

School of Engineering, Computing and Mathematics Faculty of Science and Engineering

2020-02-11

Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model

Ruiwen Zhao

Angus C.W. Creech

Alistair G.L. Borthwick School of Engineering, Computing and Mathematics

Vengatesan Venugopal

Takafumi Nishino

Let us know how access to this document benefits you

General rights

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. **Take down policy**

If you believe that this document breaches copyright please contact the library providing details, and we will remove access to the work immediately and investigate your claim.

Follow this and additional works at: https://pearl.plymouth.ac.uk/secam-research

Recommended Citation

Zhao, R., Creech, A., Borthwick, A., Venugopal, V., & Nishino, T. (2020) 'Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model', *Energies*, 13(4), pp. 776-776. Available at: https://doi.org/10.3390/en13040776

This Article is brought to you for free and open access by the Faculty of Science and Engineering at PEARL. It has been accepted for inclusion in School of Engineering, Computing and Mathematics by an authorized administrator of PEARL. For more information, please contact openresearch@plymouth.ac.uk.

1 Article

Aerodynamic Analysis of a Two-Bladed Vertical-Axis Wind Turbine Using a Coupled Unsteady RANS and Actuator Line Model

Ruiwen Zhao ^{1,*}, Angus C. W. Creech ¹, Alistair G. L. Borthwick ¹, Vengatesan Venugopal ¹ and Takafumi Nishino ²

- ¹ Institute for Energy Systems, School of Engineering, The University of Edinburgh, King's Buildings,
 Edinburgh EH9 3BF, Scotland, UK; a.creech@ed.ac.uk (A.C.W.C); alistair.borthwick@ed.ac.uk (A.G.L.B);
 v.venugopal@ed.ac.uk (V.V)
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, England, UK;
 takafumi.nishino@eng.ox.ac.uk (T.N)
- 12 * Correspondence: r.zhao@ed.ac.uk;
- 13 Received: 4 November 2019; Accepted: 8 February 2020; Published: date

14 Abstract: Close-packed contra-rotating vertical-axis turbines have potential advantages in wind and 15 hydrokinetic power generation. This paper describes the development of a numerical model of a 16 vertical axis turbine with a torque-controlled system using an actuator line model (ALM). The 17 developed model, coupled with the open-source OpenFOAM computational fluid dynamics (CFD) 18 code, is used to examine the characteristics of turbulent flow behind a single two-bladed vertical-19 axis turbine (VAT). The flow field containing the turbine is simulated by solving the unsteady 20 Reynolds-averaged Navier-Stokes (URANS) equations with a $k - \omega$ shear stress transport (SST) 21 turbulence model. The numerical model is validated against experimental measurements from a 22 two-bladed H-type wind turbine. Turbine loading is predicted, and the vorticity distribution is 23 investigated in the vicinity of the turbine. Satisfactory overall agreement is obtained between 24 numerical predictions and measured data on thrust coefficients. The model captures important 25 three-dimensional flow features that contribute to wake recovery behind a vertical-axis turbine, 26 which will be useful for future studies of close-packed rotors with a large number of blades.

Keywords: vertical-axis turbine; actuator line method; torque control; URANS; OpenFOAM; wind
 energy

29

30 1. Introduction

31 Climate change mitigation is vitally important for all nations in the world, given that 32 greenhouse-gas (GHG) emissions have increased by over one-quarter since 1995 [1], as reported at 33 the first United Nations (UN) Conference of the Parties (COP). Moreover, energy consumption by 34 developed and developing countries has been projected to increase by 28% from 2015 to 2040 [2]. A 35 key approach to replacing fossil fuels as an energy source and limiting carbon release is to invest in 36 renewable energy technology [3]. Wind and hydrokinetic energy are particularly attractive options 37 for sustainable electricity generation from low-carbon sources [4], and are likely to become significant 38 contributors to the electricity supply by 2030 [1]. Much ongoing research into the development of 39 wind and tidal turbines focuses on horizontal- and vertical-axis turbines [5]. Salter [6] compared 40 vertical-axis transverse-flow turbines with horizontal-axis axial-flow turbines in terms of flow 41 impedance, turbulence, blockage ratio, installation, pitch change, and navigation, with tidal flow in 42 the Pentland Firth, Scotland, in mind. Salter found that high blockage (or sweepage), vertical-axis, 43 variable-pitch rotors could lead to substantially higher potential power generation for high 44 impedance flows [6]. Such vertical-axis transverse-flow tidal turbines tolerate uneven seabed 45 topography and may attain an even pressure drop by controlling the blade pitch, hence reducing 46 wake turbulence [6]. Vertical-axis turbines thus appear to offer a promising near-term technology for 47 tidal energy. Initial study of vertical-axis turbine (VAT) technology began in the 1970s at Sandia 48 National Laboratories where researchers investigated vertical-axis turbine configurations, including 49 Savonius (torque generated from drag) and Darrieus (torque generated from lift) turbines [7,8]. The 50 Savonius turbine can accept flow from any direction and is self-starting, with low cut-in speed; 51 however, the Savonius turbine is restricted to fewer applications due to its inefficiency at relatively 52 low tip speed ratios [9]. Darrieus turbines have higher cut-in speed than equivalent Savonius turbines, 53 and so rotate faster than the inflow velocity, attaining higher coefficients of performance [9,10], even 54 though their support arms introduce additional aerodynamic drag [11]. To solve this problem, Salter 55 and Taylor [12] proposed the innovative vertical-axis rotor system shown in Figure 1. Computational 56 fluid dynamics (CFD) has been widely used in the systematic analyses of vertical-axis turbines [13– 57 29]. Actuator-type models parameterize the turbine loading and thus reduce computational expense, 58 but do not resolve the fine detail of the blade boundary layers [30]. Four approaches have commonly 59 been used to represent turbines in such models, namely: actuator disc with rotation or blade element 60 momentum (BEM) [31-35]; actuator disk without rotation [30,35,36]; actuator surface [37-39]; and 61 actuator line [30,40,41]. BEM is an analytical method, whereas the actuator disc with rotation model 62 is a combination of blade-element (BE) theory and CFD, which solves the Navier-Stokes equations to 63 satisfy the momentum balance [35]. The actuator disc with rotation model is computationally efficient, 64 but does not directly include the influence of vortices shed from blade tips on the induced velocity 65 [31]. The uniform actuator disk without rotation model is limited in applicability because of its 66 simplifying assumptions [37], and has proved unsatisfactory as a wake generator method for a cross-67 flow turbine [40]. The actuator surface technique accurately predicts the flow structure near blades 68 and in the tip vortex region, but requires a fine mesh passing smoothly over the airfoil surface [38]. 69 The actuator line model (ALM) [42,43] is better at capturing three-dimensional (3D) vortical 70 structures in the near wake than actuator disc approaches [44], and so is used herein. ALM has been 71 used to model vertical-axis turbines at low Reynolds number based on rotor diameter $Re_D \sim 10^4$, and 72 of large and medium solidity (chord-to-radius ratio) at high Re_D around 10⁶ [30,45].

73 In order to simulate the wake dynamics properly, a suitable turbulence closure model is required 74 within the CFD codes. Typically, $k-\varepsilon$ Reynolds-averaged Navier-Stokes (RANS) [46–48], $k-\omega$ 75 RANS [46,48,49], and large eddy simulation (LES) [50,51] models have been used for CFD simulations 76 of flows interacting with horizontal-axis turbines [52–56] and vertical-axis turbines [13,16–18,20– 77 23,25,26]. Although RANS approaches are relatively inexpensive, they have the drawback that they 78 are unable accurately to predict all types of turbulent flow [46]. LES [50,51] resolves turbulence in a 79 partly statistical, partly explicit manner, and reduces computational cost through low-pass filtering. 80 Even so, LES is substantially more expensive computationally than RANS, which is why it is used 81 rather sparingly in simulations of turbulent flow past horizontal-axis turbines and vertical-axis 82 turbines.

83 Typical recent applications of CFD to turbines follow. McLaren [57] reported a numerical and 84 experimental study of the unsteady loading on a small-scale, high-solidity, H-type Darrieus turbine, 85 based on two-dimensional (2D), unsteady Reynolds-averaged Navier-Stokes (URANS) simulations 86 by CFD ANSYS-CFX. The study revealed the dominant effect of dynamic stall on the output power 87 and vibration excitation of the turbine. Nobile et al. [58] later simulated 2D unsteady-flow past a 88 Giromill wind turbine, also using ANSYS-CFX, finding that mesh resolution and choice of turbulence 89 model had a substantial effect on accuracy, with time step having only a slight impact on the 90 numerical results. Biadgo et al. [59] used a stream-tube approach to undertake a numerical and 91 analytical assessment of the performance of a vertical-axis wind turbine comprising a straight-bladed 92 fixed-pitch Darrieus turbine with a NACA 0012 blade profile using ANSYS FLUENT. These 93 numerical predictions were compared with analytical results obtained using a double multiple 94 streamtube (DMST) model, which exhibited inability using both CFD and DMST for the turbine to 95 be self-starting owing to minimum and/or negative torque and performance at very low tip-speed 96 ratios. Bachant et al. [60] developed a validated ALM of a vertical-axis turbine with both high and

97 medium values of solidity, and tested both $k-\varepsilon$ RANS and Smagorinsky LES turbulence models in 98 the OpenFOAM CFD framework. Bachant et al. found that RANS models running on coarse grids 99 were able to provide good convergence behaviour in terms of the mean power coefficient. Compared 100 with other 3D blade-resolved RANS simulations [60,61], Bachant et al.'s model achieved 101 approximately four orders of magnitude reduction in computational expense by implementing 102 corrections in sub-models for the effects of dynamic stall, end conditions, added mass, and flow 103 curvature. Given that such models have focused on idealized vertical-axis turbines, further 104 investigation into optimal practical models with fewer correction factors is still required.

