
School of Engineering, Computing and Mathematics Theses

Faculty of Science and Engineering Theses

2018

A Distributed Service Delivery Platform for Automotive A Distributed Service Delivery Platform for Automotive

Environments: Enhancing Communication Capabilities of an M2M Environments: Enhancing Communication Capabilities of an M2M

Service Platform for Automotive Application Service Platform for Automotive Application

Markus Glaab

Let us know how access to this document benefits you

General rights General rights
All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies.
Please cite only the published version using the details provided on the item record or document. In the absence of an open
licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Take down policy Take down policy
If you believe that this document breaches copyright please contact the library providing details, and we will remove access to
the work immediately and investigate your claim.
Follow this and additional works at: https://pearl.plymouth.ac.uk/secam-theses

Recommended Citation Recommended Citation
Glaab, M. (2018) A Distributed Service Delivery Platform for Automotive Environments: Enhancing
Communication Capabilities of an M2M Service Platform for Automotive Application. Thesis. University
of Plymouth. Retrieved from https://pearl.plymouth.ac.uk/secam-theses/310
This Thesis is brought to you for free and open access by the Faculty of Science and Engineering Theses at PEARL. It
has been accepted for inclusion in School of Engineering, Computing and Mathematics Theses by an authorized
administrator of PEARL. For more information, please contact openresearch@plymouth.ac.uk.

https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/secam-theses
https://pearl.plymouth.ac.uk/fose-theses
https://forms.office.com/e/bejMzMGapB
https://pearl.plymouth.ac.uk/about.html
https://pearl.plymouth.ac.uk/secam-theses?utm_source=pearl.plymouth.ac.uk%2Fsecam-theses%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pearl.plymouth.ac.uk/secam-theses/310?utm_source=pearl.plymouth.ac.uk%2Fsecam-theses%2F310&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:openresearch@plymouth.ac.uk

PEARL

PHD

A Distributed Service Delivery Platform for Automotive Environments:
Enhancing Communication Capabilities of an M2M Service Platform for
Automotive Application

Glaab, Markus

Award date:
2018

Awarding institution:
University of Plymouth

Link to publication in PEARL

https://researchportal.plymouth.ac.uk/en/studentTheses/b018a565-2294-4c45-9746-e8c669629b9a

All content in PEARL is protected by copyright law.

The author assigns certain rights to the University of Plymouth including the right to make the thesis accessible and discoverable via the
British Library’s Electronic Thesis Online Service (EThOS) and the University research repository (PEARL), and to undertake activities to
migrate, preserve and maintain the medium, format and integrity of the deposited file for future discovery and use.

Copyright and Moral rights arising from original work in this thesis and (where relevant), any accompanying data, rests with the Author
unless stated otherwise*.

Re-use of the work is allowed under fair dealing exceptions outlined in the Copyright, Designs and Patents Act 1988 (amended), and the
terms of the copyright licence assigned to the thesis by the Author.

In practice, and unless the copyright licence assigned by the author allows for more permissive use, this means,

 That any content or accompanying data cannot be extensively quoted, reproduced or changed without the written permission of the
author / rights holder

 That the work in whole or part may not be sold commercially in any format or medium without the written permission of the author /
rights holder

 * Any third-party copyright material in this thesis remains the property of the original owner. Such third-party copyright work included in
the thesis will be clearly marked and attributed, and the original licence under which it was released will be specified . This material is not
covered by the licence or terms assigned to the wider thesis and must be used in accordance with the original licence; or separate
permission must be sought from the copyright holder.
Download date: 28. Oct. 2024

University of Plymouth

A Distributed Service Delivery Platform

for Automotive Environments:

Enhancing Communication Capabilities

of an M2M Service Platform for

Automotive Application

by

Markus Glaab

A thesis submitted to the University of Plymouth in partial fulfilment for the degree of

DOCTOR OF PHILOSOPHY

School of Computing, Electronics and Mathematics

March 2018

 II

 III

Copyright Statement

This copy of the thesis has been supplied on condition that anyone who consults it is understood

to recognise that its copyright rests with its author and that no quotation from the thesis and no

information derived from it may be published without the author’s prior consent.

 IV

 V

Abstract

A Distributed Service Delivery Platform for Automotive Environments: Enhancing

Communication Capabilities of an M2M Service Platform for Automotive Application

Markus Glaab

The automotive domain is changing. On the way to more convenient, safe, and efficient vehicles, the

role of electronic controllers and particularly software has increased significantly for many years, and

vehicles have become software-intensive systems. Furthermore, vehicles are connected to the Internet

to enable Advanced Driver Assistance Systems and enhanced In-Vehicle Infotainment functionalities.

This widens the automotive software and system landscape beyond the physical vehicle boundaries to

presently include as well external backend servers in the cloud. Moreover, the connectivity facilitates

new kinds of distributed functionalities, making the vehicle a part of an Intelligent Transportation

System (ITS) and thus an important example for a future Internet of Things (IoT).

Manufacturers, however, are confronted with the challenging task of integrating these ever-increasing

range of functionalities with heterogeneous or even contradictory requirements into a homogenous

overall system. This requires new software platforms and architectural approaches. In this regard, the

connectivity to fixed side backend systems not only introduces additional challenges, but also enables

new approaches for addressing them.

The vehicle-to-backend approaches currently emerging are dominated by proprietary solutions, which

is in clear contradiction to the requirements of ITS scenarios which call for interoperability within the

broad scope of vehicles and manufacturers. Therefore, this research aims at the development and

propagation of a new concept of a universal distributed Automotive Service Delivery Platform (ASDP),

as enabler for future automotive functionalities, not limited to ITS applications. Since Machine-to-

Machine communication (M2M) is considered as a primary building block for the IoT, emergent

standards such as the oneM2M service platform are selected as the initial architectural hypothesis for

the realisation of an ASDP. Accordingly, this project describes a oneM2M-based ASDP as a reference

configuration of the oneM2M service platform for automotive environments.

In the research, the general applicability of the oneM2M service platform for the proposed ASDP is

shown. However, the research also identifies shortcomings of the current oneM2M platform with respect

to the capabilities needed for efficient communication and data exchange policies. It is pointed out that,

for example, distributed traffic efficiency or vehicle maintenance functionalities are not efficiently

treated by the standard. This may also have negative privacy impacts. Following this analysis, this

research proposes novel enhancements to the oneM2M service platform, such as application-data-

dependent criteria for data exchange and policy aggregation. The feasibility and advancements of the

newly proposed approach are evaluated by means of proof-of-concept implementation and experiments

with selected automotive scenarios. The results show the benefits of the proposed enhancements for a

oneM2M-based ASDP, without neglecting to indicate their advantages for other domains of the

oneM2M landscape where they could be applied as well.

 VI

 VII

Contents

List of Figures .. XII

List of Tables ... XVI

Author’s Declaration .. XVII

Acknowledgement .. XXI

1 Introduction and Overview ... 1

1.1 Focus of this Research.. 1

1.2 Aims and Objectives .. 2

1.3 Method Overview ... 3

1.3.1 High-Level Methodology ... 3

1.3.2 Low-Level Methodology .. 4

1.4 Contributions .. 5

1.5 Published Papers .. 6

1.6 Thesis Outline .. 7

2 Review of the Automotive Environment .. 9

2.1 Functional Domains ... 9

2.1.1 In-Vehicle Infotainment ... 10

2.1.2 Advanced Driver Assistance Systems towards Highly Automated Driving 12

2.1.3 Intelligent Transportation Systems ... 14

2.2 Automotive Software and System Landscape .. 16

2.2.1 Computing Components ... 17

2.2.2 Communication Technologies .. 19

2.3 Domain Characteristics and Challenges ... 21

2.3.1 Programmable Vehicle ... 22

2.3.2 Distributed Functionalities ... 23

2.3.3 Reuse of Functionalities ... 24

2.3.4 Life Cycle and Innovation Cycle ... 25

2.3.5 Variants and Configurations ... 26

2.3.6 Heterogeneity and Mixed Criticality .. 27

2.3.7 Cost Model ... 27

2.3.8 Development Process ... 28

2.3.9 Conclusion .. 29

2.4 Software (and System) Architecture Design and Methodology........................... 29

2.4.1 Software and System Architecture ... 30

2.4.2 Problem Space .. 31

2.4.3 Solution Space .. 31

2.4.4 Architecture Design .. 32

 VIII

2.4.5 Platform-Based Design .. 33

2.4.6 Architecture Analysis ... 36

2.4.7 Conclusion .. 36

2.5 Related Work.. 37

2.5.1 Basic Approaches to Improve Integration of Heterogeneous Functionalities 37

2.5.2 AUTOSAR ... 38

2.5.3 GENIVI .. 41

2.5.4 OEM Vehicle-to-Backend Platforms ... 42

2.6 Problem Statement ... 42

2.7 Summary .. 44

3 The Distributed Automotive Service Delivery Platform Concept 46

3.1 Concept... 46

3.1.1 Principles .. 47

3.1.2 Enabling Architecture: A Distributed Automotive Service Delivery Platform ... 48

3.2 Scenarios .. 49

3.2.1 Extended Floating Car Data ... 49

3.2.2 Vehicle Maintenance / Fleet Management ... 51

3.2.3 Enhanced Navigation ... 51

3.3 Criteria for the Distribution of Automotive Functionalities 53

3.3.1 Application Type .. 55

3.3.2 Data flow .. 55

3.3.3 Performance ... 57

3.3.4 Application Lifecycle and Data Update Frequency ... 58

3.3.5 Quality of Service ... 59

3.3.6 Assessment of Selected Functionalities ... 60

3.3.7 Discussion .. 63

3.4 Viewpoints and Derived Requirements.. 64

3.4.1 Future Vehicle-to-Backend Platforms .. 64

3.4.2 The Vehicle as Part of an Internet of Things ... 65

3.4.3 Towards an (Automotive) Embedded Internet ... 67

3.5 Summary .. 68

4 An Automotive Service Delivery Platform Based on the oneM2M

Service Platform ... 70

4.1 Introduction to M2M, oneM2M ... 71

4.1.1 M2M Communication .. 71

4.1.2 oneM2M Standard .. 72

4.1.3 Related Work .. 73

4.2 M2M as Initial Hypothesis ... 74

4.2.1 M2M aims Interoperability .. 75

 IX

4.2.2 M2M Aims Network Efficiency .. 77

4.2.3 M2M Considers the Automotive Domain .. 78

4.3 Functional Architecture .. 78

4.3.1 Layers and Entities ... 79

4.3.2 Reference Points ... 80

4.3.3 Common Services Functions .. 81

4.3.4 Domains ... 86

4.3.5 Nodes .. 86

4.3.6 Configurations .. 87

4.4 Service/Resource Model and Technologies ... 88

4.4.1 Service-Orientation, Service-Oriented Architecture .. 88

4.4.2 REST, RESTful Architecture ... 89

4.4.3 Resources and Resource Structure ... 90

4.4.4 Methods .. 93

4.4.5 Protocol Stack and Bindings .. 94

4.5 Communication and Data Exchange Mechanisms ... 95

4.5.1 Principles .. 96

4.5.2 Request/Response ... 97

4.5.3 Announcement ... 98

4.5.4 Subscribe/Notify ... 98

4.6 The oneM2M-based Automotive Service Delivery Platform 101

4.6.1 Reference Configuration .. 102

4.6.2 Basic Communication Scenarios .. 103

4.7 Summary .. 110

5 Analysis of Current Data Exchange Capabilities of the oneM2M

Service Platform ... 112

5.1 Condensed ASDP Scenario .. 113

5.1.1 Node Configuration .. 113

5.1.2 Application Entities .. 114

5.2 Principles .. 116

5.2.1 Filter Requirements vs. Capabilities .. 116

5.2.2 Filter Positions .. 118

5.3 Detailed Analysis of oneM2M Data Exchange Capabilities 120

5.3.1 Application Data Handling ... 120

5.3.2 Existing Filtering Capabilities for Exchange of Application Data by Use of the

Subscribe/Notify Mechanism ... 123

5.3.3 Analysis with ASDP scenario .. 135

5.4 Shortcomings of the Current oneM2M Data Exchange and Their Impacts 137

5.4.1 No Application-Data-Dependent Criteria for Data Exchange 138

5.4.2 No Aggregation of Subscriptions ... 139

 X

5.5 Summary .. 140

6 Proposal of Novel Data Exchange Capabilities for the oneM2M Service

Platform ... 141

6.1 Proposed Enhancements and Derived Requirements ... 141

6.1.1 Enhancement 1: Application-Data-Dependent Notification Criteria for Data

Exchange with Subscribe/Notify Mechanism .. 141

6.1.2 Enhancement 2: Aggregation of Subscriptions .. 142

6.2 Approach .. 143

6.2.1 XML and XSD to Enable Transparent Application Data 143

6.2.2 Complex Event Processing to Enable Application-Data-Dependent Notification

Criteria for Data Exchange With Subscribe/Notify Mechanism 144

6.2.3 Aggregation of Subscriptions Enabled Through Criteria Unification 147

6.3 Alternative Architectural Approaches .. 148

6.3.1 Approach 1: Within oneM2M AE Layer ... 150

6.3.2 Approach 2: Within oneM2M CSE layer ... 153

6.3.3 Excursion: Towards (Full) Semantic Interoperability in oneM2M 155

6.3.4 Assessment ... 158

6.4 Summary .. 161

7 Prototype Implementation ... 163

7.1 Technologies .. 163

7.1.1 Eclipse OM2M Project ... 164

7.1.2 Esper CEP Engine .. 165

7.2 Building Blocks .. 166

7.2.1 Content Decoder ... 167

7.2.2 Esper Event Adaptor .. 167

7.2.3 Subscription and Notification Criteria Aggregator .. 168

7.2.4 Esper Statement Adaptor .. 169

7.3 Experiments and Estimations ... 170

7.3.1 Setup and Test Strategy .. 170

7.3.2 Experiment 1: Remaining fuelRange with Single-Steps Provider, Variant 1 190

7.3.3 Experiment 2: Remaining fuelRange with Decimal-Steps Provider 192

7.3.4 Experiment 3: Remaining fuelRange with Single-Steps Provider, Variant 2 194

7.4 Concluding Considerations .. 196

7.5 Summary .. 198

8 Conclusions and Future Work .. 199

8.1 Achievements of the Research ... 199

8.2 Limitations ... 201

8.3 Suggestions for Future Work ... 202

 XI

Bibliography ... 204

Abbreviations ... 226

 XII

List of Figures

Figure 1.1: Concept and architecture development as cyclic process (adopted from

Masak, 2009) ... 3

Figure 2.1: Functional Domains ... 10

Figure 2.2 Intelligent Transportation System scenarios (Source: ETSI TR 102 638,

2009) ... 14

Figure 2.3: Automotive software and system landscape .. 17

Figure 2.4: The platform-based design approach (Natale & Sangiovanni-Vincentelli,

2010) ... 35

Figure 2.5: The AUTOSAR software architecture (AUTOSAR, 2013) 39

Figure 3.1: Basic architecture of the distributed automotive software platform 47

Figure 3.2: Extended Floating Car Data Scenario .. 50

Figure 3.3: Vehicle Maintenance / Fleet Management Scenario ... 51

Figure 3.4: Enhanced Navigation Scenario .. 52

Figure 3.5: Abstract model for distributed functionalities ... 54

Figure 3.6: Qualitative computational and memory requirements assessment criteria 57

Figure 3.7: Qualitative application lifecycle and data update frequency assessment

criteria ... 58

Figure 3.8: Qualitative tolerable delay and bandwidth requirements assessment criteria 59

Figure 3.9: Qualitative caching or resubmission possible/reasonable assessment criteria 60

Figure 4.1: Limited interoperability between components, vendors, and domains through

heterogeneous abstraction levels, interfaces, and technologies 75

Figure 4.2: Improved interoperability between components, vendors, and domains

through unified abstraction levels, interfaces, and technologies 80

Figure 4.3: Common Service Functions in the Common Services Entity (Source:

oneM2M TS-0001, 2015) ... 81

 XIII

Figure 4.4: Configurations supported by the oneM2M service platform (Source:

oneM2M TS-0001, 2015, p. 19) ... 87

Figure 4.5: Resource tree structure example of a CSEBase ... 93

Figure 4.6: Current oneM2M protocol stack for Mca, Mcc, Mcc’ reference points 95

Figure 4.7: Generic oneM2M configuration for communication and data exchange

considerations ... 97

Figure 4.8: Sequence Diagram of Subscribe/Notify example .. 99

Figure 4.9: Functional architecture of the reference configuration of a oneM2M-based

Automotive Service Delivery Platform .. 103

Figure 4.10: Sequence diagram of subscription setup within transparent intermediary

node scenario .. 104

Figure 4.11: Sequence diagram of notification within transparent intermediary node

scenario ... 105

Figure 4.12: oneM2M Node with back-to-back functionality: Realisation of different

views on the same node .. 107

Figure 4.13: Sequence diagram of subscription setup within back-to-back intermediary

node scenario .. 108

Figure 4.14: Sequence diagram of notification within back-to-back intermediary node

scenario ... 109

Figure 5.1: Condensed ASDP scenario .. 113

Figure 5.2: Data set provided by an AE and required subset by other AEs 116

Figure 5.3: Data set provided/required by AEs, filter selection and resulting loss or

overhead .. 117

Figure 5.4: Data set provided/required by AEs, increased filter selection and resulting

overhead .. 117

Figure 5.5: Dataflow with possible filter positions between a distributed AE scenario 118

Figure 5.6: Resource structure of container and contentInstance .. 121

Figure 5.7: Combined filter for notifications ... 124

 XIV

Figure 5.8: Compound resource structure of container, contentInstance, subscription,

eventNotificationCriteria, and schedule .. 125

Figure 5.9: Concatenation and interaction of three filter aspects of subscribe/notify

mechanism .. 126

Figure 5.10: Compound resource structure of container, contentInstance, subscription,

eventNotificationCriteria, and schedule including relations of the notification

criteria ... 127

Figure 5.11: Compound resource structure of container, contentInstance, subscription,

eventNotificationCriteria, and schedule including content-related notification

criteria ... 130

Figure 5.12: Compound resource structure of container, contentInstance, subscription,

eventNotificationCriteria, and schedule including time-related notification

schedule criteria .. 132

Figure 5.13: Application data exchange example of ASDP scenario with current

oneM2M data exchange capabilities ... 136

Figure 6.1: Enhanced data exchange capabilities as concatenation of new filter

capabilities with existing filter capabilities ... 143

Figure 6.2: Flowchart for aggregation of subscriptions at local CSE 148

Figure 6.3: Flowchart for aggregation of subscription at transit CSE 148

Figure 6.4: Design space for Mca interface ... 149

Figure 6.5: Concatenation and interaction of new application-data-dependent filter

aspect with existing three filter aspects of subscribe/notify mechanism for

alternative architectural approach 1 .. 150

Figure 6.6: Enhanced data exchange with alternative architectural approach 1 151

Figure 6.7: Concatenation and interaction of new application-data-dependent filter

aspect with existing three filter aspects of subscribe/notify mechanism for

alternative architectural approach 2 .. 153

Figure 6.8: Enhanced data exchange for alternative architectural approach 2 154

Figure 7.1: Component diagram of enhanced OM2M prototype showing modified and

new CORE plugins ... 164

 XV

Figure 7.2: Integration of enhanced data exchange capabilities for subscribe/notify

within CSE layer of oneM2M service platform .. 166

Figure 7.3: Experiment setup ... 170

Figure 7.4: Usage of Simple REST Client as AEPrototype showing the

creation/registration of a VehicleDataProvider application at the CSE/NSCL 172

Figure 7.5: Usage of OM2M Web Interface as Monitor showing the evaluation of the

resource tree after the creation/registration of a VehicleDataProvider application

at the CSE/NSCL .. 173

Figure 7.6: Sequence Diagram of Experiment Bootstrap .. 174

Figure 7.7: Sequence Diagram of Experiment Execution and Result Retrieve 180

Figure 7.8: Comparison of the number of notifications for VehicleDataSubStd and

VehicleDataSubEnh during fuelRange decrease according to the conditions of

Experiment 1 ... 192

Figure 7.9: Comparison of the number of notifications for VehicleDataSubStd and

VehicleDataSubEnh during fuelRange decrease according to the conditions of

Experiment 2 ... 194

Figure 7.10: Comparison of the number of notifications for VehicleDataSubStd and

VehicleDataSubEnh during fuelRange decrease according to the conditions of

Experiment 3 ... 196

 XVI

List of Tables

Table 2.1: ETSI basic set of applications related to traffic safety (ETSI TR 102 638,

2009, p. 18) ... 15

Table 2.2: ETSI basic set of applications related to traffic efficiency (ETSI TR 102 638,

2009, p. 18) ... 15

Table 2.3: ETSI basic set of applications related to traffic efficiency (ETSI TR 102 638,

2009, p. 18) ... 16

Table 2.4: Selected vehicle-internal communication technologies (Sagstetter, 2016;

Talbot & Ren, 2009; W. Zimmermann & Schmidgall, 2014) 19

Table 3.1: Possible data flows between vehicle and backend and their degree of

limitation regarding increased requirements ... 56

Table 3.2: Assessment of criteria for the distribution of selected automotive applications

 ... 62

Table 4.1: Selection of oneM2M resource types (oneM2M TS-0001, 2015) 92

Table 4.2: Supported operations between originator and receiver entity 94

Table 6.1: Examples of beneficial automotive application-data-dependent notification

criteria and their EPL statement representation. ... 146

Table 7.1: Mapping of selected oneM2M terms to ETSI M2M terms 165

 XVII

Author’s Declaration

At no time during the registration for the degree of Doctor of Philosophy has the author been

registered for any other University award without prior agreement of the Doctoral College

Quality Sub-Committee.

Work submitted for this research degree at the University of Plymouth has not formed part of

any other degree either at the University of Plymouth or at another establishment.

Word count of main body of thesis: 62298

Date 04.03.2018 .

Signature Markus Glaab .

 XVIII

 XIX

To my family

 XX

 XXI

Acknowledgement

This research project would not have been possible without the support and contribution of

many people, and the organisational facility, namely the University of Applied Sciences,

Darmstadt, DE, in cooperation with the Centre for Security, Communication and Network

Research, Plymouth University, UK.

I want to especially thank my Director of Studies, Prof Dr Woldemar Fuhrmann. Thank you for

many intensive and fruitful discussions, professional advice, personal support and guidance

throughout this project. Secondly, I want to thank my supervisor Prof Dr Joachim Wietzke for

his constant and outstanding support and advice. In particular, I want to express many thanks

for providing the foundation and environment for the development of the central contributions

of this research by means of heading the ICM labs at the University of Applied Sciences,

Darmstadt, DE. Moreover, I would like to thank my supervisor Dr Bogdan V. Ghita for his

invaluable help and guidance for this research project in general and contribution to

publications in particular.

Many thanks also go to my fellow researchers from the former ICM research group, namely

Mrs Bettina Kurz-Kalweit, Mr Sergio Vergata, Mr Clemens Fischer, Mr Tobias Holstein, and

most notably Dr Andreas Knirsch and Mr Pierre Schnarz: I thank you for your friendship,

interesting and helpful discussions, and incredible support in particular during the final stages

of this research project.

Furthermore, I would like to thank Mr Daniel Ebanja, Dr Benjamin Heckmann, Mr Björn Bär,

Mr Stefan Benkner, and Dr Jakob Schelbert for their valuable inputs to this research.

Many thanks to Carole Watson and the team of the graduate school administration for your help

and support regarding administrative issues.

Finally, I would like to thank my lovely wife Katharina for her patience, encouragement and

support throughout the last years. Additionally, I would like to thank my sister Sabrina, my

parents, parents-in-law, and friends for their help and support.

 XXII

Introduction and Overview

1

1 Introduction and Overview

During the last decades, the relevance of electronics and software embedded in cars has

increased exponentially. Starting in the late 1960s and the beginning of 1970s, the first kilobytes

of software were introduced, hidden from the passengers’ perception, to control the ignition of

the engine (Venkatesh Prasad, Broy, & Krueger, 2010). Nowadays, premium cars have more

than 100 million lines of code distributed over up to 100 Electronic Control Units (ECUs). At

the same time, the role of software has changed. While at the beginning software only supports

hardware-enabled features, it now “[increasingly replaces] functions previously performed by

hardware, thereby replacing hardware [or it] explicitly augments new hardware-enabled

features” (Venkatesh Prasad et al., 2010). Moreover, today a significant number of

functionalities is realised purely with software and this will continue to increase. Consequently,

software plays a major role for the latest achievements in the area of safety, comfort,

performance, and ecology of the vehicles (Charette, 2009). Hardung et al. stated that today

“electronics make 90% of the innovations [of a vehicle], 80 % out of that in the area of

software“ (Hardung, Kölzow, & Krüger, 2004). Sophisticated graphical displays and

touchscreens replaced hardware buttons for vehicle control and moved software in the focus of

drivers’ vehicle perception. Hence, “software enables [Original Equipment Manufacturers

(OEMs)] and suppliers to tailor systems to particular customers’ needs. In other words, software

can help differentiate between cars.” (Pretschner, Broy, Kruger, & Stauner, 2007). In this

regard, software nowadays is also a distinctive competitive advantage.

