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Abstract:   

Perforated cold-formed steel (PCFS) beams are increasingly used in constructional 

industry and become popular due to their advantages and economic benefit. Apart from 

the light weight, the openings in PCFS beams can also be used for services such as pipe 

utilities to release more building space. However, beams with web perforations may 

collapse as the result of web-distortional buckling or flange/web distortional buckling 

due to the web weakness caused by perforations. In this paper a study on the flange/web 

distortional buckling of PCFS beams is presented. An analytical solution to determine 

the critical stress of flange/web distortional buckling of PCFS beams is derived by using 

energy method. To demonstrate the analytical solution, finite element analysis is also 

carried out. The finite element analysis results show that the analytical solution 

provided can give good and reliable prediction for the flange/web distortional buckling 

of PCFS beams. 

Keywords: Flange/web distortional buckling; PCFS beams; Openings; Energy method; 

Finite element analysis 

1. Introduction 

Cold-formed steel (CFS) is produced by the cold work instead of the heating processes. 

Compared with the hot-rolled steel, the CFS sections have lighter weight and higher 

yield strength due to the cold forming processes. It has grown to become competitive 

product in the building industry. The perforations of different shapes are usually 

punched in the middle of the webs to provide the space for the pipe utilities to pass 

through. The circular hole is the most popular type to minimize the effect of stress 

concentration. However, such openings make the sections more susceptible to elastic 

buckling. Similar to the CFS beams, the perforated cold-formed steel (PCFS) beams 

might also experience local, distortional and lateral-torsional buckling. The existing 

literatures mainly focused on numerical and experimental investigations of PCFS 

members. There is little information on developing the analytical approaches to predict 

the elastic buckling critical stress. 

https://doi.org/10.1080/15376494.2021.1902594
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Moen and Schafer [1] presented simplified methods to determine the elastic buckling 

stress of PCFS members with slotted holes. The equation of global buckling stress was 

developed based on Rayleigh-Ritz energy solution, the principle of weighed average 

was used to cut down the cross-section properties. The local and distortional buckling 

stresses were generated by the finite strip analyses where the reduced thickness was 

utilised to modify the original models (no holes). It should be mentioned that Moen’s 

approach for calculating the distortional buckling critical stress of PCFS members 

mainly depended on the numerical solution produced by CUFSM [2]. Later, Smith and 

Moen [3] applied this method to calculate the elastic buckling stress of steel pallet rack 

columns with perforation patterns. Liu and Chung [4] performed the finite element 

investigation to examine the structural characteristics of PCFS beams with various large 

web openings. Degtyarev and Degtyareva [5-6] extensively studied the elastic shear 

buckling characteristics and ultimate shear strength of PCFS beams with flat slotted 

openings by numerical simulations. After that, Pham et al. [7] proposed a practical 

model to acquire the shear yielding load with central square and circular web holes, 

which was validated using the DSM design equations. 

For physical testing investigation, Moen and Schafer [8] conducted compression 

experiment on PCFS columns to study the connection between the buckling behaviour 

and ultimate strength. It was found that the slotted holes might change the half-wave 

lengths of local and distortional buckling modes, then altered the critical stress. The 

results of the test helped to widen the equations of direct strength method (DSM) to 

predict the ultimate strength of PCFS members. Crisan et al. [9] carried out the 

experiments on the buckling behaviour of PCFS compression members, the ultimate 

strength failed by local, distortional and interactive buckling were tested. Kulatunga 

and Macdonald [10-11] examined the effect of position and shape of the openings on 

the load capacity of PCFS columns, the experiment results were used to validate the 

finite element analysis. Lawson and Basta [12] performed single point load tests to 

investigate the deflection of PCFS beams. The formula for the additional deflections 

due to the circular web openings were derived. Recently, considerable amounts of 

research investigated the influence of edge-stiffened circular holes. For example, 

Uzzaman et al. [13-15] conducted the experimental investigation to explore the effects 

of edge-stiffened circular holes on the web crippling strength subjected to one-flange 

loading conditions or interior-two-flange loading conditions. Chen et al. [16-17] 

estimated the effects of hole spacing and column length on the load capacity of PCFS 

columns with edge-stiffened web openings; parametric study and simplified design 

equations were proposed. Later, they [18-19] investigated the moment capacity and 

axial strength of CFS beams and back-to-back CFS channels with edge-stiffened web 

holes, un-stiffened web holes and plain webs, respectively.   

