3 UNIVERSITY OF
% PLYMOUTH & pearl

School of Engineering, Computing and Mathematics Theses
Faculty of Science and Engineering Theses

1996

Adaptive Search and Constraint Optimisation in Engineering
Design

GEORGE ANGELOV BILCHEV

Let us know how access to this document benefits you

General rights

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies.
Please cite only the published version using the details provided on the item record or document. In the absence of an open
licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Take down policy

If you believe that this document breaches copyright please contact the library providing details, and we will remove access to
the work immediately and investigate your claim.

Follow this and additional works at: https://pearl.plymouth.ac.uk/secam-theses

Recommended Citation

BILCHEV, G. (1996) Adaptive Search and Constraint Optimisation in Engineering Design. Thesis. University
of Plymouth. Retrieved from https://pearl.plymouth.ac.uk/secam-theses/394

This Thesis is brought to you for free and open access by the Faculty of Science and Engineering Theses at PEARL. It
has been accepted for inclusion in School of Engineering, Computing and Mathematics Theses by an authorized
administrator of PEARL. For more information, please contact openresearch@plymouth.ac.uk.

https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/secam-theses
https://pearl.plymouth.ac.uk/fose-theses
https://forms.office.com/e/bejMzMGapB
https://pearl.plymouth.ac.uk/about.html
https://pearl.plymouth.ac.uk/secam-theses?utm_source=pearl.plymouth.ac.uk%2Fsecam-theses%2F394&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pearl.plymouth.ac.uk/secam-theses/394?utm_source=pearl.plymouth.ac.uk%2Fsecam-theses%2F394&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:openresearch@plymouth.ac.uk

&= UNIVERSITY OF
w PLYMOUTH

PEARL

PHD

Adaptive Search and Constraint Optimisation in Engineering Design

BILCHEV, GEORGE ANGELOV

Award date:
1996

Awarding institution:
University of Plymouth

Link to publication in PEARL

All content in PEARL is protected by copyright law.

The author assigns certain rights to the University of Plymouth including the right to make the thesis accessible and discoverable via the
British Library’s Electronic Thesis Online Service (EThOS) and the University research repository (PEARL), and to undertake activities to
migrate, preserve and maintain the medium, format and integrity of the deposited file for future discovery and use.

Copyright and Moral rights arising from original work in this thesis and (where relevant), any accompanying data, rests with the Author
unless stated otherwise*.

Re-use of the work is allowed under fair dealing exceptions outlined in the Copyright, Designs and Patents Act 1988 (amended), and the
terms of the copyright licence assigned to the thesis by the Author.

In practice, and unless the copyright licence assigned by the author allows for more permissive use, this means,

That any content or accompanying data cannot be extensively quoted, reproduced or changed without the written permission of the
author / rights holder

That the work in whole or part may not be sold commercially in any format or medium without the written permission of the author /
rights holder

* Any third-party copyright material in this thesis remains the property of the original owner. Such third-party copyright work included in
the thesis will be clearly marked and attributed, and the original licence under which it was released will be specified . This material is not
covered by the licence or terms assigned to the wider thesis and must be used in accordance with the original licence; or separate
permission must be sought from the copyright holder.

https://researchportal.plymouth.ac.uk/en/studentTheses/0462e815-0111-49ce-b6d8-63ce6bf28f90

Download date: 28. Oct. 2024

Adaptive Search and Constraint Optmusatldn in
Engineering Design

by

GEORGE ANGELOV BILCHEV

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

Plymouth Engineering Design Centre
School of Civil and Structural Engineering
Faculty of Technology

In coliaboration with
‘British Aerospace
Rolls Royce and Associates

October 1996

LIBRARY STORE
90 0340944 6
R

URNIVizRSIY OF FLYMOUTH. |
hemNo. | 00 540944L
g
Date -3 0CT 1997
ClassNo. ' T620 - 0042 B\
>898 |

Contl.No. | X103
LBRARY 8ERVICES

REFERENCE ONLY

Adaptive Search and Constraint Optimisation in Engineering
Design

by
George Angelov Bilchev

ABSTRACT

The dissertation presents the investigation and development of novel adaptive
computational techniques that provide a high level of performance when searching
complex high-dimensional design spaces characterised by heavy non-linear constraint
requirements. The objective is to develop a set of adaptive search engines that will allow
the successful negotiation of such spaces to provide the design engineer with feasible high

performance solutions.

Constraint optimisation currently presents a major problem to the engineering designer and
many attempts to utilise adaptive search techniques whilst overcoming these problems are
in evidence. The most widely used method (which is also the most general) is to
incorporate the constraints in the objective function and then use methods for
unconstrained search. The engineer must develop and adjust an appropriate penalty
function. There is no general solution to this problem neither in classical numerical
optimisation nor in evolutionary computation. Some recent theoretical evidence suggests
that the problem can only be solved by incorporating a priori knowledge into the search

engine.

Therefore, it becomes obvious that there is a need to classify constrained optimisation
problems according to the degree of available or utilised knowledge and to develop search
techniques applicable at each stage. The contribution of this thesis is to provide such a
view of constrained optimisation, starting from problems that handle the constraints on the
representation level, going through problems that have explicitly defined constraints (i.e.,
an easily computed closed form like a solvable equation), and ending with heavily
constrained problems with implicitly defined constraints (incorporated into a single
simulation model). At each stage we develop applicable adaptive search techniques that
optimally exploit the degree of available a priori knowledge thus providing excellent
quality of results and high performance. The proposed techniques are tested using both well

known test beds and real world engineering design problems provided by industry.

Table of Contents

1. Introduction . 1
[.1. Engineering Design and Optimality ISSUES........ccccvvuemiieiieiiiee et 1
1.2. On Reality and MOdEISccceiiieiiiiiiictncn et ssacer e sesss e 7
1.3. The Role of Artificial Intelligence in Engineering Design.............c.ccccereevrmrnneee. 11
1.4. Previous Research ...ttt 13
1.5. Dissertation QULINE. ...t 20

2. Evolutionary Methods That Model The Constraints in the Problem

Representationueremcsninicesisssmssssnssssontsssisiserssssssssssasssssessosssssasnsasnrararssssnssnsasasans 23

2.1. Distributed Many-Agent Search Model for Combinatorial Optimisation

Problems (COPS) c...uereeeeiei et eeecieeecemee e eeeresentaesesesesoenbnssssssesssessnsenesssssanes 23

2.1 1. Methodology ...occccveerierernerieninnisiiecerieeeresesiesiee e ete s e eses e eassres e seens 23
2.1.2. A Case Study: the Bin Packing Problem (BPP)cccoeevieineineieeenn. 24
2.1.3. The Many-Agent Search Modelcccocoiveiiiniiiciee e, 25

2. 14, EXPETIMEIS ...ocoeteuiemetie e ereseceet e seencsnesnsesmstessesrasbessesbasans stessasessrasnssantas 27
2.2. Ant Colony Search Model for COPscccoomvmrmninre s 29
2.2.1. Extensions of the Ant Colony Metaphor.........coeeueceeceerieieieine e 32
2.2.2. Experiments...............; ... 34
2.2.2.1. FFD Worst Case Distribution of Objectsc...ccceevvvvrvr e e vvennns 34
2.2.2.2. Uniform Distribution of OBJECLSccceeevrevvivirvrreriressieeerveneenseons 34

2.3. Inductive Search Model: Applications to Functions of Continuous

Variablesc.covi e s 36
2.3.1. The Protein-folding Problem..........ccccoceoovinininiinienireeeennreeseiriseeeeeene 36
2.3.2. The Energy Landscape Modelccocoormronenninnvernnninneenreonn oot ee e 37
2.3.3. The Inductive Search ENgine.......c.ccoccvverrrecviin e et 39

2.3.3. 1. INtrOAUCHION toveeiiiiii e eetiietee ettt ettt eeeeessereresesersaneerenaeseesnnennes 39

2.3.3.2. The Framework and the Rationales Behind its Design 40
2.3.3.3. Implementation Detailscovcviiiiiiinnnieiereces e, 42
2.3.3.4. EXPEIIMENLS....otiimiieecicctirii ittt e e ena et st e 43

3. Evolutionary Constraint Handling for Problems with Explicitly Defined

ConStraints ... 52
3.1. Handling Additional Constraints in Combinatorial Optimisation Problems........ 52
3.1.1. The Test Pattern Generation Problemccccccevimnnnevincc e, 53

3.1.2. Test and Monitoring Systems and the Fault Coverage Code Generation
Problem ... 58

3.1.3. Constraint Handling: Deriving the Generators of the Feasible Region

and Designing Feasibility Preserving Operatorsccceeeveemvvveeeececnrennee. 59
3.1.4. Utilisation of the Inductive Search Approachcccccoeeeveiiiiivveniienenne, 62
3. 1.5, EXPEIIMEINLSeoviieiitiiieeeetetren et st st te s e e e s e seen e s e e sraaessne s sarens 64

4. Evolutionary Constraint Handling for Problems with Implicitly Defined

Constraints 70
4.1. The Ant Colony Search Model for Functions of Real Variables.......................... 70
4.2. Handling Constraints in the Ant Colony Search Modelccoovveiviicirinennee, 77

4.3. Experiments and Comparisons with Existing Evolutionary Constraint

Handling TeChRIQUEScoccecveiemieeice e 78

5. Feasibilty Search for Problems with Implicitly Defined Constraintsccccicvenne 87
5.1. Low DiSCrepancy SEQUENCEScc.uicuevrervirerissseriuesresessnierasessesssessessesssesersessssssenns 87
5.2. Population-based Identification of the Feasible Region.........cc.cococeveeceverirenennn.n. 93
5.2.1. Implementation Detailsccceeeecirrcrimriniinneicnis e e 93
5.2.2. BXPEIIMENLS ..ccueiueiiieeeseeeecteceeece st e e st ete e sreeteeesaesesaestes s asbssseensre e e sreeanan 96

5.3. An Immunity-based System for Finding the Feasible Region..............ccoccceue..... 98

5.3.1. Ideas from IMmMUNOIOZY......cccccocrevreeieririirrs s s s sieeas 98

5.3.2. Implementation Details ..o emeas 100

5.3.3. EXPEIIMENLS....cveeiiiiriieiticcisteneseesensesreassnstesssssaes s esassabestssnssesbesesnnas 101

6. Feasibility Search for Heavily Constrained Problems........cccveeivcrainees 104
6.1. Heavily Constrained Engineering Design Problemscccocccvvvvvvviiceeveecnes 104
6.1.1. Preliminary Atrcraft DESignccovivvvivimnnieciiiiee e 104

6.1.2. The “Hotol” Project by British Aerospace plc.cccccoeeveveereerecenrveeerennen, 106

6.1.3. Current Solution Procedure Provided by British Aerospace pic. 110

6.2. Constraint Satisfaction in Heavily Constrained problems.................c.cccovernenen, 112
6.2.1. Definition of a Constraint Violation Function..........cc.cccocceviivvnnrieccnnn, 112

6.2.2. Experiments with Various OptMISErSccecoveverrmemirirenieseeeeereene e 114
6.2.2.1. Application of Direct Pattern Search of Hooke and Jeeves.............. 114

6.2.2.2. Application of the Genetic Algorithm........ccccccoeeriiecieciiiiiieienee 118

6.2.2.3. Application of the Ant Colony Search Modelc.cccveveecrennnnenee. 122

6.3. Constraint Sensitivity Issues in Heavily Constrained Problems......................... 126
6.3.1. Definition of Constraint SEnSitiVity.......cccveeveiierrrincrieiee e 126

6.3.2. An Ant Colony Search for Sensitivity Calculation............cccooviivecrieniinnin, 127

7. Discussion and ConclusionsS.....vieeccssicseraresssssesessnsasssesssasensasssesasanse 131
7.1. DiSCUSSIONcovvvveirivnricsrennne i 131
7.2. Summary of RESultsovciiiiieiii sttt 133
7.3, CONCIUSIONS ...c.uveeerirmienienrene e tsss sttt eesaes s ereeseeeseesbeesen e aeassesmsonbaresssessnsnsones 134
Appendix A 137
Appendix B . 144
Appendix C 147
Appendix D ...covererersrecinencarasanas 149
Appendix E.....ccceervicrnsann O PO, 150

vi

ApPERdix F oorovpne. s 153

References....o... I T Trr—y {11

Publications:and AWArdSseseresseesssesssssssesersens cissismiissienininiianesnssassssssessasssss 161

vii

List of Tables

2.1

2.2

2.3

2.4

2.5

4.1

4.2

Experiments with FED worst case distributionccccececevrvnvvennivnnnsinnnininnne.
Experiments with FFD worst case distribution. For this particular

distribution of object weights all our approaches outperform the FFD

BEUTESLIC .vvieerreeirieei st eeereeieressseeestteteeesssssatcnmemeeeeeerseesesearassassssassssmmnenseeeeesesseesesseses

Ground-state properties of toy-madel polypeptides. Angles 6; are
measured in radians. Molecules are listed in alphabetical order for

each number of residues, and, in case of sequences differing only by

reversal, only the first in alphabetical order appearscovvvveereeeeecrreecsreeenene
Ground-states found by the inductive search. The predictions of our

algorithm differ only for ABBBA...........ccccoivvereirie et s
Results of running the Ant Colony model on the five test cases

proposed in [Michalewicz, 1995]. The assumed constraint violation

accuracy is 0.01 for each CONSLraint..........ccoveveecrect e
Results from applying an Ant Colony model utilising sequential
quadratic programming as individual search strategy on the five test

cases proposed by Michalewicz [Michalewicz, 1995]ccoooeeeomvvveeveiereeeerenann

viii

List of Figures

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2.1

2.2

2.3

2.4

2.5

2.6

2.7

ACHIVILIES IN AESIZN couviiiririeeiiiiiniriniie ittt e cres st ae e e sa e saaee s nneeesannas 2
FOUEr WOTIAS. ..covii ittt e ea et e e n e s s saes 8
Difference between the mathematical and computer simulated outputs.................. 8
The iterative model of deSIN ...ccoviivieeciieerieieire e ee e see s e er e sns 10
Constraint Optimisation: SCENAMO 1ccecceveevceiiereciecirerseeristese st sssseetes 16
Constraint OptimiSation: SCENAIO 2c.cvvouieeeeereireeeeeee it sreseee s besreresrressres 16
Constraint Optimisation: SCENAMI0 3ccvereirirerrenrirrin e e e e s snee s 17
Constraint optimisation: SCENATIO 4........cccceriiriininiineeneeieneeceseeceeee s e eeseessnesnes 17
K-tUples Of ODJECIS ..c.iiiiiiiine ettt 28
k-tuples with added EMPLY SPACEc..ovveirecirieie e eee vt enens 28
Gain after an exchange of two A-tuplescoccovieeiieiiniine e 28
Number of fitness evaluations as a function of the problem size..............ccceoeveee. 28

Evolution of the connectivity pattern during different stages of the
ant colony run: a) is the initial (random) pattern and d) is the pattern
when the ant colony has converged. b) and c) represent intermediate
PALIETTIS +1vevtereerieeeraareestes e earessesseessee s e s e b ba s b bbb e sateneestensaansaessar sresesaesnnbessessnstessnns 31
Trail left by the ants: a) initial (random) trail at the beginning of the
run; b) trail at the end of the run (i.e. when the ants’ search has
CONVETZEA) 1.evrverrereiee e iirsteesresiraraeesssssnssrasntssessessnestasssessessesesssaensensmsssesnnsesnsens 31
Experiments with uniform distribution of objects. The extended ant
colony search model (EAC) outperforms any of its comprising
individual search strategies (FFD, GA, and MA). Therefore,
individual performance diversity and complementarity are of crucial

significance to the performance of the hybrid search modelcc.cocouveuneenne 35

2.8

29

2.10

2.11

2.12

2.13

3.1

32

33

34

3.5

3.6

37

38

39

A schematic diagram of a generic 7-mer, with serially numbered

residues, and backbone bend angles.............ccooceoiiciri 4]

Assumption : the set of local optima of dimension N can be derived
from the set of local optima of dimension N~1. The forest structure
also shows how the phenomena “curse of dimensionality” emergescoccov... 41
Langerman’s function for D=1 ... sebens 44

One dimensional version of Langerman’s function for D=2, where

B T (17325 1)) FOO OSSN 44

Langerman’s function for D=2 ... csseenens 45

One dimensional version of Langerman’s function for D=3, where

X, = x (fig. 2.10) and X; = X5 (Fig. 2.11) rmeevevcomenreeeeeerererssseeeeeeseseeseeeeseeeeee 45
Combinational circuit with D Stuck @t 1coccemrieiiennninenersineieneeere e ceevee e 54
Line A, can fail independently from lin€ Azccccoceeiveeceniiiieeiceeciere v 54
Test pattern covering D StUCK-at 1ccccociiiiiimiiieceeenceer e e s 55
Test pattern not covering D StUCK-at 1.....c.ccoiiiimiiiiiiinenrre e 55
Circuit corresponding to the formula (A+B+C) (A +B4+C) wovreeerererrererenens 57
Overview of test and monitoring system (TAMS ..., 57

The process of finding the most efficient fault coverage test code:
The circuit is modelled and faults are simulated. Using information
from the fault analysis the task is to design the most comprehensive
test vectors (the WHite aITOW)coccvveveciiiiccecccree et s s e eesas s s 60
A set of legal test codes is defined by the legal states of a number of
logical ChANNELSc.civiicee et s eeas 60
Runs of the Inductive Genetic Algorithm for eight different control

parameter settings (number of generations per inductive step). The

family of all possible control parameter settings define the

performance trade-off front, which is a measure of the trade-off

between computational complexity and quality of results. The

number of input test vectors is fixed t0 24ccocvoiiiicirce e 68
3.10 Comparison between the Inductive Genetic Algorithm (IGA) and the

simple genetic algorithm with rejection of nonfeasible points..........ccccoccoeeiennnene 68
3.11 The fault coverage as a function of the number of input test vectors.

There are 200 faults in the fault population. An Inductive Genetic

Algorithm is used to find the best set of test vectors. The number of

fitness function calls in order to cover 100 percent of the fault

population is approximately 10,000 and required 67 input test

VBCTOTS. ¢ eveistiieeisirriree s eerscee st e st b bt sr b ear b eab e be et ss e st e s bt et e st sae e e e e e s ot en s sbneseeasenerens 69
3.12 Effects of constraints on the performance trade-off front of the IGA.

The effect of imposing constraints on the fault coverage problem

(Legal Table 2) is equivalent to introducing inherent untestability in

the CITCUIL..uiiiiciricrierii e e bbb e e e e e e e see s smrrens 69
4.1 A vector representing the direction towards the end of the actual
path between the nest and the *“food source” after four steps..........ccoooveevevennnnnne 72

4.2 The structure of the Ant -Colony Algorithm. A(¢t) is a data

structure representing the nest and its neighbourhoodcccoocnininecnveeeneennn 72
4.3 Two dimensional Nest neighbourhood model with twelve search

directions. Each direction evolves in time according to the fitness of

the ants that have selected ib.........cc.vvveiiiiiiiciiiniienr s e e st 73
44 Various directions are represented in a two dimensional search

space. The bold lines show directions with high trail value. The

xi

4.5

4.6

4.7

4.8

5.1

5.1

5.1

5.2

53

54

dashed lines show unsuccessful sampling (i.e., samples that result in
lower COSt fUNCHON VAILE) . ivvvveieinrriiisraereereeesnriieessseseeeesesesesanessesssessessaseesenaseesens
Dynamics of the ant colony search model. The first figure shows the
test function and the second reveals the time response of the ant
colony search mModel ...t e
A new path determined by trail diffusion from paths a and b...............ccvrvereirvnn,
A contour plot of the fitness landscape of a 2D bump problem..............cocceccvrennnn
Performance of an ant colony search model on the bump problem.

