Adapt or die—Response of large herbivores to environmental changes in Europe during the Holocene

E Hofman-Kamińska
Hervé Bocherens
Dorothée G. Drucker
Ralph M. Fyfe School of Geography, Earth and Environmental Sciences
Witold Gumiński
et al. See next page for additional authors

Let us know how access to this document benefits you

General rights
All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Take down policy
If you believe that this document breaches copyright please contact the library providing details, and we will remove access to the work immediately and investigate your claim.
Follow this and additional works at: https://pearl.plymouth.ac.uk/gees-research

Recommended Citation
This Article is brought to you for free and open access by the Faculty of Science and Engineering at PEARL. It has been accepted for inclusion in School of Geography, Earth and Environmental Sciences by an authorized administrator of PEARL. For more information, please contact openresearch@plymouth.ac.uk.
This article is available at PEARL: https://pearl.plymouth.ac.uk/gees-research/345
This is the unformatted final accepted version of Hofman-Kamińska et al (2019) Adapt or die - response of large herbivores to environmental changes in Europe during the Holocene published in Global Change Biology.

The citation to the “online first” version should be:

Please check the permanent doi above for the final (published) definitive version on the journal website and complete citation.
Adapt or die - response of large herbivores to environmental changes in Europe during the Holocene

Running head: Holocene foraging ecology of large herbivores

Primary Research Articles

Emilia Hofman-Kamińska 1*, Hervé Bocherens 2,3, Dorothée G. Drucker 3, Ralph M. Fyfe 4,
Witold Gumiński 5, Daniel Makowiecki 6, Martina Pacher 7, Giedrė Piličiauskienė 8, Tomasz Samojlik 1, Jessie Woodbridge 4, Rafał Kowalczyk 1

1 Mammal Research Institute Polish Academy of Sciences, Stoczek 1, 17-230 Białowieża, Poland
2 Fachbereich Geowissenschaften, Forschungsbereich Paläobiologie, Universität Tübingen, Hölderlininstr. 12, D-72074 Tübingen, Germany
3 Senckenberg Centre for Human Evolution and Palaeoenvironment (HEP) at Tübingen University, Hölderlininstr. 12, D-72074 Tübingen, Germany
4 School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK
5 The Institute of Archaeology, Warsaw University, Poland
6 Institute of Archaeology, Nicolaus Copernicus University, ul. Szosa Bydgoska 44/48, 87-100 Toruń, Poland
7 Institut für Paläontologie, Universität Wien, Geozentrum, UZA II, Althanstraße 14, A - 1090 Wien, Austria
8 Faculty of History, Vilnius University, Universiteto str. 7, Vilnius 01122, Lithuania;
*Corresponding author: E. Hofman-Kamińska; e-mail: ehofman@ibs.bialowieza.pl, tel.: +48 85 6827750
Keywords Alces alces; aurochs; Bison bonasus; Bos primigenius; European bison; moose; stable isotopes; 14C dating;

ABSTRACT

Climate warming and human landscape transformation during the Holocene resulted in environmental changes for wild animals. The last remnants of the European Pleistocene megafauna that survived into the Holocene were particularly vulnerable to changes in habitat. To track the response of habitat use and foraging of large herbivores to natural and anthropogenic changes in environmental conditions during the Holocene, we investigated carbon (δ^{13}C) and nitrogen (δ^{15}N) stable isotope composition in bone collagen of moose (Alces alces), European bison (Bison bonasus) and aurochs (Bos primigenius) in Central and Eastern Europe. We found strong variations in isotope compositions in the studied species throughout the Holocene and diverse responses to changing environmental conditions. All three species showed significant changes in their δ^{13}C values reflecting a shift of foraging habitats from more open in the Early and pre-Neolithic Holocene to more forest during the Neolithic and Late Holocene. This shift was strongest in European bison, suggesting higher plasticity, more limited in moose, and the least in aurochs. Significant increases of δ^{15}N values in European bison and moose are evidence of a diet change towards more grazing, but may also reflect increased nitrogen in soils following deglaciation and global temperature increases. Among the factors explaining the observed isotope variations were time (age of samples), longitude and elevation in European bison, and time, longitude and forest cover in aurochs. None of the analyzed factors explained isotope variations in moose. Our results demonstrate the strong influence of natural (forest expansion) and anthropogenic (deforestation and human pressure) changes on the foraging ecology of large herbivores, with forests playing a major role as a refugial habitat since the Neolithic, particularly for European
bison and aurochs. We propose that high flexibility in foraging strategy was the key for survival of large herbivores in the changing environmental conditions of the Holocene.

INTRODUCTION

The Holocene has been an epoch of highly dynamic environmental changes (Roberts et al., 2018). Warming of the climate since the Pleistocene/Holocene transition and Late Weichselian Glacial retreat in Europe resulted in forest expansion during the Early Holocene, with maximum forest cover established by around 8200 cal yrs BP. Early Holocene (11,650 - 8200 cal yrs BP) (Walker et al., 2012) tree migration and forest expansion was followed by human expansion and the development of agriculture during the Neolithic (between 7000 to 2600 cal yrs BP, although dates for the Neolithic vary slightly in different regions of Central and Eastern Europe) (Puhe & Ulrich, 2001). The start of the Neolithic resulted in demographic explosion and increasing human pressure on the environment (Gignoux et al., 2011, Shennan et al., 2013), leading to progressive deforestation of the continent (Kaplan et al., 2009, Roberts et al., 2018). The transformation of Europe’s landscapes from a nature-dominated to a more human-dominated state has been long and complex (Fyfe et al. 2015, Roberts et al. 2018). It created dynamic habitat conditions and strongly limited access to preferred habitats for wild animals, and influenced their distribution, densities, fitness or food habits, and in the worst cases led to population extirpations or species extinctions (Crees et al., 2016, Pavelková Řičánková et al., 2015, Rosvold et al., 2013).

The majority of the abundant Pleistocene megafauna in Europe became extinct before the start of the Holocene (Elias & Schreve, 2007, Pacher & Stuart, 2009, Stuart, 1991). The major patterns of postglacial changes in Palearctic mammalian diversity were not extinctions but rather radical shifts of species distribution ranges and retreat northwards or eastwards (Pavelková Řičánková et al., 2015). Few species of large European mammals survived the
Pleistocene/Holocene transition, and inhabited the European continent during the subsequent millennia (Benecke, 2005, Pavelková Řičánková et al., 2015, Schmölcke & Zachos, 2005). These species were exposed to several processes related to climate and habitat change, as well as increasing human pressure (Hofman-Kamińska et al., 2018b, Rosvold et al., 2013). Two species, European bison (*Bison bonasus*) and moose (*Alces alces*), survived until present (moose) or were restored in the wild from captive survivors after extirpation at the beginning of the 20th century (European bison). Aurochs (*Bos primigenius*), widely distributed in Europe during the Pleistocene, survived into the Holocene but finally became extinct during the early 17th century (Van Vuure, 2005).