Yu et al.  [20-22] discussed the distortional buckling behaviour of PCFS beams with 

central web openings subjected to pure bending and uniformly distributed loads. The 

simplified formula was proposed to calculate the distortional buckling critical stress. It 

was shown that the stress gradient might change the half-wave length of distortional 

buckling modes, and the critical stress of the beam under uniformly distributed loads 

was larger than that of the same beam under pure bending. For the beam under pure 

bending, the rotational spring stiffness in Hancock’s model [23-24] and the vertical 
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spring stiffness in Eurocode 3 [25] were modified respectively based on the concept of 

equivalent width. It should be pointed out that the previous analytical method mainly 

focused on flange/lip distortional buckling, only the compressed flange-lip system was 

used to calculate the critical stress. Mousavi et al. [26] applied the improved element-

free Galerkin with the finite strip to evaluate the buckling behaviour of CFS beams with 

web openings

This paper describes an analytical solution for approximating the critical stresses of 

flange/web distortional buckling of PCFS beams when subjected to pure bending. A 

new model was derived based on the energy method and the eigenvalue equation was 

solved by using Rayleigh-Ritz method. To incorporate the influence of perforated web, 

the Hermite interpolating function was adopted. The finite element analyses were also 

carried out to check the accuracy of the analytical approach. The result showed that the 

proposed model can be used to predict the flange/web distortional stress of the PCFS 

beams accurately. Furthermore, the outcome of this research might provide the 

theoretical support for the design of PCFS beams.    

2. Review of the distortional buckling modes of PCFS beams 

The lip/flange distortional buckling was first revealed by Lau and Hancock [23-24]. It 

can be expressed as the rotation of the compressed lip and flange about the flange-web 

corner, meanwhile, the web will buckle at the same half-wave length. Fig.1 shows the 

buckling curves of the CFS sections in pure bending which was produced by CUFSM 

[2]. Normally the half-wave length of the lip/flange distortional buckling mode is two 

or three times larger than the dimension of the section (see point A in Fig.1). According 

to Hancock’s model, other analytical models such as EN1993-1-3 model [25] and Li’s 

[27] model were carried out to approximate the lip/flange distortional buckling critical 

stress of CFS members.  

The flange/web distortional buckling (also called as lateral-distortional buckling) was 

defined by Rogers and Schuster [28]. They found that the compressed flange and lip 

would move laterally from the flange-web junction near the ultimate failure stage, the 

web would bend transversely at the same time. The half-wave length of the flange/web 

distortional buckling mode is longer than that of the flange/web distortional buckling 

mode (see point B in Fig.1) [29]. Later, Badawy Abu-Sena et al. [30] applied the energy 

method to investigate the interaction between the distortional buckling and the 

torsional-flexural buckling. More recently, Yuan et al. [31] put forward an analytical 

approach to illustrate the flange/web distortional buckling behaviour of partially 

restrained CFS purlins subjected to uplift loading. Zhu et al. [32-34] introduced a 

stiffened plate buckling model to calculate the flange/web distortional buckling critical 

stress of CFS members subjected to pure bending and compression.     