The two graphs show an ant colony model with and without heuristic

“Walk” of a two dimensional Sobol sequence of length 8 and 16,
TESPECLIVEIY vttt e sae et s sae v s e eaesee e
(continued) “Walk” of a two dimensional Sobol sequence of length
32 and 64, reSPECHIVEIY ...cuceeciirieerccneee e e
(continued) A two dimensional Sobol sequence of length 128, 512
and 1024, rESPECHIVEIY .oueviriecirrrie it sisrssneeste e snsee et e esee e srssssese srsmn smnes
The feasible regions of three test functions as outlined by a two
dimensional Sobol sequence of length 500,000. The first test
function has a non-convex cc;nnected feasible region and the last two
test functions have disconnected feasible regionsccceevvvvinrecviicieirecerenens
The feasible region of the three test functions from fig 4.2 outlined
by the population-based search. The number of calls to the cost
function is 15456, 17336, and 16741 reSPECLiVELYcovvverrevvereisinrensessennn
Basic elements of the immune system model. The paratope binds to
the surface of invading antigens. The degree of matching that surface

corresponds to the degree of reCOgNItION.........ccccoccervirrrrvrrnnriiee e

Xxii

5.5

6.1

6.2

6.3

6.4

6.5

6.6

6.7

The feasible region of the three test functions from fig. 4.2. outlined
by the immunity-based search. The number of calls to the cost
functions is 8108, 9113, and 9009 respectively..........ccovveememeveecereeerersesesnnn,
A schematic representation of the Hotol parametric design concept
Result from running a GA with the constraint violation calculated as
the Euclidean distance from the feasible region..............ccceeevvvvrvvneiieeennnnn

A hybrid search frAaMEWOTK ..ot eeeeee e s s e e s s s s

Result from running the ant colony search starting from the best

Points found by @ GA ...t e

Definition of local design sensitivity at a radius & around a proposed

SOIULION POINE P ...ttt et s et eeeere e e e

An ant colony search is used to find the maximum degradation of the
design found on a hypersphere with radius 8. Then the best solutions
are propagated into the initial population of the next (§+A4) search

PIODICIM...tiie sttt et s eae e e e s e e et st e st e

Sensitivity calculated at two points of the search Space.........c.cccvovvecueveeeecnnnne.

xiii

ACKNOWLEDGEMENTS

I am indebted to Ian Parmee, my director of studies. His critical advice has taught me the
balance between careful research and exploratory investigation. I am particularly thankful

for his patience and thrust, which has allowed me to pursue what has interested me.

I thank Andy Watson, Hary Vekeria and my colleagues from the Plymouth Engineering
Design Centre for the many discussions we had concerning evolutionary algorithms. These

discussions inspired many seminal ideas of my research.

I also thank British Aerospace plc. and Rolls Royce and Associates Itd. for providing my

research with real world engineering design test problems.

I am grateful to my parents and sister for their unconditional support, knowing that doing
so contributed greatly to my absence during the last years. They were strong enough to let
me go easily, to believe in me, and to let slip away all those years during which we could

have been geographically closer and undoubtedly driving each other crazy.

Xiv

AUTHOR’S DECLARATION

At no time during the registration for the degree of Doctor of Philosophy has the author

been registered for any other University award.

This study was financed with the aid of a research assistantship from the EPSRC and

carried out in the Plymouth Engineering Design Centre.

Relevant scientific seminars and conferences were regularly attended at which work was

presented; external institutions (e.g. Isaac Newton Institute, Cambridge and Santa Fe

Institute, New Mexico) were visited for consultation purposes and a number of papers
prepared for publication.

Publications:

. Constraint Handling for the Fault Coverage Code Generation Problem: An Inductive
Evolutionary Approach, Parallel Problem Solving from Nature IV, Sep 96, Berlin,
LNCS 1141, Springer, 1996, pp. 880-889

. The Inductive Genetic Algorithm with Applications to the Fault Coverage Test Code
Generation Problem, Fourth European Congress on Intelligent Techniques and Soft
Computing, 2-5 September, 1996, Aachen, Germany, pp. 452-456

. Optimization with an Ant Colony Search Model, Applications of Al for Technological
and Business Processes, Vol. 2, ed. Martyn Polkinghorne, Univ. of Plymouth, ISBN 0
905227 573

. Inductive Search, First International Olympiad on Evolutionary Optimization held
during the 1996 IEEE International Conference on Evolutionary Computation, May 20-
22, 1996, Nagoya, Japan, pp. 832-836

. Learning the Next Dimension, Procs. of the 1996 AISB Worskshop on Evolutionary
Computing, LNCS 1143, Springer, 1996, pp.162-174

. Evolutionary Metaphors for the Bin-packing Problem, 5th Annual Conference of
Evolutionary Programming, 29 February - 02 March 1996, San Diego, USA

. Constrained Optimization with an Ant Colony Search Model, Adaptive Computing in
Engineering Design and Control’96, University of Plymouth, UK, pp. 145-151

. Adaptive Search Strategies for Heavily Constrained Design Spaces, Procs. of the 22nd
International Conference on Computer-Aided Design, Yalta, Ukraine, May 1995

. The Ant Colony Metaphor for Searching Continuous Design Spaces, in (ed.) T. Fogarty,
Evolutionary Computing, Lecture Notes in Computer Science 993, 1995, pp.25-39
10.Natural Self-organizing Systems, Internal report PEDC-02, Plymouth Engineering
Design Centre, University of Plymouth, UK, March 1995

Signed 2‘9;
Date ... 23/ 999F

XV

CHAPTER 1

Introduction

1.1 Engineering Design and Optimality Issues

Engineering design does not seem to have a universally accepted definition. To some its
important aspect is a broad planning function in which the general outline and form of a
project are decided. To others it has an inventive connotation, describing the process of
devising or selecting a solution to an engineering problem. The goal of the design process
may range from providing a practical solution to a problem where none is previously

known to improving on or replacing an existing design .

Design is usnally referred to as the process of constructing a description of an artifact that
satisfies a (possibly informal) functional specification, meets certain performance criteria
and resource limitations, is realisable in a given farget technology, and satisfies criteria

such as simplicity, testability, manufacturability, reusability, etc.

Design is a complex human activity and different models of design have been proposed by
various researchers. Fig. 1.1 illustrates the main features of a process based design model
described by Gero [Gero, 92]. In this model, design is considered to consist of a number of

distinct activities that are carried out between different design states. In many cases design

can be viewed as a process of successive refinements where initially a design consists of a
set of design functions (F) and a related set of expected behaviours (B,). As the process of
design progresses, the design structure becomes more clearly defined until finally a
satisfactory structure is obtained (S). At the initial design stage, it is likely that the expected
behaviour (B.) and predicted behaviour (B,) will be quite different, however as a design

progresses predicted behaviour should approach expected behaviour.

In many design problems there are several possible alternative design concepts: for
example, a girder for a highway bridge can be concrete or steel, and once the material is
chosen, several approaches to using it are possible. Within these design concepts, there are
variables which specify the dimensions, proportions, and other details of the item.
Throughout this dissertation, we will adopt the point of view that a range of designs exist
within a preselected design concept (usually implemented as a simulation model), and we
will develop methods of choosing values to the quantities which prescribe the design. The
optimum design aspect arises because we assume that these values are to be chosen in such
a way that the design will be the one that satisfies all the limitations and restrictions (i.e.,
constraints) placed on it and is best in some sense. Our approach also considers those cases
in which the major problem is to find any acceptable design in the presence of restrictions

so severe or complicated that it is not clear how to proceed.

In other words, we will assume throughout the text that the engineering design problem has
already been idealised, i.e., that a design concept has already been selected and that the
design has been idealised into a mathematical (or computer simulation) model. While it
may be said that this approach side-steps some of the most important questions in

engineering, it should be emphasised that the main objective and contribution of this

dissertation is the development of a core of adaptive search design fools for decision

support and not the design itself.

It should also be emphasised at this point that *“a design” is simply a set of values for the
design variables. Even if the design is patently absurd (e.g., negative areas) or inadequate
in terms of function, it can still be called design. Clearly some designs are useful solutions
to the design problem and others are not. If a design meets ail the requirements placed on
it, it will be called a feasible design or an acceptable design; the complement of the set of

feasible designs will be called infeasible or unacceptable designs.

The design restrictions that must be satisfied in order to produce an acceptable design are
collectively called constraints. The notion of constraint is central to design. Indeed, design
has been often conceived as a process of expressing and exploring constraints. This
certainly derives from the nature of design problems: something new must be created;
human imagination is able to generate various possibilities; but this capacity and the
alternatives it proposes must be managed by consideration of what is feasible. Constraints
serve this purpose. They express relations among properties or variables of the proposed
artifact and its environment or context [Maher, 89]. “Constraints are the rles,
requirements, relations, conventions-, and principles that define the context of designing”

[Gross et. al., 87].

We can identify two categories or kinds of constraints in engineering problems: side
constraints and behaviour constraints. These categories are not necessarily definitive, as it
may not always be easy to classify constraints in this way. However, since the
classifications are mainly for convenience of communication, this is not a serious

difficulty. A constraint that restricts the range of design variables for reasons other than the

direct consideration of performance is called a side constraint. A constraint that derives
from behaviour requirements that are explicitly considered will be called a behaviour
constraint. Another type of constraint which arises in some engineering problems is that of
the discrete-valued design variable. In such cases the design variable is not to be selected
from a continuous range of values but is permitted to take on only one of a discrete set of
values. Such constraints can be very troublesome and it is usually the advantage of

evolutionary population based search strategies that they can handle them quite efficiently.

Although the above classification of constraints is well established, it is difficult to classify
problems according to it, since many real world problems include both side and behaviour
constraints and discrete variables, Therefore, in this dissertation we will classify
constrained problems by the way constraints are defined and expressed (sect. 1.5). The
main reason behind this choice of taxonomy is that it greatly determines the choice of an

appropriate optimisation tool as will be seen throughout the text.

Sometimes it is possible to incorporate all the restrictions imposed on the design into a
single well-defined mathematical function (model). Each point from the domain of the
function is a feasible design, leaving the main concern of searching for a “better” feasible
solution. In other problems, restrict.ions are formulated explicitly and it is now up to the
optimiser to combine them (possibly incorporating a priori preference information, i.e.,
degrees of “softness” and “hardness” of the constraints) in order to avoid infeasible
designs. In many other engineering problems it is not even possible or practical to write
explicit expressions for the constraints in terms of the design variables. For example, in a
problem in which the stress is the final result of a finite difference computation or matrix
inversion, the constraint cannot in general be put in an explicit form. More will be said

later about this question. It suffices for now to state that the function which is limited by

the constraint must be a computable function of the design variables. This is not to say that
the existence of explicit expressions for the behaviour functions is immaterial. On the

contrary, this consideration often dictates the choice of optimisation method.

Of all feasible designs, some are “better” than others. If this is true, then there must be
some quality that the better designs have more of than the less desirable ones do. If this
quality can be expressed as a computable function of the design variables, we can consider
optimising to obtain a “best” design. The function with respect to which the design is
optimised is called the objective (also cost or fitness) function. The selection of an
objective function can be one of the most important decisions in the whole optimum design
process. In some situations an obvious objective function exists. Clearly good airplanes are
not only light, but also have high payloads, long range, are economical to operate,
inexpensive to buy, use reasonable runway length, etc. Care must be taken to optimise with
respect to the objective function which most nearly reflects the true goals of the design
problem. But experience shows that it is not always easy to decide whether a design
characteristic should be associated with the objective function or with constraints. Let’s
consider the design of a disc brake, for which we assume the criterion is minimum stopping
time. If we confront a vehicle project engineer with the problem he may well consider the
stopping time for the vehicle as an acceptable design as long as it meets certain
specifications. However, if we insist that the project engineer really think about how the
performance characteristics affect the overall vehicle values, then he may begin to question
the rigidity of the specifications. He may then decide that they all should be really in the
objective function. Therefore, we say that we are in an area of intersection between the
specification decision problem and the optimisation decision problem. This presents a

dilemma: should an arbitrary decision be made on “hard” specifications for a design, based

on judgement, or should it be incorporated into the optimisation function as “soft”

specifications.

1.2 On Reality and Models

It has been acknowledged that the necessary knowledge to model practical engineering
systems and thereby capturing the breadth and depth of an engineer’s expertise will be
orders of magnitude larger than today’s qualitative physics {Falkenhainer and Forbus, 88).
Engineering researchers have stressed that the complexity associated with modelling makes
this task very difficult and argue that practical modelling systems are still some time away
[Zienkiewicz and Zhu, 91]. As an example consider the protein-folding problem (i.e., given
a linear sequence of amino acids, into what three-dimensional configuration will the
sequence fold?). It is often stated that the protein-folding problem is NP-complete. It is
crucial, however, to note that there are four worlds that come into play (fig. 1.2). Above the
horizontal line are two real worlds; the world of bio-chemical phenomena and the
computer world, where simulations are performed. These are worlds of atoms and
electrons. Below the horizontal line are two formal models; a mathematical model of the
bio-chemical phenomenon and a model of computation. In the formal models,
representations are in bits. The mathematical model is an abstraction of the natural world
while the model of computation is an abstraction of the computer world. The statement
“protein-folding is NP-complete” co-mingles a real-world phenomenon with formal
models. This is not an uncommon shortcut but if we are to make progress on a theory and
practice of scientific and technological limits, it will be important to keep the distinction

between reality and models clear.

The mathematical problem to be solved is specified by the operator § (fig, 1.3) that maps
the mathematical input, /r,, into the mathematical output Oy, This is very general since one
can think of all computation as mapping inputs into outputs. Usually the mathematical
input is a real multivariate function. Such a function cannot be input to a digital computer.
Thus the function has to be replaced by a finite set of numbers, say, evaluating the function
at a finite number of points. The operator N maps the mathematical input, I, into the
computer input L. It is crucial that N is a many-to-one operator, i.e., knowing /. does not
give us I,. Indeed, there are typically an infinite number of indistinguishable mathematical
inputs corresponding to a computer input. A computer algorithm maps the computer input,
I, into the computer output O.. Note that O.#0,,. Since N is many-to-one, we can’t know

which mathematical problem we are solving and therefore can, at best, solve the problem

only approximately. Mathematically stated, N composed with ¢ does not commute with §.

This problem has been widely recognised in the Plymouth Engineering Design Centre
(Parmee, 95a] where a far broader view of optimal engineering design has been
established. The main objective is to identify an optimal design direction rather than
optimal design solutions, which follows directly from the iterative nature of the design
process (fig. 1.4) and the uncertainties in the models during the preliminary stages of the
design. The identification of optimal direction relies upon a highly interactive process
involving computer-based search tools, the development of which is the main contribution

of this dissertation, engineering heuristics and design team decision making.

1.3 The Role of Artificial Intelligence in Engineering Design

The late 1950s and the 1960s saw the development of the search paradigm within the field
of Artificial Intelligence. Books such as “Computers and Thought” [Feigenbaum er. al.,
63], which appeared in 1963, were full of descriptions of various weak methods whose
power lay in being able to view the solving of a particular kind of problem as a search
space. In the late 1960s, the notion of heuristic search was developed, to account for the

need to search large spaces effectively.

Nonetheless, most of the problems considered in those early days were what are now
commonly called “toy problems”. As the 1970s began, many practitioners in the field were
concerned that the weak methods, though general, would never be powerful enough to
solve real problems effectively; the search spaces would just be too large. Their main
criticisms of the earlier work were that solving the toy examples required relatively little
knowledge about the domain, and that the weak methods required knowledge to be used in
very restrictive and often very weak ways. For example, in state space search, if knowledge
about the domain is used, it must be expressed as either operators or evaluation functions,
or else in the choice of the state space representation. The “weak method” critics took
another approach, being primarily concerned with acquiring all the relevant knowledge

into some usable form. Thus was born the “expert systems” paradigm.

During the 1970s, at the same time as many researchers were swinging to the “power” end
of the “generality-power” trade-off curve in their explorations, others were striking a
middle ground [Dixon, 86]. Some researchers, realising the limitations of the weak
methods, began enriching the set of general building blocks out of which search algorithms

could be configured.

Currently, Al contributes the notion of the design process as a search through a space of
alternative designs; the synthesis tools are used to help generate new points in this space;
the analysis tools are used to evaluate the consistency, correctness and quality of these
points; the idea of search is used to guarantee that systematic progress is made in the use

and re-use of the tools to generate new designs or design versions.

The price paid for search is efficiency, as the search space is generally quite large.
Exhaustive search of the space is usually intractable; however, a search which focuses its
attention on restricted but “promising” subspaces of the complete design space may trade
away the guarantee of an optimal solution (provided by exhaustive search), in return for
decrease in overall design time [Parmee and Denham, 94]. In this respect good control
heuristics help. Control heuristics may either be domain-specific or domain-independent.
“Spend much of the available design time optimising the component that is a bottleneck
w.r.t, the most tightly restricted resource” is an example of a domain-independent heuristic,
while “Spend much of the available design time optimising the datapath” is a domain-
specific version of this heuristic that applies to certain situations in the microprocessor
design domain. Designing appropriate control heuristics is a current state-of-the-art in

optimal engineering design.

It is also worth noting a common misunderstanding which frequently arises between Al
researchers who develop experimental Computer-Aided Design (CAD) tools, and
traditional CAD tool developers in a particular design area who specialise in developing
new design tools that will be usable in production mode in the near-term future. The CAD
tool developers accuse the Al researchers of being too general. On the other hand, the Al
researchers criticise the traditional CAD tool researchers of creating overly brittle systems.

Confusion arises because these two types of researchers do not share the same research

12

goals. Traditional CAD tool developers seek to reduce the effort in creating new designs.
Most Al researchers aim at reducing the effort in developing new design tools. Both
research domains are worthy enterprises. The former goal requires the design tools to be
powerful. The latter requires the methodology for constructing the tool to be general, and
thus sometimes requires the design tool itself to be an instance of a general form rather

than a custom-built tool.

In this dissertation we adopt an Al perspective of the engineering design process but most
importantly we attempt to bring the gap between the two views closer by means of
examples showing how to specialise generic adaptive search tools to particular engineering
design applications. For this purpose a core of generic adaptive search engines is used in a

variety of design contexts throughout the dissertation.

1.4 Previous Research

The optimisation problem is, in general, to find the optimum (maximum or minimum)
value of a function in a given domain and to find the values of the variables where the
optimum is reached in this domain. Global optimisation usually means to solve the
optimisation problem in an unboqnded area. Local optimisation means to solve the
optimisation problem locally, that is, in the neighbourhood of a given point. Local
optimisation has been investigated in depth; it has rich theory and many excellent
numerical methods and recipes are available [Gill er. al., 81][Press et. al., 92]. Global
optimisation, on the other hand, is a recent area which has been only partially researched
[Torn et. al., 88][Ratschek, 88]. Many theories have to be developed and many numerical
experiments have to be performed before the area would be considered reasonably well
developed. This research and development is, however, of the greatest importance since

many real-world problems are global rather than local problems. Part of the contribution of

13

the g;(X)=0. If both g; and F are differentiable, it is geometrically reasonable that a

necessary condition for a minimum in this case is:

VF=2Vg,,
A<0

(1.3)
where A is some scalar. This requires that the contours of F be tangent to the constraint and
both F and g; increase in the same direction. This is not a sufficient condition as can be

seen from fig 1.7 by examining point Q. Here VF and ng point in the same direction, but

the contour bends away from the constraint. In this particular illustration the minimum may

lie at points P or P’.

