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ELF-ORGANISING FUZZY LOGIC AUTOPILOT FOR
' SMALL VESSELS

MARTYN NEAL POLKINGHORNE

ABSTRACT

Currently small vessels use autopilots based on the Proportional plus Integral plus
Derivative (PID) algorithm which utilises fixed gain values. This type of autopilot is
known to often cause pefforr’nance difficulties, a survey is therefore carried out to
_ identify the alternative autopilot methods-that have been previously mvestlgated It
18 shown that to date, all published work in this area has been based on large ships,
however, there are specific difficulties applicable to the small vessel which have
therefore not been considered. After the recognition of artificial neural networks and
fuzzy logic as being the two most suitable techniques for use in the development of
a new, and adaptive, small vessel autopilot design, the basic concepts of both are
reviewed and fuzzy logic identified as being the most suitable for this application.

The remainder of the work herein is concerned with the development of a fuzzy
logic controller capable of a high level of performance in the two modes of course-
keeping and course-changing. Both modes are integrated together by the use of non-
linear fuzzy input windows. Improved performance is then obtained by using a non-
linear fuzzy rulebase. Integral action is included by converting the fuzzy output
window to an unorthodox design described by two hundred and one fuzzy
singletons, and then by shifting the identified fuzzy sets to positive, or negative, in
order that any steady-state error may be removed from the vessel's performance.

This design generated significant performance advantages when compared to the
conventional PID autopilot. To develop further into an adaptive'form of autopilot
called the self-organising controller, the single rulebase was replaced by two
enhancement matrices. These are novel features which are modified on-line by two
corresponding performance indices. The magnitude of the learning was related to
the observed performance of the vessel when expressed in terms of its heading error
and rate of change of heading error.

The autopilot design is validated using both simulation, and full scale sea trials.
From these tests it is demonstrated that when compared to the conventional PID
controller, the self-organising controller significantly improved performance for
both course-changing and course-keeping modes of operation. In addition, it has the
capability to learn on-line and therefore to maintain performance when subjected to
vessel dynamic or environmental disturbance alterations.
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CHAPTER 1. BACKGROUND AND STRUCTURE
| OF THESIS

1.1  INTRODUCTION

Over many centuries it has been the responsibility of the helmsman to guide
maritime vessels throﬁgh both rough seas and calm ones, and to be adept at carrying
out the difﬁcult manoeuvres required. 'fhis task can at times demand a high level of
skill and judgement, whilst at others it is merely tedious and calls on coﬁtiﬁﬁed
concentration for long periods of time. To fully understand the range of activities
undertaken by the helmsman it is useful to separate them into their differing modes
of operation:

1. Course-Keeping.

2. Course-Changing.

3. Track-Keeping.

4, Berthing.

S. Collision Avoidance. \
6. Navigation.

7. Roll reduction.

Since the 1920's there has been a gradual automation of the ship steering process,
and due to advancements in technology the achievable performance and competence
in the range of sea-keeping roles has increased. In recent years several attempts have
been undertaken to develop systems capable of performing the tasks of track-
keeping [1.1], automatic-berthing [1.2], collision-avoidance [1.3], navigation [1.4]
and roll reduction [1.5] with a certain degree of success. It is.only when considering
the popularity and wide-spread application of the current autopilots for course-
keeping/course-changing that the potential impact of automation in the marine

environment becomes apparent.




. 1.2- SHIP AUTOPILOT DEVELOPMENT

As early as 1922 work by Sperry [1.6] described the main factors involved in
automatic course-keeping as Being ship characteristics, rudder effectiveness and
vessel load. The magnitude of rudder movement required to counter yaw effects was
shown to vary for different ships. Environmental disturbances, especially that of

current, were highlighted and shown to greatly affect vessel's yaw performance...

Iﬁ the same year Minorsky [1.7] analysed course-changing and pr0pbsed fhree sets
of control equations which could solve the needs of early automatic steering. The
first solution was that of "Position control of the angle of the rudder”" and was the
simplest form of control with the rudder movement set always to oppose that of the
heading error. The scale of the proportional alteration was determined by a gain
term. Minorsky demonstrated that a small gain produced a slow response whilst a
large gain caused an undesirable oscillatory response. Considering that the amount
of control effort was dictated by the rudder size, this system proved unreliable and
was superseded by the second method called "Angular velocity control of the angle
of rudder” where the rudder angle was varied proportionally to the instantaneous
angular velocity of the heading error. The result was an improved level of
performance with an increased damping effect, but unfortunately resulted in the
formation of a steady state error. The third method was entitled "Angular
acceleration control of the angle of rudder" and derived a rudder action proportional
to the instantaneous wvalue of the angular acceleration. The resulting performance

proved similar to the second method.

By combining all three effects together, a specific set of steering characteristics was
obtained. The combined controller could only cope with stochastic disturbances, e.g.
a gust of wind, and not deterministic ones. This led Minorsky to the development of

a new class of controller based on the "Rate of movement of the rudder". It was




demonstrated that all of the original advantages were retained whilst the problem of
deterministic &istqrbances was also overcome: _

The main effect of the development of the control laws of‘ Minorsky, and
independently by Sperry, was to lay the basis for the simple .course-keeping and
course-changing operations of the early autopilots. By 1950 autopilot development
led to the PID (Proportional plus Integral plus Derivative) controller which is
currently widespread across the globe. Utilising™ the heading error, integral “of.
heading error and rate of change of heading error, eéch term is fhul’_ciplied_by a gain

factor prior fo their summation:

8, =K,e+K,e+K, [edt (1.1)
where:
K, Kq, K = Gain terms.
e = Heading error.

d4, = Desired rudder.

Each of the gain terms in a PID autopilot may be adjusted to allow a degree of
tuning. By this means it is possible for the PID controller to provide a satisfactory
level of control for both course-keeping and course-changing actions. Due to the
large scale of autopilot manufacture, it has been discovered that individual autopilot
tuning is not normally practical, being replaced instead by pre-set gain values that
match a broad category of vessel. In reality, marine vessels are non-linear time-
variant systems. For example, a change in speed may take the vessel from
displacement to planning mode, or alternatively a fishing boat may take onboard a
catch, in either case the characteristics of the vessel dynamics will alter and a
corresponding change in controller action could therefore be required. Any
individual autopilot tuning at the point of sale would appear to be of limited use
since the range of settings demanded by any one particular vesséi to meet all likely

scenarios is too great.







In an effort to remedy this acknowledged problem with existing autopilots, some
manufacturers [1.8] provide the user with a limited raﬁge of adjustable parameters,

for example:

1. Rudder Action or Rudder Ratio (Proportional Control).
Automatic Permanent Helm or Trim (Integral Action).

. Counter Rudder (Derivative Action).

sl s

Course Deadband (Course Zone within which no new control is
applied). - '
3. Weather (Rudder Deadband) .

By the infroduction of nautical names for the control parameters, the mariner is
more able to relate the adjustments being made to the performance of the vessel. It
is clear that in the majority of cases the person aftempting to tune the autopilot is
unlikely to fully understanding the implications of their actions and the likelihood of

the autopilot operating close to its optimum point is extremely low.

The difficulty in maintaining both course stability and performance levels with
varying disturbance effects and vessel dynamics has been described. Consideration
must also be given to the auxiliary ship characteristics of accuracy of course,
economy of fuel, economy of down track time, minimisation of speed loss and
minimisation of rudder activity. All of these factors are aggravated by the demanded
rudder activity resulting from an incorrectly tuned autopilot. Since the rudder turns
the ship by introducing drag at the stern, then as the rudder activity increases then so
does the drag. In addition, drag is also caused by the relative position of the vessel's
hull, the effects of which can be minimised by correct rudder action.. It is inevitable
that any drag will reduce the vessel's forward velocity and therefore these

unnecessary drag effects will cause an avoidable loss in speed. In many instances a
| poorly tuned autopilot will cause the ship to follow an oscillatory path. This

effectively increases the distance covered to reach a specified destination, the time

4




taken to arrive at that point and also the amount of fuel consumed [1.9]. In certain
conditions poor autopilot performance is noticeablé by the presence of mainly high-
frequency movements in the rudder action. Very often, due to the time constants of
most ships, fast alterations in rudder position have little or no effect on the vessel's
motion . This activity over a period of time exerts a considerable amount of wear-on
the entire rudder mechanism. In the particular case of vessels under sail, the power
available to supply rudder movement is restricted by battery capacity and therefore

any unnecessary drain on this power is extremely undesirable.

In this thesis small marine vessels are considered those craft whose total length does
not exceed thirty-five metres. Such vessels could be for commercial or leisure
usage. Whilst this range of difficulties exists for all sizes of ships, it is in the case of
the small vessel where they become most acute. Due to their limited draft and
relatively short time constants in comparison to the tankers and freighters found on
both the open sea and coastal waters across the world, the overall susceptibility of
small vessels to incorrect controller action is of concern to current autopilot
manufacturers. When external environmentﬁl disturbances are applied to the hull of
a small vessel, the low inertia present creates little resistance to the induced heading
change. The autopilot performance must therefore be particularly swift and decisive
in this instance to counter any such effects by employing an opposing rudder
condition, i.e. the autopilot must be working near its optimum performance level at
all times. For large ships, the cost of the autopilot is a small proportion of the total
cost of the ship, therefore such autopilots are often custom designed for a particular
ship. In comparison, for the small vessel application, the cost of the autopilot is a
high proportion of the total vessel cost. For this market, it is only practical to supply
mass produced general autopilots which are capable of a wide range of operating
performances. Given this, the PID controllers utilised for small vessels will only be

capable of performing correctly when their gain values are set-up with suitable

values.




After considering the problems associated with the.conventional PID autopilots, it
becomez_; apparent that there is a strbng argument for the imposition of a new style
of controller for this Il)articular marine appliéation. Whilst a range of modern control
techniques have been applied to the problem of ship control in an effort to find a
suitable successor to the PID autopilot, they have been directed at solving the
specific problems that concern the masters of large ships by the implementation of
robust controller designs. This thesis considers the unique problem of the ﬁutomatic
control of small vessels, the research being supported by Marinex Industries Ltd
(trading undef the name df Cetrek Ltd), who currently hold a lé.rge market shére in
the PID autopilot sales to small vessels, Marine Technology Directorate (EPSRC),
the Royal Naval Engineering College (RNEC) Manadon and the University of
Plymouth. This work was undertaken as part of a program of work entitled
"Modelling and Control of Small Vessels", Grant Reference Number GR\G21162.
In paralle] to this study, an alternative investigation therefore focused on the

mathematical modelling aspects of this application.

The presented arguments regarding PID autopilots hold true for both motor and sail
craft, but it is the purpose of this thesis to dedicate its findings towards motor
vessels. Not only is it essential to find a novel design of controller to outperform the
conventional PID, but an element of intelligence must be integrated so that the on-
line control is independent of the mariner and therefore both more simple, and
economical, to use. Such a controller would also be capable of offering a
performance level far closer to the optimum operating point than anything currently

available.

Clearly, the ultimate objective of the new design will be an autopilot which has the
ability to match, or improve upon, the performance of the. conventional PID
controller when subjected to a similar set of conditions. Controller inputs and
performance level achieved will be measured in terms of the heading error and rate

of change in heading error of the vessel. When it becomes apparent that these
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performance levels are unsatisfactory, the new autopilot must be capablé of
inciependentv on-line adjustments so that improvéd_ performance may be obtained. Ih
practice, the defined task is complicated by the need to relate performance now to
past confroller activity before correct modification is possible. Such a control
strategy would allow for both incorrect autopilot tuning, and for alterations in vessel
dynamics, e.g. changes in velocity or mass loading, or environmental conditions,

e.g. typically in wind, waves or current.

The cost of an autopilot fof a large ship is a small proportion of the total cost of the
ship, therefore such autopilots are often custom designed for a particular ship, or
type of ship. In contrast, the cost of an autopilot for a small vessel is a high
proportion of the total vessel cost. It is only practical to supply this market with
mass produced general autopilots which are capable of a wide range of operating
performances depending on the controller settings. Development of this new
autopilot design could therefore generate a market lead for the associated
manufacturer, and consequenily an increased market share. The important
commercial implications of a successful design of autopilot are therefore
recognised. Consideration is therefore given to ensure that the final design interfaces
with existing complimentary software and works within the physical restrictions

imposed by the current hardware utilised by Cetrek Ltd.
13 ORGANISATION OF THESIS

The contents of the following Chapters in this thesis are summarised below. The
order of these Chapters was mainly organised to reflect the progression of the work
as the intelligent autopilot design was taken from conception, through detailed
design, to performance validation using full scale sea trials. The exceptions to this
are Chapters 5 and 6 which were developed in parallel due to the close interaction
between their respelctive elements. The relative positioning of these Chapters within

this thesis is therefore to assist the understanding of their content.
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Chapter 2: The Physical Autopilot System: Requirements,” Restrictions and

Modérn Solutions

This Chapter describes the two required modes of autopilot operation, these being
course-keeping and course-changing, and defines the level of performance expected

from a small vessel autopilot. Previous work to analysis the vessel's response,

employing a cost function approach, is also outlined. Ari attempt is undertaken to

identify the major differences between the autopilot control of small and large ships. .
Within tlﬁs framework it is also possible to specify both the criteria by which a
satisfactory level of performance will be assessed, and also the limits of the

operating envelope in which a small vessel autopilot must operate.

A review is subsequently undertaken of the modern control solutions applied to the
field of automated ship control. Where relevant, inferences are drawn from this

work which as all been dedicated to the large ship application.

Chapter_3: The Artificial eural Network Solution: Principles and

Implications

This Chapter considers the simplified biological neuron, and the historical
development of artificial neuron. The fundamental strategy by which artificial
neural networks operate in described, and the basic types of possible network
learning discussed. Implications for control applications are presented, together with
the potential for using artificial neural networks as a small vessel autopilot. The
possible structure of a neural autopilot is proposed, and limitations, in respect of this
application, are identified. Further extension of these ideas for intelligent control is

considered.







Chapter 4: The Fuzzy Lc_lgic Solution: Principles ;md Implications

In a similar manner to Chapter 3, Chapter 4 describes the hist.or'icai de\;*élopmént of
fuzzy controllers and the principle laws of fuzzy logic. By combining elemental
fuzzy components fogether, a control strategy may be formed which is then
discussed in relation to the small vessel autopilot application. The basic form of a
fuzzy logic autopilot is therefore proposed which includes description of both the
input, and output, defuzzification methods employed. As an extension to these
ideas, the potential for advancing thiis ;cype of fuz.zy controller into an intelligeni;

version is considered.

Chapter 5: Detailed Design of the Fuzzy Logic Foundation Autopilot

Whilst the general principles of a fuzzy logic autopilot are described in Chapter 4, in
order to meet the specific performance requirements developed in Chapter 2,
considerable original work was necessary to generate the fuzzy logic foundation
autopilot onto which the intelligence could be subsequently added. A new autopilot
design, using non-linear windows to fuzzify the inputs of heading error and rate of
change of heading error, is proposed. This autopilot design enables the inclusion of
both course-keeping and course-changing modes without extending the data
requirements necessary to describe the shape and content of the windows

themselves.

The autopilot is developed to emulate the conventional PID controller to prove the
operational ability of the fuzzy mechanism. The third input variable, trim, is
included in the autopilot by employing a new technique. To facilitate this action, the
conventional fuzzy output window is replaced by an unorthodox design wutilising

fuzzy singletons.







Chapter 6: Extension of the FL.C Design for Self-Organising Operation

Building on the foundétion fuzzy logic autopilot developed in Chapter 6, the
elementary principles of self-organising control are utilised, with a unique emphasis,
to create a novel autopilot with the capability of a original style of on-line learning.
Having established credibility in the methodology being utilised, the fuzzy autopilot
is then modified by a new concept; i.e. replacement of the conventional rulebase
with two non-linear enhancement matrices, one for each of the rudder rajtio‘and

counter rudder gains. -

The self-organising structure developed, also applies to both rudder ratio and
counter rudder, and in order to comply with the requirements of the small vessel,
offers a new perspective in its method of operation. The inclusion of a data storage
mechanism and a modification routine are discussed in conjunction with the
necessary time delay feature. Application dependant performance indices are
therefore constructed for rudder ratio and counter rudder with specific over-rules
being identified to control the learning process. In addition, to allow for any
necessary on-line adjustments, an adaptive methodology is developed for the trim

setting.

Chapter 7: Autopilot Validation

This Chapter describes the performance obtained from the new design of autopilot
in a range of studies. The nature of the tests is outlined and the objectives and
results discussed. Full scale sea trials were utilised when evaluating the advantages
of the self-organising fuzzy logic controller. However, it remained necessary to test
the autopilot on other vessels. Unfortunately since it was not practical to use any
alternative full scale vessels, a simulated set of resulis are presented based upon
three different small vessel models. The conventional PID autopilot was used as a

bench mark by which all the results could be validated when operating in the same
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environmental and dynamic conditions. Results are presented for Both_ course-
keeping and course-changing modes of operation. Details of the test vessel and a

calculation of its time constant are included.

Chapter 8: Conclusions and Recommendations

Conclusions to this ,Stuciy are given in Chapter 8 regarding the successful operation
of the self-organising principles when apphed to the fuzzy logm controller dGSIgllCd
for this small marine vessel apphcatlon Bach of the 1mportant new design features
of both the foundation, and of the self-organising, fuzzy logic autopilots are
reviewed, with emphasis placed on how this new design resolves the difficulties

previously associated with control of small vesséls.

Aspects, such as the mariner's safety, skill and experience, are discussed in respect
of both the current level of small vessel antomation, and in view of likely future
developments. This Chapter therefore draws on the experience gained from this
research to identify the future requirements for intelligent small vessel control and

our current potential for achieving them.

Appendix A - Further Details of the Conventional PID Test Autopilot

As with any design changes, the resulting controller must interface correctly with
the existing system components in which it will eventually be embedded. The new
design must therefore work within the same operational restrictions as its
predecessor. A description is therefore given in Appendix A of the relevant design

restrictions thus imposed.
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Appendix B - Validation of the Foundation FL.C Methodology

Appendix B contains the test results for the foundation fuzzy logic controller
developed in Chapter 5. By comparing the output results, for given input conditions,
against the conventional PID controller, the FLC's methodology may be validated at
the design stage. The two sets of results demonstrate, as expected, that the FLC can
be designed to operate in an extremely similar manner to the conventionél PID
autopilot. It is therefore concluded that the working methodoiogy of the FLC is

correct, and that the internal resolutions utilised are acceptable.

Appendix C - Publications

A list of the work published as a result of the study is given in Appendix C.

Following this is a full transcript of each paper.
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CHAPTER?2. THE PHYSICAL AUTOPILOT SYSTEM:

IREMENTS, RESTRICTIONS AND MODERN |
SOLUTIONS

2.1  INTRODUCTION

~ Before any new design of autopilot may be mitiated, it is a pre-requisite that a
detailed understanding is obtained of the conventional PID controller currently in-
use. The PID strategy utilised"is part of an overall instrument sys"tem which can
incorporate many auxiliary features including satellite position and navigation
fécilities, together with wind, velocity and water depth information. The total
system must therefore comply to rigid rules regarding its general operating features

if the entire network of facilities is to function correctly.

There are many practical issues, e.g. sample time, input/output resolutions and the
range available input data, which must be considered before the new design of
autopilot may be accepted for implementation. The potential problem areas, and
hardware restrictions, require investigation so that any necessary trade-offs can be
1dentified. It is also important to establish when the PID autopilot is expected to be
operating, i.e. the conditions and the modes of operation. In both cases a limited
amount of quantification can establish the expected limitations of the operating

envelope to be investigated.
2.2 MODES OF AUTOPILOT OPERATION
There are two modes of operation which this type of small vessel autopilot would be

expected to perform, these are named course-keeping and course-changing. Both

modes are significantly different and must therefore be defined independently.
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2.2.1 COURSE-KEEPING

The desired heading required by the mariner can be entered into the autopilot as an
input. The course-keeping mode of operation then attempts to minimise the
deviation from this desired heading by activating the rudder in a controlled manner.

This deviation is called the heading error and is defined in equation 2.1,

Heading Error = Actual Heading— Desired Heading 2.1)

The amount of effort required from the rudder to maintain a specified course is
dependant upon boat characteristics, e.g. size/number of rudders, mass loading of
the vessel (hence the water displacement), water depth and forward velocity,
together with the environmental conditions of wind, waves, tide and current. Since
the most obvious of the environmental factors is the effect due to wave action, it is

important to be able to quantify acceptable and unacceptable operating conditions.

The state of the sea can be described in terms of sea-state codes which are numbered
between 0 (calm) and 9 ( phenomenal). Definitions for each sea-state code are given
in Table 2.1. In each case the code represents a significant wave height (swh) [2.1]
which is defined as the average highest one third of waves [2.2].

Similarly, a mean wind speed has been associated to each code rating to provide an

indication of the possible disturbance that may be wind related (Table 2.2).

As a general rule, small vessels would not be expected to be at sea, under autopilot
control in greater than a sea-state 5 [2.3]. Since sea-state codes 0 to 2 are variations
of calm seas, the main situation when the autopilot is required. to achieve its best

performance is for sea-state codes 3 to 5.
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Sea-state Code - Significant Wave Height
()
0.00
0.05
0.30
0.88
1.88
3.25

5.00
7.50
11.50

>14.00

Wl oA |;h|wn|PB|W N~ ]|O

TABLE 2.1 SEA-STATE CODE DEFINITIONS

Sea-State Code Mean Wind Speed
(msT)
0.00
1.51
3.70
6.34
9.25
14.75
15.11
18.50
22.91
>23.00

Wl Al | AW ] =D

TABLE 2.2 WIND SPEED ASSOCIATTIONS

The superstructure above the waterline on small marine vessels. is far smaller than
that on a large ship, thus the wind effects could be perceived to be minimal. In
practice small vessels are generally light and have little draft, their resistance to

these induced wind effects is therefore significantly reduced.
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The prob_lem, ; paﬁicularly during course~keepiné, is therefore to- determine the
correct controller settings. In good conditions, sea-state 0 to 3, only a small
proportional gain is required to correct any course deviation. In the conventional
autopilot the proportional gain is called rudder ratio (RR). High rudder ratio in this
instance would cause the vessel to over-react and overshoot the set course. The
vessel would. therefore follow an oscillatory down track course, wasting time and
fuel. The lifetimé of the rudder may also be shortened due. of the subsequent high
rudder activ"ity. Howe{zer, should a low ruddér ratio setting be uséd, and then rough
seas encountered, the vessel will respond very slowly to any heading errors, and
should the rudder ratio be too low, then insufficient conirol effort would be

generated, and the vessel would drift further and further off course.

A derivative gain, called counter rudder (CR), may be employed to prevent
overshoot resulting from high RR gain settings. However, it is likely that large
counter rudder and small rudder ratio will cause the creation of a constant heading
error which cannot be overcome. A similar effect is often introduced by the
deterministic disturbances associated particularly with wind, tide and current. To
overcome this the integral gain, called trim, can be tuned so that any constant
heading errors are gradually reduced. This type of action operates most effectively
when activated slowly, i.e. over a reasonably long period of time in comparison to
the sample time of the controller and the significant time constants of the vessel.
When the trim value is too small the steady-state error will not be overcome
sufficiently quickly for correct course-keeping. Conversely, when the setting is two

high an oscillatory performance can again be induced.

A further consideration, which needs to be taken into account, is the rudder action.
As the RR gain value increases and the course deviation is reduced more rapidly, the
associated high rudder activity will cause unnecessary wear and use excessive

power. Potentially avoidable resistance to the vessels forward velocity will also be
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induced. -These negative velocity implications ‘were. initially identified by Nomoto
and Motoyama [2.4] in 1966. With application to both a tanker, and a cargo vessel,
the estimated power loss, due to “the inertial resistance induced by yawing and the
resistive component of rudder force", ranged from 2% for a reasonably adjusted
autopilot, to as much as 20% in the most exceptionally poor case. The need for a
'tight' course, and correct autopilot settings, is therefore obvious, but must also be

balanced by the practicalities of the vessel and the mechanisms involved.

It was established in section 2.1, that for correct autopilot tuning, it is a necessary to
take into account external factors such as forward speed, water depth and weather
conditions. Whilst on large ships, the relevant sensors are present to measure many
of these parameters, when considering the small vessel application, it is rare that
such devices will be installed due to their relative cost. In practice, the only data
likely to be available would be wind speed/direction and forward velocity.
However, since the installation of even these sensors may be considered rare on a
small vessel, then any new design of autopilot must not be reliant upon the
provision of such data if it is to be considerelcﬁi as a realistic replacement for the

conventional PID autopilot currently in use.

Given the complications of tuning PID controllers, the small vessel mariner, who is
not an expert in control, and the lack of available data to base such adjustments on,
the settings employed are often not ideal and can therefore lead to far from optimal

control.

2.2.2 THE USE OF COST FUNCTIONS DURING COURSE-KEEPING

A trade-off is necessary between minimising the heading error and the rudder
activity. Koyama [2.5] proposed, following a study of work associated with a cargo

ship, that this could be achieved by attempting to minimise a continuously
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monitored cost function which.incorporated both heading error and rudder activity

terms, equation 2.2:
T=g +15° 2.2)

where:
J = Cost function to'be minimised.
_2 .
e = mean square of heading error.

5°= mean square of rudder angle.

A = weighting function.

The value of the term A, which was considered by Koyama to be in the range 8 to
10, proved to be dependant upon the type of vessel, and dictated the relationship
between heading error and rudder activity described by the cost function J. Having
established the most suijtable value for A, the PID gains could be tuned to obtain the
desired autopilot performance. With any subsequent change in environmental
conditions, these gain settings would no longer be applicable and the iterative
process would need to be repeated. Work by Nozrbin [2.6], concluded that a similar
cost function would be sufficient if utilised with a significantly smaller A value
equating to approximately 0.2 for an equivalent type of ship [2.7]. It is clear that the
Koyama value of A. is much more punitive fowards the rudder activity when
compared to Norrbin's and therefore ignores vessel oscillations which are small, i.e.

oscillations over which the rudder is unlikely to be able to exert control on a large

vessel.

In the case of a following sea, it is possible that the added resistance effects
generated by the vessel, or rudder, may provide a positive propulsion force which
would then assist in the reduction of the vessel's fuel consumption and down-track
speed [2.7]. Further consideration was again given to the implementation of cost

functions, during course-keeping, this time by Motora and Koyama [2.8] who
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refined equation 2.2 to that given in equation 2.3, and utilised a value of between 4

and 8.

t — —
J =%j(e2 +25%)dt (2.3)
0

In a subsequent study, Astrom et af [2.9] determined that for the Bore 1 type vessel,
with A = 0.1 there was a fast response, but impossible rudder angles were
demanded. Conversely for A = 10, the response obtained proved sluggish, with the

resultant steering quality being very poor.

Additional work has also been carried in this area in a variety of studies including
work by van Amerongen and van Nauta Lemke [2.10], and Broome ef af [2.11 and
2.12). However, irrespective of the wvessel under consideration, the desired
relationship between heading error (possibly also the rate of change of heading
error) and the rudder activity remains fundamental to the ability of any cost function
to successfully formulate an acceptable assessment of an autopilot's performance.
Further to this, Clarke [2.13] determined that minimising the heading error could be
equated to a reduction in the down-track path length, thereby improving the ht?ading
response. Conversely, minimising rudder activity, and/or the rate of change of
heading error, resulted in a reduction of the increased resistance, and therefore

subsequent reductions in fuel usage, loss in forward velocity and rudder wear.

Clarke also directly related cost function magnitude to fuel saving, equation 2.4, and
determined that the scale of the fuel saving, when applied to a large ship, could be a
large percentage of the total fuel cost. Given the huge fuel bills associated with such

vessels, the amount saved could therefore become quite considerable.

' Fuel Saving = ac? +bé? + cd% 2.4)
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where, in addition to consideration of the type of vessel, a, b and c are weighting
factors dependant upon type of propeller, engine control 'system and rudder

geometry.

The studies cited above have all considered applications to large ships, however the
basis of the cost function approach for identifying autopilot performance may also
be related to the small vessel -application. In the small vessel case, the balance
between heading error, rate of change of heading error and ruddér activity is
significantly different. Due fo the rélatively fast dynamic characteristics of small
vessels, the rudder is normally fully capable of controlling even small heading
movements, assuming that sufficient RR gain is being utilised. The large vessel
requirement fo put the cost function emphasis onto the rudder in this situation,
therefore needs to be modified. By employing a very small value of A, minimisation
would be concentrated on the heading error, with the rudder activity being regarded
as less important. Considering the special needs of a small vessel, e.g. limited size
of rudder and power supply, clearly there is a need for a compromise A value to
ensure that rudder activity does not escalate, however this value could be expected
to be of relatively small magnitude. In addition to the relationship with the heading
error, the rudder activity may also be related to the rate of change of heading error.
Since it is heading error and rate of change of heading error which causes the rudder
to become activated, it should be possible to minimise rudder activity by minimising
these two terms only. With the small vessel, this technique would be more
applicable than with a large ship, due to the low inertia of the small vessel. Previous
work by Eda [2.14] concluded that the frequency of hull and rudder motions are not
similar for large ships. However, as the size of the vessel is reduced, then these
frequencies begin to coincide. It may therefore be inferred that, for the small vessel,
the frequency of the hull movement may be considered as representative of the

frequency of the rudder movement.
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On a typical small vessel, measurement of the hull movement _is not an available,
neither is measurement of the frequency of rudder motion. H‘owe;ver' an estimation
of this frequency may be obtained from the rate of change of heading error data.
When this rate term is low, then the vessel, and thus the rudder, may be considered
to operating in a desirable manner. Conversely, when this rate term is high, then
either the frequency is low, but with a large amplitude, or the frequency is high.
Both of these conditions—may‘ be considered as being undesirable when taken in
isolation. In practice the true performance of both vessel, and rudder, must be
considered together when formulating a judgement coﬂceming the overall l(-::vel (ﬁ’
performance obtained. Any rate of change of heading error information obtained by
the autopilot must therefore be seen to have direct relevance to the current vessel
performance, and consequently to the demanded rudder action. The only available
method of assessing the performance of the small vessel is thus by the analysis of

both the heading error and rate of change of heading error.

2.2.3 COURSE-CHANGING

When a new value for desired course is entered into the autopilot system, the
autopilot generates the rudder demand necessary to move the vessel onto this new
heading. This mode of operation is called course-changing and is applied for ail
heading changes in the range +180°. At a simplistic level the vessel must be
"brought-around" as quickly as possible until the actual heading is nearing the
desired course. At this time, allowance must be made to prevent any possible
overshooting of the desired course, and the control required must therefore be much
more delicate. Irrespective of later characteristics within the course—change, it is
important, for reasons of safety, that the start of the course-change is clearly defined

so that other vessels are immediately aware of the intention to manoeuvre.

Overshoots are particularly undesirable because, dependant upon their magnitude,

significant corrective rudder action may be required. As with course-keeping, this
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additional rudder activity generates unnecessary rudder wear, increased drag effects
and subsequently a loss in forward velocity. Any é@rreéted- m;';tnocuifre by the vessel
will considerably redﬁée the comfort of passengers,. or cargo, and may confuse other
shipping which may cause a collision to occur. Whilst with large ships these factors
must be taken into account when still considerably off (-:ourse, in the case of small
vessels, which respond very swiftly to new conirol demands, counter rudder may

_only need to be applied when the vessel is léss than 10° off the new desired course. -

Since the vessel, dufing course changing, is passing through various fleadihgs, tflere
1s no requirement for integral action to alter during this period, as the direction of
the prevailing weather conditions, in rélation to the vessel, will be changing. It is
inherent in the nature of the integral action that the steady-state error over a period
of time is utilised to calculate the constant rudder off-set required to maintain the
desired heading. As the desired heading is altered, then any previous steady-state
error will cease to be relevant to the new vessel heading, therefore any calculated
rudder off-set will also be incorrect. and may cause a detrimental effect on the

vessel's performance.

In most current autopilots, the settings for rudder ratio and counter rudder used for
course-changing and course-keeping are identical. The difficulties encountered by
combining these two mode, without a subsequent variation in gain values, was
discussed by Oldenburg [2.15], who identified that a course-keeping autopilot, when
applied to course-changes, would overshoot the desired heading with a subsequent
loss of speed. However, when a course-changing autopilot was applied to course-
keeping, it would not be able to identify when to end a turn and stabilise on a
straight course, and that the ability to maintain that straight course would be rather

poor.

For a small vessel, it is up to the mariner to attempt to tune these values whilst in the

course-keeping mode, when the visible performance of the vessel is more obvious.
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~ The result is that during the course-changing mode of operation, it is unlikely that
the RR and-CR gain settings will have been determiried to .obtain optimal
performance, thus having a detrimental effect on thé speed and accuracy of the
course-changing manoeuvre. Typically the relatively low gains of course-keeping,

when used for course-changing slow the response time considerably.

2.3 CONVENTIONAL PID TEST AUTOPILOT

Before considering the design of a new autopilot, it is a pre-requisite that an
understanding is obtained of the conventional PID controller's operation. The PID
autopilot, used in this study as a benchmark for subsequent comparisons to any new

autopilot design, is from the C-net range produced by Cetrek Ltd of Poole, UK. .

Further details of the PID test autopilot, which are specific to this particular
hardware set-up, and therefore must be given consideration when implementing any

new autopilot design, are described in Appendix A.
2.4 MODERN AUTOPILOT ALTERNATIVES

Recognition of the problems associated with the implementation of conventional
PID algorithms as a means of autopilot control has long since been established. As
various design enhancements have been incorporated to the basic design, the
required hardware necessary to operate the PID algorithm has advanced from the
operational amplifiers utilised for early applications, as discussed by Wesner [2.16],
to the high technology microprocessor based systems found today, e¢.g. the PID test
autopilot. By advancing the technology to cope with the improved PID controller's
requirements, and due to the reduction in the costs associated with digital hardware,
scope has been introduced for the expansion to alternative methods of control which

would not have been possible using the previous analogue systems.
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The initial adaptive style of autopilot design was based on the optimisation of a
defined cost function ; using data- from external sensors to derive internal controller
modifications [2.10, 2.11, 2.15 aﬁd 2.17]. Subsequently, a new type of controller
emerged which utilised modern control techniques based upon the mathematical

models of ship's steering dynamics.

As a result, there have been two si_gniﬁcant applications of adaptivé autopilots using
a model reference technique. The first application [2.18]. utilised a sensi.ti‘vity
approach, tﬁis may be 'considered-as synonymoué with a continuos hill cliihbing
method, whereby model dynamics were derived from the data obtained from a
specific fraining vessel. Both the model, and the actual system, were designed with
identical configurations, but in the case of the model, the input derivation was based
on a non-linear function. Adaption was controlled by a quadratic cost function
which included a sensitivity coefficient generated by the model. Dependant upon the
magnitude of the resulting cost function, a term in the actual system was adjusted so
that cost function minimisation could be obtained. The major disadvantage found
with the sensitivity model approach, was that it could not be considered to be stable

under all circumstances [2.19].

In addition, later work by van Amerongen ef a/ [2.19 to 2.21] followed a Liapunov
(second method) approach, but concluded {2.20] that without noise, the Liapunov
design adapted more quickly, however, in the presence of noise, the sensitivity
approach provided the more significant improvement in performance. The variation

between the success of the two methods was therefore minimal.

Initial results were inadequate due to the high noise associated with certain sea state
conditions, and subsequeéntly resulted in high frequency rudder activity. By the
implementation of a low-pass filter, the problems associated with noise were

overcome. Van Amerongen [2.21] found that after trials on a 170m long vessel, use
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of the model] reference technique was successful, generating a 1% speed increase

and 5% power saving (hence reduced fuel usage).

When compared to the optimal state feedback controller, the optimal method
provided improved performance on long voyages where fuel could be economised,
and sufficient time was available for the transfer function identification to be
completed. However, the medel reference sYsteri} generated improved control,
partiéularly in coastal waters where the behaviour of the vessel is more likely to -
vary. Kallstror;l [2.22] argued that the coursé—keeping performanée of the model
reference controller was poor because the disturbance effects were not taken into
account explicitly, and instead proposed a significant alternative autopilot [2.23]
using a self-tuning method derived from the work originally undertaken by Astrom
and Wittenmark [2.24] which was based on minimum variance control and least
squares estimation. The controller was designed to adapt to variations in ship
velocity by employing velocity scheduling, thus enhancing the speed of adaption.
With the addition of a Kalman filter, the quality of the adaption was significantly
improved. For this tanker application, drag improvements of 2.7% were reported for
the self-tuning controller, when compared to a well-tuned PID controller. However,
the two major limitations of the basic algorithm were the absence of both set point
following, and control action penalty. These two aspects are essential if heading
error and rudder acfivity are to be minimised successfully. Alternative autopilot
applications have subsequently been investigated which further develop the
algorithm [2.25 to 2.27], the findings of which concluded that self-tuning control
can be suitable for both course-keeping and course-changing modes of operation. In
the case of Mort [2.27], the results compared very favourably with those of an
optimal state feedback controller (with complete knowledge of parameters), and in
tests proved capable of monitoring even slowly varying parameters with relative

SUCCESS.
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Van Amerongen has also applied the principles of fuzzy. logic to elementary '
autopilot control of a 45m naval fraining vessel [2.28]. Using two different input
window'deéigns, each of five sets, and a fixed rulebase, it was concluded that a
separate "close-by "control was required during the mode of course-keeping fo
mainfain performance. Subsequent rudder control was achieved in "gusts". This
study concluded that when free of noise, the fuzzy autopilot proved less susceptible
to parameter variations when comparéd to the PID controller. Following the
addition of noise, the fuzzy ve;sion demonstrated a siglﬁﬁcantly enhanced

“performance with fewer rudder calls.