For the PCFS beams, the openings can weaken the web flexural stiffness which leads 

to the loss of the rotational restraint to the compressed lip-flange system, resulting in 

the beams being more susceptible to distortional buckling. When the failure mode is 

controlled by the distortional buckling, the main influence of the opening is to reduce 

rotational stiffness, but has minimal impact on the half-wave length of the buckling 

mode [1]. Hence, the PCFS beams might experience the flange/web distortional 

buckling when the tension end of the web is laterally restrained (see Fig.2 (a)). The 
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analytical models for predicting the lip/flange distortional buckling stress of PCFS 

beams under pure bending have been presented in literature [20-21], in which the 

compressed lip and flange were selected as the object of computation (see Fig.2 (b)). It 

was shown that the modified Hancock’s model can predict the critical stress more 

accurately than the modified Eurocode model. However, the computation procedure in 

Hancock’s model was more complicated because of the use of iteration processes.  

3. Analytical approaches for flange/web distortional buckling  

The work by Hancock [24] indicated that when the distortional buckling was subject to 

pure compression, the web could be regarded as a simply supported beam (see Fig.3 

(a)). When the distortional buckling was subjected to pure bending, the web could be 

assumed as a beam simply supported at the compression end and fixed supported at the 

tension end (see Fig.3(b)). Therefore, in the present study we neglect the tension flange 

and lip since they are fixed in the section. 

Fig.4 exhibits the proposed analytical model for predicting the critical stress of 

flange/web distortional buckling of the PCFS beam when subjected to pure bending 

about the major axis. As can be seen, the model comprises the flange-lip system and 

the perforated web. During the flange/web distortional buckling, the perforated web 

will act like a plate and bend laterally. Meanwhile, the flange-lip system will follow the 

movement of the compression end of the perforated web and behaves like a beam 

retaining its original shape. 

Let the compression end of the perforated web be the coordinate origin, the intersection 

line of the web and compression flange be the longitudinal axis (x-axis). The vertical 

axis (y-axis) and the lateral axis (z-axis) are set parallel to the web and flange line. The 

vertical and lateral displacement of the flange-lip system are denoted as w and v. The 

deflection of the perforated web is denoted as u.   is the rotation of angle at the 

compression end of the perforated web. The height of the web, width of the flange, 

length of the lip and size of the hole are defined as h, b, c and d, respectively (see Fig.4). 

The beam element in local coordinate system is detailed in Fig 5. The displacement and 

rotation of node 1 are marked as w1 and 1, similarly, w2 and 1 for node 2. The shape 

function is added to describe the deflection of the perforated web. It can be given as,  

1 2 1 2

1

2

1

2

( )w w

w

w
u N N N N 





 
 
 
 
 
    

                     (1) 

where N(y) is the Hermite interpolating function which can be expressed as follows, 
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3
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2 3wN y hy h

h
                     (2a) 
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3 2

3

1
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 
1

3 2 2

2

1
2N y hy h y

h
                      (2c) 

 
2

3 2

2

1
N y hy

h
                      (2d) 

In the proposed analytical model, the tension end of the perforated web is fixed. Hence, 

there is no displacement or rotation in Node 2, the shape function can be simplified as 

follows, 

1 11 1wu N w N    
               

(3)
 

The lateral displacement and rotation of the flange-lip system during flange/web 

distortional buckling can be assumed as follows,  

1

( ) sin( )n

n

n x
w x A

l





           
(4) 

1

( ) sin( )n

n

n x
x B

l






                      
(5) 

where An and Bn are the constants determining the magnitude of the displacement, n is 

the number of half waves.  

The vertical displacement of the flange-lip system is given as, 

v b
            

(6)
 

Substituting Eq.(4) and Eq.(5) into Eq.(3), the deflection of the perforated web can be 

simplified as,  

   3 2 3 3 2 2

3 2
2 3 2

w
u y hy h y hy h y

h h


     

      
(7) 

According to the theory of elastic stability presented by Timoshenko[35], the strain 

energy of the bent perforated web is given by 

2 2 2 2 2
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[( ) ( ) 2 2(1 )( ) ]

2

1
( ) [( ) ( ) 2 2(1 )( ) ]
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 



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    
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    
     
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 

 

   (8) 

where D1 is the bending stiffness of the web in solid region, D2 is the bending stiffness 

of the web in perforated region, μ is the Poisson’s ratio and l is the length of the beam. 