Fig. 1.8 shows yet another possibility. Here there are relative minima that are due to the
form of the constraints, while those in fig 1.7 are due to the objective function, These

distinctions are rather weak and defy rigorous definition.

We can sharpen the idea of necessary conditions for a relative minimum by stating an
operational test which a proposed minimum must pass. This is called the Kuhn-Tucker
condition [Fletcher, 87]. Roughly it consists of defining a cone expressed by the normals to
all the active constraints at the point in question and then testing to see whether the
gradient to the objective function is contained in the cone. However, the rigorous
mathematical formulation of constrained optimisation relies on the assumption that the

model is continuous and, moreover, doesn’t take into consideration the uncertainties and

15

coarseness of the model itself. During the preliminary stages of the design process it is our
major goal to find promising areas of the search space that will help to define an optimal
design direction, rather than finding a solution that passes all known operational tests for
optimality but w.r.t a very coarse and uncertain model [Parmee, 95a]. Therefore, at this
stage the diversity of search is of paramount importance. Diverse adaptive sampling can be
achieved by population based search methods and it is not a surprise that there have been
numerous research efforts for application of evolutionary methods to real-world problems
from a variety of domains: social systems, machine learning, operations research, ecology,

engineering, immune systems, economics, management, etc.

Evolutionary computation techniques constitute an interesting category of heuristic search.
Currently, the best known techniques in the class of evolutionary computation methods are
genetic algorithms [Holland, 75], evolution strategies [Rechenberg, 64], evolutionary
programming [Fogel et. al., 66], and genetic programming [Koza, 92]. There are also many
hybrid systems which incorporate various features of the above paradigms; however, the
structure of any evolutionary computation algorithm is very much the same:
procedure evolutionary algorithm
begin
t«0 :
initialize P(t) // P(t) is the t'" population

evaluate P(t)
while {not termination-condition) do

begin
te—t+1
select P{t) from P(t-1)
alter P(t)

evaluate P(t)
end
end

There are numerous advantages of utilising evolutionary based search in the preliminary

stages of the design process. If we use an evolutionary approach with penalty functions for

18

example, it is not essential for the penaity term to have any particular form, such as being
unimodal or smooth, beyond having a fitness function that is easily evaluated. So it is not
necessary to impose any continuity constraints on the penalty function, which is typically a
very difficult task for the engineer in complex highly non-linear discontinuous parameter
spaces. Moreover, the ill-conditioned problem usually associated with the numerical
penalty function method does not exist for evolutionary based search because it uses
ranking, i.e., it is easy to achieve total preference of the feasible over the infeasible

solutions without changing the objective function [Powell and Skolnik, 93].

However, evolutionary algorithms have their own problems when used with penalty
functions. In the context of highly constrained optimisation an infeasible solution with
strong genotypic similarity to the optimal constrained solution is more useful in an
intermediate population than a feasible solution with weaker genotypic affinity to the
optimum. The problems that arise after introducing a penalty term can be summarised in
the following way: an overzealous penalty rewards schema which quickly, but wastefully
satisfy constraints. An over-tolerant penalty function will be unable to provide sufficient
pressure to satisfy constraints and infeasible solutions will be highly fit. To a great extent
these problems can be overcome by dynamic penalty functions. At the beginning the
violated constraints are slightly pene'llised effectively warning the optimiser of the presence
of boundaries while allowing their exploration. As the optimisation proceeds the violated
constraints are severely penalised [Keane, 94). The difficulties in the application of the
dynamic penalty function is that the exact feasibility/infeasibility trade-off schedule cannot

be effectively computed and is highly problem dependent [Richardson and Palmer, 89].

An attempt to overcome the above described difficulties is found in the behavioural

memory approach [Schoenauer and Xanthakis, 93] where the constrained optimisation

19

problem is addressed by a multi-step process: (1) evolve an initial random population with
some standard evolutionary search engine, the fitness function being related to the
constraint satisfaction, and (2) take the final population resulting from this evolution and
use it as an initial population of a secon&aq search with the objective function as fitness,

which is overridden by zero fitness whenever the constraints are violated.

1.5 Dissertation Qutline

The issues and contributions outlined in the previous sections are elaborated in the
following chapters. Chapter 2 presents constraint handling at the representational level. Its
purpose is to not only emphasise the crucial importance of the modeiling phase, but to also
develop and introduce through example applications the core adaptive search engines,
namely the ant colony search model and the inductive search model. Themes of these
adaptive search models will be present throughout the dissertation in various modifications
at different levels of a priori knowledge utilisation. More specifically chapter 2 tackles the
bin packing problem, showing how appropriate design of representation and search
operators can avoid the difficulties associated with infeasible points. To achieve this,
initially a distributed many-agent search model is developed. Next the basic ant colony
search model is presented and extended to a hybrid search model and then applied to the
bin packing problem. Handling constraints at the representation level is not only a virtue of
combinatorial optimisation problems. Chapter 2 illustrates this by applying the technique
for solving the protein-folding problem. Instead of utilising a grid based model of the free
energy function of the protein at hand (which incurs problems of non-feasible points) it
develops via geometric arguments a free energy model in which all points are feasible. This
allows us to concentrate on the power of the adaptive search engine itself and chapter 2
achieves this goal by developing and introducing a fast high performance search engine

called inductive search.

20

Chapter 3 deals with explicitly defined constraints. One of the highly efficient methods for
handling such constraints is to derive the feasible region and apply a search engine only to
the feasible space. Chapter 3 shows this by solving a real world problem of generating
codes for test and monitoring systems. Provided that the feasible region is already
explicitly derived, ail we are left to do is apply an appropriate search engine. In order to
show that the inductive search methodology introduced in chapter 2 is not intrinsically
suited only for problems defined on continuous domains, we integrate it with a genetic

algorithm and apply it to the test code generation problem.

Chapter 4 is a transition to problems with non-explicit (i.e., incorporated into a simulation
model or black box) constraints. It treats increasingly complicated constraints where the
feasible region can no longer be easily explicitly derived. In chapter 4 we extend the
applicability of the ant colony search model to continuous spaces and show how to apply it

to constraint optimisation problems.

Chapter 5 tackles the task of feasibility search (i.e., finding feasible design regions) for
problems with non-explicitly defined constraints. With regards to the objectives of the
engineering designer, chapter 5 m;inly develops techniques to identify the scope and
boundaries of the feasible region. Once this is done the search space can be reduced and the
method from chapter 4 can be applied. In order to construct reliable methods we make use
of recent theoretical developments on low discrepancy sequences and on analogies from
immunology. Of particular attention is the minimisation of the number of calls to the cost

function since in realistic problems this could be computationally very expensive.

21

To.go even further inithe difficulty of ithe constrained optimisation problem we reachithe so

called heavily ‘constrained ‘problems for' which finding; a: feasible point is. the major

difficulty. Usually-such problems have. very small feasible regions, which are disconnected
and! scattered. Therefore, the: methods. developed! in the iprevious chapters willusually ifail

individially. This. justifies the: development of powerful hybrid search techniques whose

primary. goal is'to*find a feasibleisolution. This is the main concern iri:chapter 6, in which a

‘hybrid :ant colony and. genetic :algorithm are used to solve & preliminary airframe design

problem./We also discuss constraint sensitivity. issues important to the‘engineering designer

and'develop algorithms for:their calculation/approximation.

Finally, chapter 7 provides.conclusions and:suggestions:for future research.

22:

CHAPTER 2

Evolutionary Search Methods that Model the Constraints in the
Problem Representation

2.1. Distributed Many-Agent Search Model for Combinatorial

Optimisation Problems (COPs)

2.1.1. Methodology

In this section we present a distributed many-agent search model which incorporates all the
restrictions and constraints imposed on the problem by selecting an appropriate problem
representation. In order to be able to do this the methodology requires a clear definition of
the problems we wish to solve. Exact definitions of engineering problems are rarely
encountered in practice with the exception of the well defined combinatorial optimisation
problems (COPs). The exact formulation of COPs facilitates the problem representation
constraint handling technique, thus concentrating all the attention towards the development
of the adaptive search engine. The approach we will follow, often known as the complex
systems dynamics approach [Weisbuch, 91], is to simplify as much as possible the

components of the system, so as to take into account their large number.

23

We utilise the complex systems dynamics approach to tackle an ordering problem —
loading of objects into minimal number of bins. A salient feature of the proposed search
mode! is that the system is brought into an initial state corresponding to particular
instance(s) of the problem to be solved and then it is allowed to evolve according to its
own dynamics. The final state of this evolution is taken as a solution of the problem. The
computation to be performed is contained in the dynamics of the systems which are
determined by the nature of the local interactions between many simple elements. When
designing the dynamical system care must be taken to ensure that all the states from the

state space represent feasible solutions and that the motion operators preserve feasibility.

2.1.2. A Case Study: the Bin Packing Problem (BPP)

Falkenauer [Falkenauer, 94] describes the bin packing problem in the following way:

“The bin packing problem (BPP) is defined as follows: given a finite set O of numbers (the
object sizes) and two constants C (the bin’s capacity) and N (the number of bins), is it
possible to pack all the objects into N bins, i.e., does there exist a partition of O into N or

fewer subsets, such that the sum of the elements in any of the subsets doesn’t exceed C ?

This NP-complete decision problem gives rise to the associated NP-hard optimisation
problem [Garey and Johnson, 79]: what is the best packing, i.e., what is the minimum

number of subsets in the above mentioned partition?

Being NP-hard, there is no known optimal algortthm for BPP running in polynomial time.
However, Garey and Johnson cite simple heuristics which can be shown to be no worse

(but also no better) than a rather small multiplying factor above the optimal number of

24

bins. The idea is straightforward: starting with one empty bin, take the objects one by one
and for each of them first search the bins used so far for space large enough to
accommodate it. If such a bin can be found, put the object there, if not, request a new bin.
Putting the object into the first available bin found yields the First Fit (FF) heuristic.
Searching for the most filled bin still having enough space to accommodate the object
yields the Best Fit (BF), a seemingly better heuristic, which can, however, be shown to

perform as well (as bad) as the FF, while being slower.”

Other possible approaches for tackling the BPP are described in [Martello and Toth,

90],[Falkenauer, 94] and [Zulawinski, 95].

2.1.3. The Many-Agent Search Model

The many-agent (MA) search model consists of simple “agents” possessing only limited
knowledge of how to interact with other agents. Each agent has several attributes: capacity,
strength, number of successive interaction failures, and a list of contained objects. The
loading problem considered here is one dimensional and has only one constraint — bins'
capacity. The representation of each agent faithfully corresponds to a partially filled bin
from a bin packing solution, and therefore, does not contain objects that violate the
constraint (i.e., exceed the bins' capacity). The representation also takes care that none of
the objects are shared between the agents and that each object belongs to a unique agent,
thus ensuring that each state of the MA system (i.e., a vector consisting of the states of all
individual agents) is a valid bin packing solution. The objects to be packed are
characterised by one attribute, called weight. Input to the algorithm is a set of objects to be

loaded and bin’s capacity. The MA algorithm is defined as follows:

1. Load each object into an empty bin. Initialize the strength attribute of
each box to be equal to its empty space, i.e., capacity — object’s
weight. It can be easily verified that the initial state is feasible (i.e., is
a valid bin packing solution).

25

I

I

The inter bin operation (IBO) is a local interaction between two agents. It is used to
implement the competitive drive in the evolution of the system and to maintain the
feasibility of the problem representation (i.e., local exchanges of objects that violate the
constraints are not allowed). During an IBO one of the agents is referred to as strong, and

the other is referred to as weak (determined by the value of the strength attribute). The IBO

Select randomly two bins and initiate an inter bin operation (IBO).
IBO is a feasibility preserving exchange of objects between two bins
(see below).

a) If IBO is successful (i.e., at least one object exchange has
occurred) then update strength and the list of contained objects of
both bins. If one of the bins is empty, then delete it from the set
of agents. Otherwise, reset the successive interaction failures
attribute of the stronger bin (i.e., the box with larger sirength
attribute) to zero.

b) If IBO fails (i.e., no objects exchange has occurred), then
increment the successive interaction failures attribute of the
stronger bin. If it exceeds an interaction failure threshold 7 (an
integer usually between 1 and 5), then decrement the strength
attribute of the stronger bin by a predefined constant £ (usually 2-
5% from the bin’s capacity).

If termination criteria are not satisfied, then goto 2. Otherwise exit
with the current state as the final solution. The feasibility preserving of
the IBO guarantees that the final state of the MA is a valid bin packing
solution.

algorithm works as follows:

1

oo

I

Generate all k -tuples of objects in each bin, for some k=1 to C
(complexity constant) as shown in fig. 2.1.

Add the empty space of the weak box to its k-tuples as shown in fig.
2.2., where the empty space is determined by:

empty _ space = capacity— Z weight,

If the two bins can exchange objects then find the best substitution
(gain), i.e., an exchange of two k-tuples after which the empty space of
the strong box increases at most (see fig. 2.3.) and the bin’s capacity
constraint is not violated.

26

The computational complexity of IBO is: 0((3], where K=max(m,n), m=number of

objects in the first bin, and n=number of objects in the second bin. In the course of its
evolution the MA search model reduces the number of agents (i.e., bins in the bin packing
solution). The possibility that the strength attribute may differ from the empty space (step
2b of the main algorithm) is introduced as a mechanism for escaping local optima. Thus a
strong agent which cannot complete a successful IBO (i.e., cannot gain empty space)
becomes weaker and eventually other agents try to fill it in. If the strength attribute was
always equal to the empty space then a bin which is emptier than most of the other bins,
but containing a relatively “large” objects, would be more unlikely to find sufficient empty

space and exchange it during an IBO in the course of evolution.

2.1.4. Experiments

In order to test our approach we use a distribution of objects which has been proved to be
the worst case for the well known first fit in decreasing order (FFD) algorithm (a heuristic
which sorts the objects in decreasing order and applies the FF algorithm). FFD has been

shown to produce results better or equal to 4 OPT(0)+3, where OPT(O) is the number of
bins in the optimal solution [Baker, 85]. The distribution is defined as follows:
m=1,2,3,...e=0.01; weight(obj.)=%+¢e (for 1<i<6m), weight(obj,)=1+2¢ (for
6m<i<12m), weight(obj.)=++¢& (for 12m<i<18m), weight(obj)=1+~-2¢ (for

18m <i<30m).

Since our main objective in this chapter is to introduce the main search techniques that we
have developed, our experiments do not aim at improving the best known techniques for
solving the BPP, but to experimentally show the viability of our algorithms. Experiments

are done for values of m from | to 5, i.e.,, for problem sizes ranging from 30 to 150

27

objects. Empirical results, as summarised in table 2.1, show that the MA search model is
complementary to the FFD heuristic and significantly outperforms it for the tested
distribution. This complementarity is an important characteristic when designing hybrid
search methods that employ different search strategies. This fact is used in the next section,
where a hybrid ant colony search model will be introduced and developed. Fig 2.4. shows

the number of local interactions as a function of the problem size. Results are averaged

over ten independent runs.

To summarise, in this section we have developed a dynamical computational system for the
bin packing problem. In our search model all the constraints associated with the BPP are
handled by the problem representation; each point from the state space of the many-agent
system is a valid bin packing solution. No global control and synchronisation is necessary

since only local interaction rules are used to optimise the number of bins.

2.2. Ant Colony Search Model for COPs

Problems like the travelling satesman problem (TSP) and the bin packing problem (BPP)
can be represented as a sequence of n items (r cities to be visited or n objects to be
packed), where the actual order of the sequence uniquely determines a particular solution

to the problem. Thus, in general, the feasible search space consists of all #! permutations.

In this section we introduce the ant cycle (AC) algorithm [Colomi et. al., 91]. It is defined
as follows: The problem is represented as a connected graph the nodes of which are the n
items. The edges are connections from one node to another and represent a data structure
that stores the connectivity information in terms of the trail 7; left by the ants in the course
of the algorithm’s execution. Initially m ants are allowed to make a random cycle (a cycle
is a permutation of n items). Then the cost function of the problem is evaluated for each

29

solutions are compared and trail is laid on the edges comprising the cycles proportionally
to the ants’ fitness. This alters the Py values so that on the ne.xt cycle the probability of
repeating (part of) previous good cycles increases (fig. 2.5b,c,d, fig. 2.6b). This is quite
reminiscent of schemata propagation in genetic algorithms where building blocks of high

fitness pass from one agent to its offspring.

2.2.1. Extensions of the Ant Colony Metaphor

We begin this subsection with some initial definitions of distributed co-operative search
[Clearwater et. al., 92]. Co-operative search methods are based on modifying individual
search strategies. A useful distinction is whether a method is complete or incomplete.
Complete methods systematically examine states and are guaranteed to either eventually
find a solution or terminate when no solution exists. By contrast, incomplete methods
explore more opportunistically and may miss some states in the search space, hence they
can never guarantee a solution does not exist. For parallel searches, a further issue is
whether to split the search space among the agents. In the simplest case, each agent
examines the entire search space. However this can mean a single state is examined by
more than one agent during the search. This can be avoided by partitioning the search
space into disjoint parts and assigning one to each agent. In this partitioned search, agents
only examine states in their assigned part of the space thus avoiding unnecessary duplicate
examination of states. Restricting each agent to examine a state at most once, as well as
partitioning the search space so that a state is not examined by more than one agent, may
improve performance somewhat, but far less than the enhancement achieved by co-

operation [Clearwater et. al., 92][Bilchev and Parmee, 95a][Bilchev, 96].

Next we generalise the ant colony search model to include search agents with different
strategies. The completeness of the overall search depends in general on the completeness

and complementarity of the individual strategies. The search space is not explicitly split

32

among the agents. However, the individual strategies are implicitly competing for a
common resource — CPU time. The fitness measure of the competition is the success rate
of each strategy measured from the beginning of the evolution. The overall evolution
process resembles parallel competitive hypothesis testing from an evolving statistical
sample (the current population). The hypotheses are the prior assumptions within which
each individual search strategy has been designed to be effective. For example, consider
two search strategies: @, and a, designed to be effective when applied to distributions of
problem instances Ay and h; respectively. When applying the ant colony to an instance of
distribution A (for which we can assume that # may be either close to h; or &) then the
generated search process could be viewed as hypothesis testing. The assumption is that if
the current problem instance is generated from A, then a, will take control over as (note
that a; was initially designed to be effective on hy). This process is somewhat analogous to
the self-adaptation notion in evolutionary programming [Fogel et. al., 95] and genetic

algorithms [Bick, 92].

For the BPP the extended ant colony (EAC) works as follows: Two new types of search
ants are allowed — m agents using the MA strategy (section 2.1) and k agents utilising a
genetic algorithm (GA) strategy [Bilchev, 96] (the paper is included in the Appendix). At
each generation of the GA trail is Ilajd on the tours of the k best solutions. To keep the
grouping effect of the bin packing solutions trail is laid on all the edges connecting each of
the objects from a particular bin. Then m ants are allowed to make a cycle and the MA
search is applied on each cycle. Trail is laid (and superimposed) proportionally to the
fitness of each cycle. In the current implementation of the extended ant colony search
model both the GA and the MA strategy compete against each other by changing the ants’
behaviour through the trail value. The feasibility of the solutions is guaranteed by a chain

of feasibility preserving interfaces between the different search strategies, i.., all

33

individual strategies use problem specific representation and feasibility preserving motion
operators to search through the space of the feasible solutions. When one method passes a
valid bin packing solution to another method the solution is “translated” into the

representation language of the second search method.

2.2.2. Experiments

In order to test the ant colony search we make experiments with two distributions: the FFD

worst case distribution and uniformly random distribution.