105 Figure 1 shows a group of close-packed contra-rotating vertical-axis rotors, designed by Stephen 106 Salter to maximise the fraction of flow passage swept [12]. Blockage is estimated to increase to 80% 107 given the small gaps between the rotors, which are controlled by a hydraulic ram. The rotor diameter 108 should be at least three times the water depth in order to provide stability in pitch and roll of a single 109 rotor, and this should be doubled for a close-packed array. This contributes to a high blockage 110 fraction allowing generation well above the Betz limit for rotors in channels [6]. Following Buntine 111 and Pullin [62], the design concept is based on two vortices of opposite-sign cancelling each other out, 112 and thus conditioning the flow though the turbine while lowering the turbulence kinetic energy in 113 the wake. The turbine downstream area will then experience less stream-wise flow variation, 114 reducing mixing loss and therefore enhancing energy extraction. To predict the commercial feasibility

115 of this large-scale marine hydrokinetic application, a numerical model of such devices is required.

Figure 1. Artist's impression of close-packed vertical-axis contra-rotating rotors [12].

117 This paper describes a numerical model of a cross-flow turbine, with the future goal of modelling 118 close-packed tidal rotors comprising many blades. The present model is built upon a previous turbine 119 model, which scales to thousands of cores on a supercomputer [54,56]. Although the present focus is 120 on a single rotor, the numerical model can be applied to a large-scale turbine farm in future studies. 121 Due to a lack of experimental data concerning this type of rotor, the numerical model is first validated 122 against experimental measurements from a two-bladed H-type wind turbine, and then used to 123 predict turbine loading and investigate vorticity distribution in the vicinity of the rotor.

124 A newly developed, efficient, parallelised, numerical model of vertical-axis turbines, with a fixed 125 tip-speed ratio system and with a torque-controlled system, is presented in the following sections. 126 This computationally efficient numerical model is coupled with and is developed within the 127 OpenFOAM CFD framework. Unique features of the present model include torque control and active 128 pitch mechanisms. For brevity, only the torque-controlled system is presented in this paper; pitch 129 control mechanisms for solving the dynamic stall problem as well as performance optimization [63,64] 130 will be explored in future work. We believe that the application of the present model to a torque-131 controlled vertical-axis turbine gives new insight into the aerodynamic behaviour of vertical-axis 132 wind turbines, in particular the difference in behaviour between an idealised turbine with fixed tip-

133 speed ratio and a more practical turbine with torque control.

134 2. Mathematical Model

135 Flow past a single vertical-axis turbine (VAT) with an arbitrary number of blades is simulated 136 using an adapted version of the Wind and Tidal Turbine Embedded Simulator (WATTES), which is 137 an efficient, parallelised, two-way coupled turbine model of horizontal-axis turbines, scaling to 138 thousands of computing cores [54,56]. We denote the newly developed model WATTES-V. A 139 preparatory set-up of the original WATTES model using the OpenFOAM CFD solver was conducted 140 to ensure the codes were correctly coupled [65]; details of the software architecture are provided in 141 Appendix A. This prerequisite ensures that WATTES-V model benefits from the advantages of the 142 original model. One unique feature of the modified WATTES-V model is that it enables torque control; 143 the main benefit of torque-controlled models is their prediction of the dynamic response of the

144 turbine to the flow [52–54]. The mathematical formulation of WATTES-V is provided below.

145 2.1. Frame of Reference

146 To calculate the body forces, the coordinates of nodes in the mesh are first translated to the frame 147 of reference of the rotor, in a similar manner to the original WATTES model [54]. The centre of the 148 vertical-axis turbine is located at position 0 (see Figure 2), where $\vec{x_0} = (x_0, y_0, z_0)$. The azimuthal 149 angle, which describes the orbital path taken by the first turbine blade, is denoted θ . In WATTES-V, 150 θ starts from the *x*-axis, as indicated in Figure 2. The coordinates of a blade reference frame are 151 denoted x', y', z', with 0'(x', y', z') the origin of the new reference system. In the blade reference

frame, the coordinates of a transformed point at position $\vec{x'} = (x', y', z')$ are:

$$\vec{x'} = (x', y', z') = R(\theta) \begin{bmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{bmatrix},$$
(1)

153 where

$$R(\theta) = \begin{bmatrix} \cos\theta & \sin\theta & 0\\ -\sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}.$$
 (2)

Similarly, the localised velocity at a given point is $\vec{u} = (u, v, w)$, and this is transformed to the rotor's frame of reference as $\vec{u'} = R(\theta)\vec{u}$. Once in this frame of reference, the model calculates the momentum source terms, and then a second transformation takes place before passing these back to the CFD solver (cf. Creech et al [54]). To simplify the notation, we denote the transformed coordinates and velocity as \vec{x} and \vec{u} hereafter.

159 2.2. Lift and Drag Calculations

- 160 The actuator line method (ALM) [43] creates a distribution of body forces along a set of line 161 segments representing the blades of a turbine. For each turbine rotor, only grid points found within 162 the hollow cylindrical volume *V* traced out by the rotating blades are considered.
- 163 The lift and drag force vectors per unit span on a blade are given by:

$$\vec{f_L} = \frac{lift}{unit\,span} = \frac{1}{2} \rho \, C_L(\alpha, Re) \, |\vec{u_{rel}}|^2 \, c(z) \, \vec{e_L'}$$
(3)

$$\overrightarrow{f_D} = \frac{drag}{unit\,span} = \frac{1}{2} \rho \, C_D(\alpha, Re) \, |\overrightarrow{u_{rel}}|^2 \, c(z) \, \overrightarrow{e_D},\tag{4}$$

164 where ρ is the fluid density, and C_L and C_D are the lift and drag coefficients, which depend on the 165 angle of attack α and the Reynolds number *Re* of the flow over the blade. The magnitude of relative 166 velocity of the fluid over the blade is $|\overrightarrow{u_{rel}}|$, and c(z) is the blade chord length, which can vary along 167 the blade span, but in the present case is constant. As the blades are parallel to z-axis, this is a function 168 of z. The unit vectors $\overrightarrow{e_L}$ and $\overrightarrow{e_D}$ are in the direction of lift and drag respectively. Values of C_L and 169 C_D are given in tabulated form [54], and as with most models, these are derived from an assumption 170 of two-dimensional flow over the blade. Figure 2 shows a schematic diagram illustrating a turbine 171 blade with chord, pitch, and path of a single blade. The diagram also indicates the force component

- 172 vectors that provide loading on the blade. The black dashed circle represents the circular trajectory
- 173 of a blade.

174 **Figure 2.** Geometry of and force vectors on a blade of a rotating vertical-axis turbine (VAT). The flow 175 velocity relative to the blades is $\overrightarrow{u_{rel}}$; the angle of attack α is calculated from the local inflow velocity 176 \overrightarrow{u} ; the freestream velocity $\overrightarrow{u_0}$; and the blade velocity is $\overrightarrow{u_{bl}}$. The azimuthal blade angle is θ with the 177 corrected blade pitch β ; and θ_{rel} is relative angle. F_L and F_D are lift and drag forces per unit span 178 respectively for the actuator line.

179 The relative velocity $\overrightarrow{u_{rel}}$ is calculated for each point within the control volume *V* at a radial 180 distance *r* from the rotor center (along *z*-axis) as

$$\overrightarrow{u_{rel}} = \overrightarrow{u} - \overrightarrow{u_{bl'}}$$
(5)

181 where $\overrightarrow{u_{bl}}$ is the blade velocity. For a vertical-axis turbine, the magnitude of $\overrightarrow{u_{rel}}$ is

$$u_{rel} = |\overrightarrow{u_{rel}}| = \sqrt{u^2 + v^2 + u_{bl}^2 + 2 u_{az} u_{bl}}, \qquad (6)$$

182 where $u_{bl} = r\omega_{bl}$, and ω_{bl} is the angular velocity of blade. Note that the spanwise velocity 183 component is neglected here, because the spanwise component of flow velocity is assumed to have 184 minimal impact on the performance of the blade, and so tip-loss effects can be ignored. The azimuthal

185 component of the fluid velocity is given as

$$u_{az} = -\frac{1}{r} (x v - y u).$$
(7)

186 This is necessary to account for the rotation of the flow, as lift and drag forces act to turn the 187 blades and the generator, resulting in an equal and opposite reaction force acting on the flow, causing 188 it to rotate in the opposite direction to that of the blades [54].

189 The flow angle relative to that of the fluid is

$$\theta_{rel} = \tan^{-1} \left(\frac{u \cos \theta + v \sin \theta}{-u \sin \theta + v \cos \theta - \omega_{bl} r} \right).$$
(8)

190 The local angle of attack is then computed from θ_{rel} as follows:

$$\alpha = \theta_{rel} - \beta, \tag{9}$$

191 where the local blade angle β is given by

$$\beta = \beta_p + \beta_t. \tag{10}$$

192 The blade pitch angle β_p can be actively controlled, as with [54], but for the present validation 193 work it is kept constant at $\beta_p = 0$. The local blade twist angle β_t is calculated from the blade 194 geometry but we consider straight blades and hence $\beta_t = 0$ in the present test cases.