Substituting Eq.(7) into Eq.(8), the strain energy of the bent perforated web can be 

expressed as, 
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               (9)          

It should be noted that the main effect of perforation is to reduce the flexural rigidity of 

the web, the property of the cross section may not change. Therefore, the position of 

the bending centre in proposed model is the same as the stiffened plate buckling model 

[32] for the CFS beam with plain web. It can be approximated as, 

2

s
2 2

c
y

b c h


                         
(10)

 

2

s

2b

2 2

b c
z

b c h




                         
(11)

 

The strain energy of the flange-lip system due to the bending moments is given by, 

2 2 2 2
2 2 2

2 2 2 20 0

2
2

20

1 1
[ ( ) ( ) 2 ] ( )

2 2

1
( )

2

l l

flange y z yz

l

w

d w d v d w d v d
U EI EI EI dx GJ dx

dx dx dx dx dx

d
EI dx

dx





   



 


            

(12) 

where E is the Young’s modulus, Iy and Iz are the moment of inertia to bending centre 

about the y-axis and the z-axis, respectively. Iyz is the product of inertia to bending 

centre. G is the shear modulus. J is the torsion constant. These parameters can be 

determined from the following equations, 
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  3

3
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J


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Substituting Eq.(4), Eq.(5) and Eq.(6) into Eq.(12), the strain energy of the flange-lip 

system can be expressed as, 

4 2 2 2 2 2

1

( ) [ 2 ( )( ) ]
4

flange n y n z n n yz n

n

El n GJ l
U A I B b I A B bI B

l E n





                      

(14) 

Note that, in the present model the perforated web and the compressed flange-lip are 

modeled together as a whole system, and thus the web will also rotate about the bending 

center while the flange deforms. To satisfy the deformation compatibility condition, the 

additional strain energy of the perforated web deformed as a stiffener needs to be taken 

into account, which can be expressed as follows, 

2 2 2 2
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2
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(16)
 

where t1 is the thickness of the web in solid region, t2 is the reduced thickness of the 

web in perforated region which takes into account the effect of web openings (holes). 

Substituting Eqs.(4), (5) and (6) into Eqs.(15) and (16), it yields,   
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The external work done by the pre-buckling axial stress in the perforated web and 

flange-lip system can be established as, 

2
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whereσcr is the critical stress of the flange/web distortional buckling. 

Substituting Eqs.(3)-(6) into Eqs.(19) and (20), it yields, 
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According to the principle of minimum potential energy, the total potential energy of 

the system will have a stationary condition with respect to the constants An and Bn when 

the flange/web distortional buckling happens. This gives as, 
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n n
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(24) 

The Rayleigh-Ritz method is utilized to solve the eigenvalue problems. The 

simultaneous equations can be re-written as, 

11 12 11 12

cr

21 22 21 22

0

0

n

n

Aa a b b
t

Ba a b b


        
        

                 

(25) 

where aii and bjj are the coefficients of simultaneous equations which can be given by,  
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The eigenvalue equation Eq.(25) can be solved by the numerical calculation software 

Matlab, in which the smallest eigenvalue is selected as the critical stress of flange/web 

distortional buckling of PCFS beams. Furthermore, l/n represents the half-wave length 

of the buckling mode. The novel point in this paper is that the calculation procedure 

does not need iteration which can improve the computation efficiency. 
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4. Finite element analysis and validation  

To validate the result of the proposed analytical model, the flange/web distortional 

buckling behaviour was examined with eigen-buckling analyses by using the finite 

element analysis software ANSYS. A total of 140 specimens selected from Albion 

section with various hole sizes and beam lengths were analysed. The location and 

dimension of the openings were shown in Fig.6. For convenience, the distance between 

the two holes was set πd/2 which indicated that the area of openings was half of the area 

of perforated region. Hence, the concept of equivalent thickness could be applied for 

determining the reduce of thickness and bending stiffness of the perforated web. In this 

case, the thickness of the perforated region was half of the solid region (t2=0.5t1), the 

equivalent plate-type bending stiffness of the perforated region was one eighth of that 

of the solid region (D2=0.125D1). 

