, is also demon-
strated by the analysis of the course of the evolutionary process in the case of the best replica-
tion of the experiment. In fact, the post-evaluation of the best robots in every 50 generations
indicates that the development of the ability to master the trials not affected by displacements
precedes the development of the ability to also master the trials subjected to displacement (Fig
16). The performances in the two conditions differed significantly from generation 1500 to
1800 with the exception of generation 1700 (Fisher Exact Test, p<0.05). We focused on this
500 generations period because in the case of the best replication this is the phase in which
most progress occurs. Thus, the development of a strategy that operates primarily on the basis
of cognitive offloading and that enables the robots to handle the navigation task in the normal
condition but not in the condition with displacements supports the development of a hybrid
strategy that relies also on internal states and that enables the robots to also master the trials
affected by displacements.

Incidentally, the internal neurons of the (CR) and (CRp2) robots are somewhat similar to
the hippocampal cells of rodents located in maze environments that encode information about

Fig 14. Performances obtained in experiments in which the robots were subjected to position and orientation
perturbations in all cases (CRp), during half of the trials (CRp2) and during the second evolutionary phase (CRp3). Data
obtained by post-evaluating the robots without position and orientation perturbations. The boxplots show the percentage of
successful trials carried out by the best 10 robots evolved in each of the experimental conditions in 10 corresponding
replications of the experiment. Boxes represent the inter-quartile range of the data. The horizontal lines inside the boxes mark
the median values. The whiskers extend to the most extreme data points within 1.5 times the inter-quartile range from the box.
Circles mark the outliers.

doi:10.1371/journal.pone.0160679.g014

Cognitive Offloading Does Not Prevent but Rather Promotes Cognitive Development

PLOS ONE | DOI:10.1371/journal.pone.0160679 August 9, 2016 18 / 25



the location of the animal in the maze and about the trajectory the animal is performing and
will perform to reach the target destination [40–42]. However, a detailed analysis of the relation
with these neurophysiological findings is outside the scope of this paper.

At this point we will try to explain why evolving robots: (i) always develop cognitive offload-
ing strategies, (ii) are unable to develop effective strategies relying exclusively on internal states
even in conditions in which the possibility of using cognitive offloading is completely ruled
out, (iii) are able to extract internal states encoding target destinations that are maintained over
time and are used to compensate the effects of position and orientation perturbations.

We believe that to explain these results we have to appreciate the full complexity of the task.
In particular, we must consider that the problem involves both the ability to travel in the maze
environment by avoiding collisions and inversions in the direction of motion and the ability to
turn in the appropriate direction at junction areas. The most straightforward way of navigating
in the maze and avoiding collisions is to use a reactive strategy that regulates the direction of
the robot on the basis of the current state of the infrared sensors. In other words, the ability to
navigate in the maze environment necessarily requires use of a reactive strategy. The capacity
to turn in the appropriate direction at junction areas, instead, can be obtained either by exploit-
ing primarily external cues generated through cognitive offloading or by exploiting primarily
internal cues generated by integrating sensory-motor information over time. Using a mixed
strategy that operates both on the basis of reactive rules for the purpose of navigation and on
the basis of more complex rules for the purpose of decision-making at junctions necessarily
requires the incorporation of mechanisms that sort out the conflicts arising between reactive
and non-reactive control rules.

Fig 15. Performance displayed by the best (CR) and (CRp2) robots during a post-evaluation test in which the robots
were systematically displaced into a position and orientation located in a different basin of attraction (red and blue
bars, respectively). Each bar represents the percentage of trials in which the robots were able to reach the appropriate
destination despite the displacement. The “instant” condition refers to a situation in which the robots were allowed to move
normally immediately after the displacement. The “1 second” and “3 seconds” conditions refer to situations in which the robots
were blocked for 1 and 3 seconds, respectively, after the displacement. The “no-displacement” condition refers to a normal
situation in which the robots were not subjected to displacements. The robots were displaced once during each trial. The
displacement occurred when they reached an imaginary line located 40cm before the first junction, or 40cm after the first
junction, or in the middle of the horizontal corridor, or 40cm before the second junction. Data collected in 2400 trials.

doi:10.1371/journal.pone.0160679.g015
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As an example of conflict, let’s consider the case of a robot that decides which direction to
take at a junctions on the basis of its internal state. Moreover, let’s imagine that the robot is
located at the beginning of the first junction and that is traveling toward one of the two left des-
tinations. During the first and the third part of the junction negotiation the robot should not
turn too sharply left to avoid colliding with the left walls. During the central part of the junction
negotiation, instead, the robot should definitely turn left following the indication coming from
its internal state. The conflict arising between obstacle avoidance and the decision-making
rules that control the direction of turns at junctions could be solved by regulating the relative
importance of the two rules on the basis of the relative position of the robot within the junc-
tion. However, the robot does not have access to position information. It only perceives the
proximity of nearby obstacles. This implies that the robot would be forced to determine the rel-
ative importance of the two alternative control rules on the basis of the indirect, noisy, and
incomplete information provided by its sensors. Consequently, this implies that the probability
that the robot will fail as a result of ineffective regulation is not negligible.

