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Abstract 
 
The Paleocene–Eocene Thermal Maximum (PETM), arguably the most dramatic 
hyperthermal event recorded to date, occurred approximately 55 million years ago 
(Ma).  During this event thousands of petagrams of carbon were released into the 
atmosphere and hydrosphere affecting the climate, ocean chemistry and marine and 
terrestrial ecosystems.  With a duration of approximately 100,000 years (though 
possibly as long as 170,000 years) and global temperature increases of between 4-
8°C, terrestrial and marine faunal turnover occurred including mammalian dispersal, 
rapid evolutionary and ecological change and transient diversification.  The PETM, 
therefore, offers a valuable insight into shifts in the climate regime and the resultant 
marine and biotic response that may be relevant to future anthropogenically induced 
climate change.  The mechanisms for delivery of isotopically light carbon into the 
atmosphere and hydrosphere remain a hotly debated topic.  Here we discuss 
numerous possible sources of carbon and the mechanisms responsible for their 
release. 
 
Keywords: PETM, Hyperthermal Events, Climate change, Mechanisms for PETM, 
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Introduction 
With extreme climatic events dominating the news with dire warnings of potential 
disruption and displacement of global populations it has become vital to understand 
global response to anthropogenic climate change.  It has been observed that global 
surface temperatures have increased by 0.74°C in a linear trend since instrumental 
records began in 1850 (IPCC 2012).  While anthropogenic carbon release comes 
through burning fossil fuels the sources of carbon for the PETM and the mechanisms 
for their release has been the subject of fierce debate amongst 
palaeoclimateologists. 
 
Lovell (2010) has suggested that since the start of the industrial revolution, a mere 
200 years ago, we have released approximately one third of the amount of carbon 
released during the 10,000 year onset of the PETM.  During the PETM an increase 
in global temperatures of 5°C over a 10,000 year period requires a vast input of 
carbon with between 1500 and 55,000PgC being injected into the atmosphere alone 
(Pagani et al., 2006).  Maintaining this concentration for tens of thousands of years 
implies a partial equilibration with the carbonate system in the oceans leading to a 
total release of carbon of between 5400 and 112,000Pg (Pagani et al., 2006).   
 
Characterisation 
The PETM marks a sudden and dramatic increase in average global temperatures of 
between 4oC and 8oC (Kennett and Scott, 1991) and lasted for between 100,000 and 
170,000 years (Rohl et al., 2000, 2007; Farley and Eltgroth, 2003; Aziz et al., 2008; 
Giusberti et al., 2008).  The PETM is defined by a negative carbon isotope excursion 
(CIE) recorded globally in both the marine and terrestrial realms.  There is however a 
difference in magnitude of the CIE between the two realms with marine carbonates 
consistently recording a lower magnitude CIE than the terrestrial realm.  Marine 
carbonates typically record a δ13C shift of between 2.5‰ and 4‰ (Kennett and Scott, 
1991; Bains et al., 1999; Thomas et al., 2002; Zachos et al., 2003; Tripani and 
Elderfield, 2005) while terrestrial plants and carbonate nodules usually record a δ13C 
shift of greater than 5‰, (Koch et al., 1992, 2003; Bowen et al., 2001, 2002; Schmitz 
and Pujalte, 2003, 2007).   
 
The CIE associated with the PETM was first identified by Stott et al. (1990) at Ocean 
Drilling Program (ODP) Site 690 in the Antarctic Ocean through the analysis of 
foraminiferal carbon isotope variation though the Paleocene–Eocene transition.  The 
PETM encompasses three distinct phases (Bowen and Zachos, 2010) ; an initial 
abrupt negative CIE, a phase of δ13C stability (Carbon Isotope Stability Period, CISP) 
and finally a recovery phase where δ13C values return to pre-CIE levels.  The classic 
profile for the PETM shows a rapid CIE of approximately –2.5‰ in the marine realm 
and approximately –6‰ in the terrestrial realm (Bowen and Zachos, 2010).  This 
discrepancy in the CIE magnitude is believed to be mainly due to the increased  
fractionation of CO2 by flora due to increased precipitation through the PETM (Bowen 
et al., 2004).  Following the rapid negative CIE a relatively short period of carbon 
isotope stability occurs before a gradual carbon isotope recovery phase as carbon 
isotope values return to pre-PETM levels due to the slow drawdown of atmospheric 
CO2 by chemical weathering of silicate rocks (Dickens et al., 1995).  An alternative to 
this classic profile has been presented by Bowen and Zachos (2010) in which, 
following the rapid negative CIE, there is a much longer period of carbon isotope 
stability followed by a rapid recovery phase returning to pre-PETM carbon isotope 
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values.  This rapid drawdown of CO2 is believed to be the result of a rapid floral 
bloom (Bowen and Zachos, 2010).    
 