2.2.2.1 FFD Worst Case Distribution of Objects

The distribution is defined as in section 2.1.4. Experiments are done for values of m from
I to 5, ie., for problem sizes ranging from 30 to 150 objects. Empirical results are
summarised in table 2.2, where results are averaged over ten independent runs and show
that the extended ant colony search further improves on the performance of the many-agent
system for this particular distribution of objects. The hypothesis which potentially explains
this improvement is based on the assumption of complex adaptive interactions between
several search strategies. In order to further test this hypothesis we do more experiments

with uniform distribution of objects.

2.2.2.2. Uniform Distribution of Objects

Next we generate uniformly random sets of objects using the following parameters: min.
value: 0.05, max. value: 0.65, resolution: 300, and problem size: 50. This time four
algorithms are empirically compared: FFD, MA, GA, and EAC. Results are averaged over
10 independent runs for each technique and shown in fig. 2.7. In fig. 2.7 each graph is

divided by vertical lines into sections. Each section corresponds to a particular number of

34

bins in the proposed solution. Better solutions are placed to the right of the graph. Within
each section solutions are ranked in increasing order of the variance of their empty space.
When a method produces results with different number of bins it is shown in more than

one section of the graph.

The extended ant colony search model (EAC) generally outperforms any of its component
individual search strategies at the expense of increased run time. Therefore, their

performance diversity is very important for the overall performance of the hybrid model.

2.3 Inductive Search

2.3.1. The Protein-folding Problem

Handling constraints by appropriate selection of problem representation (i.e., model) is by
no means limited to combinatorial optimisation problems. In this section we show how to
utilise the approach for the prediction of the folded state of proteins, usually regarded as
the protein-folding problem. Protein-folding phenomena present a daunting group of
scientific challenges. Perhaps this is inevitable, since only a complex and diverse family of
molecules could fulfil proteins’ assigned roles in basic biological processes. The large and
still rapidly growing literature on the subject of protein folding [Creighton, 84][Gierasch
and King, 90][Nall and Dill, 91] chronicles many remarkable advances in both experiment
and theory, yet this remains an open problem. Given an arbitrary but fully specified
sequence of amino acids, we cannot yet predict the folding pathway of the corresponding
polypeptide, the conformation of the final state, nor even verify in all cases whether the
final state is one of lowest free energy or simply a metastable “trap” in the kinetic folding

pathway.

36

One of the approaches to predict the protein-folding state is to model all the constraining
forces imposed by the biochemical reactions among the residues. The resulting free energy
model defines an energy landscape the global minima of which are believed to faithfully
correspond to the folded state. However, it is also possible, due to external forces from the
environment, for local minima to represent feasible metastable states. Abstracting away
from the biochemical details of the problem, we will emphasise at this point that a set of
(near global) minima from the energy landscape defines the feasible region of the search
space. This requires the development and utilisation of a powerful adaptive search engine

that is able to find the set of feasible states.

2.3.2. The Energy Landscape Model

The model which we have utilised is defined by Stilliger [Stillinger et. al., 93] as follows:
“[The] model incorporates only two “amino acid” types, to be denoted by A and B, in place
of the 20 that occur naturally. They will be linked together by rigid unit-length bonds to
form linear unoriented polymers that reside in two dimensions. As fig. 2.8 illustrates, the
configuration of any rn-mer is specified by the n-2 angles of bend 8,...,6,.; at each of the
nonterminal residues. We adhere to the conventions that —-w<8<mx, that 6 =0
corresponds to linearity of succ_essive bonds, and that positive angles indicate

counterclockwise rotation.

We postulate that two kinds of interactions compose the intramolecular potential energy
for each molecule: backbone bond potentials (V) and nonbonded interactions (V). The
former will be independent of the A, B sequence, while the latter will vary with that
sequence and will receive a contribution from each pair of residues not directly attached by

a backbone bond.

37

If only V|, mattered, successive bonds would tend toward linearity (6, =0). The coefficient
C(&,8) is +1 for an AA pair, +4 for a BB pair, and ~+ for an AB pair. Consequently the
first of these pairs may be regarded as strongly interacting, the second as weakly
interacting, and the third as weakly repelling. This diversity mimics in a simple way that of
real amino-acid residues, which vary in size, polarity, and degree of hydrophobicity. In
fact, it can be assumed that A and B behave respectively as hydrophobic and hydrophilic
residues. The interplay between the backbone bend interaction that tends to produce linear
structures, and the various combinations of attractive and repulsive nonbonded pair
interactions, generates a wide range of ground-state geometries. It 1s in this respect that our
model remains faithful to the character of real proteins.” A C-code implementation of the

model is included in the Appendix.

2.3.3. The Inductive Search Engine

2.3.3.1. Introduction

In this section we develop a novel powerful search engine. Our research is strongly
motivated from the fact that currently evolutionary optimisers display rather slow
convergence rates and poorer quality of solutions as compared to their numerical local
optimisation counterparts searchipg in the correct neighbourhood. This research
commenced from our beliefs that the fundamental principles of genetic algorithms are

quite relevant to the problem of optimisation of real-valued functions if properly utilised.

Our algorithm is based on the assumption that an approximation of the desired solution can
be effectively constructed from a limited sample of the search space. The idea is generally
borrowed from genetic algorithms and the corresponding building block hypothesis
[Goldberg, 89], but is utilised in a more direct way. We also view the global optimisation

problem as an existence of short (inductive) rules that can effectively build the solution

39

from a limited sample. If for a particular problem instance such rules do not exist, the
global optimisation task is not tractable. On the other hand, if such rules exist, the current

state of the art is how to find them.

2.3.3.2. The Framework and the Rationales Behind its Design

A novel feature in our search algorithm is that we do not constrain the sampling procedure
to work only in the original search space, but rather divide the problem into a sequence of
subproblems and allow sampling in each of the newly defined subspaces. In order to do
that our approach requires a computational model of the cost function, which is usually

available.

Currently, it is widely accepted that dimensionality is an important characteristic which
determines to a great extent the tractability of the search problem. Therefore, many test

beds include scaleable functions which are defined for any dimension N:

f|(x|),f2(_t|,x2),..., fN(X| xN),... (2.9)

Each new dimension is derived from the previous by adding a new variable and defining its
interactions with the other variables. Therefore, it is natural to make the a priori
assumption that in our computer models the set of local optima of the “next dimension”
can be derived from the set of local optima of the current dimension (fig. 2.9). The above

assumption justifies the following general search framework:

40

1.Find the set of local minima of the 1l-dimensional
version of the cost function.

2.Initialize D=1. D is the current dimension.

3.Get the best M minima and form a population of M D-
dimensional points. Increase the current dimension by
one: D=D+1

4.For each member of the population form a D-
dimensional version of the cost function where the
first D-1 variables are fixed equal to those from the
selected member (ref. figs. 2.10, 2.11). Use 1-
dimensional global optimization method to find a set
of new local minima. For the best solutions apply a
hill climber to locally improve on the results and
place them in a pool of offspring. The members from
the pool will be points from a D-dimensional space.

5.If D=N exit, otherwise goto 3

2.3.3.3. Implementation Details

There are many efficient (under certain assumptions) one dimensional search algorithms
which can be utilised. Examples include algorithms based on the Wiener process,
statistical-informational methods, interval methods, etc. {Tom and Zilinskas, 88][Ratschek
and Rokne, 88]. In this section we have implemented a simple but efficient (under certain
smoothness assumptions) one dimensional search algorithm. It utilises Brent’s quadratic

approximation method [Press et. al., 92] and works as follows:

Step 1 Initialize a population of search intervals, i.e. I={[a,b]}.

Step 2 For the largest interval € I make a quadratic approximation, i.e.,
c=brent(a,(a+b)/2,b).
Step 3 The selected interval from step 2 is divided into three subintervals

determined by the two inside points: ¢ and (a+b)/2 and the subintervals are
inserted into L

Step 4 If the stopping criterion is satisfied then exit; otherwise goto 2.

Various stopping criteria are possible. Examples include size of the largest interval,

number of quadratic approximation calls, value to reach. The implemented criterion is

42

Now we proceed with the application of the inductive search approach to the protein-
folding problem. For any number n of residues, and for any given sequence of those n
residues specified by £.,....&,, the potential-energy function @ is precisely defined, and in
principle can be minimised with respect to the conformational angles 6;,...,0,.;. In practice
this is easy for small n (i.e., 3,4, and 5), but becomes increasingly tedious and demanding
as n increases. In previous research [Stillinger et. al., 93] an exhaustive search is used to
generate a database of ground siates for small n. The database is shown in table 2.4, The
simple case of trimers (n=3) provides an introductory illustration. The six distinct
molecules are AAA, AAB, ABA, ABB, BAB, and BBB. Each has only a single bend degree of
freedom 6,. Furthermore, the potential energy as defined by our model, depends only on
the species of the terminal residues, and not on that of the central residue. Consequently

there are just three distinct cases to consider: AXA, AXB, and BXB.

AXB and BXB trimers are linear in their ground states. That is certainly expected for AXB,
where the terminal residues repel each other at all separations. Even though modest
terminal residue attraction exists for BXB, the bend potential energy is sufficiently costly
that the possibility of an absolutely stable bent shape is eliminated. Only when both
terminals are A is the nonbonded‘imeraction sufficiently attractive to generate a bent
ground state; &, is approximately +111.4° in this nonlinear structure. However, the AXA
molecules retain the linear form as a metastable (relative) @ minimum; this is the first
appearance of multiple minimum problem that magnifies dramatically in severity as the

molecules increase in residue number.

Before applying our algorithm we have selected the following parameters: at each
dimension only the best three solutions from the population are accepted and for each of

them only five calls to Brent’s approximation routine are made. This choice of parameters

48

significantly reduces the overall number of cost function calls while at the same time
preserves the quality of solution. The inductive search is capable of finding all but one
ground state. Results are shown in table 2.5. The case in which the inductive search fails is
ABBBA, where a metastable ground state is predicted (i.e., the linear structure). It is
interesting to note why the inductive search fails in this case. All subsequences that
compose ABBBA have their global minima in their linear structure (i.e., ABB, BBB, ABBB).
That is to say that the one dimensional (ABB) and two dimensional (ABBB) versions of the
cost function do not provide the necessary information to find the global optimum of the
three dimensional (ABBBA) version. The information they provide is only local and

therefore, the inductive search finds a local optimum.

Although the inductive search is capable of efficiently optimizing our free energy protein-
folding model, it is by no means the best algorithm for the problem. As pointed out by
Prof. Keane, the problem can be even more efficiently solved by a combination of dynamic
hill climbing followed by a local climber such as the method of Hooke and Jeves. For
example, such a combination is capable of solving the ABBBA instance of the protein-

folding problem in 543+202 number of cost function calls.

49

Molecule D &/ &in O,/

AAA -0.65821 0.61866

AAB 0.03223 0.00000

ABA -0.65821 0.61866

ABB 0.03223 0.00000

BAB -0.03027 0.00000

BBB -0.03027 0.00000

AAAA -1.67633 0.61839 0.33920

AAAB -0.58527 0.61759 -0.05130

AABA -1.45098 0.33270 0.62180

AABRB 0.06720 0.00000 0.00000

ABAB -0.64938 0.61767 -0.06670

ABBA -0.03617 0.47690 0.47690

ABBB 0.00470 0.00000 0.00000

BAAB 0.06172 0.00000 0.00000

BABB -0.00078 0.00000 0.00000

BEBB -0.13974 0.55828 0.35180

AAAAA -2.84828 0.33597 0.62022 0.04543
AAAAB -1.58944 0.61898 0.33748 -0.06894
AAABA -2.44493 0.29723 0.33306 0.62176
AAABB -0.54688 0.61756 -0.05373 -0.00168
AABAA -2.53170 0.32943 0.62354 0.04551
AABAB -1.34774 0.33268 0.62133 -0.54574
AABBA -0.92662 0.16722 0.48228 0.47327
AABBB 0.04017 0.00000 0.00000 0.00000
ABAAB -1.37647 0.62222 0.33110 -0.06303
ABABA -2.22020 0.61900 0.04739 0.61900
ABABB -0.61680 0.61765 -0.07104 -0.00224
ABBAB -0.00565 0.47880 0.47341 -0.14184
ABBBA -0.39804 0.24576 0.55551 0.24576
ABBBB -0.06596 0.05489 -0.34237 -0.56178
BAAAB -0.52108 0.03924 -0.61671 0.03924
BAABB 0.09621 0.00000 0.00000 0.00000
BABAB -0.64803 0.05328 -0.61682 0.05328
BABBB -0.18266 0.56920 0.33574 0.26659
BBABB -0.24020 0.31773 0.57642 0.09738
BBBBB -0.45266 0.34345 0.56501 0.09318

Table 2.4. Ground-state properties of toy-model polypeptides. Angles §; are measured in
radians. Molecules are listed in alphabetical order for each number of residues, and, in case
of sequences differing only by reversal, only the first in alphabetical order appears.

50

Molecule)] Cost function calls

AAA -0.65821 636
AAB 0.03223 688
ABA -0.65821 636
ABB 0.03223 688
BAB -0.03027 660
BBB -0.03027 660
AAAA -1.67633 1937
AAAB -0.58527 1617
AABA ~-1.45098 2391
AABR 0.06720 1498
ABAB -0.64938 1913
ABBA -0.03617 1700
ABBB 0.00470 2127
BAAB 0.06172 1476
BABB -0.00078 1618
BBBB -0.13974 1949
AAAAA -2.84828 3660
AAAAB -1.58944 4197
AAABA -2.,44493 3715
AAABR -0.54688 2511
AABAA -2.53170 5068
AABAB -1.34774 5362
AABBA -0.92662 3189
AABBB 0.04017 3069
ABAAB -1.37647 3359
ABABA -2.22020 3719
ABABB -0.61680 2797
ABBAB -0.00565 3584
ABBBA" 0.03870 2860
ABBBB -0.06596 4187
BAAARB -0.52108 4004
BAABB 0.09621 2220
BABAB -0.64803 3798
BABBB -0.18266 3504
BBABB -0.24020 3356
BBBBB -0.45266 4236

Table 2.5. Ground-states found by the inductive search. The predictions of our algorithm
differ only for ABBBA.

51

CHAPTER 3

Evolutionary Constraints Handling for Problems with Explicitly
Defined Constraints

3.1. Handling Additional Constraints in Combinatorial Optimisation
Problems

Many real world problems can be cast as modifications of well known NP-complete
problems where some additional constraints are explicitly defined to reflect the physical
nature of the problem. In this section we deal with one such problem: the fault coverage
test code generation problem, an instance of which is provided by Rolls Royce and

Associates Ltd.

The fack of a uniform methodology for handling infeasible points [Michalewicz, 95]
largely predetermines the current best practice — the investigation of some problem-specific
operators which search within the feasibility boundary in an efficient way [Michalewicz,
96]. The idea is based on the seemingly reasonable assumption that in real world problems
the constraints and the objective functions are conflicting and therefore, the constraint
global solution lies on the boundary of the feasible region. We utilise this approach for the
fault coverage test code generation problem and show how to derive the feasible region and

design feasibility preserving operators that map the feasibility region onto itself.

52

3.1.1. The Test Pattern Generation Problem

We will be interested in generating tests for combinational circuits, which have no
feedback loops or memory elements. Fig. 3.1. shows a simple combinational circuit. A fest
pattern for a potentially defective circuit is a set of inputs for the circuit that will cause the
circuit outputs to be different if the circuit is defective than if it is defect-free. To derive the
input set, we must have some model for possible defects (faults) in the circuit. One of the
most popular models within the existing testing systems is the single stuck-at model. In this
model, a defective circuit is assumed to behave as if it were defect-free, with the exception
of one wire that is tied to either a logic 0 or a logic 1 (instead of correctly varying as a
function of the circuit inputs). Logically equivalent inputs may fail independently. For

example, in fig. 3.2. A) can be stuck-at 1 while A; takes on the value 0.

To generate a test pattern for a circuit with a wire stuck at 1, we must ensure that the wire
in question would take on the logic value 0 in a correctly functioning circuit. If this is not
the case, the circuit outputs will be the same whether or not the circuit is malfunctioning
because the faulty and the good circuit would carry the same values. In fig. 3.1. line D is
labelled with 0/ 1 to denote that line D is the site of a fault such that D will carry the value
0 if the circuit is functioning correctly and will carry the value 1 if the circuit is defected
(i.e., faulted). When a line has a dif-ferent value in the faulted and unfaulted circuits, it is
said to have a discrepancy. Fig. 3.3. shows a test pattern that detects D stuck-at 1 and fig.
3.4. shows a test pattern that does not detect D stuck-at 1. We say that the test pattern of
fig. 3.3. covers D stuck-at 1 and the test pattern of fig. 3.4. fails to cover D stuck-at 1. The
test pattern generation problem is known to be NP-complete [Fuiwara and Toida, 82]. This
fact can be easily demonstrated by showing that 3SAT (i.e., an instance of the satisfiability
problem where each clause is allowed to have only three variables) [Cook, 71] is

polynomial-time reducible to test pattern generation. First, we take a 3CNF (conjunctive

53

normal form) formula (also known as a product of sums formula where each sum has at
most three literals) and naively build the circuit corresponding to it. We can do this by
creating one OR gate for each clause and feed the outputs of all the OR gates into one
AND gate. In fig. 3.5. we show a circuit corresponding to the 3CNF formula

(A+B+C)-(A+B+C). Next, we generate a test pattern for the output of the circuit stuck
at 0. If it were possible to generate the test pattern in polynomial time, it would be possible

to satisfy a 3CNF formula in polynomial time.

It would be possible to generate a test pattern in linear time if it were not for reconvergent
fanout [Ibarra and Sahni, 75]. In a combinational circuit, reconvergent fanout occurs
whenever there is more that one path of logic elements between any two lines in the circuit.
For example, in fig. 3.5., there is more than one path between line A and line X. The

presence of reconvergent fanout introduces potentially unsatisfiable dependencies into the

problem of test pattern generation.

The gate-level Automatic Test Pattern Generation (ATPG) problem has been approached
in two major ways: algebraic techniques based on Boolean Differences, literal proposition,
etc., and path sensitisation techniques that operate on the circuit topology like the D-
algorithm [Roth, 66] and PODEM [Goel, 81]. In the first set of approaches, the circuit under
test is typically represented by some form of a switching function like a truth table, sum-of-
products expressions and Karmnaugh maps. Test pattern generation is carried out by the
manipulation of these representations. Until recently, algebraic techniques have not found
favour because these techniques did not scale well with the size of the circuit under test.
The main problems were those of generating the representations from circuit netlists and
their manipulation when there were a large number of input variables and internal nodes.

These problems have been alleviated to a great extent with the renewed interest in the use

56

of Ordered Binary Decision Diagrams (OBDDs) for the representation and manipulation of
combinational logic. Some of the more significant work done in this area of ATPG

includes CATAPULT [Gaede et. al., 86], WAVE [Ross and Mercer, 90], and TSUNAMI

[Stanion and Bhattacharya, 91].

Path sensitisation based ATPG algorithms operate on the circuit topology. ATPG is the
problem of assigning values to inputs such that the circuit output(s) contain different values
for the fault-free and faulty cases. The path sensitisation algorithms implicitly or explicitly
search the entire space of input vectors to find a test. The current problems with this
approach is that faults which are hard-to-detect for one algorithm may not be so difficult
for another. This situation occurs because it is the specific decisions an algorithm makes
and not the function the circuit implements that make it difficuit for the algorithm to find a
test for some fault. Popular algorithms that utilise the path sensitisation approach include
D-algorithm [Roth, 66], PODEM [Goel, 81], FAN [Fujiwara and Shimono, 83], and

SOCRATES [Schulz et. al., 88].