The feeding habits of these large herbivores have been detected by stable isotope analysis in the Pleistocene/Holocene transition and at the beginning of the Holocene (12,000±600 - 10,022±229 cal yrs BP) (Bocherens et al., 2015). These feeding habits ranged from grazing in aurochs, to mixed-feeding in European bison, and to browsing in moose, reflecting feeding types determined by digestive system classification (Hofmann, 1989) and probably represent the natural feeding behaviour of these species. Changes in the diet patterns of these large herbivores have been identified by dental microwear textural analysis (DMTA) (Hofman-Kamińska et al., 2018b) and may indicate behavioural changes in response to environmental changes, as well as different periods of favorable conditions during the Holocene in Europe. Forested areas, favorable for browsers such as moose, but marginal for grazers such as aurochs and European bison, might have created refugia from increasing human pressure during the mid-Holocene and promoted the survival of these latter species in forest habitats, but in circumstances of lowered fitness and population densities. This may have led to increased stochasticity and population fragmentations, and local extinctions (Cromsigt et al., 2012, Kerley et al., 2012). Opening of forest habitats would have created more optimal foraging conditions for grazers, less for browsers, but might have exposed them
to increased human pressure and had similar effects (reduced fitness, population
fragmentation and local extinction). Large mammals are particularly vulnerable to
environmental changes and habitat fragmentations and exposed to risk of extirpation or
extinction due to their body size, lower densities, larger spatial requirements, and
disproportional exploitation by humans, particularly more specialized species that have a
lower capacity for adaptation (Cardillo et al., 2005, Keinath et al., 2017). Did they adapt to
the limits set by their morphological characteristics and foraging plasticity or not? What
processes promoted their survival or led to their disappearance as habitat structure changed?
Reconstruction of foraging habitats and dietary behavior may shed light on how large
herbivores coped with changing environmental conditions.

Stable carbon and nitrogen isotopic ratios are increasingly used as environmental
and dietary indicators for modern as well as for fossil herbivores (Bocherens et al., 2009,
Bocherens et al., 2015, Britton et al., 2012, Drucker et al., 2003, Drucker et al., 2010, García
et al., 2009, Gąsiorowski et al., 2014, Gron & Rowley-Conwy, 2017, Hofman-Kamińska et
al., 2018a, Jürgensen et al., 2017, Noe-Nygaard et al., 2005, Šturm et al., 2017). In this study
we used stable carbon and nitrogen isotope compositions from radiocarbon dated bone
samples as proxies for foraging habitats and diet of European bison, moose and aurochs
throughout the Holocene in Europe. By studying the foraging ecology of three European large
herbivore species over millennial timescales during the Holocene we aimed to: (1) identify
habitat preferences and diets before and after the Neolithic environmental transformations; (2)
analyze the response of the largest remaining Pleistocene megafauna in Europe to the major
environmental changes of the Holocene (from increasing tree cover during the Early and pre-
Neolithic Holocene to increasing habitat openness during the Neolithic and subsequent time
periods); and (3) identify factors influencing their patterns of habitat use and diet. We
hypothesized that forest expansion in the early Holocene forced large herbivores, especially
those primarily adapted to grazing (aurochs and European bison) into forests as refugial
habitats, to shift their pattern of habitat use, resulting in stable isotopic signatures change.
Subsequently, increasing human pressure did not allow large herbivores to return to more
open habitats, despite the creation of open habitats resulting from the deforestation of
Europe in the Late Holocene.

MATERIALS AND METHODS

Sample collection and age determination
A total of 295 bone samples, including 121 European bison, 91 aurochs and 83 moose
originating from 14 European countries were collected from paleontological, zoological and
private collections (Table S1) in Central and Eastern Europe (Figure 1). We validated the
species identification (especially for European bison and aurochs bones) (Gee, 1993), by
comparing characteristic morphological features using modern European bison and moose
bones from zoological collection of the Mammal Research Institute PAS in Białowieża and
other well identified historical specimens as reference material. Additionally, we included into
the analysis published stable carbon isotopic data for 69 specimens (19 moose, 5 European
bison and 45 aurochs) and stable nitrogen isotopic data for 36 specimens (12 moose, 5
European bison and 19 aurochs) available in the literature (Antanaitis-Jacobs et al., 2009,
Bocherens et al., 2015, Fornander et al., 2008, Gravlund et al., 2012, Jessen et al., 2015,
Lidén et al., 2004, Linderholm et al., 2014, Noe-Nygaard et al., 2005). In total, 364 large
herbivore bone samples and literature records were used in the study (Figure 1).
Figure 1. Distribution of localities with specimens of moose (*Alces alces*) (blue circles), European bison (*Bison bonasus*) (red squares) and aurochs (*Bos primigenius*) (green triangles) in the Holocene.

Age determinations of the bone samples were based on radiocarbon dating from the literature or museum data, or derived from archeological context. For 94 specimens without any, or uncertain, age determination we performed direct radiocarbon dating at the Laboratory of Ion Beam Physics, Eidgenössische Technische Hochschule Zürich, Switzerland (Swiss Federal Institute of Technology Zürich) (ETH). All radiocarbon dates were calibrated to BP dates with 1σ (95.4%) probability using the IntCal13 calibration curve in OxCal v4.2 (Reimer *et al.*, 2013). In total 186 bone samples were 14C dated, another 178 had a well identified
archaeological context, in most of cases confirmed by additional radiocarbon dates performed
for this study.

This study is unique in incorporating the analysis of an unprecedented number of
European bison (*Bison bonasus*) bone material (126), (distributed widely across the European
continent), a species with a very poorly studied Holocene history. Additionally, we provide a
very large number of new 14C radiocarbon dated bones for this species (59). Before this study
only 32 radiocarbon dated European bison specimens were published (Blant & Wenger, 2010,

Collagen extraction and stable isotope analysis

Small pieces of compact bone (0.7 g) were cleaned with acetone and distilled water in
an ultrasound bath in order to remove dust and potential glue remains, before being crushed to
a powder and sieved to obtain a grain size no larger than 0.7 mm. Collagen for the isotopic
measurements was prepared according to the protocol described by Bocherens *et al.* (Bocherens *et al.*, 1997).