Cars recently became connected with the Internet by use of wireless cellular networks. This

extends the automotive software and system landscape beyond the vehicle internals now

including also external entities, such as servers in the backend. The connected vehicle is the

enabler for a huge amount of novel and beneficial functionalities, e.g., within the areas of In-

Vehicle Infotainment and Advanced Driver Assistance Systems. Moreover, it is the foundation

for the vision of vehicles becoming an integral part of an Intelligent Transportation System,

which provides increased traffic safety, traffic efficiency, and comfort to its users.

1.1 Focus of this Research

The opportunities of connected cars are huge with regard to the increase of comfort, safety, and

efficiency. However, they also cause and require a massive change in the automotive domain

1

Introduction and Overview

2

and used technologies to materialise (Broy, 2006a). Automotive manufacturers and engineers

require now in addition to mechanical and electrical/electronic expertise also profound

knowledge in computer science, distributed software architectures, and recently in addition to

vehicle-internal network technologies also knowledge in wireless cellular network technologies

and server infrastructure. The existing and historically grown software and system architectures

are not good enough to enable the realisation of the future automotive functionalities (Broy,

2006a). Enhanced architectures and platforms are required, which are developed

interdisciplinary to address the challenges of connected vehicles.

Due to this, the focus of this research are enhanced vehicle-to-backend platforms, that enable

the realisation of the functionalities associated with future connected vehicles. This includes

the analysis of these distributed functionalities to identify requirements to the vehicle-to-

backend platforms. Furthermore, it requires the consideration of suitable architectures, building

blocks, and technologies for the platform approach.

1.2 Aims and Objectives

The aim of this research is to propose an enhanced vehicle-to-backend platform architecture,

which facilitates the realisation of functionalities related to connected vehicles, as for example

those in the context of Intelligent Transportation Systems, Advanced Driver Assistance

Systems and In-Vehicle Infotainment Systems. Thereby, this research envisages a holistic view

on the software and system architectures of vehicle-to-backend platforms, reflecting the wide

range of involved domains, such as automotive, telecommunication, and Internet, as well as

disciplines, such as system architects, software architects, or data engineers.

In more detail, this leads to the following objectives:

1. To perform a comprehensive review and analysis of the current automotive

environment by means of driving functional domains, software and system landscape

as well as domain characteristics and challenges.

2. To develop a concept for a novel vehicle-to-backend service platform enabling the

delivery of future distributed automotive software functionalities.

3. To investigate the appropriateness of an M2M service platform (oneM2M TS-0001,

2015; oneM2M TS-0004, 2015) as enabler for the concept previously developed by

means of architectural analysis and selected automotive scenarios.

4. To propose enhancements and an architectural approach that improve the suitability of

an M2M service platform for automotive application, in case that the investigation has

identified shortcomings of the M2M service platform.

5. To proof the feasibility of proposed enhancements for the M2M service platform

through a prototype implementation.

Introduction and Overview

3

1.3 Method Overview

The methodologies applied to this research reflect its focus on concepts and architectures. They

can be divided into a high-level methodology that describes the overall structure of this research

and different low-level methodologies that are used to develop single research artefacts or

contributions.

1.3.1 High-Level Methodology

The high-level methodology of this research reflects the iterative or cyclic nature of concept

and architecture development, which means that the transition from the problem space to the

solution space is traversed several times at different abstraction levels (see Figure 1.1) (Masak,

2009).

Figure 1.1: Concept and architecture development as cyclic process (adopted from Masak, 2009)

During this process, the problem space is built from objectives and requirements. This

“problem” in general might become scoped, followed by a proposal or approach as to how this

problem could be solved. In many cases, several solutions are possible which is why the

evaluation and selection of alternatives might be necessary which in turn finally lead to the

implementation. All the named activities influence the concept or architecture “under

development”. It has to be considered that conceptual decisions, as well as architectural design

decisions overlap with the problem space and the solution space because each decision widens

Introduction and Overview

4

the problem space and narrows the solution space (Masak, 2009). This is because each decision

typically leads to additional requirements and less design space for the solution (Masak, 2009).

New requirements, and the fact that this cyclic process is traversed several times on different

abstraction levels, is the reason why it might become necessary to investigate related concepts

or work at different stages of the research and this thesis, simply because new requirements

have arisen, possibly at a different abstraction levels. However, all activities may not be present

during all cycles. Particularly the scoping and the investigation of alternatives might be of minor

significance at different abstraction levels or at different maturity levels of the solution (i.e.,

concept or architecture).

This methodology is combined with the platform-based design approach (Sangiovanni-

Vincentelli & Martin, 2001) which is introduced in more detail in Section 2.4.5. At this point,

it shall only be noted that the cyclic process is not only performed top-down, but also includes

bottom-up considerations, such as a platform candidate that is investigated as an architectural

solution.

In more detail, the following cycles of this process are performed within this research:

• Based on the review of the automotive environment that includes characteristics and

challenges, fundamental objectives are derived. These are scoped to a certain subset of

the overall automotive software and system landscape, namely vehicle-to-backend

platforms. Based on this, the problem space for the concept “under development” is

further detailed which finally leads to the concept of a distributed Automotive Service

Delivery Platform as solution to the selected scope of the automotive challenges.

• This concept again impacts the problem space where further objectives or

requirements can be derived to implement it.

• Then, according to the Platform-Based Design approach (see Section 2.4.5), the

oneM2M service platform is introduced as candidate architectural solution to the

developed concept. It is comprehensively analysed which leads to the identification of

shortcomings.

• The identified shortcomings are the starting point for a proposal of architectural

enhancements for which requirements are derived. In advance to the prototype

implementation, the general approach is described, and architectural alternatives are

discussed.

1.3.2 Low-Level Methodology

The low-level methodologies of this research refer to the development of single research

artefacts or contributions, such as concepts, proposals, and approaches. Thereby the main

research methodology applied is conceptual analysis as a basis concept formulation for software

and system architectures (cf. Glass, Ramesh, & Vessey, 2004; Ramesh, Glass, & Vessey, 2004).

This is primarily performed on the level of abstract concepts, computing elements, or

Introduction and Overview

5

algorithm/protocols. Besides, proposed enhancements are empirically evaluated by use of

concept implementation (proof-of-concept) (Ramesh et al., 2004; Segal, 2003). The selected

methodologies match with those predominantly applied in the related disciplines (i.e. computer

science and software engineering) (Dodig-Crnkovic, 2002; Glass et al., 2004; Ramesh et al.,

2004)

1.4 Contributions

Concerning the focus of this research (see Section 1.1) and related aims and objectives (see

Section 1.2), contributions are made. These are the main contributions of this research:

• The detailed analysis of characteristics and challenges of the automotive environment

with regard to the advancements in in the area of In-Vehicle Infotainment, Advanced

Driver Assistance Systems, and Intelligent Transportation Systems.

• The revelation of the gap of a common vehicle-to-backend platform as basis for the

realisation of the functionalities and expectations, associated with the connected

vehicle.

• The development and proposal of the distributed Automotive Service Delivery

Platform concept as a novel approach for vehicle-to-backend platforms

• Criteria for the qualitative assessment of automotive applications that enable analysis

of suitable decompositions and distributions of functionalities within a distributed

Automotive Service Delivery Platform.

• Identification of key architectural design decisions of the oneM2M service platform

that proved its general suitability as enabler for the distributed Automotive Service

Delivery Platform concept.

• The description of a reference architecture for a oneM2M-based distributed

Automotive Service Delivery Platform.

• The identification of shortcomings with regard to the data exchange capabilities of the

oneM2M service platform which may decrease the network efficiency of the

distributed functionalities.

• The development of novel enhanced data exchange capabilities for the oneM2M

service platform that increase the network efficiency and thus improve the suitability

of the oneM2M service platform as enabler for the distributed Automotive Service

Delivery Platform concept.

• The proof the applicability of the proposed enhanced data exchange capabilities

through prototype implementation together with experiments and estimations that

show the increased network efficiency based on a typical automotive scenario.

Introduction and Overview

6

1.5 Published Papers

At the time of writing, seven papers have been published that cover significant parts of this

research:

1. Markus Glaab, Woldemar Fuhrmann, Joachim Wietzke, and Bogdan V Ghita. A New

Architectural-Approach for Next Generation Automotive Applications. In

Proceedings of the Sixth Collaborative Research Symposium on Security, E-Learning,

Internet and Networking (SEIN2010), pages 11–18, Plymouth, United Kingdom,

November 2010. ISBN 978-1-84102-269-7

2. Markus Glaab, Woldemar Fuhrmann, and Joachim Wietzke. Entscheidungskriterien

für die Verteilung zukünftiger automotiver Anwendungen im Kontext vernetzter

Fahrzeuge. In Mobilkommunikation 2011 - Technologien und Anwendungen - 16. ITG-

Fachtagung, Osnabrück, Germany, 2011.

3. Markus Glaab, Woldemar Fuhrmann, and Joachim Wietzke. The need for Transparent

Data within M2M Service Capability Layer. Presented at the 9th KuVS NGSDP

Expert Talk - 9. KuVS Fachgespräch on Next Generation Service Delivery Platforms:

“Machine to Machine Communications Platforms, Applications and Standards”,

Berlin, Germany, April 2014.

4. Markus Glaab, Woldemar Fuhrmann, and Joachim Wietzke. Transparent Data for the

M2M Service Capability Layer: Benefits and Approaches. In 21st International

Conference on Telecommunications: Cooperation for a United World (ICT2014),

Lisbon, Portugal, May 2014. IEEE Communications Society.

http://doi.org/10.1109/ict.2014.7575094

5. Markus Glaab, Woldemar Fuhrmann, Joachim Wietzke, and Bogdan Ghita. A M2M-

based Automotive Service Delivery Platform for Distributed Vehicular Applications.

In Tenth International Network Conference (INC2014), pages 35–45, Plymouth,

United Kingdom, July 2014. ISBN 978-1-84102-373-1

6. Markus Glaab, Woldemar Fuhrmann, Joachim Wietzke, and Bogdan Ghita. Enhanced

Data Exchange Capabilities for M2M Applications. In Sixth International Conference

on Internet Technologies & Applications 2015 (ITA 15), pages 160–164, Wrexham,

North Wales, United Kingdom, September 2015.

https://doi.org/10.1109/itecha.2015.7317388

7. Markus Glaab, Woldemar Fuhrmann, Joachim Wietzke, and Bogdan Ghita. Toward

Enhanced Data Exchange Capabilities for the oneM2M Service Platform. IEEE

Communications Magazine, 53(12), 2015.

http://doi.org/10.1109/mcom.2015.7355583

Introduction and Overview

7

1.6 Thesis Outline

Chapter 2 starts with the presentation of the automotive environment which is the foundation

of this work. It provides a comprehensive review of the state of the art of automotive software

and systems landscape. Therefore, first the functional domains In-Vehicle Infotainment,

Advanced Driver Assistance Systems, and Intelligent Transportation Systems are described that

drive the developments. All those functionalities must be integrated to a homogeneous overall

system whose physical components and the communication technologies are afterwards

described. Followed by the domain characteristics and challenges, it describes the automotive

landscape from the technical and organisational perspective. Then, software and system design

and methodology as foundation for the subsequent chapters is introduced. It includes the

introduction of terminology as well as discussion of problem and solution space, the role of

architectures, architecture design and analysis, and the Platform-Based Design methodology.

Finally, related work can be crystallised on and located within the automotive landscape

unveiling the gap, namely the absence of universal vehicle-to-backend platforms, which is

where this research aims to deliver its contributions.

The concept of a universal and standardised distributed Automotive Service Delivery Platform

and its principles as a solution to the identified gap is introduced in Chapter 3. The consideration

of three related scenarios, and criteria for the distribution of functionalities between the vehicle

and the backend contribute to three different viewpoints on the proposed concept. These

viewpoints are the basis for the derivation of requirements to detail the problem space.

Chapter 4 begins with a general introduction to Machine-to-Machine Communication. Its

similarities with the previously described concept with respect to problem space (i.e. challenges

and requirements) motivate the consideration of the oneM2M service platform as initial

architectural hypothesis. Afterwards, the oneM2M service platform is introduced in more detail

and its fundamental design decisions are unveiled and analysed. This enables architecture

analysis and reasoning to which degree the oneM2M Service Platform can fulfil the identified

requirements of the distributed Automotive Service Delivery Platform concept. Although

aspects have been identified that need more detailed consideration, such as the communication

mechanisms and data exchange capabilities, the oneM2M service platform approved its general

appropriateness as enabler for the distributed Automotive Service Delivery Platform. In this

regard, this concept is finally mapped to the oneM2M service platform referred to as the

reference configuration for a oneM2M-based Automotive Service Delivery Platform.

Since the data exchange capabilities are of central importance for the efficient applicability of

the oneM2M service platform as enabler for the distributed Automotive Service Delivery

Platform concept, Chapter 5 provides the detailed analysis. For this reason, first a condensed

Automotive Service Delivery Platform scenario is introduced. Subsequently, the detailed

analysis of existing data exchange capabilities of the subscribe/notify mechanism according to

the current version of the oneM2M standard is performed, starting with the discussion of data

Introduction and Overview

8

exchange principles. This analysis identifies shortcomings that typically result in decreased

network efficiency and privacy of distributed functionalities.

To address the identified shortcomings, Chapter 6 proposes novel enhancements for the data

exchange capabilities of the subscribe/notify mechanism of oneM2M. It starts with the

derivation of requirements from the proposed enhancements. Afterwards, approaches to realise

the enhancements are introduced. Finally, two possible architectural alternatives for the

implementation of the enhancements within the oneM2M service platform are assessed. The

selected architectural alternative is the basis for the prototypical implementation as proof-of-

concept.

In Chapter 7, the prototypical implementation of the enhanced data exchange capabilities is

presented. For this purpose, the used technologies are introduced followed by the description

of the building blocks, which are introduced to implement the enhanced data exchange

capabilities. Afterwards, setup and execution of experiments is described in detail which are

the foundation for three experiments and related estimations that prove the advancements of

the proposed enhancements. Finally, this is put into context with respect to network efficiency

and performance considerations, as well as qualitative attributes.

This leads to the conclusion and the summary of the achievements of this research, followed

by limitations and possible future work, which is the content of Chapter 8.

Review of the Automotive Environment

9

2 Review of the Automotive Environment

This research has its motivation and foundation in the evolution of the automotive domain and

related challenges. In this regard, this chapter aims to provide a comprehensive background of

the automotive environment. It starts top-down with a review of the three automotive functional

domains that currently primarily drive the automotive developments, including their historical

background, status quo, and anticipated future functionalities. Afterwards, the automotive

system landscape is considered bottom-up, by means of the components and internal and

external communication technologies, which in its entirety build the landscape in which the

applications from the functional domains should be integrated. The emergence of the functional

domains together with the software and system landscape facilitate two things: on the one hand,

they support the understanding of the characteristics and challenges within the automotive

domain, which are presented in Section 2.3. On the other hand, they enable the categorisation

and localisation of related work regarding software architectures and platforms, which is

content of Section 2.4. All considerations leading to the problem statement, presented in Section

2.6, that is the starting point for further research.

2.1 Functional Domains

Several functional domains drive today’s automotive software and system development. This

section introduces the three main functional domains with respect to software and connectivity,

namely: In-Vehicle Infotainment (IVI), Advanced Driver Assistance Systems (ADAS), and

Intelligent Transportation Systems (ITS), see Figure 2.1.

Initially separated, the borders between those domains in many cases become blurred today. In

any case, those functional domains clash inside the vehicle or while considering all vehicular

usage scenarios, which generates a great deal of challenges for vehicular software and system

development. However, since the introduction of ever-increasing functionalities is no end in

itself but aims various benefits for the driver and passengers, the three main functional domains

are subsequently introduced with respect to their history as well as their status quo and

anticipated future developments.

2

Review of the Automotive Environment

10

Figure 2.1: Functional Domains

2.1.1 In-Vehicle Infotainment

In 1932, Blaupunkt introduced the first car radio in Europe (Blaupunkt, 2017). Since then,

especially within the last decade, the car radio has evolved to a sophisticated In-Vehicle

Infotainment system (IVI), also referred to as Automotive Infotainment System or In-Car

Multimedia System (ICM-System), which offers a continuously growing number of

functionalities to the passengers. Herein, the term infotainment is a portmanteau between

information and entertainment. In the automotive context – in contrast to some critical

discussions in the context of journalism – it can be understood more literally as a system that

provides both information (e.g., of the car or traffic situation) and entertainment capabilities

(e.g., radio or audio/video-player). The term multimedia emphasis that content can be presented

with different media types, such as textual information, animations, and audio outputs.

With the integration of satellite navigation, television and video-player capabilities into car

radios, colour displays and Graphical User Interfaces (GUI) were introduced. The

functionalities are controlled through hard/soft keys, push-rotary buttons, or increasingly touch

screens/pads, gestures, and voice commands. These powerful input and output capabilities of

IVI systems, together with the increasing number of overall vehicular functionalities that need

to be displayed and controlled, paved the way for the IVI system to become the main Human-

Machine Interface (HMI) for non-driving functions of the vehicle.

Accordingly, current IVI systems are also used to display car maintenance information,

interactive car manuals, and to enable the setup of diverse car functions, such as air-

conditioning, driving modes, and driver assistance systems. Accenture identified in their study

“Perspectives on In-Vehicle Infotainment Systems and Telematics” the following three main

trends impacting IVI systems: eco-efficiency, security and safety, and comfort (Accenture,

2012). In that context, the demands for IVI systems are influenced by Telematics

(Telecommunication and Information Technology) use cases. Since vehicular Telematics are

Review of the Automotive Environment

11

also related to ITS, this is one example where the IVI functional domain has overlaps with other

domains. However, ITS will be discussed in more detail in a separate subsequent section (see

Section 2.1.3).

Moreover, mobile phones have become connected with the IVI systems through Bluetooth or

cable connections. Initially, this should enable hands-free telephony by use of the vehicular

sound system and microphone. Additionally, this connection can enable the usage of on-board

antenna (e.g., on the vehicle roof) instead of the built-in antenna of the mobile phone, to enhance

the link quality with the mobile cellular network. Nowadays, in some cases, the mobile or

smartphone connections are also used to provide Internet connectivity to the IVI system. In

contrast, particularly high-end IVI systems use in-vehicle cellular modems for Internet

connectivity independently from connected mobile phones. Those IVI systems might also share

their Internet connectivity by means of a vehicle-internal Wireless Local Area Network

(WLAN) hotspot for other devices brought-in by the passengers.

No matter what connection type is used, current premium IVI systems are connected with the

Internet. This, for instance, is used to receive extended traffic information, to enhance the

navigation screen with dynamically loaded satellite picture overlays, or to enable location-

based searches and Internet radio or music streaming.

Coinciding with the progress of IVI systems, mobile phones have experienced a substantial

evolution towards “smart” phones, changing the whole mobile devices landscape seen

previously. Performance improvements of mobile hardware, increasingly powerful mobile

networks together with advanced mobile operating systems and integrated application stores

paved the way for the emergence of huge ecosystems (Basole & Karla, 2011). The millions of

“apps” available enable the comprehensive customisation of the smartphone functionalities,

according to the users’ wishes. These developments in the Consumer Electronics (CE) domain

already have impacts on design and range of functions of IVI systems. Gryc and Johnson found

in (2011) that “car buyers now expect automakers to keep up with the frantic pace of

development maintained by consumer electronics, and in particular the ever-increasing library

of apps and services available on smartphones“. Lastly, also the provision of social networks

to vehicles is an interesting use case (Lequerica, Garcia Longaron, & Ruiz, 2010).

Indeed, two different solutions currently find their way individually or in combination to IVI

systems, providing passengers functionalities already known from their smartphone

ecosystems:

1. OEM-specific app stores or services

Some OEMs have started to integrate their own app stores or to provide their own

services to their vehicles. Often popular apps from smartphone ecosystems, such as

Pandora, Spotify, and Facebook are also made available for the car (Johanning &

Mildner, 2015). This might be done either by providing an OEM-specific Software

Review of the Automotive Environment

12

Development Kit (SDK) that enables app developers to port their apps to the vehicle

ecosystem by themselves, or the OEM itself takes over this task.

2. Deep smartphone integration in the IVI system

With this approach, the smartphone remains the system which hosts, runs, and hence

brings in the apps into the IVI system. The latter only provides the output capabilities

(e.g., screen, speakers) and input capabilities (e.g., touchscreen, voice commands).

Currently, particularly three technologies exist that enable this kind of smartphone

integration, namely: MirrorLink, Apple CarPlay, and Android Auto (Johanning &

Mildner, 2015). Depending on the actual technology, apps are displayed in the vehicle

with the same or a specific layout. However, usually the apps have to implement

particular functionalities, which is why typically only a subset of all smartphone apps

is available by means of those technologies. The available smartphone apps may

duplicate or even make obsolete vehicle-internal functionalities. For example: Google

Maps may substitute an IVI-internal navigation system, and music or radio streaming

apps, such as Spotify, or Pandora, may substitute the traditional FM/DAB-radio or

CD/MP3-player.

Finally, it shall also be noted here that OEM may additionally provide apps or web-frontends

for the customer that enable the remote access of vehicle functionalities or data. For example,

driving destinations and routes can be sent to the car in advance of a trip or current fuel level,

average economy, and remaining range, climate control, and positioning information are

retrievable.

2.1.2 Advanced Driver Assistance Systems towards Highly Automated

Driving

The continuous enhancement of traffic safety has been a professed goal of automotive

researchers, engineers, politicians, and society for many decades. The invention of safety cells,

seatbelts, multilayer glasses in the 1960s poses the starting point with passive safety

mechanisms which are aimed for crash mitigation purposes. Today, passive safety mechanisms

still play an important role and are still being improved, and this will continue to be the case

for several years to come.

Nevertheless, since Bosch introduced the electronic Antilock Brake System (ABS) as one of

the first active safety mechanisms in 1978, the focus has started to shift towards crash

prevention up to the final goal of crash-free driving (Siebenpfeiffer, 2014). The ABS was

followed by Traction Control Systems (TCS) which are combined and enhanced to Electronic

Stability Programs (ESP). Looking at the emergence of these functions, the intervention

timespan before an accident may occur increases. This leads to the development of Advanced

Driver Assistance Systems (ADAS), which nowadays aim to support the driver in more and

more situations. As part of this development, the vehicles are becoming equipped with an

increasing number of sensors, such as visual sensors (e.g., Ultrasonic, Radar, Lidar, Camera).

Review of the Automotive Environment

13

These facilitate functionalities, such as Forward Collision Warning (FCW), Lane Departure

Warning (LDW), Blind Spot Detection (BSD), Traffic Sign Recognition (TSR), and Driver

Monitoring (Cacilo et al., 2016).

The concrete driver assistance could be realised in the form of warnings, such as the display of

messages or warning tones, which is the reason why ADAS also have influence on the IVI

system and particularly (functional) safety requirements to the latter (Schneider & Nett, 2014).

Furthermore, the driver could be warned haptically, e.g., through steering wheel vibrations or

belt tightening. While the previously-named functionalities FCW, LDW, BSD, and TSR are

aimed to providing driver assistance in terms of support and warnings, several functionalities

are introduced that assist actively, similar to ESP. For example: An Adaptive Cruise Control

(ACC) can actively control the lateral dynamic of a vehicle by means of retaining the distance

to preceding vehicle depending on the current speed (within the system boundaries 1). In

contrast, a Lane Keeping Assistance (LKA) can actively control the longitudinal vehicular

dynamics through active steering interventions (within the system boundaries1).

Recently, the combination of such single functionalities facilitated more enhanced

functionalities that ultimately shall lead to Highly Automated Driving (HAD) and Autonomous

Driving (AD). For example: ACC and LKW can be combined to a Traffic Jam Assistant (TJA)

or Traffic Jam Chauffeurs (TJC) that enable lateral and longitudinal control of the vehicle

during traffic jams on motorways. TJAs are typically one of the first HAD functionalities, since

in this situation relatively small differential speeds between the vehicles, the fact that everyone

drives in the same direction on a motorway, as well as the absence of traffic lights, etc., ease

the complexity of the driving task and hence ease its development and introduction.