The CIE itself is associated with the relocation of oceanic deep water formation, a 
decrease in the thermal gradients between the polar and equatorial regions, a 
decrease in the thermal gradient between surface and bottom waters, and increasing 
acidification of the oceans giving rise to the mass extinction of foraminifera and 
changes in the palaeofauna (Kennet and Scott, 1991; Thomas, 1998; Wing et al., 
2005; Zachos et al., 2005; Zeebe et al., 2008) making this an important event to 
understand further. 
 
Impact upon biota 
Numerous abrupt changes occurred globally which are coincident with the onset of 
the PETM including the acidification of the oceans and rapid changes in terrestrial 
and marine biota.  Deep sea benthic foraminifera experienced their greatest 
extinction of the past 90 million years (Thomas, 1990, 1998; Kennett and Stott, 1991; 
Speijer et al., 1996; Thomas and Shackleton, 1996) culminating in the loss of 30%–
50% of species present during the Cenozoic (Schmitz et al., 1997; Alegret and Ortiz, 
2006; Alegret et al., 2009).  Other major biological changes include a rapid 
evolutionary turnover of planktic foraminifera and calcareous nannoplankton, which 
experienced transient diversifications (Kelly et al., 1996; Aubrey, 1998; Monechi et 
al., 2000; Kelly, 2002; Raffi et al., 2005; Gibbs et al., 2006). In addition to this 
Apectodinium dinoflagellates bloomed worldwide in shelf areas and migrated from 
equatorial regions to high latitude locations (Crouch et al., 2001; Figure 1). This 
turnover of marine biota also affected the deep marine environments leading to a 
Benthic Extinction Event (BEE) (Orue-Etxebarria et al., 2001) and was accompanied 
by diversification at a species level, as well as a considerable increase in shell sizes 
and adult diamorphism that has been interpreted as adaptation to the changed 
environmental conditions (Hottinger, 1998).  
 
The rapid extinction of 18% of smaller benthic foraminifera also occurs at the onset 
of the CIE following an initial ocean warming event which is inferred through 
calcareous nannofossil records during the final 46,000 years of the Paleocene 
(Alegret et al., 2009).  These extinctions increased to a peak approximately 10,000 
years after the onset of the CIE with the BEE affecting 37% of species. In total 55% 
of the benthic foraminiferal species became extinct due to the PETM (Schmitz et al., 
1997; Alegret and Ortiz, 2006; Alegret et al., 2009).  As this extinction event took 
place under inferred oxic conditions without evidence for carbonate dissolution at 
shallow depths (Alegret et al., 2009) this suggests that increased ocean acidity and  
deoxygenation of bottom waters was not the main cause of this extinction. 
 
On land, archaic mammals were replaced by modern groups, including the earliest 
true primates (Figure 1; Clyde and Gingerich, 1998; Bowen et al., 2002; Gingerich, 
2003; Smith et al., 2006), whilst floras underwent important changes including 
increased diversity, leaf size, and shape, migration of equatorial plants to higher 
latitudes and a rapid transition from a mixed angiosperm/gymnosperm flora to a 
purely angiosperm flora (Wing et al., 2005; Jaramillo, 2006) 
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Cause of the PETM 
A synopsis of mechanisms that have been proposed for the cause of the PETM can 
be seen in Figure 2 and Table 1.  The characteristic negative CIE associated with  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: A cartoon detailing the possible sources of carbon that would have been released at the 
start of the Paleocene – Eocene Thermal Maximum (PETM) (see text for further explanation and 
references).  1. Cometary impact. 2. Wild fires. 3. Volcanic intrusion through organic rich mudrock. 4. 
Uplift of epicontinental seaways. 5. Destabilization of marine gas hydrates. 6. Thawing permafrost. 7. 
Mid-Ocean Ridge volcanism. 8. Continental volcanism. 