Garcia [2.29] employed an adaptive fuzzy logic controller which utilised gain
scheduling for both vessel mass and forward velocity in such a manner that as the
forward velocity increased, then the gain value decreased. Conversely, when the
mass increased, then the gain value also increased.. When applied to a cargo liner
type of vessel, it was concluded that this method proved effective when varying
both parameters. However, this form of adaption is relativély crude when
considered in the small vessel context, and a more sophisticated means of adaption

is required if the more subtle aspects of the small vessel characteristics are to be

taken into account.

In a more recent study, Sutton and Jess [2.30] employed an intelligent version called
the self-organising controller for a warship application. The rulebase was initially
empty of rules, subsequent rule adaption was then carried out by interrogating a
performance index to identify the magnitude of the changes required. The rule
values were then built up by exciting the autopilot through a repetitive series of
course-changing manoeuvres until a satisfactory level of control was obtained. Of
particular importance is that by utilising this approach, the controller's dependency
upon an accurate ship model was decreased, whilst a pre-determined level of
performance was maintained. When compared directly to Mort"s seli-tuning

controller, and applied to the same warship simulation model, the self-organising
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controller exhibited an improved course-changing response, but required a longer

learning time.

A further study [2.31], which also includes input from van Amerongen, considered
the application of a neural network autopilot to ship control. A supervised network
was trained using data from a PD controller. Similarly, an additional network,
utilising reinforced learning based upon a cost function, was also- employed. The
supeﬁised learning network proved capable of learning the presented data, and
leai'ning the inclusion of non-linearities, e.g. deadbands, with a high degree of
success. In the case of the reinforced learning network, on-line learning was
undertaken at 50 second intervals. Whilst learning was achieved, the level of
performance obtained proved less conclusive when subjected to noise due to
environmental disturbance effects. More recently further work at an elementary

level has also been undertaken by Sen et a/ [2.32].

Another alternative autopilot design has been the implementation of Hoo [2.33 and
2.34]. Heo is a robust, frequency based, control technique which has been applied to
the large ship application, a roll on/roll off passenger ferry, for both course-keeping
and course-changing modes of operation. The resulting performance .demonstrated
that the Heo autopilot design was insensitive o model uncertainty, with a quick , and
effective course-change, generating only minimal overshoot. Whilst the robustness
of this type of controller is recognised, there is no obvious means of extension to
any form of adaption. In addition to any robust qualities, for the small vessel
application it is a pre-requisite that any new autopilot design must include an
element of on-line learning in order that the required level of performance may be
obtained, given the wide range of possible vessel types and operating conditions.
Robustness alone can not be considered to be sufficient development from the
conventional PID controller to achieve the required market lead for the given

manufacturer.
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It is clear that a.range of techniques have been applied to the problem of ship.
autopilot control over recent years. However, in every case the application has been
for large shipping. Consequently no consideration has been given to the difficulties
of small vessels which are distinctly unique and therefore require the design of a
new, dedicated autopilot if the full performance potential of the small vessel is to be
fulfilled. To satisfy these small vessel requirements, the new design of controller
must be more than just robust. It is therefore essential that the new autopilot is,
c'apable of on-line adjustment u;sing only the minimal knowledge concerning the
vessel dynamitcs. The .adaptive controllers developed for large ships have
demonstrated the need for precise vessel details. However, in the applications of
both the neural network and fuzzy logic autopilots, it is apparent that the addition of
a form of intelligence was possible which was less vessel specific. Given that any
small vessel autopilot will ultimately be employed on a variety of vessel types, such
a form of learning is an essential element of any potential new design. A further
mvestigation was therefore undertaken to assess the capabilities of both the neural

network and fuzzy logic techniques fo the small vessel autopilot application.
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CHAPTER 3.THE ARTIFICIAL NEURAL NETWORK
- SOLUTION: PRINCIPLES AND IMPLICATIONS

3.1 INTRODUCTION

Artificial Neural Networks (ANNs) have been developed to deal with complex
learning problems and analysis’ procedures. The working philosophy behind ANNs
is based on that of thé human brain since it is a widely held belief that the brain is
truly a masterpiece qf biological engineering. Therefore, if we are attempting to
reproduce the results of human operation in an automated format, then it is only
logical to develop an interactive system that has a similar mode of computation. In
practice the brain is far too complex to mimic satisfactorily, but the ANNs currently
being utilised demonstrate certain characteristics of the brain and are expected to
find an increasing range of applications in the next few years. In order that an
improved understanding of ANNs is-possible, sections 3.2 provides a brief overview

of the principles involved in the biological operations performed by the brain.

3.2 OPERATION OF THE BIOLOGICAL NEURON

A study of the human brain, which weighs approximately 1.5 Kg [3.1], would show
that it is constructed from a series of smaller modules called 'neurons'. Whilst the
total number of biological neurons may exceed twelve thousand million [3.2], each
individual one plays an important role in the overall functioning of the brain. The
three principle types of neurons are sensory, motor and connector. Sensory neurons
interface with functions external to the brain and therefore receive incoming data,
e.g. from eyes or ears. When subjected to excitation these sense organs produce an
impulse which is then passed to the sensory neuron. Motor neurons activate external
functions when "fired”, e.g. muscle control, and connector néumns feed signals
from sénsory to motor neurons. It'is through the implementation of chains of these
neurons fhat a human being is able to -exhibit the characteristics regarded as

memory, learning and thinking.
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Figure 3.1 _The Biological Layout of 2 Neuron

Each neuron consists of a soma from which extrude dendrites (inputs) and a single
axon (output). Around the axon is a myelin sheath which provides an insulating
effect and therefore generates an increased speed of conduction (Figure 3.1).
Considering a large diameter axon with a myelin sheath the possible rate of
conduction could be as high as 120 ms™! [3.3], conversely for a small diameter axon
without the effect of increased conductivity the rate of conduction could be as low
as 1 ms-!. Each neuron has a threshold of response and only when the input impulse
is greater then this threshold will an output impulse be passed down the axon. The
impulse itself is formed by each section of the axon depolarising and repolarising
after a 1 ms delay. The depolarisation occurs as potassium ions (K) and sodium ions
(Na) redistribute themselves on either side of the axon's membrane. No signal
deterioration takes place along the length of the axon, but the rate of impulse fire is
determined by the strength of the input stimulus. Subsequent to each output impuise
fire there is a period of time called the absolute refractory period, which lasts
approximately 1.5 ms during which no firing can take plaée. Following this delaf
there is an additional period when although firing can take place, the threshold is set
higher than normal making only strong input impulses effective. The resultant firing
rate for a weak stimulus may be as low as 25 impulses per second compared to 1000

impulses per second for a strong stimulus.
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The axon in turn connects to many other neurons at a point called the synapse
(Figure 3.2). When the impulse reaches the synaptic knaob, the real operation of the
neuron begins and i1s achieved through a chemical process using transmitter
substances containing acetyl chlorine (Ach). The actual size of the synaptic gap is
only approximately 20 nm [3.4]. Only when sufficient quantities if the transmitter
substances have been released causing a strong enough impulse, will the next
neuron be acti;fated. However, this level may be achieved ﬁ_‘OI’I'l the a)gon of one
neuron o‘r by the combination of smaller outputs from several neurons (surnma{tion).
This type of operation occurs at excitary synapses, but in a similar manner

inhibitory synapse exist to inhibit the operation of subsequent neurons.

Direction Transmitter
of Substances
Impulse
Synaptic
Knob

Synaptic
- _ Gap

Dendrite

Figure 3.2 _The Synaptic Layout

By biologically adjusting the efficiency of the synapse so that the pulse magnitude
is manipulated in a controlled manner, the derived oufput of a series of neurons to a
given input may be tuned so that the output itself becomes closer to a predetermined
desired value. Since synapse efficiency is altered on a local level for the brain to
learn new experiences, the distributed efficiencies on a global level, remain
unaffected and thus recall of past experiences is retained. The brain has therefore
developed a unique memory facility with a huge capacity for information retention

whilst still being fully capable of updating to respond to new conditions.
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33 ACOMPUTATIONAL NEURON

The computational neuron is a simplistic bﬁt functional form of its biological
counter-part (Figure 3.3), and therefore can be found in three distinct types, these
being a sensory (input) neuron, a motor (output) neuron and a connector (hidden
layer) neuron. In each case the basic function of the ANN is performed in an
identical manner, but smail operational changes occur in the case of the input and

output neurons.

X1

\,1
Inputs *3 W 3 [t b Ouput
Wn /

Figure 3.3 The Computational Neuron

In the case of the hidden layer neurons, each axon to dendrite connection is
modelled by an input signal with a modifiable weight. By the adjustment of this
weight the significance of the previous neuron outputs can be adjusted in the same
manner as is possible with the synapse's efficiency. Using the biological summation
approach [3.1], all of the inputs to a neuron are summed fo obtain a total input (I) to

that neuron (equation 3.1).

=30 wy, (3.1
where:
I = total input to neuron,
s = layer in ANN of neuron.
i = identification of neuron in a specific la'yer.

J = identification of source neuron for the input.
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¥ = magnitude of input to neuron.

w = weight associated with input.

A transfer function is utilised to model the threshold function. By the application of
the total input of the neuron to the transfer function, the output from the neuron may
be determined. The commonly used transfer functions are linear, bound linear, hard
limiter, sigmoid or ﬁyperbolic tangent functions. ‘Which particular function is -
chosen is dependant upon the application and any imposed limitations. A bias term
is added so that the transfer fﬁnction for each neuron may be offset, this bias is
classified as input 0 and is always set to a magnitude of 1. However, manipulation
using a weight means that the offset is adjustable. Equation 3.1 can therefore be
modified to incorporate the new input:

s _ =1 5
{; —Z_;:oxj Wi

(3.2)
Whilst this is the true for most neurons in a network, in the case of the input neurons
there is only one input line supplying data and no associated weight. In practice the
total input for an input neuron is therefore the input itself. Conversely for the output
neurons the single data output line must be calibrated so that the maximum and
minimum outputs represent the values required by the receiving device. Having
defined the nature of the individual artificial neuron it is possible to link them

together to form a powerful and manipulative structure.

3.4 THE HISTORICAL DEVELOPMENT OF ANN'S

In 1943 McCulloch and Pitts [3.5] launched a great debate on the subject of ANN's
with their paper proposing a simple model of a neuron. Using a binary output
format, the total weighted input was computed and an output produced when the
threshold had been exceeded. Hebb [3.6] in 1949, described details of a technique

which became known as 'Hebbian Learning', i.e. connections between neurons are
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strengthened with increased activation, and in addition he introduced a learning
algorithm for weights which assumed only positive activation levels and therefore

was severely limited.

Rosenblatt [3.7] was investigating optical pattern recognition, and by 1957 proposed
the 'perception’: a single layer network of neurons which proved capable of learning
‘both geometric and abstract patterns by utilising -a 400 photocell grid to correspond
to th_e light sensitive retina neurons. The linear nature of the perception was
identified as a serious restriction [3.8] in its capabilities when presented with
specific problems to solve, e.g., the Exclusive OR (XOR) function. This could be
overcome by the introduction of additional layers of neurons giving a 'Multi-layer
Perception’ (MLP) but at this time there was no successful way of training the

weight values to opiimise such a network.

In a similar fashion to the perception, the 'Adaline’ network [3.9] was developed
which included bi-state inputs, and a bias input which remained at unity. The
weighted summed input was then applied to a threshold capable of outputting -1 or
+1. The weights were signed to achieve the desired network response, and a new
learning algorithm was presented. This algorithm adjusted the weight values
depending on the output error, which was derived by comparing the actual network
output to a desired one for that particular set of inputs. As with the perception, the
Adaline was capable of classifying linear patterns. The Adaline network was later
developed into the Madaline (Multiple Adaline) which has subsequently proved
successful in applications such as speech recognition, character recognition, weathe:
prediction and adaptive control and led to the production of an adaptive filter used

to reduce the echoes present on telephone lines.

Kohonen [3.10] and Anderson [3.11] were investigating similar areas on an
independent basis in 1970, respectively calling their work "associative memory" and

'interactive memory'. Anderson utilised the Hebbian principle to develop a linear
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associator based on memory models for retrieval and recognition. He later
developed the Brain-State-in-a-Box (BSB) w.here the box rep_fesents the saturation
limits allowable for each neuron state. Kohonen favoured an approacli called
"competittve learning". Here each processing element competes to respond to a
certain stimulus and the winner is then allowed to update itself so that it will
respond in a stronger fashion every time that particular stimulus is represented.
Later Hopfield [3.12] suggested a novel network where all neurons had a unique
_ input but were connected to al} others. These new networks required a large number

of neurons but were capable of demonstrating improved learning characteristics.

The Sigmoid function of Grossberg in 1973 complemented the new learning
algorithm called back-propagation which followed in the subsequent year from
Werbos [3:13]. This new algorithm was not fully developed at that time, but was
rediscovered simultaneously [3.14][3.15][3.16] and is now regarded as a highly
powerful learning mechanism, allowing the MLP theories previously presented to
be applied to a wide range of modern applications, including pattern recognition and

control. It is also able to cope with the non-linear computation problems, such as the

XOR function.

3.5 CONSIDERATION OF AN ANN AUTOPILOT

Whilst the use of ANNs for pattern recognition is widely applied. In the field of
neural research, there is currently great debate concemning the applicability of
ANN's to control problems. If a control situation is regarded with an "open mind" it
can be seen to consist of a series of outputs for given inputs, i.e. this is in fact a
classic pattern . Therefore there is no reasonable argument as to why a pattern
recognition approach should not provide adequate control giver that the
complexities of the network are sufficient to cope with actual range of patterns
presented. In an autopilot application the number of patterns possible is vast, and the

relationship between them often non-linear. In addition, the high-speed with which
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the patterns are presented to an autopilot, and the short sample times employed,
means that the utilisation of an ANN for a small vessel autopilot is quite a

demanding applicational test.

There are currently three main methods for determining the weights for an ANN,

these being:

1. Supervised Learning - The network is presented with data (a teacher)
which are representaﬁve of the range of input possibilities that the network is
expected to encounter, together with the associated inputs\output(s).The
weight values are then adjusted until the error between the actual output of
the network and the expected output is minimised. This process therefore
requires substantial amounts of suitable data for training, prior to

implementation of the network.

2. Learning with a Critic - The network is allowed to adjust the weights
in an on-line fashion dependant upon a predetermined critic or cost function .
The weight values are then adjusted to minimise this cost function. This has
the advantage in situations where teaching data is not available or when
unexpected conditions are possible. The major disadvantage is that the ability
of the network to learn is restricted to current experience and therefore any

acquired knowledge of alternative operating requirements can be lost.

3. Unsupervised Learning - There is no requirement for previous system
knowledge or critic dévelopment with an unsupervised network. The network
algorithm must be capable of recognising any patterns present in the
experienced inputs and therefore only local data is available to calculate
internal weight adjustments. The required number of inputs for this type of
learning is relatively high as are the time requirements for learning to be

completed.
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For this application the data requirements of the supervised learning method could
be met by the extraction of the relevant variables, i.e. heading error, rate of change
of heading error and desired rudder, from operational PID controllers. By
combining the data from several optimally tuned PID autopilots into a single ANN,
it is possible that an increase in performance across the operating envelope could be

achieved.

3.5.1 Network Architecture

Utilising an ANN of the MLP format, i.e. one or more layers and several artificial
neurons in each layer, it is necessary to specify the number and component type of
each input and output required for network operation. Given the inputs applied to
the conventional PID controller, and a pre-requisite that the PID performance should
be matched or bettered, it would appear a natural selection that the network inputs
should be identical to those of the PID, with the addition of a bias. It is recognised
that the addition of extra inputs, e.g. velocity, wind speed/direction, would enhance
the possible performance of the ANN. However, due to the hardware restrictions
discussed in Appendix A, this is not possible.. As with the PID controller there is
only one required network output, this being the desired rudder value. The probable
network (Figure 3.4) may therefore be described as a four input and one output
system. The inputs being heading error, rate of change of heading error, integral of

heading error and bias, and the output being desired rudder.
The number of layers, and of neurons in each layer should be maintained at the

minimum quantity capable of performing to a satisfactory level, to ensure that the

controller remains as compact as possible for implementation.
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Figure 3.4 Network Architecture

3.5.2 Forward Propagation

The function of an individual artificial neuron was described in section 3.3. By the
application of this principle to multiple neurons in a network the strategy of the
ANN may be achieved. Each of the four inputs to the ANN is allocated an input
neuron, similarly neurons are allocated to the ANN's output(s). Because the back-
propagation algorithm is proposed to adjust the weight values (section 3.5.3), the
transfer function utilised must be differentiable and therefore the sigmoid function
(equation 3.3) was chosen.
s 1

X, = - (3.3
=TT (33)

In practice, most comparative studies have also used the sigmoid function, the main
alternative being the tanh function which complicates the mathematics without

offering any additional performance advantage.
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Figure 3.5 The Sigmoid Function

For each neuron in the input layer, the input to the éigmoid function is found by |
employing equation 3.2. The output of the sigmoid function is then considered to be
the output from that neuron The outputs of each of these neurons are then classified
as the inputs to the neurons in the next layer. This process continues until in the
output layer the sigmoid function will deliver a value in the range 0 to 1, where 0
represents an output of -co and 1 an output of +eo. Since these extreme outpuis are
unrealistic, in reality only outputs in the range 0.1 to 0.9 are worthy of being
considered. Scaling must therefore occur so that the desired application output range

is obtained within these pre-set limits (equation 3.4).

8 _Smax'(yj_o's)
04

(3.4)

where:
s = output layer.
J =1 (first and only neuron in the output layer).

8 max = maximum rudder limits of vessel.

Rudder limits are obviously vessel dependant, typically in the range £20° to
+30°, '
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3.5.3 Back-Propagation

The Back-Propagation Algorithm (BPA) is a means of obtaining an opﬁmal set of
weight values for a given network, and is the most common form of training
currently employed in supervised learning ANNs. The learning is achieved by the
continuous presentation of sets of training data which represent the desired system
oufput(s) for given input states. Whilst this techﬁiqué ensures that no detailed
knowledge of the system is required by the controller, it is also r_eliant‘ upon the
quality and quantity of the training data. Even when fully trained, the controller
produced will be restricted in performance to the operating envelope to which it was

subjected during the learning phase.

Taking each set of training data in turn, the input values are applied to the network
using the forward propagation technique and a network output obtained. This
oufput, called the actual output (a), is then compared to the desired output (d)
contained in the training data to obtain a global error (E), i.e. an error in system
output {equation 3.5). For this comparison to be worthwhile scaling of the training
data is required to ensure that the desired output is in the range 0.1 to 0.9

corresponding to the range of the network output.

5 _ s 532
E;=05-(d; -a}) (3.5)
where:
s =3 for the output layer.

J =1 for the sole output neuron.

Multiplication by 0.5 is included to cancel the effects caused by the square term
during differentiation. Alternative functions may also be utilised although equation
3.5 is the most common, and therefore considered to be the standard, formation of

the global error term,
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-It is impertant to remember that the aim of the BPA is to minimise this global error.
" Therefore, for the given input conditions, the output neuron's weights need to be
manipulated in such a manner that the change in value of the weights will ensure a

more effective performance level in subsequent activations (equation 3.6).

Glog

7 ow’,

(3.6)

Ji

n = Learning Rate.

i =neuron in preceding layer from which input has been derived.

The output neuron has a weight on each input connection numbered from 0 to n.
Equation 3.6 is therefore true in the case of each weight in turn. However, the global
error utilised to determine the weight change is a function of the actual output (),
which in turn is a function of the total summed inputs to that neuron (7). For the
general case of the input weights of the output neuron, the right-hand side of \

equation 3.6 may be re-written (equation 3.7):

OF; oE; oI

s T ars 5 3.7
ow; oI; owy
Given that:
BIj. _ 02, x,.’"w;,.
awj,. 8wj,.
1
ors
J s—1
g - 3.8
=% (3.8)

Ji
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and defining :

(3.9)

it is now possible to simplify equation 3.6 using the results obtained from equations

3.8 and 3.9:
Awy, :n-aj-xf“‘ - (3.10)

Analysis of equation 3.10 shows that whilst 3} is defined in equation 3.9 as being

the partial derivative of the global error with respect to the total input for the output

neuron, the global error is in fact a function of the actual output, and the actual
output a function of the total input. Therefore:

OE; OFE; 0Oa;

Pl i (3.11)

oI;  da; OI7

g

where equation 3.12 is the derivative of equation 3.5 and may be defined as:

% (d;-a}) 3.12)
= —_ L= . '
Oa; o .

In a similar fashion the relationship between the total input and the output is based
on the transfer function which in this application is the sigmoid function as was

defined in equation 3.3. Therefore:

= Bl | (3.13)
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Substituting from equation 3.3 gives:

oa’
§ _ s 582
ars ~ %)
oas
aj; =al-(1-a) (3.14)

J

Therefore equation 3.9 becomes:

6;=a;-(1-aj)-(dj - a;) (3.15)
and equation 3.10 may now be detailed as being:

Aw, =n-(dj~aj)-aj-(l—aj)-xf" (3.16)

By implementing equation 3.16 for each of the weights associated with the output
neuron, a change in the desired value of that weight may be determined based on the
global error of the network. A similar principle must therefore be applied to any
hidden layers in the network. However, for these layers an error between actual and
desired outputs cannot be used since the required output from any particular neuron
is unknown: It must therefore be considered that the error formed at a local level

within the network at each neuron output is a function of the global error of the
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entire network. This assumption must be true since it is through a combination of

the local outputs that the global output, and herice the global error, is produced.

In the layer previous to the output layer, equation 3.12 is not valid and must be

dertved from the error found in the output layer itself:
s s s+l
OF; -5 OF; van“ _

oa’ oIt da;

i

(3.17)

However, by substituting equation 3.1 and 3.9 into 3.17, the resultant expression is:

5
aEf — Zas+l ‘ws+l
oat T
J

For internal layers of the network, the weight change is therefore dependant upon
the 6 value of the subsequent layer, giving a generalised intérnal equation (3.18),

corresponding to the earlier ouiput equation 3.15:

S _ 8 r1_ LY, s+l 5+
Bj—xj (1 xj) Zﬁﬁ W (3.18)

Given the manner in which the BPA operates, it is necessary to have initial weight
values in the network so that the first forward propagation may take place to obtain
the global error. Considering equation 3.18 it can be seen that if these weight values
were ideﬁt’ical then any subsequent weight changes would also be the same due to
equal values of 8. To achieve a network possible of performing in an optimum

fashion, the initial weight values must therefore be in a random form.

The BPA mechanism for weight changes is currently widely popular in a range of
applications. The connection to pattern recognition becomes immediately apparent

when the means of learning is studied. All the data supplied for training purposes is
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formulated on a pattern approach, i.e., if the inputs were certain values then the
outputs should have corresponding values. Given the"rang:é of possible operating.
scenarios to which the controller may be subjected, it is important that during the
learning phase the network learns not only the data currently being presented, but
also 1s capable of maintaining a memory feature of past experiences so that previous
learning is not lost. To achieve this aim, four adaptations to the basic BPA can be

included, these are:

. Learning Rate.
. Momentum.
. Epoch Size.

. Random Data Presentation.

The Learning Rate, as was declared in equation 3.6, is a multiplicative term to
restrict, or enhance, the speed of learning of the network. Whilst it would appear
most desirable to maintain the highest speed of learning possible, in practice,
performance of the final network is in fact greater with the introduction of a learning
rate. Learning based on an individual set of training data provides an extremely
narrow view of the overall network performance within its operating envelope. The
learning rate therefore restricts the momentary learning so that a reduced emphasis

is applied to the current state.

Using the gradient of descent approach, the BPA can find a local minimum in its
learning, rather than locating the global minima (Figure 3.6). The momentum term
therefore gives the learning mechanism the ability to pass through local minima and
on to the global minimum. However, it also restricts the chances of being able to
cease learning when that global value has been obtained. Often-an overshoot and a
corrective back-track is required. It is therefore necessary to control the magnitude
of the momentum term which is process-dependant to enable optimum learning to

be possible.
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Local Minima

Global Minima

Figure 3.6 __IT.earning Difficulties With BPA

The momentum effect is achieved by the incorporation into the current weight
modification of an element of the previous change (equation 3.19). This historical
inclusion is capable of eliminating local effects whilst maintaining the overall

direction of learning.

_ -1
iji(t)—n-ﬁ-xj +0f.-Aw;I.(r—1) . (3.19)

When considering-data for training, it is often advantageous to utilise not the global
error from one set of training data, but an averaged value generated by a set of data.
The amount of data in the set is called the epoch size and is varied depending upon
the range and quantity of the data found in the training file. Should the performance
envelope be wide, then this approach enables the network to learn a more general

understanding of the intended operation instead of specific response patterns.

If the data utilised for training purposes is presented in its original form, then it is
highly likely that data representing specific operating conditions will occur in
batches. The network will therefore be learning one set of conditions and then
replace this knowledge with another set. In the final stages of learning the only
remaining capabilities will be for the final set of presented data. This feature is

undesirable and may be overcome by the presentation of random data patterns from
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throughout the training data file. This method ensures that the network is being

continuously stimulated and therefore learning right across the operating envelope.

3.6 REQUIREMENTS FOR INTELLIGENT OPERATION

There are currently a range of adaptive mechanisms being proffered as extensions to
the ANN principles presented in this’ thesis. If forward development is to be
obtained for the ANN then there is a requirement for the replacement of the BPA
supervised learning mech'anisrh, with either the option of Learning with a Critic or

Unsupervised Learning.

In the case of Learning with a Critic, there is a requirement for a form of
performance assessment to evaluate the success, or otherwise, of the current ANN
structure. Only by utilising such a measurement can weight modifications be
identified as being correct. The simplest form of this style of learning may be
considered to be the addition of a cost function to the basic BPA mechanism. For
on-line learning the BPA fails due to a lack of data in the region of the desired
network output, It is possible to say, however that the performance of the network is
reflected in this application by the performance of the control actuator (the rudder),
which in furn is shown by the performance of the actual vessel. Therefore by
relating the ship heading error characteristics to a cost function, an estimation of the
global error indicative to the network can be produced. Clearly an element of time
delay must be imposed on this routine to allow for ship and rudder dynamics. The
BPA can therefore be run in an on-line fashion, but the mathematical calculations
required for anything other than a small sized network are likely to negate the

effectiveness of this type of routine for the small vessel autopilot application.

A quicker and far more satisfactory form of learning is generated by the enhanced
Chemotaxis algorithm. Utilising random initial weights values, the forward

propagation routine is represented with a full set of input data and a global cost
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function value obtained. The weight values are then subjected to Gaussian
perturbations,. the size of which is relative to the magnitude of the cost function
derived. If the weight changes proposed eﬁhance the network response, then they
are retained, else they are rejected and an alternative set of values calculated. The
success of this form of learning is apparent when considering the application
advantages. The size of the weight changes will be great only when the network
output is-largely in error; leaving fine tuning when near an 0ptimal operating point.
Since only weight changes which improve performance levels are deemed
acceptable, there is a guaranteed corrective leaminé ability. The use of gﬁided
random search methods for weight changes is also considered a faster process than

the BPA's gradient of descent, therefore reducing computational time.

Unsupervised principles, e.g. familiarity, clustering, or feature mapping [3.17], may
demonstrate the required learning abilities, however the duration of the learning
process and the time variant nature of the small vessel, make their implementation

impractical for this application.

3.7 DISCUSSION OF ANNS FOR AUTOPILOT DESIGN

This Chapter has presented the basic ANN elements which should be considered if
the neural technique is to utilised for the new autopilot design. The forward
propagation routine is simple and therefore it should be easy to generate a compact
program in "C" to undertake this function. In confrast, the number of weights
required to successfully facilitate a confrol problem of this complexity will be large,
probably in excess of 150. The logistics of data storage for this number of weights

therefore must be considered.

The required data could be obtained from either sea trials or PC based simulations.
It could therefore be possible fo train a network fo emulate an optimally tuned PID

controller in a variety of conditions by teaching the ANN with the data from across
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the performance envelope. Sim_'ilarly,' the ANN has the -potential for future
expansion to allow for factors such as ‘velocity; mass loading, wind speed, wind
direction and even vessel type. Whilst these inputs are not currently available, there
" is no reason why this larger and more powerful network could not cope with the
added computations, thus providing a vast reservoir of knowledge once training was
complete. The scale of the data storage would also have to be increased to match

both the increase in input neurons, and the probable need for larger hidden layers

. within the network.

The possibilities for extension to an intelligent form have been discussed. Whilst
this advancement of the ANN is likely to be achievable, the on-line adaption of a
large number of weight values will be computationally expensive in terms of both
time and code requirements, and is therefore a prohibitive factor when considering

the future potential of the ANN autopilot design.
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CHAPTER 4. THE FUZZY 1L.OGIC SOLUTION: PRINCIPLES -
: AND IMPLICATIONS

4.1 INTRODUCTION

Fixed Rulebase Fuzzy Logic (FRFL) has been developed as a means of coping with

the decision process when only imprecise data is available to work with. If rigid

" . mathematical relationships between comp'onent parts of the process can be defined,

then analysis, and subsequent decision making, may be undertaken with relative
certainty of a successful conclusion. However, in the cases when such prior
understanding is not possible, yet a realistic assessment of the decision outcome is

required, the task is considerably more difficult to describe in quantitative terms.

A technique is therefore required which is capable of utilising qualitative, linguistic
or just generally imprecise, information. The FRFL technique demonstrates this
ability and is consequently generating considerable interest, particularly in the field
of control engineering. The concept of FRFL is derived from the principles of Fuzzy
Set Theory (FST). Therefore, before a complete understanding of FRFL is possible,

it is a pre-requisite that the basics of FST should be described.

42 FUZZY SET THEORY

Fuzzy Set Theory, as proposed by Zadeh [4.1], follows the principles of
Conventional Set Theory (CST), with one major exception. In CST elements are

divided into two categories [4.2], i.e.:

1. Those that belong to a set.
2. Those that do not belong to a set.

The conventional set, (also called the non-fuzzy or crisp set), therefore maintains a
distinct difference between elements which are members, and those which are not
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members of that particular set [4.3]. For example, considering the conventional set

describing the vessel length (1) of "about 5 m" (Figure 4.1), the membership
function (p(1)) can be defined as:

(D) = 0 (is not a member of the set).

u(l) =1 (is a member of the set).

1.0 +
14y
0.8 +

06 1 About 5m

04 %

02 <

0 2 4 6 8 10
Vessel Length 1 (m)
Figure 4.1 Crisp Set for Vessel Length "about 5 m"

In contrast, in FST the elements within the universe of discourse U, over which the

set is declared to operate, are assigned a grade of membership between 0 and 1

which describes their degree of membership (Figure 4.2).

1.0 ¢

)
08 +

0.6 1 About Sm
0.4 }

02 ¢}

0 2 4 - 6 8 10
Vessel Length 1 (m)
Figure 4.2 Fuzzy Set for Vessel 1.ength "about S m"
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Within the fuzzy definition utilised for Figure 4.2, the term vessel length may be
referred to as the linguistic variable: The fuzzy set "abdut 5 m" is seen to operate
over the entire range 0 to 10 m with the membership value being reduced ‘
progressively from 1 to 0 as the distance from the set point (5m) is increased. It is
therefore true to state that the point 3 m, where 3 m € U[0 m.10 m] is a member of

the set "about 5 m" with a membership value of :
Mm@ =06 | “.1)

With CST this point would have been defined by a membership value of 0. It is
apparent therefore, how the fuzzy technique allows recognition of the significance
of lesser points within the universe of discourse which although not falling within
the conventional definition of the set, do in reality portray many of the desirable
aspects of that set. The relative degree of similarity with the desired set is

encapsulated within the derived membership value.

Mathematically, the discrete fuzzy set (D) may be defined as:

D= ;HD(%)/”}‘

(4.2)
where:
yeU

Kp(u;) = membership value of set D at u;.

For the fuzzy set "about 5 m", with an interval of 1 m and universe of discourse U[0

m.10 m], the discrete description may also be defined as:

"about 5 m" = 0/0 + 0.2/1 + 0.4/2 + 0.6/3 + 0.8/4 + 1.0/5
+ 0.8/6 + 0.6/7 + 0.4/8 + 0.2/9 + 0/10 (4.3)
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4.2.1 MANIPULATIVE OPERATIONS ON FUZZY SETS

Having defined the difference between fuzzy and conventional sets, it is necessary
to describe the three basic manipulative operations which are fundamental to most

applications, these are:

1. Union of fuzzy sets.
2. Intersection of fuzzy sets.

3. Fuzzy Relationships.

The union operation, when applied to two fuzzy sets P and Q, both of the same
universe of discourse (A), is equivalent to a connective OR and is described

mathematically as:
Lpio (a) = max[llp(a): Ho (a)] (4.4)

where the operation of union is indicated by use of the "+" sign which is equivalent

to the conventional U sign.

Considering the fuzzy sets describing vessel length, sets named linguisticaily as
short and medium (Figure 4.3) could be defined as:

short = 1.0/0 + 0.8/1 + 0.6/2 + 0.4/3 + 0.2/4 + 0/5 + 0/6 + 0/7
+ 0/8 + 0/9 + 0/10

medium = 0/0 + 0.2/1 + 0.4/2 + 0.6/3 + 0.8/4 + 1.0/5 + 0.8/6
+0.6/7 +0.4/8 + 0.2/9 + 0/10
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Figure 4.3 Fuzzy Sets Short and Mediﬁm

Therefore, by applying this principle of union to the sets short and medium creates a

short OR medium set (Figure 4.4).

1.0
1R¢))
0.8 +

0.6 4
Short OR Medinm
0.4 1
0_2 &
I . . : .
0 2 4 6 3 10

Vessel Length 1 (m)

Figure 4.4 Union of Fuzzy Sets Short and Medium

short OR mediurm = 1.0/0 + 0.8/1 + 0.6/2 + 0.6/3 + 0.8/4 + 1.0/5 + 0.8/6 +
0.6/7 + 0.4/8 + 0.2/9 + 0/10

In a similar manner, the operation of intersection when applied to two fuzzy sets P

and -Q, of the same universe of discourse (A), is equivalent to a connective AND,

and may be defined mathematically as:

Hpngla) = min[pp(a),t(a)] (4.5)




where the operation of ‘intersection is indictéd by the M sign. By the application of
the operation of intersection to the fuzzy sets short and medium describing vessel

length creates a new short AND medium set (Figure 4.5).

1.0
(D
0.8 ¢+
0.6 +
0.4

02 1

Short AND Medium

0 2 10

4 6
Vessel Length 1 (m)
Figure 4.5 Intersection of Fuzzy Sets Short and Medium

Short AND Medium = 0/1 + 0.2/1 + 0.4/2 + 0.4/3 + 0.2/4 + 0/5 + 0/6
+ Q7+ 0/8 + 0/9 + 0/10

The fuzzy relationship is based on linguistic implication between an antecedent (P)
and its corresponding consequent (Q), where P and Q are two fuzzy sets and are of

different universes of discourse (A) and (B), e.g.

IF P THEN Q

or,

R=Px0Q (4.6)

where R represents the relationship and the x sign denotes the operation of fuzzy

relations. Mathematically, equation 4.6 may be defined as:

Hela,b) = np,q(a,b)
= minfp »(a), Ly (5)] 4.7)

whereae Aandb € B.
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Similarly, sévera_l fuzzy sets (P, Q, Z) from disparate universes of discourse (A, B,

C) méy be combined to give a fuzzy conditional statement of the form:

IF P AND Q AND Z THEN R
which mathematically may beT written as:

R=PxQxZ

= minfjp(a), ko (8), 1z (0] 4.8)

whereae A,beBandc e C.
As an extension of the fuzzy principles, the complement (NOT) of a fuzzy set may
be defined, similarly a linguistic hedge, e.g. very, rather, etc. These, and many other,
fuzzy manipulative operations are described in detail in the original proposal by

Zadeh [4.4]. However, a more recent and applicable review of the technique may be

found in the work of Sutton and Towill [4.5], where a tutorial explanation of the use

of fuzzy sets is presented.
43 THEEARLY DEVELOPMENT OF FUZZY LOGIC

Following the proposition of FST by Zadeh [4.4] in 1965 and later developments
[4.6], the potential for control situations was realised. The initial published control
application was by Mamdani and Assilian [4.7] in 1975, when fuzzy techniques
were applied to the control of engine speed and boiler pressure for a small steam
engine. Although a non-linear problem, the fuzzy method was found to outperform
the conventional tuned controller. The particular advantage was the ability of the

new controller to be relatively insensitive to alterations in its operating environment.
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In the subsequent year results were published by Kickert and van Nauta Lemke [4.8]
concerning their application of fuzzy logic t’ora warm water plant. When attempting
to control the exiting water temperature, whilst maintaining a fast response time to
temperature step changes, the fuzzy controller demonstrated a far superior transient
and steady state response than the original optimised Proportional plus Integral (PI)

controller.