The elemental and isotopic measurements were performed at the Department of
Geosciences at the University of Tübingen (Germany) using an elemental analyzer NC 2500
connected to a Thermo Quest Delta+XL mass spectrometer. The isotopic ratios were
expressed using the “Δ” (delta) value as follows: δ^{13}C = $[(^{13}$C/12C)$_{\text{sample}} / (^{13}$C/12C)$_{\text{reference}} - 1] \times$
1000(‰), δ^{15}N = $[(^{15}$N/14N)$_{\text{sample}} / (^{15}$N/14N)$_{\text{reference}} - 1] \times 1000(‰)$. The internationally defined
standards were V-PDB for δ^{13}C values and atmospheric nitrogen (AIR) for δ^{15}N values.

Samples of collagen were normalized to δ^{13}C values of USGS24 (δ^{13}C = -16.00‰) and to δ^{15}N
values of IAEA 305A (δ^{15}N = 39.80‰). The reproducibility was ±0.1‰ for δ^{13}C and ±0.2‰
for $\delta^{15}N$ measurements based on multiple analysis of purified collagen from modern bones (n > 175).

The reliability of the isotopic signatures of the collagen extracts was addressed using their chemical composition. Only high quality extracts with %C, %N, and C/N similar to those of collagen extracted from fresh bone were used for isotopic measurements. Therefore, only collagen extracts that had atomic C/N ratios with $2.9 \leq C/N \leq 3.6$ (DeNiro, 1985), %C > 8% and %N > 3% were taken for the analysis (Ambrose, 1990).

$\delta^{13}C$ and $\delta^{15}N$ variables

In European temperate and boreal ecosystems, woody and herbaceous plants follow the C$_3$ photosynthetic pathway and have $\delta^{13}C$ values ranging from $-35\%_o$ to $-20\%_o$ (Dawson et al., 2002). The fraction of the vegetation that is C$_4$ is less than 0.1 and concentrates mostly in southern Europe (Still et al., 2003). Plants growing under the canopy of densely forested environments exhibit lower $\delta^{13}C$ values in comparison to plants from open conditions (Bonafini et al., 2013, Broadmeadow et al., 1992, Gebauer & Schulze, 1991, Van der Merwe & Medina, 1991). Such a depletion in $\delta^{13}C$ is reflected in the bone collagen of forest-dwelling herbivores in boreal and temperate forests (Drucker & Bocherens, 2009, Drucker et al., 2008), with a tentative threshold $\delta^{13}C$ value for foraging under dense canopy forest at $-22\%_o$, meaning that herbivores with such collagen $\delta^{13}C$ values have been foraging essentially under a dense canopy cover (Drucker et al., 2008). Recent studies conducted on modern European bison and moose confirm that with increasing percentage of forest cover, stable carbon isotope concentration in collagen of large herbivores decreases (Hofman-Kamińska et al., 2018a). It confirms also that stable carbon isotopes in herbivore collagen, which is continuously replaced through the whole animal’s life by the incorporation of new atoms of carbon deriving from the diet, reflects foraging in densely forested versus open landscape
conditions. Such patterns allow us to reconstruct the foraging habitats of large herbivores in the past on the basis of $\delta^{13}C$ values.

$\delta^{15}N$ values differ between plant types. Non-mycorrhizal plants such as graminoids, forbs and clubmosses exhibit higher $\delta^{15}N$ values than ectomycorrhizal and ericoid plants, such as trees and shrubs (Ben-David et al., 2001, Craine et al., 2009, Emmerton et al., 2001, Hobbie et al., 2005, Kristensen et al., 2011, Schulze et al., 1994). Intermediate values of $\delta^{15}N$ are found in mosses (Craine et al., 2009, McLeman, 2006, Michelsen et al., 1998, Michelsen et al., 1996). These results allow us to reconstruct diet type based on stable nitrogen isotope compositions, even if it is not possible to provide a threshold $\delta^{15}N$ value for bone collagen of grazers versus browsers due to the impact of local environmental factors, but in a given context, grazers typically exhibit higher $\delta^{15}N$ values than browsers (Bocherens, 2003, Bocherens, 2015). It has been shown that the $\delta^{15}N$ values in plants decline with increasing elevation (Huber et al., 2007, Sah & Brumme, 2003, Sparks & Ehleringer, 1997). This is probably connected with lower mineralization and lower net nitrification rates induced by more abundant rainfall and lower temperatures at higher elevation (Liu & Wang, 2010).

Forest cover and spatial data

We extracted total tree cover (hereafter described as forest cover), deciduous tree cover and needle-leaf tree cover, values for each bone specimen from the published dataset of (Fyfe et al., 2015) using the geographic coordinates of herbivore bones, and their calibrated age. This generated data that described that nature of vegetation for the location and time period of every sample. The estimates of forest cover in Fyfe et al. (2015) were generated using data from the European Pollen Database (Fyfe et al., 2009, Leydet, 2007–2018). Pollen data from individual site records were aggregated into contiguous 200-year long time windows between 18,000 and 0 yrs BP using the chronologies in (Giesecke et al., 2014) and transformed from
pollen proportions to % land cover classes (LCCs) using the pseudobiomization approach (Fyfe et al., 2010). The resulting values were interpolated to produce the spatially-continuous estimates of forest cover at 20 km resolution for each time window using a thin-plate spline with elevation as a co-variate (Fyfe et al., 2015).

The elevation for each specimen was extracted from the global raster data grids from the Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) in ArcGIS 10.5.0 using spatial analysis tools (ESRI, 2017). We used median 7.5 arc-seconds resolution, which has a root mean square error (RMSE) range between 29 and 32 meters (Danielson & Gesch, 2011).

Statistical analysis

In order to obtain the age of radiocarbon dated samples for statistical analyzes, we calculated an average between the lower and higher calibrated age range. We applied the same procedure to determine the average age for specimens dated archaeologically, e. g. for a specimen dated between 16-17th century, we assumed the age of 400 cal years BP. First, we tested differences in $\delta^{13}C$ and $\delta^{15}N$ between moose, European bison and aurochs for the whole of the Holocene with ANOVA. The normality of the variables’ distribution was tested with Shapiro-Wilk test. To check homogeneity of variance assumption, Brown-Forsythe and Levene tests were performed for each period. When ANOVAs showed statistically significant differences, post hoc comparisons were performed using Tukey's HSD test for unequal N. To test whether Neolithic agriculture impacted $\delta^{13}C$ and $\delta^{15}N$ of large herbivores, we divided the Holocene specimens according to the criteria of Neolithization (the timing of the Neolithic varies across our sites in Europe but is broadly between 7000 and 2600 cal yrs BP). The Early and pre-Neolithic Holocene specimens included those from regions where Mesolithic cultures (between 12,000 and 6000 cal yrs BP) still occurred according to regional studies and
Neolithic and Late Holocene specimens from locations in space and time where Neolithic and later agriculture was established (Antanaitis-Jacobs et al., 2009, Deak et al., 2018, Puhe & Ulrich, 2001). We explored changes in δ^{13}C and δ^{15}N variables between the two periods for each of the species separately. In the next step we performed one-way ANOVA to study differences in δ^{13}C and δ^{15}N between European bison, moose and aurochs in each of the two periods.