195 Lift and drag forces per unit span are then calculated using the WATTES-V actuator line 196 representation of each blade, which utilises a two-dimensional Gaussian regularization kernel $\eta_i(d_i)$ 197 [56]:

$$\overrightarrow{F_L} = \sum_{i=1}^{N_{bl}} \eta_i(d_i) \, \overrightarrow{f_L}_{i'}
\overrightarrow{F_D} = \sum_{i=1}^{N_{bl}} \eta_i(d_i) \, \overrightarrow{f_D}_{i'}$$
(11)

where N_{bl} is the number of blades, d_i is the shortest distance between a given point and the *i*th actuator line. The pointwise lift and drag per unit span, \vec{f}_{Li} and \vec{f}_{Di} , are obtained from Equations (3) and (4). A two-dimensional Gaussian regularization kernel operates in the blade azimuthal direction

201 and smears the solution in a circle [56], such that:

$$\eta_i(d_i) = \frac{1}{2\pi\sigma^2} e^{-\frac{d_i^2}{2\sigma^2}},\tag{12}$$

where the distance from the *i*th vertical actuator line is $d_i = \sqrt{(x - x_i)^2 + (y - y_i)^2}$, with x_i and y_i the local coordinates of blade *i*, *x* and *y* are the point coordinates, and the standard deviation σ determines the width of the Gaussian kernel.

205 The value of σ was chosen carefully so that it is neither too large (smeared solution) nor too 206 small (extremely high resolution, and correspondingly small time step) [56]. Experiments determined 207 that numerical stability was optimal when the Gaussian width was set to twice the local cell length, 208 Δx , as also by Troldborg [30,43]. Other researchers have investigated the effect of the standard 209 deviation (or projection width) on accuracy and stability: Schito and Zasso [30,66] found that the 210 equivalent of the mesh cell width was ideal; Jha et al. [30,67] recommended using an equivalent 211 elliptic planform for its calculation; Martinez-Tossas and Meneveau [30,68] used two-dimensional 212 potential flow analysis to determine the optimal projection width; Tennekes and Lumley [69] 213 recommended the projection width to be of the order of the momentum thickness θ_{mt} [30]. Here, the 214 Gaussian width related to mesh size is estimated as $\Delta x \approx \sqrt[3]{V_{cell}}$ where V_{cell} is the cell volume. 215 Following Bachant et al. [30], an additional factor $C_{mesh} = 2.0$ is introduced, and non-unity aspect 216 ratio cells incorporated using $\sigma = 2C_{mesh}\Delta x$. This meant that 95.45% ($d_i \leq 2\sigma$) of the Gaussian 217 distribution was captured within the numerical simulation. It should be noted that σ is a tuning 218 factor that should be adjusted to the particular circumstances under consideration.

The tangential F_t and normal F_n components of body forces acting on the fluid, which are in the opposite directions to the force acting on the blade, are given by

$$F_t = F_L \sin \theta_{rel} - F_D \cos \theta_{rel},$$

$$F_n = F_L \cos \theta_{rel} + F_D \sin \theta_{rel}.$$
(13)

221 Body force components acting on the fluid in *x* and *y*-axis directions are

$$F_x = -F_t \sin \theta + F_n \cos \theta,$$

$$F_y = F_t \cos \theta + F_n \sin \theta,$$
(14)

- where F_x is also the net thrust component of the fluid to the turbine. Note that $F_z = 0$, as threedimensional flow effects on performance are neglected.
- All the calculated force terms are then transformed into body force components, and passed back to OpenFOAM as momentum sources in the Navier-Stokes momentum equation for an incompressible Newtonian fluid given by:

$$\frac{\mathrm{D}\vec{u}}{\mathrm{D}t} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{u} + \frac{1}{\rho} \vec{F}, \qquad (15)$$

- 227 in which \vec{u} is velocity field vector, ρ is fluid density, p is pressure, v is the kinematic viscosity, t
- is time, and \vec{F} is the body force vector exerted on the fluid.

229 2.3. Power and Torque Calculation

The lift and drag force components acting on the blade exert an equal and opposite reaction on the flow [54]. This occurs at each point within the control volume *V*, which is a hollow cylinder of thickness 4σ with a radius equal to that of the rotor. This is used to calculate the instantaneous power output of the turbine at time *t*. *L* is blade length and d*l* is span-wise blade element dimension. The total torque acting on the fluid within the hollow cylindrical volume *V* is

$$\overline{\tau_{fl}} = \int^{V} \vec{r} \times \vec{F} \, \mathrm{d}V. \tag{16}$$

The torque on the fluid acts in the opposite direction to the torque that turns the generator to create power τ_{pow} and the torque due to the moment of inertia of the blades τ_{bl} , such that $\tau_{fl} = -(\tau_{pow} + \tau_{bl})$. Here we have dropped the vector notation for torque, given that the torque vectors are all parallel to the *z*-axis. For a fixed-speed turbine,

$$\tau_{pow} = -\tau_{fl}.\tag{17}$$

239 Using the generator efficiency model from [56] to calculate power, we have

$$P_{real} = E_d E_g P_{ideal},\tag{18}$$

where P_{real} is the actual power, E_d is the drive train efficiency, E_g is the generator and power conversion efficiency, and P_{ideal} is the instantaneous power output of the turbine.

242 2.4. Torque Control and Thrust

As with the original WATTES, the moment of inertia of the rotor must be defined with torque to accelerate the blades in WATTES-V. Here, it is assumed the majority of each blade's mass is at distance *R*, the rotor radius, from the centre of the rotor, and that each blade is identical to the other. The moment of inertia for a vertical-axis turbine can then be written as

$$I = N_{bl} m L R^2, \tag{19}$$

where N_{bl} is the number of blades, *m* is the mass per unit span, and *L* is the span length of each blade. We can then use *I* to define τ_{bl} , the torque that accelerates the blades. More details of this, and the time integration scheme used, can be found in [54].

The instantaneous thrust is calculated by integrating the x-direction body forces over the turbine control volume, that is

$$T = \int^{V} F_{x} \, \mathrm{d}V. \tag{20}$$

252 3. Turbine Parameterization

Due to the lack of an experimental prototype, the present vertical-axis turbine model is validated against data from wind tunnel experiments involving a two-bladed H-type vertical-axis wind turbine (VAWT) that was equipped with sensors to measure thrust and side loading on the turbine [70]. The experimental data were collected at the Open Jet Facility at Delft University of Technology [70], which comprised a closed loop open jet air flow of 2.85 m × 2.85 m outlet cross section. The wind tunnel test section was 13 m long. Table 1 lists the turbine model parameters, derived from [70].

259 The numerical model neglects the rotor shaft and support struts, and utilizes an unsteady 260 Reynolds-averaged Navier-Stokes (URANS) formulation with $k - \omega$ shear stress transport (SST) 261 turbulence closure scheme in OpenFOAM. The URANS approach is an attractive, computationally 262 inexpensive prospect for far-wake simulation [55]. The $k - \omega$ SST turbulence model used is the 263 original Menter model [71], which has been used successfully for many different types of flows. The 264 SST (shear stress transport) turbulence model combines the k- ε model in the free shear flow, with 265 the $k-\omega$ model in the near wall boundary regions. It is a robust two-equation eddy-viscosity 266 turbulence model [71]. We would like further to develop our vertical-axis turbine model by adding

267 solid support struts as a conventional turbine, which would enable our model to be used to represent

Energies **2019**, *12*, x FOR PEER REVIEW

- 268 a wide range of vertical-axis turbines and turbine farms in the future. We thus chose to use a k- ω
- 269 SST model instead of a k- ε model in this paper. Whilst there would be undoubted merit in exploring 270 the effect of different turbulence models on the results, as undertaken by Barthelmie et al [72], this is
- beyond the scope of the present work, but is recommended for future study.
- 277 Depend the scope of the present work, but is recommended for ratific study.
 272 Table 1. VAT model parameters based on the experimental turbine configuration at Delft [70].

1	1	0	
Property	Symbol	Value / Dimension	
Number of blades	N _{bl}	2	
Turbine diameter	D	1.48 m	
Blade length	L	1.5 m	
Aerofoil type	-	NACA 0021	
Chord	С	0.075 m	
Blade pitch	eta_p	0°	
Freestream flow speed	u_0	4.01 m/s	
Fluid density	ρ	1.207 kg/m^3	
Local Reynolds number	Re_c	19,838	

273 The goal of the validation test is to check the ability of the newly developed numerical model

274 WATTES-V to determine the thrust and side loading on the turbine for different values of azimuthal

angle and tip speed ratio, with future applications to multi-bladed vertical-axis turbines in mind. This

also enabled us to investigate the difference in behaviour between an idealised turbine with fixed tip-

277 speed ratio and a more realistic turbine with torque control.

4. Results and Discussion

281 The three-dimensional (3D) computational domain is configured to be similar to the physical 282 test-section containing the model-scale wind turbine [70]. The domain cross-sectional dimensions 283 are 2.85 m \times 2.85 m, which match the outlet size of the flow contraction section located upstream of 284 the open test section used in the experiments. However, given that the open test section allowed the 285 flow to expand in the Open Jet Facility, it should be noted that the present computational domain 286 (with straight side-walls not allowing the flow to expand) is likely to cause a blockage effect stronger 287 than that in the experiments. The turbine is located 4.5 m downstream of the inlet, at mid elevation 288 of the tunnel. Figure 3 shows a mesh slice in the x-y plane, generated using blockMesh and 289 snappyHexMesh utilities in OpenFOAM. The mesh is refined by a factor of 2 using a hexahedral 290 mesh in a rectangular region containing the turbine and near-wake field, following [73]. Here, mesh 291 refinement is controlled by the number of cells in the (n_x, n_y, n_z) directions. Simulations were 292 performed using the pimpleFoam solver, a merged PISO-SIMPLE algorithm. It should be noted that 293 the azimuthal angle θ used in [70] starts from the *y*-axis, as indicated in the second figure in [70]. In 294 accordance with measurements from [70], the azimuth θ described in the following sections has 295 been transformed to the experimental coordinate system.