The element used in numerical study was four-node isoparametric thin shell 181 

element with six degrees of freedom. The material properties of the PCFS beams were 

assumed as E=205 GPa, µ=0.3 and σy=390 MPa. The cross-section dimension of each 

specimen selected from Albion section was given in Table 1. The maximum mesh size 

was taken not exceeding 10 mm which can satisfy the requirement of precision.   

The loading and boundary conditions of the PCFS beams could be observed in Fig.7. 

Based on the equivalent theory of statics, the node forces applied at the web and lips 

were linearly distributed whereas at the flanges are uniformly distributed to simulate 

the pure bending. The PCFS beams were simply supported at its two ends. Therefore, 

the translations of the end nodes in the x and y directions were restrained, the rotation 

of the end nodes about the z direction was also restrained. To avoid the rigid 

displacement in longitudinal direction, the translation of Point A in the z direction was 

restrained. Furthermore, the rotation of the web tension end about the z-axis was also 

restrained in present study. 

The flange/web distortional buckling curves of the PCFS beams subject to pure bending 

produced by eigenvalue analyses were displaced in Fig. 8, in which σcr was the 

flange/web distortional buckling stress, σy was the yield stress of the beam. Three 

different section sizes having web height of 120 mm, 200 mm and 300 mm were 

selected from Albion section representing small, medium and large sections. The 

diameter of circular hole was in the range of 25%-50% of the web height. It can be seen 

that all the curves had the similar tendency, the local minimum point was the critical 

stress of flange/web distortional buckling. The critical stresses decreased as the 

diameter of circular hole increased. The typical flange/web distortional buckling modes 

with one, two and three half waves were detailed in Fig.9. 

Note that the finite strip software CUFSM [2] uses the strip elements which does not 

have the function to model the web openings and thus cannot be used to calculate the 

critical buckling stress of PCFS beams. Comparisons of critical stresses of flange/web 

distortional bucklling of CFS beams with no holes in the web obtained from ANSYS 

and CUFSM were made as shown in Table 2. For the finite element model with plain 

web, the parameters including loading conditions, boundary conditions, mesh sizes, 

material properties were the same with the model with web holes. It can be observed 

from Table 2 that the maximum gap between the results obtained from ANSYS and 
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CUFSM was no more than 8% which indicated a good accuracy of the finite element 

model.  

The comparison of critical stresses of flange/web distortional buckling of the PCFS 

beams between the proposed analytical model and FEA for three typical sections and 

Section 2 with different hole sizes were given in Fig.10 and Fig.11, respectively. The 

line represented the result calculated from Eq.(25) and the point represented the result 

obtained from FEA. The data in the figures indicated that the proposed analytical model 

was more conservative when the beam length was longer than one half-wave length of 

the buckling mode. This was primarily because the shape function in the proposed 

analytical method involves only the sine-functions, which are probably oversimplified. 

Nevertheless, all the lowest critical stresses could match the data obtained from FEA 

well which revealed that the proposed analytical model could be utilized into the design 

specifications. 

The parametric study was listed in Fig.12, for which all the sections analyzed were 

picked from Table 1. The lowest critical stresses obtained from the proposed analytical 

model and FEA were used for comparison, in which the beams with large openings 

(d/h=0.5) and small openings (d/h=0.25)  could be found in Fig.12(a) and Fig.12(b), 

respectively. As we can see from the figures, the result obtained from the proposed 

model showed a good agreement with FEA result in all cases. The comparisons of 

critical stresses of flange/web distortional buckling of PCFS beams between numerical 

and theoretical investigations were shown in Table 3, which gives the mean value of 

the σcr,an/σcr,FEA ratio for the beam with d/h=0.5 and 0.25 to be 0.990 and 0.998 with the 

corresponding coefficient of variation (COV) 0.0158 and 0.0161, respectively. 