We ran separate models for each of the two stable isotopes for each of the three species to investigate factors influencing δ^{13}C and δ^{15}N in bone collagen (in total 6 models). Due to the high correlation (R > 0.5), from the whole set of available explanatory variables: percentage of the total forest cover, percentage of deciduous forest, percentage of needle-leaf forest, age, longitude, latitude and elevation we excluded percentage of deciduous forest (highly correlated with percentage of the total forest cover; R from 0.74 to 0.81 in different species) and latitude (highly correlated with elevation; R from 0.75 to 0.81 in different species). Percentage forest cover was not available for all our specimens, due to the lack of pollen data for the oldest specimens, or absence of precise dating of faunal material, therefore for modeling we used only records with complete datasets (among 69 records from the literature we used only 22 complete datasets). Due to the large discrepancy of scale ranges (6-29° in longitude vs. 0-12000 cal yrs BP in time), we standardized our explanatory variables in R to have a mean of 0 and a sd of 0.5 using function standardize.y (Gelman & Hill, 2007). We then ran multiple linear regression models with single isotope abundance as the response variable. The Akaike Information Criterion (AIC) with the second-order correction for a small sample size (AICc) was used for model ranking. We did not find a singular best model within any of the models run, so we applied model averaging where cumulative weights of subsets of models did not exceed 0.95. We looked at full model averaging to identify factors significantly affecting δ^{13}C and δ^{15}N variables. The normality and homoscedasticity in the
distribution of final model residuals was tested by inspection of the quantile–quantile
distribution plot and model residuals against fitted values (estimated responses) plot. We
checked all models for spatial autocorrelation. Semi-variograms showed no spatial
autocorrelation in model residuals (Zuur et al., 2009). Multiple regression models were
completed in R (version 3.4.4) (R-Core-Team, 2016). Model ranking was done using the
package MuMIn (Bartoń, 2015). All ANOVAs were performed in Statistica (version 9.1)
(StatSoft, 2010).

RESULTS

Stable isotope signatures of large herbivores during the Holocene

At the scale of the whole Holocene, the three species of large herbivores differ in their $\delta^{13}C$
values ($F = 5.43$, $p = 0.005$, $N = 364$). Aurochs (-22.5±1.0‰) and moose (-22.4±0.9‰) have
significantly higher mean $\delta^{13}C$ values than European bison (-22.8±1.1‰) ($p = 0.04$ and $p =$
0.01, respectively). All three species significantly differ in their $\delta^{15}N$ values ($F = 45.04$, $p <$
0.0001, $N = 332$). Moose are characterized by the lowest (+4.0±1.1‰), European bison by
intermediate (+4.9±1.1‰) and aurochs by the highest (+5.5±1.2‰) $\delta^{15}N$ values ($p < 0.0001$, p
< 0.0001 and $p < 0.0001$, respectively) (Figure 2).
Figure 2. Stable carbon ($\delta^{13}C$) and nitrogen ($\delta^{15}N$) isotope signatures of moose ($Alces alces$) (blue circles), European bison ($Bison bonasus$) (red squares) and aurochs ($Bos primigenius$) (green triangles) with mean values and standard deviations.

We find that moose, European bison and aurochs samples have significantly higher mean $\delta^{13}C$ values in the Early and pre-Neolithic Holocene in comparison to the Neolithic and Late Holocene ($p = 0.0002, N = 97; p < 0.0001, N = 126; p = 0.003, N = 126$; respectively) (Figure 3). European bison and moose have significantly higher mean $\delta^{15}N$ values in the Neolithic and Late Holocene ($p = 0.0006, N = 97; p < 0.0001, N = 126$; respectively) compared to the Early and pre-Neolithic Holocene. Aurochs do not differ in mean $\delta^{15}N$ between those two periods ($p = 0.06, N = 100$) (Figure 3).
Figure 3. Differences in stable carbon $\delta^{13}C$ and nitrogen $\delta^{15}N$ isotope signatures between moose, European bison and aurochs in the Early and pre-Neolithic and in the Neolithic and Late Holocene sample groups and changes in $\delta^{13}C$ and $\delta^{15}N$ between the two periods. Asterisks indicate significant differences for each species between the two periods ** - for $p = 0.001$, *** - for $p < = 0.0001$, (pairwise differences for Tukey's HSD test for unequal N) and significant changes in $\delta^{13}C$ and $\delta^{15}N$ between three species in each of the period * - for $p = 0.01$, *** - for $p < = 0.0001$.

The analysis of variance we use to explore differences in $\delta^{13}C$ and $\delta^{15}N$ values between European bison, moose and aurochs shows significant differences in both $\delta^{13}C$ ($F = 12.70, p < 0.0001, N = 79$; $F = 14.10, p < 0.0001, N = 270$, in the Early and pre-Neolithic and the
Neolithic and Late Holocene respectively) and in δ^{15}N values ($F = 42.50, p < 0.0001, N = 53$; $F = 28.86, p < 0.0001, N = 263$, in the Early and pre-Neolithic Holocene and the Neolithic and Late Holocene respectively) in each of the period (Figure 3). During the Early and pre-

Neolithic Holocene significantly lower mean δ^{13}C values are found in aurochs (-22.2±1.2‰) than in European bison (-20.6±1.1‰,) ($p = 0.001$) (Figure 3). Moose has an intermediate mean δ^{13}C value (-21.3±0.8‰). In the Neolithic and Late Holocene, the mean δ^{13}C value recorded in European bison (-23.1±0.7‰), is significantly lower than in moose (-22.6±0.8‰, $p < 0.0001$) and aurochs (-22.8±0.9‰, $p = 0.007$). In the Early and pre-Neolithic Holocene, the highest mean δ^{15}N value registered in aurochs (+5.8±1.2‰) is significantly different than in European bison (+3.5±0.9‰) ($p = 0.0001$) and moose (+2.1±0.7‰) ($p = 0.0001$) (Figure 3).