Figure 1: Cartoon representation of the impact the Paleocene – Eocene Thermal Maximum 
(PETM) had upon flora and fauna.  In the marine realm Apectodinium dinoflagellates 
migrates to higher latitudes (Red arrow). In the terrestrial realm the first true primate migrate 
from China through to Europe and into North America (Yellow arrow).  As indicated through 
the thermometers a decrease in the thermal gradient between polar regions and equatorial 
regions occurs with a greater temperature increases located in polar regions.  An increase in 
ocean acidity with greater acidification affecting polar waters is represented through 
decreasing pH markers. See text for references. Palaeogeographic map redrawn from 
palaeomap http://www.odsn.deodsnoutfiles21674hr.jpg 
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Table 1: Table 2 Various sources and mechanisms for the release of isotopically light 
carbon believed to be responsible for the carbon isotope excursion associated with the 
Paleocene – Eocene Thermal Maximum. 

 
Mechanism for 

carbon 
destabilisation 

Source of light 
carbon 

Gasses 
released 

δ13C ‰ of 
carbon 

Reference 

 

Comet Impact Mantle CO2, CH4 -22‰ Kent et al. 
(2003); 

Cramer and 
Kent (2005) 

Comet CO2, CH4 

Marine gas 
hydrates 

CH4 

 

Burning 
organics 

Vegetation CO2 -22‰ Kurtz et al. 
(2003) Peat CO2 

Coal CO2 

 

Uplift of 
Epicontinental 
Seaways 
through 
Magmatism or 
Tectonics 

Oxidation of 
organics 

CO2 -25‰ Higgins and 
Schrag (2006) 

Aerobic 
respiration 

CO2 

 

Intense Flood 
Basalt 
Magmatism or 
Volcanism 

Mantle CO2 -30‰ Storey et al. 
(2007) Organic 

mudstones 
CO2, CH4 

Mid Ocean 
Ridge 

CO2 

 

Clathrate Destabilisation 

Changing 
ocean 
circulation 
patterns 

Marine gas 
hydrates 

CH4 -60‰ to -40‰ Dickens (1995) 

Sea Level fall 
through 
tectonic uplift 

Marine gas 
hydrates 

CH4 

Slope failure Marine gas 
hydrates 

CH4 

 

Initial 
increasing 
temperatures 

Thawing 
Permafrost 

CO2 ~-60‰ DeConto et al. 
(2012) 
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the PETM is intrinsically linked with the release of isotopically light carbon into the 
atmosphere for which many mechanisms and sources have been suggested.  As 
proposed by Kent et al. (2003) the impact of an asteroid or comet with the Earth is a 
valid mechanism for the destabilisation of light carbon through numerous sources.  
Such sources include 13C derived from the mantle, which is released as a result of 
the impact, or derived from the comet itself, which is released upon impact or 
through the destabilisation of frozen methane gas hydrates buried at depth under the 
seafloor.  Whilst the media and popular science magazines often support such 
catastrophic causes for major climate events, and the mass extinctions associated 
with them, further investigations have failed to identify a suitably sized crater dated to 
the event.  Also the presence of magnetic nanoparticles found by Kent et al. (2003) 
and interpreted by them to have formed during the impact of a comet may in fact 
have a biological origin (Kopp et al., 2007; Lippert and Zachos, 2007) 
 
Kurtz et al. (2003) suggested that wildfires on the African continent could be a 
mechanism for the release of light carbon stored in vegetation such as peat and 
coal.  However, for this mechanism to be valid the scale of such fires would have to 
be on such a huge scale that remnants of them should be discernible within the 
sedimentary deposits off the West African coast (Moore and Kurtz, 2008).  Evidence 
of such an event would be discernible in the form of an increase in graphite black 
carbon (GBC).  No increase in GBC was found at the onset of the CIE (Moore and 
Kurtz, 2008).   
 
Storey et al. (2007) invoked the thermogenic release of isotopically light carbon 
through volcanic intrusion into mudstones rich in organic matter as a mechanism for 
the generation of the CIE associated with the PETM.  Furthermore, they also 
suggested that this could have been supplemented by the release of mantle derived 
light carbon through intense magmatism at the Mid Atlantic Ridge.  A problem with 
this hypothesis is that it relies upon a one off mechanism and is unlikely to be 
sufficient to increase global temperatures to the values seen through the PETM. 
 