Following this period, a series of important applications were.i)ropqsed [4.9 to 4.13]
that indicated the enormous pbtenﬁal of fuzzy logic in control situations that are
either non-linear and/or time varying. Since that time the emphasis has broadened to
encompass a much wider spectrum of applications including many which have
entered into the consumer's market place, e.g. rice cookers, cameras etc. An
excellent review of fuzzy logic and its early development may be found in the work

by Tong [4.14] and should certainly be considered as further reading.

4.4 CONSIDERATION OF A FUZZY L.LOGIC AUTOPIT.OT

Classical and modern control theories have been utilised for many years to
overcome successfully control problems where the system is linear in nature and
may be described mathematically, Many systems, e.g. ship dynamics, are non-linear
and/or time-variant systems. Therefore, these conventional approaches are not

always capable of designing a controller that can fully match the system's

requirements.

In many such cases the system was operated, prior to automation, by a human
operator who would undertake manual adjusiments in order that a successful and
acceptable level of control was maintained. It is thought that the ability of the
human operator to cope with system non-linearities can be linked to their imprecise

operating manner, i.e. inputs to the human operator are often in the form of :
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“big" input is registered so thefefore a "big" output is required.

Whilst the exact definition of "big" may be non-existent, there is cerfainly a "feel”
that one value -may be "big" and another may not. Perhaps then to put a precise
value on the term "big" would destroy the imprecision and general vagueness of the
human control strategy, thereby reducing our ability to cope with such a range of

situations and circumstances.

If control techniqﬁes fail where human instinct was successful, then there is a clear
reason for pursuing a path towards an automatic controller with a more human like
reasoning mechanism. Such a device is thought to be the Fuzzy Logic Controller

(FLC) which utilises imprecise fuzzy sets and relationships.
The basic design of a standard form of FLC contains three elements, these are:

1. Fuzzification of inputs using fuzzy windows.
2. Defuzzification of outputs using fuzzy windows.

3. Rulebase relating fuzzy inputs to fuzzy outputs.
4.4.1 INPUT FUZZIFICATION

Fuzzification is the methodology by which the "real world" deterministic inputs may
be transformed into a fuzzy format for utilisation with the FLC. Previous autopilot
applications [4.15, 4.16] of fuzzy logic have restricted the inputs fo those of heading
error and rate of change of heading error, each variable being fuzzified individually
by employing a fuzzy window which contains a series of fuzzy sets. The chosen
fuzzy sets are deemed to represent the working envelope of the controller for a
particular input variable. However, the number and position of the sets is design-
shape and application dependant. Typical shapels include triangular, trapezoidal and

gaussian sets. For the purpose of computational efficiency, the friangular shaped
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sets require the least amount of storage capaczty and are comparatlvely easy to
de31gn since they operate about a clearly distinct set point. The set point can be
defined as the point at which the function describing the set has a membership value

of unity.

As the number of utilised sets is raised, so the complexities of the FLC increase
greafly. It 1s therefore important.that the set number is rhiniiniséd for any application
v_vhere compnutational storage and power is restricted by physical limits. Conversely,
if the number of set.s for each window is too low, then the range of permufations
used to derive the controller outputs becomes restricted and only linear control
possible. The traditional approach is to utilise an odd number of fuzzy sets, with the
central set being positioned about the zero input condition. The input window's
universe of discourse is defined using the minimum number of discrete intervals, at
each interval the sets having a membership value in the range zero to unity. Input
resolution is directly related to the number of intervals used and must be considered

when designing the input windows.

Each set is given a linguistic label to identify it, in the range Positive Big (PB),
Positive Medium (PM), Positive Small (PS), About Zero (Z), Negative Small (NS),
Negative Medium (NM) and Negative Big (NB). The identical window design can
then be utilised for both inputs to conserve required memory storage in accordance
with the hardware restrictions for implementation discussed in Appendix A, only the
window limits being varied in each case. The values applied to the window limits
should be large for course-changing operations when the inputs of heading error and
rate of change of heading error are likely to themselves be large, e.g. approximately
+180° and £3.0°s"). Conversely for course-keeping operations the required window
limits are likely to be small, e.g. approximately +5.0° and +£1.0°s-1. To meet the
required input resolution of 0.1° for heading error in the range +5.0°, the relevant
input window would need to be defined by at least 100 intervals for each fuzzy set

given a total of 700 defined points for a typical seven set window. In the case of the
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course-changing mode, ’Lhc subsequent data storage problem explodes fo create even

greater difficulties due to the larger window limits.
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Figure 4.6 Typical Seven Set Fuzzy Input Window for Heading Error
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The set point positions determine the position of each set within the window and
should therefore be placed in such a manner that they represent the positions where
a change is controller action is required. As the fuzzy sets within the Window
overlap, then a transition between differing control strategies may be enforced. The
speed of this transition is dictated largely by the degree of overlap between fuzzy
sets and the fuzzy significance of the sets in question. In the case of input values
which fall outside the extremities of the input windows, these values are normally

saturated to the size of the window limits. It is therefore essential that the input
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windows cover the actual full range of useful inputs, as no new control

conﬁgurati_ons,'are possible for inputs which fall within the saturated regions.

Having defined the input window for each of the input variables, the fuzzification
mechanism may be initiated. The input variables are applied to their respective
windows. If they fall outside of the window limits, thén they are saturated to the
value of the window limits. The fuzzy sets containe"d within the inpuf window 'rnay'
be linked together by a union (max) operation. Therefore, for any given inp"ut within
the'\.?vindéw, it becomes possible to evaluate whibh fuzzy set is "hit" with the
maximum membership value. In many cases more than one set may be "hit", and in
this instance the membership values should be considered in order of their
significance. Whilst it is possible to design a FL.C which operates using only the
single most maximum membership from each input window, it must be recognised
that the imprecise ability of the control strategy is severely impaired since the entire
conceptual basis of the FLC is founded in both the applied grade of membership and
the union of one or more fuzzy sets to describe an individual occurrence or event.
By imposing the limitation of the single maximum membership, the fuzzified
version of the real world deterministic value is confined to a single fuzzy set. The
necessity for recognition of at least the two largest maximum values is therefore
established. However, should three or more such values be utilised, then the number
of permutations for internal fuzzy relationships escalates rapidly. Whilst these less
significant memberships are greater than zero, their magnifude is normally small. It
is therefore ineffectual to include more than two maximum membership values

other than to increase FLC complexity.

By applying the given approach of fuzzification to the input window describing the
inputs of heading error and rate of change of heading error in fiirn, it is possible to
convert each deterministic input value into two fuzzy membership values with their
associated fuzzy sets, where one membership is the maximum value for any set in

the window for the point defined by the input, and the other is the next to maximum
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value. The two sets associated with these two members_hip values are thereforé the .
fuzzy sets which best describe the respective input.
The procedure of fuzzification is therefore complete with each input being fully

described by the two fuzzy sets in each case with the maximum membership values.

4.4.2 OUTPUT DEFUZZIFICATION

Deﬁlz'giﬁcation is the process by which a fuzzy output value may be cgnverted into
the rel'évant: deterministic value for use by fhe real world. The basic foundation of
the fuzzy output mechanism is an output window of similar form to that utilised for
the controller inputs. The size of the window limits is restricted by the saturation
limits of the control actuator. In this case the control actuator is the rudder, with

physical movement limited to approximately £30°.

Given that the fuzzy output window contains a series of fuzzy sets, and that the
fuzzy output will be described in the form of identified fuzzy sets with their
associated membership values, then a means of defuzzification is required. It is
possible to consider the output to be at the point with the maximum membership.
When more than one peak is present then their positions may be averaged. This
"mean of the maxim" method has been compared as analogous to a multi-level relay
(4.9), however the full concept of fuzziness as derived by the FLC is minimised by
the selection of just maximum set memberships since lower membership elements
of the output window become irrelevant. An alternative strategy is to apply the
"centre of area method" to the entire output window, considering the higher

membership value at the point where two active output sets overlap.

This technique is thought to provide a smoother output (4.15) due to the
incorporation of the lesser fuzzy elements within the output window. Given the
nature of the "centre of area method" it is important to realise that the centre of a

symmetrically shaped set will always be in the middle, irrespective of the
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membership value of that- set. This feature of defuzzification is particularly

important when only one output set has been "hit", the resulting demanded rudder

movement being disjointed. By employing non-symmeirical output sets this

undesirable feature of defuzzification may be overcome. Using a similar approach to

the design of the input windows, it was found that the typical number of fuzzy sets

required to successfully defuzzify a fuzzy controller output is seven. The number of

discrete intervals to fully describe the output window's universe. of--disco_ufse is

dependant upon the desired resolution. The final output window design is therefore -

shown in Figure 4.8:
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ioure 4.8 Tvpical Seven Set Fuzzy Output Window for Rudder

Utilising the details of the output window, the "centre of area method"

application may be defined as:

+30°

2.6:1(8))

_ i==30°
Og = +30°

218

i=-30°

where:
8¢ = Deterministic controller output.
8; = Discrete interval in universe of discourse 9.

1 = Fuzzy membership at discrete interval 3;.
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4.4.3 FUZZY INTEGRAL ACTION -

For this autopilot application an integral action was required to compensate for any
constant disturbance effects caused by wind, waves or cwrrent. When giving
consideration to the incorporation of an integral action, the described form of output
window was found to cause difficulties. Whilst it is possible to consider the integral
action to be a third input with a corfesponding' jndividual. input window, the
resulting three dimensional rulebase becomes computationally expensive. Separate.
rulebases’ may be considered [4.17-] which are linked either jusf before or after
defuzzification, however, the additional computer code required for the extra

fuzzification/defuzzification prevents this solution from being truly practical.

An alternative method must therefore be derived to enable the successful inclusion

of the integral term if fuzzy logic is to be considered for the new autopilot design.
4.4.4 RULEBASE DERIVATION

The fuzzy rulebase is the heart of the FLC and contains the input/output
relationships that form the control strategy (Table 4.1).

RatelBror NB NM NS Z PS PM PB
NB
NM
NS
Z
PS
PM
PB

"TABLE 4.1 Structure of an Empty Fuzzy Rulebase
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Therefore, a large proportion of thc'FL‘C's power is- containéd in this t:ulebase and
determination of the correct magnitudes for each element is essential. The rulebase
can be designed using data obtained from the analysis of existing controllers, or by a
study of human mariners when controlling small vessels. Using this data in a
structured form, a rulebase can be-created which specifies which set in the output
window sh(_)uld be activated When:.bertaih input ‘conditions oceur. Rules are only

~ established for the set point positions in the input windows.

4.4.,5 INFERENCE TECHNIQUES

No matter how extensive a rulebase becomes, it is unlikely that there will be a rule
for every input variation. The declared rules are based on the assumption that the
input sets are "hit" with a membership of unity. In practice, it proves very often to
be the case, that the exact input set is not available and a nearest set is therefore
"hit" instead. When this feature of the FLC occurs, then the membership value of
the hit set will be less than unity, therefore the declared fuzzy conditional statement
is not wholly true. By use of an inference technique, it is possible to still utilise the
given relationship, thus identifying the required output set, however, the
membership of the output set is inferred based on the input memberships applied.
By employing this technique, the FLC becomes capable of operating in regions not
covered by the predetermined input set points. One such inference technique is

called the max-min rule of inference (equation 4.11).
Hp(e) x po(r) x pz(8) = max[min[p (), 1o (7), L £ (8)]] (4.11)
where:

Hr(0) = Defined fuzzy conditional statement between disparate universes of

discourse error (e), rate (r), and rudder (5).

70




- Following this approa’éh, it is possible to deduce the membership of the output set
specified by the relationship R given undefined input quantities' for heading error
and rate of change of heading error. This };rovides a pessimistic form of control
[4.18] which was found to induce low rudder activity in this autopilot application.
The relationship between the inputs and the defined relationship is declared by the
"min" operation to infer the output set's membership value_. The output set "hit" is
implied by the definition of the relation_shiﬁ. The union 6f the rules in the rulebase is

then achieved by the overall max function.

An alternative method of inference would be the max-max, or max product, -
technique. Conversely, this method is thought to give an optimistic performance and

in practice was found to produce a more oscillatory rudder movement.

Since the rulebase contains the fuzzy conditional statements between input set
permutations, the membership of an identified output set is determined by a

minimum operation, as discussed in section 4.2.1.

4.5 REQUIREMENTS FOR INTELLIGENT OPERATION

Compared to the conventional PID autopilot, FL.Cs are considered to operate in a
robust manner when subjected to limited variations in environmental conditions or
vessel dynamics in comparison to the conventional PID autopilot. Shouid large scale
dynamic changes be imposed, then the successful operation of the fuzzy logic
autopilot becomes questionable. Certainly the required near-optimal performance
levels will ﬁot be obtainable due to the input to output relationships dictated by the
constituent components of the rulebase. In order that autopilot performance may be
maintained in such circumstances, the rulebase elements must be adjusted in a

fashion that will minimise vessel heading error and rudder activity.




Such a confrol strategy has been previously been proposed [4.19], and later
extended [4.20, 4.21], and is called the -Self-Organising Controlle: (I'SOC)_. The basic
structure of the SOC may be considered to be a hierarchical sysfem with twb Ievelé.
The lower level operates in a similar manner to that of the FRFL, whilst the higher

level may be considered to be a form of intelligent learning.

The learning mechanism is based upon a performance index (PI) which analyses the
current system performance, and derives from this a set of chaqges to the rulebase to
* ensure higher perfc-»rmance when subsequently activated. An element of time delajf
must be imposed on any rulebase modifications to allow for the ship and rudder
dynamics. Since both levels of controller operation are continuously active, the
rulebase changes may swiftly follow any changes in wvessel dynamics or

environmental conditions maintaining the autopilot at near optimal performance.

One of the major advantages of this form of intelligent control is due to the
predefined PI. Obviously the exact nature of any rulebase alterations is directly
related to the content of the PI, but the mathematical content of any such
modification is reduced by the pre-implementation design of the PI itself. Similarly
the number of elements in the rulebase is restricted by the FLC design, therefore the
total amount of rule changes required during one sample period may easily be

confined to a relatively low number.

4.6 DISCUSSION OF FUZZY LOGIC FOR AUTOPILOT DESIGN

Within this Chapter the basic elements of a fuzzy logic controller have been
presented in relation to the new autopilot design. It would appear that careful
consideration must be given to the fuzzification and defuzzification stages if an
excessive requirement for data storage is to be avoided. If the window's scope, or
number of intervals defining each window, 'could be significantly reduced, then the

potential for using fuzzy logic in this application would be increased enormously.
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Due to the nature of the fuzzy mechanism it is apparent thaf the facility of the
rilebase c.ould allow relatively straightforwar-d, but imaginative, pre-design of the
controller without the need for extensive files of test data. The ability of the
controller to merge a combination of rules, perhaps representing vastly differing
control strategies, is without doubt extremely powerful. Similarly, the basic concept
of the self-organising controller would appear fé‘ offer an bn-liﬁe Ieéming_ ébility

which could be undertaken in the available sample time.

Inclusion the integral action by the described methods would generate an excessive
amount of computer code. If the fuzzy logic solution is to be realistic, then an

alternative means of incorporation must be devised.
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PTER 5. DETA DESIGN OF THE FUZZY LOGI
F TION AUT T -

5.1 INTRODUCTION

Following the work on neural networks and fuzzy logic described in Chapters 3 and
4 respectively, a decmon was requlred as to which type of controller was to be
utilised on the new autopilot. From the discussion in Chapter 3, it is clear that an
.ANN can easﬂy be modified to cope with a multitude of inputs. However, a
considerable quantity of data is required to ensure that the network can learn a
correct style of control. Obtaining relevant data is therefore a problem. For the
ANN, learning is highly mathematical. Consequently any on-line learning is likely

to be very slow and thus unacceptable.

In the case-of the fuzzy logic study discussed in Chapter 4, both the basic controller,
and the relevant on-line learning principles, appear satisfactory. However, the
addition of the third input for integral type action requires further study. Similarly,
the need to operate in both course-keeping and course-changing modes without
utilising extensive data storage must be overcome for this practical application to be

successful.

After consideration of these points, the fuzzy route appears to offer a superior
solution for this particular application. Work was therefore carried out on a detailed
design of a foundation fuzzy logic autopilot onto which the learning mechanism
could be mounted. The potential problem areas in the design were also investigated

to obtain a satisfactory resolution.
5.2 N-LINEA W DESIGN

Following a heuristic design approach, it was found that the minimum number of
sets which could successfully describe the inputs for a small vessel autopilot
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application was seven. However, the use of seven sets requires the central set point
to be placed on the zero position in the universe of discourse. In practice ﬂig case
when inputs are zero is not of significant importance as the control required in this
region of the input window may be considered to be linear in nature. Therefore, to
employ eight sets with an even distribution of four on either side of the zero
position, enables the defined set points to more fully describe the significant
controller inputs. The About Zero (Z) set was replaced with two new sets idénti_ﬁed
| by the linguistic labels Positive Tiny (PT) and Negative Tiny NT). Symmetry of
these given sets around the zero point enables the zero input condition to be

represented by a blend of both positive and negative sets.

In previous maritime studies the two modes of course-keeping and course-changing
were treated as either separate modes of operation [5.1], or required the addition of a
secondary level rulebase for "close control" [5.2]. Based on the detailed data
contained within Chapter 2 of this thesis, combined with personal observations from
studying PID autopilot operation, acceptable course-keeping for a small vessel may
be classified as being in the range +1° to £5°. This specification is dependant upon
weather conditions, given that most small vessels would not expect to be at sea in
greater than a sea state 5 whilst remaining under autopilot control. It is therefore
realistic to consider £5° to be the necessary limits for the course-keeping input
window for heading error. Similarly, for the course-changing mode of operation a
large initial rudder is required to bring the vessel about quickly. Detailed
consideration of rudder values at this point is not therefore required. Once within
approximately 15° of the desired course a more precise ievel of control is necessary,
with the possibility of counter rudder being implemented to prevent the occurrence

of any overshoots. The natural window limits for course-changing may therefore be

defined as +15°.

For this application there are insufficient computational resources available to

facilitate either separate input windows or rulebases for the two modes of operation.
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It 1s therefore a pre-requisite of this design that both modes be incorporated within
the same input window. If eight linear fuzzy sets are employed in this dual purpose

input window, then the result for the input of heading error is shown in Fi gure 5.1.
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Figure 5.1 Linear Fuzzy Logic Input Window for Heading Error

When considering Figure 5.1 if becomes clear that for the course-keeping mode in
the range +5° there are only two set points. In practice the implication is that all
course-keeping situations will be described in the main by these two sets (one
positive and the other negative). Only linear control would be possible in this
situation. As a design problem, the remaining options to improve on this window's

performance would be:

1. Decrease the window limits so that the sets operate closer to the zero
point. Although improving course-keeping, this action would ensure
that the window limits were too small to allow effect course-changing

to take place.

2. Increase the number of sets utilised within the input window. This

action would be too computationally expensive.

Whilst in many cases reported in the literature, the fuzzy input sets are symmetrical

about their set point, it is possible to design the sets in a non-symmetrical (non-
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linear) manner. This technique is particularly advaﬁtageous when a‘relatively iarge
universe qf discourse is required, as is this case with this application, to pro‘-{idé a
high accuracy of control about a point, e.g. zero point, whilst maintaining a
minimum number of operational sefs. In the small vessel autopilot application, there
is a need for a high level of control during course-keeping, i.e. when the course error
is within the range £5°. This effect may be achieved by the utilisation of small
angled fuzzy sets, thereby ensuring that several sets operate within the course-

keeping performance envelope.

In contrast, during the course-changing mode, the universe of discourse is required
to represent a much wider range of heading errors. Therefore, large angled sets are
required so that a much larger proportion of the window may be described by each
set, thus ensuring that set numbers are to kept to a minimum. At the point when a
particular set has a membership value of unity (the set point), it is important to
ensure no overlap from adjacent fuzzy sets exists. At the set point the set may
therefore be considered to fully describe the input, any activation of the surrounding
sets in this situation reduces the importance and thus the effectiveness of any one
individual set. By utilising the described non-linear approach, the input window of
Figure 5.1 was redesigned with eight non-linear sets. Twenty-one discrete intervals

were required to fully describe the new window's universe of discourse (Table 5.1).

Set\wu(w) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

NB 1.01.75].50{251 000 |0 JO[O]OG]JO]OJOJO]JO]JO]JOIO]O]O
NM 0 [.25].50].75|1.0].67|33] 0|0 |0|Oo|OojOo|o]|o|]o|lo|fo|lo|O]oO
NS 0l1010]0]0].33[67|10]/50]0|0|0J0O]JO|O|O|]O]|O]|OG]O]O
NT ojojfojojojojlofloisSojlogselo|jojojo]Oofo|O]|0{0]0
PT ojojocjojojojojo]lo|o]sejlofsojojojojofojojo]o
PS ofojolojojojojajlojo]o]0}50fi0]67]33)0[0j0]0]|0O
PM ocjojojojojojofojojojojlo]o 0‘ 331.67|1.0].75[.50[.25] 0
PB ojoejojojojojofojojojojojolofjojo]|q]|25].50].75{1.0

Table 5.1 Non-Linear Fuzzy Input Window Definition
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The identical window design was utilised for both .inputs to conserve required
memory storage in accordance with the hardware restrictions for implementation

discussed in Appendix A, only the window limits being varied in each case. Using

these set definitions, and window limits of +15° for heading error and +2°s-! for rate
of change of heading error, the new input window designs are shown in Figures 5.2
and 5.3.
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Figure 5.2 Non-Linear Fuzzy Logic Input Window for Heading Error
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igure 5.3 Non-Linear Fuzzy Logic Input Window for Rate of Change

of Heading Error
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The chosen set points for each input window are defined in Table 5.2

Set / Input Heading Error Rate of Change of
Variable ) Heading Error (°s1)
NB ~-15.0 2.0
NM 9.0 - 1.2
NS 4.5 -0.6
NT -5 -0.2:
PT +1.5 +0.2
PS +4.5 +0.6
PM +9.0 +1.2
PB +15.0 +2.0

Table 5.2 Set Points for Fuzzy Input Windows

To reduce the data storage problem, the input windows were defined by twenty-one

discrete intervals (0—20) across the entfire universe of discourse. Therefore

interpolation between defined points was employed to provide a higher fuzzy input

resolution to the controller. Using the real world value for heading error with a

resolution of 0.1°, fizzification was undertaken to convert this value in the range

covered by the input window definition, i.e. (0 to 20). When fuzzified, a resolution

of 0.01 was maintained by equation 5.1.

Sfuzzy _error= min(20, max((real_error*0.067)+10,0))

where:

Juzzy_error = heading error after fuzzification

real_error =heading error before fuzzification
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A similar approach was undertaken for rate -of change of heading error (equation

5.2):
fuzzy _rate= min(20, max((real_rate*0.5)+10,0)) (5.2)

where:
Juzzy_rate = Raté of change of heading error after fuzzification

real_rate =Rate of change of heading error before fuzzification

In both cases, any input values falling outside the working range of the input
windows were saturated to the limits of the input windows and thus treated as if

they were an input of +15° to -15° or +2%-1 to -2°s-! for each window respectively.

5.3 DEVELOPMENT OF A PSEUDO INTEGRAL ACTION

A new method of employing an integral type action was required which would work
within the fuzzy autopilot without utilising the excessive amounts of code size and
data storage that was found to occur when integral action was utilised as an
excluded third input [5.3]. The magnitude of this problem was mainly due to the
additional fuzzification and defuzzification elements necessary within the control
routine. These elements were required to define the additional input fuzzification,
rulebase, defuzzification associated with the integral term. An excluded input can be
defined as an input which operates independently from the main controller input's
rulebase and may/may not confribute towards the final output derived from the
included inpufs. The included inputs are those used determine which rules are
activated from the given rulebase, and in this case are heading error and rate of

change of heading error.
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.The integral input could be designed as an included third input to the controller,
however thé resulting three dimensional rulebase becomes highly ekpehsive :

computationally.

it is much more computationally efficient to calculate the integral in a novel
manner, i.e. in terms of a shift to negative or positive of the established output from
the original two input FLC, within the ‘output window limits. This techrique is
called the Output Set Shift (OSS), equation 5.3:

OSS = min(-100, max( fuzzy _average_error,+100) (5.3)

where:

n TRIM *
fuzzy _average error=7y. J;Z;y _error
0

(5.4)

TRIM = Integral gain with resolution of 0.1

n = number of included samples

In order for this phenomenon to be possible, the conventional output window with
only seven fuzzy sets proved ineffective due to the coarse resolution of movement
possible. The resolution of this type of integral action is based on the number of set

point positions in the output window that the integral output may be assigned to.

A new and somewhat unorthodox style of output window was therefore designed
which contained two hundred and one fuzzy singletons, i.e. fuzzy sets with only one
element where the membership function has a magnitude greater than zero.
Although this may seem excessive, this number of fuzzy singletons was determined
to be the minimum number capable of providing a sufficiently high integral
resolution, without causing the controller to beoome. either oversized
computationally, or disjointed in its demanded control actuator movement. For the
operational rudder range of +30° the possible resolution using the two hundred and
one fuzzy singletons is 0.3°. However, using this technique means that the number
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of output permutations becomes vastly increased and the rulebase must therefore be
des\igfned to reflect the ﬁlli rang;a of outputfsets_, i.e. +100 sets: To aid this process,
the linguistic label for each of the output sets was replaced w.ith‘a't numeric.al
identifier in the range £100. The new design of output window is therefore of the

form given in Figure 5.4.

i.0 ¢
n(®
0.8 1

06 § |
-100 | -99] 58 LI B . 100

04 -

0.2 1

0 ~
=30 0 +30
Rudder Angle 6 (°)

Figure 5.4 Novel Form of Fuzzy Quiput Window

Similarly, the output defuzzification equation, using the "centre of area method", for

this novel form of window becomes:

+100
2.8:1(8;)

8y ==l — (5.5)

2 1(8;)

i=-100

where:
dq = Deterministic controller output.
8; = Discrete interval in universe of discourse 6.

i =Fuzzy membership at discrete interval §;.

54 FUZZY RULEBASE DESIGN

With any new design, there will be inherent differences from previous versions.

Whilst in this case the new design offers the potential for improved autopilot control
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when compared to the conventional PID autopilot (disregarding any on-line learning
abilify), it is imi)orta.nt that a structured test be_cariied out to clarify that the new
mechanism for control is operating correctly. This operation is best achieved by
designing the fuzzy autopilot in such a manner that it emulates the conventional PID
version. If a study of the results,'following the application of a predetermined set of
input data, demonstrates satisfactory similarity, then confidence can be raised that

any improved design will also work.

Since it is the fuzzy rulebase which controls what the autopilot is attempting to
achieve for any given set of input conditions, it was necessary to design the contents
of the rulebase so that for each combination of heading error and rate of change of
heading error set points, the rule activated identified an output set that corresponded
to the conventional PID autopilot output for the same inputs. The typical gain
setiings for rudder ratio and counter rudder used with the Cetrek PID controller are
given in Table A4 (section A.2). The conventional fuzzy rulebase was therefore
designed to contain output sets which reflected the two hundred and one fuzzy

singletons in the output window (Table 5.3).

Rate\Eror NB NM NS NT PT PS PM PB

NB 55 | 41 | 30 | 23 | <17 | <10 | #1 | 415
NM -7 | 33 [ 22 | <15 | -9 2| 49 | +23
NS 41 | 27 | .16 | -9 -3 +4 | +15 | +29
NT 37 023 <12 5 +1 +8 | +19 | +33
PT 33|19 8 | -1 ] +5 | 412 ] 423 | 437
PS 20 | <15 | -4 | 43 ] 49 | 416 | 427 | +41
PM 23 9 | 2 | +9 | <15 | +22 | 433 | +47
PB | .15 | -1 | +10] +17 | +23 | 430 | +41 | 455

TABLE 5.3 Linear Fuzzy Rulebase
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To test this autopilot configuration against the PID controller, inputs were applied
which described the complete operating: enveIcpe covered by the fuzzy- mput
windows for both headlng error and rate of change of headmg error. Step sizes used
were (1.5° for heading error in the range +15° to -15°, and 0.1°s! for rate of change
of heading error in the range +2°-! to -2°s-. The full results from this test are given
in Appendix B of this thesis. However, by analysing the results it is clear that
generally the fuzzy outpuf was within 0.1° of the PID cutf)ut.' This result is perfectly
acceptable, and demonstrates without doubt the validity of the . basic fuzzy

controller.

Given the non-linear design of the fuzzy input windows, it is possible to further
extend the non-linearity of the fuzzy autopilot by modification of the rulebase. By
this means the course-keeping action may be retained for small heading errors (sets
PT and NT), whilst the set PS and NS may be strengthened to prevent medium/]arge
course deviations from the desired course. This technique should maintain the vessel
heading much closer to the desired course than was possible with the PID controller
without increasing the PID's gain values. However, when gains were increased, then
a tendency to over-react for small heading errors would be produced. Similarly for
course-changing, the non-linear rulebase means that high gains with no rate of
change of heading error may be employed when heading error is greater than +15°,
and medium/small gains, with a rate of change of heading error, utilised as the
heading error reduces to zero. By this means a fast course-changing manoeuvre may
be carried out, still with the original accuracy when approaching the desired course.
The desired course will therefore be reached in a considerably reduced time. A new

non-linear design of rulebase was thus dev;eloped (Table 5.4).
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. RatetBror NB NM NS NT PT PS PM PB

NB -100 | -46 | 26 | 24 | -17 -1 +32 | +100 |

NM -100 | -43 | -21 -16 | --9 +5 | +35 | +100

NS -100 | -41 -17 | -10 -3 +8 | +37 | +100

NT 100 ] -40 | -14 | -6 | +2 | 411 | +38 | +100

PT |-100]| 38 | -11| 2 | +6 | +14 | +40 | +100]|

PS° |-100] 37 | -9 | 43 | +10 | +17 | +41 | +100

PM  ]-100{ 35 | -5 | +9 | +16 | +21 | +43 | +100

PB | -100| 32 | +1 | +17 | +24 | +26 | +46 | +100

TABLE 5.4 Non-Linear Fuzzy Rulebase

5.5 REVIEW OF NOVEL FUZZY LOGIC AUTOPILOT DESIGN

A novel version of a fuzzy logic autopilot has been designed which operates using
two included inputs (heading error and rate of change of heading error) which are
fuzzified and applied to a rulebase. The third input (integral) is an excluded input
and shifts the rulebase output to positive or negative within the output
window,(Figure 6.5). For the infegral to have sufficient resolution, the output
window was redesigned to contain 201 hundred and one fuzzy singletons. A
modified centre of area method was then used to defuzzify the window to obtain a

deterministic controller output.

CALCULATE
085S

e . '
. FUZZIFICATION RULEBASE 4 DEFUZZIFICATION——

Figure 6.5 Block Diagram of the F1.C Layout
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The difficulties with the scale of the data storage for tﬁe input windows were
overcome by using non-linear set shapes. A single Windoﬁr thus combined the
requirer.nents:for both the course-changing and course—kéeping modes of operation
without loss of performance. Each window was defined by only twenty-oﬁe discrete
intervals with interpolation between points to ensure sufficient input resolution was

maintained.

By designing the rulebase so that PID emulation was achieved, the operation of the
fuzzy controller was validated. The rulebase was then redesigned in a non-linear
format which enable delicate control for course-keeping using low gains, and

simultaneously fast course-changing using high gains.

The design of the foundation fuzzy logic autopilot may now be considered to be
complete. This autopilot design can also be utilised as the basis for the incorporation

of a form of intelligent learning, as covered in Chapter 6.
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CHAPTER 6. EXTENSION OF THE FLC DESIGN FOR SELF-
ORGANISING OPERATION

6.1 INTRODUCTION

Chapter 5 established the concept of the fuzzy logic foundation autopilot and
validated its operation in comparison to the conventional PID controller during the
design stage. It must be recognised tha;t this new design of FLC still suffers from the
main restriction associated with the PID version, i.e. there is no on-line leéming
mechanism. The performance ability of the FLC controller, whilst improved across
the operating envelope, remains dependant upon the settings for rudder ratio,
counter rudder and trim. These values are input into the system by the installation
engineer and may be subsequently altered by the mariner. The latter situation is

most likely to occur in the majority of situations.

The development of a learning mechanism which can be combined with the
established foundation FLC design is therefore essential if the desired overall
improvements in performance are to be obtained. Such a mechanism is called the
self-organising controller (SOC) which has been derived from an original
application by Procyk and Mamdani [6.1] in 1979 and has since evolved to match
various applicational requirements. Before describing in detail the manner in which
the SOC technique has been applied to this application, it is useful to briefly outline

the fundamental SOC principles involved.

6.2 ANUNDERSTANDING OF BASIC SOC PRINCIPLES

The early SOC design has since been applied to a variety control applications [6.2,
6.3 and 6.4]. Additional work by Yamazaki [6.5] and also by éugiyama [6.6] has
advanced the SOC performance capabilities to overcome early problems connected
with the speed of learning and the SOC's poor ability to cope with steady-state
exrors. More recently marine applications have appeared [6.7, 6.8, and 6.9] which
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utilise the algorithm proposed by Sugiyama. In brief, fhis algorithh combines the
two tasks of control and lcming. Contrgl is _carried out using traditional fuzzy logic
m'et_hods as préviously described in Chapters 4 and 5. Leaming is achieved.by
observing the operating environment and the controller's effect within that
environment. By utilising this information, changes in the fuzzy rulebase are
determined in order that future activations of those rules will generate an improved
level of performance. Having predetermined which observations are acceptable, and
which are mnot, this information may be stored in a matrix format called 2
performance index (PI). The content of the PI is indicative of the magnitude of the
rule change required. The PI therefore operates in a very similar manner to the fuzzy
rulebase described in Chapters 4 and 5. If the observations of the operating
environment indicate that the process is mainfaining a satisfactory level of
performance then no rule alterations will be required. Conversely, as the

performance level deteriorates, then the magnitude of the rule changes increases.

For this process to function correctly, it is imperative that the observations are
related to the rules that were activated by the control mechanism a period of time
previously. This period of time is related to the time constant of the process being
controlled and is referred to as the delay in reward. For the majority of the work
using the Sugiyama algorithm, an empty rulebase is utilised at the beginning of the
process, i.e. no model of the process to be controlled was required by the controller.
The content of the rulebase was then built up by the learning mechanism over a
period of time until rule convergence is achieved, i.e. no further rule modifications
are required as the PI considered that the performance level obtained was that

desired.
The key feature of the Sugiyama algorithm was the introduction of four over-rules.

These are rules which improve the speed of learning whilst also ensuring that the

learning is correct. The rules are process dependant but have been translated into
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marine terminology by the work of Sutton and Jess [6.9]. The over-rules may

therefore be amended for this application and described as:

. If Heading Error is Zero
& Rate of Change of Heading Error is Zero
Then Rule is Zero

2. If Heading Error is Pesitive
& Rate of Change of Heading Error is Positive

Then Rule is Positive

3. If Heading Error is Negative
& Rate of Change of Heading Error is Negative
Then Rule is Negative

4. Rules are Symmetrical about the Zero Position

To improve the speed of convergence for the rule modification, Sugiyama proposed
the introduction of a third input which for this application would be named the rate
of rate of change of heading error. The added controller complications of this
additional term were counter balanced by the performance advantage obtained.
Similarly, to improve controller speed Sugiyama developed a form of non-linear
quantisation. Quantisation is a pre-fuzzification step which maps the normalised real
world values into a range suitable for use within the SOC, e.g. 0 to 7 for an eight set
input window. Weight values were then utilised to combine the closest two sets,

thus creating pseudo-continuous inputs, so that resolution was not lost.
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6.3 DEVELOPMENT OF A NEW SOC METHODOLOGY

The fundamental concepts of the Sugiyanﬁa SOC are therefore the use of the
performance index and the supervisory role of the over-rules. Both of these aspecis
have been proven to operate successfully for a range of applications and can be
considered as the basis for this new design of SOC.