In the Neolithic and Late Holocene, the lowest mean δ^{15}N registered in moose (+4.2±1.0‰) significantly differs from those in European bison (+5.0±1.0‰) ($p < 0.0001$) and aurochs (+5.3±1.1‰) ($p < 0.0001$) (Figure 3).

Factors influencing δ^{13}C and δ^{15}N values in large herbivores

The percentage total forest cover for moose, European bison and aurochs locations shows a similar temporal pattern with increase in the Early Holocene until the start of the Neolithic and then decreasing throughout the Late Holocene (Figure 4).
Figure 4. Percentage total forest cover in the Holocene for moose (*Alces alces*) (circles), European bison (*Bison bonasus*) (squares) and aurochs (*Bos primigenius*) (triangles) bone locations.

The δ^{13}C and δ^{15}N values in bones of large herbivores show some fluctuations throughout the Holocene with the pattern differing between the three species (Figure 5).
Figure 5. Chronological changes in stable carbon $\delta^{13}C$ and nitrogen $\delta^{15}N$ isotope signatures of moose, European bison and aurochs during the Holocene. The solid lines represent estimated regression lines and the dotted lines 0.95 confidence intervals.

The average model shows that none of the analysed factors significantly affected $\delta^{13}C$ and $\delta^{15}N$ stable isotope abundances in moose (Table S2, Table S3). For European bison, the ranges of R^2 of competing models used in averaging were between 0.3988 - 0.4235 and the average model shows significant effect of age and longitude on $\delta^{13}C$ stable carbon isotope signatures (Table S2, Table S3). The $\delta^{13}C$ values decrease in time in the first half of the Holocene, then stabilize during the following period, and increase with longitude (Table S3, Figure 6). The ranges of R^2 of competing models used in averaging were between 0.3720 -
0.3793 and the average model indicates that δ15N values in European bison are significantly affected by age and elevation (Table S2, Table S3). The δ15N concentration increases through time in the first half of the Holocene, then slightly decreases (Figure 6). With increasing elevation, δ15N values significantly decrease (Figure 6).

Figure 6. Influence of the age, longitude and elevation on stable carbon (δ13C) and nitrogen (δ15N) isotope signatures of the European bison (*Bison bonasus*) in the Holocene.

The ranges of R2 of competing models used in averaging were between 0.4273 - 0.4443 and the average model for aurochs shows significant effect of age, longitude and total forest cover on δ13C values (Table S2, Table S3). The δ13C values decrease through time and with increasing forest cover, and increase with increasing longitude, i.e. from West to East (Table S3, Figure 7). The ranges of R2 of competing models used in averaging were between 0.4025 -
0.4174 and the average model shows a significant effect of age and longitude on $\delta^{15}\text{N}$ values in aurochs (Table S2, Table S3). The $\delta^{15}\text{N}$ values decrease in time, while increasing with longitude, therefore becoming higher from West to East (Figure 7).

Figure 7. Influence of the age, longitude and forest cover on stable carbon ($\delta^{13}\text{C}$) and nitrogen ($\delta^{15}\text{N}$) isotope signatures of aurochs (*Bos primigenius*) in the Holocene.

DISCUSSION

Stable isotope composition of large herbivores during the Holocene
Reconstruction of the habitat use and diet of large herbivores inhabiting Central and Eastern Europe has shown a wide variation of foraging habitats and diets of moose, European bison and aurochs throughout the Holocene. Comparing mean values of isotopic signatures in the scale of the whole Holocene, we found that moose and aurochs more often occupied open habitats and less forested areas, reflected in their higher mean δ¹³C values, while European bison more often foraged in forested habitats. Differences among the diets of the three species are reflected in their δ¹⁵N values and predict different foraging niches with moose being the most browsing, and aurochs the most grazing species (Hofmann, 1989).

The selection of early successional forests and tundra subalpine areas by moose before the forest maximum and later stream valley shrub habitats and forest gaps, which offer high availability of browse and cover, reflects the historical selection of relatively open habitats and woody diet of this large herbivore (Czernik et al., 2013, Morow, 1976, Olsson et al., 2011, Wam & Hjeljord, 2010b). Whilst the distribution range of moose strongly contracted eastward, the species did not experience extirpation in the wild and is now recolonizing its historical range (Niedzialkowska et al., 2016a, Niedzialkowska et al., 2016b, Schmölcke & Zachos, 2005).

According to δ¹⁵N values, aurochs in the Holocene had more herbaceous plants in the diet than two other species. This is consistent with the previous stable isotope nitrogen analysis of bone collagen from Scandinavia and England confirming grazing of the aurochs, which is similar to cattle foraging behaviour (Lynch et al., 2008, Noe-Nygaard et al., 2005). Intermediate between the most grazing aurochs and the most browsing moose nitrogen isotope composition of European bison supports earlier findings on its mixed diet and plasticity in adaptation to utilize a wide range of forest habitats (Bocherens et al., 2015, Hofman-Kamińska et al., 2018a, Hofman-Kamińska et al., 2018b, Kowalczyk et al., 2011, Merceron et al., 2014).

This flexibility may result from the European bison’s evolutionary adaptations to various food
resources and habitats as reflected by genome analysis and gene selection (Gautier et al., 2016).

Our data show that following deglaciation of northern Europe, in the earliest phase of the Holocene (between 11.6 - 10.5 ka cal yrs BP) moose, European bison and aurochs from Scandinavia and northern Europe occupied relatively more open habitats, which at that time were open tundra and shrubland with undeveloped forest (Björck et al., 2002, Jessen et al., 2015). Later, before the advent of the Neolithic, between 9.5 ka cal yrs BP and 7 ka cal yrs BP, aurochs stayed in more forested habitats, but no dated samples from European bison or moose are available during this period to draw comparisons with. Bones of aurochs originating from this highly forested Preboreal and Boreal period decreased mean δ13C values to be the lowest among analyzed species in the Early and pre-Neolithic Holocene.

In the Early and pre-Neolithic Holocene, the diet of aurochs consisted of a relatively high fraction of grasses and forbs, as reflected by this species having the highest δ15N values compared to both moose and European bison diet, which particularly in moose had relatively the highest levels of browse. European bison and moose living in the Early Holocene in more open tundra-like environments (steppe-tundra and forest-steppe with dwarf shrubs and trees such as willows, birches and pines) consumed more easily digestible leaves of shrubs and trees as indicated by nitrogen signatures (Bocherens et al., 2015).