Until the vision of autonomous driving with zero accidents becomes reality, the effective rescue

of casualties remains a significant task. Thus, the automatic emergency call (eCall) that in case

of an accident autonomously calls the responsible Public Safety Answering Point (PSAP), i.e.

an emergency call centre, is another important functionality of future vehicles. To speed up the

rescue, the eCall will transmit the current position of the car while additionally establishing a

voice connection to the PSAP. Effective 31 March 2018, the European Commission has

regulated that this functionality must be incorporated in every newly manufactured vehicle

(European Parliament, Council of the European Union, 2015). The eCall can also be considered

as another step towards an Intelligent Transportation System:

1 Typical system boundaries are the nominal performance of the sensors used to detect preceding vehicles, as well

as defined/configured boundaries. The latter for ACC could be the maximum allowed deceleration, which typically

is less than the maximum possible deceleration, at least for certain speed ranges. For LKA, the defined boundaries

may be, in addition to others, the maximum steering wheel angle depending on the speed.

https://www.dict.cc/englisch-deutsch/autonomously.html

Review of the Automotive Environment

14

2.1.3 Intelligent Transportation Systems

Another perspective on functionalities associated with connected vehicles constitute

(cooperative) Intelligent Transportation Systems 2 (ITS), also referred to as Transportation

Cyber-Physical Systems (T-CPS) (Al-Fuqaha, Guizani, Mohammadi, Aledhari, & Ayyash,

2015). For several years, they have been subject of research and standardisation activities,

addressing partial aspects of the overall vision (cf. COMeSafety, 2013; simTD-Consortium,

2013). Figure 2.2 shows various ITS scenarios at a glance, e.g., crash avoidance, fleet

management, and travel assistance.

Figure 2.2 Intelligent Transportation System scenarios (Source: ETSI TR 102 638, 2009)

There are different viewpoints on ITS and their role within smart city considerations (Naphade,

Banavar, Harrison, Paraszczak, & Morris, 2011). This research utilises the European ITS

Communication Architecture, whereas ITS applications can generally be categorised in

“Traffic Safety”, “Traffic Efficiency”, and “Value-Added Services” (Bechler et al., 2010;

Kosch et al., 2009). This section is intended to briefly introduce the background of each

category and to present related applications according to the ETSI “Basic Set of Applications”

(ETSI TR 102 638, 2009).

Traffic Safety

While first efforts to increase traffic safety were about mitigating the consequences of a crash

(see Section 2.1.2), active safety technologies to completely avoid accidents are being

introduced exponentially towards the vision of accident-free driving (Eskandarian, 2012,

2 Also known as: Intelligent Transport Systems

Review of the Automotive Environment

15

p. 710). The connection of vehicles with each other (Car2Car) and with infrastructure, e.g.,

traffic lights (Car2Infrastructure) is considered a major step towards this vision. Besides

completely new applications, Car2X (see Section 2.2.2) can further increase the potential of

existing active and passive safety systems. Table 2.1 names the basic set of “Active road safety”

applications, according to ETSI (ETSI TR 102 638, 2009, p. 18).

Application Class Application Use Case

Active road safety

Driving assistance -

Cooperative awareness

Emergency vehicle warning

Slow vehicle indication

Intersection collision warning

Motorcycle approaching indication

Driving assistance -

Road Hazard Warning

Emergency electronic brake lights

Wrong way driving warning

Stationary vehicle – accident

Stationary vehicle – vehicle problem

Traffic condition warning

Signal violation warning

Roadwork warning

Collision risk warning

Decentralized floating car data -

Hazardous location

Decentralized floating car data - Precipitations

Decentralized floating car data - Road adhesion

Decentralized floating car data - Visibility

Decentralized floating car data - Wind

Table 2.1: ETSI basic set of applications related to traffic safety (ETSI TR 102 638, 2009, p. 18)

Traffic Efficiency

Mobility is a central property of our modern society, but a growing number of traffic incidents

occur and inhibits efficient and reliable travelling. Traffic jams are extremely costly, and the

higher fuel consumption burdens the environment. Hence improving traffic efficiency is an

objective not only for the driver but also for society. ITS should enable advanced traffic

efficiency scenarios. Table 2.2 lists the basic set of applications within the class “Cooperative

traffic efficiency”, according to ETSI (ETSI TR 102 638, 2009, p. 18).

Application Class Application Use Case

Cooperative traffic

efficiency

Speed management
Regulatory / contextual speed limits notification

Traffic light optimal speed advisory

Cooperative navigation

Traffic information and recommended itinerary

Enhanced route guidance and navigation

Limited access warning and detour notification

In-vehicle signage

Table 2.2: ETSI basic set of applications related to traffic efficiency (ETSI TR 102 638, 2009, p. 18)

Review of the Automotive Environment

16

Value-Added Services

Further use cases are subsumed as “Value-Added Services”. This category shows the most

overlaps with the future IVI-System functions. Hence, the context (i.e., functional domain) in

which these applications are introduced is not fixed. In more detail, two application classes of

the ETSI Basic Set of Applications, namely: “Cooperative local services” and “Global Internet

services” (ETSI TR 102 638, 2009, p. 18), can be assigned to “Value-Added Services”. These

are listed in Table 2.3.

Application Class Application Use Case

Cooperative local

services
Location based services

Point of Interest notification

Automatic access control and parking management

ITS local electronic commerce

Media downloading

Global Internet

services

Communities services

Insurance and financial services

Fleet management

Loading zone management

ITS station life cycle

management

Vehicle software / data provisioning and update

Vehicle and RSU data calibration

Table 2.3: ETSI basic set of applications related to traffic efficiency (ETSI TR 102 638, 2009, p. 18)

2.2 Automotive Software and System Landscape

To implement the previously described IVI, ADAS, and ITS functionalities, they must be

integrated somewhere into the automotive software and system landscape. In a modern

connected vehicle, this automotive software and system landscape constitutes of a highly

distributed system, including many different computing components that are interconnected by

several wireline and wireless communication technologies. Figure 2.3 provides a schematic

overview and indicates those components that are typically in OEM ownership, which means

that their design and range of functions can be directly controlled.

While the actual component and communication technologies configuration varies,

functionalities of a connected vehicle in general can get:

• “Built-in” into on-board equipment.

• “Brought-in”, e.g., through the connection of CE devices.

• “Beamed-in”, if they are realised off-board, e.g., on server infrastructure in the

backend and connected within the vehicle (Venkatesh Prasad et al., 2010).

A more detailed look on the typical computing components and communication technologies

of the automotive software and system landscape is presented below.

Review of the Automotive Environment

17

Figure 2.3: Automotive software and system landscape

2.2.1 Computing Components

Computing components within the vehicle are referred to as embedded systems:

“Embedded systems are information processing systems embedded into enclosing

products.” (Marwedel, 2010)

Accordingly, the software running on these embedded systems is called embedded software:

“Embedded Software is software integrated with physical processes.” (E. A. Lee, 2006)

Depending on the context, and if the inter-relationship between different embedded systems

and their physical environment should be emphasised, the term Cyber-Physical System (CPS)

is used, which can be defined as follows:

“Cyber-Physical Systems (CPS) are integrations of computation and physical

processes” (E. A. Lee, 2007)

The automotive system landscape of a modern vehicle consists of various computing

components. While their actual design and concrete vehicle setups vary, the basic types of units

are described below:

Electronic Control Unit

The Electronic Control Unit (ECU) denotes an embedded system used in the automotive

domain. Modern vehicles have a high number of various ECUs that are typically tailored to

their specific task. For example, there are ECUs particularly dedicated to engine control, brake

control, door control, which are responsible for physical control of the related vehicular

components. Automotive ECUs must be designed for the harsh environment in which they are

operated such as wide ranges of temperature and humidity, shock resistance, and Electro-

Review of the Automotive Environment

18

Magnetic Compatibility (EMC). The computational and memory capabilities of many ECUs

are still very limited, e.g., 8 Bit processors with 8 MHz, and few KB memory (Sagstetter, 2016).

A special form of an ECU is an On-Board Unit (OBU), also referred to as Vehicle

Communication Gateway (VCG). They constitute the in-vehicle counterpart for external

communication parties such as Road-Side Units (RSUs) and servers in the backend.

Head-unit

Another specialised ECU is the “so called” head-unit which in modern vehicles replaces the

former car radio. It is the main computing hardware of the IVI system (Alt, 2009, p. 7; Wietzke

& Tran, 2005). Although it is still an embedded system, it is nowadays a powerful multimedia

Car-PC, typically equipped with large (touch-)screens to display or control the navigation

system, music player, FM/DAB radio, as well as car status and configuration (see Section

2.1.1). Smethurst found in (2010) that “this device is the most complex component in a modern

automobile by software volume. In a high-end device, approximately 70% of the total code in

a car will be in that single device.”

Consumer Electronic Devices

Section 2.1.1 already dealt with the history and motivation that lead to the integration of CE

devices, in particular smartphones and tablets, into the automotive system landscape. For some

time, this integration has gone beyond hands-free telephony: Several technologies exist that

facilitate the display output of the CE device on the in-vehicle display, the audio input and

output with vehicular microphone and speakers, and the control of the CE device, e.g., by use

of the touchscreen. Thus, functionalities (i.e., apps) from the CE device are being integrated

into the vehicle’s IVI system and control concept which is also referred to as terminal mode

(Bose, Brakensiek, & Park, 2010; Bose, Brakensiek, Park, & Lester, 2011). This could

optionally include an adoption of the apps to the in-vehicle screen and vehicular context.

Examples are, in addition to others, Apple “iOS CarPlay” (Apple, 2016), Google “Android

Auto” (Android Auto, 2016), or “MirrorLink” (Car Connectivity Consortium, 2016).

Backend Server

Modern vehicles are connected with the Internet. This is driven, e.g., by enhanced IVI systems

(see Section 2.1.1) and to facilitate updates or upgrades of functionalities Over-The-Air (see

Sections 2.3.1 and 2.3.4). Not least the eCall as mandatory functionality of vehicles latest by

31 March 2018 (see Section 2.1.2) will further increase the number of vehicles connected with

the Internet, since this functionality requires the equipment with wireless cellular network

hardware anyway. As a result, external entities are becoming an integrated part of the

automotive software and system landscape of a connected vehicle. In addition to RSUs and

others, in particular backend server facilities are gaining importance here. In this regard, the

objectives and technologies related to cloud computing (cf. Baun, Kunze, Nimis, & Tai, 2009)

have found their way to the vehicular domain too, which is the reason why such backend servers

are sometimes also referred to as “cloud server” or just “cloud”. From the point of view of an

Review of the Automotive Environment

19

OEM, these servers basically can be controlled by themselves (i.e., OEM server), or by 3rd

parties (i.e., 3rd party server). However, considering different cloud server architectures, such

as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), or Software as a Service

(SaaS), this labelling is not a statement regarding the actual operator of the server or

infrastructure, but relates to the authority that provides the functionalities or services by means

of this server.

2.2.2 Communication Technologies

The components of the automotive software and systems landscape are inter-connected by

means of various in-vehicle and external communication technologies. The most important are

introduced in the following:

Internal

Various vehicle-internal communication technologies exist to connect the ECUs, OBU, and

head-unit with each other and with sensors or actuators. Today, the most common are the

Controller Area Network (CAN), Time-triggered CAN, Local Interconnect Network (LIN),

FlexRay, Media Oriented System Transport (MOST), and Automotive Ethernet. Besides

physical media (fibre vs. copper), topologies, and costs, they differ with regard to maximum bit

rate and messaging (event-triggered or time-triggered). The latter impacts their applicability for

real-time applications (Kopetz, 2011).

 CAN TTCAN FlexRay LIN MOST
Automotive

Ethernet

Max. bit

rate
1 Mbps 10 Mbps 10 Mbps 19.2 Kbps 150 Mbps 100 Mbps

Messaging
Event-

triggered

Time-

triggered/

Event-

triggered

Time-

triggered/

Event-

triggered

Time-

triggered

Time-

triggered/

Event-

triggered

Event-

triggered

Table 2.4: Selected vehicle-internal communication technologies (Sagstetter, 2016; Talbot & Ren, 2009;

W. Zimmermann & Schmidgall, 2014)

External

The connected vehicle is equipped with external communication capabilities. These can be

classified as wireless infrastructure-based and wireless ad hoc communication technologies.

They are introduced below.

Wireless Infrastructure-based Communication

Wireless cellular networks, or Public Land Mobile Networks (PLMNs), are the most common

infrastructure-based wireless communication technologies. They are particularly suitable for

the connection of vehicles with the Internet, since the various cell sizes support an appropriate

scalability between coverage and capacity, and because they are able to deal with high mobility

speeds as they occur with vehicles. The evolution of digital wireless cellular networks, starting

Review of the Automotive Environment

20

with 2nd Generation (2G), referred to as Global System for Mobile Communications (GSM),

and continuing with 3rd Generation (3G), referred to as Universal Mobile Telecommunications

System (UMTS), further progressing to the 4th Generation (4G), referred to as Long Term

Evolution Advanced (LTE-A), all of the mentioned enabled significant advances (M. R. Bhalla

& Bhalla, 2010; Sauter, 2015). The currently common LTE-A, in detail 3GPP release 10,

theoretically supports up to 3 Gbps downlinks, and 1.5 Gbps uplinks (Wannstrom, 2013). In

the future, 5th Generation (5G) will support even higher peak data rates up to 25 Gb/s with

3GPP release 13 (J. Lee et al., 2016). Furthermore, 5G also brings, e.g., reduced latency (one-

way ~ 1ms with 3GPP release 14), multicast services, and potentially even direct device-to-

device (D2D) communication that would provide an alternative approach for Car2Car

communication (Hoymann et al., 2016; J. Lee et al., 2016; Mumtaz, Huq, & Rodriguez, 2014;

Tehrani, Uysal, & Yanikomeroglu, 2014).

However, PLMN evolution is not only about radio interface enhancements – the concept of

Mobile Edge Computing (MEC) describes infrastructure advancements which is considered as

one of the key technologies towards 5G (Beck, Werner, Feld, & Schimper, 2014; Y. C. Hu,

Patel, Sabella, Sprecher, & Young, 2015): With MEC, Over-The-Top (OTT) services, such as

automotive services initially operated in the OEM backend, can now be operated at the edge of

the network (e.g., base station). The advantages of such distributed service deployment

compared to pure backend deployment are, e.g., reduced latency, increased overall network

efficiency, and thus increased scalability of the automotive application. MEC complements

efforts, such as Network Function Virtualization (NFV) and Software-Defined Networking

(SDN) (Rost et al., 2016). NFV is about the virtualisation of network functions that, e.g.,

enables their relocation to and the usage of standard servers. SDN separates the control and data

plane, which enables increased network programmability, e.g., through centralisation of

control. To summarise, MEC, NFV, and SDN are approaches that contribute to 5G’s ability to

provide the necessary Quality of Service (QoS) for the functionalities and use cases (see

Sections 2.1 and 3.3.5). In addition, vehicles might also be equipped with standard Wireless

Local Area Network (WLAN) IEEE 802.11a/b/g/n (Mohammad, Rasheed, & Qayyum, 2011)

modules to connect to public and private Hotspots during vehicle standstill, but they are of

minor importance in the context of this research.

Vehicular Ad Hoc Communication

Wireless ad hoc communication networks in the context of cars are referred to as Vehicular Ad

hoc NETworks (VANETs) which represent a specialisation of Mobile Ad hoc NETworks

(MANETs) for automotive (Abdalla, Abu-Rgheff, & Senouci, 2007; Mohammad et al., 2011;

Picone, Busanelli, Amoretti, Zanichelli, & Ferrari, 2015). VANETs are being developed for the

purpose of decentralised dynamic (ad hoc) multi hop communication of cars with other cars

Review of the Automotive Environment

21

(Car2Car3) and with infrastructure, e.g., RSUs or traffic lights (Car2Infrastructure4). These

communication scenarios are aggregated by the term Car2X5 communication.

Currently, there are several activities toward standardisation, such as within the context of

IEEE 802.11 as IEEE 802.11p WAVE (Wireless Access in Vehicular Environments) (Jiang &

Delgrossi, 2008; Mohammad et al., 2011). IEEE 802.11p is basically a modification of 802.11a

for vehicular purposes. It uses the Dedicated Short Range Communication (DSRC) frequency

spectrum. IEEE 802.11p defines the Physical Layer and it is supplemented by upper layer IEEE

1609 standards (Faezipour, Nourani, Saeed, & Addepalli, 2012; Jiang & Delgrossi, 2008).

VANETs have their foundation in ADAS and ITS scenarios (Dar, Bakhouya, Gaber, Wack, &

Lorenz, 2010), hence are predominately discussed together with time-critical, safety-related,

and locally limited use cases such as “Collision Warning”, which require very short delays

(Kosch et al., 2009). In contrast, wireless cellular networks, are discussed mainly for enhanced

IVI use cases and superior communication scenarios with a higher tolerable delay, e.g.,

“Internet Connectivity” or “Traffic Management”. However, both technologies are not

restricted to the mentioned scenarios. There do exist solutions to provide Internet connectivity

over VANETs (Festag, 2014; Sandonis, Soto, Calderón, & Urueña, 2016). Besides, evolved

wireless cellular networks may provide small enough packet delay to make safety-related use

cases feasible (cf. simTD-Consortium, 2009, pp. 60-62). Particularly the introduction of 5G

wireless cellular networks with D2D capabilities and the MEC concept (see above) can enable

a significant shift here (Seo, Lee, Yasukawa, Peng, & Sartori, 2016). Nevertheless, it is not part

of this research project to define the borderline between those two communication techniques,

and both will continue to coexist and complement each other. Nonetheless, this research focuses

on wireless cellular networks and hence also on use cases, which these days are considered as

reasonable with such connections.

2.3 Domain Characteristics and Challenges

In today’s vehicles, software plays a major role for the overall range of functions. Already in

2007, premium cars had 2000 software-based functions (Broy, Kruger, Pretschner, & Salzmann,

2007). Therefore, current vehicles have become software-intensive systems:

A software-intensive system is any system where software contributes essential

influences to the design, construction, deployment, and evolution of the system as a

whole. (IEEE Computer Society, 2007)

3 Also known as: Car-2-Car, C2C, Vehicle2Vehicle, Vehicle-2-Vehicle, V2V
4 Also known as: Car-2-Infrastructure, Vehicle2Infrastructure, Vehicle-2-Infrastructure, V2I
5 Also known as: Car-2-X, Vehicle2X, Vehicle-2-X, V2X

Review of the Automotive Environment

22

The development of these automotive software-intensive systems is a very complex task.

Important domain characteristics and challenges are discussed in the following.

2.3.1 Programmable Vehicle

Today’s vehicles already have many sensors, actuators and ECUs. This fact in itself, but

particularly in their inter-connection through in-vehicle networks, facilitate new functionalities

just by introducing new software, making the vehicle increasingly a “programmable vehicle”.

Some examples are:

• The availability of outside temperature information can be used to automatically

switch on the exterior mirrors heating if the temperature is below a specified value.

• The measurement of the rain sensor can be used to automatically trigger the rear wiper

when the reverse gear is engaged.

• The right exterior mirror can be automatically lowered to show the curbs, if the

reverse gear is engaged to ease exact parking.

• The monitoring of the rotational speeds of each wheel that was initially introduced for

anti-lock braking purposes can be used to implement an indirect Tire Pressure

Monitoring System (TPMS). The indirect TPMS software can utilize the fact that tires

with a lower inflation have a smaller diameter which in turn causes a higher rotational

speed.

• A steering wheel angle sensor has been introduced as part of the ESP system. A

software, the purpose of which is to evaluate the angle values over a time period, can

be used to determine driver’s fatigue. This considers the fact that studies showed a

correlation between steering behaviour and fatigue, e.g., corrections used to be made

less often but frequency increases when the driver is tired (Krajewski, Sommer,

Trutschel, Edwards, & Golz, 2009; Takei & Furukawa, 2005).

• Modern adaptive headlight/high-beam levelling systems can use map data from the

vehicular navigation system in addition to built-in sensors such as a camera (Winner,

Hakuli, & Wolf, 2012, p. 1064). Whereas the camera can control the adaptive

lightning with respect to oncoming and surrounding traffic, the map data enables, e.g.,

predictive bend lightning, adaptive levelling at intersections and roundabouts, and

exact high-beam activation/deactivation on city boundaries.

• The vehicle route out of the navigation system might be useful to estimate upcoming

wireless access network coverage and capacity to facilitate enhanced caching

strategies for music streaming (Protzmann, Massow, & Radusch, 2014).

These examples show that new functionality does not necessarily need the “installation of an

additional box” and that the programmable vehicle is becoming a reality. This generates new

technical and business opportunities for functional upgrades after purchase of the car, over and

beyond common bug fixes or map updates. Indeed, some OEMs have already started to

Review of the Automotive Environment

23

integrate a kind of application store into their IVI system or offer own services, such as

enhanced traffic information.

The programmable vehicle also facilitates functional upgrades beyond IVI applications. An

impressive example for this was given by Tesla Motors, who recently provided an autopilot

functionality for U.S. $2,500 as Over-The-Air (OTA) update to their Model S owners (Tesla

Motors, 2016).

Finally, the programmable vehicle is another aspect conducing to the development that the

functionalities of the vehicle will no longer remain static during its lifetime, which is discussed

in the subsequent Section 2.3.4 in more detail.

2.3.2 Distributed Functionalities

At the beginning of automotive ECU development, there was a “one box-one function

paradigm” (Natale & Sangiovanni-Vincentelli, 2010). It easily facilitated separation of

concerns, and the integration of new functionalities was realised by just adding another “box”

(i.e., an ECU). This “has rapidly led to a proliferation in the number of ECUs” (Natale &

Sangiovanni-Vincentelli, 2010). Although vehicle-internal networks with bus-topologies (see

Section 2.2.2) between ECUs were introduced to reduce wiring complexity and overall cabling

amount as well as costs and weight, this approach is being faced with further limitations. These

are not only necessary space, weight, and power requirements for all these ECUs – it is in

particular the fact that the number of distributed functionalities is rising.

The previous section already provided some examples for advanced software functionalities

that are distributed across ECUs. Further, fundamental, apparently simple functionalities such

as the locking system confirm the distributed nature of today’s automotive software (cf. I. H.

Krüger, Nelson, & Prasad, 2004): At its beginning, the vehicle locking system was a purely

mechanical system, where a key was used to unlock the door or trunk. The next step was the

introduction of an electrified central locking system, where the key could unlock/lock all doors

and the trunk at once. Modern vehicles have a radio-controlled central locking system where

the successful unlocking or locking of the vehicle might be signalled through the indicator lights

and the horn. Upon unlocking, key-individual settings might be applied such as seat and mirror

positions and climate or tuner configuration. Further, the vehicle may automatically lock the

car doors and trunk when is being driven above walking speed to protect passengers against

attacks. This, however, requires that the vehicle should not only unlock all doors and the trunk

at the end of the trip, but particularly due to safety considerations, it must automatically unlock

the doors in case of an accident (of sufficient severity) so as not to hinder rescue operations.

Latest connected vehicles already facilitate the locking/unlocking of the vehicle through

smartphone applications of the OEM and via service telephone call to the OEM hotline, e.g.,

when a key gets lost. The list could be extended, e.g., with connections to the car alarm, engine

immobilizer, coming home and leaving home exterior lights, etc. However, already the facts

Review of the Automotive Environment

24

listed indicate the highly distributed nature of a significant number of vehicular functionalities.

Pretschner et al. named a number of 18 ECUs over which the overall central locking system is

distributed (Pretschner et al., 2007).

The “one box-one function paradigm” cannot be continued simply because of the ever-

increasing number of functionalities that would lead to too many ECUs. Besides, it is

unrewarding in view of the number of ever-increasing distributed functionalities. Hence, the

integration density in terms of functions per ECU is increased, whereas the number of ECUs

lastly remains at about 100 (Schäuffele & Zurawka, 2013). Moreover, different dimensioning

of future ECUs and adopted software engineering practices that lead to functionalities that are

more hardware-independent could enable an even higher integration density and the significant

reduction of the overall number ECUs. Recently, OEMs have started to think about only very

few ECUs that are less tailored but more general and powerful, which thus would consequently

reflect the already named shifts in domain characteristics and challenges. One example is

Audi’s “zentrales Fahrerassistenzsteuergerät“6 (zFAS) (Audi AG, 2016b; Johanning & Mildner,

2015).