To assist with the implementation of ﬁie integfal action discussed in section 5.3, a
two hundred and one fuzzy singleton output window was employed to replace the
conventional output window which typically utilised seven fuzzy sets. The fuzzy
rulebase was similarly modified to encompass the two hundred and one possible
output sets. The design of FLC has significant implications for its potential
extension to SOC operation. By increasing the number of output set permutations to
two hundred and one , then the number of rule adjustments that can be enforced by
the performance index is also increased. In addition, identification of each output set
by a numerical label ensures that it is possible to increment, or decrement, the rules
mathematically. This facility is not practical when using linguistic labels. Should the
performance level of the controller fail and the PI thus dictate that a rule change is
required, the two hundred and one possible rule variations which can be chosen
provides, for the case when the Max Rud Ang setting is 9 equating to a rudder range

of £30°, a resolution of a 0.3°,

The concept of the rulebase being empty, with subsequent learning to generate the
correct rules, is not practical for this application. A vessel at sea with no control
initially, then poor control during learning, followed by optimal control after
convergence would create considerable safety problems. No vessel should be at sea
under autopilot control unless that control is both predictable to other vessels, and
corrective in nature with respect to the heading error. It could be argued that such
learning would be a "one off" operation with the results being subsequently recalled
from memory when the autopilot routine was activated. In practice, due to the time-

variant nature of both the vessel dynamics and of the environmental conditions,
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such Ieaming only meets the vessel's requirements at that particular time- and will
thus represent only a rough guide to the vessel‘s control requlrements at any pomt g1y
the future. Since a rough estimate of the performance requirements is already
available in the form of the pre-set gain values for rudder ratio, counter rudder and
trim, it is more realistic to attempt to incorporate this information into an elementary
rulebase which could be ﬁnely_ tuned on-line using the SOC learning mechanism.
By this means the autopilot always retains the" capability to controf the vessel.
Safety,' predictabi__lity and minimum performance levels can thus be ensured at all

times.

The fuzzy rulebase developed in Chapter 6 utilised typical gain values for rudder
ratio and counter rudder of 6 and 3 respectively. However, gain values must be
variable to allow the mariner the facility of adjustment. Thus to utilise a rulebase
with defined values in this manner restricts the ability to enforce any desired gain
alterations. Similarly the proportional and derivative functions must be considered
as separate features of the control mechanism since they may need fo be modified
independently, e.g. a condition may arise when an increase in rudder ratio is
required but the counter rudder performance remains acceptable and therefore
should not be changed. Given this situation, to modify a rule which represented the
output set derived from both gain terms could induce a detrimental effect on the
controller's performance. However, the rulebase has the ability to incorporate the
desired non-linear effects developed in Chapter 5. This facility must be considered
to be critical if the SOC design is to meet the required levels of performance, and
should not therefore be removed. After consideration of the rulebase and its
associated facilities and requirements, a new SOC component called an
enhancement matrix is now proposed which will replace the rulebase whilst
retaining the essential operatioﬁs which it carried out in addition to several

improved features.
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6.4 ENHANCEMENT MATRIX DESIGN

Instead of the beirig identified from the rulebase, the four "hit" output sets may be

determined by a linear calculation (equation 6.1).

fuzzy _output, = rn_in(+100,max(ﬁlzzy=—ermr. RR + Juzzy _rate” CR,—IO.O))

X y
(6.1)
where:
JSuzzy_output = Fuzzified output for use in the fuzzy output window
n = nth output set in the range 1 to 4
Juzzy error = Fuzzified heading error
Juzzy rate = Fuzzified rate of change of heading error
RR = Rudder ratio (proportional gain)
CR = Counter rudder (derivative gain)
X,y = conversion factors to the output set range of £100 (201 fuzzy

singletons) with a resolution of 0.05°.

This means of generating the required output set is relatively simplistic and contains
no non-linear effects. In addition, much of the ability of the FL.C to derive a
deterministic output from imprecise input data is lost. However, by employing the
use of the enhancement matrix (EM) the desirable features of the FLC, e.g. non-
linear effects and capability to cope with imprecision, may be recovered, with
additional benefits, e.g. use with variable RR/CR gain settings and separation of

rudder ratio and counter rudder effects for precise learning, also occurring.

The EM operates in a similar manner to the fiuzzy rulebase and has the same
dimensional specification as the rulebase developed previously for the foundation

FLC. Similarly, the inputs to the EM remain heading error and rate of change of
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counter rudder gain terms. The important difference between the EM and the
traditional rulebase is that the content of the EM does not identify an output set, .
instead each- EM represents an enhancement to the represented gain term (rudder

ratio or counter rudder) which can vary, given the combination of input conditions.,

At an initial level the EM is designed to contain the non-linear aspects contained
within the FLC rulebase. Because the EM is ‘accessed using the fuzzified input data
for heading error and rate of change of heading error, then the fuzzy abilities

“previously demonstrated in the earlier foundation FLC design may be restored.

However, there are two key reasons why the introduction of the EM is critical for

the development of the SOC:

1. The contents of each EM is non-dimensional and is expressed as a percentage
change based on the current RR and CR gain settings. It may therefore be
considered as valid irrespective of the gain settings for rudder ratio and
counter rudder. This feature enables variable gain settings to be introduced by
the mariner or by an installation engineer. The resulting FLC is therefore much

more flexible, and realistic, when considering the expected operating situation.

2. The two functions invoked by rudder ratio and counter rudder have been
separated. When learning is required from the SOC mechanism, it is possible
to identify and thus modify the two gain terms independently from each other.
The potential learning power of the SOC is therefore greatly increased by this
facility. In addition the delicacy with which precise levels of learning may be

achieved is also greatly enhanced.

As before, the EMs designed above attempt to replicate the conventional PID
control, for the utilised gain values, around the set point. However, as the magnitude

of the heading error increases, then so does the aggregate rudder ratio, i.e. the
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combined rudder ratio value plus. the enhancement from the EM. Conversely, for
rate of change of heading error, as the magnitude of the heading. error increases, .
then the enhancement from the EM becomes -more negative, i.e. the effective
aggregate counter rudder value is reduced. These non-linear effects were found to
improve the course-keeping and course-changing responses during autopilot
operation. As an initial point from which the leaming algorithm could commence,
two EMs were designed (Tables 6.1 and 6.2) encapsulating the non;liﬁeait effects -
from the original FLC rulebase . |

Rate\Error NB NM NS NT PT _PS PM PB

NB +200 { +100 | +33 0 0 +33 { +100 | +200

NM +200 | +100 | +33 0 0 +33 | +100 | +200

NS +200 | +100 | +33 0 0 +33 | +100 | 4200

NT +200 | +100 [ 433 0 0 +33 | +100 | +200

PT +200 | +100 | +33 0 0 +33 | +100 | +200

PS +200 | +100 | +33 0 0 +33 | 4100 [ 200

PM +200 | +100 | +33 0 0 +33 | +100 [ +200

PB +200 | +100 | +33 0 0 +33 {+100 | +200

Table 6.1 Enhancement Matrix for Rudder Ratio
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- RateBror NB NM NS NT  PT PS PM PB

NB -100 [ -100 | -67-] © 0 -67 | -100 | -100

NM -100 | -100 | -67 0 0 -67 | -100 | -100

NS -100 | -100 | -67 0 0 -67 | -100 | -100

NT -100 | -100 | -67 0 0 -67 | -100 | -100

PT -100 | -100 | -67.] O 0 -67 | -100 | -100

PS -100 | -100 | -67 0 0 -67 | -100 | -100

PM [-100]-100{ 67 o | o | -67 |-100]-100 [

PB -100 | -100 | -67 0 0 -67 | -100 | -100

Table 6.2 Enhancement Matrix for Counter Rudder

Equation 6.1 is now be modified to encompass the new EM features (equation 6.2).

(fuzzy _error* RR)+ EM_RR[a][b] (fuzzy _rate* CR)+ EM_CR[a][b]

fuzzy _output, = min(+100, max - 100, ; 100 _j00))
(6.2)

where:

EM_RR = Enhancement matrix for rudder ratio

EM_CR = Enhancement matrix for counter rudder

a = Fuzzy sets representing the fuzzified input of rate of change

of heading error for the nth output set
b = Fuzzy sets representing the fuzzified input of heading error

for the nth output set

Since each EM can confain both positive and negative numbers, in addition to
coping with on-line gain requirements to meet dynamic alterations or environmental

conditions, the EMs may be modified by the SOC to increase gains when they are

set too low by the mariner, or conversely to decrease gains when they are set too

high.

96




Having established the function of the two EMs, it is important to realise that vessel
performance will only be satisfactory if the contents of-each EMs is correct. In order ‘
to ensure that the EMs are capable of correct operation, the performance indices are
employed. Observations of the vessel performance are passed to the performance
index in terms of the fuzzified heading error and fuzzified rate of change of heading
error. Based on these observations, the performance index can enforce any required
modifications to each EM. The ability of . the SOC to achieve the ‘correct
modifications to the EMs is fundainental to the its successful operation and is

therefore dependant upon the content of the performance iidex utilised.

6.5 PERFORMANCE INDEX DEVELOPMENT

Other SOC applications cited in section 6.2, have employed a single performance
index (PI) to adjust their individual fuzzy rulebase. Now that the rulebase has been
replaced by a pair of EMs, it is necessary to develop two corresponding Pls, one

being applicable to the EM for rudder ratio, the other for the counter rudder EM.

In both cases the PI design was based upon the traditional structure with the inputs
being derived from the fuzzified heading error and rate of change of heading error
information. The content of the Pls was set to zero for acceptable performance
levels so that no change to the either enhancement matrix would result. When the
performance level observed from the input data appeared to represent an aggregate
gain being too high, then a negative PI value was set, thus reducing the
enhancement matrix value identified, and therefore generating a reduction in the
aggregate gain. Similarly, for low performance levels, then the PI value was set
positive to induce an increase in the enhancement matrix value and a subsequent

increase in aggregate gain. The PIs for rudder ratio and for counter rudder are given

below (Tables 6.3 and 6.4).
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Rate\Emor NB NM NS NT PT PS PM PB
NB 4+2.0 [ +0.7 | -0.3 | -1.0 | <10 | -0.8 | -0.5 | 0.0
NM | +16|+06(-01] 061} -061]-021 00 |+05
NS +12 [+06 | +0.1 | <02 | 02 | 0.0 | +03 | +0.8
NT +1.0 | 06 | 402 | 00 | .01 | 402 | +06. +1.0
PT +1.0 | +0.6 | +0.2 | -0.1 | -0.1 | +0.2 { +0.6 | +1.0
PS | +081+403) 0.0 | -02 | -02 | +0.1-| +0.6| +12.
PM | +05 00 | -02 | -06 -06 | -0.1 | +0.6 | +1.6
PB 0.0 ] -05] -08]-1.0][-1.0]-03]|+0.7][ 420

Table 6.3  Performance Index for Rudder Ratio

RatelEror NB NM NS NT PT PS PM PB
NB 20| -16|-12[-1.0 | +1.0 | +0.8 [ +04 | 0.0
NM 1.6 | -12 | 208 | -06 | +0.6 | +02 | 0.0 | -0.5
NS 121 -08] 05| -021+0.2] 001 -041-08
NT -1.0 | 06 -02]-00]-011}-02]-06]-10
PT -1.0 [ 06 02§ -01]-01][-02]-06]-10
PS 08 [ 041 00 |+02]-021-051]-08]-12
PM 051 00 [+02 ] +06| -06 | -08) -1.21{ -1.6
PB 00 | +0.4 | +08 {+1.0] -1.0 | -1.2 | -1.6 | -2.0
Table 6.4 Performance Index for Counter Rudder

The magnitude of each element in the respective PIs was determined based upon
experience, observations and an understanding of the nature of the learning required
and as such may be considered to be application dependant, Poor performances are
- penalised by large magnitude modifications to the respective EM responsible, whilst
desirable performance levels generate no modification. Between these two extremes

is a variety of permutations which reflect the non-linear set point positions in the
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tuzzy input windows. It is essential to take into account poor performances ‘which
are being modified correctly, e.g. PB heading error which is .reducing at an NB rate
of change of heading error is an acceptable performance. However why the PB'
heading error was present could be related to either earlier incorrect control, or due

to disturbance effects.

When the sea conditions become rough. it is: unrealistic to expect the vessel's
performance to be maintained with the same quality of response possible during
calm conditions'. Given that the only external indicators concerning Weathér, vessel
performance are the heading error and the rate of change of heading error, then an
element of uncertainty regarding the exact cause of any irregularities in performance
will remain. Assumptions regarding the learning required for generalised
performance conditions are therefore a firm basis to initiate the development of the

PIs. The seven key assumptions utilised for this thesis are:
For heading error EM -

1. If heading error and rate of change of heading error are approximately zero,
then decrease the gain enhancements slowly until a deterioration in
performance is detected. Then increase them slightly to regain the previous

performance level.

2.  Ifheading error is NB with rate of change of heading error NB, or if heading
error is PB with rate of change of heading error PB, then the performance is

very poor and the RR EM values responsible are increased significantly.
3.  If heading error is PB with rate of change of heading error NB, or if heading

error is NB with rate of change of heading error PB, then the performance is

very satisfactory and no modifications are required.
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For rate of change of heading error EM -

4. If heading error and rate of change of heading error are approximately zero,
then decrease the gain enhancements slowly until a deterioration in
performance -is detected. Then increase them slightly to regain the previous

performance level.

5. Ifheading error is NB with rate of change of heading error NB, or if heading
 error is PB with rate of éhangé of heading error PB, then the performance is

very poor and the CR EM values responsible are decreased significantly.

6. If heading error is PB with rate of change of heading error NB, or if heading
error is NB with rate of change of heading error PB, then the performance is

very satisfactory and no modifications are required.

7. Ifthe heading error is approximately zero, i.e. NT or PT, but the rate of change

of heading error is NB or PB, then a medium size modification is required.

Having established these performance assumptions, it is possible fo interpolate

between 1o calculate the detailed contents of each of the Pls.

With the PIs designed, a relationship must be developed between the current
performance levels observed and the enhancements in the EMs which require
modification, to generate an improvement in response when activated in the future.
This relationship is based on the time taken for the vessel to respond to controller

demands and is therefore similarly to the delay in reward discussed in section 6.2.
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6.6 TIME DELAY IMPLICATIONS

_The nature of the time delay feature is related to the time constant of the vessel. The
rationale is based upon reasoned logic that if an aggregate gain value is utilised
now, then the vessel will take a finite time to respond to that control action. If the
resulting performance level is unacceptable, then this is indicative of the aggregate
gain being incorrect and hence adjustmient of the EM is required. The lapse in time
between action and response is complicated further by the fast sample time being
used. Therefore, before the  vessel has completed its respdnse to the first control
action, many other control actions will have been computed by the controller. Whilst
some of these later control actions will be replications of the earlier ones, others will

be new and therefore different, based on the changing controller inputs.

The importance of the time delay is reinforced when considering the nature of the
learning process utilised by the SOC. If EM modifications are based on observed
performance levels, then it is crucial to ensure that any future modifications of an
EM element are based upon the performance level induced by the newly modified
element and not derived from an old value which has already been subsequently
adjusted. If not undertaken correctly, EM e¢lements can be over-modified with a

resulting poor, and possibly unstable, performance being obtained.

Traditional control theory states that as a rule of thumb, a system may be regarded
as finishing its response to a control signal after five time constants (57) have
elapsed, i.e. 99% complete. Unfortunately the response after 5t becomes too
obscured by later control actions making it difficult o determine the relevance of the

performance level observed to any particular EM elements. Conversely, considering

a time lapse of only It (63% complete), although the vessel response is fully
initiated, it has not been given sufficient opportunity to reach its final state of
response, Thus to measure performance levels at this time can indicate the manner

in which the vessel's performance is improving or deteriorating, but not the degree
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of that change. The delay in reward must be of & reasonable order, but need not be
én exact value due to the high sample frequehéy being ﬁséd for this application.
Therefore, a reasonable compromise is to utilise a time delay of 37 (95% complefe),
as this magnitude of time delay allows for vessel response whilst minimising the
possibly conflicting responses induce by later control actions and conflicts with
earlier work [6.9] which considered that less than 1t proved the most suitable value.
The difference between these findings is -due to the applicational considerations.
This study is aimed at small vessels, with the emphasis on course-keeping. The
work by ‘Sutton and Jess considered warship control and utilised learning from an
empty rulebase over multiple course-changing manoeuvres. During course-changing
the rudder actions are more definite with large rudders decreasing to small rudders,
The scale of the potential over-lap of control actions is therefore reduced and the
speed with which related performance levels may be clearly identified is thus

increased.

The time constant must thus represent the entire composite time response of the
vessel as a complete system, i.e. the time constant used must incorporate vessel
dynamics and those of the steering system including the rudder. For details of the

derivation of the time constant, please refer to section 7.3.
6.7 OPERATION OF THE SOC

Having defined the individual constituent parts of this new SOC, it is necessary to
link them into a form of control methodology which is usable for this, and other,
applications. The SOC learning works in parallel to the foundation FLC and consists
of two main structures, these being the data storage mechanism and the modification

routing (Figure 6.1).

102




SOQC LEARNING

i : 1
I Data Storage - - Modification 'I
] * Mechanism Routine |
|
o - = —
e
i FLC —— O

Figure 6.1 Block Diagram of SOC Layout

6.7.1 DATA STORAGE MECHANISM

The data storage mechanism is a means of recording which EM elements have been
activated at a given sample time. This information is critical if the correct EM
elements are to be modified, when the level of performance which they have
induced has been observed. To minimise the necessary data storage requirements,
this information was only retained at intervals of 6t during course-keeping. When
operating in the course-changing mode, the non-linear nature of the EMs is
consistent with an improved course-changing response and there is no requirement
for learning. This is because each change of course will cause different difficulties
and there is therefore no rationale for employing the learning from an earlier course-
change when undertaking a later one. Even should the environmental conditions
have remained constant, the original course will be different and thus the need for
higher or lower gains will have altered. In addition, learning from course-changing
will be diffused by subsequent learning during course-keeping and any learning
undertaken during course-changing may also cause a detrimental effect on the more
sensitive and important operation of course-keeping. If learning in the course-
keeping mode is correctly designed, then the vessel response within the critical £10°

will be assured for all modes of autopilot operation..

The data stored is based on the fuzzified inputs of heading error and rate of change

of heading error at that sample point. Both inputs have been fuzzified into two fuzzy
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sets in the eight set range, each with an associated membership value. The EM
elements are identified using the method previously applied to the fuzz-y rulebase in
Chapters 4 and 35, thus the data requirement fof this operation includes the necessary
information for inference (equation 5.11) to occur for each combination of input
sets. Obviously the "min" function, when applied to the two greater membership
values, will generate the most significant inferred EM membership éomponent
which is considered to be responsible for- the subsequent’ pe’rfortnénce level
observed. Conversely, the "min" function when applied to the two -smaller
membership values can be considered to generate the least significant inferred EM
membership and thus have lowest participation and thus a much reduced

responsibility for the ensuing performance.

The data is thus stored in order of importance with the greater inferred membership
value and associated fuzzy input sets first, and the smallest inferred membership

value and associated fuzzy input sets last.

6.7.2 THE MODIFICATION ROUTINE

The modification routine must not be activated until a period of time equal to 37
after the data storage mechanism has been activated to allow for the performance
level observed to be related to the data stored. Similarly, once a correction has been
undertaken by the modification routine, then a further period of 31 must elapse
before the next iteration of the learning process may commence, i.e. data storage, so
that any new modifications to the EMs will be taken into account before learning
continues. Therefore the modification routine also operates with a time period of 67,

but is 3t out of phase with the data storage mechanism.

Observation of the current performance level is achieved by utilising the
fuzzification for heading error and rate of change of heading error which is valid

when the modification routine operates. During the modification routine, four EM
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alterations are calculated, one for each combination of the current fuzzy input sets.
In each case the alteration is adjusted by the applicable m@xﬁbemhip value and then
* summed with the other three alterations so that an aggregate EM modification is
obtained which reflects both the position and magnitude of the performance level
observations. This routine is applied to rudder ratio by using the rudder ratio PI, and
for counter rudder by using the counter rudder PI. In both case ;che PI values are
given in terms of gains, and thus require conversion before application to the EMs
which are described non-dimensionally in terms of percentage variations. Eciuations

for the respective modifications are given, (equations 6.3 and 6.4):

%:(PI_RR[Rate(sat)n T Error(set)” J* min(Rate(p) ", Error(pn)™))
Mod RR = 2=l :

RR * 3" min(Rate(j)"  Brror(11)")

n=lI

6.3)

i(PI_CR[Raute(set)n T Error(set)” ]* min(Rate(p)" ,Error(n)"))
Mod_CR =21

CR* imin(Rate(p)n JError()™)

n=1

(6.4)

= Modification to the EM for rudder ratio

= Modification to the EM for counter rudder

= Performance index for rudder ratio

= Performance index for counter rudder

= fizzy sets describing heading error and rate of change of
heading respectively

= fuzzy membership for sets describing heading error and rate

of change of heading respectively
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The various combinations for the fuzzified inplit.sets for n in the range 1 o 4 are
described in Table 6.5, Wh@re_:"-Sét ngn i-s'the set with the Targest membership value,

and set "b" is the one with the next to largest membership value.

n \ set| Heading Error | Rate of Change of
: Heading Error
1 A T
2 a b
3 b a
4 b b

Table 6.5  Input Set Combinations

The performance level observed, and hence the PI values utilised and the
modification calculated, are based on the fuzzified inputs at the sample time when
the modification routine operates. The EM elements to be modified are located by
the information stored by the data storage mechanism and relate to the position
within the EM of the elements which were used to generate the current
performance. The observed performance level was caused by the activation of up to
four EM elements from each EM, therefore up to four EM elements from each EM
must be modified. Only one composite modification value has been generated for
each EM, which reflects all of the associated membership values utilised by the EM
activation. However, it is necessary to relate this modification value to the actual
membership value of the EM element to be modified, before that modification takes
place. This is to ensure that the scale of the modification is related to the
responsibility of that element for the observed performance level. The EM
modification must therefore be adjusted to allow for the significance of the element

to be modified, equations 6.5 and 6.6.

Mod_RR =2 * z*(Mod_RR * min(Rate( ), Error())) (6.5)
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Mod CR=2%z *(Mod_ CR * min(Rate( ), Error(11))) (6 6)

where:;

z = Scaling factor.

The magnitude of ‘each of the calcﬁlated EM modifications assumes an even
distribution. of responsibility, i.e. all minimum input memberships are 0.5. It is
therefore necessary to scale the modification by a factor of two to maintain the
significance of the calculated modification. In practice, the membership values are
likely to be varied, thus for a inferred membership of 1.0 then double modification
would result which would correspond to the strength of responsibility incurred,
whilst a negligible modification would be allowed for a membership value
approaching zero.

After establishing the final modification for each identified component in both EMs,

the alteration of the relevant values is effected by equations 6.7 and 6.8.

EM_ RR[Rate(set) ][ Error(set)] = EM_ RR[Rate(set)][Error(set)]+mod RR
(6.7)

EM_ CR[Rate(set) J[Error(set}]= EM_ CR[Rate(set)][Error(set)]+mod_CR
(6.8)

By repeating equations 6.7 and 6.8 for each combination of input sets stored by the
data storage routine, then up to four elements of each EM will be modified during
each run of the SOC learning. However, it remains necessary to impose the

restrictions of over-rules to ensure that the learning achieved remains correct.
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6.7.3 THE APPLICATION OF OVER-RULES

After translating from rulebase usage to that of the enhancement matrix, not all of
the original over-rules remain valid for this application. Each over-rule is therefore

considered in turn to assess its individual validity.

Over-rule 1. Since there are no sets to speciﬁcalljr define the zero condition due to
the eight set input window, it is not possible to ensure zero output for zero
input by an over rule. Howeifer, the symmetrical pature of the EM will create

this condition due to the retention of rule 4.

Over-rules2 & 3. Due to the EM containing gain enhancements not rules, the
symmetrical components of each EM have the same sign convention compared
to the traditional rulebase used in the original foundation FLC where the sign
convention was mirrored to obtain the desirable control. Thus to state that
zones of the EMs should be positive or negative in nature will not facilitate

learning.

Over-rule 4. The need to ensure that the EM stays symmetrical remains applicable
to this application. Whilst the original reasoning for use with a zone of
influence is irrelevant since such a zone is not being utilised, controller output
must equate to a balanced operation with the integral action coping with any
deterministic requirements. Thus which ever rule is modified, then its

symmetrical location in the EM is also modified by the same amount.

Clearly of the four Sugiyama over-rules, only rule 4 may be utilised for this new
SOC design. However, to meet the requirements of this application, five new over-

rules were demanded, these are:
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Over-rule 1. When more than one modification of the same EM element will occur
is a single iferation of the learning cycle, then only the modification with the
largest membership value ‘should be used, i.e. the most significant

modification. This rule avoids excess and incorrect learning.

Over-rule 2. No negative gain enhancement should exceed the value of the variable
gain setting as adjusted by the mariner. This rule avoids the concept of
negative aggregate gains. In practice, there is no justification for reducing the
aggregate gains below zero, however unpredictable control could result if fhis

were to occur.

Over-rule 3. No learning is required during course-changing mode. This rule
avoids unnecessary learning which has little impact on course-changing but
could impose a detrimental effect on the course-keeping abilities of the

controller.

Over-rule 4. No learning is required within the initial one hundred and twenty
seconds of course-keeping to allow the integral action time to reduce any
steady-state error. This rule avoids learning about apparently poor performance

which will be corrected automatically.

Over-rule 5. During learning, no modification is required to the EM elements
associated with either NB or PB heading errors, irrespective of the rate of
change of heading magnitude, as any such alterations will have little influence
upon the course-keeping performance, but may seriously impair the course-

changing abilities.
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6.8 ON-LINE TRIM ADJUSTMENT:

The concept of the SOC learning for on-line adjusfment of the rudder ratio and
counter rudder gains has been described. However, for the final controller design to
be able to operate independently of the mariner, it is necessary fo ensure that the
integral gain (trim) is also sef up with a suitable value. This routine can be
considered as independent of the main leamning méchanism. However, similarly to
the previously described method of learning, the trim adaption should not occur
during course—changing, or for the initial period of course-keeping to allow the

vessel an  opportunity for the integral action to take effect.

The magnitude of the average heading error indicates the success of the integral
action with the current trim setting, since the integral action is interided to remove
any such steady-state error. The frim adaption is therefore based upon the average
heading error generated from equation 6.9. This value is then utilised in its absolute
form because the trim value must be incremented, or decremented, due fo the

magnitude of any heading error, not in respect of any sign differences,

i Juzzy error
fuzzy _abs_ave_error=abs| 2 " 6.9)
where:
Juzzy_abs_ave_error = Averaged heading error at the n% sampling
absolute form
fuzzy_error = Fuzzified heading error
h = Number of samples

The trim adaption remains a crude mechanism in comparison to the detail for rudder
ratio and counter rudder. In practice the trim gain is less sensitive to incorrect tuning

and operates in a more uniform manner across the operating envelope, Thus there is
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no need for delicate reﬁnemén_t. Table 6.6 summarises the rules utilised for the trim
adaption.

The trimn adjustment can then be added to the trim variable set by the mariner. When
the steady state heading error is greater or equal to 43°, the trim setting is

incremented by 0.5. Similarly it is incremented by 0.1 for errors in the range £0.45°

to £3°.
Fuzzified Fuzzified Trim Gain
Abs Error Abs Rate Adjustment
220 N/A +0.5
23 & <20 N/A +0.1
<3 >50 -0.5
<3 >16 & <50 -0.1

Table 6.6  Rules for Trim Adaption

Steady state error less than +0.45° may be consider negligible, unless a rate of
change of heading error is observed. When this rate is greater than +1.0°s! the trim
setting is decreased by 0.5, and by 0.1 when the rate is in the range +0.3°s! to

+1.0%st .

Trim adaption is carried out at intervals of 61 to correspond to the main learning
mechanism, and thus operates in phase with the modification routine. Learning for
rudder ratio and counter rudder is retained within the autopilot during both operation
and standby (autopilot on but not engaged) periods since any improved performance
derived from learning is likely to remain valid. In the case of the trim adaption, any
modification will be course dependant and thus the calculated modification is set to

default when in standby mode to prevent a subsequent loss of performance.
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6.9 CONSIDERATION OF THE NEW SOC DESIGN

A new design of SOC has been created for the small vessel application which was

based on the Sugiyama algorithm's performance index and over rule features.

The rulebase was replaced by two enhancement matrices, one for rudder ratio and
the other for counter rudder. Each EM contained detail of how the gain should be
enhanced for a given set of inputs (heading error and rate of change of heading
error). Instead of an empty rulebase, the EM was designed to include basic ship
control information and the non-linear effects developed for the earlier rulebase.
The use of the EMs allowed the SOC to work with variable gain settings from the
mariner. In addition it allowed a clear distinction between rudder ratio and counter
rudder so that the learning mechanism could enforce more precise changes in gain
than was possible using the rulebase. Performance indices were also developed to
operate in conjunction with the EMs. Learning was carried out in two stages, the
data storage mechanism and the modification routine. Each were separated by 3t
where T was determined to be the overall time constant representing both the ship
dynamics and those of the steering mechanism. Trim adaption was carried out
simultaneously with this learning, however a series of over rules was developed to

ensure that the learning was correctly achieved.

The nature of the final SOC design differs greatly from any others, including
previous marine applications. This is mainly due to the need to resolve the strict
requirements imposed by this particular application. However, it is only by full scale

sea frials that any new design can be validated, thus proving that its potential.

6.10 REFERENCES

6.1 Procyk TJ. and Mamdani EH. "A Linguistic Self-Organising Process
Controller." Automatica, Vol. 15, pp 15-30, 1979.

112




6.2

6.3

6.4

. 6.6

6.5

6.7

6.8

6.9

Daley 8. and Gill K.F. "A Design Study of a Self-Organising Fuzzy Logic
Controller." Proc. IMechE, Part C, Vol. 200, pp 59-69, 1986.

Shao S. "Fuzzy Self-Organising Controller and its Applications for Dynamic

Mamdani E.H. and Stipaniciev D. "Fuzzy Set Theory and Process Control,

Past Present and Future." Proc. IFAC Symposium on Advanced Iriformation
Processing in Automatic Control, Frames, 1989.

Yamazaki T. "An Improved Algorithm for a Self-Organising Controller." PhD'
Thesis, University of London, 1982

Sugivama K. "Analysis and Synthesis of the Rulebased Self-Organising
Controller." PhD Thesis, University of London, 1986.

Farbrother H.N., Stacey B.A. and Sutton R. "Fuzzy Self-Organising Control of
a Remotely Operated Submersible.” Proc. IEE Int. Conference Control 91,

Edinburgh, pp 499-504, 1991.

Sutton R., Roberts G.N., and Fowler P.J.S. "The Scope and Limitations of a
Self-Organising Fuzzy Controller for Warship Roll Stabilisation." Proc. 15t
Int. Conference Modelling and Control of Marine Craft, Exeter, pp 148-177,
1990.

Sutton R. and Jess I.M. "Real-Time Application of a Self-Organising Autopilot
to Warship Yaw Control." Proc. IEE Conference Control 91, Edinburgh, pp
827-832, 1990.

113




7.1  INTRODUCTION

In this thesis a new design of autopilot has been developed and presented in detail.
With any theoretical research, true credibility can only be established when the final
design is seen to perform in its real operating environment. For this work, a fully
functional autopilot was therefore be embedded within the "autopilot system"
described in Appendix A. The system was then be installed on a physical vessel of
typical size and type so that a range of representative manoeuvres could be
undertaken, with the results logged on a computer system for subsequent analysis.
For this application it was decided that the essential data to record would be time
(s), desired heading (°), actual heading (°), yaw rate (°s-!) and actual rudder (°), all

with a sample period of 0.1 seconds.

In order to demonstrate the success, or otherwise, of the controller design, it was
fundamenta] that a comparison be made to an alternative source of data. The
hypothesis presented within this thesis is that a FLC may be designed to outperform
the conventional PID autopilot. With the addition of the learning elements, the FLC
was transformed into the SOC which then further enhanced the performance
advantage. Since the new design of autopilot is to succeed the conventional PID
controller, then it is a pre-requisite of any validation, that PID data was also
obtained for the identical sequence of manoeuvres so that a comparative study of the
two applied methodologies could be undertaken. Clearly since the full scale trials
were undertaken at sea, because of the variable nature of wind, waves, tide and
current, the precise repetition of environmental conditions is impossible. Only by
testing the two controllers sequentially, with a minimum of delay between
experimental runs, could continuity of conditions be approached. Whilst not ideal,
this is the most realistic form of testing possible for this application. The alternative
approach would be scale model testing in a controlled environment, e.g. a

manoeuvring tank. With model testing, significant functions of the autopilot may
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Being of sujtable size; speed and displacement, this vessel was typical of the various .h
types which currently operate the conventional autopilot system and was therefore
considered as ideal for validation testing. In accordance with the description of the

autopilot variables (Appendix A), the settings for these tests are shown in Table 7.1.

Variable | Variable
Nz;me- Setti.ng
RR 6
TRIM 4
CR 3
RDB 1
MRA 9

TABLE 7.1 AUTOPILOT SETTINGS UTILISED FOR SEA TRIALS

With the exception of the MRA variable, these settings are typical, and therefore a
good standard of performance may be expected from the conventional PID autopilot
in both course-keeping and course-changing modes of operation. However, no
attempt has been made to optimise these variables either for the vessel, or for the
environmental conditions. In must be recognised that by using such variable values,
the testing is more realistic of normal autopilot operation whilst also providing the
SOC with limited scope to carry out any learning deemed necessary. The MRA
variable was set to 9 which represents +30°, the limits of the working range of the
rudder on this véssel. The settings in Table 7.1 were utilised for the conventional
PID, FLC and SOC tests without any adjustment taking place. All the controllers
therefore had the same gain settings and were tested in near identical sea conditions.
Any variations in results can therefore be considered as being due to the nature and

ability of the individual controller and not the result of any outside factors or

influences.
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Test were carried out with the engines at 2100 rpm which equated to 18 knos. By
maintaining this speed for the tests it was possible to ensure that the vessel remained
in the planning mode so that any incorrect rudder demands would be more

noticeable due to the increased responsiveness of the vessel's dynamics.

Sea and wind conditions were light and could be associated with those described by
sea state 3. The prevailing wind direction was '10.1°'. These tests ,Wcre.carr'ied out’
during the morming with low tide at 08.49 at a height of 0.87m. Although of less
significance then the wind, the tidal effects would have operated in a similar
direction, their magnitude modestly increasing during the trials once the tide had
"turned". Wave, wind and tidal effects would therefore have been present when
undertaking these tests, however, being disturbance effects of characteristic
magnitude, their effect on the vessel's performance should have been acceptably

within the range permitted for autopilot use on small vessels of this type.

7.3 TIME CONSTANT DERIVATION

As described in section 6.6 the SOC required a time delay feature for the learning
mechanism, which was related to the time constant of the vessel. For these
validation sea trials, an experimental approach was utilised to obtain a good
approximation of this value, however an alternative approach would be to develop a
set-up test program which could be run once by the installation engineer, and which
would calculate the required time constant value by carrying out a pre-defined series

of manoeuvres.

The rudder was forced to is its maximum physical limit, this ensured that the vessel
would turn with the largest possible yaw rate. Figure 7.2 shows the rudder response
obtdin for this operation and it is apparent that whilst the autopilot limits are +30°,

the physical limits are a little greater at +32°. The difference is to prevent the
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autopilot from generating rudder demands which are large enough to encounter the
physical stops at the limits of the tudder 's range of movement. Such an occurrerice
would slowly induce undesirable, and unnecessary, wear on the rudder system. This

limiting feature is commonplace on most small vessel autopilots.

As the rudder angle increases, then the vessel will begin to turn. However, the final

when the rudder reached the maximum physical limit of about 30°,.the vessel
approached a constant rate of turn, which was found to approximate to -7.6°-1, and

was reached about 4.6 seconds after the vessel's turn began (Figure 7.3).

@ Steady Rudder Response

30 +

5 4
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15 =+
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Time (5)

Figure 7.2 Rudder Response for Time Constant Derivation

T

(7.6 °s")

Eiguré 7.3 __Yaw Rate Response For Time Constant Derivation
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rate of turn (yaw rate) is determined by the magnitude of the rudder angle. Thus




If the vessel is consi&ered' to have reached 95% of the stéady—étateﬁspoﬁse of -
7.6°1 in 4.0 seconds (3t), then the fime -constant for just the vessel (t) must
approximate to 1.33 seconds. However, it 6an be seen from Figure 7.3 that due to
the time delay associated with the rudder mechanism, the composité time delay of
the vessel when considered as a complete system, ie. including time de_lﬁy
components for both the vessel and the steering I_nechanism, then _95% of the final
yaw rate Wzlls. achieved after 4.6 seconds (37). The vailie of time constant used for

these tests was therefore 1.533 seconds.