During the Neolithic and Late Holocene, the lower δ13C values of European bison indicate that this species foraged most frequently in forested habitats, while moose and aurochs utilized this type of habitat less often. Moose exhibited the lowest δ15N values of the three species in the Neolithic and Late Holocene, which suggests a diet with a relatively high fraction of browse, whilst European bison and aurochs consumed more herbaceous material. The lowest between the three species, but higher than expected δ15N values in moose could be the effect of summer diet enriched with aquatic and herbaceous forage, which is observed in
modern moose (Wam & Hjeljord, 2010a). In contrast to our findings, the dental microwear
textural analysis (DMTA) showed that during the Late Holocene the diet of aurochs from
northeastern Europe was mixed or browsing (Hofman-Kamińska et al., 2018b). This is likely
to be the effect of seasonality in the animal's diet, which is possible to detect through teeth
microwear analysis (Percher et al., 2018), therefore has a different chronological resolution
than the reconstruction of the diet reflecting the whole life of the animal, which is given by the
analysis of stable isotopes (Hedges et al., 2007).

Stable isotopic compositions show a significant shift of foraging habitats from more
open in the Early and pre-Neolithic Holocene to more forested in the Neolithic and Late
Holocene specimens in all analyzed species. Such a pattern, already documented in red deer
(Cervus elaphus) (Drucker et al., 2003, Drucker et al., 2008), is consistent with the changes in
the forest cover as a result of vegetation succession in Europe in the Early Holocene, but it is
not compatible with the reduction of the forest cover as a result of agricultural activities
following the Neolithic and subsequent periods (Woodbridge et al., 2018). Despite reductions
in tree cover as a result of Neolithic development, the largest European ungulates continued to
forage in forest. This has continued through the last 2000 yrs BP, when the scale of forest
reduction was the largest (Kaplan et al., 2009). This probably reflects avoidance of human
pressure and the refugial character of forest habitats for large ungulates (Kerley et al., 2012).
Thus, aurochs and European bison, pre-adapted to open or mixed habitats (Bocherens et al.,
2015, Hall, 2008), became classical refugee species sensu Kerley et al. (2012) after the
Neolithic and later transformation of European vegetation. This mechanism is similar to
modern examples, where human impact results in a direct loss of habitats and an increase in
avoidance behaviour of affected wildlife (Buuveibaatar et al., 2016, Jiang et al., 2007, Paton et
al., 2017). Modern moose in Scandinavia, as a hunted species, avoid human encounters by
exploiting open habitats mostly during the night (Bjørneraas et al., 2011). Conversely, a lack
of persecution of modern European bison has resulted in increasing utilization of open habitats
by populations that were introduced mainly to forests (Kowalczyk et al., 2013).

Stable nitrogen isotope compositions of moose and European bison were lower in the
Early and pre-Neolithic Holocene than in the Neolithic and Late Holocene. This may relate to
shifts in the diet of these species from more browsing in the Early and pre-Neolithic Holocene
to more grazing in the Neolithic and Late Holocene. However, the much lower δ¹⁵N values in
herbivore bones at the beginning of the Holocene in comparison to later periods, might also be
connected with lower total available N (g/m²) in the pioneer stages of soil formation in the
glacier forefield, which increases exponentially along the soil developmental gradient
(Göransson et al., 2016). Reconstruction of diet based on dental microwear textural analysis
(DMTA) showed that European moose had a browsing diet from the Neolithic period through
to the Middle Ages. In the case of European bison, the same analysis showed the dominance of
graminoids and forbs in the diet of this species living in the Neolithic subalpine region in
Switzerland; however, by the Roman period and Middle Ages European bison from
northeastern Europe had a mixed diet (Hofman-Kamińska et al., 2018b), probably due to
lower accessibility of open habitats. We show that aurochs was the only large herbivore that
did not change its δ¹⁵N values from Early and pre-Neolithic to Neolithic and Late Holocene. It
seems that despite the change in environmental conditions and growth of total available N
(g/m²) in soils (Göransson et al., 2016), δ¹⁵N values in aurochs did not increase. Aurochs diet
in the Neolithic and Late Holocene still had a relatively high fraction of graminoids and forbs
(similarly to European bison), but due to lower availability of this plant groups in forest
habitats, they had to incorporate some woody material into their diet. Thus, the limits set by
ecological conditions of forest habitats (i.e. availability of preferred graze) were more
profound for specialized grazers such as aurochs than for mixed feeders like European bison.

Habitat specialists are more sensitive to environmental changes and vulnerable to extinction
(Keinath et al., 2017). This suggests that environmental changes would have had a much stronger impact on aurochs than other species. The extirpation and final extinction in the 17th century of this widely distributed in the Late Pleistocene and Early Holocene species supports this assertion (Wright, 2013, Wright & Viner-Daniels, 2015).

Factors influencing δ^{13}C and δ^{15}N values in large herbivores

Spatio-temporal analysis of stable isotopic ratios of large herbivores throughout the Holocene showed that European bison and aurochs responded to environmental changes, but to different extents with different factors explaining the observed variations. None of the factors considered here influenced δ^{13}C and δ^{15}N values in Holocene moose bones. Modern studies on moose showed that this species can inhabit a wide variety of habitat types including forests, open willow-birch shrublands bogs, and alder swamps (Gębczyńska & Raczyński, 1989, Olsson et al., 2011) and might have a very diverse diet which can contain different types of woody material (e.g. shoots, bark, foliage and fallen leaves) as well as aquatic vegetation, grasses and forbs (Baskin & Danell, 2003, Shipley, 2010, Wam & Hjeljord, 2010b), which are characterized by variable nitrogen isotope content (Ben-David et al., 2001, Drucker et al., 2010). An additional factor not tested here that may have had a significant impact on habitat and food type selection (thus influencing the isotopic signatures) is seasonal partial migration of moose (Ball et al., 2001). Lower responses of moose to Holocene environmental changes may also result from a preference for mosaic habitats as mentioned earlier, thus the environmental changes were to some extent beneficial for moose. A second factor is the adaptation and preference of moose to marshlands (Olsson et al., 2011, Stephenson et al., 2006), a habitat which was probably less impacted either by forest succession and human pressure, due to lower accessibility and suitability of these terrains for agriculture activities until drainage in the modern period.
Stable carbon and nitrogen isotope variability in European bison and aurochs are best explained by a model incorporating the time factor. Decreasing δ\(^{13}\)C values through time suggests the shift in the pattern of habitat use from open to more forested habitats. In European bison and aurochs the nonlinear increase of δ\(^{15}\)N through time from the beginning of the Holocene, reaching the maximum for European bison around 6 ka cal yrs BP and aurochs around 9 ka cal yrs BP, could be an effect of total growth available N (g/m\(^2\)) in soils that developed following glacial retreat (Göransson et al., 2016). The second explanation behind this pattern could be changing mean annual temperature, increasing since the beginning of the Holocene up to 7800 cal yr BP (Davis et al., 2003). The δ\(^{15}\)N in plants increases with increasing mean annual temperature (Amundson et al. 2003, Craine et al. 2009).