296 Initial and boundary conditions are selected to be approximate those in the physical wind tunnel 297 test section. The inflow velocity is fixed at 4.01 m/s inflow. Lateral, bottom, and top walls of the 298 computational domain are represented numerically by slip-flow conditions. A zero pressure gradient 299 is applied at the inlet, and a fixed pressure prescribed at the outlet with zero gradients for other flow 300 variables. Inlet turbulence intensity is ~10%, with turbulence kinetic energy k of 0.24 m²/s² and 301 specific dissipation rate ω of $1.78 \, \text{s}^{-1}$. It should be noted that the computational time for a 302 simulation of ten revolutions was about six core hours for a parallel computation using four 303 computing cores.

304 4.1. Validation and Grid Sensitivity Studies

305 Sensitivity studies concerning spatial and temporal resolution will be discussed in this section. 306 We first considered the convergence of turbine mean thrust coefficient for a tip-speed ratio of 3.3, 307 shown in Figure 4. Mesh refinement is conducted by changing the number of cells in the *x*-direction 308 with a fixed cell aspect ratio and mesh topology. The relative error [74] between the results from the 309 two finest meshes is below 0.5%, indicating that mesh convergence had been achieved. The spatial 310 mesh resolution is hitherto set to 150 cells in the stream-wise x-direction, with about 18 covering 311 a single blade chord, (where the error between the finest mesh and the mesh employed is about 0.4%), 312 giving a total number of 6.72×10^5 cells in the 3D simulation. Details of a mesh sensitivity study of 313 the near-wake vorticity field are provided in the first part of Appendix B. Figure 4(b) displays time-314 step resolution test data, evaluated on the 3D grid with 150 cells in the x-direction. The relative 315 error is below 0.5%, indicating low sensitivity to temporal resolution. In all these convergence tests, 316 the Courant–Friedrichs–Lewy (CFL) number [75] is below 0.58. In this study, we employed $\Delta t =$ 317 0.03 s, corresponding to 120 time steps per revolution, giving a CFL number of 0.23. Simulations 318 were carried out lasting at least 10 revolutions, with periodic convergence reached after 9 319 revolutions when the difference in maximum turbine thrust between successive revolutions was 320 0.06%.

323 4.2. Two-Bladed H-Type Vertical-Axis Wind Turbine: Fixed Tip Speed Ratio

We now present results obtained for a two-bladed H-type vertical axis wind turbine where the tip speed ratio is set to a fixed value. Figure 5 compares the numerical predictions and measured thrust and lateral force components on the rotor for an incoming flow speed of 4.01 m/s, a fixed pitch angle of 0°, and a tip-speed ratio (TSR) of 3.7. The measurements were averaged over 22 turbine rotations. It can be seen that the numerical predictions and experimental measurements of the force 329 components in both *x*- and *y*- directions are similar in terms of amplitude and profile, with the 330 maximum thrust loading experienced at the blade azimuth at 90° and 270°.

Figure 5. Comparison between predicted and measured [70] thrust and lateral forces on a wind turbine rotor of a two-bladed H-type vertical-axis wind turbine for an incoming flow speed of

4.01 m/s, fixed pitch blade angle of 0° , and tip speed ratio of 3.7.

Figure 6. Comparison between predicted and measured [70] mean thrust coefficient C_T as a function of tip speed ratio in the range from 2.7 to 3.7, for a wind turbine rotor of a two-bladed H-type vertical-axis wind turbine with incoming flow speed of 4.01 m/s and fixed pitch blade angle of 0°.

337 We next study the effect of tip speed ratio on the mean thrust coefficient, carrying out numerical 338 simulations that reproduce the experimental tip speed ratios of 2.7, 2.9, 3.1, 3.3, and 3.7. There is 339 good overall agreement in the general trends of the model predictions and experimental data on the 340 x-direction force coefficient as a function of TSR (Figure 6). The obvious overshoot is most likely 341 caused by the blockage effect. The actual cross section of the experiments is supposed to be much 342 wider than the outlet width of the open jet, where the blockage effect in the numerical simulations is 343 stronger than in the experiments. A lack of information on the turbulence intensity of the wind tunnel 344 experiments may also be a factor behind the discrepancy. Appendix B provides a more detailed 345 discussion of the sensitivity of the model to inlet turbulence level and downstream domain length. It 346 is found that the results are sensitive to inlet turbulence intensity, but not to a doubling of 347 downstream domain length.

348Figure 7. Comparison between predicted and measured [70] thrust and lateral force coefficients for349different values of tip-speed ratio (TSR) (2.9, 3.3, and 3.7) as functions of azimuthal angle: (a) Thrust350coefficient C_T ; and (b) Lateral force coefficient F_v .

351 Figure 7 depicts the variation in force coefficients in the x- and y- directions with azimuthal 352 angle for three selected TSR values. Amplitudes of both the predicted and measured force coefficients 353 increase progressively with TSR. This is because the blade velocity and hence the relative flow 354 velocity experienced by the blades increase as TSR is raised; the increased velocities then augment 355 the blade load. There appears to be satisfactory overall agreement between the numerical predictions 356 and measurements of C_T and F_v for TSR values of 3.3 and 3.7. However, there are more noticeable 357 discrepancies between the predicted and measured values of C_T and F_y for TSR 2.9; this is because 358 the angle of attack exceeds the critical angle for parts of each rotation when TSR is 2.9, causing stall 359 to occur.

Figure 8. Lift coefficient as a function of local angle of attack at each grid point predicted by the VAT
 model for TSR = 2.9, compared with measurements for a static airfoil [76]; the red dashed lines show
 the range of local angle of attack.

Energies 2019, 12, x FOR PEER REVIEW

363 Figure 8 illustrates the reduction in the lift coefficient that occurs at TSR = 2.9 as the critical angle 364 of attack of the foil is exceeded at such a low value of TSR. It should be noted that data for cases where 365 TSR < 2.5 were excluded from the experimental analysis because of this kind of poor aerodynamic 366 performance [70]. The higher TSR values (i.e. > 2.9) considered in the validation case are sufficiently 367 large to be outside the range in which dynamic stall is likely to occur, and the predicted and measured 368 values of C_T and F_v almost match. However, as the local velocity of the blades increases, so does the 369 local Reynolds number based upon chord length, Rec, which in turn affects the dynamic performance 370 of the airfoil. In future work, the dynamic stall problem could be solved for the modelled vertical-axis 371 turbines by controlling the blade nitch to attain an even or higher pressure drop along the whole 0° at

374Figure 9. Flow patterns at eight different phases during a single revolution for TSR = 3.7: (a) Velocity375magnitude (m/s); (b) z-component of vorticity (s^{-1}); and (c) Turbulence kinetic energy (m^2/s^2) in the376central horizontal x-y plane.

Z

377 Figure 9 shows plan views of the evolving velocity magnitude, vorticity z-component fields, and 378 turbulence kinetic energy contours in the horizontal x-y plane at eight different phases during one 379 revolution of the 2-bladed VAT operating at TSR = 3.7. The white blades are shown for interpretation 380 only, and the $k-\omega$ SST model behaves like a $k-\varepsilon$ model even near the blades (as in the free shear flow). 381 θ is the azimuthal angle of the first blade measured from the experimental turbine in the anti-clockwise 382 direction. The incoming flow passes through an annulus mapped out by the anti-clockwise rotating 383 turbine, with vorticity generated on the surface of the blade and a turbulent wake developing 384 downstream. The rotor interacts with its own wake, especially for azimuthal angles of 90° and 270°, 385 causing the thrust to increase. Vortex shedding starts to occur when the first rotor blade reaches an 386 azimuthal position of about 180°. Vortices detach periodically from the turbine, and move to the 387 downstream low-pressure wake field. This vortex shedding process drives oscillations in the local flow 388 field affecting the forces on the rotor blades. The highest turbulence kinetic energy is observed at about 389 90° or 270° of the azimuthal position.

Figure 10 illustrates an instantaneous three-dimensional vorticity field around the turbine. It can be seen that a smooth, quasi-two-dimensional shear layer, as a consequence of using URANS turbulence modelling, is created behind a blade moving towards the upstream direction. The blade then turns into the downstream direction and sheds large and more three-dimensional (spanwisemodulated) vortices. Strong tip vortices then interact with the shed vortices, and create a complex downstream wake field.

Figure 11. Variance of angle of attack as a function of azimuthal angle at TSR = 3.7.

Figure 11 shows the variance in angle of attack experienced by the two blades during a single revolution. This arises due to the blade shedding sheet vortices, which then break up into three-

400 dimensional turbulence when the blade moves towards the downstream direction, giving greater

Energies 2019, 12, x FOR PEER REVIEW

- 401 variation in the angle of attack across the blade. This highlights where the flow around the blades
- 402 experiences strong variations, and this coincides with where vortex detachment occurs during each
- 403 revolution.
- 404 The variance is calculated from:

$$Var(X) = E[X^{2}] - E[X]^{2} = \sum_{i=1}^{N_{nd}} (p_{i} x_{i}^{2}) - \mu^{2}, \qquad (21)$$

- 405 where *X* is a discrete random variable, E is an expectation operator, N_{nd} is the total number of nodes 406 in the region of the blade, p_i is the probability mass function, α_i is the local angle of attack at point
- 407 *i*, and $\mu = E[X]$ (or α) is the mean weighted value of angle of attack, given by

$$p_i x_i^2 = p_i \alpha^2 = \frac{\eta_i(d_i) \alpha_i^2}{\eta(d_i)} = \frac{\eta_i(d_i) \alpha_i^2}{\sum_{i=1}^{N_{nd}} \eta_i(d_i)'}$$
(22)

and

$$\mu = \frac{\sum_{i=1}^{N_{nd}} \eta_i(d_i) \,\alpha_i}{\eta(d_i)} = \frac{\sum_{i=1}^{N_{nd}} \eta_i(d_i) \,\alpha_i}{\sum_{i=1}^{N_{nd}} \eta_i(d_i)}.$$
(23)

408 A similar method was used in an earlier study [56]. The maximum variance occurs at the first 409 rotor blade azimuth of 180° and the second blade azimuth of 0° or 360° (Figure 11). This three-410 dimensionality might be due to shear flow instability, which is similar to that observed for a 2D 411 pitching airfoil when its angle of attack decreases. The variance profiles are asymmetric with 412 azimuthal angle, with large changes occurring after vortex detachment.