7.4 VALIDATION OF THE FL.C FOR COURSE-CHANGING

The problem regarding course-changing with the conventional PID controller, as
discussed in section 2.2.3, is that the gain settings used are those for the mode of
course-keeping and consequently are relatively low. The resulting course-changing
ability is therefore inhibited and slow. Should the rudder ratio value be increased,
then the course-change would be faster but would probably overshoot the desired
heading. The higher rudder ratio, when subsequently applied to course-keeping,
would generate a poor level performance. The non-linear FLC was designed to
overcome this problem and utilises high rudder ratio and low counter rudder for
large heading errors, whilst maintaining an equivalent response to the PID for close
to the desired heading. To validate this, both large (90°)and small course-changes
(30°) were demanded using both the FLC and PID controllers. The results of the
rudder and heading response for the FLC and PID autopilots are shown in Figures
7.4 to 7.7. However, Figure 7.8 combines the heading results for both FL.C and PID
responses and the fundamental differences for the 90° change, and conversely the
similarities for the 30° change, are clearly visible. Once the system was allowed to
settle on a course of 90°, the course-changing tests consisted of a 90° course-

change, followed by a subsequent 30° course-change afier 140 seconds had elapsed.
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Figure 7.8 Combined Heading Responses for FLC and PID Autopilots
During Course-Changes of 90°, Followed by 30° after 140 Seconds .

7.4.1 DISCUSSION OF THE FLC COURSE-CHANGING RESULTS

The quality of the actual course change in each case was measured in terms of

vessel heading by:

1. Rise Time - the time taken for the vessel heading to respond to the new course
demand and is defined as the time for 95% of the desired heading to be

obtained.
2. Overshoot - the magnitude of the first overshoot of the desired heading.

3. Settling Time - defined as the time taken for the response, after a course

change demand, to settle within £2° of the desired heading.
Details of the results obtained for these tests are given in Table 7.2. The FLC's
performance is related to that of the PID autopilot by calculating the performance

difference as a percentage of the PID result.
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Course PID . FLC FLC/PID
Change | ' %
Rise Time 1 620 33.6 .46
(s)
Overshoot 90° 0 0 0
©)
Settling 953 78.7 -17
Time (5)
Rise |- 59.9. 842 | 24
Time (5) | ' -
Overshoot 300 | w2 0 | -100
©)
Settling 68.8 59.8 -13
Time (s)

Table 7.2 _ Heading Results FI.C and PID Course-Changing

Similarly, rudder activity was measured in terms of root mean square (RMS) values,

maximum movement and range of activity (Table 7.3).

PID FLC FLC/PID
%
RMS Rudder 6.36 4.73 ~26
)
Maximum 23.65 30.00 +27
Movement.(°)

Range of 25.12 32,71 +30

Activity (°) :

Table 7.3 Rudder Results FL.C and PID Course-Changin

Considering the 90° course-change, a fast improvement in heading resporise is
observed in Figure 7.4 with the rise time drastically reduced by 46% as a result of
the non-linear effects incorporated in the FLC autopilot. Once close to the desired

heading, the FL.C then operates similarly to the PID controller, and there is no
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overshoot. When in progress this FLC course-change was not observed to induce
excessive roll in the vessel and thus the "pagsenger ride" femained comfortable. _In" _
addition, the FL.C rudder response shown in Figure 7.5 is much more positive than
that of the PID alternative. For course-keeping the small rudder movements are
completely ineffective until the vessel heading approaches the desired heading.
Thus the FLC, without the small rudder movements for the first section of the
response, can be considered to generate less rudder wear and also consequently

would result in a lower power consumption in comparison to the PID.

The vessel heading performances obtained for each autopilot, for the 30° course
change, were very similar to each other, this was é}zb'e‘cted due to the non-linear
FLC design Both responses rose and settled quickly although the PID was found to
overshoot by 2°, possibly as a result of noise, whilst the FLC rose significantly
faster, but was a little slower at settling and did not overshoot the desired heading.
In order to achieve this improved response the FLC utilised a much larger range of
rudder values. However, it is important to note that the RMS rudder for the FL.C is
actually 26% smaller than that of the PID controller. Since the magnitude of the
RMS value is an indication of the size of the dynamic forces induced on the vessel
by the rudder action, the FLC rudder response clearly has reduced these influences
by approximately one quarter. addition, the RMS value is a measure of the rudder

power utilised, therefore the required power was also reduced by 26%.
7.5 VALIDATION OF THE FI1.C FOR COURSE-KEEPING

During the course-keeping mode of autopilot operation, the difficuity is to minimise
the heading error without allowing the rudder activity to become too significant.
The non-linear FLC autopilot was designed to perform similarly to the PID
controller for small heading errors. As the heading errors increase, then the same
higher rudder ratio values utilised during course-changing begin to become active

and thus force the vessel heading back on course. A narrow band of acceptable

124







performance can therefore be created in which the vessel heading will be maintained

To validate this' hypothesis regafding the FLC's -course-keeping’ properties, the

vessel was allowed to settle on a heéding of 260°. For each controller, a two

hundred and thirty second course-keeping test was then undertaken to maintain the

heading of 260°.

7.5.1 DISCUSSION OF THE FLC COURSE-KEEPING RESULTS

Vessel heading and rudder results were recorded for both the FLC and the PID
autopilots and results are shown in Figures 7.9 to 7.12. For course-keeping

operation, heading and rudder data were analysed using RMS values, maximum

values, minimum values, range of activity, variance and standard deviation (Tables

7.4 and 7.5).
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PID . FLC FLC/PID

Maximum 64 - 2.0 - N/A -
Error (°)

Minimum -5.2 -3.7 N/A
Error (°)

Range of 11.6 5.7 =51
Error (°)

Variance 4.4 2.0 -55
Standard ~2.1 1.4 -33
Deviation :

N/A = Not Applicable

Table 7.4 Heading Results FL.C and PID Course-Keeping

PID FLC FLC/PID
Yo
Maximum 8.4 59 N/A
Movement (%)
Minimum 0.6 1.9 N/A
Movement (°)
Range of 7.8 4.0 -49
Activity (°)
Variance 1.5 0.9 -40
Standard 1.2 1.0 -17
Deviation

N/A = Not Applicable

Table 7.5 Rudder Resulis FI.C and PID Course-Keeping

When considering the FLC's heading response in Figure 7.9, it is apparent that the
hypothesis presented is true in that the vessel's heading remains much closer to the
desired heading at all times due to the dperation of the non-line.ar control strategy.
This feature of the FLC, during course-keeping is reflected by the improvements of
33% for standard deviation and 55% for variance verifying mathematically the

visual impact'of Figure 7.9 when compared to Figure 7.11. Because the course
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deviations are smaller, the passenger ride may also be assumed to be comparatively -
improved with a reduction in vessel roll which is induced by the corrective rmidder
- action. With this improved course keeping, the down track time and therefore fuel

costs, should be reduced considerable over the length of a voyage.

In both cases, the integral action has operated to reduce any steady -state error
effects of the vessel's heading. Due to the constant variation of disturbance effects, -
to expect the infegral correction to completely remove this error _woﬁld be
uﬁrealistic. For the PID and the FLC autopilots, the absolute st‘eady'-staté error was
reduced to approximately 1°. However, it is interesting to note that for the PID
coniroller the remaining error was positive, whilst for the FLC it was negative. This
is not uncommon with small vessel autopilots and both results are within

performance expectations and therefore equally acceptable.

The improved heading response from the FLC is due to an enhanced rudder action
demanded from the controller. The FLC rudder response shown in Figure 7.10
demonstrates that the large rudder movement of the PID controller was replaced by
a tight and effective rudder action. Because the rudder movements became far
smaller, with the FLC, the variance and standard deviation are reduced by 60% and
34% respectively, and undesirable effects on vessel dynamics, induced by the
rudder, will also have been significantly reduced. The occurrence of small rudder
oscillations is apparent in the FLC's rudder response. However, these effects are
acceptable since they appear with a similar frequency, but greater magnitude, to
those found in the PID response. The improvement in control, due to these rudder

movements, is apparent from the high quality of the FL.C's heading response.
7.6 VALIDATI T E-KEEPING

Since the gain seftings used for both the PID and FLC autopilots were not
determined by any optimal design strategy, there is likely to be further improvement
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possible. In reality the performance of the of the FLC for both course-changing and
course-keeping modes of operation has been far _superior to’ the PID alternative,
There is therefore no need for any radical controller adjustment, however, the
requirement for further fine tuning still remains. Large degrees of learning are easy
to facilitate with the SOC due to the construction of the PIs defined in Chapter 6.
However, fine tuning has a far higher degree of complexity. Clearly, any incorrect
learning will become immediately apparent as cburse—keeping qualities will
suddenly begiﬁ to deteriorate. Conversely, any correct tuning will probably be of
small magﬁitude, due to the original high perfdrman(:e level dbtained, and thu;s' not
easily visible in the vessel's performance, but will occur as a gradual increase in

performance over the duration of the validation test.

The validation test carried out was designed to compliment the previous FLC
course-keeping test. Gain settings were initially determined to be those used
previously for the FLC and PID autopilots. A desired heading of 260° was then
maintained for a period of two hundred and thirty seconds with the resulting SOC
responses shown in Figures 7.12 and 7.13. Since these tests were performed
immediately subsequent to the previous PID and FLC validation tests, the
environmental conditions may be considered to be as near identical as possible for
this application. The results from this SOC test were therefore be compared to those
of the FLC to identify any performance advantage gain resulting from the SOC's
learning as a percentage. Similarly the SOC results were also compared to the
original PID results to indicate the overall performance advantage achieved by the

SOC autopilot
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Because no .leéming- occurs during coﬁrse-changing',_ there was no advantage to
undertaking any SOC festing in this modé of autopilot operafion. Siﬁce the FLC was
designed to merely be the SOC with its learning inhibited, the SOC's course-
changing performance is that of the FLC and the results presented in section 7.3 are
valid. For the same reasons, the FLC resuilts for course—keeping are also those of the

SOC when course-keeping with its learning turned off. -

7.6.1 DISCUSSION OF THE SOC COURSE-KEEPING RESULTS

The results for vessel heading and rudder responses are shown in Tables 7.4 and 7.5
respectively with comparison, where relevant, made between the SOC and both the

FL.C and PID results to indicate the scale of learning imposed.

SOC SOC/FLC { SOC/PID
% Yo

Maximum 0.8 N/A N/A
Error (°)

Minimum -4.2 N/A N/A
Error (°)

Range of 5.0 -14 -51
Error (°) :

Variance 1.1 -45 =75
Standard 1.1 -21 -46
Deviation

N/A =Not Applicable

Table 7.6 Heading Results SOC (Learning On) Course-Keeping

132




SOC SOC/FL.C | SOC/PID
' . % Y%
© Maximum 67 N/A - “N/A
Moyement (°) |
Minimum 1.6 N/A N/A
Movement (°)
Range of 5.1 +28 -35
Activity (°) :
~ Variance " 0.6 S 33 | -60
Standard | 0.79 21 -34
Deviation

N/A =Not Applicable

Table 7.7 _ Rudder Results SOC (Learning On) Course-Keeping

Given the quality of the previous FLC course-keeping response, the results obtained
for the SOC are quite significant. As expected, there were no dramatic alterations in
the controllers performance. However, after an analysis of the data, it is apparent
that considerable further learning has occurred with notable consequences. In
particular, when considering the vessels heading response, in comparison to the high
performance obtained by the FLC, the range of movement, i.e. the heading error,
has been restricted by the SOC a further 14%. Both the variance and the standard
deviation of this response have also been reduced by 45% and 21% respectively, .
When compared to the original PID autopilot, these improvements for variance and
standard deviation become 75% and 46%. The course-keeping ability of the SOC is
therefore far superior to the PID controller and significantly better than the FLC.
Since without learning in operation, the SOC and the FLC are the same controller,
then this measured difference must be a reflection of the SOC's learning ability. It is
therefore demonstrated that the SOC has the ability to learn on-line so that the

vessel's performance may be improved to meet the relevant operafional conditions.

Having investigated the heading performance, it is now necessary to consider that of

the SOC's rudder response. Clearly, to obtain such major performance
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improvements must require an alteration in the rudder movement. In comparison to
the FLC, the results in Table 7.5 indicate that the range of rudder movement has
increased by 28%. This value still remains 35% lower than the range of movement
utilised by the PID autopilot. However, it is important to note that despite the
greater range of movement being used, the rudder's variance and standard deviation
have been reduced a further 45% and 27% respectively compared to the FLC
autopilot. When compared to the conventional PID alternative, these values are also

similar at 40% and 17% respectively.
7.7 SIMULATED AUTOPILOT TESTING

The operation of the new autopilot design has clearly been demonstrated as a
success, when installed on the sea trial test vessel. However, this self-organising
autopilot is required to operate on a range of vessel types and it is therefore
necessary to evaluate the likely performance obtainable on other vessel types. It was
not practical to participate in further sea trials as no alternative test vessel was
available. A study was therefore undertaken which utilised "PC" based Runge Kutta
integration routine written in the computer language "C" to simulate a small vessel.

The model used was a Nomoto model [7.1] of the form:

¢(s) _  K(1+sTy)
8(s)  s(1+sT)(1+sT)

(7.1)

where:
©(s) = Actual vessel heading.
8(s) = Actual rudder position.
K = Gain term.

T, 15, T3 = Characteristic time constants of the vessel.

Rudder dynamics were modelled as a first order linear function with a time constant

of one second and saturation limits of +30°. The model utilised is of an 11.17m,

8500 Kg, vessel with a velocity of 4.5 ms-!, and was derived from the hydrodynamic
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coefﬁcients calculated by Burns et af [7.2]. However, by recalculating the relévant
parameters, models were also derived for vessels of length 7.5m/mass 2572 Kg ani_i '

length 15m/mass 20577 Kg (Table 7.8).

Length Mass K 1/T, 1/T, 1/T;
(m) (Kg)
7.5 2572 | '0.8536° | 2.467 0.577 0.898

11.17 8500 0.3848 1.656 0.388 0.603

150 | 20577 0.213 1.233 0.289 0.449

Table 7.8 Variations in Simulation Model Parameters

Details of typical disturbance effects applicable to small vessels are discussed in
section 2.2.1. These disturbance effects for wind, waves and current were therefore
utilised using data previously developed [7.2]. The autopilot settings remained
identical to those described in section 7.2. Similarly, the relevant time constant
values were calculated following the method discussed in section 7.3. The values
used for this study were therefore 2.9 seconds (7.5m model), 4.0 seconds (11.17m

model) and 4.8 seconds (15m model).

7.71 SIMULATED F1L.C COURSE-CHANGING

Course-changing was tested for two separate course-changes of 20° and 40°, each
over a 50 second time period. These tests were repeated for the three vessel models,
with comparison made to the conventional PID autopilot, regarding both heading
and rudder data, in the manner discussed in section 7.4. For the course-changing
tests no disturbance conditions were used so that the vessel responses obtained
could be analysed without the presence of any spurious effects. The integral action
was also inhibited on both the FLC and PID autopilots for the duration of these
tests. Details of the test results are given in Tables 7.9 to 7.17.
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Course PID FLC . FLC/PID
. Change | - . 1 %
Rise Time .28 3 -90
(s)
Overshoot 20° 0 0 0
)
Settling 43 16 -63
Time (s) : _
Rise 28 5 -82
Time (s) |
Overshoot 40° 0 0 0
@)
Settling 40 22 -45
Time (s)

Table 7.9  Heading Results FL.C and PID Course-Changing for 7.5m Model

PID FLC FLC/PID
%
RMS Rudder 1.6 1.4 -12
)
Maximum 22 22 0
Movement (°)
Range of 28 22 -12
Activity (°)
Table 7.10 Rudder Results FI.C and PID 20° Course-Change for the 7.5m
Model
PID FLC FLC/PID
%
RMS Rudder 3.2 32 0
©)
Maximum 24 27 +12
Movement (°)
Range of 25 27 +12
Activity (°)
Table 7.11 Rudder Results FI.C and PTD 40° Course-Change for the 7.5m
Model
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Course PID FLC FLC/PID. |
: | Change. |. | %
Rise Time | T 16 3 . -81
(s)
Overshoot 20° 0 2 -
)
Settling | 23 25 - +8
Time () o _
* Rise 17 6 " -65.
" Time (s)
| Overshoot 40° 0 2 .
)
Settling 24 14 -42
Time (5)
Table 7.12  Heading Resuits FI.C and PID Course-Changing for 11.17m
Model
PID FLC FLC/PID
%
RMS Rudder 0.99 0.64 -15
)
Maximum 23 23 0
Movement (°)
Range of 30 28 -7
Activity (°)
Table 7.13__Rudder Results FL.C and PID 20° Course-Change for the 11.17m
Model
PID FLC FLC/PID
%
RMS Rudder 1.8 1.3 -28
@)
Maximum 26 28 +8
Movement (°)
Range of 30 38 +27
Activity (°)
Table 7.14 Rudder Results FI.C and PID 40° Course-Change for the 11.17m
Model
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- Course | - PID | FLC FLC/PID |
Change %
Rise Time |} . 6 3 -50
(s)
Overshoot 20 0 5 -
©)
Settling 16 14 -12
Time (s) . A
_ Rise | " 2 | s 60
Time (s) ,
Overshoot 40° 0 5 -
®)
Settling 22 21 -4
Time (5)

Table 7.15 Heading Results F1.C and PID Course-Changing for 15m Model

PID FLC FLC/PID
%
RMS Rudder 1.8 1.3 -28
)
Maximum 23 24 +4
Movement (°)
Range of 41 43 +5
Activity (9)
Table 7.16 Rudder Results FI.C and PID 20° Course-Change for the 15m
Model
PID FLC FLC/PID

%

RMS Rudder 2.4 1.9 - -19

)
Maximum 26 27 +4
Movement (°)

Range of 45 52 +16

Activity (°) '
Table 7.17 Rudder Results FL.C and PID 40° Course-Change for the 15m
Model
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7.7.2 SIMULATED FLC COURSE-KEEPING

After allowing sufficient time for the decay of any transient elements of the vessel's
response, course-keeping was tesied for a heading of 20° over a 120 second time
period. These tests were repeated for the three vessel models, with comparison made
to the conventional PID autopilot, regarding both heading and rudder data, in the
manner discussed in section 7.5. All models were tested in the disturbance
conditions associated with sea state 4, however, the 11.17m model was also tested in

the sea state 3. Details of the test results are given in Tables 7.18 to 7.25.
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PiD FLC FLC/PID
%

Maximum 25.7 253 N/A
Error (°) , ‘

Minimum 18.0 17.6 N/A
Error (°) _ B _

Range of 1.7 T 0
Error (°)

Variance 2.2 20 -9
Standard 1.5 1.3 -13
Deviation

N/A =Not Applicable

Table 7.18 Heading Results FI.C and PID Course-Keeping for the 7.5m
Model in Sea Sate 4

PID FLC FLC/PID
%
Maximum 0.3 -0.2 N/A
Movement (°)
Minimum -11.2 -9.3 N/A
Movement (°)
Range of 11.5 9.1 -21
Activity (°)
Variance 2.6 2.2 -15
Standard 1.6 1.1 -31
Deviation

NfA =MNot Applicable

Table 7.19 Rudder Results F1.C and PID Course-Keeping for the 7.5 m
Model in Sea State 4

140




PID FLC FLC/PID
%

Maximum 215 |- 209 N/A .
Error (°)
Minimum 19.5 19.3 N/A
Error () | - ~
Range of 2.0 - 1.6 -20
Error (°) _ )
Variance 0.2 0.2 0
Standard 04 0.3 =23
Deviation

N/A = Not Applicable

Table 7.20 Heading Results FI.C and PTD Course-Keeping for the 11.17m
Model in Sea Sate 3

PID FL.C FLC/PID
%
Maximum -1.0 -1.0 N/A
Movement (°)
Minimum 2.3 2.3 N/A
Movement (°)
Range of 1.3 1.3 0
Activity (°)
Variance 0.1 0.1 0
Standard 0.4 0.3 -25
Deviation

N/A = Not Applicable

Table 7.21 Rudder Results FI.C and PID Course-Keeping for the 11.17 m

Model in Sea Stat'e_?,
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PID FL.C FLC/PID
. %
Maximum 26.4 24.6 N/A
Exror (°)
Minimum 18.3 17.5 N/A
Error (°) . .
Range of - 8.1 7.1 - © 12
Error (°)
Variance 2.3 2.1 -9
Standard 1.5 1.4 -7
Deviation

N/A =Not Applicable

Table 7.22 Heading Results FI.C and PID Course-Keeping for the 11.17m

Model in Sea Sate 4
PID FLC FLC/PID
%
Maximum -0.7 -0.7 N/A
Movement (°)
Minimum -10.5 -9.3 N/A
Movement (°)
Range of 9.8 8.6 -12
Activity (°)
Variance 2.3 2.3 0
Standard 1.5 1.3 -13
Deviation

N/A = Not Applicable

Table 7.23 _Rudder Results FLC and PID Course-Keeping for the 11.17 m
Model in Sea State 4
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PID FLC FLC/PID
%
Maximum 26.0 25.8 N/A
Error (°)
Minimum 17.9 16.9 N/A
Error(°) . ' :
Range of 81 | 89 - +10
Erxror (°) ] ‘ ‘
Variance 3.1 2.9 -6
Standard 1.8 1.7 -5
Deviation

N/A =Not Applicable

Table 7.24 Heading Results FI.C and PID Course-Keeping for the 15m

Model in Sea Sate 4
PID FLC FLC/PID
%
Maximum -0.3 -0.2 N/A
Movement (°)
Minimum -10.8 -10.9 N/A
Movement (°)
Range of 10.5 10.7 +2
1 Activity (°) v T
Variance 42 35 -17
- Standard 2.1 1.8 -14
Deviation

N/A =Not Applicable

Table 7.25 Rudder Results FI.C and PTD Course-Keeping fﬁr the 15m Model
in_Sea State 4
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7.7.3 SIMULATED SOC COURSE-KEEPING

After allowing sufficient time for the decay of any transient elements of the vess;al’s
response, course-keeping was tested for a heading of 20° over a 120 second time
period. The learning was activated at the beginning of this test period utilising the
time constant values given in section 7.7. These tests were repeated for the three
vessel models, with comparison made to the conventional PID autopilot, regérding
both heading and rudder data; in the manner discussed in section 7.6. All models
were tested in the disturt-)ancc conditions asso.ciated with sea state 4, however, the
11.17m model was also tested in the sea state 3. Details of the test results are given

in Tables 7.26 to 7.33.
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SOC SOC/FLC | SOC/PID
% %
Maximum 25.4 N/A N/A
Error (°)
 Minimum 17.4 N/A N/A
Error (°) _
Range of 8 +4 +4
Error (°)
Variance 1.8 -10 -18
Standard 1.2 -8 -20
Deviation

N/A =Not Applicable

Table 7.26 Heading Results SOC (Learning On) Course-Keeping for the

7.5m Model in Sea State 4
SOC SOC/FLC | SOC/PID
% %
Maximum -0.2 N/A N/A
Movement (°)
Minimum -9.6 N/A N/A
Movement (°)
Range of 9.4 +3 -18
Activity (°)
Variance 2.0 -9 -23
Standard 1.1 0 -31
Deviation

N/A =Not Applicable

Model in Sea State 4
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SOoC SOC/FLC | SOC/PID
Yo %

Maximum 20.9 . N/A N/A
Error (°) .

Minimum 19.3 N/A N/A
Error (%) '

Range of 1.6 0 -20
Error (°)

Variance 0.18 -10 -10
Standard 0.3 0 =25
Deviation

N/A =Mot Applicable

Table 7.28 Heading Results SOC (Learning On) Course-Keeping for the
11.17m Model in_Sea State 3

SOC SOC/FLC | SOC/PID
Yo %
Maximum -1.0 N/A N/A
Movement (°)
Minimum 2.3 N/A N/A
Movement (°)
Range of 1.3 0 0
Activity (°)
Variance 0.1 0 0
Standard 0.28 -7 -30
Deviation

N/A =Not Applicable
able 7.29 Rudder Results SO earning On) Course-Keeping for the

11.17m Model in Sea State 3
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SOC SOC/FLC.| SOC/PID
% %
Maximum 24.8 N/A N/A
Error (°)
Minimum | - 173 | NA . N/A
Error (°) ) ) _ .
Range of 757 +6 -7
Error (°) _
Variance 1.8 -14 -22
Standard 1.2 -14 -20
- Deviation

N/A =Not Applicable

Table 7.30 Heading Results SOC (Learning On) Course-Keeping for the
11.17m Model in Sea State 4

SOC SOC/FLC | SOC/PID
- % %
Maximum -0.7 N/A N/A
Movement (°)
- Minimum -9.5 N/A N/A
y Movement (°)
Range of 8.8 +2 -10
Activity (°)
Variance 2.1 -9 -9
3 Standard 12 -8 -20
_( Deviation

N/A =Not Applicable

Table 7.31 Rudder Results SOC (Learning On) Course-Keeping for the
- 11.17m Model in Sea State 4
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SOC SOC/ELC | SOC/PID
) Y% Y%

Maximum 26.0 N/A - N/A
Error (°) - |
Minimum 169 1. N/A - N/A
Error (°) ‘ _ _
Range'of 9.1 +2 +12
Error (°)

Variance | 2.7 -6 -13
Standard 1.6 -6 -11
Deviation

N/A = Not Applicable

Table 7.32 Heading Results SOC (I.earning On) Course-Keeping for the 15m

Model in Sea State 4
SOC SOC/FLC | SOC/PID
% %
Maximum -0.2 N/A N/A
Movement (°)
Minimum -10.1 N/A N/A
Movement (°)
Range of 9.9 -7 -6
Activity (°)
Variance 3.1 -11 -26
Standard 1.8 0 -14
Deviation

N/A = Not Applicable

Table 7.33 Rudder Results SOC (Learning On) Course-Keeping for the 15m
Model in Sea State 4
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7.7.4 DISCUSSION OF SIMULATED RESULTS

In general the simulated test results confirm the findings of the sea trial results.
When considering course-changing, the rise times were all significantly faster when
compared to the conventional PID autopilot due to the non-linear FLC design. For
small magnitude heading errors a similar response was obtained and therefore
settling times were corr’eSpoh_dineg improved. Overshoots opcurfed which appear to
increase with the change in vessel leng;tﬁ, hdwever, their magnitude remains small
and they therefore remain acceptable. This signiﬁcaﬁt improveh;eqt in course-
changing performance is achieved whilst employing a reduced RMS rudder value

and thus lower power usage and drag effects.

For course-keeping the FLC has been demonstrated to achieve an increase in
performance on all models tested. The heading error performance was improved,
whilst both the variance and standard deviation of the rudder activity were reduced.

By employing the SOC learning, these values were improved still further. The level
of improvement generated during learning was not as significant as that found
during the sea trials, however, the learning time was considerably less. Given that

the learning was designed to be a gradual process, this result is as expected.
7.8 CONCLUSIONS

In this Chapter, the validation of three aspects of the new SOC autopilot via fuil

scale sea trials, and by simulation, has been presented:
1. FLC course-changing

2. FLC course-keeping

3. SOC learning during course-keeping
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Whilst the simulated-results are required to demonstrate the general applicability of
the new autopilot design, it is the sea trial results which are of most importance
when analysing any performance advantage because they represent actual

conditions in a real working environment.

The FLC is an integral part of the SOC and therefore reference to FLC course-
~ changing and course-keeping is a consideration of the SOC with -.lcaming inhibited.
As di'scusséd in Chapter 6, the: learning will always remain inhibited during the
course-changing mode of operation. ' |

During course-changing the performance advantage obtained, during the sea trials,
by the FLC for the 90° was considerable, when compared to the PID, with a 50%
reduction in rise time. However, due to the non-linear FLC designed, the autopilot
operated in a more sensitive manner for smaller heading errors. The wvalues
contained within the enhancement matrix represent lower rudder ratio values for
small errors and increased counter rudder values. Because of this design feature,
overshoot of the desired heading was avoided despite the fast rate of turn. As
expected, for the smaller magnitude course changes, the PID and FLC results were
muore similar. Even so, the 2° overshoot of the PID was reduced to zero by the FLC.
The operation of the FL.C, when course-changing, may be considered as significant,

given that both controllers were initiated with identical gain values.

In course-keeping mode, the FLC again out-performed the PID controller in all
fields of analysis. The FLC maintained a significantly closer course (50%
improvement) with a much smoother and consistent vessel motion. To achieve this
advantage, the range of rudder movement was reduced by 49%. Analysis of the
rudder response identifies that the majority of the rudder actions were in the form of
comparatively small, but controlled, movements compared to the wandering rudder
of the PID. The FLC's improved course-keeping ability, for the same gain settings,

was therefore established.
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Ho.wever, Wﬁen ﬁnderteiking the same test with the SOC, it was found i‘.h_e-lt the
learning further improved upon the FLC's performance by obséwing the
performance of the vessel, and subsequently modifying the enhancement mafrices.
By deciding to selectively employ small increases in rudder, the SOC managed to
reduce the range of heading error variance by a further 45% giving a total reduction
of 75%. Whilst the range of rudder movement consequently was increased, the

rudder’s variance was also reduced by 27% of the FLC's value.

The performance ability of the three main aspects of the SOC have therefore been
discussed when operating in typical conditions and a characteristic size of vessel.
However, no aspect of the SOC was designed specifically for this test vessel. The
rudder ratio, counter rudder and trim settings are all variable. Since the
enhancements matrices were designed non-dimensionally, their operation is relative
to the rudder ratio and counter rudder settings. Any non-linear advantage
demonstrated in these tests should therefore be transferable to other gain settings,
and hence to other vessels and conditions. However, the non-linear nature of the
controller is likely to increase the robustness of the FL.C design when gain settings

diverge from their optimal values.
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CHAPTER 8. _CONCLUSIONS AND RECOMMENDATIONS

The conventional PID autopilot is widely used for éhip control across the world. It is
considered to be reliable, simple to operate and effective, which are all realistic
interpretations of its performance capabilities when applied to large ships. In
practice, the PID's reliability is due as much to the quality of the hardware and

' software used to implement it, as to the nature of the algorithm itself.

The need for a new design of small vessel'-autopilot which is capable of non-linear
performance, and of adapting itself to obtain high performance levels, even when
the gain settings are incorrect, was established in section 1.2. This new autopilot
would be independent of the mariner's experience and could operate on the wide
range of vessel type which currently defines the market for this type of controller.
By employing a new method of control, the autopilot's abilities in both the modes of
course-changing and course-keeping could also be improved, thus providing a very

significant increase in autopilot performance when compared to the PID alternative.

From the literature cited in section 2.4, it is clear that there has been only limited
work on new ship autopilot designs. Of the modern control techniques utilised in
this field, all have been applied to the case of large ships and there is no comparable

work for the small vessel application.

Both neural networks (Chapter 3) and fuzzy logic (Chapter 4) were considered for
use in the new autopilot design. Neural networks require a large amount of training
data prior to implementation in order that supervised learning may take place. In
addition, the size of the network necessary to achieve non-linear control required the
storage, and eventual on-line adaption, of a significant number of weight values.
The time requirement for such an operation was considered impractical for the large
network required to cope with the necessary non-linearities and also the autopilot's

fast sampling of 0.88 ms. Conversely, fuzzy logic could utilise a limited amount of
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data derived from the PID algorithm. Non-linear design was possible without
imposing excessivé problems with data storage, and éubsequént _extehs’ion to an
adaptive form, the SOC, remained realistic within the sample period dictated by the

autopilot hardware, as described in Appendix A.

Work on the new design of fuzzy logic autopilot was therefore undertaken (Chapter
5) for the two.modes of autopilot operati()n,‘thése being course-keeping and course-
changing. The new design, section 5.2, ‘ut_ilis.ed‘non-linear input w_indows to allow
for the combiﬁation of course-keeping and course-changing within one controller.
To prevent the resultant controller from becoming computationally oversized,
relatively few points were defined, with interpolation between them to maintain
input resolution. Similarly, the rulebase was defined, section 5.4, in a non-linear

manner, thus generating an increase in performance levels from the controller.

One major problem with the commercial PID autopilot is that its gain values are
fixed for large and small heading errors, and for both course-changing and course-
keeping modes of operation. By creating this non-linear rulebase, the rudder ratio
gain could be increased, and the counter rudder gain decreased for large heading
errors and during the majority of the course-changing mode, whilst smaller rudder
ratio gains and larger counter rudder gains could be employed for small heading
errors and for the final stages of course-changing when a more precise level of

control is required.

The third input, called trim, was then included by shifting the deterministic fuzzy
output to positive, or negative, within the fuzzy output window, as described in
section 5.3. To achieve a suitable resolution of movement for the trim term within
this window, the window itself was defined by two hundred and one fuzzy

singletons instead of the conventional seven set approach.
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. This initial design of fuzzy controller had fixed rulebase values which could not be
adj‘usted to opiarate at differen;: gain ‘settings either by adaption, or by the mafiner.
The single rulebasé, representing both rudder ratio and counter rudder, was
therefore replaced by two enhancement matrices, one for rudder ratio and the other
for counter rudder, as described in section 6.4. Each enhancement matr_ix was of the
identical structure to the original rulebase, but instead of containing output set
information, the data within them represented how the r-espec':ti\fe rudder ratio and
counter rudder gains should be modified (enhanced) :_depending upon which
combination of fuzzy- sets were identified when the real world inputs. of head érror
and rate of change of heading error were fuzzified, e.g. for large heading errors the
rudder ratio gain could be significantly enhanced, thus generating a large effective

rudder ratio value, whereas for small heading errors the rudder ratio could remain

unchanged.

By defining each enhancement matrix in terms of a proportional change dependant
upon the rudder ratio and counter rudder gain settings, the fuzzy controller design
became non-dimensional and could therefore operate, with pro-rata performance
advantages, over a range of rudder ratio and counter rudder settings. In addition, the
use of the enhancement matrices allowed identification of the individual rudder ratio
and counter rudder gain terms over the defined operating envelope. By employing a
performance index for each enhancement matrix (section 6.5), learning could be
achieved in an on-line manner, to adjust the relative elements of each enhancement
matrix until an acceptable level of performance was achieved by the autopilot. The

learning was carried out in a two stage approach:

1. Data was stored which represented the elements of the enhancement matrices

used at the current sample time, section 6.7.1.

2. At a time period later, which represented approximately three time constants of

the overall vessel response, adjustment to those enhancement matrix elements
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.- 'was carried out. The magnitude of the adjustment - was determined by applying
| the new vessel performance, in terms of heading error and rafe of changﬁ of
heading error, to the performance index. The aggregate output from the
performance index was then scaled and utilised to modify the enhancement
matrix elements identified previously as being responsible for the current

performance state, section 6.7.2.

The SOC learning was carried out in parallel to the trim adaption, which identified '
the presence of an uncorrected steady-state error -and increased the trim gain
accordingly, section 6.8. Similarly, when no steady-state error was present, but the
rate of change of heading error input was high, then the trim term was reduced until
a point of equilibrium occurred. Both SOC learning and irim adaption were
cémtrolled by over-rules (section 6.7.3) which ensured that the learning achieved

was correct and therefore enhanced autopilot performance.

Due to the requirements of this application, the final SOC has been shown to differ
greatly from any previous marine designs. Whilst the use of non-linearities is not
new, the style of input windows and rulebase, designed and developed during this
research, are specific to this application and have demonstrated major performance
advantages in comparison to the conventional PID autopilot. The subsequent use of
the enhancement matrix is a unique advancement in autopilot design and has been

seen to further increase the performance potential of this new autopilot design.

The additional implementation of the frim term, using the fuzzy singleton output
window, whilst certainly unorthodox, has proved of significant benefit to the ability
of the controller when operating in the required range of environmental conditions.
When considering the SOC's learning, the design of the performance indices was
application dependant and the manner in which the learning was achieved is new,

simple and proven to be effective by the validation tests in Chapter 7 .
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When utilised in both sea trials and stmulatlon and operating with the same gam
settings, all aspects of the SOC were found to give a significant increase 1n_
performance compared to the PID autopilot. The ability of the SOC to operate as a
small vessel autopilot has therefore been established. However, before any
commercial implementation is possible it is necessary that further sea tests are
carried out in order to produce a record of successful installations on differing
. vessel types, and thus fo ensure that safety at séa is maintained. Despite the
inevitable delay that will occur due to this testing, it 1s env1saged that the new SOC
autopilot for use on small vessels should be avallable in the commercual market

place in the near future.

The structure of the final SOC design contains many features which have been
incorporated specifically for this application, however, most of the routines may be
considered to be design independent. The inference may therefore be drawn that
performance advantages obtained in comparison to this PID auntopilot, may also be

possible in other applications where PID controllers are currently in use.

The scope for the development of this SOC design is therefore significant and
should be considered as a further extension of this work. It is also noted by the
author that since undertaking this study, there has been considerable work published
in the field of neuro-fuzzy control. This type of controller is an attempt to merge the
benefits of both fuzzy logic and neural networks into a single confrol algorithm and

could prove of benefit to the small vessel application in the future.

The present work may be considered as part of an overall ship automation process.
Gradually many human tasks on all sizes of marine vessel are becoming automated
on an individual basis. However, in the case of latge shipping it is thought that the

ultimate goal may be a fully automated, and therefore unmanned ship.
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For the small vessel application such a goal is perhaps less realistic given that use in
congested ports and sea—wa&s is ‘far-more' common. Shou_ld the level of technology
become advanced enough to cope with such complexities, then it may be possible in
the future to link the various automated systems currently available to produce a full
level of ship automation which includes collision avoidance, track-keeping,

navigation and autopilot control.