The highly distributed nature of an increasing number of vehicular functionalities leads to many

cross dependencies between different functionalities and ECUs. However, this necessary and

intentional interaction of functions, also referred to as features, also causes “phenomena like

unintentional feature interaction” (Pretschner et al., 2007). This term originates in the

telecommunication domain and expresses the fact that “the system behaviour as a whole does

not satisfy the separate feature specifications” (Zave, 1993). Broy noticed in (2006a): “So far,

the understanding of these feature interactions between the different functions in the car is

insufficient.” With future connected vehicles, the distribution of functionalities is widened

including external entities such as server of the OEM or third party or other vehicles or

infrastructure in terms of Car2X functionalities. This is expected to intensify these challenges,

although related architecture principles, such as service-orientation, may provide adequate

means to address them. However, it is a task for future automotive software architectures and

related development processes to provide solutions to this challenge.

2.3.3 Reuse of Functionalities

Similar to equal parts strategies in the context of mechanics and electronics, functionalities

provided by software are mostly not exclusively developed for a single vehicle series. Hence,

reusability is a target. Reusability begins inside a single vehicle, where sensors as well as

software functionalities should only exist once (Broy, Reichart, & Rothhardt, 2011). It extends

to considering programmable vehicles (see Section 2.3.1), where it might be envisaged to roll

out new functionalities also to existing vehicles from the same or even different vehicle series

6 Translation: One central control unit for driver assistance

Review of the Automotive Environment

25

(Broy et al., 2011). Finally, reuse of functionalities should be possible across different vehicle

generations (Broy et al., 2011).

Hereby, reusability is not only a functional goal. With respect to quality considerations related

to the maturity level of (often highly complex) software functionalities, recurring

implementations of the same functionalities must be avoided. Broy stated in 2006: “In many

sub-domains the functionality from one car generation to the next is only changed and enhanced

by 10 % while more than 90 % of the software is rewritten. The reason is a low level, hardware

specific implementation, which makes it difficult to change, adopt, and port existing code.“

(Broy, 2006a). In the end, all named aspects regarding insufficient reuse of functionalities

results in enormous costs. Broy raised the following calculation in (Broy et al., 2007): The

development costs for all electronic parts of the vehicle are 300 million Euros and more of

which one to two thirds is related to software. Raising the reuse to 50% to a next car generation

could save up to 100 million Euros of development costs (Broy et al., 2007). This is more than

the potential savings of highly optimised software functionalities for individual hardware (Broy

et al., 2007) which is a typical characteristic of today’s automotive software and system

development.

Although the automotive industry might have achieved improvements on the software reuse

percentage since 2006, against the background of the envisaged future functionalities and

resulting changes within the vehicular software landscape, reusability remains a key

requirement and challenge.

2.3.4 Life Cycle and Innovation Cycle

A typical development of a new vehicle takes about three years until Start of Production (SoP)

(Schäuffele & Zurawka, 2013, p. 21). Afterwards, the vehicle is usually produced for

approximately seven years and even the final cars of the production period should be able to be

maintained for at least 15 years after the purchase (Broy et al., 2007). This leads to a total

lifecycle of one vehicle generation of at minimum of 20-25 years.

In contrast, the lifecycle of hardware, e.g., processors, is typically less than five years (Broy et

al., 2007), which requires new hardware revisions of ECUs. This means that “already after the

first 3 years of production 20 to 30 percent of the ECUs in the car typically have to be replaced

due to discontinued ECUs.” (Broy, 2006a) This affects the vehicle production as well as

maintenance, i.e., ECU replacement due to individual failure.

Consumer Electronics devices, e.g., smartphones, “are launched, upgraded, and sometimes

even rendered obsolete in months” (Gryc, 2011). The typical age of a smartphone is about 2-3

years in Germany. Considering the average age of vehicles in Germany of 9 years, this leads to

an average of 3-4 smartphones that one vehicle owner wants to use with Bluetooth hands-free

kit of the vehicle, etc. Considering additional drivers and owners of the vehicle and its intended

Review of the Automotive Environment

26

overall lifecycle, the number of smartphones (and mobile operating system generations) could

be two-digit.

Although many basic vehicular functionalities, such as speedometer, FM-radio, etc. could be

expected to for the most part remain constant, an increasing number of overall functionalities

might change: With respect to the programmable vehicle, more frequently, and even during the

production phase, OEMs may want to integrate new software features e.g., of other vehicle

series (see Section 2.3.1). Particularly within the IVI domain, frequent updates could be

expected, especially if application stores become available, similar to the CE domain. Many

smartphone-applications such as Facebook and Spotify are updated within days to a few weeks

(Shimizu, 2004). If those applications or related ecosystems in general are being made available

to the IVI system, related life cycles and innovation cycles hit (at least parts of) the automotive

domain, generating new challenges, for example:

Until recently, the software of the vehicle was only updated during service in a garage and those

updates were mainly related to map data updates and fixing of bugs and less related to new or

upgraded functionalities. However, future connected vehicles and related functionalities will

become updated OTA and hence independent of the garage. This raises technical and

organisational challenges: Although the general mechanisms do exist for OTA updates, and

though it is a common practice for CE products, this is a comparatively new requirement for

the automotive domain. Hence, from the technical point of view, most automotive software so

far has not been designed for OTA updates. Besides, “lifecycle management of software in cars

is in its early stage” as Broy found in (2006a). Accordingly, in addition to technical

advancements, organisation must be achieved.

2.3.5 Variants and Configurations

Henry Ford is credited with the statement “Any customer can have a car painted any colour that

he wants so long as it is black”. This was at the early 1900s. More than 100 years later, this has

fundamentally changed. These days, vehicle buyers of course can choose between the outside

colour of their car: they can also choose the interior colour, materials, engine, transmission,

wheels, light system, as well as infotainment, navigation, driver assistance systems,

connectivity features, etc. Considering that a premium car has about 80 electronic fittings, with

respect to customer individualisation and country specifics, just a binary decision yes or no

leads to 280 variants (Broy et al., 2007). It is obvious that the number of variants must be

restricted. However, the number of variants and configurations still remaining when

considering only customer individualisation and country specifics is huge.

Besides, additional variants and configurations originate because of necessary ECU changes

during the production period (see Section 2.3.4), which leads to an updated hardware and

software version. Thus, this not only leads to a new overall system status for the vehicle series,

but also causes mixtures because of necessary replacements of defect ECUs of existing vehicles

Review of the Automotive Environment

27

for maintenance reasons. Here additional variants that will occur due to “normal” software

updates for bug fixing or optimisation (e.g. due to IVI application stores) have not even

considered.

An eye-opening observation is mentioned by Broy: He tells of studies showing that up to 50%

of the ECUs that are replaced at the garage because of a problem reported by the vehicle owner,

are technically error-free (Broy et al., 2007). The new ECU, which typically has also a different

(i.e., new) hardware and software version, often fixes the problem. More enhanced diagnosis

and repair capabilities could be expected to support the proper failure identification and

elimination at the garage (Broy et al., 2007). However, this example shows that the source of

the difficulties primarily originates at another level: It is because of “ill-designed or

incompatible software” (Broy et al., 2007).

To summarise, the challenge is a comprehensive variants and configuration management that

covers all its technical and organisational aspects for automotive software and systems

development during the whole lifecycle. Considering the envisaged future vehicular

functionalities with accelerated innovation cycles, it could be expected that variants

management will gain further significance.

2.3.6 Heterogeneity and Mixed Criticality

Within the vehicular context, diverse domains and their intrinsic organisational and technical

characteristics, requirements and challenges now come together. Previously, they used to occur

elsewhere only in isolation from each other (S. Bauer, 2010; Pretschner et al., 2007). Their

integration into a homogeneous overall system is another challenging task for automotive

software and system development. Besides the already-named heterogeneity with respect to life

and innovation cycles, the functionalities also differ with regard to safety-criticality, leading to

mixed critical systems (Burns & Davis, 2013). In this regard, functionalities that used to have

no safety relevance may get safety relevant in the vehicular context. Examples could be HMI

functionalities of an IVI system, which have functional safety requirements (ISO 26262, 2011)

according to an certain Automotive Safety Integrity Level (ASIL) level, e.g., on essential

warning messages (Gieraths, 2014).

2.3.7 Cost Model

Due to the harsh environmental conditions for in-vehicular hardware, with wide temperature

and humidity ranges, and special requirements on shock resistance and voltage, specialised

embedded hardware has to be used. Due to this reason, the automotive hardware is usually more

expensive compared to, e.g., to CE hardware.

Moreover, “[t]he automotive industry operates in a highly competitive mass market with strong

cost pressure” (Pretschner et al., 2007). This puts the cost of a single unit into focus (unit-based

cost model), in particular because automotive is a “business of scale” (Pretschner et al., 2007).

Review of the Automotive Environment

28

Here, the production costs are more important than the development costs (Broy, 2006b). The

possibility of decreasing the production costs of a component by a few Euros (or even cents)

proposes the saving of several million Euros considering the number of units per year over the

whole production period. In contrast, the increase of development costs of several ten or

hundred thousand Euros is less significant.

Considering that the production costs of software are negligible because they are basically the

copying of software, the unit-based cost model substantially impacts the software development:

It used to be attractive to spend significant efforts (and money) to the optimisation of software

functionalities with the aim of reducing the hardware requirements, because this enables the

usage of cheaper hardware, which decreases the production costs. Since this software

optimisation typically is achieved by less abstraction or generalisation and more hardware-

specific optimisations, this has a negative impact on the reusability of software functionalities,

cf. Section 2.3.3. However, because the relevance of software regarding functionalities and

development costs increases, reusability becomes more and more important, and to enable even

faster time-to-market (see Section 2.3.4), it is anticipated that the relation of hardware

production to software development costs changes: This means, while the importance of

software for the vehicle as well as the efforts and costs for software development significantly

increasing, highly-optimised hardware to decrease production costs is becoming less important.

Instead, standardised, more powerful hardware is becoming advantageous, since it reduces

complex and costly software adaptions and eases reusability of software components, which

again reduces costs.

2.3.8 Development Process

The development process of a vehicle is characterised by a high division of labour and its

multidisciplinary. As Broy found in (2006a): “The mechanical engineers worked hard for over

100 years to make the various sub-systems in cars in their development and production quite

independent. This facilitates independent development and production of the sub-parts […]”

But, with the rising amount of electronics and software, the high division of labour nowadays

also poses challenges: Since vehicular functionalities are increasingly distributed (see Section

2.3.2), OEMs not only remain the assembler of parts, but now have to integrate them (Broy et

al., 2007). Moreover, nowadays OEMs in several situations additionally occur as Tier-2 to the

Tier-1, for example, if they provide not only requirements but also HMI models to the Tier-1

that develops the IVI system. The term Tier-n refers to the supply chain distance to the OEM,

which is the top of it. Typically, the Tier-n+1 supplies to a Tier-n, and a Tier-1 supplies to the

OEM (cf. Fürst & Bunzel, 2015; Sangiovanni-Vincentelli & Di Natale, 2007).

Besides derived necessities for improved technical solutions (e.g., software and system

architecture, development tools, modelling techniques), also new development processes and

collaboration models between OEM and Tier-1s are necessary. Finally, these challenges

(respectively the improvement of them) are strongly interrelated with skills of employees. Broy

Review of the Automotive Environment

29

found in (2006a): “In a time of only 30 years the amount of software related development

activities went from 0 to 30 or even 40 %. If we assume that an engineer works about 35 to 40

years in industry, it is obvious that the companies were not able to gather sufficient

competencies quickly enough”.

2.3.9 Conclusion

The previous sections discussed characteristics and challenges of today’s automotive software

and system development. These challenges must be addressed on different levels: This includes

organisational dimensions such as development processes (e.g., agile approaches) and

collaboration models (e.g., between OEMs and Tier-1s). Furthermore, technology

improvements can contribute to advancements: for example, new communication technologies

and System on Chip (SoC) that support advanced ECUs.

However, the keys to dealing with these challenges and to enable the implementation and

integration of heterogeneous functionalities associated with future vehicles (see Section 2.1)

are advanced software and system architectures and platforms. Moreover, considering their

complex and costly development, the connected and distributed nature of future functionalities

and objectives such as reusability, such architectures should be independent from a particular

vehicle series and even independent from one OEM as well. Therefore, also the architecture

design and methodology are important. They are introduced in the following section.

2.4 Software (and System) Architecture Design and Methodology

In general, systems are built to implement the intended business or functional goals. According

to Kossiakoff et al., a system can be defined as follows:

“A system is a set off interrelated components working together toward some common

objective” (Kossiakoff, Sweet, Seymour, & Biemer, 2011).

This general definition facilitates its applicability in several contexts, including large-scale

distributed software systems or even smaller software components that might be considered as

a system.

However, within the automotive context, the term ‘system’ is typically used when considering

the whole vehicle. Furthermore, the term system, as used in the automotive domain, has a

stronger hardware dependence. This also relates to the V-Model, and V-Model XT (Höhn &

Höppner, 2008), which are common development models in automotive: Here, the upper part

of the V is related to system, whereas the lower part of the V is related to software.

Consequently, within the automotive domain and in the context of embedded devices, a

distinction between system and software is established, although both could be considered as a

system in the sense of its definition. This distinction is also manifest in the term software-

intensive system, to which modern vehicles belong (see Section 2.3).

Review of the Automotive Environment

30

Nevertheless, since this research focuses on distributed systems, namely the vehicle and its

connection to backend server facilities, both aspects of the system (i.e., software and hardware)

have to be considered. Although often referring to software (architecture) in the following, it

shall be noticed that there might also be impacts on the system (architecture).

The intention of the following sections is to explain the role of software (and system)

architecture with respect to the achievement of the challenges, respectively derived objectives.

This includes understanding of the problem space and the solutions space, as well as

methodology for architecture design and evaluation.

2.4.1 Software and System Architecture

As discussed in Section 2.3.1, software is of central importance for the fulfilment of the

objectives of today’s vehicles, or – in other words – the software is a fundamental aspect of the

solution to the given problem. In this regard the architecture of a system (or software) is the

key and foundation “to build systems that satisfy requirements” (Bass, Clements, & Kazman,

2012, p. 64). Or as Medvidovic et al. stated in (Medvidovic & Taylor, 2010): “At the heart of

every well-engineered software system is a good software architecture“.

There are several definitions of the term (software or system) architecture. Two are considered

as particularly appropriate and thus shall be used for this project. The first definition is provided

by the Institute of Electrical and Electronics Engineers (IEEE):

“[The architecture is the] fundamental organization of a system embodied in its

components, their relationships to each other, and to the environment, and the

principles guiding its design and evolution. (IEEE Computer Society, 2007)

In addition to others, the statement about the principles or the foundation of an architecture that

shall also guide the design and evolution, is considered as important aspect. Another appropriate

definition is provided by Bass et al.:

“The software architecture of a system is the set of structures needed to reason about

the system, which comprise software elements, relations among them, and properties of

both” (Bass et al., 2012, p. 4)

In contrast to others, both definitions waive the adjectives “early” or “major” about the design

decisions being made. Bass et al. argues that depending on the development methodology,

design decisions might not be early decisions (Bass et al., 2012, p. 4). Further, they say that at

the time when design decisions are being made, the grade of their implications might typically

not be known yet (Bass et al., 2012, p. 4). However, Bass et al. does not exclude that design

decisions might be early and major decisions – they just do not declare that as necessity (Bass

et al., 2012, p. 4). Furthermore, this definition emphasises that the software architecture of a

system is not only the “a priori” outcome of the design process but also enables “a posteriori”

Review of the Automotive Environment

31

reasoning about the system. Due to this fact, architectural analysis provides a means for

evaluation of a system.

2.4.2 Problem Space

This project is driven by the automotive domain. The current automotive software and systems

development landscape, including, e.g., driving functional domains (see Section 2.1),

computational components (see Section 2.2.1), communication technologies (see Section

2.2.2), and domain characteristics and challenges (see Section 2.3). All these aspects have

impacts on the problem space.

Requirements engineering is the discipline which generates (“shapes”) the problem space for

the system to be developed. Requirements can be divided into functional requirements and non-

functional requirements (also known as quality attributes). Another perspective on

requirements is their relevance for the software (and system) architecture. These subsets of the

overall requirements are called Architecturally Significant Requirements (ASR), defined as:

“An architecturally significant requirement (ASR) is a requirement that will have a

profound effect on the architecture – that is, the architecture might well be dramatically

different in the absence of such a requirement.” (Bass et al., 2012, p. 291)

Harrison et al. found: “A particular challenge of quality attributes is that because they tend to

be system-wide characteristics, system-wide approaches are needed to satisfy them; these

approaches are defined at the system architecture level and not the component level.” (N. B.

Harrison & Avgeriou, 2010). Hence, non-functional requirements are often ASRs, but they are

not necessarily congruent since also functional requirements could be ASRs.

Several other aspects of the automotive context might be immutable, or at least are out of scope

for this research project. Herein these are, for example, physical network technologies, certain

network protocols, as well as organisational considerations, e.g., division of labour, or product

lifecycles. These are transferred to the problem space as constraints, whereby:

“A constraint is a design decision with zero degrees of freedom. That is, it’s design

decision that’s already made” (Bass et al., 2012, p. 64)

Accordingly, a constraint has also a direct counterpart in the solution space that is its design

decision.

2.4.3 Solution Space

The solution space “spans” the space for the identification of the solutions to the requirements

of the problem space. Within the solution space, functional requirements are mapped to

functional attributes and non-functional requirements are mapped to quality attributes (Raja,

Iqbal, & Ihsan, 2005). The counterpart of the ASRs in the problem space is the software (and

Review of the Automotive Environment

32

system) architecture in the solution space. The software architecture is the sum of its

architectural design decisions being made, whereas an architectural design decision is:

“A description of the set of architectural additions, subtractions and modifications to

the software architecture, the rationale, and the design rules, design constraints and

additional requirements that (partially) realize one or more requirements on a given

architecture.” (Jansen & Bosch, 2005)

Architectural design decisions have impacts on the problem space and the solution space, since

they extend the problem space (due to the fact that every design decision typically leads to new

requirements) and constrain the solution space (Masak, 2009).

2.4.4 Architecture Design

“Design is a process in which a given specification of desired functions and a set of

constraints are transformed into a description of an artefact that fulfils the

requirements and satisfies the constraints.” (Zhang, 2008)

In this regard, architecture design is the process of transforming the problem space into the

solution space.

However, neither requirements nor architectural artefacts are orthogonal to each other. Both,

functional and non-functional requirements have interdependencies, and architectural design

decisions as well have interdependencies among themselves and with the requirements (Raja et

al., 2005). This requires perpetual decisions about architectural trade-offs during the

development of the architecture, which are finally trade-offs between ASRs respective to what

extent they are fulfilled. For example, increasing the modifiability through reduced coupling,

e.g., by means of an additional intermediate layer, might lead to a decreased performance (Bass

et al., 2012).

This indicates the challenge and complexity of architecture development. Hence, “designers

have been looking for ways to capture and reuse hard-won architectural knowledge” (Bass et

al., 2012, p. 203). An emerging approach is the usage of architectural patterns and tactics. It

makes use of the fact, even though every software and system development at first sight might

be recognized as unique, it usually unveils several similarities to other software systems at a

closer observation (with an appropriate abstraction level). This means: Other systems might

already contain knowledge about a solution to a similar problem which could be discovered

and used. More precisely:

“A pattern documents a recurring problem-solution paring within a given context”

(Buschmann, Henney, & Schmidt, 2007, p. 4).

“The documentation comprises a common structure (i.e. components and connectors)

and behaviour, and the clear presentation of its characteristics (i.e. benefits and

Review of the Automotive Environment

33

liabilities, respectively satisfied functional and non-functional requirements)” (Bass et

al., 2012; Buschmann et al., 2007; N. B. Harrison & Avgeriou, 2010).

Well-known patterns are, for instance, solutions to object-oriented design (Gamma, Helm,

Johnson, & Vlissides, 1994), the Service-Oriented Architecture (SOA) pattern or the

publish/subscribe pattern (Bass et al., 2012; Coulouris, Dollimore, & Kindberg, 2012). Patterns

do also have interdependencies and overlaps, and accordingly a pattern implements several

tactics, whereas:

“A tactic is a design decision that aims to improve one specific design concern of a

quality attribute” (N. B. Harrison & Avgeriou, 2010)

For example: A tactic to improve the quality attribute “performance” is to increase available

resources (Bass et al., 2012).

In this regard, both patterns and tactics, facilitate the reuse of “proven good design structures”

(Bass et al., 2012) which can support the development of a system architecture that satisfies the

envisaged functional and non-functional requirements. Hence, patterns and tactics shape the

architecture (or the solution space), although tactics usually do this at a smaller scale.

Jansen and Bosch stated in (2005): “Although the achievements of software architecture are

formidable, some problems still remain. The complexity, high costs of change, and design

erosion are some of the fundamental problems of software architecture. We believe these

problems are partially due to knowledge vaporization.” (Jansen & Bosch, 2005). In this regard,

architectural design decisions, trade-offs and principles need to be documented in an

appropriate way to facilitate architectural evolution “in harmony with the existing design

decisions” (Jansen & Bosch, 2005). According to the IEEE Std 1471-2000, “[…] an

[architectural description] shall include the rationale for the architectural concepts selected. An

[architectural description] should provide evidence of the consideration of alternative

architectural concepts and the rationale for the choices made. […]” (IEEE Standards

Association, 2000). This is also necessary to master architectural erosion (Strasser et al., 2014;

Vogel et al., 2009, p. 410).

2.4.5 Platform-Based Design

After discussing the principles of architecture design, a systematic methodology is needed.

Basically, there are two possible approaches for architecture design and software development

methodology (SEBoK authors, 2015):

• Top-down approach: It starts with the problem (i.e., the functionality to be realised)

that is considered at its highest abstraction level. From this, the problem is

decomposed one by one into smaller problems (or requirements) until the problem is

holistically specified. Afterwards, single building blocks that address sub-problems

can be built and integrated, which in their entirety solve the initial overall problem.

Review of the Automotive Environment

34

• Bottom-up approach: It starts with the consideration of the available building blocks

(i.e., the sub-solution) which are combined, expanded and evolved until they meet the

overall requirements (i.e., the problem).

Strictly selecting one of these two opposing approaches as architecture design methodology is

typically not appropriate, considering their individual drawbacks: Purely top-down approaches

provide maximum flexibility to finding and building the solutions. Nevertheless, this flexibility

may lead to “unimplementable requirements” (Horowitz et al., 2003). Particularly within the

context of software-intensive systems with increasing functional complexity, this methodology

is often too expensive with respect to time-to-market and costs. Moreover, with respect to

connected vehicles or ITS, which shall be interoperable and cooperative, individual solutions

that are a natural result of a strictly top-down approach, are a contradiction. In contrast, a purely

“bottom-up design [approach] often results in a mess” (Horowitz et al., 2003). This statement

of Horowitz et al. emphasises the fact that bottom-up approaches often lack a structured process

and due to the absence of adequately decomposed problem statements or requirements, a clear

view on the necessary development direction is missing.

The Platform-Based Design approach (PBD) is a “middle-out” or “meet-in-the-middle”

approach, intending to combine the advantageous of top-down and bottom-up approaches,

while at the same time minimising their individual drawbacks. In the context of PBD a platform

is defined as follows:

“[A] platform is designed to be a library of components that can be assembled to

generate a design at that level of abstraction. This library not only contains

computational blocks that carry out the appropriate computation but also

communication components that are used to interconnect the computational

components” (Natale & Sangiovanni-Vincentelli, 2010).

This generic definition of a platform facilitates its utilisation on several abstractions levels of

an embedded system. In this regard, this model can be instantiated for hardware platforms,

network platforms, and software platforms. Furthermore, each platform typically can be

refined, e.g., a network platform itself can be considered as a stack of several platforms, such

as the different layers of the Open Systems Interconnection (OSI) reference model. Similarly,

the software platform can be refined to several layers and respective interfaces or Application

Programming Interfaces (APIs), such as a Portable Operating System Interface (POSIX)

provided by the Operating System (OS), a middleware layer, and an application layer.