413 **Figure 12.** Near wake flow at x/D = 1 and z/H = 0: (a) Slices through the mean velocity field in 414 the *y*-*z* and *x*-*y* planes at TSR = 3.7; (b) Slices through the mean turbulence kinetic energy contours 415 at TSR = 3.7; (c) Mean stream-wise velocity profiles for TSR = 2.9, 3.3, and 3.7; and (d) Mean 416 turbulence kinetic energy profiles for TSR = 2.9, 3.3, and 3.7.

417 Figure 12 presents an overview of the downstream wake evolution behind the turbine with the 418 distribution of the mean stream-wise velocity and the turbulence kinetic energy in the near-wake 419 region at x/D = 1. The mean velocity field for TSR = 3.7, shown in Figure 12(a), is obviously 420 asymmetric in the transverse (y) direction. The mean wake deficit in Figure 12(c) describes the 421 characteristic of the mean velocity as it recovers rapidly on the coarse mesh [77-79] for the three 422 selected tip speed ratios. Minimum values of mean velocities were found predominantly to occur at 423 $y \sim 0.35D$. In the bypass flow at y/R > 1.5, the stream-wise velocity component reaches 424 approximately $|U/U_0| = 1.1$, due to the blockage effect. Turbulence kinetic energy profiles in the 425 vicinity of the rotor also exhibit clear asymmetry, with a peak at $y/R \sim -0.2$.

429 Figure 13 shows the lateral profiles of stream-wise mean velocity (Figure 13(a)-(c)) and 430 turbulence kinetic energy (Figure 13(d)–(f)) at x = 1D - 5D downstream for TSR = 2.9, 3.3, and 3.7 431 respectively. The near-wake region (roughly x/D < 2) is characterised by a low-momentum area 432 isolated from the ambient flow in the presence of vortices, whereas the transition region (roughly 433 2 < x/D < 5) is characterised by fast momentum recovery, high levels of turbulence, and expansion 434 of the wake [80]. In Figure 13(a)–(c), the asymmetry of mean velocity profiles is more visible closer to 435 the turbine centre in the near-wake region. In Figure 13(d)–(f), the mean turbulence kinetic energy 436 profiles are W-shaped. The two peaks are in accordance with those of the mean velocity profiles; 437 however, the maximum peak of the turbulence kinetic energy is located on the side with negative y, 438 not on the side with positive y where the largest velocity deficit is observed. This is presumably due 439 to the (aforementioned) large vortices that shed when the blade motion is in the same direction as the 440 flow velocity in this area. These vortices play a key role, and affect mixing between the ambient flow 441 and the low-velocity wake flow. Comparing the shape of these wake deficits with results from other 442 published models of vertical-axis turbines [30,80], it can be stated that these characteristics of the 443 mean velocity and turbulence kinetic energy profiles agree qualitatively with these previous studies 444 of vertical-axis turbine wakes. For example, the shape of the mean stream-wise velocity profile of the 445 present model corresponds well with those of experimental profiles presented in Figure 9 (left) in [30] 446 and Fig. 5. (a) in [80], where the lowest values of U/U_0 are both located close to y = 0.35D. The shape 447 of the turbulence kinetic energy profile exhibits good agreement with the experimental profile in 448 Figure 9 (right) in [30], especially for areas in the vicinity of both peaks, and is in even better 449 accordance than the University of New Hampshire reference vertical-axis turbine (UNH-RVAT) 450 model used in [30]. For the Edinburgh turbine (see Figure 1), the bending stresses at both ends are 451 decreased by a factor of nearly four, with the red rings suppressing tip-vortex losses caused by the 452 adjacent foils at different angles. Although the rings experience drag, the spoked wheel could well 453 be a more efficient load-bearing structure than a tower, which experiences vortex shedding in 454 addition to drag [65].

455 4.3. Two-Bladed H-Type Vertical-Axis Wind Turbine: Torque-Controlled Tip Speed Ratio

456 **Figure 14.** Variation of angular velocity ω as a function of azimuthal angle in the torque-controlled 457 system at TSR = 3.3.

We now present results obtained for a two-bladed H-type vertical axis wind turbine where the rotational speed of the blades is controlled by the torque. Figure 14 shows the limit cycle variation of the turbine angular velocity against azimuthal angle of the first blade, where the rotor is dynamically driven by the incoming wind flow. The predicted mean angular velocity ω in the torque-controlled model is 17.87 *rad/s*. This value is slightly smaller than that of the initial angular velocity (of 17.88 *rad/s*, calculated from $\omega_{ini} = \frac{\text{TSR} u_0}{R}$) used to set the rotor in motion. In general, the turbine

settles down until the energy losses due to drag and the generator are balanced by the energyextracted from the fluid through lift.

466Figure 15. Variation of torque coefficient C_Q as a function of azimuthal angle at TSR = 3.3: (a)467Comparison between results from the model with fixed TSR and its torque-controlled counterpart; (b)468Enlarged zone of C_Q variation in the torque-controlled model.

469 The torque coefficient C_Q is calculated by using the dynamic generator torque data as $C_Q = 470 \frac{\tau_{pow}}{\frac{1}{2}\rho u_0^2 (D L) R}$. Figure 15 shows a comparison of the torque coefficient results obtained for the fixed tip-

471 speed ratio and torque-controlled cases. As shown in Figure 15(a), the predicted C_Q for the model 472 with fixed tip-speed ratio keeps changing through one rotor-revolution, whereas the C_Q for the 473 torque-controlled model remains almost constant with azimuthal angle. Figure 15(b) presents an 474 enlarged graph of C_Q variation for the torque-controlled case, where C_Q experiences less than 0.1% 475 change with azimuthal angle. This can be explained by the high mass density of the blades, whose 476 angular momentum becomes a source of torque for the generator when fluid torque drops. This 477 behaviour is not present in the fixed tip-speed model, as the torque accelerating the blades is by

478 necessity always zero.

479Figure 16. Comparison between predicted (including the model with fixed TSR and the torque-480controlled model) and measured [70] thrust and lateral force coefficients for TSR= 3.3 as functions of481azimuthal angle: (a) thrust coefficient C_T ; and (b) lateral force coefficient F_v .

Figure 16 displays the thrust and lateral force coefficients as functions of the azimuthal angle obtained from the fixed tip-speed ratio model, the measured data [70], and the torque-controlled 484 model (where the thrust derives purely from the aerodynamic flow driving the turbine). Satisfactory 485 overall agreement can be seen between the numerical predictions and measurements of C_T and F_y 486 for TSR values of 3.3, as shown in Figure 16(a)(b). However, there are still some noticeable 487 discrepancies evident between the torque-controlled model predictions, the fixed tip-speed ratio 488 model predictions, and the experimental measurements, especially regarding F_y in Figure 16(b).

489 5. Conclusions

490 This paper has presented a newly developed, efficient, parallelised, numerical model that 491 simulates turbulent flow through vertical-axis turbines with a torque-controlled system, as well as 492 with a fixed tip-speed ratio system. This computationally efficient numerical model WATTES-V of a 493 single cross-flow turbine was developed within the OpenFOAM CFD framework. The model is based 494 on actuator line theory, and combines classical blade element theory, an unsteady Reynolds-averaged 495 Navier–Stokes flow model, and a $k-\omega$ SST turbulence model.

496 This numerical model with fixed tip-speed ratio was validated against experimental data 497 acquired from an H-type 2-bladed vertical-axis wind turbine [70]. The model gives numerical 498 predictions in satisfactory overall agreement with experimental data on thrust and lateral loading. It 499 is planned that the present cross-flow turbine model will be employed in future research on wakes 500 behind close-packed contra-rotating vertical-axis tidal turbines [12]; hence, the support struts and 501 tower shaft for a normal H-type vertical-axis turbine have not been considered herein. The present 502 results show that vortex shedding occurs at the azimuthal position of the first rotor blade, at about 503 180°. Vortices detach periodically from the turbine, and the resulting interactions create a complex 504 downstream wake. The angle of attack for each blade did not exceed 20° in the present study, and 505 so dynamic stall could be ignored. However, for future studies based on the present numerical model, 506 either a dynamic stall model could be added as a correction, or a pitch-controlled system could be 507 used to limit the angle of attack to an optimum value.

508 The wake field predicted by the present vertical-axis turbine model with fixed tip-speed ratio 509 may be divided into two distinct regions. The near-wake region features a low-momentum zone 510 where vortices shed from the turbine have a significant influence on the low-velocity region. The 511 wake deficit in the transitional-wake region exhibits momentum recovery due to entrainment of 512 ambient flow into the wake, and generates asymmetric velocity profiles about the wake centreline. 513 Analysis of wake turbulence behind a single vertical-axis turbine could facilitate better 514 understanding of key flow features that contribute to wake recovery behind an array of close-packed 515 contra-rotating vertical-axis turbines in future work. The sensitivity study on the turbulence 516 parameters of the inlet flow and the downstream domain length (discussed in the Appendix B) 517 should be useful for future experimental tests and numerical validations.