3.1.2. The Test and Monitoring System and the Fault Coverage Code Generation
Problem

After defining the test pattern generétion problem we can now proceed with the definition
of the fault coverage test code generation problem. Test codes (a set of input test vectors
and a set of expected output vectors) are an integral part of the Test and Monitoring
Systems (TAMS). TAMS are widely used for real-time testing of the functionality of
electronic circuits (fig. 3.6). Basically they operate by regularly initiating a test cycle on the
circuit and monitoring the fault status. For reliability reasons new circuits cannot be used

until the fault coverage test code is updated with a new set of comprehensive test vectors

(fig. 3.7).

58

The update is achieved with the help of a fault analysis process used to determine the fault
detection coverage of a particular design. The fault analysis process for a design involves
the optimisation of the input stimulus to fully exercise all components to increase the
testability. Usually the fault analysis process fits within the product development cycle
after the initial functional verification of the design and before the physical hardware
testing of the product. However, due to other design considerations, here we face the
problem of maximising the fault coverage for an already specified circuit. The amount of
fault coverage within a design depends on the following two factors: (1)
comprehensiveness of the test code, and (2) inherent testability of the logic design. In this
section we concentrate on the first factor and formulate the problem of finding an effective

set of input test vectors as a search problem:

Given a set of patterns of the form *1**10**0, where * is a don’t care symbol,
find a set of N binary vectors that maximises the coverage of the given patterns.

Coverage is defined in terms of Boolean matching.

3.1.3. Constraint Handling: Deriving the Generators of the Feasible Region and

Designing Feasibility Preserving Operators

Usually there are various constraints imposed on the test codes. For example, the size of
the test code may be constrained by hardware requirements of the test and monitoring
system. There may also be a number of constraints concerning the possible combinations
of input signals. The task is to automate the process of finding the most comprehensive test

code, i.e., the code maximising the fault coverage (fig. 3.7).

59

The requirement that the number of test vectors must be exactly NV is represented directly
by the coding scheme of the problem. A sample from the associated fitness landscape of

the search problem would consist of N vectors each of length m bits.

The second type of constraints impose strict requirements on the possible combinations of
values within each individual test vector. The designers of the circuit define the set of legal
combinations in terms of the legal states of a number of channels (fig. 3.8). Each channel is
a logical grouping of input bits (for example, bits No. 2, 5, and 7 could form logical
channel 1). Collectively the legal states of all channels define a set of legal (supporting)

templates of the form;

1*Q**1QLL***
where * is a don’t care symbol. Each template could be viewed as a generator of a
particular fraction (subspace) of the original search space. Therefore, the set of all legal
templates defines the feasible region. The existence of a such closed form description of
the feasible region greatly influences the selection of a constraint handling technique. In
our case, it seems appropriate to maintain a population of legal samples by designing

feasibility preserving search operators.

When applied to a feasible point(s), a feasibility preserving operator always produces
another feasible point(s). For the test code generation problem we have designed two

versions of mutation and one of crossover which comply with the selected constraint

handling technique.

mutation 1:(i) find the supporting template of the parent chromosome, and (ii) apply

uniform mutation to the values of the don’t care bits.

100101011011 parent chromosome
1*0**1011*** parent’s supporting template
110111011001 offspring

61

mutation 2:(i)find the supporting template of the parent chromosome, (ii) change it by

randomly selecting another supporting template while keeping the values

of the don’t care symbols.

100101011011 parent chromosome
1*0**1011*** parent’s supporting template

0*1**0011*** new supporting template
001100011011 offspring

crossover: (i) find the supporting template of both parents and (if) apply uniform

crossover to the don’t care bits.

parents 100101011011 011010011001
templates 1*0**1011*** 0*1**0011***
offspring 110111011001 001000011011

3.1.4. Utilisation of the Inductive Search Approach

In general the inductive approach generates a solution step by step, beginning from the so
called base of the induction and at each step following an induction rule to update (i.e.,
induce) the solution. In mathematics induction is a rigorous proof technique while in the
context of adaptive search it is used to approximately induce a solution to a particular
problem. Previous research [Bilchev and Parmee, 96d][Bilchev and Parmee, 96e] well

justifies the potential power of the inductive approach in the context of search.

Applying the inductive approach to the fault coverage code generation problem requires a

slight reformulation of the problem. The original problem is:

Given a number N (the maximum number of fault coverage
test vectors) find a sequence of N test vectors that
maximizes the fault coverage.

It can be easily reformulated as:

62

For each kK = 1 to N find a sequence of k test vectors
that maximizes the fault coverage.

While being the same problem the inductive formulation also gives meaning to
intermediate solutions. Suppose for example that for some k, 1<k<N, we know a sequence
of test vectors which gives satisfactory fault coverage. The term satisfactory means that
with k test vectors we couldn’t expect to cover many more faults than those already
discovered by the sequence. This is a relative judgement regarding the particular circuit and
can serve as an efficient stopping condition instead of the usual maximum number of
generations (ref. to step 6 of the algorithm). Now if for & test vectors we have already
achieved a satisfactory level of fault coverage, the task is to find a satisfactory fault
coverage level for k+1 test vectors. The main power in the inductive approach is the
assumption that the satisfactory fault coverage level for k+1 test vectors could be derived
from the satisfactory level of the & test vectors. If this assumption is true then it produces
an efficient search engine with computational complexity determined only by the

computational complexity of the inductive step.

The Inductive Genetic Algorithm (IGA) combines the evolutionary search engine with an

inductive fitness function. The overall structure of the IGA is as follows:

1. Initialize a partial solution for N =1 (i.e., a
sequence of one test vector only)

100101011011

2. For k = 2 to N do (search for the best kth vector that
complements the already existing partial solution)

3. Initialize a population of test vectors
011001001110 010010111010
4. Add each test vector to the partial solution, evaluate

it and assign fitness

63

the search space by dividing it into disjoint inductive search subspaces, whereas the simple

GA works on the huge original search space (approx. 22412},

Fig. 3.11. shows the performance of the IGA as a function of the number of input test
vectors. The same fault population of 200 faults as in the previous experiments is used.
The IGA is able to find a set of 67 input test vectors that cover 100% of the fault
population. If the hardware requirements allow the TAMS to use 67 test vectors then 100%
fault coverage could be achieved. However, in real world problems there are hard
constraints imposed on the design task. For example, in our particular TAMS test code
generation problem the number of input test vectors must be 24. Therefore, our objective is
to design maximally comprehensive set of 24 test vectors (the design of the logic of the
circuit is already fixed, so we regard the test coverage code generation problem as a search

problem and do not address the inherent testability properties of the logic design).

Fig. 3.12. shows the effect of the constraints on the performance of the search engine.
There are two graphs, each corresponding to a particular set of constraints. Each set of
constraints is determined by a table of legal states. Legal table 2 is derived from legal table
[by reducing the number of legal states in channel 1. Therefore, legal table 2 corresponds
to a more constrained instance of the fault coverage test code generation problem.
Imposing constraints on the problem is somewhat equivalent to introducing inherent
untestability in the circuit design. Certain legal identifying fault patterns can no longer be
allowed and therefore, the corresponding faults they cover cannot be detected. As can be

seen from fig. 3.12 this fact significantly influences the fault coverage.

In this section we used a real world problem to demonstrate a very efficient and well

known constraint handling technique. It consists of defining the feasible region in terms of

66

the independent variables and designing feasibility preserving operators (i.e., operators that
map the feasible region onto itself). The existence of such a closed form description of the
feasible space leads to a minimal redundancy problem representation [Radcliffe, 91] and
could significantly reduce the search space. Currently the feasibility preserving constraint
handling technigue is being applied successfully to the optimisation of real valued
functions and linear constraints [Michalewicz, 92], and for combinatorial problems
(chapter 2). In this section we have shown that the approach is quite generic and applied it
to the fault coverage test code generation problem [Bilchev and Parmee, 96] with

additional explicitly defined constraint requirements imposed by the designers of the

circuit’s logic.

We consider the reduction of a search space to be one of the most efficient approaches for
solving any search problem. This idea has been fundamental for many of the existing
search methodologies, including branch-and-bound, clustering, etc. In this section we also
proposed to integrate the search space reduction approach (implemented as an inductively
defined fitness function) with an evolutionary search engine. The idea has already produced

successful results when applied to optimisation of real valued continuous functions

(chapter 2).

67

CHAPTER 4

Evolutionary Constraint Handling for Problems with Implicitly
Defined Constraints

4.1. The Ant Colony Search Model for Functions of Continuous

Variables
In this chapter we extend the ant colony search model introduced in chapter 2 to deal with
constrained optimisation of functions of continuous variables and present a number of

empirical results.

It is a well established belief that if no a priori knowledge about the problem at hand f is
incorporated into the search algorithm, the problem scales exponentially with its dimension
[Kowalik, 68]. This phenomenon, known in optimisation as the “curse of dimensionality”
[Fletcher, 871, led to the abandonment of direct search methods in favour of those using

some a priori knowledge (assumptions) about f.

In this section we extend the ant colony search model introduced in chapter 2 to deal with
continuous domains. The assumptions that we will make are that (1) new samples of f
should most often be obtained in the vicinity of previous, high-performance samples, (2)
the number of new samples in the vicinity of a previous sample must depend on the

observed value of f at that sample, and (3) the breadth of the sampling distribution around

70

the previous samplings should decrease as the global optimum is approached. The
applicability of the ant colony search model to engineering design problems is our major
concemn. This typically involves applications to highly-dimensional and multi-modal
problems with various kinds of constraints that are imposed in order to satisfy a priori

defined performance criteria or behaviour.

The ant cycle algorithm (chapter 2) is not appropriate for continuous space searches.
Keeping analogy with the foraging strategies of ant colonies we suggest an ant colony
model applicable to continuous spaces. The main difficulty is how to model a continuous
neighbourhood with a discrete structure. The strategy we have adopted is to represent a
finite number of directions as vectors starting from a base point, called the nest. As
potentially all of the continuous search space has to be covered, these vectors are evolving

in time according the ants’ fitness (fig.4.1.).

The structure of the ant colony algorithm is shown in fig. 4.2. Before the algorithm begins
we have to initialise the nest structure by generating uniformly random starting directions
as shown in fig. 4.3. Next we define a search radius R, which determines the maximum
extent of the subspace to be considered in each generation (cycle). Then initialize
A(t) sends ants in various direct.ions at a radius not greater than R (see fig. 4.3);
evaluate A(t) is a call to the objective function for all ants; add_trail A(t) is
proportionally (to the ants’ fitness) adding trail quantity to the particular directions the ants
have selected, send_ants A(t) sends ants by selecting directions using a roulette
wheel selection on the trail quantity and making a random step from the location of the
best previous ant that had selected the same direction, evaporate A(t) decrements

the trail. The random step is implemented as:

71

ACLR) = R- (1= -0/ 4.1)

where R is the search radius, r is a random number from [0..1], T is the maximal generation
number, and b is a system parameter determining the degree of non-uniformity. A(t,R)
returns a value in the range [0..R] such that the probability of A(#,R) being close to 0
increases as f increases. R is determined by the extent of the search subspace we want to
cover during the run and corresponds to scaling of the ant colony model. During the run if
certain directions do not result in improvement, they do not participate in the trail adding

process and the reverse (evaporation) process diverts attention away from them.

The proposed ant colony model comprises three levels of abstraction. The lowest level is
that of the individual search agent. It describes the employed individual search strategy,
e.g., stochastic hill climbing, steepest descent, line search, etc. The middle level defines co-
operation among agents which generally consists of a joint search effort in a certain
direction. The highest level is the meta level which defines some high order a priori
assumptions about the nature of the fitness landscape. At this stage it is important to notice
the difference between direction and path in our model. The direction simply implies a
physical location like north-east, etc. Due to self-organisation certain directions turn into
paths as more and more trail is accumulated onto them (i.e., more and more ants are
attracted). When no further improvement can be made along a particular path, no more trail
is laid onto the path and the evaporation process turns it back to a direction. Stated in other

words a path is a direction with high trail value.

Individual Search Level
The current utilised individual search strategy is purposely kept simple enough in order to

reveal the power of co-operation. It consists of stochastically selecting a search direction

74

and making a step with size calculated by A(#,R). During the next generation {cycle) only
the best new samples will be considered in the trail adding process. The overail individual

search strategy can be viewed as stochastic hill-climbing.

Co-operation Level

The ants select randomly a direction to search with probability:

[z,(0)]

P()=ai—=—
) PN EAG)

(4.2)

where 7; is the trail on direction i. If the ants return with a higher fitness value they add trail
on the selected direction. The added trail is proportionat to the fitness value and it changes
P(r). Thus some directions become more attractive than others. A highly attractive
direction eventually turns into a path as more and more agents follow it (fig. 4.4.). All of

the agents from a particular path contribute to the joint search effort on that particular

direction.

An evolution of the ant colony dynamics in time is shown in fig. 4.5. The experiment uses

one hundred ants, »=2 and R=0.1. The selected fitness function is:

F2(x)= Y sin® (57 x) (4.3)

The number of ants attracted to each of the peaks at each generation depends on the peak’s
fitness. Better peaks (maximisation) attract more ants at the beginning of the evolution and

less ants at the end. The dynamics of the ant colony search model are sensitive to the

75

evaporation parameter (i.e., how quickly the trail added by other ants is evaporated). This
makes the ant colony a promising metaphor for fitness functions, fostering both co-

operation and selfishness; however, this can make the turing of the parameters more

difficult.

Meta Level

The meta level can be defined as the mutual interaction between paths or some other kind
of heuristics. For example, the intersection of trail diffused from two paths can be
considered to form a new path which attracts agents. In this respect the effect of trail
diffusion in the ant colony model is analogous to arithmetic crossover in GAs (fig. 4.6.). At
present the meta level is not well understood and efficient meta rules are difficult to define.
Current practice includes functions with relatively little variable interaction where
exchanging variables from several partial solutions could potentially pay off. An example

of how to define non-trivial meta rules using problem specific knowledge is shown at the

end of section 4.3.

4.2. Handling Constraints in the Ant Colony Search Model

The classical treatment of constrained optimisation defines the problem as:

m).{inF(X)
s.t. g;(X)<0

(4.4)

where j=1,...,N. The constraint functions g; are assumed to be defined explicitly in terms of
the (design) variables X. The utilisation of the ant colony model for constrained
optimisation is mainly concerned with the representation of the constraints. We propose a

very simple model: the constraint violation determines the acceptability of a point from the

17

The ant colony search model gives better minima at the same level of constraint violation
as compared to other existing state-of-the-art evolutionary constrained handling techniques
[Michalewicz, 95 a). Results are summarised in Table 4.1. For example, the best results

described in [Michalewicz, 95 a] are -15.00, 8206.15, 681.11, 0.064 and 26.9 for test cases

from 1 to 5 respectively.

Compared to other evolutionary methods for constrained optimisation the ant colony
model shows excellent performance and quality of solution especially for the problems
with non-linear constraints. A remarkable feature of the ant colony model is that the
standard deviation of the solutions (averaged over 10 independent runs) is considerably
less that the standard deviation produced by other evolutionary methods for constrained

optimisation [Michalewicz, 95a].

The performance of the ant colony search model can be significantly increased if the
individual search strategy is appropriately selected. For example, if the ant colony utilises a
Sequential Quadratic Programming method [Lawrence et. al., 96], instead of the simple
stochastic hill-climbing, the performance on the five test cases could be dramatically
increased. Results are shown in tabie 4.2. In this case the performance is so significantly
increased because the test cases prove to be easy for the individual search strategy alone
and no co-operation is necessary (actually, here co-operation slows down the program

execution on a sequential machine as many of the agents will reach the same solution in

parallel).

81

Unfortunately, the selection of individual search strategy cannot always guarantee such an
increased performance. It is potentially possible that much CPU time is allocated to the
individual search (i.e., local exploitation) and little remains for the global exploration thus
resulting in decreased overall performance. Such a scenario is quite plausible for highly
multi-modal fitness landscapes. In this case other approaches, such as the definition of
appropriate meta-control rules, seem very promising. An example of how to define
effective meta-control rules is presented in the following paragraphs using the bump
problem proposed by Professor A. Keane [Keane, 94]. The bumpy equation simulates a

multi-peak optimisation problem. The objective function is defined as follows:

f(x)= {abs(i cos’ (x;) - 2lﬂ[c032(x,.))} /{ iixf } (4.5)

i=|

where the x;, i= 1,...,m are the variables (expressed in radians) and m is the number of
dimensions. This function produces a series of peaks that get smaller with distance from
the origin and which are nearly symmetrical about x;=x; i,j=1,..,m. The optimisation

problem is then defined as find x; for O<x;<10, i=l,...,;m to maximise the function subject to

Hx,. >0.75 and Zx,. <300. A contour plot of the fitness function for the 2D bump

=1 i=]

problem is shown on fig. 4.7.

There are some interesting features about the bump problem which can be used as a basis
for the definition of efficient meta-control rules. For example, the observation that the
fitness function can always be improved by sorting the co-ordinates of a search point in
decreasing order is implemented as a heuristic in the ant colony search model (i.e., at each

generation the heuristic is applied to the best solution). It greatly increases the performance

83

of the search algorithm and empirically proves the fact that algorithms that use as much as

possible relevant information about the problem at hand achieve better results (fig. 4.8.).

This section presented the ant colony metaphor as a high level description language for
distributed searches. Current research identifies three levels of abstraction: the individual,
the group, and the environment (landscape). Although easy to describe, such models are

often mathematically intractable to analyse due to the non-linear coupling between the

three levels.

We also empirically showed that incorporating prior knowledge into the search process
significantly improves the performance. The ant colony metaphor proves quite useful when
applied to engineering design problems as it enables the engineer to fully take advantage of
the adaptive search paradigm and to easily implement constrained search as will be seen in

chapter 6.

84

CHAPTER 5

Feasibility Search for Problems with Implicitly Defined
Constraints

In this chapter we assume that the constraints are implicitly defined (i.e., “black box”
representation) or that they are so complex that the feasible region cannot be readily
derived explicitly as in chapter 3. The main objective will be to “outline” the feasible
region by a population of samples. The developed framework should work in convex as
well as non-convex feasible regions. Once the various feasible subregions are found they

can be passed to the engineering designer for evaluation.

5.1. Low Discrepancy Sequences

If we want to guarantee a uniform sampling of the search space we can use a grid
sampling. The trouble with the grid éamp]ing is that one has to decide in advance how fine
it should be. One is then committed to completing all the points. With a grid it is not
convenient to sample until some convergence or termination criterion is met. One might
ask if there is not some intermediate scheme, i.c., some way to pick sample points “at
random”, yet spread out in some self-avoiding way, avoiding the chance clustering than
occurs with uniformly random points. So the question is: Is there any way to sample better

than uncorrelated, random samples?

87

The answer to the above question is “yes”. Sequences of n-tuples that fill n-space more
uniformly than uncorrelated random points are called quasi-random or low-discrepancy
sequences. A conceptually simple example is the Halton sequence [Halton, 60]. In one
dimension the jth number H; in the sequence is obtained by the following steps: (a) Write j
as a number in base b, where b is some prime. (For example, j=17 in base b=3 is 122.) (b)
Reverse the digits and put a radix point (i.e., a decimal point base) in front of the
sequence. (In the example we get 0.221 base 3.) The result is H;. To get a sequence of n-
tuples in n-space, we make each component a Halton sequence with a different prime base

b. Typically, the first n primes are used.

It is not hard to see how Halton’s sequence works: Every time the number of digits of j
increases by one place, j's digit-reversed fraction becomes a factor of b finer-meshed. Thus
the process is one of filling in all the points on a sequence of finer and finer Cartesian grids
and in a kind of maximally spread-out order on each grid (since, e.g., the most rapidly

changing digit in j controls the most significant digit of the fraction).