This proved that the presented model could capture the main characteristics of 

flange/web distortional buckling of the PCFS beams well. 

5. Conclusions  

This paper has presented a study on the flange/web distortional buckling of PCFS 

beams. By means of the classical energy principle (Ritz method) an analytical 

approximate expression for calculating the critical stress of flange/web distortional 

buckling of PCFS beams with circular holes in the web when subjected to pure bending 

is derived. The present analytical solution has been validated by using the finite element 

analysis method. From the results obtained the following conclusions can be drawn. 

 The web openings can reduce the flexural rigidity of the web and thus decrease the 

resistance of the beam to the distortional buckling of the flange-lip system. 

 The concept of equivalent thickness can be applied for determining the reduction 

of web thickness and corresponding bending stiffness of the perforated web. 

 In characterizing flange/web distortional buckling, the compressed flange-lip can 

be treated as a beam and the perforated web can be regarded as a plate. Hermite 

interpolating shape functions can be used to describe the deformation of the 

perforated web while buckling occurs. 
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 There is a good agreement between the proposed analytical model and the FEA, 

indicating that the present model is appropriate and reliable and could be extended 

into the design specifications for the PCFS beams. 
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Fig.1 Buckling curve of cold-formed steel sections in pure bending (curve produced 

by CUFSM [2]) 

 

 

 

 

                                                      (a)                                  (b) 

Fig.2 Distortional buckling modes of PCFS beams (a) Flange/web distortional 

buckling (b) Lip/flange distortional buckling 
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  (a)                 (b) 

Fig.3 Web deformation of the CFS sections due to the distortional buckling (a) pure 

compression (b) pure bending  

 

 

 

`  

Fig.4 Analytical model for flange/web distortional buckling of the PCFS beam subject 

to pure bending  
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Fig.5 Beam element in local coordinate system 

 

 

 

 

Fig.6 Location and dimension of the openings 

 

 

 

 

Fig.7 Loading and boundary conditions of the PCFS beams 
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(a)                                                                      (b) 

 

(c) 

Fig.8 Flange/web distortional buckling curves of the PCFS beams subject to pure 

bending (a) Section 1: h=120 mm, b=50 mm, c=15 mm, t=1.5 mm (b) Section 2: h=200 

mm, b=65 mm, c=20 mm, t=2.5 mm (c) Section 3: h=300 mm, b=100 mm, c=20 mm, 

t=3 mm (curves produced by ANSYS, σy=390 MPa) 
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(a)                                                                    (b)                                                

 
(c) 

Fig.9 Typical flange/web distortional buckling modes of the PCFS beam in the ANSYS 

Eigen-buckling analyses (a) one half wave, l=628 mm (b) two half waves, l= 1099 mm 

(c) three half waves, l=1570 mm (Section2: h=200 mm, b=65 mm, c=20 mm, t=2.5 mm, 

d=100 mm) 
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Fig.10 Critical stresses of flange/web distortional buckling of the PCFS beams with 

different sections (Section 1: h=120 mm, b=50 mm, c=15 mm, t=1.5 mm, d=60 mm; 

Section 2: h=200 mm, b=65 mm, c=20 mm, t=2.5 mm, d=100 mm; Section 3: h=300 

mm, b=100 mm, c=20 mm, t=3 mm, d=150 mm) 

 

 

Fig.11 Critical stresses of flange/web distortional buckling of the PCFS beams with 

different hole sizes (Section 2: h=200 mm, b=65 mm, c=20 mm, t=2.5 mm) 
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(a)                                                              (b) 

Fig.12 Comparison of critical stresses of flange/web distortional buckling of the PCFS 

beams between the proposed model and FEA (a) d/h=0.5 (b) d/h=0.25 (PCFS sections 

are selected from Albion section) 
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Table 1 Typical dimension of the PCFS section selected from Albion section in UK  

Specimen 
Web,  

h (mm) 