518 Dynamic predictions made by the present numerical model with torque-controlled tip-speed 519 ratio are in satisfactory overall agreement with corresponding results from the fixed tip-speed ratio 520 model and experimental data [70] on thrust and lateral loading. In the former case, the rotor is 521 demonstrably driven by the blade-generated lift, which is counteracted by the torque that accelerates 522 the blades and turns the generator. The present model should be useful in the future by enabling 523 predictions of the dynamic response of practical vertical-axis turbines to unsteady flow.

Author Contributions: Funding acquisition, V.V; Investigation, R.Z; Methodology, R.Z and A.C.W.C;
Supervision, A.C.W.C, A.G.L.B, T.N and V.V; Writing—original draft, R.Z; Writing—review & editing, A.C.W.C,
A.G.L.B and T.N.

527 **Funding:** This research was funded by Flowturb project.

528 Acknowledgments: The first-named author is supported by funding awarded by the China Scholarship Council

529 and the University of Edinburgh. The authors thank Prof. Stephen Salter for insightful suggestions that have

530 informed the present research. The work was partly funded by the UK Engineering and Phyiscal Sciences 531 through the FloWTurb project (EP/N021487/1).

532 **Conflicts of Interest:** The authors declare no conflict of interest.

533 Nomenclature

Variable	Description
С	Blade chord (m)
C_{L}, C_{D}	Lift and drag coefficients
d_i	Smallest distance between a given point and the i^{th} actuator line (m)
$\overrightarrow{e_L}, \overrightarrow{e_D}$	Unit vectors in lift and drag directions
E_d , E_g	Drive train efficiency, conversion efficiency
$f_{L'}$, f_{L_i}	Lift component per unit span on the i^{th} blade (N/m)
f_{D}, f_{D_i}	Drag component per unit span on the i^{th} blade (N/m)
F_L , F_D	Turbine lift and drag forces per unit span (N/m)
F_t , F_n	Tangential and normal forces per unit span (N/m)
F_x , F_y	Body forces per unit span in x - and y -axis directions (N/m)
Ι	Moment of inertia $(kg \cdot m^2)$
L	Blade length (m)
m	Blade mass per unit span (kg/m)
N _{bl}	Number of blades
P _{real} , P _{ideal}	Actual power, instantaneous power (W)
r	Radial distance from the rotor centre (m)
Re	Reynolds number
Т	Thrust (N)
u	Local inflow velocity (m/s)
u_0	Freestream velocity (m/s)
u_{bl}	Blade velocity (m/s)
u _{rel}	Flow relative velocity (m/s)
u_{az}	Azimuthal component of the fluid velocity (m/s)
u, v, w	Three components of local velocity (m/s)
(x, y, z)	Coordinates in the original reference frame (m)
(x', y', z')	Coordinates in the blade reference frame (m)
α	Angle of attack (rad)
β	Corrected pitch (rad)
β_p	Blade pitch (rad)
β_t	Local blade twist angle (rad)
η_i	Gaussian regularization
θ	Azimuthal angle (rad)
$ heta_{rel}$	Relative angle (rad)
ρ	Fluid density (kg/m ³)
σ	Width of the Gaussian kernel
$ au_{fl}, \ au_{pow}, \ au_{bl}$	Fluid torque, generator torque, blade torque (N \cdot m)
ω_{bl}	Blade angular velocity (rad/s)
ώ	Blade angular acceleration (rad/s ²)

534 Appendix A

535 Model Architecture

536 The Wind and Tidal Turbine Embedded Simulator (WATTES) [56,54] code is an open library 537 source code written in Fortran 95, which employs both the dynamic torque-controlled actuator disc 538 and the actuator line methods with active-pitch correction to simulate the behaviour of multiple wind 539 and tidal horizontal-axis turbines, together with a simplified generator model. Compared with other 540 momentum codes, WATTES predicts the dynamic response of the device to the flow, with lift and 541 drag force components balanced by inertial effects and the resistive torque induced by the generator. 542 Force components are incorporated within the incompressible Navier-Stokes momentum equations 543 as body force components [54]. For computational efficiency, WATTES exploits parallel 544 programming based on multiple instructions multiple data (MIMD) [52] through the Message 545 Passaging Interface protocol (MPI). The solution is computed on a number of processors that function 546 asynchronously and independently. The original WATTES model simulated flows using Fluidity, 547 which is an open-source hr-adaptive multiphase computational fluid dynamics (CFD) solver based 548 on an unstructured finite element method and offers anisotropic mesh refinement, developed mainly 549 by researchers at Imperial College London [81]. The original WATTES source code was used to 550 represent horizontal-axis turbines within the OpenFOAM [65] CFD framework, and formed the basis 551 of the modified numerical model WATTES-V used herein to simulate flow past a vertical-axis turbine. 552 OpenFOAM is freely available open-source CFD software based on the finite volume method on 553 general unstructured polyhedral meshes, and is written in C++. In order to benefit from the 554 advantages provided by the original WATTES source code, proper coupling of WATTES and 555 OpenFOAM was a necessary prerequisite before the further development of WATTES-V model 556 described in the present study.

557 **Figure A1.** Flow chart of coupled OpenFOAM-WATTES program.

558 The flow chart in Figure A1 summarises the coupled OpenFOAM-WATTES procedure. The 559 main structure of OpenFOAM comprises four main directories: core OpenFOAM libraries (named 560 src), solvers and utilities (applications), test cases that demonstrate a wide-range of OpenFOAM 561 functionality (tutorials), and documentation (named doc). OpenFOAM is a collection of 562 approximately 250 applications built upon a collection of over 100 software libraries (modules). Each 563 application performs a specific task within a CFD workflow. Case setup is described by steering a 564 collection of files in a tutorial directory, providing details of the mesh, physical models, solver, post-565 processing controls, etc. To couple the WATTES model with OpenFOAM, an interface program 566 linking WATTES model was written in the src directory via a dynamic library with wrapper functions. 567 The velocity field and momentum sources of the WATTES model were mapped to correspond

1.2

568 correctly with those in OpenFOAM. A new fvOptions framework is introduced for run-time 569 selectable physics by representing the force components from the WATTES model as momentum 570 sources in the governing equations in OpenFOAM.

571 Appendix B

572 This Appendix presents results from tests which examine the influence of mesh convergence on 573 the vorticity field in the near wake, the choice of inlet turbulence parameter, and the length of the 574 downstream domain dimension.

5/4 downstream domain dimension.

575 Effect of Mesh Convergence on Near-Wake Vorticity Field

578 Figure B1 presents horizontal profiles of turbine mean streamwise velocity at a tip-speed ratio 579 of 3.3 in the near-wake region computed on coarse, medium, and fine meshes (with $N_x = 150$, $N_x =$ 580 180, and $N_x = 375$ cells respectively in the x-direction). The figure illustrates model sensitivity to 581 spatial resolution. Satisfactory agreement is generally achieved between the profiles obtained on the 582 different meshes, although some slight discrepancies are evident, the relative two-norm errors [56] 583 are 2.80%, 2.44%, 1.94% respectively, which are all under 3% and are within acceptable margins. 584 We find that a spatial grid resolution of 150 cells in the x-direction, giving a total number of 6.72×10^5 cells in a 3D simulation, is sufficient to achieve mesh convergence. 585

586 Sensitivity Analysis concerning Inlet Turbulence Parameters

587 Turbulence intensity (TI) is defined as the ratio of the root-mean-square of flow velocity 588 fluctuations $u' \equiv \sqrt{\frac{1}{3}(u'_x{}^2 + u'_y{}^2 + u'_z{}^2)}$ to the mean flow speed $U \equiv \sqrt{U_x{}^2 + U_y{}^2 + U_z{}^2}$ [48], and is 589 expressed:

$$TI \equiv \frac{u'}{U} = \sqrt{\frac{2}{3} \cdot \frac{k}{U^2'}}$$
(B1)

590 where *k* is turbulence kinetic energy (TKE). A value for TKE at the inlet is thus calculated from 591 Equation (B1) for a given TI [82]. The specific dissipation rate ω used in the *k*- ω SST turbulence 592 model in OpenFOAM is calculated using the following formula [83]:

$$\omega = \frac{k^{0.5}}{C_{\mu}l'} \tag{B2}$$

593 where C_{μ} is a turbulence model constant equal to 0.09, and *l* is the turbulence length scale.

594 Sensitivity of the results to the inlet turbulence parameters is examined by setting different inlet 595 values of k and ω calculated from Equations (B1) and (B2) for a range of turbulence intensity values 596 from 0.1% to 20%, with TSR = 3.3. The results are shown in Figure B2.

597 **Figure B2.** Inlet turbulence conditions and their effects on the vertical-axis turbine model for TI = 598 0.1%, 0.5%, 1%, 5%, and 20%: (a) specific dissipation rate (ω) versus turbulence kinetic energy 599 (TKE or *k*), and (b) thrust coefficient versus TI.

Figure B2 displays the variation of specific dissipation rate with turbulence kinetic energy, and the thrust coefficient with turbulence intensity for the vertical-axis turbine model. It can be seen that the mean thrust coefficient tends to decrease as TI increases. In particular, as TI varies from 0.1% to 20%, the thrust coefficient decreases by 6.34%. This indicates that the choice of level of turbulence intensity at the inlet can have a substantial effect on the thrust value of a vertical-axis turbine. However, the change of thrust coefficient is only about 1.72% for a more realistic range of TI between 1% and 10%.