Instead, the behavioral attractor strategies displayed by evolved robots do not require differ-
entiating the way in which the robots react to sensory states experienced in different portions
of the environment. Indeed, once the robots enter into the right basin of attraction, they just
need to keep moving on the basis of simple reactive rules in both corridors and junctions. One
reason why evolving robots always select cognitive offloading solutions is that these strategies
are more robust, less prone to errors with respect to strategies in which turning decisions are
made on the basis of internal states.

The second reason why evolution always converges toward cognitive offloading strategies is
that preparatory actions that anticipate in part the execution of the required behavior are adap-
tive and therefore tend to be selected. This implies that the individuals that anticipate the

Fig 16. Performance displayed by the best CRp2 during the course of the evolutionary process in a no-displaced and
displaced condition (black and red lines, respectively). In the latter condition the robot was allowed to move immediately
after the displacement. Data were collected every 50 generations from generation 1500 to 2000 and averaged over 600 trials
in the case of the no-displacement condition and 2400 trials in the case of the displaced condition. The displacement occurs
when the robot reaches an imaginary line located 40cm before the first junction, or 40cm after the first junction, or in the middle
of the horizontal corridor, or 40cm before the second junction.

doi:10.1371/journal.pone.0160679.g016
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movement toward the left or the right side of the corridor during the trials in which they
should turn toward that side at the first and/or at the second junctions tend to be selected. This
produces a progressive anticipation of the time when the turning actions are initiated that ulti-
mately leads to a situation in which they are initiated up to the point when the robot perceives
the green stimuli. This in turn eliminates the need to extract and use internal states that encode
information about previously experienced stimuli. Indeed, we might say that in the evolved
robots the left or right turning behaviors produced at the first and second junctions are initi-
ated already during the first half of the first corridor when the robot perceives the position of
the green stimuli. In other words, by anticipating action execution through preparatory actions
the robots manage to transform a time delay task into a simpler problem that does not include
any temporal offset between the perception of stimuli and the initiation of the action afforded
by the stimuli. Overall this implies that the selection of cognitive offloading strategies of this
type is inevitable, at least in the case of the double T-Maze experimental setting.

The tendency to anticipate behaviors through the execution of preparatory actions provides
two advantages: it enables the execution of smoother transitions between behaviors (i.e.
between the navigation behavior performed within the corridors and the turning behavior per-
formed within the junctions), and it enables reducing and/or eliminating the time delay
between the moment when the stimuli affording a given behavior are experienced and the
moment when the behavior afforded by the stimuli is executed.

As we have showed above, however, the ability to solve the time-delay problem through pre-
paratory actions does not necessarily prevent development of the ability to extract information
encoding the type of basin of attraction in which the robot is currently located or the green sti-
muli that the robot experienced and the development of an ability to use these internal states to
navigate to the appropriate destination. Indeed, as we have seen, (CR) robots display the ability
to re-enter into the basin of attraction in which they were previously located after being dis-
placed into another wrong basin of attraction. In the case of robots that are subjected to a mod-
erate level of position and orientation perturbation (CRp2), this cognitive capability is so
effective that it enables the robots to compensate for the effect of the displacement in most
cases, even when the robots are blocked for three seconds after the displacement. This type of
redundant solution enable these robots to exploit the advantage of preparatory actions and to
avoid the problems caused by noise and by position perturbations.

Anticipation is a widespread phenomena in sequential motor control. The preparatory
actions that support the realization of effective grasping behaviors are an example of this.
These preparatory actions involve appropriate modification of the posture of the hand per-
formed during execution of the reaching behavior that precedes the grasping action [43]. A sec-
ond example is constituted by the co-articulatory movements produced by sign language
interpreters engaged in fingerspelling. In fact, the posture of the hand that is used to indicate a
letter is influenced by the posture that the hand should assume later to indicate the following
letters [44].