If the ;purpos_e of many small vessels is for humén pleasure, gained fr_om being at
sea, not from the activities which are demanded from the mariner, then perhaps the
increased safety and time afforded by 2 perfect automated system would allow more
less experienced humans, e.g. people on holiday or with disabilities, to -enjoy an
otherwise closed opportunity. The likelihood of any system being perfect is
currently remote, but future work dedicated in this area, could certainly reduce the
risk involved to an acceptable, and therefore implementable level. By this means,
the possible use of small vessels could be expanded significantly with consequential

commercial implications throughout the industry.
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APPENDIX A - FURTHER DETAILS OF THE CONVENTIONAL
- PID TEST AUTOPILOT

A.1 INTRODUCTION

Many of the PID autopilot's particulars are specific to the collaborating
manufacturer's products. It can not be inferred-from this work that identical features
may be found on all competitive products, however, it is a natural assumption, that
within the small vessel "market place”, the alternative alitopil;its will ha-ve been

designed along broadly similar lines.
A2  AUTOPILOT QPERATIONAL CONSIDERATIONS
Since typical movement of the rudder mechanism is within the range £20° to +30°,

a variable term is provided called Max Rudder Angle (MRA) which can be adjusted

from 1 to 9 to match the vessel's requirements (Table A.1).

Rudder Physical
Limit Rudder

Setting Limit

1 6°

2 9°

3 12¢°

4 15°

5 18°

6 21°

7 24°

8 27°

9 30°

TABLE A.1 DEFINITION OF RUDDER LIMIT SETTINGS

The rudder limit imposed by the controller is determined by equation A.1.
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Limit = (MRA +1)*3 _ LA

As variations in the weather occur, then a rudder deadband (RDB) facility can be
employed to inhibit small scale rudder movements which are deemed as being
unnecessary. Further rudder "hunting” can also occur in rudder systems where
“slack" has been caused by wear, and thus small uncontrolled rudder movement may
continue regardless of the autopilot operation. The rudder deadband can be adjusted

in the range 0 fo 9, as.defined in Table A.2, to lessen these effects.

Rudder Actual
Deadband Rudder
Setting Deadband
0 0.0°
"1 - 0.2°
2 0.4°
3 0.6°
4 0.8°
5 1.1°
6 1.3°
7 1.5°
8 1.7°
9 2.0°

TABLE A.2 DEFINITION OF RUDDER DEADBAND SETTINGS

In addition, a weather setting to initiate a course deadband (CDB) may be employed
to avoid excessive rudder activity as seas become heavier. The course deadband is a

zone in which no new control action is produced, and can be defined in the range 0

to 9 (Table A.3).

Whilst within the CDB zone the desired rudder remains constant so that the rudder
system is provided with an opportunity to reach this desired position, where it will

remain until the vessel heading error leaves the deadband. At this point a new
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corrective action is determined to ensure that the heading érror returns to within the

defined zone.

Course Actual
Deadband Course
Settings Deadband
0 0.0°
1 1.0°
2 2.0°-
3 3.0°
4 4.0°
5 5.0°
6 6.0°
7 7.0°
8 3.0°
9 9.0°

TABLE A.3 DEFINITIONS OF COURSE DEADBAND SETTINGS

Heavy seas can greatly effect the vessel heading, thus in this situation the rudder
effort to maintain a tight course becomes considerable. Performance in such
conditions must be expected to be less than that achieved in calm seas, therefore the
introduction of the course deadband allows the reduction in the rudder activity
without reducing the rudder ratio value which would have a detrimental effect

across the entire operating range.

The component parts of the PID controller utilised in the conventional autopilot can

be identified separately and are defined by equations A.2 to A.4.

’ &
Proportional Term = (RRJ% Error (A2)
"
3 (5.3 * TRIM * Error)
Integral Term= -2 A3
ntegral Term 3536 (A3)
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Derivative Term = CR * Rate " . _ (A3)
where: ‘
RR  =Proportional gain (rudder ratio setting)
TRIM = Integral gain (Trim setting)
CR  =Derivative gain (counter rudder setting)
- Error = Heading error _
Rate =Rate of change of heading error

n = number of samples included in summation

When the heading error falls within the course deadband, then no increments, or
decrements, to the integral action occur. In addition, when a course-changing
manoeuvre commences, any adjustment of the integral term is delayed by 10
seconds. Saturation excursion limits of two thirds rudder movement are applied to
both the derivative and integral terms to prevent the magnitude of either term from
becoming excessive. The three terms are then summed together to generate a value
for the desired rudder signal, which is the output from the PID autopilot (equation
Ad).

Desired Rudder =[Proportion Term + Integral Term+ Derivative Term] (A.4)

Typical settings for the autopilot variables of most interest to this study are given in
Table A.4.

Even though the desired rudder has been calculated, the actual rudder system's time
constant will cause a delay before the correct position can be obtained. Further to
this, the time constant of the vessel will effect the speed with which any corrective
action will be acted upon. New values of desired rudder are calculated by the PID
controllerl every sample. The sample time is set to 88 ms which equates to 11.36

samples every second.
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Variable Variable
Name Setting
RR 6
TRIM 4
CR 3
RDB - 1

" MRA KR

TABLE A4 ;TYPICAL AUTOPILOT SETTINGS
1t is also possible, within the autopilot environment, to set pre-defined gain values
for variations in forward velocity, e.g. high and low (assuming a forward velocity
sensor is fitted), and also for boat type, e.g. displacement, semi-displacement and
planning. Whilst the forward velocity option works automatically, the boat type
setting is reliant upon manual change. In both cases the gain settings stored are
those chosen by the mariner. There are additional autopilot settings available which

have not been described as they hold no direct relevance to the study described

herein.

The integral term, desired rudder value, and any other calculated terms are cleared
when the autopilot is taken out of pilot mode (autopilot control) and placed in
standby mode (manual control). Default values are therefore utilised whenever the
pilot mode is activated, however alterations in gain settings and deadband values are

stored in the permanent memory and will be recalled even after a power shut down

has occurred.

The complete autopilot system requires an operational supply voltage between 9.6
Volts and 32.0 Volts DC and comprises a series of component parts. Each part is
linked by a data bus. The format for the bus is the marine industry standard

specified by the National Marine Electronics Association of North America (NMEA
0183).
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Whilst each unit .operates independently- on ifs allocated -tasks, they must .all
combine together correctly if effective autopilot control is to be achieved. The basic
system, the standard [ayout of which is shown in Figure A.I, therefore contains six

fundamental operating units, these are:

1. Pilot Control Unit

2. Compass Controller Unit

3.”  Motor Drive Unit

4, Rudder Feedback Unit

5. Power Steering System (Including Rudder)

6. Mobile Hand Control Unit (Optional)

6
1 2
il
—
|——] 7

Power
Supply

5 --- 3]

Mechanical Link

FIGURE A.1 STANDARD AUTOPIL.OT SYSTEM LAYOUT

The compass controller receives and processes all the data from the sensory devices
fitted to the system. The compass controller also contains the fluxgate compass
which generates fast high precision heading information. Adaptive damping of the
compass data ensures steady heading information even when operating in heavy
seas. Also included are the electronic circuitry, microprocessor and software
required for autopilot operation. Features included pulse width modulation (PWM)

speed control for the steering motor. The solid state Field Effect Transistor (FET)
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unit employs soft switching to minimise radio frequency interference (RFI) often
associated with this type of semiconductor. Human interface is achieved via the -
pilot control unit which allows adjustment of the various settings, and in turn

displays information concerning actual heading and desired course.

The steering system attempts to position the rudder correctly following the motor
signal provided by the FET unit. Actual rudder positional information. is produced
by the rudder fceﬂback device. This data is refurned to the compass controller where
an analysis of the rudder position unc'lertak'en by the software, and a comparison
between the desired position and aciual position generates a rudder positional error.

A more detailed description concerning the C-net pilot is given in the user's manual

[A.1].

The actual autopilot software comprises of a series of modules written in 'C' code
and compiled and linked together for operation on a 16 bit HPC micro-processor
unit (MPC). The MPC is capable of high speed data processing and utilises a 16
MHz clock frequency. The compiled code is activated from an Erasable
Programmable Read Only Memory (EPROM) situated within the compass control
unit. Space on the EPROM is obviously limited, with almost total occupation by the
existing conventional software. In order that available memory could be conserved,
the use of floating point type numbers (4 bytes) was avoided, as was the use of
floating point arithmetic. Integer type values (2 bytes) were also considered
excessive in size. Therefore the majority of the conirol routines attempt to utilise
char types (1 byte) whenever possible. The relevant overall memory limits for Read

Only Memory (ROM) and Random Access Memory (RAM), including 8 bit and 16

bit capabilities, in hexadecimal format are specified in table A.5.
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Type of " Memory
Memory Size (bytes)
BASE 0
RAM16 01D4
RAMS 01FF
ROM16 0
"ROMS |  7FOF

TABLE A.5 EPROM MEMORY LIMITATIONS

A3 REFERENCES

A.1 C-net Pilot User's Guide, Cetrek Ltd, Ref. 807-600-9-93, 1993,
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APPENDIX B - VALIDATION OF THE FOUNDATION FLC
o . METHODOLOGY

B.1 INTRODUCTION

The following results are for the FL.C described in section 5.4. using inputs of
heading error and rate of change of héading error in the rangéé +15° and +2°-1
respectively. By varying these two input values within their given ranges of
operation, in steps of 0.5° for heading error and 0.1°-1 for rate of change of
heading error, the outputs from the FLC and PID autopilots could be compared.
Integral action was inhibited for both autopilots during testing, and the rulebase for

the FLC was designed to mimic the expected from the PID autopilot.

Because the methodologies of both the FLC and PID are so radically different, it is
unreasonable to expect an exact match between the two sets of results without
extensive fine tuning of the fuzzy rulebase to allow for the uneven overlap of fuzzy

sets caused by the non-linear fuzzy put window design being utilised.

B.2 CONSIDERATION OF THE TEST RESULTS

After consideration of the test results which follow, three conclusions are possible:

1.  The controller operates in a symmetrical manner about the zero input condition
for both inputs considered. The FLC is therefore capable of providing equal
control to both port and starboard.

2. The output from the FLC autopilot closely follows that of the conventional

PID autopilot, the difference never exceeding £0.5° from a range of +30°.

Given the nature of the test, this result is considered perfectly acceptable.
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3. For the given level of pc;rformance obtained from the FLC, the resolutions
used within the FLC autopilot must be adequate, there being no éigniﬁcant loss

of performance when compared to the PID alternative,

It may therefore be concluded that if the FLC is capable of operating in the same
manner to the conventional PID autopilot, then any subsequent redesigning of the
_ rulebase to a non-linear format, may be undertaken with a high degree of confidence

in the FLC's capabilities as a small vessel autopilot.
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PID 1%}

Liiff ()

Rate (°/s) | Error{®} | FLC (%
-2 15 16,5 -16.5 0
-2 -145 -16.2 -16.15 0.05
2 14 -15.8 -15.8 0
-2 -13.5 1545 | -1545 | O
2 -13 -15.15 -15.1 0.05
) -12.5 1475 | 1475 10
-2 -12 -14.4 144 0
-2 15 1405 | 1405 0
2 11 2137 REW; 0
-2 105 | -13.35 | -13.35 0
-2 -10 13 13 0
-2 9.5 21265 | -12.65 T 0
2 9 -12.3 -12.3 0
2 -85 12 -11.95 0.05
-2 -8 -11.65 | -11.6 0.05
-2 75 1.3 -11.25 0.05
-2 -7 -10.95 -10.9 0.05
-2 65 -1065 | -10.55 0.1
2 -6 -10.3 -10.2 0.1
2 55 9.95 085 0.1
-2 -5 9.65 95 0.15
-2 A5 9.3 9.15 0.15
2 -4 -8.95 8.8 0.15
2 -3.5 8.6 -8.45 0.15
-2 -3 -8.25 8.1 0.15
2 2.5 79 7.75 0.15
2 -2 -7.55 7.4 0.15
2 15 7.2 -7.05 0.15
2 -] 6.8 6.7 0.1
-2 0.5 -6.45 -6.35 0.1
2 0 -6.15 -6 0.15
-2 0.5 5.8 -5.65 0,15
-2 1 -5.45 5.3 0.15
) 15 5.1 -4.95 0.15
) 2 47 4.6 0.1
2 2.5 -4.35 -4.95 01
-2 3 -4 3.9 0.1
2 35 -3.65 -3.55 0.1
-2 4 3.3 3.2 0.1
2 4.5 -3 -2.85 0.15
2 5 26 25 0.1
2 55 -2.25 215 0.1
-2 6 -1.85 1.8 0.05
2 45 1.5 -1.45 0.05
-2 7 -1.15 1.1 0.05
2 7.5 0.75 -0.75 0
-2 8 0.35 0.4 -0.05
-2 8.5 0 005 -0.05
2 9 0.3 0.3 0
2 9.5 0.65 0.65 0
-2 10 ] 1 0
2 10.5 1.35 1.35 0

168




11

-2 , 1.7 1.7 0
2 11.5 2.05 2.05 0
-2 12 2.4 24 | 0
-2 12.5 2.75 2.75 0
-2 13 3.15 3.1 005
-2 13.5 3.45 3.45 o
-2 14 38 1 38 0
-2 145 4.2 4.15 0.05
-2 15 45 45 0
-1.5 -15 -14.95 -15 .05
-1.5 -14.5 -14.5 -14.65 0.15
-1.5 -14 -14 -14.3 0.3
-1.6 -13.5 -13.7 -13.95 -0.25
-1.5 -13 -13.45 -13.6 015
-1.5 -12.5 -13.2 -13.25 -0.05
-1.5 -12 -13 -12.9 0.1
-1.5 -11.5 -12.8 -12.55 0.25
-1.5 -1 -12.6 -12.2 0.4
-1.5 -10.5 -12.3 -11.85 0.45
-1.5 -10 -11.95 115 0.45
-1.5 9.5 -1145 | <1115 7 0.3
-1.5 9 -10.85 -108 0.05
-1.5 8.5 -10.3 -10.45 | -0.15
-1.5 -8 -9.95 -10.1 0.15
-1.5 7.5 97 975 -0.05
-1.5 -7 95 0.4 0.1
-1.5 6.5 9.3 9.05 0.25
-1.5 -6 9.1 -8.7 0.4
-1.5 5.5 -8.8 -8.35 0.45
-1.5 -5 -8.4 -8 0.4
-1.5 4.5 -7.75 -7.65 0.1
-1.5 -4 -7.35 -7.3 0.05
-1.5 -3.5 -7.05 -6.95 0.1
-1.5 -3 -6.85 6.6 0.25
-1.5 2.5 -6.65 -6.25 0.4
-1.5 2 6.3 59 0.4
-1.5 -1.5 -5.65 -5.55 0.1
-1.5 -1 5.2 52 0
1.6 0.5 -4.95 -4.85 0.1
-1.5 0 -4.75 -4.5 0.25
-1.5 0.5 -4.55 -4.15 0.4
-1.5 1 -4.2 -3.8 0.4
15 1.5 -3.55 -3.45 0.1
-5 2 -3.1 31 00
-1.5 25 -2.85 -2.75 0.1
-1.5 3 -2.65 -2.4 0.25
-1.5 3.5 -2.45 -2.05 0.4
-1.5 4 -2.05 -1.7 0.35
-1.5 4.5 -1.45 -1.35 0.1
-1.5 5 0.9 -1 0.1
-1.5 5.5 -0.55 -0.65 0.1
-1.5 6 0.25 0.3 0.0
-1.5 6.5 0.05 0.05 0
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0.4

-1.5 7 0. -0:3
-1.5 75 - | 035 0.75 0.4
-1.5 8 0.7 1.1 04
-1.5 8.5 115 145 ¢+ 03
-1.5 9 1.85 1.8 1 005
-1.5 9.5 2.4 215 | 025
-1.5 10 2.8 25 0.3
-1.5 105 3.1 285 0.25
-1.5 11 3.35 3.2 0.15
-1.5 115 3.6 3561 005.-
-15 | . 12 3.8 3.9 0.1
-1.5 125 3.95 4.25 0.3
-1.5 13 4.2 4.6 04
-1.5 135 4.5 4.95 0.45
-1.5 14 49 53 0.4
-1.5 14.5 5.4 5.65 0.25
-1.5 15 6 6 0
-1 -15 -13.5 -13.5 0
-1 -145 | 1295 | -13.15 -0.2
-1 -14 -12.4 -12.8 04
-1 -13.5 -12 1245 | 045
-1 -13 -11.7 -121 04
-1 -12.5 115 | -11.75 ;i 0.25
-1 -12 -11.3 -11.4 0.1
-1 -11.5 -11.1 1105 | 005
-1 -1 -10.85 | -10.7 0.15
-1 -10.5 -10.6 -10.35 0.25
-1 -10 -10.3 -10 0.3
-1 9.5 9.9 -9.65 0.25
-1 -9 9.35 9.3 0.05
-1 8.5 -8.75 -8.95 0.2
-1 -8 -8.3 -8.6 0.3
-1 7.5 -8 -8.25 0.25
-1 7 -7.75 7.9 0.15
-1 6.5 -7.55 -7.55 0
-1 -6 -7.35 7.2 0.15
-1 5.5 -7.1 .85 0.25
-1 -5 -6.8 -6.5 0.3
-1 -4.5 -6.3. -6.15 0.15
-1 -4 5.7 -5.8 -0.1
-1 -3.5 -5.3 -5.45 -0.15
-1 -3 -5.1 -5.1 0
-1 -2.5 -4.9 -4.75 0.15
-1 -2 -4.65 -4.4 0.25
-1 -1.5 -4.2 -4.05 0.15
-1 -1 -3.55 -3.7 -0.15
-1 -0.5 -3.2 -3.35 0.15
-1 0 -3 -3 0
-1 0.5 2.8 2.65 0.15
-1 1 255 | . 23 0.25
-1 1.5 2.1 -1.95 0.15
-1 2 -1.45 -1.6 0.15
-1 2.5 -1.05 -1.25 0.2
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-1 3 -0.85 09 0.05
-1 35 -0.65 -0.55 0.1
-1 4 -0.35 0.2 0.15
-1 45 0.05 0.15 0.
-1 5 0.75 0.5 025
-1 55 115 0.85 0.3
-1 6 1.5 1.2 0.3
-1 6.5 1.7 1.55 0.15
-1 7 1.9 19 0
-1 75 2.15 . 225 . -0,
-1 ) 2.45 26 | 015
-1 8.5 2.8 2.95 0.15
-1 9 3.35 3.3 - 0.05
-1 9.5 3.95 3.65 0.3
-1 10 4.45 4 0.45
-1 10.5 4.8 4.35 0.45
-1 11 5.1 4.7 0.4
-1 11.5 5.3 5.05 0.25
-1 12 55 5.4 0.1
-1 12.5 57 5.75 -0.05
-1 13 5.95 6.1 -0.15
-1 13.5 6.2 © 6.45 0.25
-1 14 6.55 6.8 0.25
-1 14.5 7 7.15 0.15
-1 15 7.45 7.5 0.05

0.5 -16 -12 -12 0

05 -14.5 -11.4 -11.65 0.25

05 -14 -10.9 -11.3 0.4

05 -13.5 -10.5 -10.95 045

05 -13 -10.3 -10.6 -0.3

05 -12.5 -1005 | -10.25 0.2

0.5 -12 9.8 99 0.1

0.5 -11.5 9.55 9.55 0

0.5 -1 9.35 9.2 0.15

05 -10.5 9.1 -8.85 0.25

0.5 -10 -8.8 -8.5 0.3

-0.5 95 -8.35 -8.15 0.2

05 -9 -7.85 -7.8 0.05

05 -85 -7.25 -7.45 0.2

05 -8 -6.8 7.1 0.3

0.5 -7.5 -6.55 -6.75 0.2

0.5 -7 -6.3 -6.4 0.1

0.5 -6.5 -6.1 -6.05 0.05

0.5 -6 -5.85 -5.7 0.15

0.5 -5.5 5.6 -5.35 0.25

0.5 5 5.3 -5 0.3,

0.5 -4.5 -4.8 -4.65 0.15

0.5 -4 -4.2 -4.3 0.1

0.5 -3.5 -3.85 -3.95 0.1

05 -3 -3.65 -3.6 0.05

0.5 2.5 -3.4 -3.25 0.15

05 -2 -3.15 29 0.25

-0.5 -1.5 -2.7 -2.55 0.15
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205

0.5 -1 22 0.15
05 05 17 -1.85 -0.15
05 0 -1.5 -1.5 0
05 0.5 -1.25 -1.15 0.1

0.5 1 -1 0.8 0.2

05 1.5 0.5 -0.45 0.05

0.5 2 0.1 0.1 0

0.5 25 0.45 0.25 0.2

0.5 3 0.75 0.6 0.15
05 3.5 1 .0.95 0.05

0.5 4 . 1.3 1.3 0

0.5 45 18 , 165 Q.15

-0.5 5 24 1 2 0.4

0.5 55 - 2.8 2.35 0.45

0.5 6 305 | 27 0.35

-0.5 6.5 33 i 305 0.25

0.5 7 35 1 34 0.1

-0.5 7.5 375 | 375 0

0.5 8 4 1 A 0.1

0.5 8.5 435 | 445 0.1

0.5 9 4.85 4.8 0.05

0.5 2.5 5.45 5.15 0.3

0.5 10 5.95 55 0.45

0.5 10.5 63 |, 585 045

0.5 11 655 | 6.2 0.35

0.5 11.5 675 | 6.55 0.2

0.5 12 7 i 69 0.1

0.5 12.5 725 | 7.25 0

0.5 13 75 76 0.1

-0.5 13.5 77 1 795 -0.25

-0.5 14 8.05 8.3 028

0.5 14.5 8.5 8.65 0.15

05 15 9 9 0

0 -15 -10.5 -10.5 0

0 -14.5 995 -10.15 0.2
0 -14 -9.45 9.8 -0.35
0 -13.5 9.1 9.45 -0.35
0 -13 -8.85 9.1 -0.25
0 -12.5 8.6 -8.75 Q.15
0 -12 -84 | -84 0
0 -11.5 82 | 805 0.15
0 -1 8 1 77 0.3
0 -10.5 77 4 735 0.35
0 -10 -7.4 -7 0.4
0 9.5 -6.9 -6.65 0.25
0 e -6.35 -6.3 0.05
0 -8.5 5.8 -5.95 0.15
0 -8 -5.4 -5.6 0.2
0 -7.5 -5.1 -5.25 -0.15
0 -7 -4.85 -4.9 -0.05
0 6.5 4.7 -4,55 Q.15
0 -6 -4.5 -4.2 0.3
0 -5.5 -AD -3.85 0.35
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0. 5 3.85 35 0.35
0 45 3.3 315 | 0.5
0 4 2.75 2.8 -0.05
0 35 245 | 245 | 0
0 3 -2.25 21 | 015
0 25 205 | -1.75 03
0 2 .7 4 0.3
a 1.5 1.2 405 | 015
0 -1 0.55 0.7 -0.15
o | 05 0.2 035 .| 035
0 . 0 0 0 0
0 05 0.2 035 | 015
0 1. 0.55 07 20.15.
0 1.5 1.2 1.05 0.15
0 2 17 1.4 03
0 25 2.05 1.75 03
0 3 2.25 2] 0.15
0 35 2.45 2.45 0
0 4 2.75 2.8 0.05
0 45 3.3 315 0.15
0 5 3.85 35 0.35
0 5.5 42 3.85 0.35
0 6 45 42 0.3
Q 65 47 455 0.5
0 7 4.85 49 -0.05
0 75 5.1 525 | 0.i5
0 8 54 5.6 0.2
0 8.5 5.8 595 | 015
0 9 6.35 63 0.05
0 9.5 69 6.65 0.25
0 10 7.4 7 0.4
0 105 7.7 7.35 0.35
0 11 8 7.7 03
0 115 8.2 8.05 0.5
0 12 8.4 8.4 0
0 125 8.6 8756 | -0.15
0 13 8.85 9.1 0.25
0 135 9.1 945 | 035
0 14 0.45 938 0.35
0 145 995 | 1015 | 0.2
0 15 105 105 0
05 -15 9 9 0
0.5 145 8.5 865 | 015
0.5 4 -8.05 8.3 0.25
05 135 7.7 795 | 025
0.5 13 75 7.6 0.1
0.5 125 | 725 | -7.25 0
0.5 12 7 5.9 0.1
0.5 NS5 | 675 | 655 0.2
0.5 N -6.55 5.2 0.35
05 -105 6.3 585 | 045
05 10 -5.95 5.5 0.5
05 9.5 545 | 515 0.3
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0.5 -9 -4.85 4.8 .]. 005
0.5 -8.5 -4.35 445 0.1
0.5 -8 -4 4.1 0.1
0.5 7.5 -3.75 -3.75 0
0.5 -7 -3.5 -3.4 0.1
05 6.5 -3.3 305 025
0.5 -6 -3.05 2.7 0.35
0.5 -55 -2.8 -2.35 0.45
0.5 -5 -2.4 -2 0.4
0.5 -4.5 -1.8 -1.65 015
0.5 -4 -1.3 -1.3 0
0.5 -35 -1 0.95 0.05
05 . -3 -0.75 0.6 0.15
0.5 2.5 0.45 0.25 0.2
0.5 -2 -0.1 0.1 0
0.5 -1.5 0.5 0.45 0.05
0.5 -1 1 0.8 0.2
0.5 0.5 1.25 1.15 0.1
0.5 0 1.5 1.5 0
0.5 0.5 1.7 1.85 -0.15
0.5 1 2.05 22 0.15
0.5 1.5 27 2.55 015
0.5 2 3.15 29 0.25
0.5 25 3.4 3.95 0.15
0.5 3 3.65 36 0.05
0.5 3.5 3.85 3.95 0.1
0.5 4 42 4.3 0.
0.5 4.5 4.8 4.65 0.15
0.5 5 5.3 5 0.3
0.5 55 5.6 535 | 025
0.5 6 5.85 5.7 0.15
0.5 6.5 6.1 6.05 0.05
0.5 7 6.3 6.4 0.1
0.5 7.5 6.55 675 | -0.2
0.5 8 6.8 7.1 0 -0.3
0.5 8.5 7.25 745 |, -02
0.5 9 7.85 7.8 1 005
0.5 95 8.35 815 | 02
0.5 10 8.8 85 | 03
0.5 10.5 9.1 885 © 025
0.5 11 9.35 9.2 0.15
0.5 11.5 9.55 955 © 0
0.5 12 9.8 99 . 0.1
0.5 125 10.05 1025 © 02
0.5 13 10.3 106 | 03
0.5 13.5 10.5 1095 . -0.45
0.5 14 10.9 113 ¢ 04
0.5 14.5 11.4 1165 | -0.25
0.5 15 12 12 0
1 -15 -7.45 75 0.05
1 -14.5 -7 -7.15 0.15
1 -14 -6.55 6.8 0.25
1 -13.5 6.2 -6.45 0.25
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-13

1 -5.95 -6.1 -0.15
1 -12.5 -5.7 575 | 005
1 -12 -5.5 -5.4 0.1

1 -11.5 -5.3 -5.05 0.25
1 -11 -5.1 -4.7 04
i -10.5 -4.8 -4.35 045
1 -10 -4.45 -4 0.45
1 9.5 -3.95 -3.65 0.3
1 -9 -3.35 -3.3 0.05
1 -8.5 28 -2.95. 1 -0.15
1 -8 -2.45 2.6 -0.15
1 -7.5 -2.15 2.25 0.1
1 -7 -1.9 -1.9 0.
1 -6.5 -1.7 -1.55 0.15
1 -6 -1.5 -1.2 0.3
1 -5.5 -1.16 -0.85 0.3
1 -5 0.75 0.5 0.25
1 -4.5 -0.05 0.15 0.1
1 -4 0.35 0.2 0.156
1 -3.5 0.65 0.55 0.1

1 -3 0.85 09 -0.05
1 -2.5 1.05 1.26 0.2
1 2 1.45 1.6 0.15
1 -1.9 2.1 1.95 0.15
1 -1 2.55 2.3 0.25
1 0.5 2.8 2.65 0.15
1 0 3 3 0

1 0.5 3.2 3.35 -0.15
1 1 3.55 3.7 .15
1 1.5 4.2 4.05 0.15
1 2 4.65 4.4 0.25
1 2.5 4.9 4.75 0.16
1 3 5.1 5.1 0

1 3.5 5.3 545 -0.156
1 4 5.7 58 0.1
1 4.5 6.3 6.15 0.15
1 5 6.8 65 0.3
1 5.5 7.1 6.85 0.25
1 b 7.35 7.2 015
1 6.5 _7.55 7.55 0

1 7 7.75 7.9 0.156
1 7.5 8 8.25 -0.25
1 8 8.3 8.6 0.3
1 8.6 8.75 8.95 0.2
1 9 ?.35 6.3 .05
1 2.5 9.0 2.66 0.25
1 10 10.3 10 0.3
1 105 10.6 10.35 0.25
1 11 10.85 10.7 0.1
1 11.5 11.1 11.06 0.05
1 12 11.3 114 -0.1
1 125 11.5 11.75 -0.25
1 13 11.7 12.1 0.4
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'l
<.

1 135 12 1245 | -0.45
1 14 124 12.8 04
] 145 | 1295 | 1315 | 0.2
1 15 135 135 0
15 -15 -6 6 o
5 | 145 5.4 565 | 025
1.5 14 -4.9 5.3 0.4
1.5 135 -45 495 | 045
1.5 13 -4.2 4.6 04
1.5 125 | 395 | 425 |. 03
1.5 a2 3.8 39 |- 01
1.5 115 836 | -355 | 005
1.5 11| 335 3.2 015
1.5 105 3] 285 | 025
15 10 2.8 2.5 0.3
1.5 95 24 215 | 025
15 | 9 -1.85 1.8 0.05
15 8.5 115 | 145 03
1.5 -8 0.7 1.1 04
15 75 035 | 075 0.4
1.5 7 0.1 04 0.3
15 6.5 005 | 005 0
1.5 -6 0.25 0.3 -0.05
1.5 55 0.55 0.65 0.1
1.5 -5 09 1 0.1
1.5 4.5 1.45 1.35 0.1
15 4 2.05 1.7 0.35
15 -3.5 245 2.05 04
1.5 3 2.65 24 0.25
15 2.5 2.85 2.75 0.1
1.5 -2 3.1 3.1 0
1.5 15 355 3.45 0.1
15 B 42 3.8 0.4
1.5 05 4.55 415 04
1.5 0 475 45 0.25
1.5 0.5 4,95 4.85 0.1
1.5 1 52 5.2 0
1.5 15 5.65 5.55 0.1
1.5 2 6.3 59 04
15 25 6.5 625 0.4
15 3 6.85 66 0.25
15 35 7.05 695 0.1
1.5 4 7.35 7.3 0.05
15 45 7.75 7.65 0.1
15 5 8.4 8 0.4
1.5 55 8.8 8.35 0.45
1.5 6 9.1 8.7 04
15 65 9.3 9.05 0.25
15 7 9.5 9.4 0.1
1.5 75 9.7 975 | 005
15 8 9.95 10.] 0.15
1.5 85 103 | 1045 | 015
1.5 9 1085 | 108 0.05
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1.5 9.5 11.45 1115 0.3
1.5 10 1195 |- 11.5 0.45
1.5 10.5 12.3 11.85 0.45
1.5 11 12.6 12.2 0.4
1.5 11.5 12.8 12.55 0.25
15 12 13 129 0.1
1.5 12.5 13.2 13.25 -0.05
1.5 13 13.45 13.6 -0.15
1.5 13.5 13.7 13.95 -0.25
15 14 14 14.3 0.3
1.5 14.5 14.5 14.65 -0.15
1.5 15 14.95 15 -0.05
2 =15 -4.5 -4.5 0
T2 -145 -4.2 -4.16 0.05
2 -14 -3.8 -3.8 0
2 -135 -3.45 -3.45 0
2 . -13 -3.15 -3.1 0.05
2 -12.5 -2.75 -2.75 0
2 -12 2.4 2.4 0
2 -11.5 |- 205 -2.05 0
2 -1 -1.7 1.7 0
2 -10.5 -1.35 -1.35 Q
2 -10 - - 0
2 9.5 -0.65 -0.65 0
2 -Q -0.3 0.3 0
2 -85 0 0.05 -0.05
2 -8 0.35 0.4 -0.05
2 75 0.75 0.75 0
2 -7 1.15 1.1 0.05
2 -6.5 15 1.45 0.05
2 -6 1.85 1.8 0.05
2 5.5 2.25 215 0.1
2 -5 26 25 0.1
2 4.5 3 2.85 015
2 -4 3.3 3.2 0.1
2 -3.5 3.65 3.55 0.1
2 -3 4 3.9 Q.1
2 25 4.35 4,25 0.1
2 2 4.7 4.6 0.1
2 -1.5 5.1 495 0.15
2 -1 5.45 5.3 0.15
2 0.5 58 5.65 0.15
2 0 6.15 6 0.15
2 0.5 6.45 6.35 0.1
2 i 6.8 6.7 0.1
2 1.5 7.2 7.05 0.15
2 2 7.55 7.4 0.15
2 25 7.9 7.75 0.15
2 3 8.25 8.1 0.15
2 35 8.6 8.45 0.15
2 4 8.95 8.8 0.15
2 45 9.3 2.15 0.15
2 5 9.65 0.5 0.15
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2 5.5 9.95 9.85 0.1.
2 6 10.3 10.2 0.1
2 65 10.65 10.55 0.1
2 7 10.95 10.9 0.05
2 75 1.3 11.25 0.05
2 8 11.65 1.6 _0.05
2 8.5 12 11.95 0.05
2 9 12.3 12.3 0
2 9.5 12.65 12.65 0
2 10 13 13 0.
2 10.5 13.35 13.35 0
2 R 13.7 13.7 0
2 115" 14.05 14.05 0
2 12 14.4 14.4 0
2 12.5 14.75 14.75 0
2 13 15.15 15.1 0.05
2 13.5 15.45 15.45 0
2 14 15.8 15.8 0
2 14.5 16.2 16.15 0.05
2 15 16.5 16.5 0
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A REVIEW OF AUTOPILOTS AND ASSOCIATED
CONTROL SIMULATION TECHNIQUES

M.HN.Polkinghorne
Dept. Mechanical Eng
Poclytechnic South West

G.H.Roberts

RHEC Manadon

Plymourl, PL$ dAA, UFR Plymouth PL5 3AQ.
ABSTRACT
Autopilots are investigated from the
early versions to the classical PID
controllers 1in common use today. Several
modern techniques have been implemented in
order to improve performance, these include

Self-Tuning. Model Reference and Fuzzy Logic.
Having reviewed the current state of the art
in this field comments are made on potential
new areas of interest., cthese being Neural
Networks and He.

INTRODUCTION
Steering a ship has over the centuries
been the responsibility of the helmsman.

Although a Ylarge pertion of the task requires
skill and judgement, others are merely time
consuming and tedious, especially when a
constant course is required for long periods.

In the 1920's automation of the ship
steering process began. Az technology has
advanced, then so has the composition of the
autopilots, and thus their performance and

competence in the range of sea-keeping roles
has increased.

The majority of autopilots have fixed
parameters that meet specified conditions.
When a change in these conditions occurs, for
example, an alteration in sea state, speed.
or depth of water, then the parameter
sectings may no longer be ideal and could
require adjustment if performance is to be
maintained at a required level.

Limited

alterations may be achieved by
the mariner,

but this relies on his
judgement. Even so, ideal parameter settings
are not obtained, only an improved
approximation of che reguired wvalues. It
would prove advantageous to have an autopilot
that 1is intelligent in operation and can
adapt to new conditions in an effort to
maintain optimum performance at all times. To
this aim, the current state of technological
advance of ship autopilot design is examined.

EARLY AUTOPTLOTS

22 the main

ship control €for maintaining
were specified in a paper
1922}. The amount of rudder accion
to counter yaw was found to differ
ships. It was also highlighted
currents,wind and waves greatly effect
control and performance of a vessel.

, As
automatic
course

earliy as 1 for

a
{Sperry
required
between
that
the

factors
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analysed
aim of
control

The action of the helmsman was
identify its components with the
these by the automatic

to
minimising
system.

would be an

before a
prevent

It was found that there
‘easing off' period of the rudder
counter rudder action was imposed tc
overshoot of the desired c¢ourse. Thus the
helmsman was controlling the course by the
anticipation of the vessels Tresponse. The
resulting system was an application of the
gyrocompass and by 1932 this had been
installed on over 400 ships.

a
an

also in that year Minorsky compiled
paper on ship control where he produced
analysis of a ship turning {Hinorsky 1922) .
Minorsky also showed that the ship's
acceleration contained both angular and
uniform turn components. there being a
gradual replacement of angular acceleration
by uniform turn as the process progressed. To
jpitiate a turn he identified three main
torques, these being External {Dleg. wind,
waves, and propelliers, Rudder {C(p:} and Ship

resistance {-B). Thus by taking A to eq?al
the effective moment of inertia of the ship,
then:
AQZ_E_’;"BQ_Q_-C(QI + D ceal
ac? dt
therefore,
L dle + Bde +# Caps =D .2
dr? dt
rd
This led to the proposal of a set of

control equations which could soive the needs
of an automatic steering system to differing
degrees. By means of the control 1laws
Minorsky (19221 and the work by Sperry
{1922} the basis was produced for the simple
course-keeping operations of the early
autopilots, wusing a low gain o prevent
oscillations.