Review of the Automotive Environment

35

Figure 2.4: The platform-based design approach (Natale & Sangiovanni-Vincentelli, 2010)

Figure 2.4 illustrates that the function design space with the PBD approach is restricted by and

clearly specified through the respective platform interface. At such interface, the higher level

of abstraction is mapped to a lower level of abstraction. Both, the constraint design space at the

interface and the exact mapping is illustrated by the narrow tip of the two cones. This illustration

also indicates that interfaces are typically designed to hide details (principle of information

hiding), hence the actual exchange between both layers of abstraction is also narrowed/limited

by design-choice. The actual mapping process from the initial function model to the function

implementation is performed by several refinements (i.e., design decisions) that reduce the

available design space to zero, which is the mapping of the functionality onto the platform

(interface), or in other words, the implementation of the functionality by use of the platform’s

interface capabilities provided. This illustrates that a platform constraints the overall available

solution space which facilitates the transition from federated to integrated solutions, as well as

interoperability and shorter time-to-market (Marwedel, 2010; Natale & Sangiovanni-

Vincentelli, 2010). Besides, a “[…] platform effectively decouples [e.g.] the application

development process (the upper triangle) from the architecture [(i.e., platform) development or]

implementation process (the lower triangle)” (Sangiovanni-Vincentelli, 2002). In this regard,

PBD also contributes to maintainability and reusability of both platforms and (application layer)

functionalities.

The PBD approach has recently gained importance. For example, Gajski et al. found that

“[most] designers today use some kind of meet-in-the-middle methodology […] in order to take

advantage of the benefits of both bottom-up and top-down methodologies” (Gajski, Abdi,

Gerstlauer, & Schirner, 2009, p. 411). As discussed in Section 2.5.2, the principles of the PBD

approach are already being applied in the automotive domain by the AUTOSAR development

methodology (Natale & Sangiovanni-Vincentelli, 2010). Last but not least, PBD is an

Review of the Automotive Environment

36

advantageous approach for the development of embedded systems and network platforms

(Carloni, De Bernardinis, Pinello, Sangiovanni-Vincentelli, & Sgroi, 2005).

2.4.6 Architecture Analysis

The previously described relationship between the software and system architecture, ASRs,

quality attributes, patterns, and tactics also generates means for “a posteriori” architecture

analysis. According to Bass et al., “architecture not only imbues systems with qualities, but it

does so in a predicable way” (Bass et al., 2012, p. 28). This idea of utilising high level

architectural design descriptions to predict the quality of a software-intensive system basically

goes back to Parnas’s work “On the Criteria To Be Used in Decomposing Systems into

Modules” in (1972).

In general, the detection of certain patterns within an architecture enables predictions about the

functionalities and quality attributes of the software architecture. Further, modifications of

patterns, their specific combination, additions or subtractions can be used to identify tactics that

allow inference about design and quality attribute trade-offs (ISO/IEC/IEEE, 2011; Zhu, Babar,

& Jeffery, 2004).

Furthermore, scenarios can be used to facilitate architecture analysis early in the design process

(Ionita, Hammer, & Obbink, 2002; Kazman, Abowd, Bass, & Clements, 1996). One example

is the Architectural Trade-off Analysis Method (ATAM) (Kazman, Klein, & Clements, 2000).

The architectural analyses, performed in this research, based on the ideas related to scenario-

based architecture analysis and ATAM.

2.4.7 Conclusion

Being aware of the fundamentals of software (and system) architecture design is the foundation

for understanding the methodology for the development of the concept and proposed solutions

and enhancements that are discussed in the following chapters.

The software and system architecture of a system is essential with regard to the capability of

the system to meet functional and non-functional requirements. These requirements together

with constraints are shaping the problem space. A subset of these requirements are

architecturally significant requirements which have significant impact on the architecture

respectively which should be addressed by it. The solution space contains the solutions to the

problem space including the software (and system) architecture which is the sum of the

architecture design decisions being made. However, considering that typically each

architectural design decision results in new requirements, it extends the problem space and

constraints the solution space. This again indicates the iterative nature of architecture

development (see Section 1.3).

Review of the Automotive Environment

37

Architecture design is the process where the problem space (i.e., requirements and constraints)

is transformed into the solution space (i.e., software and system architecture and further solution

artefacts). Architecture design is a challenging task, since architectural design decisions

typically have interdependencies which require trade-offs. Architecture principles, patterns, and

tactics provide means to document and reuse solutions to given problems and thus contribute

to the development of adequate architectures. Not least, these relationships, e.g., between ASRs,

architecture, patterns, and tactics, facilitate as well the “a posteriori” architecture analysis. The

consideration of architectural design decisions and trade-offs enable the prediction of system

qualities and hence the analysis of architecture suitability.

Methodologies such as the Platform-Based Design approach support the architecture design.

Instead of a purely top-down or bottom-up approach it uses a “meet-in-the-middle” approach

which aims to combine their advantages. As discussed in Section 2.4.5, PBD is particularly

suitable for the development of embedded systems and network platforms which is the reason

why it is used in this project.

2.5 Related Work

The Section 2.3 emphasised the relevance of enhanced software and system architectures for

the development of future connected vehicles. This section introduces related work with regard

to common architectures or basic approaches that contribute to the integration of functionalities

at different locations in the automotive landscape (cf. Figure 2.3).

2.5.1 Basic Approaches to Improve Integration of Heterogeneous

Functionalities

The “traditional” and most obvious approach for integrating new functions into vehicles is to

physically integrate (to install) the related source-code into the ECUs or head-unit. Several

approaches exist that provide improvements that support the integration of new functionalities

in continuation of this “traditional approach”.

Knirsch et al. are proposing the utilisation of multicore hardware for structuring of

heterogeneous IVI software in (2010). An appropriate structuring and defined core bindings of

selected operating system (OS) tasks are proposed to be used for resource management to

achieve a deterministic behaviour, even on high load situations on multicore hardware (Knirsch,

Schnarz, & Wietzke, 2012; Knirsch, Wietzke, Moore, & Dowland, 2011). The structuring is

performed above a single (POSIX-conformant) operating system.

Vergata et al. recommend the use of a Virtual Machine Monitor (VMM) (also known as

Hypervisor) on top of modern head-unit hardware (i.e., System on Chip (SoC)) with

virtualisation support (Vergata, Knirsch, & Wietzke, 2012; Vergata, Wietzke, Schütte, &

Dowland, 2010). The necessary structuring of the software system is enabled, and the

integration is performed by use of Virtual Machines (VMs) with different Guest Operating

Review of the Automotive Environment

38

Systems (GOSs). In the future, even Asymmetric Multiprocessing (AMP) system approaches

are discussed, where no indirections are introduced through a VMM apart from a few individual

hardware modules which still have to be shared across OSs (Wietzke, 2012).

The named approaches provide fundamental building blocks to improve primarily the

integration of heterogeneous functionalities on head-units. Nevertheless, their transferred to

other ECUs is possible, and the utilisation of these approaches in higher-level architectures

might be meaningful.

2.5.2 AUTOSAR

Vehicles are physically assembled from individual parts which are delivered from different

suppliers, producing these parts according to the specified requirements. This method and

division of labour has been applied to ECU development including software and hardware. As

a result, the entire software used to be hardware-dependent and supplier-specific or even series-

specific. From the supplier perspective, this makes reuse across different vendors, series as well

as hardware difficult, which hampers the innovativeness and leads to high development efforts

and costs. From the OEM perspective, this also negatively influences reusability of features

across vehicle generations and series, and it complicates variant management, which, as

previously summarised, is time-consuming and costly.

To overcome these issues, leading OEMs and supplier7 founded the AUTOSAR (AUTomotive

Open System ARchitecture) consortium in the fall 2003. The identified shortcomings in former

automotive software development for ECUs are reflected by the following nine project

objectives (AUTOSAR, 2014), which are the work order for all activities:

• AUTOSAR shall support the transferability of software. (RS_PO_00001)

• AUTOSAR shall support the scalability to different vehicle and platform variants.
(RS_PO_00002)

• AUTOSAR shall support a broad variety of functional domains. (RS_PO_00003)

• AUTOSAR shall define an open architecture for automotive software. (RS_PO_00004)

• AUTOSAR shall support the development of dependable systems. (RS_PO_00005)

• AUTOSAR shall support sustainable utilization of natural resources. (RS_PO_00006)

• AUTOSAR shall support the collaboration between various partners. (RS_PO_00007)

• AUTOSAR shall standardize basic software functionality of automotive ECUs.
(RS_PO_00008)

• AUTOSAR shall support applicable international automotive standards and state-of-the-
art technologies. (RS_PO_00009)

7 Nowadays the core partners are (AUTOSAR, 2013): Bayerische Motoren Werke AG, Robert Bosch GmbH,

Continental AG, Daimler AG, Ford Motor Company, General Motors Holding LLC, Peugeot Citroën Automobiles

S.A., Toyota Motor Corporation, Volkswagen AG.

Review of the Automotive Environment

39

Architecture

To achieve these objectives, besides others, AUTOSAR defines a layered software architecture

(see Figure 2.5): It introduces three layers on top of the ECU-Hardware. Bottom-up, there is a

hardware-oriented Basic Software (BSW) layer, hosting, e.g., Microcontroller Abstraction,

ECU Abstraction, and Standard Software such as Operating System, common Services, and

Communication. On top of that layer, the AUTOSAR Runtime Environment (RTE) is placed,

following a middleware approach. This enables the overlying Software Components (SW-C)

within the AUTOSAR software layer, e.g., Application Software Components, Sensor-Actuator

Software Components, Parameter Software Components, and Composition Software

Components to become/remain hardware independent.

Figure 2.5: The AUTOSAR software architecture (AUTOSAR, 2013)

Further, AUTOSAR defines three types of interfaces (AUTOSAR, 2015a, p. 76): The

“Standardized Interface” is a standardized API on programming language level (typically C)

which is used between Components of the Basic Software Layer. The second interface type is

the “AUTOSAR Interface” which “is independent [of] a specific programming language, ECU

or network technology” and defines the information exchanged between SW-C and BSW

Review of the Automotive Environment

40

modules (AUTOSAR, 2015a, p. 76). Finally, there is a third type named “Standardized

AUTOSAR Interface”, which is a specific variant from the “AUTOSAR Interface”, typically

used for standardized AUTOSAR Services, provided by the AUTOSAR Basic Software.

Both “AUTOSAR Interface” and “Standardized AUTOSAR Interface” specify ports, providing

different communication capabilities for interworking of components and services: Client-

server, Sender-receiver, Parameter Interface, Non-volatile Data Interface, Trigger Interface,

and Mode Switch Interface. Each port is available as a Provider Port, a Receiver Port or a

Provider and Receiver Port. These ports, together with the RTE middleware layer facilitate

abstraction of SW-C from specific communication technologies and hardware (see Section 2.2).

This also hides ECU boundaries, which relates to the requirements of transferability of software

(Fürst & Bunzel, 2015).

Besides syntactical specification of the ports, data types and semantics must also be specified

for SW-C interworking. AUTOSAR supports these formal specification through the

appropriate templates (AUTOSAR, 2015b). However, since these templates still require

coordination during the development process, the AUTOSAR consortium has begun to

collaboratively identify common software functionalities (or SW-C), for which they provide

the full specification of the external interfaces. Currently, these extended specifications exist

for several SW-C of the following domains: Body and Comfort, Powertrain, Chassis, Occupant

and Pedestrian Safety, and HMI, Multimedia and Telematics. The fact that suppliers do not

necessarily sell an ECU any more but might sell SW-C which are installed on other ECUs is

also considered by the decomposition of functionalities into SW-C. The extended specification

further reduces development efforts through increased reusability, interworking, and

exchangeability of components from different suppliers.

Methodology

Besides the software architecture and interfaces, AUTOSAR specifies the development

methodology, called AUTOSAR methodology. It is particularly tailored to specifics and

requirements of the automotive software development process, e.g., high division of labour,

necessary cooperation between all parties during all stages of the development process (see

Section 2.3.8), and variants management (Fürst & Bunzel, 2015). A central concept and tool

during the functional specification of the system is the Virtual Functional Bus (VFB). It

facilitates the hardware-independent modelling of the functional interaction between SW-C up

to a model of the full system. During the following development process, this functional

architecture is mapped step-by-step on the real technical architecture (e.g., ECUs, and

communication technologies and topologies) (Fürst & Bunzel, 2015). This is supported by

various AUTOSAR tools using the formal specifications for code generation and configuration,

e.g., of the RTE and BSW (Fürst & Bunzel, 2015). Since the application-layer logic, located

within Application SW-C, is decoupled from the hardware-dependent AUTOSAR Basic

Review of the Automotive Environment

41

Software through the utilisation of the VFB or RTE middleware, the AUTOSAR development

methodology shares many principles with the PBD (Natale & Sangiovanni-Vincentelli, 2010).

AUTOSAR is an emerging approach for automotive software development, addressing many

existing challenges (see Section 2.3) with respect to in-vehicle software on ECUs. It shows,

that open architectures and the collaboration headline “contribute on standardization, compete

on implementation” do have the potential to be advantageous not only from the software

architecture point of view, but also from the organizational perspective. AUTOSAR currently

focuses on the classical functional domains related to ECU software development. IVI,

telematics, and in particular ITS are currently just at their beginnings or still out of scope. One

reason might be that AUTOSAR typically addresses functionalities that remain static during

the lifetime of the vehicle, despite software updates which might be necessary for bug fixing

issues and not primarily for additional features. Hence, variants management and configuration

capabilities of AUTOSAR relate to the development process of the vehicular software and

ECUs, and not on aftermarket user-dependent individualisation. AUTOSAR has been started

to integrate Ethernet and the “Scalable Service-Oriented Middleware over IP” (SOME/IP)

middleware (Völker, 2013), but its focus still remains on vehicle-internal connectivity and

vehicle-internal distribution of functionalities.

2.5.3 GENIVI

Like AUTOSAR for functionalities related to standard ECUs, the GENIVI (Geneva In-Vehicle

Infotainment) alliance standardised the eponymous reference platform for IVI systems

(GENIVI, 2013). It started out with 10 founding members: until today 11 OEMs, 19 Tier-1s

and many more other companies have joined the GENIVI alliance (GENIVI, 2013).

The GENIVI reference platform specifies a standardised and reusable Linux-based middleware

for the implementation of IVI applications (Holle, Groll, Ruland, Cankaya, & Wolf, 2011;

Smethurst, 2010). The business logic and HMI remain the individual responsibility of the

developing company to enable brand-specific user experience.

2.5.4 OEM Vehicle-to-Backend Platforms

Several OEMs have started to provide connected services to their vehicles by use of own

vehicle-to-backend platforms (Johanning & Mildner, 2015; Picone et al., 2015). They are the

technical foundation for products, such as Mercedes COMAND online (COMAND Online,

2016), BMW ConnectedDrive (BMW ConnectedDrive, 2016), and Audi connect (Audi AG,

2016a). While the functionalities are to a certain extend similar and even some applications that

are provided by some of the named products, which emerged in the CE domain, the enabling

platforms are completely different: The current OEM vehicle-to-backend platforms and

architectures are proprietary developments. This is also the reason, why technical details are

hardly publicly available.

Review of the Automotive Environment

42

So far, only few data exchange formats are standardised between some companies. Examples

are the Navigation Data Standard (NDS), which is a standard for the storage of navigation data

including incremental updates (Winner, Hakuli, Lotz, & Singer, 2015). Another example is the

Advanced Driver Assistance Systems Interface Specification (ADASIS) standard, that is

currently available in version 3 (ADASIS v3). It provides a standardised data format for the

realisation of an electronic Horizon (eHorizon) (Siebenpfeiffer, 2014; Winner et al., 2015).

They might be integrated in OEM vehicle-to-backend architectures and solutions, but the

platforms so far remain proprietary.

2.6 Problem Statement

The “traditional approach” of adding functionalities to vehicles, is the physical integration (i.e.,

installation) of the source code into the ECUs or head-unit of the vehicle. Assuming that the

relating challenges (see Section 2.3) to software and system architectures could be largely

solved, which enables the integration of all envisaged functionalities in continuation of the

traditional way, other limitations become visible: As described in Section 2.3.7, the unit-based

cost model has so far led to ECUs and head-units that already operate to their full capacity at

market launch. Accordingly, if the software architectures will no longer be the limiting factor,

it might be the hardware. The reason is that new or enhanced functionalities, that will become

integrated over time in general increase hardware requirements, such as disc space, memory,

CPU speed, or necessary (in-vehicle) network bandwidths. Even if future ECUs might be

launched overprovisioned with respect to their functionalities at delivery of the vehicle, it could

be expected that they will reach their performance limits earlier than the vehicle reaches its

(mechanical) end of life. It could be anticipated that the situation will become similar to the

personal computing and CE products, where hardware upgrades or replacements become

necessary from time to time although the products are not defect, just because their performance

has become insufficient. Hence, continuing the “traditional approach” of integrating new

automotive functionalities through truly installing them into the vehicular ECUs and head-unit

might additionally require hardware upgrade or replacement strategies.

Finally, that “traditional approach” might be inefficient from an optimised overall system point

of view: Many of the future functionalities related to connected vehicles include the data

exchange with other entities, e.g., OEM or 3rd party servers, or other vehicles. Integrating them

individually and traditionally means that each connected entity or functionality has its

counterpart inside the vehicle, i.e., an installed client application, which provides or consumes

the data to be exchanged. This makes the vehicle the hub for function and data integration.

Besides the previously discussed considerations regarding computational requirements, this

also has implications on the network requirements for vehicle-external connectivity (see

Section 2.2.2). It could be assumed that in general each new or enhanced vehicular functionality

that includes individual communication with external entities increases the overall bandwidth

requirements of the car.

Review of the Automotive Environment

43

Considering just a single vehicle, this might increase the bandwidth requirements8 to such an

extent that they cannot be fulfilled by the network technology at all or at least that the required

bandwidth could only be delivered in a smaller part of the coverage area, or only if there are

few other vehicles in the same area, etc. This approach extends the increasing requirements to

vehicle-internal computational capabilities to the external network capabilities, raising the same

necessities: A strategy for the replacement of network hardware during vehicular lifetime might

become necessary. Besides network technology constraints, a closer look to the data transferred

might unveil that this approach of an individual client application for each functionality is

inefficient. It could be expected that several connected functionalities are based on the same

vehicular data, particularly its position, speed, remaining fuel range etc. Accordingly, redundant

data transmissions are very likely.

However, not only related to a single vehicle optimisation, but especially related to an overall

system consideration, the vehicle as individual and main hub for integration of functionalities

might not be the optimal solution. Considering ITS scenarios, with distributed use cases across

vehicles, vendors and domains, a parent entity as integration hub, such as an OEM server or

3rd party server, might be more appropriate and could decrease bandwidth requirements of the

whole vehicle fleet.

As an alternative approach, this research proposes to integrate an increased number of

functionalities on backend server facilities, making the OEM server the main integration hub.

Such utilisation of vehicle-to-backend platforms as an equal part of the automotive software

and system landscape is proposed to enable improved deployment scenarios concerning an

overall optimisation in terms of computational, memory, and network capabilities of the future

connected vehicle. This is expected to mitigate the vehicle-internal impacts of the introduction

of new functionalities during the vehicle’s lifetime.

However, the current situation of vehicle-to-backend platforms is characterised by proprietary,

vendor-specific solutions (see Section 2.5.4). Indeed, besides standardisation of a limited

number of protocols such as NDS (NDS, 2017) and ADASIS v3 (ADASIS, 2017), the situation

with today’s vehicle-to-backend platforms is similar to those of the in-vehicle ECU architecture

before AUTOSAR. This is considered as a significant drawback, because of the following

reasons: On one hand, the vehicle-external communication and interconnection of vehicles with

backend server facilities introduces numerous new challenges which are not originally the core

competencies of the OEMs, such as wireless access network specifics. On the other hand, in

particular the functionalities associated with connected vehicles are requesting interworking

across vehicle-series, vehicle-OEMs, and even beyond the automotive domain. In this regard,

8 Network bandwidth is used here only as one example for network requirements and constraints. The

considerations could also be extended to other parameters, such as latency, jitter, or error rate. It could be assumed

that more communicating entities (i.e., vehicles) besides the bandwidth requirements also have negative

implications on those other network performance indicators.

Review of the Automotive Environment

44

proprietary and vendor-specific vehicle-to-backend platforms are considered as contradictions.

To address this named gap, this research focus on the development of a novel automotive

vehicle-to-backend platform architecture, aiming at universality and interoperability.

2.7 Summary

The rise of electronics and particularly software together with communication technologies are

the basis for the sophisticated and innovative functionalities of modern vehicles. Especially the

functional domains In-Vehicle Infotainment and Advanced Driver Assistance Systems have

driven this development in the past, and they are expected to also drive it in the future towards

the visions of Highly Automated Driving and Intelligent Transportation Systems.

Historically grown, the automotive software and system landscape today consists of up to 100

Electronic Control Units which are very diverse, since they are used to be dedicated for specific

functions. Even smartphones and other CE devices can be considered as part of the automotive

landscape, since in many cases they are integrated beyond hands-free telephony to enable the

usage of their apps. The ECUs are inter-connected by means of various in-vehicle

communication technologies, and connected vehicles in addition have external communication

capabilities, e.g., by means of wireless cellular network technologies. Thus, backend servers

too are becoming a part of the distributed automotive software and system landscape.

The composition of these different functional domains, together with the individual

characteristics of the automotive domain, make the automotive environment unique for

software and system development. The task of integrating the ever-increasing range of

functionalities with heterogeneous or even contradictory requirements into a homogenous

overall system has generated various challenges. Over and above other obstacles, engineers

have to deal with different life cycles and innovation cycles, mixed criticality, many variants

and configurations.

Advanced software and system architectures are the key to dealing with these challenges.

Therefore, fundamentals of software (and system) architecture design and the Platform-Based

Design methodology are introduced, which are the methodical framework for the concept

development and architecture design and analysis. With respect to the development efforts,

reusability of functionalities, and interoperability, such architectures and platforms should be

universal and OEM-independent. This knowledge motivated the development of the

AUTOSAR standard for functionalities of in-vehicle ECUs and the standardisation activities of

the GENIVI alliance for the IVI domain. However, in contrast to these developments within in-

vehicle automotive software and system landscape, OEMs at the moment are developing and

utilising proprietary vehicle-to-backend platforms. Considering the objectives of an ITS, this is

an even greater contradiction in regard to inter-vehicle, inter-OEM, and inter-domain use cases.

Review of the Automotive Environment

45

Closing this gap through the development of a common vehicle-to-backend architecture and

platform is hence the focus of this research and content of the subsequent chapters. First, the

next chapter introduces the concept of a distributed Automotive Service Delivery Platform.

The Distributed Automotive Service Delivery Platform Concept

46

3 The Distributed Automotive Service Delivery

Platform Concept

This chapter is intended to describe the concept of a distributed Automotive Service Delivery

Platform as the proposed solution to the shortcomings of current vehicle-to-backend platforms

(see Section 2.6). A concept can be defined as follows:

“[A concept is an] abstraction; a general idea inferred or derived from specific

instances.” (Oxford Dictionary Online, 2012)

The task of concept definition can be defined as:

“[Concept definition is a] set of core technical activities of systems engineering in

which the problem space and the needs of the stakeholders are closely examined. This

consists of analysis of the problem space and definition of stakeholder needs for

required services within it.” (SEBoK authors, 2015)

Based on these definitions, this chapter starts with the presentation of the concept and principles

with the intention to scope and constrain the problem and solution space by means of

fundamental design decisions such as service-orientation. Afterwards, the problem space is

further examined through selected scenarios that are described in more detail, and the elicitation

of criteria for the distribution of functionalities between the vehicle and the backend.

Everything leads to the consideration of different viewpoints on the distributed Automotive

Service Delivery Platform which are ultimately used to identify fundamental requirements (i.e.

ASRs, see Section 2.4.2) to enable the realisation of the concept.

3.1 Concept

The visions related to connected vehicles not only increase the existing challenges for

automotive software and system development – the connectivity also enables new ways of

addressing them.

The fundamental of the concept, proposed by this research is to utilise this Internet connection

together with backend server capabilities to widen the integration space for automotive

functionalities beyond the vehicle itself. The basic architecture of such distributed automotive

3

The Distributed Automotive Service Delivery Platform Concept

47

software platform is illustrated in Figure 3.1. Here, the OEM On Board Unit (OBU)9 is the

central component of the vehicle in regard to its Internet connection. It integrates the vehicle-

external connectivity while functionally connecting and abstracting the displays, sensors,

actuators, and other internal components to the outside. The OEM On Board Unit is connected

via wireless cellular networks with an OEM server10, also referred to as backend, located within

the Internet domain or “Cloud”. The OEM server in turn might connect third party servers for

service provision and consumption.

Figure 3.1: Basic architecture of the distributed automotive software platform

3.1.1 Principles

As counter draft to the “traditional approach” of automotive software development, where most

functionalities are implemented inside the vehicle, this concept aims to achieve the following

three basic principles:

Integration of Functionalities at the OEM Server

The first principle is to enable the integration of automotive applications outside the vehicle on

the OEM server. It is envisaged that the OEM server will become an intrinsic and equal part of

the automotive software and systems landscape. This should empower software architects to

freely decide about an implementation within the vehicle or within the OEM server.