Higgins and Schrag (2006) proposed that the uplift of epicontinental seaways 
induced through either magmatism or tectonic processes could release isotopically 
light carbon via the oxidation and bacterial respiration of the aerated organic matter.  
While numerous epicontinental seaways were viable prospects for uplift at this time, 
including large parts of Africa-Arabia and Eurasia (Reyment, 1980; Akhmetiev and 
Beniamovski, 2004), it is as unlikely mechanism as such events are known to have 
happened previously without large scale release of light carbon.  One such event 
was the Messinian Salinity Crisis during which the Mediterranean Sea evaporated 
through tectonic response rather than eustatic response with no CIE recorded in 
association with this event (Shackleton and Hall, 1997; Hodell et al., 2001; Billups 
2002; Bickert et al., 2004). 
  
It is widely accepted that the most likely source for the carbon associated with the 
PETM is the release of isotopically light methane from the dissociation of sea floor 
gas hydrates.  This is due to the extremely negative δ13C value of marine gas 
hydrates (Dickens et al., 1995).  While the source for carbon is relatively well 
constrained the mechanism for the release of this methane remains debated.  
Numerous mechanisms have been proposed for destabilisation of these marine gas 
hydrates including changes in ocean circulation patterns (Nunes and Norris, 2006).  
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This change is believed to have been brought about as a result of a gradual increase 
in seawater temperatures (Zachos et al., 2003).  The cause of this gradual increase 
in temperature is uncertain but could be related to volcanic activity happening around 
this time (Zachos et al., 2003) 
 
Sea level fall through tectonic uplift in the proto-North Atlantic Ocean was proposed 
by MacLennan and Jones (2006) as a mechanism for destabilizing marine gas 
hydrates. However, sea level fall through tectonic uplift would have needed to be 
sudden and dramatic as warming through the late Paleocene would allow for thermal 
expansion of the oceans globally creating a net rise in sea level.  A further 
prospective mechanism for marine gas hydrate destabilisation was proposed by Katz 
et al. (2001) through seismic imaging off the east coast of the United States.  This 
work showed slope failure along the continental shelf, which could have resulted in 
the release of the marine gas hydrates. 
 
More recently DeConto et al. (2012), following analysis of sediments near Gubbio, 
Italy, discussed the likelihood that thawing permafrost in the high latitudes including 
Antarctica, could have released enough methane to have caused the CIE associated 
with the PETM. 
 
Whatever the cause of the PETM it is unlikely that a single source of carbon release 
could have initiated the PETM.  Pagani et al. (2006) argued that marine gas hydrates 
could only give rise to a CIE of around –6‰ if the climate sensitivity to CO2 in the 
Paleocene was much greater than it is currently assumed to be. 
 
Conclusion 
The PETM is the best analogue in the Cenozoic for the interpretation of climate 
change in the near future.  Lovell (2010) has suggested that anthropogenic carbon 
release over the past 200 years equates to approximately one third of total carbon 
released during the 10,000 year onset of the PETM making the understanding of this 
event of vital importance. 
 
The sources of carbon and the mechanisms for their release remain topical.  Whilst it 
is unlikely that a sole cause is responsible for the PETM it seems very favourable 
that the dissociation of marine gas hydrates played a primary role.  The reason for 
this is that marine gas hydrates have very negative isotopic values, and as such less 
carbon is required to have been released to cause the isotope shift associated with 
the PETM.   
 
However, while the dissociation of marine gas hydrates remains a primary contender 
for the cause of the CIE, the recent work of DeConto et al. (2012) into the release of 
carbon through thawing of permafrost within the Arctic and Antarctic region seems to 
be a very plausible mechanism, requiring further investigation.  The potential of high 
latitude climatic forcing to trigger the release of large quantities of carbon, initiating 
positive warming feedback, may be the key to unlocking the PETM. 
 
Whilst anthropogenic climate change is not currently believed to be caused by the 
destabilization of marine gas hydrates or through thawing permafrost it is possible 
that as the planet warms these vast reserves of carbon in oceans and the Arctic 
tundra may be released there by exacerbating the problem for mankind. 
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