CLASSICAL AUTOPILOTS

Until about 1950 proportional autopilots
were used. The early autopilots developed
into the three term controllers, using
Proportional,Integral and Derivative (PID)
controcl, which have been widely used across
the world. Since the controller is tuned only

to a specific set of conditions, it was
expected that mariners would make any
parameter adjustments to their PID

autopilots as required due to
or speed variations.

environmencal,
S50 teo this aim a range
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of suitable terminology was developed.
Typical autopilotr arrangements thus consisted
of Proporzional Control {Rudder Action},
Integral Action [Automatic Permanent Helm),
Derivative Action {Counter Rudder), Limit of

Rudder Movement {Rudder Limit) and Dead-Band
Hidth {Weather).

The
movemant
order to limit

Tudder
outside

limit prevented rudder
of a specified range in
the induced roll angle
{Mort 1933}, The dead-band reduced high
frequency rudder operation by imposing a
delay, before counteracting measures could be
taken. Thus wear on the steering gear could
be reduced. Alsc wused was a ‘kick' that
initiated rudder movement once the dead-band
had been exceeded.

The simple proportional controllers were
of the form:

& = K:¥: - ... 3
R: could be adiusted to obtain
results i.e fer different
conditions.

the reguired
epvironmental

Even with the improvements of dead zone
and kick, there was z tendency for this type
of autopilot te overshoot. To overcome this
a ‘'derivative of heading error' term was
intreoduced ,i.e

5 = Ku¥e + Kz ¥ ... 4

Also to be introduced was the integral
of the heading error term. This allowed an
i1mprovement in course during steady
disturbances, thus:

& = Fau¥e + F2 ¥e +K;]!.dt ...5

The equation now describes the classical
three term {PID) controller. To- counteract
any possibility of a2 sluggish response due to
the integrater, a further acceleration term
could alse be included:

& = KaYe+K2¥:+K¢#e+Kn! ¥. dt  ...6

Either of these final terms were capable
of producing a good set of steering
characteristiecs. To prevent the previously
mentioned high frequency rudder movements
cthat cause excessive wear, a more applicable
s&lution to dead zone was Trequired. Motora
applied a low-pass filter (Motrera 1953).
Rydill suggested that this may reduce
stability and thus put forward the gquadratic
delay technigue (Rydill 1958) forming El
controller transfer function of :

G =
¥isy

Fs {1 + s} - -7
{1 + Res + Rasl)

This would provide a sharp reduction in

rudder movements at high frequencies. .

The PID avtopilet has limitations, eg
the dead-band suppresses small amplitude
heading errors, which thus reduces accuracy.
In addition the combinaticen of dead-band and
integral action can produce a limit cyele
oscillation about the desired heading causing

an increase in the vassel's resistance.

It

is ¢lear that problems are apparent
during course-keeping for the classical PID
type auropileot. This is further shown in the
course-changing role when accuracy of
steering is essential because of the need to
avoid .obstacles, traffic, ete and due to
environmental changes e.@ depth. width of
channel and speed.
It is also a2 major issue that the

mariner either does not understand,
to change,
in normal

or bother
the controller parameter settings.
conditions the controller is
probably struggling to produce reascpable
results under this handicap. Hhen
disturbances etc suddenly change, i.e
rounding a headland, then it is clear that a
PID controller will perform in a less than
satisfactory manner, In response to this, a
variety of new techniques have been
investigated. -

HODERK AUTOPILOT TECENIQUES

In recent years a selection of
control techniques have been used to
the PID controller in an attempt to inprove
the ” autopilet performance. For this
application it is useful to have z contreoller
that is robust, ie. maintains stability as
ship parameters vary.

modern
replace

For a vesse) under automatic conirel the
maintenance of stability is essential. The
need for optimal parameter values is apparent
when the auxiliary characteristics of the
ship are examined, these are accuracy
[derivation from derived heading}, economy
(minimum fuel consumption, minimum tine),
navigational aspects and mechanical wear on
steering gear. Propulsion losses whilset
steering a ship also occur. Minimum steering
is required in order to keep the 1losses as
low as possible. It is stated (Clarke 1982)
that there is a significant increase in the
effect on the ship's motion by induced yawing
due to external wave and wind action, causing
ships drag to increase, speed wo be reduced
and a long sinusoidal path to be taken by the

vessel thus further reducing the down zrack
speed.

By coerrecting using rudder. the
auteopilot actually incraases the drag.
These effects were minimised iKoyama 1257) by
the correct selection of values in a P>
controller. The parameters of mean sguare
heading error ¥.,%and mean sguare anglz &2
were monitored and used in the parformance
index:

J o= ¥ o+ 152 . ...8

Where 1 is approximately squals 3 for a
cargo ship or 0.2 {Roymam 1967} and (Rorrbin
1972) respectively. It was suggested by
{Motora and Koyama 1968) that a cost function
of the form

J =1 J Tl ¥ o+ 1321dt ..-9
T o
should be employed where 1 is between 4 and
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8. MNorrbin contradicts this with 4 = 0,1
for large ships, however {Van Amerongen and
Van Nauta ‘Lemke 1978) suggest A = 10.

Using the Bore 1 type vessel {Astrom et
al 1975) found the results that for )1 = 0.1
there was a fast response, impossible rudder
angles were demanded. whilst for )| = 10, the
response was sluggish with inaccurarte
steering. Given - the variation of findings
there is clearly scope for further research.

Whilst investigating fuel savings

{Clarke 1980) developed the cost function:
—— d— —

F = a¥e? + pr? + ca? ...10
where a, b, ¢ were dependant on ship type.
propeller type, engine control systems and
the rudder geometry. In addition Clarke also
required equations of motion, description of
sea and wind disturbances which change due to
ship loading, speed, water depth etc.

Clearly the need for optimum settings of

parameters fs important. With constantly
changing environmental factors it would
appear teo be a desirable improvement if the

autopilot could adapt itself to current
conditions, whatever they may be thus finding
new optimum values as necessary. The modern
autopilot techniques are therefore attempiing
to continually update their controller
parameters, the main developements being in
the areas of self-tuning, model reference and
fuzzy logic controliers.

In the area of multivariable oprimal control

errors in position. neading ané speed are
vaken intoe account by obtaining a global
optimum, {(Burns 19%01}.

Self-Tuning Controller

Work on Self Tuning Controllers (3TC)
started with {Astrom and Wittenmark 1973}. It
was Rallstrom who applied various styles of
controller to solving the problems associated

with ship steering.The controller was
designed to adapt to variations in ship
velocity by means of velocicy scheduling,
thus producing a faster adaprion process.
Knowledge was required of the ships steering
parameters when speed was varied,
Modifications were required to cope with
large heading changes on very large vessels.
A different cost function (Tiano anéd Brink

1981) was applied to the STC as shown :
J = E ${Yt.e - W2+ 41,31 ,,.11

s0 in course keeping mode W =>0 and
in <c¢ourse changing mode 4 =0 providing a
fairly good degree of aucopilet performance.

The self tuning regulater ideas fAstrom
and Witteomark 1973) designed to reguiate an
unknown system when subjected to noisy
disturbances with the [(Clarke and Gawthrop
1975} algorithm was employed (Mort 1983).
This used the principles of recursive 1least
squares estimation combined with performance
index minimisation by the control law .

I = E | Y2i.x ... 12

Thus the variance of the syscem was
minimised. The basic algorithm contained the
two main limitartions that no set point
following was included and no penalty on
control effect. Important factors to consider
if rudder action is to be minimised on the
autopilot. Mort employed:

Tz = EI0 Pyuexg = Rwi)349Q7 | .13
In practice actual values varied f£from the
optimum ones, but this was overcome by the
introduction of a 'forgetting factor'.

The STC reached optimal values in
approximately 10-20 samples. Mort found
that it compared well with an optimal wvalue
with the exception of a small overshoot. As
the model order was raised,the responsa
remained stable, however, the overshoot was
increased. This could have been overcome by
adjusting the weighting factors in the cost
function, the simpple STC could not perform
this task,

The resulting STC did compare favourably
with ~an optimal state feedback controller

{with complete knowledge of parameters) and
gave satisfactory results. In additien it
proved capable of mopitoring slewly varying
parameters.

Hodel Reference Controller

for this style of control a model is

required whick can be placed in parallel or
in series with the system. ¥With the series
approach, the series model generates the
desired response and the ceontrol system
forces the ship to follow. In the parallel
approach the ships agtual response and that
of the ideal model are compared toe give an

arror  signail. When changes occur due Lo
environmental factors the error signal is
utilised to adjust the controller parameters.
Early versions used the sensitivity appreoach
whilst today the Liapunov theory, (Landau
19741, is applied.

rd

Initially the results were inadequate
when subjected <to noise due ro sea state.
Thus high frequency rudder action was
generated. The Liapunov approach was used
iVan Amerongen 1975} which assumes that the
system and the reference model are the same.
For & difference in variables between the
model and the system, then the parametaryrs are
adjusted to minimise this.

Using a linear model and system
method was acceptable without
subjection. but required a low~-pass
when in a noisy sea, ie. when
were frequent.

this
noise
filcer
discturbances

When compared against optimal
values it was found that the optimum
was better for long voyages where fuel
be saved and time for transfer function
identification was possible, however the
model reference system had improved steering
in coastal waters where the behaviour of the

control
method
could
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éhip

could vary swiftly, and large course
alterations were required. The course
keeping ~success of the model reference

controller was poor because disturbances were
not taken into account explicitly, [(Rallstrem
1379] .

Fuzzy Logic Contrelier

Fuzzy logic is a useful means of control

without the wuse of a rigid mathematical
model. The principles of fuzzy 1logic are
well explained in a tutorial paper (Sutzon
and Towill 1985) . The fuzzy logic
approach attempts to 4design a controller
based on the often erratic and inconsistantg

actions of the human operators experience. In
addition a buman response may be due to a
complex pattern of unmeasurable variables e.g
colour.

All these factors will lead a human to a
decision. Using conventional techniques
these values would need to be presented in a
guantitative form which is not pracrical.
Fuzzy sets c¢an be used to directly describe
these details, therefore overcoming these
problems. This technique was proposed by
(Zadeh 1973).

After the first real
{Yamdani and Assilian 197%), there has been a
tendency to employ the fuzzy technique to
‘model linguistiec expressions of humap
contyrol’. In conventional set theeory 0 equals
‘'not a member’ and 1 equals ‘is a member‘. In

application

fuzzy logic, sets may pbe described by a2
number between 0 and 1. giving a full member
of <the set, and a non member, but also a

range of partial members with various degrees

of membership. Since «chis is far less
precise than the conventional appreach, it is
more accurate since shades of importance may

be included. Examples of fuzzy sets could be
positive Dbig. positive medium or negative
small and could be used to describe yaw error
and change of yaw error in terms of fuzzy
values. Rules of the form If <(Condition>
then <Acticon> are formed inte a rule base.
The acticns contained within the rule base
corresponds to the output window. The fuzzy
values indicate the fuzzy actions regquired
which are in turn transformed into a non-
fuzzy output using a minimisation operation
and then the centre of area method. Since a
ruie for every situation is not feasible,
then rules may be composed due to inference.

An  autopilot designed with
was attempted (Van Amerongen
proved very robust to parameter
When compared to PID, both
performed similarly when optimally adjustad.
After the addition of noise, the fuzzy
controller performed significantly better,
and with fewer rudder calls.

fuzzy sets
1977 which
variations.
controllers

. The fuzzy controller is not adaptive and

has no learning capability. The self
organising controller is a further
development and actempts to implement the

fuzzy rules within an adaptive envircnment.

Self-Organising Controller

The Self Organising Controller
based upon Zadeh's fuzzy logic
addition of a learning mechanism to
adaption. The S0C uses a performance
such as [Sugiyama 1988) describes. to mohitor
the <controller’'s performance and to adjust
the-control rules when perfcormance 1is low.

{SOC} is
with the
provide

index

The performance index contains zero
elements, when response is satisfactory, and
increasing values corresponding to decreasing
performance. Ir is the size of these non-
zero elements that controls the amount of
rule modification, ie the worse the response
then the greater the adjustment.

The rules responsible for the response
are identified bpefore modification takes
place, leading to the rule base being

customised to maintain satisfactory control.

& self organising controller (SOCY with
a fuzzy logic PID approach was used (Jess
1590) to control the yaw of a warship. The
SOC has bpeen shown as analogous to & PID
controller since it employs Gain error (GE},
Gain change in error (GCE), and Gain change

in change in error {GCCE}, equivalent to P.I

and D, as variable gains used to modified any
error signals. A few applications achieved
rule convergence, ie the rule modifier
updated the fuzzy rule base so that
performance requirements were achieved. When
compared to the STC from (Mort 1983), Jess'
controller was slower in response, but
minimal overshoot and rtudder demand were
produced, A negative initial excursion was

experienced for large wvalues of (GCCE), small
values giving poor damping, although this
could be overcome by a variable gain
algorithm. Additional investigations iatoe
the use of SOC's for rol]l control have Dbheen

carried out, (Sutton et al 199%0}.

CURRENT ADVANCES IN AUTOPILOT DESIGHN

Two ayeas currently causing interestc
the field of autopilet design are
Networks and He.

in
Neural
”,

Neural Networks

This principlie is an attempt to simulate
the human brain using a2 network of nodes with
axons 3nd dendrites. {inputs and outputs}! and
associated weighting values.

Work has been undertaksn to davelop aute

tuning controllers (Claudio et ai 1991} ancd
maritime applications {Yamata 1990) and re
now being found. P2Possibilities for auzopiiot
control is now under investigation at
Polytechnic South West, UK.

E—: .

The principles of He~ were proposed
{Zames 1981) and extanded (Grimble 1987).
When used for autopilot design Fairbairn
19901 the initial results found that for

183




course changing a good response was
obtainable, even when subjected to
disturbanaes of wind and waves. In course-
keeping mode rudder activity was reduced but
heading accuracy suffered due to wave
disturbance. Further developments for non-
linear models are proposed.

CONCLUSIONS

It is clear that te 1mprove on tpe
classical PID autopiiets is advantageouns if
rudder action, down track time and fuel usage
are to be minimised. An autopilot design
that does not reguire an accurate vessel:
model, and has a learning ability could prove}
an invaluable asset in the search for §n!
intelligent autopilot. TO this aim
development of the modern control technriques
discussed in this report with application 1in
up to 6 degrees of freedomn must be
encouraged, if the current development rate
of new autopilots-is to be maintained.
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NOMENCLATURE

E - Expectation Operator

J - Cost Function Term

K - 8ystem Time Delay
Fi1,Kz.K3.Ke.Ka.Re ,Ks - Gain Constants
P.Q.R - Polynomials in Z-!

v - Rate of Turn

U: - Centrol Input

Wi - Set Point

X - Weighting Factor

Y - System Output

& — Rudder

¥ - vaw

¥. .e - Yaw Errer

¥e - Rate of Change of Yaw Erver
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A Fuzzy Autopilot For Small Vessels

M N Polkinghorne®, R S Burns® and G N Roberts®

*Polytechnic South West, Drake Circus, Plymouth.
‘Royal Naval Engineering College, Manadon, Plymouth.

ABSTRACT

A fuzzy logic controller is develcoped for a small
maritime vessel. Responses in both course-changing and
course-keeping modes are investigated and compared to
a classical PID autopilot over a typical range of
weather conditions.

1. INTRODUCTION

In the 1920's automation of the ship steering
process began. With technological advancements the
achievable performance and competence in the range of
sea-KReeping roles has increased.

The majority of current autopilots are based on
the Proportional plus Integral plus Derivative (PID)
controller and have fixed parameters that meet
specified conditions. In practice maritime vessels are
non~-linear systems. Any changes in speed, water depth
Oor mass may cause a change in dynamic characteristics.
Additionally the severity of the weather will alter the
disturbance effects caused by wind, waves and current.

Despite the PID autopilot having settings to
adjust course and rudder deadbands [1] to compensate
for vessel or environmental changes, the resulting
performance is often far from optimal, causing excess
fuel consumption and rudder wear. These effects are
particularly apparent in small vessels whose
sensitivity to disturbances and controller setting is
far greater than that with large ships. Modern control
techniques of H® [2], Optimality [3], Self-tuning [4],
[5], and Model Reference [6] have been applied to such
vessels in attempts to improve performance.
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Fuzzy logic controllers are thought to be robust
enabling them to cope with changes arising in ship
dynamics and sea conditions. Based on Fuzzy set theory
as proposed by Zadeh [7] they have found maritime
applications including submersibles [8], ships [91],
[10] and torpedoes [11].

Of +the autopilots in use today, a significant
proportion can be found on small vessels. Given their
increased susceptibility to disturbances, it is
important to discover if the fuzzy controller designs
applied +to large vessels [10] can successfully be
utilised on small ships, and whether such a controller
can then operate with equal success over the range of
typical disturbance conditions.

In this paper the application of fuzzy 1logic
control in the development of an autopilot for small
vessels is presented, with comparisons made to a tuned
PID autopilot.

2. VESSEL AND DISTURBANCE MODELS

Models for both vessel dynamics in yaw, and for
the disturbances and wave, wind and current had to be
generated as a pre-requisite for fuzzy logic controller
design and evaluation.

2.1 Yaw dynamics

A pc based Runge-Kutta integration routine was
utilised for the model simulation. This investigation
used a Nomoto model {12] of the form:

P(s) _  0.3848(s+0.603)
§(s) S(s+1.656)(5+0.3874)

(1)

where: Y(s)

Yaw (output of vessel model).

]

§(s) Actual rudder plus disturbance effects

{input to vessel model}).

The model of the 11 metre vessel for a speed of
8 knots was derived from hydrodynamic coefficients.
Rudder dynamics were modelled as a linear function with

a time constant of 1 second and saturation limits of
+200 .

2.2- Wave disturbances
In order to simulate ship behaviour with any

degree of realism it is essential to include
disturbance effects.
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In any one place on the sea's surface a
combination of waves will be present, all- with
different frequencies, heights and phase relationships.
This combination for a fully developed sea can be
described by a wave energy density spectrum. As a
simple case all wave components may be regarded as
travelling in a single direction giving a one
dimensional sea. Pierson and Moskowitz [13] developed
such a wave spectrum [Figure 1] based on the wind speed
at 19.5 metres above the sea's surface and
characterised for differing weather conditions by the
significant wave height (swh), ie. the average height
of the highest one third of waves.

- 4
Sp (@) = 2 @ B/0 (2)
©
where: S, = spectral density (m’rad's)
A = 0.0081g’
B = 3.11/swh?
g = gravitational acceleration.
® = freguency of encounter rads™
14f X1072
1
1
4

0 2 4 6 8 10 12 14 16 18 =20 x10~1

Figure 1: Wave Energy Density Spectrums
m

Figure 2: Wave Time History - Sea State 5
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Based on the spectrums shown in Figure 1, a wave
time history with zero mean for a given sea state code
was generated wusing an Inverse Discrete Fourier
Transform [Figure 2]. Table 1 was generated using séa
state information and wind data from Sutton et al [15].

Table 1. Data For Sea State Codes

Sea State Significant Wave Mean Wind

Code Height Speed
(m) (ms™)

1 0.05 ) 1.51
2 0.30 3.70
3 0.88 6.34
4 1.88 g.25
5 3.25 14.75
6 5.00 15.11
7 7.50 18.50
8 11.50 22.91
9 >14.00 >23.00

By relating the sea state and wind in this manner
it is possible to deduce the mean wind speed for a
particular sea state.

2.3 Wind and current disturbance

Both the wind and current disturbarices may be
considered to act as a constant disturbance with a
gusting factor by using a Gauss-Markov function, as
developed by Burns [14], of the form:

U{k+1l) = AU(K) + BW(k) (3)
where: A = g™
T = 1 sec (sampling time)
T.= 10 sec (Break frequency of 0.0159Hz)
B = 1-A
U = Present value of gust (ms"!)
W = Gaussian random process gusting to *20%

of mean value.

The deterministic and stochastic elements were
combined for wind and for current, [Figure 3].
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Figure 3: Wind and Current Time Histories
- Sea State 5

Based on the experience of an actual autopilot
manufacturer, it was decided that the worst weather
conditions that a small vessel would expect to be at
sea, under autopilot control, would be sea state 5.
The simulation conditions relating to sea state 5, ie.
a swh of 3.25m, a wind speed of 14.75ms™ and a current
of 1.0ms™!, were therefore used for disturbance purposes
in this investigation.

The forces and consegquently the moments produced
for each disturbance were scaled relative to the rudder
moment and summed with the rudder input.

3. AUTOPILOT CONTROL

The autopilot may be considered to act in two
modes, namely course-changing and course-keeping. The
requirements for these two modes are:

Course-Changing - to reduce the yaw heading error
with a minimum overshoot, settling time and rudder
action.

Course-Keeping - to maintain the desired course
with a minimum yaw heading error, rudder action
and number of rudder calls, given the application
of disturbances. )

The final autopilot design requires both these
modes to operate together. However, to aid this
investigation the actions have been separated so that
each mode may be considered individually.:
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3.1 PID autopilot

The classical PID autopilot used was of the form:

- 1 ’
Gore) = Kp[l+__'Tis + Tys] (4)
where: K, = Proportional Gain
T, = Integral Action
T, = Derivative Action

For comparison with a Fuzzy controller, the PID
autopilot was tuned for this particular wvessel. In
practice the autopilot is tuned for an approximate
length of boat. The parameter settings then remain
constant with the autopilot changing from course-
changing to course-Keeping modes when the yaw heading
error falls within a specified band. The size of the
band is set by the user and depends on the weather.

To allow consistent comparison between the PID and
fuzzy logic designs, the possible deadbands and weather
settings were ignored. The PID controller was tuned to
minimise the root mean square (RMS) yaw error with
optimum controller parameters being K, = 1.6, T, = 2.0
seconds and T, = 100 seconds for course-changing,
[Figures 4 & 5], and K, = 12, T, = 10 seconds and T, =
0.1 seconds for course-keeping, [Figures 6 & 7].

(°) 1%
1:

A}

o - S, W - -

0 2 4 6 B 10 12 14 sec
Figure 4: Yaw Response (PID) for 10° Heading Change

Figure 5: Corresponding Rudder Action

191




Figure 6: Yaw Response (PID) - Sea State 5

© —— b b L e e ) s L Lo a b i o a oy
(%) 4™~ 10 15 1 16185052 5T sec

Figure 7: Corresponding Rudder Action
4. FUZZY LOGIC AUTOPILOT DESIGN

The fuzzy logic controller utilised in this
investigation is closely related tc the work by
Farbrother and Stacey {8] with its descendancy
traceable through Sutton [16] back to the early work by
Van Amerongen et al {9].

The input variables of yaw error and yaw rate are
converted to fuzzy values by their associated input
windows, each containing seven triangular fuzzy sets
{Figures 8 & 9]. These sets are symmetrical in shape
about a set point. Each set is given the linguistic
label Positive Big (PB), Positive Medium (PM), Positive
Small (PS), About Zero (Z), Negative Small (NS),
Negative Medium (NM), or Negative Big (NB).

io

0 5 10 15 20 25 30 35 40
Figure 8: Yaw Error Input Window
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Figure ‘9: Yaw Error Rate Input Window

The fuzzy logic controller is constructed around
a rule base [Figure 10], each rule being of the type:

IF (Condition A) AND (Condition B) THEN (Action)
e

NE NM Ns Z PS PM PB

NB{NE [NB | NB|NM| Z | PM| PB

NN NB | NB | NB [NM | PS |PM { PB

NS|NBE|{NB|NM|NS|PS|PM|PB

ceZ NB|NM|NS| Z |PS |PM|PB

PS/NBINNINS | PS |PM{PB | PB

PM| NB (NM | NS |PM | PB | PB | PB

PB|NB|NM| 2 |FM|PB|PB | PB

Figure 10: Fuzzy Rule Base

The nature of the input windows ensures that
several rules may be activated together, the output of
each rule being modified by a weighting term. The
output window contains seven asymmetrical sets [Figure
11] which due to previous work [8] is known to create
a smoother output from the controller. By employing
the centre of area method to all the active output
sets, a deterministic controller output may be
obtained.

0 5 T R N TR TR TS 1)
Figure 11: Rudder Qutput Window
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4.1 Course-Changing Fuzzy Logic Autopilot

The window limits for yaw error (e) and rate (ce)
were varied to obtain the optimum performance. QOutput
window limits were maintained at +20° to fully utilise
the available rudder movement. The RMS values for both
yvaw error and rudder action were recorded for analysis.

Based on a step change in yaw of 10°, the fuzzy
logic controller was also tuned to minimise the RMS yaw
error with final window limits of vaw error *11.5°,
rate %4.5°s™ and rudder *20°, [Figures 12 & 13].

(°)12
10

oo
vy

R

FREETIE FTT T ETTY SYETUTTITE PTT TT TRV FrTTTTrrre FeTrrm adatos oussasal

0 2 4 3 8 10 12 i sec
Figure 12: Yaw Response {(FUZZY) for 10° Heading Change

...... 1 daaaag faa gt
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Figure 13: Corresponding Rudder Action

Having established optimum parameters, the
controller was subjected to a step change demand in yaw
of 30° to indicate the obtainable performance across
the typical course-changing envelope. The results are
shown in Table 2 where it can be seen that the fuzzy
logic controller clearly reduced the RMS yaw error
'across the board' whilst for smaller changes in
heading an increase in RMS rudder action was apparent.
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Table 2. Course-Changing Results for Fuzzy
Iogic and PID Autopilots

PID Fuzzy Logic | Fuzzy Logic

Controller Controller Improvement
Step Size
10°
RMS Yaw 3.65 3.53 +3.3%
Error (°) -
RMS Rudder 3.79 4.26 -12.5%
Action (°)
Step Size
20°
RMS Yaw 12.51 10.03 +19.8%
Error (°)
RMS Rudder 9.21 8§.78 +4.7%
Action (°)

4.2 Course~Keeping Fuzzy Logic Autopilot

As with the course-changing autopilot, the window
limits for yaw error and rate were adjusted to obtain

an optimum wvalue of RMS vaw error.

The final window

limits with the disturbance inputs of sea state 5 were
yaw error #0.3°, rate #0.2°s™? and rudder +20°, [Figures

14 & 15].
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Figure 15: Corresponding Rudder Action
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To test the robustness qualities of the fuzzy
logic controller over a range of significant operating
weather conditions, both the controllers were
subjected, without change, to sea state 3 weather
conditions, ie. a swh of 0.875m, a wind speed of
6.34ms™ and a clurrent of 0.lms™?. The results are
summarised by Table 3.

Table -3. Course-Keeping Results for Fuzzy Logic.
and PID aAutopilots

PID Fuzzy Logic | Fuzzy Logic

Controller Controller Improvement
Sea State
Code 5
RMS Yaw 0.068 0.059 +12.5%
Exrroxr (°)
RMS Rudder 5.454 5.579 -2.2%
Action (°)
Sea State
Code 3
RMS Yaw 0.022 G.007 +65.0%
Erroxr (°)
RMS Rudder 0.671 0.774 +15.0%
Action (°)

For sea state 5 weather conditions the Fuzzy Logic
controller proved more successful at minimising the RMS
yaw error. Following the application of sea state 3
conditions, the fuzzy autopilot demonstrated a further
increase in performance compared to that of the PID
autopilot.

5. CONCLUSIONS

The principles of fuzzy logic have been shown to
successfully control the vaw response of a small
vessel. In both course-changing and course-keeping
modes the fuzzy autopilot reduced the RMS yaw error
with only a slight rise in RMS rudder action. The
output of the fuzzy controller is naturally noisy and
could be improved by the addition of a filter which
would reduce the RMS rudder action.

The general performance of the fuzzy logic
controller has been shown to be superior to the PID
autopilot for the constant speed model. The next stage
in the investigation is to undertake a comprehensive

196




sensitivity analysis whereby the performance of the
fuzzy logic autopilot in course-changing and course-
keeping modes will be assessed for suitable variations
in vessel dynamic characteristics.
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SMALL MARINE VESSEL APPLICATION OF A FUZZY PID
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Abstract. A fuzzy logic PID controller is developed for 2 small maritime vessel. Responsss in the course-keeping
mode are investipated and compared Io a classical PID autopilot over a typical range of weather conditions with
RMS yaw error and rudder action being ulilised to quantify the quality of results obtained.

Key Wards. Fuzzy Control; PID Control; Fuzzy PID; Ship Control; Ship Autopilot.

1. INTRODUCTION

During the 1920's automation of the ship steering
process began. With advancements in technology the
achievable performance and competence in the range
of sea-keeping roles Has increased.

Most of the curent autopilots are based on the
Proportional plus Integral plus Derivative (PID)
controller and have.fixed parameters that meet
specified conditions: In practice maritime vessels are
non-linear systems. Any changes in speed, water
depth or mass may cause a change in dynamic
characteristics. In addition the severity of the

weather will alter the disturbance effects caused by -

wind, waves and cuitent.

Typically PID autopilots have settings to adjust
course and rudder deadbands (Cetrek Ltd, 1990) to
compensate for vessel or environmental changes.
Despite this the resulfing performance is often far
from optimal, causing excess fuel consumption and
tudder wear. These effects are particularly apparent
in small vessels whose sensitivity to disturbances and
controller setting is far greater than that with- large
ships. Modern control techniques of H* (Fairbaim
and Grimble, 1990), Optimality (Burns, 1990), Self—-
tuning (Tiano and Brink, 1981; Mort and Linkens,
1980), Model Reference (Van Amerongen, 1975) and
Neural Networks (Enda er al, 1989) have been
applied to such vessels in attempts to improve
performance.
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Fuzzy logic contrellers are thought to be robust
enabling them to cope with changes arising in ship
dynamics and sea conditions. Based on Fuzzy set
theory as proposed by Zadeh (Zadeh, 1965) they have
found maritime applications including submersibles
(Farbrother and Stacey, 1990), ships (Van Amerogen
et al, 1977; Sution and Towill, 1985) and torpedoes
(Jones et al, 1990).

Of the aviopilots in use today, a significant proportion
can be found on small vessels. Given their increased
susceptibility to disturtbances, it is important to
discover if the fuzzy controller designs applied to
large vessels (Sutton and Towill, 1985) and small
craft (Polkinghorne. et al, 1992) can successfully be
modified by the addition of an integral action to
improve performance when operating over a range of
typical disturbance conditions.

In this paper the application of fuzzy logic control in
the development of a fuzzy PID autopilot for small
vessels is presented, with comparisons made to a
tuned PID autopilot.

2. VESSEL AND DISTURBANCE MODELS

As a pre-requisite for the design and evaluation of
the fuzzy logic coutroller, models for both wvessel
dynamics in yaw, and for the disturbances of wave,
wind and current had to be generated.




21 Yaw Dynamics

A pc based Runge-Kutta integration routine was
utilised for the model simulation. This investigation
used a Nomoto modetl (Nomoto et al, 1957} of the
form:

Pls) _  0.3848(s+0.603) )
8(s)  s(s+1.656)(s+0.3874)

where: ¥(s) = Yaw (output of vessel model).
8(s) = Actual rudder plus disturbance
effects (input to vessel model).
The model of the 11 metre vessel for a speed of 8
knats was derived from hydrodynamic coefficients.
Rudder dynamics were modelled as a linear function
with a time constant of 1 sccond and saturation
limits of +200.

2.2 Disturbances Effects

In order to simulate ship behaviour with any degree
of realism it is essential to include disturbance
effects. Using an energy density spectrum for waves
(Pierson and Moskowitz, 1964) and a Gauss—Markov
funciion for both wind and current (Burns, 1984) the
maritime disturbances associated with sea siates 3,4
and 5 were simulated as described previously
(Polkinghome et al, 1992).

The forces and consequently the moments produced
for each disturbance were scaled relative to the
rudder moment and summed with the mdder input.

3. PID AUTOPILOT CONTROL

The classical PID autepilot used was of the form:

1
Gy =K1 + N + Tp] 4

where: K, = Proportional Gain
T; = Integral Action
T, = Derivative Action

For comparison with a Fuzzy controller, the PID
autopilot was tuned for this particular vessel. In
practice the autopilot is tuned for an approximate
length of boat, the parameter settings then remain
constant. To allow consistent comparison between
the PID and fuzzy logic designs, the possible
deadbands and weather settings were ignored. The
PID controller was tuned to minimise the root mean
square (RMS) yaw emror giving due consideration to
the resulting rudder response [Fig.1].

The fuzzy logic controller utilised in this

investigation is closely related o recent work
- (Farbrother and Stacey, 1990) with its descendancy
traceable (Sutton ,1987) back to the early wark (van
Amerogen et al, 1977). It was shown (Polkinghome
ef al, 1992) that 2 fuzzy PD controller could .
successfully minimise the yaw error of a small vessel.
By adjusting the window limits sufficiently to smooth
the resulting rudder respomse a steady-siate error
caused by the disturbance effects was produced. The
historical PD form of the fuzzy controller was
therefore extended by the introduction of a parallel
integral controller, derived from an idea previously
. presented (Kwok er af, 1991).

Rudder

Fig 1. Yaw & Rudder Responses (PID) — Sea State 4

4. FUZZY LOGIC AUTOFILOT DESIGN

In the fuzzy PD controller the input variables of yaw
error and yaw rate are converted to fuzzy values by
their associated input windows, each containing seven
triangular fuzzy sets [Fig2). These sets are
symmetrical in shape about a set point. Each set is
given the linguistic label Positive Big (PB), Positive
Medivm (PM), Positive Small (PS), About Zero (Z),
Negative Small (NS), negative Medium (NM), or
Negative Big (INB).

Fig. 2. Fuzzy Input Window

The fuzzy logic PD controller is constructed around
a rule base [Table 1], each rule being of the type:

IF (Condition A) AND (Condition B) THEN
{Action)
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Table 1: Fuzzy PD Rulebase
& NB NM NS Z PS PM PB
N8 [ nB | NB {NB | v | .z | pM | PB
NM NB NB NB NM PS PM PB
NS NB NB NM NS PS PM | ‘PB
Z NB NM NS Z PS PM PB
NS NB NM NS PS PM PB PB
NM NB NM | NS PM | PB PB PB
NB ’ NB NM A PM . PB PB PB
Table 2: Fuzzy Integral Rulebase
® NB NM NS Z PS PM PB
I NB NM NS Z -} PS PM FB
In a similar manner the fuzzy integral controller ©

utilises the Integral Rulebase, as defined by Table 2.
. . P Yaw
The nature of the input windows ensures that several ]
rules may be activated together, the output of each
rule being modified by a weighting term. The output
window comtains seven asymmetrical sets [Fig.3)
which due to previous work (Polkinghome et al,
1992} is known to create a smoother output from the
controller. By employing the centre of area methad
10 all the active output sets, a deterministic controller

output may be obtained. -j Rudder

Fig. 4. Yaw & Rudder Responses (FUZZY PID) -
Sea State 4

To test the robusmess qualities of the fuzzy logic
coniroller over a range of significant operating
. ' weather conditions, both the controllers were
=30 -15-10 -5 0 5 10 15 20 subjected, without change, to sea state variations.
The results are summarised by Table 3.

4
-2
1
0

Fig. 3. Fuzzy Output Window For all tested conditions the fuzzy PID controller
proved to be more successful at minimising the RMS
. yaw errol.
11 C —Keening F Logic 4 i1

The window limits for yaw error and rate were

adjusted to obtain an optimum value of RMS yaw

error. The final window limits with the disturbance

inputs of sea state 4 were yaw error +10°, rate

*1.5%7 and rudder +20°, [Fig4]. The integral :
controller utilised the identical yaw input window '
with an output rudder window limit of 12°,
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Table 3: Comparison of Controllers to Sea State

Alterations
RMS Yaw PID Fuzzy PID
Ermor (%)
Sea State 3 0.34 0.15
Sca State 4 1.32 0.99
Seca State 5 ] 5.96 5.17
RMS Rudder PID Fuzzy PID
Action (%)
Sca State 3 1.82 182
Sea State 4 4.25 4.26
Sea State 5 - 11.59 11.42

5. CONCLUSIONS

The principles of fuzzy logic PID controller have
been shown to successfully control the yaw response
of a small vessel. In the course-keeping mode the
fuzzy autopilot reduced the RMS yaw error with a
slight rise in RMS rudder activity being noticeable.
The output of the fuzzy controller is naturally noisy
and could be improved by the addition of a filter
which would reduce the RMS rudder action.