The positive relationship between δ\(^{13}\)C signatures of European bison and aurochs with longitude may indicate more natural pattern of habitat use in a gradient from the south-west to the north-east of the study area related to lower human impact caused by delayed, or less intensive, agricultural development, or lower suitability for cultivation and pasture (Davison et al., 2006, Kaplan et al., 2009). Thus, in the more forested northeastern Europe (Kaplan et al., 2009), large ungulates utilized more open habitats, probably having more natural character (open river valleys, large forest gaps caused by disturbance events, such as insect outbreaks or windfalls), which influenced their stable isotope composition. Aurochs were associated with riverine flat-lands (Hall, 2008) and modern European bison restored to forest habitats, but show high preference to open habitats (Kjellander et al. in prep) with the lowest δ\(^{13}\)C values, reflecting utilization of mainly forest habitats at locations with forest cover above 70% (Hofman-Kamińska et al., 2018a). The increase of δ\(^{15}\)N values with longitude suggests a greater contribution of grassy vegetation in the diet of aurochs from northeastern Europe, which confirms our presumptions based on δ\(^{13}\)C modeling that this species foraged in more natural open habitats in this region.
We find that with increasing elevation, δ^{15}N values in European bison decrease, reflecting lower δ^{15}N values in plants at higher elevations (Huber et al., 2007, Sah & Brumme, 2003, Sparks & Ehleringer, 1997). A similar tendency has been found in the study on modern European bison from Poland, where European bison from the Carpathian Mountains have the lowest δ^{15}N among all studied European bison populations (Hofman-Kamińska et al., 2018a). Such an effect has not been detected in aurochs as there is an insufficient range of elevation (Mannel et al., 2007, Sah & Brumme, 2003) available for aurochs samples (0-536 m.a.s.l.), in contrast to European bison for which elevation varied from 32 to 1575 m.a.s.l.

Forest cover estimated for analyzed specimen locations shows a hump-shaped polynomial trajectory over time, consistent with changes of forest cover in Europe (Roberts et al., 2018). It seems that pattern of habitat use by large herbivore reflected habitat structure shaped by natural and anthropogenic factors (Fyfe et al., 2015). Thus, large herbivores adapted to the environmental changes of the Holocene, expressed some flexibility that promoted their survival in dynamic and often unsuitable conditions of Holocene Europe.

Our data show variable shifts in foraging habitats and diet of large herbivores throughout the Holocene in Central and Eastern Europe. These shifts were caused by forest expansion and then increasing human pressure related to the spread of Neolithic agriculture. European bison and aurochs changed from open habitat dwellers to become refugee species in forest habitats. This restriction to less optimal habitats use alongside intensified hunting probably led to lower population densities and reduced fitness of large herbivores, gradual fragmentation of their populations and to their disappearance from large parts of Europe. Moose is the species best adapted to mosaic habitats, and was thus probably less impacted by environmental changes as revealed by models in this study, or may have even benefited from both the expansion of forest and subsequent deforestation, creating more diverse habitats.
Some factors (age and longitude) influencing the observed shifts in large herbivore habitat use and diet were similar suggesting a unified pattern of these impacts. Some factors were different (forest cover in aurochs, elevation in European bison) or did not explain the observed variations, which indicate individual responses of each species related to their biology and plasticity. Adaptability of the last remnants of megafauna in Europe allowed them to survive through the entire Holocene (i.e. moose) or until the 17th century as in the case of aurochs (Van Vuure, 2005), or the beginning of the 20th century for European bison (Pucek, 1991). The two survivors that are recolonizing Europe through either natural expansion (moose) or targeted restoration programmes (European bison) are characterized by the highest adaptability to environmental conditions (Hofman-Kamińska et al., 2018a).

Patterns analyzed at the European scale may differ regionally and involve factors not considered in this study. We aimed at a synthetic investigation of large herbivore response to environmental changes in the Holocene, which would not be possible at the regional scale due to limited number of specimens. We hope that our data increases broader understanding of animal adaptation to environmental changes and mechanisms of refugee species concept that is widespread in the modern world.