Discussion
In this paper we investigated whether the development of reactive solutions promotes or pre-
vents the development of cognitive solutions to problems in which reactive control policies
enable the achievement of sub-optimal performance only. For this purpose we carried out a
series of experiments in which evolving robots had to solve a time-delay task in a double T-
maze environment in which the destination to be reached depended on the stimuli perceived
by the robot during the initial phase of the navigation. The problem chosen is qualitatively sim-
ilar but more complex than the tasks used in previous studies that investigated the evolution of
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cognitive capabilities [19][27–31]. The additional complexity is that our task involves a greater
number of different destinations, requires making two subsequent stimuli-dependent deci-
sions, involves a longer time delay between the moment in which the robot experiences the sti-
muli and the moment in which it should make the corresponding turning decisions, and
involves variations affecting the initial position and orientation of the robot, the position of the
stimuli and the size of the environment.

Analysis of the experiment in which the robots were provided with reactive controllers con-
firmed that the problem does not allow for optimal, or close-to-optimal, reactive solutions (Fig
3). Surprisingly, however, reactive robots managed to solve the task to a large extent. Analysis
of the solutions discovered by the evolving robots indicate that this is achieved by exploiting
cognitive offloading. Indeed, the evolved robots display an ability to extract critical states, store
these states in the robot/environmental relations and regulate their behavior on the basis of
their relative position in the environment (Fig 4).

Analysis of the robots provided with richer neural controllers indicated that the possibility of
storing internal states enables the evolving robots to achieve close-to-optimal performance, i.e., to
achieve better performance with respect to reactive robots (Fig 3). Analysis of these experiments
indicates that cognitive offloading also plays a key role in these robots (Figs 8 and 10). The achieve-
ment of better results is due to the development of additional cognitive capabilities that overcome
the limitations displayed by robots that operate on the basis of reactive controllers only. The results
obtained thus indicate that the development of the reactive strategies based on cognitive offloading
does not prevent the development of solutions that rely on cognitive capabilities.

This conclusion is further supported by results obtained in other experiments in which the
usefulness of cognitive offloading was reduced or eliminated by using an environment formed
by narrow corridors or by subjecting evolving robots to position and orientation perturbations.
As expected, the robots evolved in these conditions relied less or not at all on cognitive offload-
ing. This, however, did not enable the robots to discover alternative strategies for solving the
task. This simply led to the robots displaying rather ineffective solutions (Figs 12 and 13).
Overall, this indicates that the elimination of cognitive offloading does not promote but rather
prevents the synthesis of effective solutions.

Finally, we demonstrated how the acquisition of reactive strategies promotes the evolution
of cognitive strategies, or better of hybrid strategies that include both cognitive offloading and
cognitive mechanisms. These hybrid strategies enable the robots to navigate toward the appro-
priate destination also after being displaced into another basin of attraction and also after
being blocked there for three seconds (Figs 14 and 15). This type of solution was obtained by
weakening the constraints that reduce the usefulness of cognitive offloading (i.e. by perturbing
the position and orientation of the robot in only half of the trials). This, in fact, creates the
appropriate demand for the development of cognitive abilities without preventing the develop-
ment of cognitive offloading strategies.

Overall these results indicate that reactive strategies relying on cognitive offloading do not
necessarily constitute a dead end that might retard or prevent the evolution of better cognitive
strategies. On the contrary, they constitute an important component of effective solutions and
can co-exist and support the development of complementary cognitive capabilities. For results
collected in human subjects that indicate how cognitive offloading can favor the acquisition of
abstract concepts see [45].

The importance of the incremental nature of the evolutionary process and of the acquisition
of reactive strategies in the synthesis of better cognitive strategies is further demonstrated by
the analysis of the course of the evolutionary process. Indeed, the evolution of the cognitive off-
loading ability precedes the evolution of the cognitive capabilities that use internal states to
determine the travel destination (Fig 16).
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One question that remains open is whether solutions that are purely cognitive, i.e., that do
not also rely on cognitive offloading, exist and can be discovered. We believe that the existence
of this type of solution cannot be taken for granted, at least in the context of the domain con-
sidered in this paper.

In general, analysis of the characteristics of evolved strategies suggests that reactive and cogni-
tive components of control policies should not be considered as neatly separable entities per-
forming well-differentiated functions. Regulation of the robot’s actions performed on the basis of
internal states should always be integrated with regulation of the robot’s actions, which is carried
out on the basis of currently perceived states. In the context of our experiments this implies that
the efficacy of a cognitive component of the robot policy that determines the turning direction at
T-junctions on the basis of internal states strongly depends on the way the robot reacts to per-
ceived stimuli independently of the value of its internal states, and vice versa. Moreover, use of a
cognitive offloading strategy for the purpose of storing information about previously experienced
stimuli does not necessarily conflict with use of internal states that have the same function. On
the contrary, the combined use of two alternative mechanisms with different characteristics for
achieving the same function might provide advantages. If we embrace a less simplified view of
the relation between reactive and cognitive components we see fewer reasons to expect interfer-
ences and more reasons to expect synergies, like those we found in our experiments.
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