Other ways of generating low-discrepancy sequences have been suggested by Sobol
[Sobol, 67], Niederreiter [Niederreiter et. al., 94], and others. Bratley and Fox [Bratley et.
al., 88] provide a good review and. references. In our work we will adopt a particularly
efficient variant of Sobol’s sequence proposed by Antonov and Saleev [Antonov et.. al.,

79].

The Sobol’s sequence generates numbers between zero and one directly as binary fractions
of length w bits, from a set of w special binary fractions, V;, i=1,2,...,w, called direction
numbers [Press et.al., 92]. In Sobol’s original method, the jth number X; is generated by

XORing (bitwise exclusive OR) together the set of V;'s satisfying the criterion on i, “the ith

88

bit of j is nonzero.” As j increments, in other words, different ones of the V;'s flash in and
out of X; on different time scales. V; alternates between being present and absent most

quickly, while V, goes from present to absent (or vice versa) only every 2! steps.

Antonov and Saleev’s contribution was to show that instead of using the bits of the integer
j to select direction numbers, one could just as well use the bits of the Gray code of j, G().
Now G(j) and G(j+1) differ in exactly one bit position, namely in the position of the
rightmost zero bit in the binary representation of j (adding a leading zero to j if necessary).
A consequence is that the j+1st Sobol-Antonov-Saleev number can be obtained from the

Jjth by XORing it with a single V;, namely with i the position of the rightmost zero bit in j.

Figure 5.1. plots a two dimensional Sobol sequence. One sees that successive points do

“know” about the gaps left previously, and keep filling them in, hierarchically.

We have deferred to this point a discussion of how the direction numbers V; are generated.
Each different Sobol sequence (or component of an n-dimensional sequence) is based on a
different primitive polynomial over the integers modulo 2, that is, a polynomial whose
coefficients are either 0 or 1, and which cannot be factored (using modulo 2 integer
arithmetic) into polynomial of lower. order. Suppose P is such a polynomial of degree g:

P=x"+ax" +ax "+ +a,, +| 5.1

Define a sequence of integers M; by the g-term recurrence relation:

89

M =2aM, ®2a,M_,® - ®2'M,_ a, , ®2°M,_ OM,_) (5.2)

Here bitwise XOR is denoted by @. The starting values for this recurrence are that
M,,...,M, can be arbitrary odd integers less than 2,...,2, respectively. Then the direction

numbers V; are given by:

V. =£f, i=l,.,w. (5.3)

5.2. Population-based Identification of the Feasible Region

5.2.1. Implementation Details

In this section we are interested in finding the feasible region using a finite population
based search. A straightforward way to outline the feasible region is by uniformly sampling
the search space. Although this is an accurate method it is highly computationally
expensive. One way to reduce the computational expense but still preserving the guarantee
of not missing a feasible “corner” is by utilising a low-discrepancy sequence. Fig. 5.2.
shows the feasible region of three arbitrary’ 2-dimensional test functions outlined by a
Sobol sequence of length 500,000-. A C-code implementation of the test functions is

included in the Appendix.

In engineering design, however, it is quite usual to be limited to a certain number of cost

function calls {e.g., 10,000) depending on the computational cost of the simulation model.

" For the purpose of our investigations the exact definition of the test functions is not so relevant as the
“shape” of the feasible region.

93

Therefore, we need a much faster method for outlining the feasible region, though at the
sacrifice of accuracy and guarantee of not missing a feasible region. In this section we
develop an adaptive search population based method for identifying the feasible region
using a small number of cost function calls. The idea is to modify the dynamic hill
climbing to include a low-discrepancy sequence for generating the staring points. Using
this approach it iS no longer necessary to maintain a database of point neighbourhoods
which have already been sampled, since the low-discrepancy sequence “‘remembers” the

regions it has already visited:

(Algorithm 1)

1l.Initialize a population of N quasi-random (i.e., from a
Sobol sequence) samples.

2.For each of the elements in the population apply a hill-
climber for M steps. The cost function is the constraint

violation.
3.Repeat step 2 until all individuals are in the feasible

region or stuck at local optima.

The above algorithm allows an equal number of hill-climbing steps for each point at each
iteration. It is quite possible, however, that the slope of the constraint violation function is
different at various points and therefore, the above described population does not converge
uniformly on the feasible region (i.e., some points will satisfy the constraint violation
better than others). This is not a fundamental deficiency of the proposed algorithm as far as
the goals of finding the feasible region is concerned, but will play a significant role when
trying to introduce heuristics that reduce the number of cost function calls (i.e., at each
iteration it makes more sense to compare points with similar degree of constraint
satisfaction). To achieve uniformity of constraint satisfaction during each iteration we

modify the above algorithm in the following way:

95

(Algorithm 2)

1.Initialize a population of N quasi-random (i.e., from a
Scbol sequence) samples.
2.Set a constraint violation threshold 6 and relax the

constraints in the constraint violation cost function by

0%.

3.For each of the elements in the population apply a hill-
climber until the modified constraint wviolation function
is satisfied or a local optima is reached (in which case
that individual is removed from the population).

4.Tighten the constraint relaxation threshold by a

predetermined A, i.e., the allowed constrained violation

becomes 6=0-A%.
5.Goto step 3 until 6-A becomes =zero, in which case the

constraints correspond to their original values.

5.2.2. Experiments

The above described algorithm modifies the cost function at each iteration. This approach
is quite reminiscent of the inductive search approach described in chapter 2. Fig. 5.3 shows
the found feasible region of the test functions from fig. 5.2. The number of cost function
calls is 15456, 17336 and 16741, respectively. It turns out that adaptation is capable of
reducing the number of calls to the cost function while at the same time presenting an
acceptable description of the feasible region. Of course, this cannot be always guaranteed,

especially for cost functions with a huge number of local peaks.

Usually, we do not know in advance the exact number of peaks. It is a good idea to start
our search with a large population size (i.e., comprehensive exploration of the search
space) and then to concentrate the search only to the most promising areas (i.e.,

exploitation). This approach is only valid if the number of peaks is significantly less than

96

the population size. If the number of peaks is greater than the population size, then it is
obvious that such a heuristic reduction of exploration would result in missing feasible
regions. Although such a heuristic does not give us a guarantee of not missing a feasible
“corner” of the search space, in engineering design practice it may turn that due to
sensitivity issues we are more interested in relatively large feasible areas and do not care

too much if our heuristic search algorithm filters out some peaky narrow feasible “islands”.

In order to implement the above described goals we first borrow some ideas from

immunology.

5.3. An Immunity-based System for Finding the Feasible Region

5.3.1. 1deas from Immunology

The practice of vaccination significantly predates some understanding of the immune
system. More than a century has passed since Pasteur developed his rabies vaccine, which
prevents the otherwise fatal disease. In the nineteen-fifties, about a century after Darwin’s
“Origin of Species”, MacFarlane Burnett proposed the “clonal selection” theory of B-cell
response. (B-cells are an important part of the immune system response.) B-cell clones
expand through a proliferation of those cells whose surface immunoglobulins bind to the
invading antigen (fig. 5.4). The information content of the genome is not large enough to
be able to mount an “instructive”, genetically pre-programmed immune response. The
number of possible antigens is simply too large and unpredictable, and the pathogens
evolve much faster then their host species and therefore, can generate ever novel

“molecular surprises” for their hosts. The immune system is thus self-organising.

98

The mechanism of generating self-defining molecular identity implies that the immune
system has to “learn” to distinguish “self’ from “non-self’. There are different hypothesis
attempting to describe the process of self-identification. MacFarlane Burnett assumes that
self-identification is accomplished by a process of clonal deletion, during neonatal
development, of all those B-cells and T-cells that are self-reactive. The clonal selection
theory has a counter part: The idiotypic network theory of Jerne {who, like Burnett, won a
Nobel prize). According to this theory, antibodies themselves become antigens by carrying
epitopes that are antigenic, and which therefore stimulate other B-cell clones, which in turn
carry epitopes, which stimulate other clones, and so on. The result is an “idiotypic
network™ of B-cells and antibodies that bind to each other and which stimulate and inhibit

each other.

5.3.2. Implementation Details.

In this section we utilise the idea of idiotypic interactions and apply it to the population of
our search algorithm (section 5.2, Algorithm 2). The goal is to adaptively reduce the
number of similar samples. The employed heuristic is that samples which are close to each
other (in an Euclidean distance measure) most probably will fead to the same feasible
region or peak and therefore, we can delete all similar samples from the population but
one. For other applications of imrﬁunity-based systems to search and optimisation the

reader is referred to [Smith er. al., 93] and [Forrest et. al., 93].

More formally, the idea is as follows. At each iteration of the algorithm described in
section 5.2 we calculate the Euclidean distance between all pairs of samples. Then for all
pairs that are closer than a given threshold we randomly delete one of the samples from the
population. In terms of our immunity-based metaphor, the distance between two samples is

analogous to the degree of recognition between two antibodies. The resulting algorithm can

100

also be viewed as a stochastic clustering technique, in which we are only interested in the

center of the clusters.

Under the assumption that similar samples eventually lead to the same feasible region or
peak, the above described heuristic reduces the overall number of cost function calls

without sacrificing quality of obtained results. The modified algorithm is as follows:

(Algorithm 3)

l.Initialize a population of N quasi-random (i.e., from a
Sobol sequence) samples.
2.8et a constraint wviolation threshold 6 and relax the

constraints in the constraint violation cost function by

0% .

3.For each of the elements in the population apply a hill-
climber until the modified constraint vioclation function
is satisfied or a local optima is reached (in which case
that individual is removed from the population).

4.For all pairs of samples that are closer to each other

than a given threshcld 7T delete randomly one of them with

probability p, 0<p<l. (We have used p=1.)

5.Reduce the constraint relaxation threshold by a
predetermined A.

6. Goto step 3 until 6-A becomes zero.

5.3.3. Experiments.

Fig 5.5. shows the results of the immunity-based population search starting with the same
number of initial samples as in the previous experiment (fig. 5.3) on the three test functions
from fig. 5.2. The number of cost function calls is reduced considerably to 8108, 9113 and
9009 respectively. The qualitative nature of the feasible region is not sacrificed which is

due to the validity of the assumption for the particular tested functions.

101

It is aiso. possiblé; however, that the :above. assumption: is: not valid. Tn such case the
preseiited’-algorithifi Will -fail to faithfully represent the feasible region. This' can-easily
happen: -for heavily' constrained! problems where the feasible regions are small and

randomily scattered:aroiind the design space. Chapter 6 presentsione such: problem.

i

102:

CHAPTER 6

Feasibility Search for Heavily Constrained Problems

6.1. Heavily Constrained Engineering Design Problems

In this chapter we deal with a heavily constrained optimisation problem from the aircraft
design domain. The chosen design problem is realistically complex; its globally optimum
solution is not known or readily determined due to the large size of the search space and
noise. Most of the desired performance criteria are defined as constraints which are
implicitly implemented into a simulation model. Their values can only be accessed after

the simulation has completed.

6.1.1. Preliminary Aircraft Design

The application of Al and advanced software techniques to engineering design is resulting
in the development of new software tools for the design of aircraft [Dixon, 86]. The
research in this chapter further contributes to this field and aims at integrating the adaptive

search technology for feasibility search,

The first step in constructing methods for aircraft design is to consider the general nature of
the problem of engineering design [Bouchard er. al., 88]. Fundamentally, engineering
design is the translation of some set of functional desires into a set of instructions that can

be used to “construct” an object that satisfies those desires. In practice, the design process

104

typically generates a largely geometrical description, known as configuration. In this less
compiete but more common view of design, the configuration represents an implicit set of

instructions for constructing the object.

Parametric design is a subtask of design. The design concept, which is the general type and
arrangement of the object being designed is the starting point of parametric design. In
addition, the desires to be satisfied form a set of constraint or objective requirements. The
design for an aircraft, for example, requires specifying details: Does the aircraft have
wings? If so, what type are they, how big are they, and where are they located? When
parametric design starts, many of these decisions have already been made; the results are
expressed in the design concept (usually implemented as a simulation model). This concept
might specify that the aircraft has wings made of aluminium and a jet engine buried in the
fuselage. The object of parametric design is to produce a specific design from the family of
designs implied from the design concept. This entails answering questions like: How big
should the wing and engine be for a minimum-weight aircraft that meets the range

requirement?

A configuration can be specified by a set of symbolic and numerical characteristics that
define the objects and relations whiclh comprise the configuration. Selecting characteristics
that can be specified independently produces a set of design variables, In parametric
design, the design variables define an instance of the design concept being examined.
Examples of aircraft design variables are tail area, tail location, engine size, etc. These
variables provide the means by which the design can be optimised subject to the design

requirements.

105

Because paramteric design starts from a design concept, it avoids much of the synthesis,
reasoning by analogy, and common sense reasoning which are required in other types of
design activities. This makes it a highly suitable candidate for automation and is one of the

reasons that the emerging design tools have concentrated on this area of design.

6.1.2. The “Hotol” Project by British Aerospace Plc.

The design domain of the Hotol aircraft involves the preliminary parametric airframe
design and definition of a flight trajectory for an air-launched winged rocket that will
achieve orbit before returning to atmosphere for a conventional landing. The trajectory
consists of a pull-up from air launch at 9000m altitude and Mach 0.8 at a constant
incidence, followed by a zero incidence ascent. The main engine cut-off (MECO) window to
aim for is 90km altitude, approximately 7500m/s and a small climb angle to put it into an

approximately 50x300 mile elliptic transfer orbit.

The fuselage is a cylinder with spherical cap. The wing is straight tapered. The mass of the
fin is accounted for, but no acrodynamics are modelled. Due to the geometry of tanks,
allowance for wing carry-through structure, payload bay, guidance and systems, the
volume of fuselage available for fuel is less than might be expected (which is accounted
for in the simulation model}. Thel fuselage mass is assumed to be composed of two
approximately equal components, one proportional to the surface area, one to volume. The
wing is calculated to a NASA formula, assuming a maximum load factor of 1.5 at full load
(i.e., in the pull-up), with a reserve factor of 1.4. The fin is based on shuttle data. The
engine uses current knowledge of T/W as a function of scale. The payload is specifiable:

the vehicle on which our simulation model is based is designed to a 7000kg payload.

106

Lift is calculated by the proprietary DATCOM formula, with Clmax conservatively
assumed to be 1.0. No Mach effects are represented as lift is only significant in the pull-up.
Drag is made up of fuselage, wing, base and lift-dependent components. The fuselage and
wing have skin friction components calculated by the empirical Prandtl-Schlichting
formula. Wing wave drag (supersonic) is based on the ESDU method derived by British
Aerospace at Warton. Fuselage wave drag is crude, assuming ram drag (i.e., flow brought
to a dead stop) on the nose cap. This is pessimistic below Mach 5, but realistic at

hypersonic speeds. Base drag applies to the area not covered by engine nozzle, and uses

empirical data.

The engines are fitted into the base area such that the nozzles do not protrude beyond the
fuselage cross-section (i.e., no shroud). As the engine throat area is proportional to scale
factor, the expansion ratio (nozzle area/throat area) follows from this criterion. Up to 7
engines may be fitted; beyond that the geometric packing becomes complicated. Thrust is
calculated directly from specific impulse and fuel flow, which is proportional to engine

scale.

The design concept as modelled by the simulation code is schematically shown in fig. 6.1.

The independent variables of the design concept include:
ALPHA: Incidence during pull-up (in degrees)

GAMMA: Climb angle at the end of puil-up (in degrees). The trajectory and conditions

at MECO (Main Engine Cut-Off) are very sensitive to ALPHA and GAMMA.

107

SW:

ESF:

FR:

NENG:

FL:

HMECO:

Gross wing area. This means the area of the wing considered projected to

the vehicle centreline.

Engine scale factor. This is relative to a lOOOkN engine.
Fuselage fineness ratio (length/diameter).
Number of engines.

Fuselage length.

Height at MECO. This relates to the required orbit.

There are several constraints which are to be met:

DVMECO:

VLAND:

WPL:

DGMECO:

Speed excess at main engine cut-off (m/s). This is the excess over that
required to achieve the specified orbit. This should be obviously zero.
Landing speed (m/s). This should be about 77 m/s.

Achieved payload weight. Nominal value of 7000 kg.

Maximum speed in ascent (m/s). This is a measure of the kinetic heating
during ascent, and also affects the loading on the structure. A typical
compromise limit may be 260 m/s but this may not be possible to achieve
without modulating thrust.

Excess in climb angl;e over the required for orbit at MECO. This should be

obviously zero.

Initially a tolerance of 1% on the nominal values is accepted as satisfactory. This would

give margins of about 70, +1, £70, 2, £0.01 respectively.

The overall objective of the design is to minimise the empty weight of the vehicle (WE),

based on the specified geometry.

109

6.1.3. Current Solution Procedure Provided by British Aerospace Plc.

Using current experience and deep knowledge of the simulation model British Aerospace
provided a manual procedure for designing a Hotol airframe. At first, the problem is
divided into two subproblems: (1) definition of the vehicle and (2) achieving the required
orbit. The reason behind this division is that trajectory optimisation is a difficult, but well

understood problem. The design procedure is as follows:

1. Guess the fuselage length (FL): 40m is at least sufficient.

2. Adjust the fineness ration (FR): For aerodynamic drag considerations this value
should be high. At the same time, for structural efficiency considerations, this
value should be 1. A good compromise is somewhere between (i.e., 5).

3. Taking into consideration takeoff mass and landing speed guess the gross wing
area (SW).

4. Guess number of engines (NENG). No heuristic is provided at this stage.

5. Adjust the engine scale factor (ESF) to give T/W ~ L.5.

6. HMECO has to be in the orbit i.e., between apogee and perigee and below major
semiaxis of ellipse.

7. Play with ALPHA and GAMMA to meet trajectory constraints.

The first five steps from the above design procedure define the vehicle and the last two
steps optimise on the trajectory. It will be shown later in this chapter that such subdivision
of the problem is not efficient since the definition of the vehicle, to a great extent,

predetermines the success of the trajectory optimisation procedure. It is well justified,

therefore, to consider both stages in parallel.

Using the above defined design procedure British Aerospace have designed the following

airframe:

ALPHA: 19.0
GAMMA: 44.58
SW: 322
ESF: 1.20
FR: 4.55
NENG: 4
FL: 40.10

HMECO: 90000.00

which has the following simulation results:

DVMECO: -78.6001

VLAND: 65.3845
WPL: 20050.1
VMAX: 229.535

DGMECO: -0.57893

WE: 28104.0

A quick look at the simulation results reveals that the constraints (as initially defined) are
not satisfied. Two major questions arise: (1) Can we find a solution that satisfies the
defined constraints, and (2) What is the effect of constraint relaxation on the difficulty of
the search problem? The answer to the first question is largely unknown a priori and it is
suggested that the relaxation of the constraints will make the search for a feasible region

easier as the feasible region itself will become relatively larger.

1t

6.2. Constraint Satisfaction in Heavily Constrained Problems

The problem provided by British Aerospace Plc. is a constrained optimisation problem
with an extremely difficult feasibility part (i.e., finding a feasible point). It has seven real
and one discrete design variables and five real valued non-linear non-explicit (i.e.,
integrated into a simulation code) constraints. The problem is of non-convex nature as the
simulation code often results in errors for which the simulation outcome is not defined.

The problem is also noisy due to the numerical simulation.

Problems with a difficult feasibility part are often referred to as heavily constrained
problems. For such problems if the feasible region is disconnected (as will prove to be the
case with the Hotol problem) the constrained optimisation part reduces to finding the set of

feasible regions.