Offloading of Functionalities to the OEM Server

Secondly, functionalities that formerly used to be integrated into (an ECU of) the vehicle might

be offloaded to the OEM server. This relates to the development-time of new vehicles, where

the overall functionalities have to be distributed across the software and systems landscape

9 Within the final technical architecture, the functionalities associated to the OBU might be distributed across

several vehicle-internal components, including ECUs or the head-unit, while a dedicated Vehicle Communication

Gateway may be used for external communication.
10 The term OEM server means that the OEM in addition to its in-vehicle components (ECUs, head-unit, etc.) can

also use a server, where functionalities can be implemented. Even if this OEM server is later operated by another

provider or supplier, it shall be at the OEM’s disposal regarding system and software development and

considerations of functional distribution between the vehicle and the server.

The Distributed Automotive Service Delivery Platform Concept

48

including the OEM server. Furthermore, offloading of functionalities to the OEM server might

be an interesting strategy for the integration of functionalities during the lifetime of the vehicle,

e.g., if the upgraded functionality now exceeds the computational capabilities of the vehicle

ECU.

OEM Server as Main Hub

Lastly, the OEM server shall be the main hub for integration and interworking with vehicle-

external entities, particularly 3rd party servers. Although the direct connection of 3rd party

servers with the OEM OBU in selected cases might be possible or meaningful, it is not generally

envisaged here. The reason is that “the clash” of different domains (e.g., automotive and CE),

should primarily occur at the OEM server. It is anticipated that an OEM server as mediator

eases the handling of heterogeneity (e.g., regarding requirements, safety criticality, and

lifecycles) compared to configurations, where the main hub is the vehicle.

3.1.2 Enabling Architecture: A Distributed Automotive Service Delivery

Platform

As previously highlighted (see Sections 2.6 and 2.4.1), the software and system architecture is

the key to enabling the concepts and functionalities related to the future connected vehicles.

For this reason, the enabling architecture for our concept is the focus of this research (see

Section 1.1).

In regard to the Platform-Based Design methodology (see Section 2.4.5), a platform should be

defined that enables the previously described principles. This platform is referred to as a

distributed Automotive Service Delivery Platform (ASDP), enabling the delivery of distributed

automotive functionalities to the entities within a connected automotive environment. It

emphasises the future role of a connected vehicle as part of a connected world, where the

vehicle consumes services or data from other connected entities and at the same time provides

services or data to other network participants. Thereby, a service can generally be defined as

follows:

“A service is a mechanism to enable access to one or more capabilities, where the

access is provided using a prescribed interface and is exercised consistent with

constraints and policies as specified by the service description.” (OASIS, 2006)

Emphasising the usage of services in the context of Internet connectivity, the term “web

service” is commonly used, which can be defined as:

According to the W3C, a web service is “a software system designed to support

interoperable machine-to-machine interaction over a network“ (W3C).

The Distributed Automotive Service Delivery Platform Concept

49

However, in the following the term service is always referred to, whenever a sharp distinction

between service and web service is not necessary, although it typically includes its usage over

a network.

While service delivery, and thus service-orientation, can be considered as a constraint

introduced by this concept, further requirements needs to be elicitated which shall ultimately

be addressed by platform capabilities. In advance to this requirements elicitation, in the

following, three scenarios are presented in more detail, followed by an assessment of

distribution criteria for functionalities/services within the distributed ASDP.

3.2 Scenarios

An appropriate method to start system development is real-life examples of the systems’ usage

and behaviour, called scenarios (Sommerville, 2010). Compared to use cases, they are more

coarse-grained, high-level descriptions of the system, i.e., a scenario usually comprises several

use cases. Thus, they are particularly suitable for this research, since the three subsequently

introduced exemplary usage scenarios for the ASDP, namely “Extended Floating Car Data”,

“Vehicle Maintenance / Fleet Management”, and “Enhanced Navigation”, facilitate the

following purposes:

• The scenarios support inference about which subset of the overall vehicular

functionalities (see Section 2.1) are particularly relevant for the ASDP. In this regard

they contribute to elicitation of ASRs.

• Since the ASDP concept not only should provide a solution to a selected subset of the

current automotive functionalities and related challenges, but in particular should be

useful for upcoming functionalities, scenarios are useful to describe the greater context

of the ASDP.

• They indicate future design decisions according to individual vehicular functionalities

and their distribution within a holistic systemic consideration. In this regard,

particularly the combined view of the scenarios indicates advantages of the ASDP and

optimisation capabilities which facilitates the identification of beneficial ASDP

functionalities and qualities.

• Finally, scenarios in general enable the analysis of the appropriateness of (software)

architectures (Kazman et al., 1996). Therefore, the introduced scenarios, respectively

selected aspects of them, can be used in the following to analyse the capabilities of the

proposed architecture.

3.2.1 Extended Floating Car Data

Floating Car Data (FCD) is a comparatively easy and basic functionality, which has been

already implemented propriety in some vehicles and smartphone applications (e.g., Google

Maps Navigation, (Winner et al., 2012)). It usually works in the background and it is hidden

The Distributed Automotive Service Delivery Platform Concept

50

from the user perception. However, the fact that it is already in the field motivates its adduction

as a scenario for this project since its extensive deployment is unquestionably and part of several

considerations and projects within the ITS context (see Section 2.1.3).

With FCD vehicles are used as driving traffic information sensors. They periodically report at

the very minimum their current location, together with the timestamp to the OEM server. The

trigger for these reports may be time-related, distance-related, or a combination of both. This

data is transmitted to a traffic management server that aggregates and analyses the data of the

different vehicles (respectively smartphone applications). Based on that data, traffic models can

be built which enable the detection of traffic jams, calculate the traffic density, and average trip

times. So far, these servers are operated proprietarily from OEMs or e.g., vendors of the

navigation application. The aggregated traffic information is provided to and used by navigation

applications which take it into account for route calculation and optimised guidance.

Moreover, Extended Floating Car Data (XFCD) gathers further vehicle data that might be

useful for traffic safety and management (Huber, Lädke, & Ogger, 1999; Quintero et al., 2011).

Interesting values are, for instance, the outside temperature, rain sensor measurements,

brightness sensor values, hazard light activation. Triggers may vary from low outside

temperatures, heavy rain, to a driving control intervention (e.g., of ABS/ESP). The number of

values continuously increases – e.g., the traffic sign recognition capabilities of modern vehicles

is also interesting and might enable automated updates of map database (Messelodi et al., 2009).

The provision of these measurements, together with the position and speed, enables advanced

inference regarding the momentary traffic (safety) conditions on a certain road section. The

intelligent selection of trigger values (Messelodi et al., 2009; Scheider & Böhm, 2010) is

thereby not only necessary for the detection of critical situations but also necessary to trigger

the event-based transmission of the relevant data, since a continuous transmission might not be

suitable due to bandwidth and privacy considerations. Figure 3.2 illustrates the Extended

Floating Car Data scenario as an example.

Figure 3.2: Extended Floating Car Data Scenario

The Distributed Automotive Service Delivery Platform Concept

51

3.2.2 Vehicle Maintenance / Fleet Management

Modern vehicles have variable service intervals, depending on their usage, which is monitored

over time to estimate when thresholds are exceeded, and service has become necessary.

Additionally, various vehicular sensors and check routines continuously monitor component

status and individual component failures. In general, these are currently only locally stored

using a fault recorder and manually readout at the garage. Connected vehicles enable use cases

where relevant data can be submitted to the OEM server periodically or upon error occurrence.

The gathered data may be subsequently used to initiate a separate business process of contacting

the vehicle owner, discuss necessary service amounts, arrange workshop dates, or, in a wider

scope, it might be used for quality management and product improvements. Further use cases

are possible such as the monitoring of the remaining fuel range, where the underrun of a defined

threshold might trigger other use cases that may propose a low-cost gas station on the route.

Figure 3.3: Vehicle Maintenance / Fleet Management Scenario

These kinds of functionalities are summarised within the Scenario “Vehicle Maintenance / Fleet

Management”, which is exemplarily illustrated in Figure 3.3. Similar to the prior scenario, it

uses vehicular sensor data that might be transferred to an external entity on event occurrence.

Nevertheless, in contrast to the prior scenario, the scope of the data is primarily related to the

vehicle owner or driver. This scenario therefore reflects the mixed nature of data provision and

functionalities.

3.2.3 Enhanced Navigation

A navigation system in general consists of the following components:

• Positioning (usually through a GPS receiver, possibly correlated with odometry data)

• Map-data, including Points-of-Interest (POI)

• Route-input (e.g., through use of touch-display or voice command)

• Route-calculation

The Distributed Automotive Service Delivery Platform Concept

52

• Route-output/guidance (usually through map display and voice output)

There are basically two alternative approaches for navigation systems or applications (Winner

et al., 2012): The first is an on-board navigation system where all components are implemented

“offline” within the vehicles’ head-unit. The second alternative is an off-board navigation

system where most of the components are implemented “online” on remote servers, in

particular map-data and route-calculation while clearly positioning, route-input, route-

output/guidance to a certain degree must remain within the vehicle. However, offline navigation

systems nowadays also use online data, i.e., traffic information to dynamically calculate the

best route in dependence of the current traffic situation. Additionally, it is meaningful to equip

online navigation systems with limited offline functionalities, since vehicles might be

temporally disconnected. In this regard, most modern navigation systems are to some degree

hybrid navigation systems.

Figure 3.4: Enhanced Navigation Scenario

The scenario “Enhanced Navigation”, which is exemplarily illustrated in Figure 3.4, envisages

such modern hybrid navigation system, where as many functionalities as possible (respectively

appropriate) are implemented off-board/online on server infrastructure due to the following

considerations:

Since the vehicle requests the route by providing current position and destination, and –

depending on the actual functional split between the server and the vehicle – may receive the

route for navigation messages and related map tiles on demand, the server already knows the

destination and the planned route. In combination with a connected online calendar, it may even

know about upcoming trips. Additionally, with vehicle maintenance data (see Section 3.2.2),

The Distributed Automotive Service Delivery Platform Concept

53

the system also has information about the current fuel level, the distance remaining to

destination, and average economy. Based on these data, combined with statistical analysis of

historical gas price data regarding cities, day, and time, it can provide optimised suggestions

for intermediate refuelling stops. The importance of such functionalities increases especially in

regard to electro mobility where charging stops may require more comprehensive planning,

with respect to minimized range, extended charging time, and available power plant

capabilities. Further aspects might pro-actively influence the route calculation, such as historic

traffic data of or current weather conditions on route sections (see Section 3.2.1), or weather

forecasts in general. The advantage of an off-board route-calculation component is manifest for

all these considerations: Extending the route calculation with additional constraints requires

only service advancements on the OEM server and neither vehicular software updates nor

considerably increased wireless access network capabilities.

Correspondingly, a car-pooling service can be added just by connecting it to the OEM server.

The necessary data (e.g., driving destination, route, and current position) to automatically

publish the trip is already available at the server within this “Enhanced Navigation” scenario.

If the driver accepts a request for a lift of a car-pooling user, its pick-up and destination

addresses can be automatically included as additional waypoints in the route calculation. The

request-response workflow and related dialogues which must be presented to the driver within

the vehicle might make a few enhancements within the on-board necessary if they could not

make use of existing general functionalities e.g., for information about new traffic incidents.

Despite this qualification nevertheless this example again shows that within this scenario such

enhancements are predominantly only would require enhancements of the server

functionalities. Accordingly, if the car-pooling service changes, if it becomes obsolete, or if

another one should be integrated, necessary modifications can be limited to the vehicle-external

parts of the navigation system.

3.3 Criteria for the Distribution of Automotive Functionalities

As discussed earlier, increasing connectivity together with server capabilities extend the

automotive software and system landscape beyond the physical vehicle boundaries. While the

increased usage of backend server capabilities in general is a promising approach to address

existing challenges, not every automotive functionality in the same way is suitable for

implementation at a backend server. Considering the distributed automotive software and

system landscape (see Section 2.2), criteria are needed for profound decisions such as whether

a certain function should (still) be realised within the vehicle or if it can be implemented

externally.

This section identifies such assessment criteria and discusses them by means of selected

automotive functionalities. According to the focus of this research on the enabling architectures

(see Section 1.1), it is not the aim to make final statements where a certain functionality shall

be implemented. The intention is rather to provide indications, which (kind of) applications are

The Distributed Automotive Service Delivery Platform Concept

54

more suitable candidates for realisation at the OEM server respectively offloading to the OEM

server, and which are less suitable candidates. For that reason, the criteria are assessed

qualitatively, focusing particularly on the relative assessment between the selected applications.

This facilitates the identification of representative usage scenarios as well as the derivation of

architectural requirements to the ASDP. Moreover, the identified criteria provide a general

framework not limited to this research, which can be used to assess further applications in

addition to those named here.

A software function can be defined as the mapping of one (or many) input(s) to one (or many)

output(s). The data sources for the input can be, for example:

• Sensors, e.g., GPS, rain sensor, temperature, wheel speed, centrifugal force

• Keys/Knobs

• Touch-Inputs

• Audio, e.g., Microphone

• Outputs of other functions

The output of functions can be connected with data sinks such as:

• Actuators

• Audio, e.g., Amplifier/Speakers

• Displays

• Inputs of other functions

A distributed function is the composite of at least two single functions where these functions

reside on different components/entities within the automotive software and system landscape

(see Section 2.2). These entities might be different ECUs or an in-vehicle component and a

backend component.

Figure 3.5: Abstract model for distributed functionalities

Figure 3.5 illustrates a general model for a distributed function consisting of a local entity and

a remote entity which are connected through a communication medium. Both the local and the

remote entity may be data source or sink for the analysed functionality, and both entities provide

processing capabilities. This general model facilitates the assessment of functionalities at

different abstraction levels. The functionality to be assessed could be high-level, such as the

The Distributed Automotive Service Delivery Platform Concept

55

navigation system in general, which consists of single functional building blocks (e.g., map

database and routing component). The model also facilitates the assessment at lower level, such

as the consideration of a routing component in detail, which in itself consists of several building

blocks.

3.3.1 Application Type

The first general criterion is the application type. Distinction is made between:

• Machine-to-Machine (M2M)

• Human-to-Machine (H2M)

• Machine-to-Human (M2H)

In the first place, M2M applications do not have a Human-Machine-Interface (HMI) and are

typically not actively configured by the driver or user. This basically eases their relocation

between nodes, such as the offloading from the vehicle to backend server facilities. H2M and

M2H applications need appropriate HMIs such as displays and speakers (M2H) or keys (H2M).

The distinction between H2M and M2H is made to identify unidirectional involvement of

human beings. In case of the realisation of M2H or H2M applications on backend server

facilities, appropriate mechanisms and technologies must be used, to implement the necessary

user interaction. Examples might be web browsers, audio/video-streaming-techniques or

Remote-Desktop-Protocols (RDP) (Y. Lu, Li, & Shen, 2011; Simoens, De Turck, Dhoedt, &

Demeester, 2011). Since these technologies are initially independent of concrete applications,

they have not been dealt with in depth within the scope of this research.

3.3.2 Data flow

The second criterion is the data flow, evaluating the primary data source and data sink of the

application. Here, again, the vehicle as well as the backend are considered in their entirety,

since a finer differentiation (e.g., specific actuators, sensors, controllers of the car) is not needed

with respect to requirements of the vehicle-to-backend platform or respective network

requirements.

Table 3.1 shows the four possible data flows, and for the sake of reference, introduces numbers.

The possible data flows differ in terms of the possibilities to deal with limitations from the

perspective of a car manufacturer or vehicle-to-backend platform developer. This is indicated

by the colour shading of the cells in Table 3.1, with “red” indicating most limited possibilities,

yellow indicating moderately limited, and green indicating least limited possibilities. In this

regard, data flow 4 (backend-to-backend) is the data flow with the least limitations (green) in

terms of the handling of increasing requirements: For example, additional bandwidth between

two entities residing in the backend can be provided most easily. This is followed by data flow 2

(vehicle-to-vehicle), which is limited by in-vehicle network capabilities: Since the OEM is in

charge of dimensioning the in-vehicle network, the provision of, e.g., additional bandwidth

The Distributed Automotive Service Delivery Platform Concept

56

between two ECUs in general is possible, but this cannot be done during the lifetime of the

vehicle without HW upgrades. Furthermore, in-vehicle networks might be more constraining

than backend networks (see Section 2.2.2), which is the reason why the possibility of handling

increasing requirements is considered as moderately limited (yellow). Most limited possibilities

(red) exist with regard to the data flow between vehicle and backend, i.e., the data flows 2

(vehicle-to-backend), and 3 (backend-to-vehicle), since the capabilities of the wireless cellular

network must be considered as constraint for OEMs and vehicle-to-backend platform

developers: Wireless cellular network technologies are constrained, e.g., with regard to data

rates and latencies (see Section 2.2.2), technology upgrades of the wireless cellular network are

basically out of scope for OEMs, and possibly would require also HW upgrades of the wireless

HW within the vehicles.

 Sink

Data

flow

number

Vehicle Backend

S
o
u

rc
e Vehicle 1 2

Backend 3 4

Table 3.1: Possible data flows between vehicle and backend and their degree of limitation regarding

increased requirements

The data flow of the functionalities is assessed through focussing the actual payload of the

application. Possible control messages, e.g., of the transport protocols were left out, as they can

be assessed as minor significant here. Some data flows can be transformed and replaced:

• Replacement 1: The data flow 1 (vehicle-to-vehicle) can be replaced by data flow 2

(vehicle-to-backend), optionally followed by any number of data flow 4 (backend-to-

backend), and data flow 3 (backend-to-vehicle).

• Replacement 2: The data flow 4 (backend-to-backend) can be replaced by data flow 3

(backend-to-vehicle), optionally followed by any number of data flow 1 (vehicle-to-

vehicle), and data flow 2 (vehicle-to-backend).

While the replacement 2 in practice might be of minor significance, replacement 1 could be

beneficial for several functionalities. Particularly, when, e.g., the computational requirements

of a functionality are high, the offloading of the computational-intensive part to the backend

might be meaningful, given the necessary amount of data transferred to/from the backend (data

flows 2 and 3) does not invert the advantage. This corresponds to the principle of functionality

offloading of the ASDP concept and among others provides means to deal with increasing

computational requirements of a functionality during vehicle lifetime (see Section 3.1.1).

The Distributed Automotive Service Delivery Platform Concept

57

3.3.3 Performance

With respect to the functional split and distribution of functionalities, further criteria to be

considered are the performance requirements of the functionality. According to the above-

stated method, computational and memory requirements have been qualitatively assessed,

aiming to provide a general understanding for the respective function. Here, no distinction is

made between different types of processors (e.g., CPU or GPU). The memory assessment focus

is on non-volatile mass storage requirements. The main memory requirements during runtime

could be another valuable criterion for a more detailed assessment. .Figure 3.6 shows the criteria

range as used for the qualitative assessment, starting from “very low” to “very high”, whereas

also intermediate shades (e.g., “medium-high”) could be used. Following this, “very low”

computational requirements are, e.g., representing those of a climate control, whereas the

routing algorithm of a navigation system has “very high” computational requirements. Whether

these computational requirements are continuous or sporadic (e.g., only at the start of the

navigation) should be considered during the assessment but might also need deeper

investigation in a subsequent step. The memory requirements of the climate control are used as

an example for “very low”, since it typically has merely a localized mapping of sensor

measurements to target values for air distribution, air volume. By contrast, the map database of

the navigation system typically requires several gigabytes (“high”), and a personal audio library

may require up to one more order of magnitude gigabytes (“very high”).

Figure 3.6: Qualitative computational and memory requirements assessment criteria

After the distribution of functionalities is made, the performance of the hosting component such

as the head-unit can be dimensioned, considering the assessed utilisation of memory and

computational resources. This inter-dependency also exists the other way around: The

dimensioning of the hosting component could also impact the final decision about the

distribution of functionalities and consequently the performance requirements are an important

indicator. In addition, a suitable anticipation of the evolution of the automotive functionalities

is needed to facilitate appropriate dimensioning of component hardware, in particular those

integrated into the vehicle, including proper architecture and distribution decisions, because: If

a future or upgraded functionality raises only a single performance requirement to an extent

that cannot be met by the hosting in-vehicle component, this functionality cannot be realized as

intended. Although the ASDP concept might provide ways to address such limitations (see

Section 3.1.1), these together with other factors motivate the next category of criteria, namely

application lifecycle and data update frequency.

The Distributed Automotive Service Delivery Platform Concept

58

3.3.4 Application Lifecycle and Data Update Frequency

The future vehicle is connected with the Internet and should be able to become customised and

adapted to the users wishes, similar to Smartphones and related application store concepts

nowadays (see Sections 2.1.1 and 2.3.4). As already elaborated on in Section 2.3.4, this has

impacts on the life cycle or innovation cycle of automotive functionalities.

Although in general the necessary technologies for OTA updates exist such as the device

management protocol from the Open Mobile Alliance (OMA) (OMA TS DM Protocol, 2016),

and future vehicles will be equipped with such functionalities (Cacilo et al., 2016), the

frequency of application updates are an additional aspect for the design decisions regarding the

distribution of automotive applications: The fact that a frequent update of a function could be

expected might be a good indicator for the consideration of the offloading of such functionality.

In addition to the general efforts to ensure the proper OTA update, it must be considered that

updated functionalities often come along with higher performance requirements to the hosting

component.

Another related aspect that should be considered separately is the data update frequency of the

functionality. In contrast to application updates, data updates do not require technologies such

as OTA, but this criterion indicates, e.g., how long a disconnection between the data source and

data sink (see Section 3.3.2) is meaningful. Thus, the data update frequency in combination

with the consideration of the data source support the assessment about appropriate functional

split and distributions of the respective application.

Figure 3.7: Qualitative application lifecycle and data update frequency assessment criteria

Figure 3.7 illustrates the qualitative criteria as used for the assessment of the application

lifecycle and data update frequency. A “low” application update frequency as, e.g., with the

speedometer indicates that a modification of the application is very rare or unlikely during the

whole vehicle lifecycle. In contrast, CE applications such as social networks typically get

updated within days or few weeks, which is assessed with “high”. Similarly, the data update

frequency is assessed. For the speedometer, this data update frequency is “high”, since it

receives the current speed at a very high frequency, i.e., several times per second. In contrast,

data update frequency of a personal Online Address Book typically is less than once per day,

which is assessed as “low”. Again, also intermediate shades (e.g., “low-medium”) could be

used.

The Distributed Automotive Service Delivery Platform Concept

59

3.3.5 Quality of Service

The last group of criteria assesses the Quality of Service (QoS) requirements of selected

functions at an abstract level. On the one hand, they can be used to derive concrete requirements

towards the wireless access networks (Alasti, Neekzad, Hui, & Vannithamby, 2010; Ekström,

2009; Fuhrmann & Brass, 1994; Oyman, Foerster, Tcha, & Lee, 2010; Parkvall et al., 2008),

given that the assessed functionality has a data flow from or to the backend (see Section 3.3.2).

On the other hand, the QoS requirements can be used as criteria representing the “costs” of a

candidate functional distribution between the vehicle and the backend because: Although

advancements of 4G and particularly 5G wireless cellular networks (see Section 2.2.2) might

have the capacity of providing the required QoS11, an overall assessment may come to the

conclusion that, e.g., a function relocation from the vehicle towards the backend (or vice versa)

is too costly. For example, advantages such as reduction of computational effort within the

vehicle (see Section 3.3.3), or considerations regarding lifecycle and simplified updates (see

Section 3.3.4) might be disproportional compared to the “costs” in terms of resulting QoS

requirements to the wireless access network.

The first criterion used for the qualitative assessment of the QoS requirements is the tolerable

delay, see Figure 3.8. An assessment “low” means that the data must be available/transferred

in real-time as it is given, e.g., for the speedometer. For the online calendar, data updates should

be updated within seconds to few minutes (“medium”); general attributes of the map database

(e.g., roadways) may tolerate data update delays of up to hours or even days (“high”). With the

same scale (see Figure 3.8), the bandwidth requirements (during usage of the application) are

assessed. Transmission of smaller amounts of data, such as for Floating Car Data is assessed as

“low”. In contrast, voice or video-telephony (Skype, VoIP, Video-Telephony) require

“medium-high” bandwidth.