Flange,  

b (mm) 

Lip,  

c (mm) 

Thickness,  

t (mm) 

C12515 120 50 15 1.5 

C12516 120 50 15 1.6 

C14616 145 62.5 20 1.6 

C14618 145 62.5 20 1.8 

C17618 175 62.5 20 1.8 

C17620 175 62.5 20 2.0 

C20620 200 65 20 2.0 

C20625  200 65 20 2.5 

C22625 225 65 20 2.5 

C24625 240 65 20 2.5 

C24630 240 65 20 3.0 

C26630 265 65 20 3.0 

C30730 300 75 20 3.0 

 

 

 

 

Table 2 Comparisons of critical stresses of flange/web distortional bucklling of CFS 

beams with no holes in the web obtained from ANSYS and CUFSM (Section 2: h=200 

mm, b=65 mm, c=20 mm, t=2.5 mm) 

Length 

l (mm) 

Critical stress obtained 

from ANSYS                 

σcr, ANSYS (MPa) 

Critical stress obtained 

from CUFSM                 

σcr, CUFSM  (MPa) 

Comparison 

σcr,ANSYS/σcr,CUFSM 

400 791.7 856.2 0.92 

450 739.5 795.9 0.93 

500 781.5 769.0 0.93 

550 720.5 767.0 0.94 

600 740.1 784.0 0.94 

650 773.5 815.8 0.95 

700 817.9 859.6 0.95 
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Table 3  Comparison of critical stresses of flange/web distortional buckling of PCFS 

beams between numerical and theoretical investigations 

Specimen 

Critical stress 

obtained from 

proposed method 

σcr,an (MPa) 

Critical stress 

obtained from FEA  

σcr,FEA (MPa) 

Comparison 

σcr,an/σcr,FEA σcr,an/σcr,FEA 

d/h=0.5 d/h=0.25 d/h=0.5 d/h=0.25 d/h=0.5 d/h=0.25 

C12515 562.3 589.6 558.6 608.6 1.01 0.97 

C12516 605.1 605.1 604.1 604.1 1.00 1.00 

C14616 507.0 549.9 510.4 541.9 0.99 1.01 

C14618 576.3 624.9 584.4 615.7 0.99 1.02 

C17618 506.1 547.8 510.8 550.3 0.99 1.00 

C17620 568.9 615.8 580.2 617.3 0.98 1.00 

C20620 492.6 533.1 488.6 536.0 1.01 0.99 

C20625  635.0 687.3 663.7 691.4 0.96 0.99 

C22625 575.1 623.8 582.4 628.2 0.99 0.99 

C24625 541.8 588.4 537.3 592.8 1.01 0.99 

C24630 672.7 731.0 694.3 754.6 0.97 0.97 

C26630 609.8 664.1 626.1 668.9 0.97 0.99 

C30730 353.3 381.7 352.3 370.9 1.00 1.03 
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Notations 

CFS cold-formed steel 

PCFS perforated cold-formed steel 

w vertical displacement of the flange-lip system 

v lateral displacement of the flange-lip system 

u deflection of the perforated web 

 rotation of angle at the compression end of the perforated web 

h height of  the web 

b width of the flange 

c length of the lip 

d diameter of the hole 

D1 bending stiffness of the web in solid region 

D2 bending stiffness of the web in perforated region 

μ Poisson’s ratio 

l length of the beam 

E Young’s modulus 

Iy moment of inertia to shear center about the y-axis 

Iz moment of inertia to shear center about the z-axis 

Iyz product of inertia to shear center 

G shear modulus 

J torsion constant 

Uweb strain energy of the bent perforated web 

Uflange strain energy of the flange-lip system 

Wweb external work done by the pre-buckling axial stress in the perforated web 

Wflange external work done by the pre-buckling axial stress in the flange-lip system 

t1 thickness of the web in solid region 

t2 thickness of the web in perforated region 

σcr critical stress of the flange/web distortional buckling 

n number of halfwave 
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