6.2.1. Definition of a Constraint Violation Function

It is well known that an appropriate definition of a constraint violation function is of
paramount importance to the success/failure of any search algorithm. We have found the

following definition very useful [Bilchev and Parmee, 95b]:

5
Y cnstr_viol, (x)? if normal simulation termination
F(x)=13 (6.1)

C otherwise

112

M if ¢; > u;
u, -1,
cnstr _ viol,. (x)= J L'([x)- if ;< (6.2)
u, —
0 otherwise

where C is a large constant which penalises errors in the simulation program, and /; and y;

are lower and upper bounds of the feasible region as defined by the problem.

The constraint violation function thus defined assumes (1) equal importance of all
constraints, and (2) equal difficulty in satisfying them. If this is to be changed and we want

to attribute different weights to the various constraints, we can change the constraint

violation function to:

5
2 W, -cnstr_viol, (x)* if normal simulation termination (6.3)

(o otherwise

where W; represent our knowledge of constraint satisfaction difficulty and/or our constraint
satisfaction preference. More difficﬁlt constraints should have higher weights as well as the
more important to satisfy (from an ehginecring design point of view) constraints.
Constraint relaxation can be controlled by the lower and upper bounds of the feasible

region (J; and u;) and reflects the notion of softness/hardness in the constraint definitions.

113

6.2.2. Experiments with Various Optimisers

6.2.2.1. Application of Direct Pattern Search of Hooke and Jeeves

The direct pattern search of Hooke and Jeeves [Hooke and Jeeves, 61], originally devised
as an automatic experimental strategy, is nowadays much more widely used as a numerical
parameter optimisation procedure. The method is characterised by two types of move. At
each iteration there is an exploratory move, which represents a simplified Gauss-Seidel
variation with one discrete step per co-ordinate direction. No line searches are made. On
the assumption that the line joining the first and the last points of the exploratory move
represents an especially favourable direction, an extrapolation is made along it (pattern
move) before the variables are varied again individually. The extrapolations do not
necessarily lead to an improvement in the objective function. The success of the iteration is
only checked after the following exploratory move. The length of the pattern step is
thereby increased each time, while the optimal search direction only changes gradually.
This pays off to most advantage where there are narrow valleys, provided they are not
sharply bent. The extrapolation step s follows, in an approximate way, the gradient
trajectory. However, the limitation of the trial steps to co-ordinate directions can also lead

to premature termination.

A proof of convergence of the direct search of Hooke and Jeeves has been derived by Cea
[Cea, 71]; it is valid under the condition that the objective function is strictly convex and

continuously differentiable.

However, the design space S of the Hotol problem is of non-convex nature. The objective
function is often not well defined over the simple search boundaries /; and u; . This is due
to the fact that the simulation often results in an error return code where the constraints do

not have a meaningful value to be used as gradient information. Moreover, the objective

il4

function is noisy (due to numerical integration procedures in the simulation code) and has a
finite number of discontinuities. Therefore, the proof of convergence of the direct search
method of Hooke and Jeeves (as well as the proof of any other method assuming convex,

continuously differentiable functions) is not valid.

However, in a close proximity to local optima it is most likely that the objective function is
convex and continuously differentiable. Therefore, it is worth trying the direct search

method of Hooke and Jeeves around such local optima.

The algorithm of Hooke and Jeeves with improvements due to Bell and Pike [Bell and
Pike, 69], and Smith [Smith, 69] is described in Appendix C. We apply it to the Hotol
design problem starting from the solution provided by BAe. The constraint satisfaction

regions are slightly relaxed from the original formulation and express the notion of

acceptable designs:

DVMECO: e [-20, 500]

VLAND: e [0, 77]
WPL: e [7000, 3000]
VMAX: e [0, 300]

DGMECO: e [-0.01, 0.01]

The cost function used is the constraint violation with equal weights. The initial step sizes

for the algorithm are defined as follows:

Harpua: 1.0
Haamen: 1.0
Hgy: 10.0
Hggp: 1.0
Heg: 1.0

115

Hymig: N/A (Number of engines is kept fixed to 4)
Her,: 1.0
Hymeco: 100.0

where the number of engines is fixed equal to the number of engines of the starting point.

After 467 cost function evaluations the algorithm converges to:

ALPHA: 19.0
GAMMA: 44.58
Sw: 322

ESF: 1.20

FR: 4.55
NENG: 4

FL: 40.10
HMECO: 91528.38
where:

DVMECO: 3118.59

VLAND: 65.3845
WPL: -11471.5
VMAX: 229.535

DGMECO: -0.0099

WE: 59625.65

It can be seen from the simulation result that three of the constraints are satisfied (namely,
VLAND, VMAX, and DGMECO). This allows us to increase the weights of the constraint
violation of the other two constraints in order to attempt to drive the search process into
satisfying them as well. We start again from the same initial point, but this time with the

following weights:

116

Wpymeco: 10

WyLanD: 1
WywpL: 10
Wymax: 1
Wpaweco: 1

After 452 cost function evaluations the following the algorithm converges at:

ALPHA: 19.0
GAMMA: 44.58
Sw: 322
ESF: 1.20

FR: 4.55
NENG: 4

FL: 40.10
HMECO: 90164.24
where:

DVMECO: 499.9

VLAND: 65.3845

WPL: 12568.1

VMAX: 229.535

DGMECO: -0.54731
WE: 35586

In conclusion, the algorithm of Hooke and Jeeves is capable of slightly improving on the
results when started at a near optimum point, but it is the nature of the problem that does
not allow a local hill climber to find a feasible solution. It seems that the vehicle itself is
not appropriately defined to allow a feasible trajectory performance when tuning only the
trajectory parameters. Therefore, the problem requires a simultaneous design (search)

along both the vehicle definition and trajectory optimisation. Genetic algorithms are quite

117

suitable for such application as they are capable of evolving a population of potential

candidate designs each of which can encode both vehicle and orbit parameters.

6.2.2.2. Application of the Genetic Algorithm

Designed to search irregular, poorly understood spaces, genetic algorithms (GAs) are
general purpose algorithms developed by Holland [Holland, 75] with precursors suggested
by Bledsoe [Bledsoe, 61] and others. Holland’s hopes were to develop powerful, broadly
applicable techniques, to provide a means to attack problems resistant to other known
methods. Inspired by the example of population genetics, genetic search is population
based, and proceeds over a number of generations. The criterion of “survival of the fittest”
provides evolutionary pressure for populations to develop increasingly fit individuals.

Although there are many variants, the basic mechanism of a GA consists of

1. Evaluation of individual fitness and formation of gene pool.

2. Recombination and mutation.

Individuals resulting from these operations form the members of the next generation, and

the process is iterated until the system ceases to improve.

The most obvious factors that affect the performance are the parameter settings for
population size, crossover rate, and mutation rate. The most influential factor, however, is
the choice of an encoding scheme or representation. The reason is that a proper choice of

representation can significantly help the GA to converge to the global optima.

For optimisation of functions over continuous domains it is sometimes more convenient to

select a floating-point representation because it is the natural base for expressing real

118

valued parameters and it facilitates interfacing with other algorithms (e.g. standard
numerical analysis algorithms, regression analysis, etc.). If there are mixed discrete and
real design variables, we can mix the representation as well, i.e., the discrete variables will

have a binary representation and the real variables will have a floating-point representation.

To apply the GA to the Hotol problem, we use a mixed representation and a population
size of 100 chromosomes. The main operator is a dynamic mutation which reduces the
perturbation effect on the offspring chromosome as the generation number increases. This
guarantees higher precision search at the end of the evolution. Crossover plays a secondary
role for floating point representations, since it is only limited to cross at the boundary of a
design variable. Each generation produces 100 new chromosomes which are placed in a
genetic pool with their parents. A roulette wheel selection is used to select the best 100

which will be the parents of the next generation.

Special attention is devoted to the design of the fitness function. We utilise the constraint
violation function as a fitness function in order to drive evolution towards a feasible
solution. At this stage it seems that a proper a priori selection of the weights W; can
successfully guide the search towards a feasible region. However, the problem here is that
we do not have that a priori knowledge. One way to overcome this problem is to adopt an
adaptive fitness function, implemented by adaptive weights. If a particular constraint is
relatively harder to satisfy, then its weight is increased and vice versa. At the beginning of

the evolution we set all weights to be 1’s.

The results of the application of the GA to the Hotol problem (averaged over 10
independent runs) are shown in fig. 6.2. The shown fitness function is w.r.t. all weights

being equal to I. Some of the best found solutions look like:

119

Design #1:;

ALPHA: 16.3336
GAMMA: 51.2857
SW: 397.597
ESF: 0.94375
FR: 9.73702
NENG; 6

FL: 58.4827
HMECO: 74007.89
where:

DVMECO: 104.02

VLAND: 57.732
WPL: 6826.8
VMAX: 238.86

DGMECO: 04102

WE: 39530.4
Design #2:

ALPHA: 22.659
GAMMA: 44,249
SW: 168.77
ESF: 1.6825
FR: 5.4751
NENG: 2

FL: 43.465
HMECO: 75154.5

121

where:

DVMECO: 1240.05

VLAND: 83.202

WPL: 7107.04
VMAX: 251.604
DGMECO: -0.2622
WE: 33762.8

It is obvious that a significant improvement over the manual design procedure and the
classical Hooke and Jeeves algorithm has been achieved by the GA. However, in terms of
satisfying the design goals, it still remains to find a feasible solution, In the next section we

use the idea of interfacing the population evolved by the GA with our ant colony search

model in the hope of finding a feasible solution.

6.2.2.3. Application of the Ant Colony Search Model
In this section we define a hybrid search framework that consists of a GA utilised as a pre-
processor for allocating promising feasibility areas of the search space followed by an ant

colony search starting from the points found by the GA. The overall structure of the hybrid

search is shown in fig. 6.3.

Parmee [Parmee er.al., 94][Parmee and Denham, 94][Parmee, 95b] has shown that a GA
with modified selection mechanism and variable mutation is capable of allocating various
good design clusters. The implicit cluster information can then be passed to the
Engineering Designer (ED) who according to his expertise selects points for further
refinement by the ant colony. The ED can either be a human designer or alternatively can

be implemented as a filter that passes all designs that are close to feasibility. The ant

122

colony search is selected because it is a robust multi-modal search technique relying on
multi-agent co-operation in order to distribute search in the most promising areas as has
been seen in chapter 4. Apart from locally tuned solutions the ant colony can also return an

estimate of the sensitivity of a design solution (sect. 6.3).

The proposed hybrid search framework is capable of finding numerous acceptable
solutions as shown in fig. 6.4. The GA is run for about 5,000 fitness function evaluations
followed by an ant colony search of 1,000 ants for 30 cycles. This makes a total of 35,000
fitness function evaluations which takes approximately 10 hours on a SPARC 10 station.
The increased computational cost pays off as several feasible solutions can now be

successfully identified. Some of the best solutions are:

Design #1:

ALPHA: 16.20186
GAMMA.: 52.20023
SW: 287.6505
ESF: 1.943317
FR: 0.749463
NENG: 1

FL: 55.07114
HMECO: 85094.05
where:

DVMECO: 445.6

VLAND: 57.6
WPL: 7600
VMAX: 238.3
DGMECO: -0.001

124

WE: 25819

Design #2:

ALPHA! 124.34185

GAMMA: 51.05346)
SW: 231.7679
ESF: 1.721016
FR:: 8.089187
NENG:: 2

FL: 58.0451
‘HMECO: 96103.59:
where:

DVMECO: 80,2
'VLAND: 753
WBL: 22025 :—
VMAX: 235:5

DGMECO: 0.001.

WE: 23965

In order to accept a feasible solutionas.a potential::design it is:.crucial to caléiilate ithe
‘constraint sensitivity. Inithe next section we:defineithe constraint sensiti vity in.a Worst-case
«deterministic:setting andi an average:setting:and modify the ant'colony séarch model for the

calculation of'the sensitivity information.

125

6.3. Constraint Sensitivity Issues in Heavily Constrained Problems

A sensitivity measure is defined in terms of maximum and average risk of achieving a
degraded real design when deviating from the numerically represented design solution.
That risk is unavoidable because of the physical impossibility of achieving the exact values
of the design variables and the uncertainties in the simulation model itself. It may happen
that even when using numerically stable algorithms the found optimal design solution lies
within a very sensitive region and a small perturbation in the design variables can lead to
an enormous change in the overall design solution [Parmee and Denham, 94]. This is a
property of the problem itself and does not depend on the actual optimisation algorithm. So
when making decisions the engineering designer, among others, should take into

consideration the sensitivity of a given solution.

In this section we present definitions of worst-case and average-case sensitivity and
develop a method for calculating it which is applicable to problems with non-explicit
objective and constraint functions. The proposed sensitivity measure is also capable of

representing design variable interaction,

6.3.1. Definition of Constraint Sensitivity

We are interested in two sensitivity measures reflecting the maximal (worst case) and the
average degradation that can be achieved. The degradation is locally defined w.r.t. a

particular design point P and should be a function of the distance & from P (fig. 6.5). (6.4)

The worst case degradation is defined as:

Sw(®)= max _f(P)-F(P) (6.4)

e —xF 4 (1l -xF Y =52

126

It is a vector with direction pointing to the worst case degradation at a distance § from P
and of absolute value equal to the degradation of the cost function. The projection of S"m

along the design variables co-ordinates is a measure of the contribution of each variable

towards the degradation and can be used to estimate the relative sensitivity of the design

w.r.t. the individual independent design variables. The calculation of §m requires a search

at each hypersurface

(xf —x V4 xf -xF) =87 (6.5)

in order to find the maximal design degradation.
Analogously, the average degradation is defined as:

S

aver (

6)= aver = J(P-f(F) (66)

(q —x)1+...+(X:—.l':)=

It is a scalar with value representing the average achieved design degradation at distance &

from P. The calculation of S . is obvious and involves stochastic sampling at each

aver

hypersurface.

6.3.2. An Ant Colony Search for Sensitivity Calculation
We now apply the ant colony search to the sensitivity calculation problem. The only care

that must be taken is to design an appropriate fitness assigning model. The algorithm

127

works as follows: At each generation ants are constrained to search only on the

hypersurface:

(x, = x Y+ +xP - x") =67 6.7)

where &, is the search radius at generation r. At the next generation the search radius is
incremented by A. The best solutions found at radius & are propagated into the initial
population of the 6+4 search (fig. 6.6). This heuristic is well justified by some a priori

continuity assumptions.

We calculate the constraint sensitivity information at the two designs discovered by the
hybrid search model (section 6.2.2.3). Results are shown in fig 6.7. It can be easily seen

that design #2 is more robust w.r.t. constraint sensitivity than design #1. A slight variation

of design #1 can easily make it significantly infeasible.

128

CHAPTER 7

Discussion and Conclusions

7.1 Discussion

In this dissertation we have investigated the use of constraints to explicate design questions
and circumscribe feasible regions. We have examined the process of search and scrutiny
within a region. We have viewed constraints as the rules, requirements and relations that

are defined within the context of designing.

Constraints are imposed by nature, culture, convention and marketplace. Some are imposed
externally, while others are imposed by the designer. Some are the result of higher-level
design decisions; some are universal (e.g. gravity, molecular forces, etc.). In this view, to
design is to describe constraints and to specify an object that satisfies all these constraints.
This was the goal of study of the dissertation, i.e., developing novel adaptive search
(extrema finding) methods for specifying objects that satisfy the constraints already defined

by a simulation model (i.e., a design concept).

Search in design is quite different from extremal problem solving (i.e., optimization) in
mathematical programming. The difference mainly stems from the nature of the design
problem itself. Design problems are atypical problems in that they have many solutions.

The objective is not to find the solution to a set of design specifications; we find several

131

solutions out of many alternatives. Stated in other words, in engineering design the goal is

not to find the solution to g problem, but to find an acceptable solution to the problem.

Another difference is that in the mathematical formulation of extremal problem solving
there is no formal difference between easily solvable, explicitly or implicitly defined
constraints. In engineering design, however, when we deal with highly complex real world
domains, the utilization of a priori knowledge or engineering expertise and exploitation of
constraint information proves practically to make a great difference in method efficiencies.
Therefore, the work presented in this dissertation describes constrained optimization in
engineering design viewed as a hierarchy of gradually increasing in complexity problems.
Problems in which the constraints can be naturally integrated into the model are generally
considered easier to solve than problems where one simulation run returns a set of values

which can be combined into a constrained function in many arbitrary ways.

Current results show that the formulation (i.e., the model or the design concept) of the
constrained optimization problem greatly effects its difficulty. If it is possible to account
for all feasible regions and group them together in one cost function then the search engine
views the problem as essentially unconstrained. However, there is no general methodology
of handling constraints through thé model representation, and therefore, it is natural to

expect models in which there are large “holes” of infeasibility.

Quite often the task of the engineering optimizer is hindered by an ill-defined simulation
model or model which lacks systematic description of the feasible region thus allowing
feasible solutions to be randomly scattered around the search space. As far as engineering
design is concerned, it is expected that a closer coupling between the modeling and

optimization can significantly improve the achieved results.

132

Such future research will also have to address more closely the question of reality and
models. It is well known from theoretical computer science that the way an object is
described determines the set of easy and the set of intractable questions. Therefore, the

problem will be how to make such a model which facilitates the search for an answer.

7.2. Summary of Results

One of our main contributions is the development of the ant colony search model as a
hybrid optimization framework of co-operating search agents. We showed how to apply it
to both discrete (chapter 2) and continuous (chapter 4) problems as well as real world
engineering design problems (chapter 6). Experimental results proved that the approach is
viable and if it is enhanced with some problem specific knowledge it is also very

competitive as compared to existing global optimization techniques.

We have also developed an inductive search approach applicable to both continuous
(chapter 2) and discrete (chapter 3) problems. The inductive search has also been
successfully integrated into the genetic algorithm model by adding a new layer of

dynamically changing fitness function (chapter 3).

In chapter 5 we have extended the dynamic hill climbing paradigm by incorporating a low-
discrepancy sequence to generate the starting points and employed analogies from the
immune networks to achieve dynamic clustering of the search population. The resulting
algorithm maintains the qualitative nature of the feasible region while reducing the number

of necessary cost function calls.

133

7.3. Conclusions

Recent technological advances in computing hardware are offering new ways to extend our
problem-solving capabilities. A 200 MHz Pentium, for example, running overnight is
nowadays considered as a viable option for many engineering design problems. The
availability of cheap computer resources predetermines the need of automated search tools
that can explore a huge design space in some (self) organized fashion. This dissertation has

investigated the development and application of such search tools.

We have designed two core adaptive search engines, namely the ant colony and the
inductive search. A major design criterion was that these search engines must be
applicable to a variety of diverse problems ranging from well defined combinatorial
optimization problems in chapter 2 to heavily constrained engineering design problems in

chapter 6. Thus the definition of the core search tools was purposely kept quite generic.

Depending on the degree of a priori knowledge and complexity of the problem at hand
some approaches turn out to be more efficient than others. For example, chapter 2 has
investigated problems for which the search space can be readily made feasible through an
appropriate selecti_on of problem representation and operators. Whenever applicable, this
approach has the advantage of concentrating search power into optimizing the main criteria
rather than looking for feasible solutions. We have shown that for combinatorial
optimization problems (COPs) the approach is readily applicable (sections 2.1 and 2.2).
We have also shown that handling constraints by appropriate selection of problem
representation is by no means only limited to COPs. There are many problems for which
the feasible solutions can be mapped to local/global extrema of some related auxiliary cost

function. This function can be viewed as a new problem representation. Section 2.3 has

134

shown how such an auxiliary cost function can be design for the protein-folding problem.
The assumption is that the global minima of the energy landscape function are the

admissible protein-folding configurations.