Figure 3.8: Qualitative tolerable delay and bandwidth requirements assessment criteria

Regardless of the QoS capabilities of the network, disconnections cannot be excluded, since it

is possible for vehicles to reach areas without network coverage, e.g., underground parking or

other (even short) shading situations. Thus, the criteria “Caching possible/reasonable” and

“Resubmission possible/reasonable” have been evaluated, by use of the qualitative criteria of

Figure 3.9 For real-time applications such as the Speedometer, both criteria are assessed with

“no”, i.e., neither caching nor resubmission is possible/reasonable. The Personal Audio Library

could be cached at the data sink (“yes”), but the resubmission is only “limited”

possible/reasonable. This means that the audio data out of the cache is used with real-time

11 Here, the QoS considerations are limited to the parameters bandwidth and delay.

The Distributed Automotive Service Delivery Platform Concept

60

requirements, and resubmission, e.g., in case a file is not (fully) cached must be completed

before the cache runs empty in order to provide an adequate QoS. Floating Car Data is most

meaningful when it is up to date. Hence, caching is “limited” possible/reasonable, but

resubmissions are generally possible/meaningful (“yes”).

Figure 3.9: Qualitative caching or resubmission possible/reasonable assessment criteria

3.3.6 Assessment of Selected Functionalities

Some automotive functionalities are qualitatively evaluated with respect to the previously

identified 12 criteria within five categories (see Table 3.2). These have been selected

exemplarily out of the three functional domains (see Section 2.1) with the aim of providing an

adequate range of different characteristics: Starting from well-known functions, e.g.,

speedometer and climate control through to those functionalities, which are currently to some

extent still part of research and development, such as hazard warning, road condition warning

or traffic-sign-assistant evaluations are detailed. The third part of the investigated applications

are applications which are currently available on Smartphones and demanded for future IVI-

Systems by many users, for example: Web radio, online calendar and online address book, and

social networks, e.g., Facebook and LinkedIn.

As discussed in Section 2.3.2, future automotive functionalities will be highly distributed and

interdependent. This makes the individual evaluation difficult, since this poses a “chicken-and-

egg problem” with regard to the assessment prior to functional split and distribution. However,

in such cases, the evaluation started with an anticipation of a meaningful functional split, aiming

towards the most advanced solution, with as many functionalities offloaded to the backend as

is reasonable. Hence, an off-board navigation is assumed here as starting point which is not

evaluated as a whole but split into several sub-functions.

To start from the extremes, the function “speedometer”12 is assessed (see Table 3.2, #1): It has

a data flow vehicle-to-vehicle (data source and data sink are vehicle), and its performance

requirements (computational and memory requirements) are considered as low. Furthermore,

the application life cycle probably equals the car life cycle, hence, application update frequency

is “low”. In contrast, data updates (i.e., adoptions of the current speed) occur at a very high rate

of frequency (e.g., several times per second). At the same time, the QoS requirements are

extremely high, since delay and caching are thus resubmissions are tolerable. In summary, an

12 Here, the software part of a classic Speedometer is assumed, by means of a needle that is positioned with a

stepper motor, in contrast to modern speedometers, which are widgets on a GUI.

The Distributed Automotive Service Delivery Platform Concept

61

off-loading of the speedometer functionality to backend infrastructure can be estimated as not

being beneficial.

In contrast, off-board navigation systems already present their feasibility in current CE products

(e.g., Smartphones). Nevertheless, the evaluation is quite ambivalent (see Table 3.2, #17-#24):

Such systems consist of several sub-functions, with different data flows, performance

requirements, anticipated update frequencies and QoS requirements in case of relocating.

Considering the computational and memory requirements, the off-loading of the map database,

traffic information, Point of Interest, and routing algorithm is profitable. However, the close

interactions with the sub-functions vehicle position and navigation display, which rely on the

vehicle as data source and sink, still require a certain performance of the hosting in-vehicle

hardware. In practice, hybrid navigation systems, as elaborated in the scenario above (see

Section 3.2.3), might be more reasonable and the logical consequence of such assessment.

For Internet-based IVI applications, such as web radio, online video portal, and social networks

(see Table 3.2, #5, #7, #15), where the data source is in any case the backend, off-loading offers

great potential. They typically have medium up to high update frequencies of data as well as

the application themselves. The QoS requirements are medium and can hardly be reduced when

they have been realised as fully vehicle-integrated. The streaming of web radio is a typical

application, where low-medium delays are acceptable. Accordingly, caching and resubmission

is limited possible/reasonable, without reduction of user experience.

Even though M2M applications such as Floating Car Data do not have high performance

requirements, they are qualified for most backend-based realisation, especially because they do

not have H2M or M2H interfaces (see Table 3.2, #8).

The Distributed Automotive Service Delivery Platform Concept

62

 Data Flow Performance
Lifecycle / Update

Frequency
Quality of Service

Application

T
y

p
e

D
a

ta
 S

o
u

rc
e

D
a

ta
 S

in
k

C
o

m
p

u
ta

ti
o

n
a
l

R
eq

u
ir

em
en

ts

M
em

o
ry

R
eq

u
ir

em
en

ts

A
p

p
li

ca
ti

o
n

U
p

d
a

te

F
re

q
u

en
cy

D
a

ta

U
p

d
a

te

F
re

q
u

en
cy

T
o

le
ra

b
le

 D
el

a
y

B
a

n
d

w
id

th

R
eq

u
ir

em
en

ts

C
a

ch
in

g

p
o

ss
ib

le
/

re
a

so
n

a
b

le

R
es

u
b

m
is

si
o

n

p
o

ss
ib

le
/

re
a

so
n

a
b

le

1 Speedometer M2H Vehicle Vehicle low low low high low
low-

medium
no no

2 Climate Control H2M Vehicle Vehicle very low low low low medium low yes yes

3
Driving Mode

Selector
H2M Vehicle Vehicle very low low low low medium low yes yes

5 Web radio M2H Backend Vehicle low - 1 medium high
low-

medium
medium limited limited

6
Personal Audio

Library
M2H Backend Vehicle low

very

high
medium high

low-

medium
medium yes limited

7
Online Video

Portal
M2H Backend Vehicle

medium-

high
- 1

medium-

high
high

low-

medium
high yes limited

8
Floating Car

Data
M2M Vehicle Backend low low medium

medium-

high
medium

low-

medium
limited yes

9
Maintenance

Data
M2M Vehicle Backend medium medium medium medium

medium-

high
low yes yes

10
Hazard

Warning
M2H Backend Vehicle medium medium medium medium low low limited yes

11
Road Condition

Warning
M2H Backend Vehicle medium medium medium medium medium low limited yes

12

Traffic-Sign-

Assistant

(map-based)

M2H Backend Vehicle medium
medium-

high
medium

low-

medium
low low yes yes

13
Online

Calendar

M2H,

H2M
Backend Vehicle low medium medium

medium-

high
medium

low-

medium
yes yes

14
Online Address

Book

M2H,

H2M
Backend Vehicle low medium medium

medium-

high
medium

low-

medium
yes yes

15 Social Networks
M2H,

H2M
Backend Vehicle high

medium-

high
high high medium

medium-

high
limited yes

16

Skype, VoIP,

Video-

Telephony

M2H,

H2M

Vehicle,

Backend

Backend,

Vehicle

medium-

high
medium medium high low

medium-

high
no no

 Off-Board

Navigation

17

- Destination,

Routing

Options Input

H2M Vehicle Backend low low
low-

medium
- 1 medium low limited limited

18
- Vehicle

Position
M2M Vehicle Backend low low - 1 high low low no no

19 - Map Database M2M Backend Backend - 1
very

high
medium

low-

medium
high

medium-

high
yes yes

20
- Traffic

Information
M2M Backend Backend

low-

medium
medium medium high medium

low-

medium
yes yes

21
- Point of

Interest
M2M Backend Backend - 1 high medium medium medium medium yes yes

22
- Routing

Algorithm
M2M Backend Backend

very

high
- 1 medium - 1 medium - 1 - 1 - 1

23
- Navigation

Display
M2H Backend Vehicle high medium medium high low

medium-

high
no no

24

- Navigation-

(Voice-)

Command

M2H Backend Vehicle medium medium medium
medium-

high
low medium no no

1 no assessment

possible/suitable

Table 3.2: Assessment of criteria for the distribution of selected automotive applications

The Distributed Automotive Service Delivery Platform Concept

63

3.3.7 Discussion

The identified criteria for the distribution of automotive functionalities contribute to adequate

decisions about decomposition and distribution of functionalities between the vehicle and

backend. In particular, the criteria are helpful to assess the “benefits” (e.g., less computational

and memory requirements for in-vehicle components) in contrast to the “costs” (e.g., the QoS

requirements towards the wireless cellular networks) of function relocations. In this regard, the

identified criteria provide also a framework to assess further applications in addition to the

exemplary selected applications here.

Nevertheless, it must be considered that most functionalities have interdependencies between

each other (see Section 2.3.2), and with respect to the programmable vehicle, this is expected

to further increase (see Section 2.3.1). Accordingly, the positioning of a map database or a

routing algorithm of the navigation system cannot be individually assessed but should be

considered in combination. In this regard, the actual decision about the distribution of vehicular

functionalities must be made at the time of vehicular development and individually for the

intended range of functions. Here, besides the criteria named, one must keep in mind that cross-

vehicle and OEM software and platform strategies might have an impact, too. However, the

assessment of the exemplary selected applications (see Table 3.2) in their entirety enable to

identify which kind of applications are particularly suitable for offloading to the backend, which

contributes to the development of the distributed ASDP.

The possibility of integrating functionalities within the vehicle or at the backend enable new

strategies to deal with contradiction of vehicular life cycles and life time updates of

functionalities, or to provide after-sales functional upgrades: Instead of the (hardware) upgrade

of vehicle-internal components, some functionalities could be provided as services residing on

backend server facilities (cf. Section 3.1.1). This might make the necessity to replacements of

vehicle-internal hardware components obsolete, or possibly only communication-related

components must be replaced (e.g., to utilise improved wireless cellular network capabilities),

or both upgrades become necessary at a later time or less frequent during the vehicular lifetime.

The assessment contributes to the identification and clustering of these applications.

Another outcome of such assessment could be different deployment/distribution strategies,

even for one vehicle series. These could enable novel directions for different vehicle

configurations with respect to one-time or ongoing costs. For example: It might be suitable to

build a low-budget configuration with less powerful in-vehicular components. In such

configuration, the same number of functionalities could be provided, whereas more

functionalities are hosted at the backend server. The possible disadvantage that backend

functionalities might not be usable if there is no network coverage, or that their operation might

be slower, depending on the available wireless access network, might be an acceptable trade-

off with regard to one-time costs at vehicle purchase and potentially higher ongoing costs

during vehicle lifetime

The Distributed Automotive Service Delivery Platform Concept

64

To conclude, it must be stated that the identified criteria in fact support the decision of

functional distribution between the vehicle and the backend, but that the related decisions have

so many inter-dependencies that they, in most cases, cannot be performed in a manner that is

universally valid. In this regard, ASDP requirements cannot be directly derived from a single

(distributed) application, although the requirements should reflect exactly this fact – that the

distribution of most functionalities is variable and depends on the actual configuration.

3.4 Viewpoints and Derived Requirements

After presentation of the basic concepts and principles, as well as scenarios and distribution

criteria, requirements to the distributed ASDP have been derived. Hereof, principles, scenario

considerations, and criteria contribute to and are reflected within three different viewpoints,

namely:

• Future vehicle-to-backend platforms, which primarily reflect domain-internal

viewpoints of the current automotive engineers.

• The vehicle as part of an Internet of Things, which mainly reflect external

viewpoints on the connected vehicle.

• Towards an Automotive Embedded Internet which is a viewpoint from the

telecommunication domain on connected vehicles.

Beginning with these viewpoints, ASRs to the distributed ASDP are derived. The herein defined

requirements are not disjoined and not intended as a full specification of the software and

system architecture of the platform. Instead, their aim is to describe cornerstones that should

guide the selection and development of the software and system architecture, including platform

capabilities.

3.4.1 Future Vehicle-to-Backend Platforms

The approach of a distributed ASDP is proposed as a solution for challenges related to the

development of future connected vehicles. In particular, the increased utilisation of server

capabilities is proposed as an alternative approach compared to the “traditional approach” of

vehicle-internal integration of functionalities (see Section 2.6).

To make the server capabilities an equal part of the automotive software and system landscape,

the server entities should be usable similarly to the vehicle-internal entities. This means during

the development process, the ASDP shall support the process in that the actual distribution or

location of functionalities can be made at the transition from the logical architecture to technical

architecture. From these considerations the following ASDP requirement is derived:

REQ 1: The ASDP shall provide a standardised End-to-End (E2E)

solution supporting the integration of automotive functionalities

on all entities of the vehicle-to-backend platform

The Distributed Automotive Service Delivery Platform Concept

65

Furthermore, various feature configurations are possible for different vehicle series. Even for a

single vehicle series, several feature variants should be provided. Moreover, in the future, an

increasing customisability shall be possible (see Section 2.1.1). These aspects have two

dimensions: On the one hand, OEMs and developers are requesting enhanced reusability of

functionalities (see Section 2.3.3), leading to the following requirement:

REQ 2: The ASDP shall support the reusability of functionalities.

On the other hand, functionalities shall be portable between entities, such as the vehicle (i.e.,

OEM entity) and the backend server (i.e., OEM server). This is also motivated by the

assessment results of selected functionalities with regard to criteria for their distribution

between the vehicle and the backend (see Section 3.3). It showed that final decisions about the

distribution of functionalities must be performed considering the overall system configuration

and strategies. Concerning this, the following requirement is derived:

REQ 3: The ASDP shall support the portability of functionalities between

network nodes.

To support the gradual introduction of such a distributed ASDP, the migration paths shall exist,

enabling, e.g., the interworking with legacy vehicular and server functionalities, leading to the

following ASDP requirement:

REQ 4: The ASDP shall enable migration paths for legacy functionalities.

3.4.2 The Vehicle as Part of an Internet of Things

Within prior viewpoint, a vehicle-centric or user-centric perspective is dominant, focusing the

functionalities or services consumed by the vehicle or user. Another perspective on future

connected vehicles opens up starting with regard to some ADAS or particularly with ITS

scenarios: Here, in many cases the vehicle also functions as a data or service provider. One

example is the XFCD scenario, introduced in Section 3.2.1; another one is the vehicle

maintenance or fleet management as presented in Section 3.2.2. Particularly the former XFCD

functionality is an example for the new kind of vehicular functionalities where the vehicles

provide their data to backend server facilities to enable superior use cases. In the context of

XFCD, this is the derivation of traffic or environmental situations on certain roads based on

XFCD data from many vehicles.

In such cases, the future vehicle gets “embedded” into information, business, or social

processes, making it a prime example for the visions related to an Internet of Things (IoT).

According to the IoT European Research Cluster (IERC), the IoT can be defined as follows:

The Distributed Automotive Service Delivery Platform Concept

66

“[The Internet of Things (IoT) is a] dynamic global network infrastructure with self-

configuring capabilities based on standard and interoperable communication protocols

where physical and virtual ‘things’ have identities, physical attributes and virtual

personalities and use intelligent interfaces, and are seamlessly integrated into the

information network." (European Research Cluster on Internet of Things (IERC), 2017)

Moreover, assuming connected vehicles are finally holistically embedded into an ITS,

respectively IoT, their functionalities will be highly inter-connected and inter-related: For

instance, the XFCD (see Section 3.2.1) is not only used to gain information about the traffic,

road or environmental situation on certain roads. This information is also transferred back as

input for enhanced navigation systems, where it is utilised to enhance the route planning (see

Section 3.2.3). In this regard, an ITS becomes a system-of-systems, with the following

characteristics (Maia et al., 2014; Maier, 1996; Tolk & Jain, 2011):

• Operational independence of the individual systems

• Managerial independence of the systems

• Geographic distribution

• Emergent behaviour

• Evolutionary development

Fielding found in (2000): “Most software systems are created with the implicit assumption that

the entire system is under the control of one entity, or at least that all entities participating within

a system are acting towards a common goal and not at cross-purposes. Such an assumption

cannot be safely made when the system runs openly on the Internet.”. This is especially true for

the automotive domain, where OEMs are used to explicitly and comprehensively control the

whole software and system landscape. However, for the future vehicle as part of an ITS, which

is connected with other entities over the Internet, thus building a system-of-systems, this is no

longer a given. Fisher found in (2006): “Consequently, many of the techniques and approaches

of traditional software and systems engineering are ineffective and sometimes

counterproductive in systems of systems”.

Reflecting these new kinds of unbounded systems (compared to former bounded systems)

(Carney, Fisher, Morris, & Place, 2005), related distributed functionalities are not just

integrated, but emerge by the interoperation of individual systems. This generates a number of

challenges. The following requirement is considered as necessary foundation to enable system-

of-systems, although it may not be sufficient.

REQ 5: The ASDP shall support an open and standardised approach,

enabling cross-series, cross-vendor, and cross-domain

interoperability.

The Distributed Automotive Service Delivery Platform Concept

67

Such examples show that the future connected vehicles will provide data without interaction

with human beings, which goes beyond the individual usage scenarios of a driver. In this regard,

the future vehicle is not just connected with the Internet and server facilities.

3.4.3 Towards an (Automotive) Embedded Internet

The emergence of connected vehicles is a significant part of the change in mobile Internet

usage. Distributed ITS and ADAS functionalities as well as other vehicle-to-backend

functionalities, e.g., sub-functionalities from the navigation system, will increase the amount

of communication independent from human interaction, referred to as M2M communication

(see Section 3.3.1). Hu et al. found in (2011): “Different from the traditional human to human

(H2H) communications for which the current wireless networks are designed and optimized,

M2M communications is seen as a form of data communications between entities that do not

necessarily need any form of human intervention.”

The M2M communication differs in many aspects from human-based communication

(Boswarthick, Elloumi, & Hersent, 2012; Laya, Alonso, & Alonso-Zarate, 2014), whereas the

automotive domain, with its powerful in-vehicle “machines” (see Section 2.2.1) and wide range

of applications constitutes a specific class of M2M communication in itself with a high variety

of functionalities, of which some probably have even higher requirements compared to those

of other M2M domains (Booysen, Gilmore, Zeadally, & van Rooyen, 2012; Lequerica et al.,

2010; Pereira & Aguiar, 2014). In addition to others, these are some of the communication

specifics of the automotive domain (adopted from Laya et al., 2014):

• Traffic direction: The amount of uplink traffic is increased.

• Message size: For some applications, such as FCD status information, the message

size can be very small.

• QoS: The QoS requirements range from lower than human-based communication

(e.g., very time-tolerable status information) to real-time requirements (e.g.,

warnings about critical situations).

• Mobility: Vehicles have high mobility at potentially high moving speeds.

• Number of devices: The connection of every vehicle with the Internet can lead to

a significant increase in network participants. In particular during high traffic

volume situations (e.g., traffic jams), the number of devices can temporarily

increase significantly in a certain area.

In this regard, M2M communication puts new requirements on mobile networks, driving a

transformation towards an “Embedded Internet” (Wu, Talwar, Johnsson, Himayat, & Johnson,

2011), or with focus on this research and specifics previously listed, towards an “Automotive

Embedded Internet”. These requirements have to be addressed at different layers of the network

stack, including the physical air interface, as well as the protocols above (Pereira & Aguiar,

2014).

The Distributed Automotive Service Delivery Platform Concept

68

This means that physical air interface advancements might not be sufficient, if the

communication mechanisms of an ASDP layered above are not adequate. In this regard, this

also puts requirements to the ASDP to enable the envisaged concept and to support the

emergence of an “Embedded Internet” for connected vehicles: On the one hand, the ASDP

should support the usage of state-of the art protocols and network mechanisms for M2M traffic.

This refers to the foundation of the ASDP. On the other hand, the ASDP shall provide

appropriate capabilities to the distributed automotive functionalities that facilitate effective data

exchange between functionalities on the vehicle or backend or other network entities. This also

reflects the assessment results regarding the criteria for function distribution as presented in

Sections 3.3.6 and 3.3.7. All these aspects decide, whether an ASDP enables that distributed

functionalities can be realised with the intended quality and aligned to the network capabilities

(see Section 2.2.2), which means that the resulting network requirements can be fulfilled by the

network. Following this, the subsequent ASDP requirement is derived:

REQ 6: The ASDP shall provide appropriate mechanisms to prevent

network misalignment

Finally, it should be emphasised that the automotive engineers are required to use these

mechanisms in a thorough manner: The considerations of IoT and system-of-systems (see

Section 3.4.2), whereupon here the whole system is not under control of a single party (e.g., the

OEM), similarly apply to wireless cellular networks of the vehicles. In this regard, the external

vehicle connections significantly differ from the in-vehicle connections that OEMs are familiar

with. This requires strong expertise in the technologies related to connected vehicles and

vehicle-to-backend platforms because advanced wireless cellular networks, protocols, and

ASDP capabilities cannot overcome inadequately or non-cooperatively designed distributed

functionalities.

3.5 Summary

This chapter introduced the concept of a distributed Automotive Service Delivery Platform,

which is proposed as a vehicle-to-backend platform solution for future connected vehicles.

Taking into account the characteristics, challenges and gaps within current automotive software

and system development, as well as the anticipated developments driven by the functional

domains IVI, ADAS, and ITS, firstly principles are developed. These lead to the distributed

ASDP as enabling platform for the concept of the same name.

In advance of the elicitation of fundamental requirements to such platform, three related

scenarios and criteria for the distribution of automotive functionalities between the vehicle and

backend server facilities are discussed. The major identified aspects are integrated in three

viewpoints which reflect the domain-internal view of the current automotive engineers, the

connected vehicle as part of an Internet of Things, and the transformation of telecommunication

toward an Automotive Embedded Internet. Based on these viewpoints, six fundamental

The Distributed Automotive Service Delivery Platform Concept

69

requirements to the distributed ASDP are derived. In this regard, besides the introduction of the

concept as general solution idea, this chapter primarily detailed the problem space which

facilitates both profound identification of solution hypothesis and the assessment of its

appropriateness.

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

70

4 An Automotive Service Delivery Platform Based on

the oneM2M Service Platform

The previous chapter describes the concept of a distributed Automotive Service Delivery

Platform (ASDP) as an approach to address the challenges related to software and system

architectures of connected vehicles.

This chapter introduces the oneM2M Service Platform as specified within its release 113

(oneM2M TS-0001, 2015; oneM2M TS-0004, 2015). As Section 4.2 discusses in more detail,

the oneM2M service platform is considered a good candidate to enable the concept of an ASDP

because the oneM2M service platform has been developed as enabler for an IoT, of which ITS

are an intrinsic part (see Section 3.4.2). Besides, the problem space of both, the distributed

ASDP concept, and the oneM2M service platform share several ideas and requirements.

However, this does not necessarily mean that the oneM2M service platform is also an adequate

enabler for the ASDP concept.

The intention of this chapter is neither to duplicate the standards documents (i.e., technical

reports and technical specifications) nor to write a comprehensive book about the oneM2M

service platform covering absolutely all its details. The aim here is to give an introduction to

the essential architectural elements and to make key architectural design decisions clear (see

Section 2.4.4), for following reason: The observation of Jansen and Bosch in (2005), after

which “[currently] almost all the knowledge and information regarding the design decisions on

which the architecture is based on (e.g., results of domain analysis, architectural styles used,

trade-offs made etc.) are implicitly embedded in the architecture, but lack a first class

representation.”, also applies to the oneM2M service platform. The oneM2M standards

documents specify only “the/their solution”, which is similar to many other standards or

architecture documentations, but it also misses links of key architectural design decisions to

objectives and identified requirements for a oneM2M platform. Furthermore, decisions about

architectural trade-offs are not transparent. Even though hundreds of documents of the working

groups are publicly available, including as well diverse discussions about architectural design

13 Whenever this research links to the current version of oneM2M standards, the standards from the release 1 are

referred to, particularly TS-0001-V.1.6.1 published on 30 January 2015 (oneM2M TS-0001, 2015), and TS-0004-

V.1.0.1 published on 30 January 2015 (oneM2M TS-0004, 2015), unless other releases or versions are explicitly

referred to.

4

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

71

decisions and necessary trade-offs, the oneM2M standard lacks linkage and disclosure of those.

Hence, the oneM2M “software architecture [also] lacks a clear view on why the architecture

looks as it does” (Jansen & Bosch, 2005), leading to the following consequences:

• Evolution in harmony to the current architecture and the design philosophy is difficult.

This often leads to erosion of the initial architecture over time which may have

unintended and negative effects (Jansen & Bosch, 2005; Strasser et al., 2014).

• It is difficult to anticipate the appropriateness of the software architecture, platform or

standard, particularly if it is still in maturation like the oneM2M service platform. This

is caused by the fact that during this time empirical measurements and tests are not

possible due to the absence of full implementations. And even if implementations

would exist, the significance of tests might be limited with respect to the evaluation

whether a single architectural design decision poses a beneficial or adequate trade-off.