607 Sensitivity Analysis concerning Downstream Domain Size

To investigate the impact of the limited downstream domain size on the results, we doubled the stream-wise length of the downstream domain, for a case of fixed TSR = 3.3, and compared the thrust and lateral force coefficients obtained using the two domains.

611Figure B3. Comparison of predicted force coefficients obtained on meshes of downstream length 6D612and 12D, for TSR = 3.3 as functions of azimuthal angle: (a) thrust coefficient C_T ; and (b) lateral force613coefficient F_y .

614 Figure B3 shows that very satisfactory agreement is obtained for the values of C_T and F_y on the 615 two domains, for a fixed TSR = 3.3; relative errors between the coefficients obtained using the 616 different domains lie below 0.057%. This confirms that the downstream length utilized in the main

617 paper is adequate.

618 References

- 619 1. IEA. *Energy and Climate Change*; World Energy Outlook Special Report; Paris, France, IEA: 2015; Volume
 620 479, pp. 1–200.
- 621 2. EIA. *International Energy Outlook 2017*; U.S. Energy Information Administration, Office of Energy Analysis,
 622 US Department of Energy: Washington, DC, USA, 2017; p. 20585.
- 623 3. Borthwick, A.G.L. Marine Renewable Energy Seascape. *Engineering* **2016**, *2*, 69–78.
- 624 4. International Energy Agency. Solutions for the 21st Century; International Energy Agency, Paris, France,
 625 2002.
- Wong, K.H.; Chong, W.T.; Sukiman, N.L.; Poh, S.C.; Shiah, Y.-C.; Wang, C.-T. Performance enhancements
 on vertical axis wind turbines using flow augmentation systems: A review. *Renew. Sustain. Rev.* 2017, 73,
 904–921.
- 6. Salter, S.H. Are nearly all tidal stream turbine designs wrong? In Proceedings of the 4th International
 Conference on Ocean Energy, Dublin, Ireland, 17–19 October 2012.
- 631 7. Sutherland, H.J.; Berg, D.E.; Ashwill, T.D. *A Retrospective of VAWT Technology*; Technical report, Sandia
 632 Report, SAND2012-0304; Sandia National Laboratories: Albuquerque, NM, USA, 2012.
- 633 8. Strom, B.; Johnson, N.; Polagye, B. Impact of blade mounting structures on cross-flow turbine performance.
 634 *J. Renew. Sustain. Energy* 2018, 10, 034504.
- 635 9. Sahim, K.; Santoso, D.; Puspitasari, D. Investigations on the effect of radius rotor in combined Darrieus636 Savonius wind turbine. *Int. J. Rotating Mach.* 2018, 3568542.
- 637 10. Subramanian, A.; Yogesh, S.A.; Sivanandan, H.; Giri, A.; Vasudevan, M.; Mugundhan, V.; Velamati, R.K.
 638 Effect of airfoil and solidity on performance of small scale vertical axis wind turbine using three
 639 dimensional CFD model. *Energy* 2017, 133, 179–190.
- 640 11. Dyachuk, E. Aerodynamics of Vertical-Axis Wind Turbines-Development of Simulation Tools and
 641 Experiments. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 2015.
- 642 12. Salter, S.H.; Taylor, J.R.M. Vertical-axis tidal-current generators and the Pentland Firth. *IMechE J. Power* 643 *Energy* 2006, 221, 181–199.
- Suffera, K.H.; Usubamatovb, R.; Quadirc, G.A.; Ismaild, K. Modeling and numerical simulation of a vertical axis wind turbine having cavity vanes. In Proceedings of the 5th International Conference on Intelligent Systems, Modelling and Simulation, IEEE, Langkawi, Malaysia, 27–29 January 2014.
- 647 14. Dillmann, A.; Heller, G.; Klaas, M.; Kreplin, H.P.; Nitsche, W.; Schröder, W. New Results in Numerical and
 648 *Experimental Fluid Mechanics VII*; Contributions to the 16th STAB/DGLR Symposium Aachen, Germany
 649 2008.
- 650 15. Hameed, M.S.; Shahid, F. Evaluation of aerodynamic forces over a vertical axis wind turbine blade through
 651 CFD analysis. *J. Appl. Mech. Eng.* 2012. doi:10.4172/2168-9873.1000116.
- 652 16. Almohammadi, K.M.; Ingham, D.B.; Ma, L.; Pourkashanian, M. CFD sensitivity analysis of a straight-blade
 653 vertical axis wind turbine. *Wind Eng.* 2012, *36*, 5, 571–588.
- 654 17. Ghatage, S.V.; Joshi, J.B. Optimisation of vertical axis wind turbine: CFD simulations and experimental
 655 measurements. *Can. J. Chem. Eng.* 2012, *90*, 1186–1201.
- 18. Zhang, L.X.; Liang, Y.B.; Liu, X.H.; Jiao, Q.F.; Guo, J. Aerodynamic performance prediction of straightbladed vertical axis wind turbine based on CFD. *Adv. Mech. Eng.* 2013, *5*, 905379.
- Muneer, A.; Khan, M.B.; Sarwar, U.B.; Khan, Z.A.; Badar, M.S. CFD analysis of a Savonius Vertical axis
 wind turbine. In Proceedings of the 2015 Power Generation Systems and Renewable Energy Technologies,
 Islamabad, Pakistan, 10–11 June 2015.
- Asim, T.; Mishra, R.; Kaysthagir, S.; Aboufares, G. Performance comparison of a vertical axis wind turbine
 using commercial and open source computational fluid dynamics based codes. In Proceedings of the
 International Conference on Jets, Wakes and Separated Flows, Stockholm, Sweden, 16–18 June 2015.
- Alaimo, A.; Esposito, A.; Messineo, A.; Orlando, C.; Tumino, D. 3D CFD Analysis of a Vertical Axis Wind
 Turbine. *Energies* 2015, *8*, 3013–3033.
- Bai, C.J.; Lin, Y.Y.; Lin, S.Y.; Wang, W.C. Computational fluid dynamics analysis of the vertical axis wind
 turbine blade with tubercle leading edge. *J. Renew. Sustain. Energy* 2015, *7*, 033124.
- Rezaeiha, A.; Kalkman, I.; Blocken, B. CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: Guidelines for minimum domain size and azimuthal increment. *Renew. Energy*2017, 107, 373–385.

- 674 25. Naccache, G.; Paraschivoiu, M. Development of the dual vertical axis wind turbine using computational
 675 fluid dynamics. *J. Fluids Eng.* 2017, 139, 121105.
- 676 26. Kao, J.H.; Tseng, P.Y. Application of computational fluid dynamics (CFD) simulation in a vertical axis wind
 677 turbine (VAWT) system. *IOP Conf. Ser. Earth Environ.* 2018, *114*, 012002.
- 678 27. Li, C.; Xiao, Y.; Xu, Y.; Peng, Y.; Hu, G.; Zhu, S. Optimization of blade pitch in H-rotor vertical axis wind
 679 turbines through computational fluid dynamics simulations. *Appl. Energy* 2018, *212*, 1107–1125.
- 680 28. Gokulnath, R.; Devi, P.B.; Senbagan, M.; Manigandan, S. CFD analysis of Savonious type vertical axis wind
 681 turbine. *IJMET* 2018, *9*, 1378–1383.
- 682 29. Elsakka, M.M.; Ingham, D.; Ma, L.; Pourkashanian, M. CFD analysis of the angle of attack for a vertical axis
 683 wind turbine blade. *Energy Convers. Manag.* 2019, *182*, 154–165.
- 684 30. Bachant, P.; Goude, A.; Wosnik, M. Actuator line modelling of vertical-axis turbines. *arXiv* 2018, arXiv:1605.01449v4.
- 686 31. Burton, T.; Jenkins, N.; Sharpe, D.; Bossanyi, E. *Wind Energy Handbook*, 2nd ed.; Wiley, US, 2011.
- 687 32. Okpue, A.S. Aerodynamic Analysis of Vertical and Horizontal Axis Wind Turbines. Master's Thesis,
 688 Michigan State University, East Lansing, MI, USA, 2011.
- 689 33. Shires, A. Development and Evaluation of an Aerodynamic Model for a Novel Vertical Axis Wind Turbine
 690 Concept. *Energies* 2013, *6*, 2501–2520.
- 691 34. Bianchini, A.; Balduzzi, F.; Haack, L.; Bigalli, S.; Müller, B.; Ferrara, G. Development and Validation of a
 692 Hybrid Simulation Model for Darrieus Vertical-Axis Wind Turbines. In Proceedings of the ASME Turbo
 693 Expo 2019: Turbomachinery Technical Conference and Exposition GT2019-91218, Phoenix, Arizona, USA,
 694 17–21 June 2019.
- 695 35. Mikkelsen, R.F. Actuator Disc Methods Applied to Wind Turbines. Ph.D. Thesis, MEK-FM-PHD, No. 2003696 02, Technical University of Denmark, Lyngby, Denmark, 2004.
- 697 36. Newman, B.G. Actuator-disc theory for vertical-axis wind turbines. J. Wind Eng. Ind. Aerodyn. 1983, 15, 347–
 698 355.
- 699 37. Linton, D.; Barakos, G.; Widjaja, R.; Thornbern, B. A new actuator surface model with improved wake
 700 model for CFD simulations of rotorcraft. In Proceeding of the 73rd Annual Forum and Technology Display
 701 of the American Helicopter Society, Fort Worth, TX, USA, 9–11 May 2017.
- 38. Shen, W.; Zhang, J.; and Sorensen, J. The actuator surface model: A new Navier-Stokes based model for
 rotor computations. *J. Sol. Energy Eng.* 2009, 131, 011002.
- Massie, L.; Ouro, P.; Stoesser, T.; Luo, Q. An Actuator Surface Model to Simulate Vertical Axis Turbines.
 Energies 2019, *12*, 4741.
- 40. Bachant, P.; Wosnik, M. Characterising the near-wake of a cross-flow turbine. J. Turbul. 2015, 16, 392–410.
- Riva, L.; Giljarhus, K.E.; Hjertager, B.; Kalvig, S.M. Implementation and application of the actuator line
 model by OpenFOAM for a vertical axis wind turbine. *IOP Conf. Ser. Mater. Sci. Eng.* 2017, 276, 012002.
- 709 42. Sørensen, J.N.; Shen, W.Z. Numerical modelling of wind turbine wakes. J. Fluids Eng. 2002, 124, 393–399.
- Troldborg, N. Actuator Line Modelling of Wind Turbine Wakes. Ph.D. Thesis, Technical University of
 Denmark, Nils Koppels Allé, Building 403, DK-2800 Lyngby, Denmark, June 2008.
- 44. Martinez, L.; Leonardi, S.; Churchfield, M.; Moriarty, P. A comparison of actuator disk and actuator line
 wind turbine models and best practices for their use. *AIAA J.* 2012, *16*. doi:10.2514/6.2012-900.
- 5. Shamsoddin, S.; Porté-Agel, F. Large Eddy Simulation of vertical axis wind turbine wakes. *Energies* 2014, 715
 7, 890–912.
- 716 46. Reynolds, O. On the dynamical theory of incompressible viscous fluids and the determination of the
 717 criterion. *Philos. Trans. R. Soc. Lond. A* 1895, *186*, 123–164.
- 47. Hanjalic, K.; Launder, B. A Reynolds stress model of turbulence and its application to thin shear flows. *J. Fluid Mech.* 1972, 52, 609–638.
- 48. Wilcox, D.C. *Turbulence Modelling for CFD*, 2nd ed.; DCW Industries: Inc.: La Canada, CA, USA, 1998.
- 49. Wilcox, D.C. Formulation of the k-omega Turbulence Model Revisited. AIAA J. 2008, 46, 11.
- 50. Deardorff, J. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J.
 Fluid Mech. 1970, 41, 453–480.