Handling constraints at the problem representation level utilizes a high degree of a priori
knowledge and thus the design of search engines exploiting this approach is quite problem
specific. Therefore, in chapter 3 we have shown how to explicitly derive the feasible region
for a particular real world problem. Again, the advantage is that the feasible region can be
effectively found before the search process begins. Results have clearly indicated that this
approach significantly decreases the overall search time because most of the computational

efforts are in optimizaing the main criterion.

However, it is not always possible to derive the feasible region in advance. Such problems
need a search tool that uses both the constraint and the objective functions to guide the
search process (chapter 4). This approach is less problem specific, but is less efficient,
because it has to allocate computational resources for dealing with non-feasible solutions.
This research area is relatively well developed mostly from a mathematical-programming
point of view. Therefore, our main research efforts have been to view the ant colony search
engine as a metaphor for combiniﬁg existing techniques into coherent hybrid adaptive
search systems. Results clearly indicated that when the "building blocks" are carefully
chosen the implemented hybrid system is capable of efficiently achieving highly fit

solutions.

In engineering design there are many problems (especially in the early design stages) for
which the main goal is to find the feasible region. Chapter 5 has developed techniques to

achieve this goal. Results have shown that the number of the cost function calls can be

135

significantly reduced while maintaining high quality of the results. Our approach has
utilized some recent developments in numerical analysis and employed a natural analogy

from the immune system.

When dealing with real world problems we often have to both outline the feasible region
and optimize certain criteria. This becomes increasingly difficult, especially when the
feasible region itself is hard to find. Chapter 6 has dealt with such a problem. It has shown
how to combine various search approaches in order to find the most viable. Achieved
results significantly outperformed the manual design procedure proving that the developed
search techniques are an excellent decision support tool in the early stages of the design

process.

In conclusion, the search tools developed in this dissertation proved to be efficient, robust
and applicable to a diverse variety of design problems. They effectively utilize the available
computing resources offered by advances in technology. Achieved results have shown that
the search tools are capable of finding good solutions, many of which are novel to the
engineering designer. As such, the developed tools are highly recommended to aid the

decision support techniques in the preliminary stages of the engineering design process.

136

Appendix F

Test Cases used in Chapter 5.

// Used by all testheds
double f_base(double x, double y, double a, double b, double c, double 4}
(
return exp(-(a*x-b)* (a*x-b)-{c*y-d) *{c*y-d)};
}
7/

//***iiiii**********

//Testbed Non-convex
//********i*i**iit*i

double fl(double x, double y)

{
return f_base({x,y,0.4,0,0.4,-0.5)+f_base(x,y,0.4,-1.5,0.4,-0.5);
}
double f2(double x, double vy}
{
return f_base(x,y,0.4,0,0.4,0.5)+f_base(x,v,0.4,-2.5,0.4,0.5);
}

double f(double x, double y)

{
double f11=f1(x,y), £22=f2(x,y};
double cvl1=0, cv2=0;
if (£11 < 0.41) cvl = 0.41 - f11;
if (f22 < 0.41) cv2 = 0.41 - £22;
return cvl+cvl;

}

//***t*t*l*t**t*t****t*****t**t***!tii*i*******i****

//Testbhed 2: Egual sizes of the feasible subregions;
//it***t*****t*wi*i*i***i******i*t*itt*********i****

double f1l{double x, double y)

(
return

f_base(x,y,0.4,2.5,0.4,0.5)+f_base(x,y,0.4,0,0.4,0.5)+f_base(x,y,0.4, -
2.5,0.4,0.5);
}

double £2(double x, double y)
{
return f_base{x,y,0.4,2.5,0.4,-0.5)+f base(x,y,0.4,0,0.4,-

0.5)+f_base(x,y,0.4,-2.5,0.4,-0.5);
)

double f(double x, double y)

{
double f11=£f}{(x,vy), £22=f2(x,vy);
double cvl=0, cv2=0;
if (£11 < 0.7) ecvl = 0.7 - f11;
if (£22 < 0.7) cv2 = 0.7 - £22;
return cvl+cv2;

1

//****i******i************t******ﬁ*li*******************

//Testbed 3: Different sizes of the feasible subregions;
//***titit*i*t************t********i*i****i*i***i**i**t*

double fl{double x, double y)
{

return
£_base(x,y.0.4,2.7,0.4,0.4)+f_base(x,y,0.4,0,0.4,0.5)+f_base(x,vy,0.4, -
2.5,0.4,0.5);
}

153

double f2{double x, double y)}
{

return f_base(x,y,0.4,1.5,0.4,-0.5)+f_base(x,y,0.4,0,0.4, -
0.5)+f_base{x,y,0.4,-1.5,0.4,-0.5);

}

double f(double x, double y)

{
double £f11=fl(x,y), £22=£f2(x,¥y);
double cvl1=0, cv2=0;
if (£11 < 0.56) cvl = 0.56 - f11;
if (£22 < 0.56) cv2 = 0.56 - £22;
return cvli+cvi;

}

154

References

Antonov LA., and V.M. Saleev (1979). USSR Computational Mathematics and
Mathematical Physics, vol. 19, no. 1, pp. 252-256.

Bick T. (1992). Self-Adaptation in Genetic Algorithms, in Varela F. and Bourgine P (eds.),
Procs. of the First European Conference on Artificial Life, Cambridge, MA, MIT Press,
pp. 263-271.

Baker B.S. (1985). A new proof for the first fit decreasing bin-packing algorithm, J.
Algorithms 6, pp. 49-70.

Bell M., and M.C. Pike (1969). Remark on algorithm 178 (E4) - direct search, CACM 9,
684-685.

Bilchev G. (1994). Evolutionary Algorithms for the Bin Packing Problem, MSc Thesis,
New Bulgarian University, (in Bulgarian).

Bilchev G, and I. Parmee (1995a). Adaptive Search Strategies for Heavily Constrained
Design Spaces, in Procs. of the 22nd International Conference on CAD-95, Ukraine, Yalta,
May 8-13.

Bilchev G. and L. Parmee (1995b). The Ant Colony Metaphor for searching Continuous
Design Spaces, in LNCS 993: Evolutionary Computing 2, edited by T. Fogarty, Springer-
Verlag, pp. 25-39.

Bilchev G. (1996). Evolutionary Metaphors for the Bin Packing Problem, 5th Annual
Conference on Evolutionary Programming, Feb 29-Mar 2, San Diego, USA, pp. 333-341.

Bilchev G. and I. Parmee (1996a). Constrained Optimisation with an Ant Colony Search
Model, Adaptive Computing in Engineering Design and Control ‘96, March ’96,
University of Plymouth, UK, pp. 145-151.

Bilchev G., and 1. Parmee (1996b). “Inductive Search™, First International Contest on
Evolutionary Optimization , 1996 IEEE Conference on Evolutionary Computation, May
20-22, Nagoya, Japan, pp. 832-836!

Bilchev G., and I. Parmee (1996c). “Leaming the ‘Next’ Dimension”, Artificial
Intelligence and Simulation of Behaviour’96, Brighton, UK, April ‘96, pp. 162-174

Bilchev G., and 1. Parmee (1996d). The Inductive Genetic Algorithm with Applications to
the Fault Coverage Test Code Generation Problem, EUFIT’'96, Aachen, Germany,

September ‘96.

Bilchev G., and 1. Parmee (1996e). Constrained Handling for the Fault Coverage Code
Generation Problem: An Inductive Evolutionary Approach, PPSN IV, Sept. 96, Berlin,
LNCS 1141, Springer, pp. 880-889.

Bledsoe W. W. (1985). The use of biological concepts in the analytical study of systems,
presented at the ORSA-TIMS National meeting, San Fransisco, CA

155

Bouchard E., et. al. (1988). The application of artificial intelligence technology to
aeronautical system design, AIAA-88-4426, AIAA/AHS/ASEE Aircraft Design Systems

and Operations Meeting, Septmber 7-9, Atlanta.
Bratley P. and B.L. Fox (1988). ACM Trans. on Math. Software, vol. 14, pp. 88-100.

Cea J. (1971). Optimisation - theorie et algorithmes, Dunod, Paris.

Clearwater S., Huberman B., and Hogg T. (1992). Cooperative Problem Solving, in B.
Huberman, editor, Computation: The Micro and the Macro View, pp. 33-70, World
Scientific, Singapore.

Colomi A., Dorigo M., and Maniezzo V. (1991). Distributed Optimization by Ant
Colonies, in Procs. First European Conference on Artificial Life, Varela F., and Bourgine
P. (eds.), Paris, Elsevier, pp. 134-142.

Cook S. A. (1971). The complexity of theorem proving procedures, in Procs. of the Third
Annual ACM Symposium on Theory of Computing, ACM.

Creighton T (1984). Proteins, Structures and Molecular Principles, Freeman, New York.

Dixon I. (1986). Artificial Intelligence and Design, A Mechanical Engineering View,
Procs. of AAAIL

Dorigo M. (1992). Optimization, Learning, and Natural Algorithms, PhD Thesis,
Politecnico di Milano, ITALY, (in Italian).

Falkenauer E. (1994). New Representation and Operators for Genetic Algorithms Applied
to Grouping Problems, in Evolutionary Computation, Vol.2 , No. 2, pp. 123-144.

Falkenhainer B., and K. Forbus (1988). Compositional modeling: finding the right model
for the job, Artificial Intelligence 51(1-3), 95-143.

Feigenbaum E., J. Feldman, ed. (1963). “Computers and Thought”, McGraw-Hill, New
York.

First International Contest on Evolutionary Optimization,
http://iridia.ulb.ac.be/langerman/ICEQ.html

Fletcher R. (1987). Practical Methods of Optimization, Second edition, Wiley, Chichester.

Fogel L., A. Owens, and M. Walsh (1966). Attificial Intelligence through Simulated
Evolution, New York, Wiley.

Fogel L., Angeline P., and Fogel D. (1995). An Evolutionary Programming Approach to
Self-Adaptation on Finite State Machines, in Evolutionary Programming IV: Procs. of the
Fourth Annual Conference on Evolutionary Programming, Cambridge, MA, The MIT
Press.

156

Forrest S., B. Javomik, R. Smith, and A. Perelson (1993). Using Genetic Algorithms to
Explore Pattern Recognition in the Immune System, Evolutionary Computation, Volume 1,
Number 3.

Fujiwara H. and T. Shimono (1983). On the accelaration of test generation algorithms,
IEEE Transactions on Computers, C-31:1137-1144.

Fujiwara H., and S Toida (1982). The complexity of fault detection problems for.
combinational logic circuits, IEEE Transactions on Computers, C-30:555-560.

Gaede R. K., et. al. (1986). CATAPULT: Concurrent Automatic Testing Allowing
Parallelization and Using LimitedTopology, Procs. of the 25th Design Automation
Conference, June 86.

Garey M. and Johnson D. (1979). Computers and Intractability - A Guide to the Theory of
NP-completeness, W.H.Freeman Co., San Francisco, USA.

Gero J. (1992). Design prototypes: a knowldge representation schema for design, A/
Magazine 11(4), 27-36.

Gierasch L, and J. King (eds.) (1990). Protein Folding, AAAS, Washington,
Gill P., W. Murray and M Wright (1981). “Practical Optimization”, Academic Press.

Goel P. (1981). An implicit enumeration algorithm to Generate Tests for Combinational
Circuits, IEEE Transactions on Computers, C-30, No. 3, March ‘81, pp. 215-222.

Goldberg D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning, Addison-Wesley, Reading, MA.

Gross M., Ervin S., Anderson J., and Fleisher A. (1987). “Designing with Constraints”, in
Computability of Design, Y. E. Kalay ed., New Yaork: Wiley.

Halton J. H. (1960). Numerische Mathematik, vol. 2, pp. 84-90.

Holland J. H. (1975). Adaptation .in Natural and Artificial Systems: An Introductory
Analysis with Applications in Biology, Control, and Artificial Intelligence, University of
Michigan Press, Ann Arbor.

Hooke, R., T.A. Jeeves (1961). Direct search solution of numerical and statistical
problems, JACM 8, 212-229.

Ibarra O. H., and S. K. Sahni (1975). Polynomially complete fault detection problems,
IEEE Transactions on Computers, C-24:242-249.

Keane A. (1994). Experiences with optimizers in structural deign, Procs. of the !st
International Conference in Adaptive Computing in Engineering Design and Control,

University of Plymouth, UK, 1994, pp. 14-27.

Kinzel W. (1985). Learning and Pattern Recognition in Spin Glass Models.

157

Kirkpatrick S., Gelatt C.D., and Vechi M. P. (1983). Optimisation by Simulated Annealing,
Science, Vol. 220, No. 4598, May ‘83.

Kowalik J. and M. R. Osborne (1968). Methods for Unconstrained Optimisation Problems,
Elsevier, New York.

Koza J. (1992). Genetic Programming, Cambridge MA, MIT Press.

Lawrence C., J. Zhou, and A. Tits (1996). User's Guide for CFSQP Version 2.2: A C Code
for Solving (Large Scale) Constrained Non-linear (Minimax) Optimization Problems,
Generating Iterates Satisfying All Inequality Constraints, Electrical Engineering Dept. and
Inst. for Systems Research, Univ. of Maryland, College Park, MD 20742,

Maher M.L. (1989). “Synthesis and evaluation of preliminary designs”, in Artificial
Intelligence in Design, J.S. Gero ed., New York: Springer-Verlag.

Martello S. and Toth P. (1990). Bin Packing Problem, Chapter 8 in Knapsack Problems,
Algorithms and Computer implementations, John Wiley and Sons Ltd., England.

Michalewicz Z. (1992). Genetic Algorithms + data Structures = Evolutionary Programs,
Springer-Verlag.

Michalewicz Z. (1995a). A Survey of Constraint Handling Techniques in Evolutionary
Computation Methods, The 4th Annual Conference on Evolutionary Programming’ 95,
March 1-3, San Diego, USA.

Michalewicz Z. (1995b). Genetic Algorithms, Numerical Optimization, and Constraints,
Fourth Intl. Conference on Evolutionary Programming, March 1-3, San Diego, USA.

Michalewicz Z., Nazhiyath, and Michalewicz M (1996). A Note on Usefulness of
Geometrical Crossover for Numerical Optimization problems, the 5th Annual Conference
on Evolutionary Programming’ 96, San Diego, USA.

Nall B, and K. Dill (1991). Conformations and Forces in Protein Folding, AAAS,
Washington.

Niederreiter H, P. Bratley, and B. L Fox (1994). Algorithm 738: Programs to generate
Niederreiter’s low-discrepancy sequences, ACM Trans. on Math. Software, 20, 494-495.

Panier ER., and A.L. Tits (1993). On combining feasibility, descent and superlinear
convergence in inequality constrained optimization, Math. Programming 59, 261-276.

Parmee 1., (1996). Cluster-Oriented Genetic Algorithms (COGAs) for the Identification of
High Performance Regions of Design Spaces, EvCA96, Moscow, June 24-27,

Parmee 1. (1995a). High-level Decision Support for Engineering Design Using the Genetic
Algorithm and Complementary Techniques, Procs. Applied Decision Technologies, Stream
2 “Modern Heuristic Search Methods”, Brunel Conference Centre, Unicom, London, 3-5
April ‘95.

Parmee 1. (1995b). Reinforcing the natural clustering tendencies of the genetic algorithm,
Internal report PEDC-04-95, University of Plymouth, UK.

158

Parmee 1., Johnson M, and Burt S. (1994). Techniques to Aid Global Search in Engineering
Dign, Procs. of International Conference on Industrial and Engineering Applications of Al
and Expert Systems, Austin, Texas.

Parmee I. and M.J. Denham (1994). Emergent Computing Methods in Engineering Design,
NATO Advanced Research Workshop, Nafplio, Greece, August ‘94,

Powell D., and M Skolnick (1993). Using Genetic algorithms in engineering design
optimization with non-linear constraints, Procs. of the 5th International Conference on
Genetic Algorithms, University of Illinois at Urbana-Champaign, pp 424-431.

Press W., Teukolsky S., Vetterling W., and Flannery B (1992). Numerical Recipes in C,
Cambridge Univ. Press, p. 402.

Radcliffe N. (1991). Forma Analysis and Random Respectful Recombination, in Procs. of
the Fourth ICGA, San Diego.

Radcliffe N. and Surry P. (1995). Fundamental Limitation Theorems on Search
Algorithms: Evolutionary Computing in Perspective, LNCS 1000, Springer-Verlag.

Ratschek H., J. Rokne (1988). “New Computer Methods for Global Optimization”, Ellis
Horwood ltd.

Richardson J, and M Palmer (1989). Some guidelines gor Genetic algorithms with penalty
functions, Procs. of the 3rd International Conference on Genetic Algorithms, Morgan
Kaufmann Publishers, Los Atlos, CA, pp. 191-197.

Ross D. E., M. R. Mercer (1990). WAVE, A Concurrent Approach to Combinational Test
Pattern Generation, Procs. of the MCC University Research Symposium.

Roth J. P. (1966). Diagnosis of Automata Failure: A Calculus and a Method, IBM Journal
of Research and Development, Vol, 10, July ‘66, pp. 278-291.

Rumelhart D.E., Hinton G.E., and Williams R.J. (1986). Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Volume 1, The MIT Press, Cambridge,
MA.

Schoenauer M, and S. Xanthakis (1993). Constrained GA optimization, Procs. of the 5th
International Conference on Genetic Algorithms, University of Illinois at Urbana-
Champaign, pp 573-380.

Schulz M. H. et. al. (1988). SOCRATES: A highly efficient automatic test pattern
generation system, [EEE Transactions on CAD, pp. 126-137, January ‘88.

Smith L.B., F.K. Tomlin (1969). Remark on algorithm 178 (E4) - direct search, CACM 12,
637-638.

Smith R., S. Forrest, and A. Perelson {1993). Population Diversity in an Immune System

Model: Implications for Genetic Search, Procs. of the 5th International Conference on
Genetic Algorithms, University of Illinois at Urbana-Champaign.

159

Sobol 1. M. (1967), USSR Computational Mathematics and Mathematical Physics, vol. 7,
no. 4, pp. 86-112.

Some Hard Global Optimization Test Problems,
http://solon.cma.univie.ac.at/~neum/glopt/my_problems.html

Stanion T., D. Bhattacharya (1991). TSUNAMI: A Path Oriented Scheme for Algebraic
Test Generation, Procs. of Fault Tolerant Computing Symposium, June ‘91, pp. 36-43

Steels L. (1988). Artificial Intelligence and Complex Systems, AI-MEMO 88-2, Al-lab,
VUB, Brussels.

Stillinger F, T. Head-Gordon, and C. Hirshfeld (1993). Toy model for protein forlding,
Physical Review E, 48(2), pp 1469-1477.

Toérn A., and Zilinskas A. (1988). Global Optimization, Lecture Notes in Computer Science
350, Springer-Verlag,

Traub J. (1996). On Reality and Models, Santa Fe Institute Technical Report 96-03-010.

Weisbuch G. (1991). Complex Systems Dynamics, Lecture Notes Volume II, Santa Fe
Institute, Studies in the Sciences of Complexity, Addison-Wesley.

Wolpert D. and Macready W. (1995). No Free Lunch Theorems for Search, Santa Fe
Institute, SFI-TR-95-02-010.

Yuret D. (1994). From Genetic Algorithms to Efficient Optimization, MSc thesis, MIT
May ‘94.

Zienkiewicz O., and J. Zhu (1991). The three R’s of engineering analysis and error
estimation and adaptivity, Computer methods in Applied Mechanics and Engineering 82(1-
3),95-113.

Zulawinski B. (1995). The Swapping Heuristic for Partitioning Problems, MSc thesis,
Dept. of Computer Science, Michigan State University, August ‘95.

160

	Adaptive Search and Constraint Optimisation in Engineering Design
	Recommended Citation

	tmp.1730153433.pdf.CtTr7