The general performance of the fuzzy logic PID-

controller has been shown to be superior to the PID
autopilot over a range of operational conditions.
Equally the fuzzy autopilot has demonstrated its
robust qualities by operating with higher levels of
performance when applied to alternative vessel
models. A useful advancement would be the
development of the controller into an intelligent
version with the ability to achieve rulebase
modifications on-line when applicable.
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ABSTRACT

In the field of ship control ihe Proportional plus
Integral plus Derivative (PID) controllers remain
coramon place. However, increasingly new aulopilot
strategies, promising higher levels of robustness and/or
adaptive qualities, are being proposed as possible
successors to the PID. Fuzzy Logic is 2 modemn control
technique which is currently finding 2an ine reasing and
diverse range of novel applications, By 1 wcans of full
scale sea irials, a newly developed Fuzey Logic
autopilot is 2valuated and a  comparison made o its
conventional equivalent.

L INTRODUCTION

Marine vessels are non-linear time wvariant
sysiems. therefore changes in speed, water depth or
mass loading may couse a change in their dynamic
characleristics. The severity of the weather will also
aller the magnitude and direction of any disturbance
effects caused by the wind, waves and current. The
problern of autopilot control for such wvessels is
therefore inherently difficult. This is particularly so in
the case of small craft whose sensitivity 1o incorvect
control action is accentuated by their responsiveness (0
helm adjustments. Small vessels may be considered to
be those of less than thirty meters in length and could
e Jor commercial or leiswre usage, Automaiic control
may be utilised for roli reduction van der Klugt (1),
rack-kesping Zuidweg (2), navigation Hashiguchi (3),
autornatic benhing Yamato ef af. (4) or collision
avoidance Kovama and Jin (5). However it is the
autopilot  application  of  course-keeping/course-
changing where the proposed Fuzzy Logic coptroller is
most useful. Due to the small draff of the considered
type of ship, when the exiernal environmental
disturbances aré applied to the hull. the fow inertia
pressnt creates littie resistance (o (he indnced heading
change. The autopilot performancé must therefore be
swift and decisive to counter any such effecis by
employing ar opposing rudder condition,

It is therefore 2 necessity of a successful autopilot
design that by its very nature, the obtainable level of
performance must be either robust and relatively

insensitive to the alterations in vessel dymamics and
external disturbance factors, or alternatively, must be
adjustable by the mariner on demand. In practice the
latler has been proven 10 be unsuccessful due io a
general inability of the mariner to fully understand the
consequences of his/her actions when presented with a
range of tuneable parameters. The resuling
performance levels in such cases are normally stll

inadequate,

Poor controller performsnce mav resull in an
osciliatory down-irack course which increases distance
and therefore irp time 2nd fuel conswmplion. Wild
and undesizable radder movements may be produced
which not only causes excessive wear to the rudder
mechanism and induces drag. bt also uses unaecessary
power which is of pariiclar imporiance when
considering sail vessels whose power is often limijted 0
2 battery supply.

Modern control technigues of Hwe Fairbaim and
Grimble (6), Optimality Buras (7)., Self-Tuning (3).
Model Reference van Amerongen (9). Naural Networks
Endo ef ai. (10) and Fuzzy Logic van Amerogen (11)
have all been applied 1o the field of large ships over
recent years in an attempt to improve autopilot
performance over the entire operating emvelope. In the
case of small vessels there has been httle research of
this kind. Previous studies bv Polkdaghorne ef af. (12 &
13} have demonstrated the scope for Furzy Logic
control in this area. The excepled robust qualities of the
Fuzzy téchniques and jis ability 10 be advanced inio an
‘inteligent’ form (the Self-Orpanising Controller or
SOC) mean that detailed autopilot research into Fuzzy
control of small vessels may well prove to be one of the
most  exciting and innovadve areas of marine
development cwrrently  being  underisken.  The
commercial exploitability of such a device could be vast
given the huge number of craft currently utilising the
PID alternative.

2. FEXED RULEBASE FUZZY LOGIC

Fixed Rulebase Fuzzy Logic (FRFL) has been
developed as a2 means of coping with the decision
process when only imprecise data is available 1o wark
with. If rigid mathematical relationships between
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component parls of the process can be defined, then
analysis, and subsequent decision making, may be
undertaken with relative certainty of a successful
conclusion. However, in the cases when such prior
understanding is not possible, yet a rcalistic assessment
of the decision outcome is required, the task is
considerably more difficult o describe in quantitative
terms. A technique is therefore required which is
capable of utilising qualitative, linguistic or just
generally imprecise, information. FRFL techniques
currently employed in a wide range of applications
appear to demonstrate this ability, and conséquently are
generating considerable interest, particolarly in the
field of control engineering. The concept of FRFL is
derived from the principles of Fuzzy Set Theory as
proposed by Zadeh (14). Given the possible advantages
of using a Fuzzy Logic Controller (FLC) for autopilot
applications, it is fully understandable that the
complexities of the controller itself are far greater than
would be associated with the conventional PID version.
If the basic working philosophy of the FLC is 1o be
investigaled, then any inherent complexities must be
minimised at the preliminary testing stage to ailow fair
comparisons t0 be carried ouf between avtopilot types.
Therefore it is the ability of the FLC 1o conirel, given
equal information to the conventional PID autopilot,
which requires initial investigation. Should these result
prove favourable, then the arguments for extension to
wider internal non-linearities and even adaptability
hold true. To this aim a FLC is developed which will
closely emulate the PID controller when subjected to
similar environmental conditions, but will also retained
the basic inherent Fuzzy advantages.

3. FUZZY LOGIC AUTCPILOT

The basic design of a standard form of FLC contains
three elements, these are:

1. Fuzzification of inputs using Fuzzy windows.
2. Defuzzification of outputs using Fuzzy windows.
3. Rulebase relating Fuzzy inputs to Fuzzy outputs.

For this autopilot application a fourth component is
required 10 compensate for any constant disturbance
effects caused by wind. waves, or current, this being a
Fuzzy Integral action.

3.1 Input Fuzzification

Fuzzification is the methodology by which the 'real
world' deterministic inputs may be transformed into a
Fuzzy . format for utilisation within. the FLC. Previous
autopilot applications of Fuzzy Logic, Sutton [15], have
restricted the inputs to those of heading error and rate
of change of heading error. each variable being
furzified individually by employing a Fuzzy window

which contains a series of Furzy Sets.

The chosen Fuzzy Sets are deemed fo represent
the working envelope of the controller for a particular
input wvartable. Howecver, the shape, number and
position of the sets is design dependant. Typical shapes
include triangular, trapeziodal and gaussian sets, For
the purpose of computational efficiency, the triangular
shaped sets require the least amount of storage capacity
and are comparatively casy 1o design since they operate
about a clearly distinct set point. The set point can be
defined as the point at which the function describing
the set has a membership value of unity. For these
reasons triangular Fuzzy Sets were used throughout the
development of the FLC

As the number of ufilised sets is raised, so the
complexities of the FLC increase greatly. It is therefore
of paramoun{ importance that the set number is
minimised for any application where computational
storage and power is restricted by physical limits.
Conversely, if the number of sets for each window is
too low, then the range of permutations used to derive
the controller outpuls becomes restricied and only
lincar control possible. Following a heuristic design
approach, it was found that the minimum number of
sats which could successfilly describe the inputs for a
small vesse] autopilot application was seven. However,
the use of seven sets requires the central set point to be
placed on the zero position in the universe of discourse,
In practice the case when inputs are zero is not of
paramount imporiance, and therefore to employ eight
sets with an even distribution of four on either side of
the zero mark, enables the defined set points to more
fully describe the significant controller inputs.
Symmetry of the given sets around the zero point
enables the zero input condition to be represented by a
blend of both positive and negative sets.

At the point when a particular set has a membership
value of unity, it is important to ensure no overlap from
adjacent Fuzzy Sels exists. Al the set point the set may
therefore be considered 1o fully describe the inprt, any
activation of the surrounding sets in this situation
reduces the importance and thus the effectiveness of
any one individual set. The input window's universe of
discourse was defined in its minimalistic form as
twenty-one discrele intervals, at each interval the seis
having a membership value in the range zero to unity.
Each set is givern a linguistic label to identify it, in the
range Positive Big (PB), Positive Medium (PM),
Positive Small (PS), Positive Tiny (PT), Negative Tiny
(NT). Negative Small (NS), Negative Medium (NM)
and Negative Big (NB). The identical window design
was utlised for ‘both inputs to conserve required
memory storage in accordance with implementation
hardware restrictions, only the window limits being
varnied in each case.
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The set points should be placed in such a manner that
they represent the positions where a change in
coutroller action is required. As the Fuzzy Sets within
the Window overlap, then a transition between
differing control strategics may be enforced. The speed
of this transition is dictated largely by the degree of
overlap between Fuzzy Sets and the Fuzzy significance
of the sets in question. In the case of input values which
fall outside the extremities of the input windows, these
values are saturated to the size of the window limits. It
is therefore essemtial that the input windows cover the
actual full range of useful inputs, as no new control
configurations are possible for inpuis which fall within
the saturated regions. In order that no detrimental
effects on the ‘input resolution were caused by each
input window, the most suilable window limiis were
determined to be 115° for heading error and +5°5~1 for
the rate of change of heading error.

Whilst in most cases the Fuzzy Input Sets are
symmetrical about their set point, it is possible to
design the sets in a non-symmetrical (nos-lincar)
manner. This technique is particularly advantageous
when a relatively large universe of discourse is required
to provide 2 high accuracy of control about a point, e.g.
zero point, whilst maintaining a minimum number of
operational scts. In the small vessel autopilot
application, there is a need for a high level of control
during course-keeping, i.e. when the course error is
within the range +3°. This effect may be achieved by
the utilisation of small angled Fuzzy Sets, thereby
ensuring that several sels operale within the course-
keeping performance envelope. In contrast, during the
course<hanging mode, the universe of discourse is
required to represent a much wider range of heading
errors. Therefore, large angled sets are required so that
a much larger proportion of the window may be
described by each set, thus ensuring that set numbers
are 10 kept to a minimum {Figures 1 & 2].

In previcus maritime studies the two modes of course-
- keeping and course-changing were either freated as
separate modes of operation (15), or required the
addition of a-secondary level rulebase for ‘close control’
Farbrother (16). By employing non-symmetrical set
shapes in the described manner, both effects can be
successfully incorporated into the same input window.

3.2 Output Defuzzification

Defuzzification is the process by which a Fuzzy output
value may be converted into the relevant deterministic
value for use by the real world. The basic foundation of
the Fuzzy output mechanism is an output window of
similar form to that utilised for the controller inputs.
The size of the window limits is restricted by the
saturation limits of the conirol actuator. In this case, for

full scale autopilat testing, the control actuator is the
rudder, with physical movement limited to £30°.

Given that the Fuzzy outpui window contains a series of
Fuzzy Sets, and that the Fuzzy output will be described
in the form of identified Furzy Sets wilth their
associated membership values, then 2 means of
defuzzification is required. It is possible to consider the
outpul to be at the point with the maximum
membership, When more than one peak is present then
their positions may be averaged. This 'mean of the
maixima' method has been compared as analogous (o a
multi-level relay Kickert (17), however the full concept
of fuzziness as derived by the FLC is minimised by the
sclection of just maximum set memberships. since lower
membership elements of the output window become
irrelevant. An alternative strategy is to apply the 'centre
of area method' to the entire output window,
considering the higher membership value where two
active output sets overlap.

This technique is thought 1o provide a2 smoother output
(16) due to the incorporation of the lesser fuzzy
elements within the output window. Given the -nature of
the 'centre of area method' it is important to realise that
the centre of a symmetrically shaped set will always be
in the middle, irrespective of the membership value of
that set, By employing non-symmetrical output seis this
undesirable feature of defuzzification may be overcome.
Using a similar approach to the design of the input
windows, it was found that the minimum number of
Fuzzy Sets required {o successfully defuzzify the Fuzzy
output was seven. Due to the non-linear shape of the
sets, the number of discrete intervals required to fully
describe the output window's universe of discourse was
found to be twenty-one. Utilising the details of the
output window, the 'centre of area method' for this
application may be defined as:

20
288,
— =0

8, =%
;op(ﬁ,)

6

where:

8 = Deterministic controller output.
& = discrete inferval in universe of discourse 5.
1 = Fuzzy membership at discrete interval 5.

When giving consideration {0 the incorporation of an
integral action, the described form of output window
was found to cause difficulties. Whilsi it is possible to
consider the integral action to be a third input with
individual input window and rulebase (12), it is more
advantageous 1o calculaie the integral in ferms of a
shifl 10 negative or positive of the cstablished output
from the two input FLC, In order for this phenominum
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to be possible, the conventional output window with
only seven set points proved ineffective. A new output
window was therefore designed which contained two
hundred and one Fuzzy Singletons, i.e. Fuzzy Sets with
only one clement where the membership function has a
magnitude greater than zero. Thus the number of
output permuiations becomes vastly increased, and the
performance of the integral action significant.

3.3 Rulebase Derivation

The Fuzzy Rulebase is the heart of the FLC and
contains the input/output relationships that form the
control strategy. Therefore, a large proportion of the
FLC's power is contained in this mlebase and
determination of the correct magnitudes for each
element is essential. For this autopilot application, it is
undersiood that the final controller performance should
be of a form similar to that obtained from the PID
controller, The PID data was therefore analysed for
each combination of input set poinis and an output
singleton identified that would give an equivalent
response, {Table 1],

TABLE 1. - Fuzzy Rulebage

Rueber 4 23 2 -1 41 42 43 44
4 [0 [eo 36| w]25] 15
ST R
a6 20
5|16 30
+1 [0 (18] 5|18 15|26 %
25
36
60

36| 50
51| 65
71 ] 100

In practice, the FLC combines many such input values
to obtain an overall Fuzzy output using the Max-Min
method of inference.

5. AUTOPILOT TESTING

Both thc FLC and PID controllers were iested in
course-keeping modes, in a low sea state so that
performance limitations were imposed strictly by the
autopilots and not by the environmental conditions.

Small vessel tests were carried out over a 2.5 mile
course at 1§ knots, and with a desired heading of 30°.
The resulting performance for both vessel heading and
rudder responses are shown in Figures 3 to 6 for the
FLC and PID controllers respectively.

6. CONCLUSIONS

During the sea trials, it became apparent that the FLC
was operating in a highly successful manner. Afler
consideration of the data obtained for these irials, it s
clear that this impression was true. Given that it was
the intention of this initial FLC design to mimic the
performance of the conventional PID autopilot,
similarity in the respective performances is to be
expected, and indeed desired.

In the case of the wvessel heading, the results

‘demonstrated that both controliers were capable of

maintaining the required course with a high degree of
accuracy. The derived yaw responses are therefore of a
similar order. However, when inspecting the actual size
of the course deviations, it becomes clear that the PID
autopilot wandered further from the desired course on
many more occasions before correction, whilst the FL.C
performed in a superior and more consisient manner.

When considering the rudder response. the mean
Tudder activities for the respective controllers were
almost identical. The maximum rudder movements
were found to correspond fo the respective vessel
headings, therefore the FLC demounstrated far less
rudder movement in companson to the PID autopilot.
For a comparable course, the FLC has therefore
demonstrated a considerable saving in  rudder
movement. This effect will obviously prolong the life
expectancy of the entire steering mechanism.

In conclusion it must be recognised that the FLC
contains far more potential than has been exercised by
this initial set of trials. The results discussed have
identifted that the FLC, when designed 10 emulate a
PID contreller, can maintain an equal standard of
course-keeping whilst employing a smoother rudder
action. Only by equating the two design methodologies
in this manner can this important fact be demonstrated
as being true. Given the estzblishment of the FLC
performance capabilities, further extension is possible
by manipulation of the rulebase and/or input windows
so that the final FLC design can be expecied to
considerably outperform the PID autopilot,

*
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THE IMPLEMENTATION OF FIXED RULEBASE FUZZY LOGIC
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ABSTRACT. For ship control, the Proportional plus Integral plus Derivative (PID) controllers
remain common-place. However, increasingly new autopilot strategies, promising higher levels of
robustness and/or adaptive qualities, are being proposed as possible successors to the PID. Fuzzy
logic is 2 modem control technique which is currently finding an increasing and diverse range of
novel applications, both in its fixed-rulebase and intelligent forms. By means of full scale sea-
trials, a newly developed fuzzy logic autopilot is evaluated for both course-keeping and course-
changing, and 2 comparison made to its conventional equivalent.

Key Words, Fuzzy Control; Marine Systems; Ship Control; Autopilot; Small Vessel,

L. INTRODUCTION

Since marine vessels are non-linear, time-variant
systems, any changes in speed, water depth or mass
loading may cause a change in their dynamic
characteristics, The severity of the weather will also
alter the magnitude and direction of any disturbance
effects caused by the wind, waves and current, The
problem of autapilot control for such vessels is
therefore inherently difficult. This is particularly so
in the case of small craft whose sensitivity to
incorrect control action is accentuated by their
responsiveness to helm adjustments. Small vessels
may bz considered to be those of less than thirty
meters in length and could be for commercial or
leisure usage. Due to the small draft of the type of
ship considered, ‘when the external environmental
disturbances are applied to the hull, the low inertia
present creates little resistance to the induced
heading change. The autopilot performance must
therefore be swift and decisive to counter any such
effects by employing an opposing rudder condition.

For any successful autopilot design, it is a necessity
that the obtainable level of performance must be
either robust and -relatively insensitive to the
alterations in vessel dynamics and external
disturbance factors, or alternatively, must be
adjustabie by the mariner on demand. In practice
the latter has been proven to be unsuccessful due to

a general inability of mariners to fully understand
the consequences of their aciions when presented
with a range of tuneable parameters, The resulting
performance levels in such cases are normally still
inadequate.

The result of poor controller performance may be an
oscillatory down-track course which increases
distance and therefore  trip time and fuel
consumption. Wild and wundesirable rudder
movements may be produced, which not only cause
excessive wear to the rudder mechanism, but also
use unnecessary power. The latter is of particular
importance when considering sail vessels whose
power is often limited to a battery supply.

4
In the feld of large ships, various modern control
techniques have been applied to large ships in an
attempt to improve autopilot performance over the
entire operating envelope: H™ (Fairbaim and
Grimble, 1990), Optimality (Burns, 1990), Self-
Tuning (Mort, 1983), Model Reference (van
Amerongen and Unink Ten- Cate, 1975), Neural
Networks (Endo ef al., 1989) and Fuzzy Logic (van
Amerongen e! al, 1977). In the case of small
vessels there has been little research of this kind’
Previous studies by the authers (Polkenhorne et al
1992, 1993) have demonstrated the scope for fuzzy
logic control in this area. The accepted robust
qualities of the fuzzy technique and its ability to be
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advanced into an ‘"intelligent" form (the Self-
Organising Controller or SOC) mean that detailed
autopilot research into fuzzy control of small vessels
may well prove to be one of the most exciting and
innovative areas of marine development currently
being undertaken. The commercial potential of such
a device could be vast, given the huge number of
craft currenily utilising the PID> alternative. )

When only imprecise data is available to work with,
Fixed Rulebase Fuzzy Logic (FRFL) has been
developed as a means of coping with the decision
- process. If rigid mathematical relationships between
component parts of the process can be defined, then
analysis, and subsequent decision making, may be
- undertaken with relative certainty of a successful
conclusion. However, in the cases when such prior
understanding is not possible, yet a realistic
assessment of the decision outcome is required, the
task is considerably more difficult to describe in
quantitative terms. A technique is therefore required
which is capable of utilising qualitative, linguistic,
or just generaily imprecise, information. FRFL
techniques currently employed in a wide range of
applications appear to demonstrate this ability, and
are consequently generating considerable interest,
particularly in the field of control engineering, The
concept of FRFL is derived from the principles of
Fuzzy Set Theory (FST) as proposed by Zadeh
(1965). An excellent review of fuzzy sets is given in
the worl of Sutton and Towill (1985), whilst several
early applications are reviewed by Tong (1977).

2. STRUCTURE OF A FUZZY LOGIC
AUTOPILOT

Classical and modern control theories have been
utilised for many years to overcome control
problems successfully, where the system is linear in
nature and may be described mathematically. Many
systems, e.g, ship dynamics, are non-linear and/or
time-variant systems. Therefore, with these
conventional approaches it is not always possible to
design a controller that can fully cope with the
system's requirements.

In many such cases the system was operated, prior
to automation, by a human controller who would
undertake manual adjustments in order that a
successful and acceptable level of control was
maintained. It is considered that the ability of
human operators to cope with system non-linearities
can be linked to their imprecise operating
characteristics, i.e. inputs to the human operator
often in the form of ;

"a big output is required in response to a big input
stimulation"

Given that the definition of "big" will most certainly
be different for various applications, in each specific
application the human operator will "feel" that one
value may be big and another may .not.
Consequently, to put a precise value on the term
"big" would destroy the imprecision and general
vagueness of the human control strategy, thereby
reducing the ability to cope with such a diverse
range of situations and circumstasnces.

If control techniques fail where human instinct was
successful, then there is a clear reason for pursuing
a path towards an automatic controller with a more
human-like reasoning mechanism. Such a device is
the Fuzzy Logic Controller (FLC) which utilises
imprecise fuzzy sets and relationships. The
development of an FL.C as the autopilot for a small
vessel is therefore a very worthwhile venture. The
basic design of a standard form of FLC contains
three elements. These are:

1. Fuzzification of inputs using fuzzy windows.

2. Defuzzification of outputs using fuzzy windows.

3. Rulebase specification relating fuzzy inputs to
fuzzy outputs.

3. INPUT FUZZIFICATION

The methodology by which deterministic inputs are
transformed into a fuzzy format for utilisation
within the FLC is calied "fi:zzification". Previous
autopilot applications (Farbrother, 1990; Sutton,
1987) using fuzzy logic have restricted the inputs to
those of heading error and rate of change of heading
error, each variable being fuzzified individually by
employing a fuzzy window containing a number of
fuzzy sets. The chosen fuzzy sets are deemed to
represent the working envelope of the controller for
a particular input variable. However, the number
and position of the sets is design-shape and
application-dependent. Typical shapes include
triangular, trapszoidal and gaussian sets. For the
purpase of computational efficiency, the triangular-
shaped sets require the least amount of storage
capacity and are comparatively easy to design since
they operate about a clearly distinct set point. The
set point is defined as the point at which the
function describing the set has a membership value
of unity. From a performance perspactive the
triangular sets were found to generate a far
smoother fuzzification over the given input range,
than trapezoidal or gaussian-sets. For these reasons
triangular fuzzy sets were used throughout the
development of the FLC.

The complexities of the FLC increase greatly as the
number of utilised sets is raised. It is therefore
important that the set number is minimised for any
application where computational storage and power
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is restricted by hardware limits. Conversely, if the
number of sets for each window is too low, then the
range of permutations used to derive the controller
outputs becomes restricted and only linear control is
possible.

Following a parformance analysis, it was found that
the minimum number of sets which could
successfully describe the inputs for a small vessel
autopilot application was seven. The use of seven
sets requires the central set point to be placed about
the zero position in the universe of discourse.
However, in this application, the case when inputs
are zero is not important enough to warrant a set
which emcompasses zero, and therefore to employ
eight seits with an even distribution of four on either
side of zero, enables the defined set points to fully
describe the significant controtler inputs for both
the course-keeping and course-changing modes.
Symmetry of the given sets around zero enables the
zero input condition to be represented by a blend of
bath positive and negative sets. At the point when a
particular set has a membership value of unity, it is
important to ensure no overlap from adjacent fuzzy
sets exists. At the set point the set is therefore
considered to fully describe the input, any activation
of the surrounding sets tn this situation reduces the
importance and thus the effectiveness of the set with
unity membership.

Whilst in most cases the fuzzy input sets are
symmetrical about their set point, it is possible to
design the sets in a non-symmetrical (nen-linear)
ntanner. This technique is particularly advantageous
when a relatively large universe of discourse is
required to provide a high accuracy of control about
a particular aperating point, e.g zero, whilst
maintaining a rinimum number of operational sets.
In the small vessel autopilot application, there is a
need for a high level' of control during course-
keeping, i.e. when the course error is within the
range +3°. This effect may be achieved by the
utilisation of small-angled fuzzy sets, thereby
ensuring that several sets operate within the course-
keeping performance envelope. In contrast, during
the course-changing mode, the universe of discourse
is required to represent a much wider range of
heading errors. Therefore, large-angled sets are
required so that a much larger properion of the
window may be described by each set, thus ensuring
that set numbers are to kept to a minimum.

The input window's universe of discourse was
defined in its minimalistic form as twenty-one
discrete intervals, at each interval the sets having a
membership value in the range zero to unity (Fig.
1). Each set was given a linguistic label to identify
it, in the range Positive Big (PB), Positive Medium
(PM), Positive Small (PS), Positive Tiny (FT),
Negative Tiny (INT), Negative Small (NS), Negative

Medium (NM) and Negative Big (NB). The
identical window design was utilised for both inputs
to conserve required memory storage in accordance
with the hardware restrictions for implementation,
only the window lintits being varied in each case.
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Fig, 1 Non-Linear Fuzzy Input Window

Definition

The set points should be placed in such a manner
that they represent the positions where a change in
controller action is required. As the fuzzy sets
within the window overlap, then a transition
between differing control strategies may be
enforced. The speed of this transition is dictated
largely by the degree of overlap between fuzzy sets
and the fuzzy significance of the sets in question, In
the case of input values which fall outside the
extremities of the input windows, these values are
saturated to the size of the window limits. It is
therefore essential that the input windows cover the
actual full range of useful inputs, as no new control
configurations are possible for inputs which fall
inside the saturated regions.

In previous maritime studies the two medes of
course-keeping and course-changing were treated
either as separate modes of operation (Sutton,
1987), or required the addition of a secondary level
rutebase for "close control” (Farbrother, 1990). By
employing non-symmetrical set shapes in the
manner described above, both effects are
successfully incorporated into the same input
window. In order that no detrimental effects on the
input resolution was caused by each input window,
the most suitable window limits were determined to
be £15° for heading error (Fig. 2) and +5°5°} for the
rate of change of heading error (Fig. 3).
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Fig 2. Non-Linear Fuzzy Logic Input Window

for Heading Error
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Fig 3. Non-Linear Fuzzy Logic Window for Rate
of Change of Heading Error

After the input window for each of the input
variables has been defined, the fuzzification
mechanism may be initiated. The input variables
are applied to their respective windows. Because

only twenty-one discrete values describe each set

across the entire universe of discourse, interpolation
between points was employed to provide a higher
fuzzy input resolution to the controller. The fuzzy
sets contained within the input window may be
linked together by a union (max) operation.
Therefore, for any given input within the window, it
becomes possible to evaluate which fuzzy sei is "hit"
with the maximum membership value. In many
cases more than one set may be "hit", and in this
instance the membership values should be
considered in order of their significance,

Whilst it is possible to design an FLC which
operates using only the single most maximum
membership from each input window, it must be
recognised thar the imprecise ability of the control
strategy would be severely impaired since the entire
conceptual basis of the FLC is founded in both the
applied grade of membership and the union of one
or more fuzzy sets to describe an individual
occurtence of event. By imposing the limitation of
the single maximum membership, the fuzzified
version of the deterministic value is confined to a
single fuzzy set. The necessity for recognition of at
least the two largest membership values is therefore
established. However, should three or more such
values be utilised, then the number of permutations
for internal fuzzy relationships escalates rapidly,
Whilst these less significant memberships are
greater than zero, their magnitude is normally
small. It is therefore ineffectual to include more
than two maxima other than to ingrease FLC
complexity.

By applying the given approach of fuzzification to
the input window describing the input of error, it is
possible ta convert the deterministic input value into
two fuzzy membership values with their associated
fuzzy sets, where one membership is the maximum
value for any set in the window for the point defined
by the input, and the other is the next to maximum
value. The two sets associated with these two
membership values are therefore the fuzzy sets

which best describe the given input. An identical
approach was undertaken for the window describing
the input of error rate, and this could be similarly
applied for any other inputs.

The procedure of fuzzification is therefore complete
for this autopilot application, with each input being
fully describad by the two fuzzy sets in each case
with the maximum membership values.

4. OUTPUT DEFUZZIFICATION

The process by which a fuzzy output value may be
converted into the relevant deterministic value is
called "defuzzification”. The basic foundation of the
fuzzy output mechanism is an output window of a
similar form to that utilised for the controller
inputs. The size of the window limits is restricted by
the saturation limits of the control actuator. In this
case the control actuator is the rudder, with physical
movement limited to £30°.

Since the fuzzy output window contains a series of
fuzzy sets, and the fuzzy output is described in the
form of identifiled fuzzy sets with associated
membership values, 2 means of defuzzification is
required. It is possible to consider the output to be at
the point with the maximum membership. When
more than one peak is present then their positions
may be averaged. This "mean of the maxima"
method has been compared as analogous to a multi-
level relay (Kickert, 1975). The full concept of
fuzziness as derived by the FLC is minimised by the
selection of just maximum set memberships since
lower membership elements of the output window
become irrelevant. An alternative strategy s
therefore to apply the "centre of area method" to the
entire output window, considering the higher
membership value where two active output sets
overlap.

Due to the incorporation of the lesser fuzzy
elements within the output window, this technrique
is thought to provide a smocther output (Farbrother,
1990). Given the nature of the "centre of area
method" it is important to realise that the centre of a
symmunetrically shaped set will always be in the
middle, irrespective of the membership value of that
set. By employing non-symmetrical output sets this
undesirable feature of defuzzification may be
overcome.

Using a similar approach to the design of the input
windows, it was found that the minimum number of
fuzzy sets required to successfully defuzzify the
fuzzy output was seven. Due to the non-linear shape
of the sets, the number of discrete intervals required
to fully describe the output window's universe of
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discourse was found to be twenty-one, (Fig. 4). The
final output window design is shown in Fig, 5¢
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Fig. 5 Fuzzy Oufput Window

Utilising the details of the output window, the
centre of area method for this application is defined
as:

20
Z6,u(8;)
8y =—— (L)
ZH(6;)
=0
where:
84 = Deterministic controller output.
3; = Discrete interval in universe of discourse 8.
t = Fuzzy membership at discrete interval §;.

5. FUZZY INTEGRAL ACTION

For this autopilot application an integral action is
required to compensate for constant disturbance
effects caused by wind, waves or current., When
giving consideration to the incorporation of an
integral action, the previously described form of
output window was found to cause difficulties.
Whilst it is possible to consider the integral action
to be a third input with a corresponding individual
input window, the resulting three-dimensional
rulebase becomes computationally expensive.
Separate rulebases may be considered (Kwok et al,
1991) which are linked either just before or after
defuzzification (Polkinghorne et al, 1992); however,
the additional computer code required for the extra
fuzzification/defuzzification prevents this solution
from being truly practical,

It ts much mote advantageous to calculate the
integral in terms of a shift to negative or positive of
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the established output from the original two-input
FLC, within the output window limits. In order for
this phenomenon to be possible, the conventionar
output window Wwith only seven fuzzy sets proved
ineffective due to the coarse resolution of movement
possible.

In order to facilitate integral action a new output
window was therefore designed which contained
two hundred and one fuzzy singletons, i.e. fuzzy
sets with only one element where the membership
function has a magnitude greater than zero,
Although this may seem excessive, this number of
fuzzy Singletons was determined as the minimum
number required to provide a suitable integral
resolution, without causing the controller to become
either oversized computationally, or disjointed in its
demanded control actuator movement,

Using this technique, the number of output
permutations becomes vasily increased, and the
rulebase must therefore be designed to reflect the
full range of output sets. To aid this process the
linguistic labeis of the output sets were replaced
with a numerical identifier in the range £100. The
output defurzification (equation 2) for this novel
form of window becomes:

100
. Zou(8;)
8= —— @
ZH(5;)

i==100

6. RULEBASE DERIVATION

The heari of the FLC is called the fuzzy rulebase
and contains the input/output relationships that
form the control strategy. Therefore, a large
proportion of the FLC's power is contained in this
rulebase and determination of the correct
magnitudes for each element is essential. By the
vanation of wvalues within the rulebase, the
operation of the FLC can be radically altered. At the
initial stage of sea trials when it is imperative to
establish the control effects generated by the
differing control strategies, an attempr must be
made to design the FLC in such a manner that it
contains the same operational goals as the
conventional PID autopilot. Only by this means may
any significant findings in the resulting
performances be attributed to the controllers
themselves, and not to induced set-up differences.

The rulebase was therefore designed, following
analysis of the PID coniroller, by allocating to each
combination of input set points the corresponding
PID output. [t may therefore be assumed that the
obtainable response from the FLC will be similar to
that of the PID autopilot, with only inherent




differences cansed by the respective working
methodologies being apparent. The conventional
fuzzy rulebase is therefore modified to contain
output sets which reflect the 201 fuzzy singlétons of
the output window (Fig. 0).

Ratic\Emer NB NM NS NT PT PS5 I'M PB

NB -100{ -71 | -60 | -53 | 46 | 40 1 -20 | -15
NM 55| -51|-40|-33|-26(-19| -9} 5
NS -509-36|-351-18]-11j 4 ] 6 {20
NT
PT
Ps

A0f-26{-15] -8 | -1 5 J16130
a0f-16] s {1 | s {1s5]26]20
20l 6]alulislas]as]so
g | sl {asl26]33]a0]51]6s
PB 15|29|40146 | 53] 60 71 {100

Fig 6. Non-Linear Fuzzy Rulebase

7. INFERENCE TECHNIQUES

No matter how extensive a rulebase becomes, it is
unlikely that there will be a rule for every input
variation. The .declared rules are based on the
assumption that the input sets are hit with a
membership of unity. In practice, it is very often
the case that the exact input set is not available and
a nearest set is therefore *hit’ instead. When this
feature of the FLC occurs, then the membership
value of the hit set will be less than unity; therefore
the declared fuzzy Conditional Statement is not
completely true,

By use of an inference technique, it is still possible
to utilise the given relationship, thus identifying the
required output set; however, the inferred
membership of the output set is based on the input
memberships applied. By employing this technique,
the FLC becomes capable of operating in regions
not covered by the pre-selected input set points.

One such inference technique is called the max-min
rule of inference (equation 3).

Hy(e)x g (ryx paz (8) =ma{min{ s, (€). i (). (D]
3)
where:
pgr(8) = Defined Fuzzy Conditional Statement
between disparate universes of discourse
error (), rate (r) and rudder {(8).

Following this approach, it is possible to deduce the
membership of the output set specified by the
relationship R, given undefined input quantities for
error and rate, This provides a pessimistic form of
control (Koska, 1992) which was found to induce
low rudder activity in this autopilot application.
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The relationship between the inputs and the defined
nilebase is declared by the min operation to infer
the output set's membersiip value, The output set
"hit" is implied by the definition of the relationship.
The union of the rules in the rulebase is then
achieved by an overall max function, An alternative
method of inference would be the max.max, or max
product, technique. This method is thought to give
an optimistic output and in practice was found to
produce highly oscillatory rudder movements. Since
the rulebase contains the fuzzy Conditional
Statements between input set permutations, the

.membership of an identified output set is

determined by a minimum operation.

8. AUTOPILOT TESTING

The FLC and PID controllers were both tested in
course-keeping and course-changing modes. By
utilising a relatively low sea-state, performance
limitations were imposed strictly by the autopilots
and not by the environmental conditions,

Small vessel tests were carried out over a 2.5 mile
course at 13 knots, and with a desired heading of
50° to assess the course-keeping abilities of bLoth
controllers.

For course-changing, autopilot control may vary
between large and smatl-scale demanded heading
changes. The course-changing test therefore
included step changes in desired heading of both
90° (large) and 30° (small). The resulting
performance for both wvessel heading and mudder
1esponses, in the two modes of operation, are shown
in Figs. 7 to 14 for the PID and FLC controllers
respectively.

9. DISCUSSION AND AUTOPILOT
EVALUATION

When considering the course-keeping results, it is
clear that both controllers maintained the ship
heading within an acceptable deviation from the
desired course, i.e. approximately +2° To attain
this level of performance, the PID utilises a high-
frequency rudder action. Consequently the ship
heading contains high-frequency elements. In
contrast the FLC nudder action is much smoother,
with the high-frequency elements being largely
eliminated from both the rudder and heading
responses. As a result, the FLC tends to induce
slightly increased amplitude on the low-frequency
components. The FLC can therefore be assumed to
incur reduced rudder wear, power usage, fuel
consumption and trip time when used as a
replacement for the conventional PID autopilot.
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When operating in course-changing mode, both
controllers are seen to perform with similar rise
times. However, the FLC provides a 30% reduction
in settlirig time for the 30° heading change, and a
-35% reduction for. the 90° heading change. This
improvement is effected at the-cost of inducing a
small, but acceptable, overshoot. Whilst it would
appear that the PID response contains a lower level
of damping, since both controllers were effecting
nearly identical inputfoutput relationships, this
effact must be due to the control stratgies employed.

A qualitative assessment of the performances
obtained for both autopilots indicates that the FLC
portrays many desirable features. As both the PID
and FLC autopilots were designed to produce
identical desired rudder demands for the same
inputs, the results presented clearly indicate the
inherent differences between the two controller
strategies. By refining the rulebase, a non-linear set
of inputfoutput relationships may be defined which
would further enhance the control action obtained.

Similarly, scope for intelligent operation via on-line -

rulebase adaptation (the Self-Organising Controlier
or SOC) would increase the operating envelope of
the controller.
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