724 725	51.	Smagorinsky, J. General Circulation Experiments with the Primitive Equation. <i>Mon. Weather Rev.</i> 1963 , <i>91</i> , 99.
726 727	52.	Creech, A.C.W. A Three-Dimensional Numerical Model of a Horizontal Axis, Energy Extracting Turbine. Ph.D. Thesis Heriot-Watt University Edinburgh Scotland UK March 2009
728 729	53.	Creech, A.; Früh, WG.; Clive, P. Actuator volumes and hr-adaptive methods for three-dimensional simulation of wind turbine wakes and performance. <i>Wind Evergy</i> 2011 , 15, 847–863
730 731	54.	Creech, A.C.W.; Früh, W.G.; Maguire, A.E. Simulations of an offshore wind farm using large eddy
731	55.	simulation and a torque-controlled actuator disc model. <i>Surv. Geophys.</i> 2015 , <i>36</i> , 427–481. Creech, A.; Früh, WG. Modelling wind turbine wakes for wind farms. <i>Alternative Energy and Shale Gas</i>
733 734	56.	<i>Encyclopedia</i> ; Lehr, J., Keeley, J., Eds.; 2016. Creech, A.C.W.; Borthwick, A.G.L.; Ingram, D. Effects of support structures in an LES actuator line model
735 736	57	of a tidal turbine with contra-rotating rotors. <i>Energies</i> 2017 , <i>10</i> , 726.
737	57.	University, Canada, 2011.
738 739	58.	Nobile, R.; Vahdati, M.; Barlow, J.F. Unsteady flow simulation of a vertical axis wind turbine: A two- dimensional study. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> 2014 , <i>125</i> , 168-179.
740 741	59.	Biadgo, A.M. et al. Numerical and analytical investigation of vertical axis wind turbine. <i>FME Trans.</i> 2013 , 41, 49–58.
742 743	60.	Bachant, P.; Wosnik, M. Modelling the near-wake of a vertical-axis cross-flow turbine with 2-D and 3-D RANS <i>L Renew System Energy</i> 2016 8 053311
744 744 745	61.	Krigstad, P.A.; Eriksen, P.E. Blind test calculations of the performance and wake development for a model wind turbing. <i>Banger, Energy</i> 2013 , <i>50</i> , 325, 323
746	62	Buntine ID: Pullin DI Merger and cancellation of strained vortices I Fluid Mech 1989 205 263–295
747	63.	Rezaeiha, A.; Kalkman, I.; Blocken, B. Effect of pitch angle on power performance and aerodynamics of a
748		vertical axis wind turbine. Avvl. Energy 2017 , 197, 132–150.
749	64.	Hwang, I.S.; Lee, Y.H.; Kim, S.J. Optimization of cycloidal water turbine and the performance improvement
750		by individual blade control. Appl. Energy 2009 , 86, 1532–1540.
751	65.	Zhao, R.; Creech, A.C.W.; Borthwick, A.G.L.; Nishino, T. Coupling of WATTES and OpenFOAM codes for
752 753		wake modelling behind close-packed contra-rotating vertical-axis tidal rotors. In Proceedings of the 6th Oxford Tidal Energy Workshop, Oxford, UK, 26–27 March 2018.
754	66.	Schito, P.; Zasso, A. Actuator forces in CFD: RANS and les modelling in OpenFOAM. J. Phys. Conf. Ser.
755		2014 , 524, 012160.
756	67.	Jha, P.K.; Churchfield, M.J.; Moriarty, P.J.; Schmitz, S. Guidelines for volume force distributions within
757		actuator line modelling of wind turbines on large-eddy simulation-type grids. J. Sol. Energy Eng. 2014, 136,
758		031003.
759	68.	Martínez-Tossas, L.A.; Churchfield, M.J.; Meneveau, C. Optimal smoothing length scale for actuator line
760		models of wind turbine blades. Wind Energy 2015, 20, 1083–1096.
761	69.	Tennekes, H.; Lumley, J.L. A First Course in Turbulence; the MIT Press: Cambridge, MA, USA, 1972.
762	70.	LeBlanc, B.P.; Ferreira, C.S. Experimental determination of thrust loading of a 2-bladed vertical axis wind
763		turbine. J. Phys. Conf. Ser. 2018, 1037, 022043.
764	71.	Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994,
765		32, 8.
/66	72.	Barthelmie, R.J.; Hansen, K.; Frandsen, S.T.; Rathmann, O.; Schepers, J.G.; Schlez, W.; Phillips, J.; Rados, K.;
/6/		Zervos, A.; Politis, E.S.; et al. Modelling and measuring flow and wind turbine wakes in large wind farms
/68	=0	ottshore. Wind Energy 2009 , 12, 431–444.
/09	73.	Bachant, P. Physical and numerical modeling of cross-flow turbines. Ph.D. Thesis, University of New
770	74	Hampshire, Durham, US, 2016.
777	74.	Noache, 1.J. reispective: A method for uniform reporting of grid refinement studies. J Fluid Eng. ASME
772	75	1774, 110, 400-413. Bakhyalov NS Courant Eriodriche Louis condition In Encyclosedie of Mathematica Harovirila Michiel
774	73.	ed · Springer Science + Business Media, B.V. /Kluwer Academic Publishers, Cormany, 2001/1004, ISBN 079
775		1-55608-010-4.

- 776 76. Sheldahl, R.E.; Klimas, P.C. Aerodynamic Characteristics of Seven Symmetrical Airfoil Sections through 180777 Degree Angle of Attack for Use in Aerodynamic Analysis of Vertical Axis Wind Turbines; Energy Report; Sandia
 778 National Lab: Albuquerque, NM, USA, 1981.
- 779 77. Ouro, P.; Stoesser, T. An immersed boundary-based large-eddy simulation approach to predict the performance of vertical axis tidal turbines. *Comput. Fluids* 2017, 152, 74–87.
- 78. Brochier, G.; Fraunie, P.; Beguier, C.; Paraschivoiu, I. Water channel experiments of dynamic stall on
 782 Darrieus wind turbine blades. *J. Propuls. Power* 1986, 2, 445–449.
- 783 79. Araya, D.B.; Dabiri, J.O. A comparison of wake measurements in motor-driven and flow-driven turbine
 784 experiments. *Exp. Fluids* 2015, *56*, 150.
- 785 80. Ouro, P.; Runge, S.; Luo, Q.; Stoesser, T. Three-dimensionality of the wake recovery behind a vertical axis
 786 turbine. *Renew. Energy* 2018, 133, 1066–1077.
- Piggott, M.; Pain, C.; Gorman, G.; Power, P.; Goddard, A. h, r, and hr adaptivity with applications in numerical ocean modelling. *Ocean Model* 2004, *10*, 95–113.
- 789 82. Jensen, B.B.B. Numerical study of influence of inlet turbulence parameters on turbulence intensity in the
 790 flow domain: Incompressible flow in pipe system. *Proc. IMechE Part E J. Process Mech. Eng.* 2007, 221, 177–
 791 185.
- 83. User Guide: K-Omega Shear Stress Transport (SST)—OpenFOAM. Available online: https://www.openfoam.com/documentation/guides/latest/doc/guide-turbulence-ras-k-omega-sst.html
 (2016-2017).

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

795