ACKNOWLEDGEMENTS

We thank for giving us access to specimens to: L. Costeur (Naturhistorisches Museum Basel, Switzerland), F. E. Zachos (Vienna Natural History Museum, Department of Zoology), U. B. Göhlisch (Vienna Natural History Museum, Department of Geology & Palaeontology), M. Nussbaumer (Bern Naturhistorisches Museum, Switzerland), L. Lundqvist (Museum of Zoology, Lund University in Sweden), S. A. Bengtson and K. Berggren (Zoological Museum in Lund, Collection of Zoology and Entomology and Lund University Historical Museum), L. Wickström (Geological Survey of Sweden in Uppsala, Sweden), K. Gregersen (Zoological
Museum, Natural History Museum of Denmark in Copenhagen), M. Blant (Swiss Institute for Speleology and Karst Studies), W. Rosendahl (Reiss-Engelhorn-Museen, Abt.
Archäologische Denkmalpflege und Sammlungen, Mannheim), N. Spassov (National Museum of Natural History, Sofia), K. Rauscher (Institut für Paläontologie an der Universität Wien, Austria), E. Pucher (Archaeological-Zoological collection at the Natural History Museum Vienna, Austria), U. Schmölcke (Centre for Baltic and Scandinavian Archaeology), D. Krasnodębski (The Institute of Archaeology and Ethnology PAS, Poland), N. Czeremnyh (State Museum of Natural History in Lviv, old Museum Dzieduszyckich, Ukraine), M. Krajcarz (Institute of Geological Sciences PAS in Warsaw), M. Czarniauski (Institute of History NAS of Belarus in Minsk), B. Antoniuk (Private Museum in Dobrzyniewo Duże, Poland), W. Litwińczuk (Private Museum of Etnography and Archeology in Suraż, Poland), M. Szynkiewicz (Nature Museum in Olsztyn, Poland), V. Gedminas (Tadas Ivanauskas Zoological Museum in Kaunas, Lithuania), T. Sawicki and T. Janiak (Museum of the Origins of the Polish State in Gniezno, Poland), A. Juźwiak (Museum in Kwidzyn, Poland), J. Jastrzębski, J. Deptuła (Northern-Mazovian Museum in Łomża, Poland), E. Keczyńska-Moroz (Białowieża National Park, Poland), D. Anatolie, V. Rusu (Institute of Zoology of the Academy of Sciences of Moldova), B. Stachowiak (Museum of the City of Turek named after Józef Mehoffer, Poland), A. T. Halamski, J. Kobylińska (Institute of Paleobiology PAS, Poland), W. Mikucki (Museum of Geology Institute in Warsaw, The Professor Andrzej Myrcha University Centre of Nature, Poland), D. Ablamowicz (District Museum in Sandomierz, Poland), H. Długoszewska – Nadratowska and M. Krajcarz (Mazovian Nobility Museum in Ciechanów, Institute of Geological Sciences, PAS, Poland), D. Serafin (Museum of the Pisz Land), A. Sepioł (Regional Museum in Jasło, Poland), M. Kupczyńska (Faculty of Veterinary Medicine SGGW, Warsaw), A. Archacka (Nature Museum in Drozdowo, Poland), G. Jaworski (Szczecinek Forestry District, Poland), H. Karwowska (Podlaskie Museum in
Białystok, Poland), A. M. Hultman and P. Kjellander (Swedish University of Agricultural Sciences, Uppsala, Sweden), J. Kociuba (Stjärneborg Museum in Jarosław, Poland), B. Studencka (Museum of the Earth PAS, Poland), Z. Markovic, S. Alaburic, S. Spasic (Natural History Museum of Belgrad, Serbia), T. Woroncowa-Marinowska (The Polish Geological Institute - National Research Institute in Warsaw), K. Wysocka (Vinnytsia Regional Local History Museum, Ukraine), Z. Giżejewski (Research Station of Ecological Agriculture and Conservative Animal Breeding PAS in Popielno, Poland), M. Križnar (Slovenian Museum of Natural History), Z. Łonyszyn, L. Chaix (Museum d’Histoire Naturelle, Genève, Switzerland), C. Cupillard (Laboratoire Chrono-Environnement, CNRS-UMR6249, Besançon, France), R. M. Arbogast (CNRS-UMR7044, Strasbourg, France), E. M. Geigl (Institut Jacques Monod, CNRS-UMR7592, Paris, France), Studienzentrum Naturkunde, Universalmuseum Joanneum, Graz (Austria), Lietuvos Nacionalinis Muziejus and Lithuanian Institute of History in Vilnius, and National museum - Palace of the Grand Dukes of Lithuania, and National Museum of Lithuania, Vilnius (Lithuania). We thank Alicja Lasota-Moskalewska and Anna Gręzak for their help in bone identification. We are grateful to Tomasz Kamiński, Paulina Szafranska and Marcin Churski for their help in sample collection and to Tomasz Borowik for his help in statistical analyzes. The study was financed by the Polish National Science Centre grants no. N N304 301940 and 2013/11/B/NZ8/00914 (PI: R. Kowalczyk) and supported by the European Commission's Seventh Framework Programme project No. PIRSES-GA-2009-247652, BIOGEAST and project No. FP7 2010–2013; Agreement No. 245737, BIOCONSUS (Research Potential in Conservation and Sustainable Management of Biodiversity), and Leverhulme Trust (grant number F00568W). Pollen data were extracted from the European Pollen Database (EPD; http://www.europeanpollendatabase.net/) and the work of the data contributors and the EPD community is gratefully acknowledged.
AUTHORS’ CONTRIBUTIONS

EH-K and RK designed the study; EH-K, HB, MP and TS conducted a query in museums; EH-K, HB, RK, WG, DM, MP, GP provided samples; HB and DGD performed stable isotope analyses; RMF and JW provided data and interpretation of forest cover; EH-K performed statistical analyses; EH-K performed graphical visualization; EH-K analyzed the results; EH-K and RK gave interpretations of results; EH-K and RK wrote the original draft, which was reviewed and edited by all co-authors.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

Supporting information:

Table S1. Description of specimen site, inventory number, storage institution, age, stable isotope data and environmental data.

Table S2. Model selection (based on the AICc criteria) for the considered linear models of moose, European bison and aurochs.

Table S3. Averaged parameter estimates for linear models of moose, European bison, and aurochs data.

REFERENCES

Geological Journal, **44**, 593-604.

Deak J, Magny M, Wuthrich S (2018) Late Neolithic to Middle Bronze Age (around 4900-3100 cal. BP) lake-level fluctuations at Lake Neuchatel (Switzerland) as reflected by the sediment sequence of the site of Colombier/Les Plantees de Rive: Palaeoclimatic and archaeological implications. Holocene, 28, 3-18.

from modern and ancient ungulates. Palaeogeography Palaeoclimatology Palaeoecology, 266, 69-82.

Drucker DG, Hobson KA, Ouellet JP, Courtois R (2010) Influence of forage preferences and habitat use on 13C and 15N abundance in wild caribou (Rangifer tarandus caribou) and moose (Alces alces) from Canada. Isotopes in Environmental and Health Studies, 46, 107-121.

Giesecke T, Davis B, Brewer S et al. (2014) Towards mapping the late Quaternary vegetation change of Europe. Vegetation History and Archaeobotany, 23, 75-86.

ice-core, marine and terrestrial records) and the Subcommission on Quaternary
Stratigraphy (International Commission on Stratigraphy). Journal of Quaternary
Science, 27, 649-659.

Wam HK, Hjeljord O (2010a) Moose summer and winter diets along a large scale gradient of
forage availability in southern Norway. European Journal of Wildlife Research, 56,
745-755.

Wam HK, Hjeljord O (2010b) Moose Summer Diet From Feces and Field Surveys: A

Węcek K, Hartmann S, Paijmans JLA et al. (2016) Complex admixture preceded and
followed the extinction of wisent in the wild. bioRxiv, 1-44.

Woodbridge J, Fyfe RM, Roberts CN, Mazier F, Davis B (2018) European forest cover since
the start of Neolithic agriculture: a critical comparison of pollen-based reconstructions.
PAGES (Past Global Change) Magazine, doi:
https://doi.org/10.22498/pages.22426.22491.22410.

Wright E (2013) The history of the European aurochs (Bos primigenius) from the Middle
Pleistocene to its extinction: an archaeological investigation of its evolution,
morphological variability and response to human exploitation. Unpublished Doctor of
Philosophy PhD thesis, University of Sheffield, Sheffield.

Wright E, Viner-Daniels S (2015) Geographical variation in the size and shape of the