For these reasons, this chapter is also intended to make fundamental architectural design

decisions of the oneM2M service platform transparent, through the identification of utilised

paradigms, design principles, and technologies. This enables architecture analysis already early

in the design process (see Section 2.4.6), which suits well to the current phase of oneM2M

standards development. Furthermore, it utilises the fact that for many of those architectural

design decisions analysis exists concerning to which requirements or qualities they contribute.

Accordingly, this analysis is part of the introduction of the elements and functionalities of the

oneM2M standard performed in the Sections 4.3, 4.4, 4.4.4, and 4.5. Afterwards a reference

configuration of oneM2M for the distributed Automotive Service Delivery Platform is

presented and basic communication scenarios are considered.

4.1 Introduction to M2M, oneM2M

This section provides an introduction to M2M communication in general and the oneM2M

standard in particular. Additionally, related work to the oneM2M service platform is referenced.

4.1.1 M2M Communication

Smart Home, Smart Grid, Smart Cities, Intelligent Transportation Systems, and eHealth are

currently subjects of research: For example, a Smart Home can increase the comfort of its

residents and its energy efficiency through intelligent applications, integrating temperature

sensors, thermostats, weather forecasts, energy meters, lights, washing machines, etc. Within

the wider Smart Grid context, instantly-available consumption measurements from households

and industry, together with derived predictions about upcoming energy demands, enable

increased coordination of power plants’ energy productions. This gains importance with respect

to the growing volume of renewable energy the production of which is typically more volatile

(e.g., contingent upon varying weather conditions). It is further important, because renewable

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

72

energy is much more decentralized, thus requiring a higher level of control efforts than

conventional power plants.

Basis of these scenarios is the inter-connection of a myriad of devices (and applications) across

vendors and domains. Machine-to-Machine Communication (M2M), also known as Machine-

Type-Communication (MTC), is the general term for the related enabling platforms and

technologies.

In this regard, M2M has overlaps with the Internet of Things (IoT), but: “IoT is dealing with

things and objects [like Radio-Frequency Identification (RFID) ‘tagged’ objects] that may not

be in a M2M relationship with an ICT [(Information and Communications Technology)]

system. […] These objects are passive and have no direct means with which to communicate

‘upstream’ with the M2M application” (Boswarthick et al., 2012, p. 5). Since M2M devices, in

contrast, always come with their own communication capabilities, M2M can be considered as

a subset of the IoT. M2M devices might offer HMIs, but they essentially include functions with

no user interaction.

4.1.2 oneM2M Standard

The term M2M initially only refers to the named inter-connection and communication of

machines. Initially, this is independent from standards and technical solutions that aim to enable

such Machine-to-Machine communication. Moreover, there is no single M2M standard or

technology – M2M standards can be considered as an ecosystem and it is a collection of several

single parts, developed by different research institutes, initiatives, companies and Standard

Developments Organisations (SDOs).

This research uses the oneM2M Service Platform, which is basically a middleware that enables

M2M communication. It has been developed and standardised by the standards initiative

oneM2M with the objective of bundling the main standardisation activities for global

harmonisation since July 2012. The oneM2M standards are built on previous work of ETSI, in

particular these specifications:

• ETSI TS 102 689: “M2M service requirements” (ETSI TS 102 689, 2013)

• ETSI TS 102 690: “Functional architecture” (ETSI TS 102 690, 2013)

• ETSI TS 102 921: “mIa, dIa, mId interfaces” (ETSI TS 102 921, 2013)

The oneM2M initiatives consists of SDOs from all over the world, namely:

• Association of Radio Industries and Businesses (ARIB), Japan (ARIB, 2017)

• Alliance for Telecommunications Industry Solutions (ATIS), US (ATIS, 2017)

• China Communications Standards Association (CCSA), China (CCSA, 2017)

• European Telecommunications Standards Institute (ETSI), Europe (ETSI, 2017)

• Telecommunications Industry Association (TIA), US (TIA, 2017)

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

73

• Telecommunications Standards Development Society (TSDSI), India (TSDSI, 2017)

• Telecommunications Technology Association (TTA), Korea (TTA, 2017)

• Telecommunication Technology Committee (TTC), Japan (TTC, 2017)

These partners collaborate with industry fora and consortium:

• Broadband Forum (Broadband Forum, 2017)

• European Committee for Standardization, Comité Européen de Normalisation (CEN)

(CEN, 2017)

• European Committee for Electrotechnical Standardization, Comité Européen de

Normalisation Électrotechnique (CENELEC) (CENELEC, 2017)

• GlobalPlatform (GlobalPlatform, 2017)

• Open Mobile Alliance (OMA) (OMA, 2017)

These and over 200 additional member organisations are working on the oneM2M standards in

order to develop and maintain the globally standardised oneM2M Service Platform enabling

the objectives associated with M2M communication.

4.1.3 Related Work

As stated above, the M2M standards form an ecosystem. Accordingly, there is some work

related to the oneM2M service platform. Those most relevant for this research are named below.

Basically, related work exists on various level. Several initiatives and activities have recently

attempted to classify and sort them. Examples are ITU-T Y.2060 in 2013 (ITU-T, 2013), IoT-

A in 2014 (Bassi et al., 2013), and AIOTI in 2017 (AIOTI, 2017), which came up with an

architecture reference model that aims to provide the superior abstract framework to sort

concrete implementation of reference architectures such as the oneM2M service platform as

well as other standards or building blocks of the M2M landscape (AIOTI, 2017). AIOTI

accompanies this, e.g., with a clustering regarding knowledge areas, such as: communication

and connectivity, integration/interoperability, applications, infrastructure, IoT architecture,

devices and sensor technology, and security and privacy.

Another related activity is AllJoyn (Alljoyn, 2017), which was initially provided by the AllSeen

Alliance. AllJoyn is a collaborative open source software framework aiming to provide

seamless Device-to-Device communication in local networks. Its focus is the smart home

domain. Alljoyn is merging with IoTivity (IoTivity, 2017), which is a similar activity. IoTivity

is the reference implementation of the specifications from Open Connectivity Foundation

(OCF), formerly Open Interconnect Consortium (OIC). The focus is also local deployments,

e.g., smart home and office scenarios. Although they have started to look into other domains,

the oneM2M service platform still could be considered as more universal, since this was already

a construction principle. Nevertheless, interworking between both is possible (oneM2M, 2016).

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

74

FIWARE (FIWARE, 2017), a result of the EU Future Internet Public-Private Partnership

activities, aims to provide a scalable open source platform based on Generic Enablers (GE) that

are connected through the OMA Next Generation Service Interface (NGSI) (OMA TS NGSI

Context Management, 2012). The basic idea is comparable to that of the oneM2M service

platform whereupon functionalities that are shared across many applications are commonly

implemented (see oneM2M Common Services Entity layer, Section 4.3.1). However, FIWARE

GEs could be individually selected and assembled to meet the individual requirements of a use

case which is different from the oneM2M approach. In addition, FIWARE GEs focus less on

general communication mechanisms and network specifics but more on data models and data

interoperability. Thus, FIWARE is no alternative to deliver the same capabilities as the

oneM2M service platform. But interworking between both is possible and they could even

complement each other, e.g., as it is described within Wise-IoT (M. Bauer, 2017; Wise-IoT,

2017).

There also do exist commercial products and APIs for IoT and M2M purposes. Examples are

the Amazon AWS IoT Core (Amazon Web Services, 2017), SAP Leonardo IoT (SAP, 2017),

or Microsoft Azure IoT Suite (Microsoft, 2017). However, according to the REQ 1 and REQ 5

of the ASDP concept (see Section 3.4), the enabling platform should be open and standardised;

it should provide an E2E support, and should enable cross-series, cross-vendor, and cross-

domain (i.e., industries) interoperability. In this regard, commercial products or APIs are out of

scope of this research.

To conclude, the oneM2M service platform can be considered as the most advanced

standardised M2M platform (Medjiah, 2017), which is the reason why it is used for this

research. The following section continues the discussion why M2M in general and oneM2M in

particular might be an adequate enabler for the distributed ASDP concept.

4.2 M2M as Initial Hypothesis

When considering the problem space by means of challenges, objectives, and requirements

related to connected vehicles, vehicle-to-backend platforms, and the distributed ASDP concept,

several overlaps exists with M2M communication. This makes M2M communication

respectively the oneM2M service platform a promising initial hypothesis with regard to its

applicability as enabling platform for the ASDP concept, which means that the oneM2M service

platform may provide a suitable solution space. Three main aspects supporting this hypothesis,

namely objectives regarding interoperability and network efficiency, and current M2M

considerations of automotive use cases. These are presented in the following.

4.2.1 M2M aims Interoperability

Darmoir and Elloumi found in (Boswarthick et al., 2012, p. 5): “In the vast majority of cases,

the solutions developed and implemented to date have been addressing specific vertical

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

75

applications requirements in isolation from all others. This has created ‘silo’ solutions based on

very heterogeneous forms of technology, platforms, and data models. Interoperability is in

general very limited or non-existent”. Here, similar to the context of 5G, the term “vertical”

refers to a certain industry or sector such as Automotive, Energy, or Health. But, “silo” solutions

with limited interoperability may even exist within a single sector, e.g., different OEM backend

solutions (see Section 2.5.4). Figure 4.1 illustrates such situation with components from

different vendors or domains using heterogeneous hardware, communication technologies and

protocols, and application abstractions. Although standardised (and even well-documented)

platforms may exist within each domain, they might lack generic interoperability at the

necessary level.

Wu et al. found in (2011):“Future M2M ecosystems will be complex and span many industries,

including telecom and electronics. Unlike current M2M markets, which are highly segmented

and often rely on proprietary solutions, future M2M markets will need to be based on industry

standards to achieve explosive growth” This raises the architectural task “to turn a patchwork

of standalone elements and solutions into a coherent ‘system of systems’, gradually turning the

focus from the ‘what’ to the ‘how’ and developing the appropriate technologies and standards”

(Boswarthick et al., 2012, p. 1), to turn “[…] today’s INTRAnet of things to a future INTERnet

of things […]”(Zorzi, Gluhak, Lange, & Bassi, 2010).

Figure 4.1: Limited interoperability between components, vendors, and domains through heterogeneous

abstraction levels, interfaces, and technologies

This problem statement of the M2M market matches with the identified situation in the

automotive domain, where proprietary vehicle-to-backend platforms (see Sections 2.5.4 and

2.6) are vertically integrated “silo solutions”, which is why the ASDP concept derived the REQ

5 also with regard to the connected vehicle as part of an ITS (respectively IoT) and system-of-

systems considerations (see Section 3.4.2).

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

76

Interoperability

To enable a better understanding of the interoperability challenges and in advance of the

assessment of the oneM2M service platform, the term interoperability is discussed afterwards

in more detail. A general definition is provided by Bass et al. in (2012, p. 103):

“Interoperability is about the degree to which two or more systems [or services, or

applications] can usefully exchange meaningful information via interfaces in a

particular context” (Bass et al., 2012, p. 103)

This definition emphasises that interoperability, like every quality attribute, is no binary

characteristic. A system or application or service (or whatever two entities are being

considered) is not just interoperable or not, the question is to which degree interoperability

between systems is present and accordingly how interoperability can be classified.

The term interoperability is used varying in different quality or interoperability models

(Brownsword, 2004; The GridWise Architecture Council, 2008; Tolk, Diallo, & Turnitsa,

2007). A comprehensive interoperability model is the Levels of Conceptual Interoperability

Model (LCIM), first described by Tolk and Muguira in 2003 (Tolk & Muguira, 2003). Although

initially developed in the context of modelling and simulation, it provides general means to

classify the interoperability level between systems including M2M communication. Besides

descriptive mode, the LCIM supports also prescriptive assessment, i.e., the derivation of

requirements to enhance interoperability (W. Wang, 2009). Since its first publication, the LCIM

has constantly emerged to the current version describing seven levels of interoperability, which

are according to Tolk et al. in (Tolk et al., 2007):

• Level 0: No Interoperability

The system is stand-alone and has no communication capabilities.

• Level 1: Technical Interoperability

The systems can exchange data through a common communication protocol.

• Level 2: Syntactic Interoperability

The systems can exchange data through a common structure, i.e., a data format.

• Level 3: Semantic Interoperability

The systems share the same meaning of the exchanged data.

• Level 4: Pragmatic Interoperability

The systems are aware of the mutual application context, i.e., employed methods and

procedures.

• Level 5: Dynamic Interoperability

The systems are aware of the mutual effects of the information exchange, e.g., state

changes over time.

• Level 6: Conceptual Interoperability

The systems share one conceptual model, i.e., a “fully specified but implementation

independent model” (Davis Paul & Anderson Robert, 2003).

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

77

If systems shall be empowered to be interoperable with each other on the respective level, the

interoperability gap must be identified and closed. The GridWise Architecture Council names

this gap “distance to integrate” (The GridWise Architecture Council, 2008), but with respect to

the intrinsic characteristics of system-of-systems, the naming “distance to interoperability” is

considered as more precisely here.

This also facilitates a more accurate definition and understanding of a “silo solution”, namely:

A “silo solution” lacks interoperability capabilities at the required level with other systems,

meaning the “distance to interoperability” is not zero. Considering this, each system that has

been developed independently at first might be a silo solution. The use of service-oriented or

component-based design approaches does not change this fact. However, it might reduce the

necessary efforts to achieve interoperability at the envisaged level.

This puts further important aspects into place: Interoperability can be achieved manually

through engineering efforts (e.g., the development of appropriate adaptors), or automatically

by the systems themselves. While the first refers to the design-time of the system, the latter is

the preliminary to enable the achievement of interoperability during run-time of the system

(Carney et al., 2005). Finally, automatic run-time interoperability without a priori knowledge

is the ultimate goal for ITS, M2M, and visions to materialise, because this is a fundamental

capability to enable emergent behaviour of system-of-systems (Blair, Paolucci, Grace, &

Georgantas, 2011; Carney et al., 2005).

4.2.2 M2M Aims Network Efficiency

M2M communication differs in various ways from the traditional communication, as it occurs

when human beings use the communication technologies (referred to as H2H communication)

(R. Q. Hu et al., 2011). Following Laya et al., these differences exist with regard to (Laya et al.,

2014):

• Traffic direction

• Message size

• Connection and access delay

• Transmission periodicity

• Mobility

• Information priority

• Security and Monitoring

• Lifetime and energy efficiency

Addressing these changed usage patterns and requirements of M2M communication is the

intrinsic objective of the same-titled research and development efforts and the related enabling

platforms, such as the oneM2M service platform. Considering this, M2M communication shall

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

78

be facilitate the necessary change from the mobile Internet towards an “Embedded Internet”

(Wu et al., 2011) which is required to effectively support the communication of machines.

Section 3.4.3 pointed out that the amount of such new M2M communication traffic of

connected vehicles increases with scenarios, such as ITS. Although vehicles constitute an own

class within M2M communication, with a specific instantiation or subset of requirements (see

Section 3.4.3), it could be expected that the requirements of an “Automotive Embedded

Internet” are considered and fulfilled by an “Embedded Internet”. Not least, the automotive

domain is explicitly considered within M2M scenarios, which is detailed in the next section.

4.2.3 M2M Considers the Automotive Domain

The automotive domain is emphatically constituted as part of M2M communications. With

status of April 2013 ETSI names the following use cases in their Technical Report “Machine

to Machine communications (M2M); Use cases of Automotive Applications in M2M capable

networks” (ETSI TR 102 898, 2013):

• Electric Vehicle Charging

• Fleet Management / Theft Tracking

• Vehicle-to-Infrastructure communication

This is considered as another indicator that the M2M platform might provide appropriate

capabilities to facilitate distributed automotive functionalities and thus the concept of a

distributed ASDP.

4.3 Functional Architecture

The previous sections motivated the consideration of M2M communication and hence the

oneM2M service platform as promising candidate to enable the ASDP concept by emphasising

overlaps of the respective problem spaces. In the following, the oneM2M service platform is

introduced in more detail to enable the assessment how appropriate its provided solution space

addresses the identified requirements of the ASDP concept.

Due to this regard, firstly the functional architecture of the oneM2M service platform is

introduced. This includes its layers, reference points, Common Service Functions, protocol

stack and bindings, domains, nodes, and configurations.

4.3.1 Layers and Entities

To overcome widespread vertically-integrated applications, oneM2M specifies a universal

horizontal integration platform. Following this approach, oneM2M splits the overall

functionality into common services and application-specific parts. Furthermore, an underlying

network layer may provide additional network services. This results in three layers respectively

entities, as described in the following:

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

79

• Application Entity (AE): An AE contains the application service logic of a oneM2M

application. Hence, it implements the actual use cases and functionalities, such as

Extended Floating Car Data, Vehicle Maintenance, or a Vehicle Data Provider.

According to the envisaged split between the AE and the CSE, the AEs shall contain

the application-specific parts of the applications that are not common to other

applications.

• Common Services Entity (CSE): “A Common Services Entity represents an

instantiation of a set of ‘common service functions’ of the M2M environments”

(oneM2M TS-0001, 2015, p. 18). In this regard, the term CSE must be used slightly

differently to the AE and NSE since the plural usage of CSEs describes CSEs residing

on different nodes and does not describes single common services within this CSE,

because they are “logically and informatively conceptualized as Common Services

Functions (CSFs)” (oneM2M TS-0001, 2015, p. 18). According to the envisaged split

between the AE and CSE, the CSE shall contain the common parts of the distributed

application functionalities that are to be shared by typical/most AEs.

• Underlying Network Services Entity (NSE): The underlying networks basically

provide data transport and communication services to the CSE. These capabilities are

separate and not explicitly referred within the service entities which is the reason why

the NSE is often not explicitly mentioned. The NSE is introduced to encapsulate

additional services of the underlying networks beyond data transport and

communication services. Examples are location services, device management, or

device triggering (oneM2M TS-0001, 2015; Song, 2014).

The AEs are located in the application layer, the NSEs are located in the underlying network

services entity layer, and the CSE can also be considered as a layer, containing an instantiation

of Common Services Functions. However, oneM2M does not introduce dedicated terms or

abbreviations for those layers. Due to this, the AE, CSE, or NSE sometimes may more suitably

be understood as the collection of the entities or functions, and hence as layers. Therefore, in

the following the distinction between the respective entity layer and a single entity or function

is explicitly made in descriptions, when it serves to accommodate better understanding,

although not requested by the oneM2M standard.

Figure 4.2 illustrates how the unified layers of the oneM2M service platform improve the

interoperability between components, vendors, and domains.

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

80

Figure 4.2: Improved interoperability between components, vendors, and domains through unified

abstraction levels, interfaces, and technologies

The introduction of the CSE layer constitutes a middleware approach. The CSE abstracts AEs

not only from the specifics of certain hardware, but also from the specifics of network

technologies and protocols. This includes specific network services that may only be provided

from certain network technologies. Furthermore, the approach to implement functionalities that

are to be shared between different AEs commonly in the CSE reduces non-application-specific

parts within the AEs. These architectural design decisions contribute to interoperability and

portability of AEs and hence REQ 5 and REQ 3 of the ASDP concept (cf. Bass et al., 2012).

Furthermore, this also contributes to the REQ 2 and REQ 3 (cf. Bass et al., 2012).

4.3.2 Reference Points

Additionally, oneM2M specifies four reference points for the communication between the three

layers (see Section 4.3.1), whereby “a reference point consists of one or more interfaces of any

kind” (oneM2M TS-0001, 2015, p. 18). These reference points are independent from basic

transport and connectivity services of the Underlying Network, which is required in any case,

for the communication between oneM2M Entities(oneM2M TS-0001, 2015, p. 18).

The oneM2M nomenclature for the reference points is basically “Mc” followed by the first

letter of the Entity to which the reference point is provided from the perspective of the CSE

layer. Accordingly, these are the four reference points(oneM2M TS-0001, 2015, p. 18):

• Mca: This reference point is located between the CSE and the AE layer. Accordingly,

AEs use this reference point to use the services of the CSE and to communicate with

other AEs on the same or on other nodes. Since the AE and the CSE are not

necessarily co-located within the same node (see Section 4.3.5 and 4.3.6), the Mca

reference point may also be used between nodes.

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

81

• Mcc: This reference point is located between two CSE layers and enable the mutual

provision of the CSE services and thus inter-CSE communication (oneM2M TS-0001,

2015; Swetina, Lu, Jacobs, Ennesser, & Song, 2014).

• Mcc’: This reference point is located between two CSE layers, residing on

Infrastructure Nodes in different service provider domains. The Mcc’ similar to the

Mcc also enable the mutual provision of the CSE services and thus inter-CSE

communication. To facilitate the restriction of service provision between service

providers and to thus enable differentiation between domain-internal services and

inter-domain services, this particular Mcc’ reference point is specified (oneM2M TS-

0001, 2015, p. 19).

• Mcn: This reference point is located between the CSE and the NSE. It enables the

CSE to use additional services (besides basic transport and connectivity services) of

the Underlying Network that may be available (oneM2M TS-0001, 2015, p. 18).

The location of these reference points is illustrated in Figure 4.4.

4.3.3 Common Services Functions

The CSE is the core of the oneM2M Service Platform, since it constitutes the middleware that

provide various services across the reference points to the other Entities (see Section 4.3.2).

The overall CSE services and functionalities are composed of Common Services Functions

(CSF), see Figure 4.3.

Figure 4.3: Common Service Functions in the Common Services Entity (Source: oneM2M TS-0001, 2015)

Mca Reference Point

Mcn Reference Point

Underlying Network

Service Entity (NSE)

Common Services Entity (CSE)

Mcc Reference Point

Data Management

& Repository

Location

Security

Communication

Management/

Delivery Handling

Registration

Device

Management

Service Charging &

Accounting

Discovery

Network Service

Exposure/Service

Ex+Triggering

Group

Management

Application

Entity (AE)

Subscription and

Notification

Application and

Service Layer

Management

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

82

The oneM2M standard specifies the services by means of their external capabilities and

behaviour via the reference points. Due to this, the following CSF descriptions are merely

informative and serve the purpose of describing existing functionalities by grouping them

logically together as CSFs. However, oneM2M does not prescribe this CSF splits, and also does

not specify the CSE-internal management and interworking of the CSFs (oneM2M TS-0001,

2015, p. 21).

The CSF descriptions, provided in the following, are intended to provide an overview of the

related functionalities and not to fully specify the functionalities. Since it is not the intention

here to duplication the oneM2M standard, the descriptions provided are tailored to the

necessities of this research. Nevertheless, every CSF is introduced at least briefly, to describe

the philosophy behind it, which is of major importance to understanding the oneM2M Service

Platform, its overall volume of functionality, its general design philosophy, as well as its design

space, which is provided to AEs and their users (cf. Boswarthick et al., 2012; oneM2M TS-

0001, 2015).

Application and Service Layer Management (ASM)

The ASM CSF deals with the management of AEs and CSEs on Nodes. This includes

functionalities related to the lifecycle of software packages for the CSE and AE consisting of

states such as: Installing, Installed, Updating, Uninstalling and Uninstalled, and transitions

between those states actioned when, e.g., applying Download, Install, Update, or Remove to

the software package (oneM2M TS-0001, 2015, p. 22). Furthermore, the lifecycle management

of a software module is supported, e.g., by means of the action Start and Stop which trigger

transitions between states, such as Idle, Starting, Active, and Stopping (oneM2M TS-0001,

2015, p. 22). The ASM CSF also provides capabilities to configure software packages

(oneM2M TS-0001, 2015, p. 21).

Discovery (DIS)

The CSE is not a centralised entity but could be part of various nodes within the oneM2M

landscape. Hence, the oneM2M Service Platform builds a distributed Service Delivery

Platform. Service-orientation, or rather late binding, requires the discovery of functionalities

prior to interworking during run-time. This means, for example, prior to data exchange between

oneM2M resources (e.g., AEs or CSEs), these in general must be discovered. Thereby,

discovery can be defined as follows:

Discovery: The act of locating a machine-processable description of a Web service-

related resource that may have been previously unknown and that meets certain

functional criteria. It involves matching a set of functional and other criteria with a set

of resource descriptions. The goal is to find an appropriate Web service-related

resource. (W3C, 2013)

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

83

For this reason, the CSE provides a Discovery (DIS) CSF. It facilitates the discovery of

resources according to filter criteria such as the resource type, resource timestamps (e.g.,

creation time), and descriptive labels. In this regard “[t]he scope of the search could be within

one CSE, or in more than one CSE” (oneM2M TS-0001, 2015, p. 30), which builds a distributed

discovery functionality.

Registration (REG)

The REG CSF enables the registration of an AE at a CSE of a MN or of the IN, or the

registration of a CSE at another CSE. It is the prerequisite that the registering entity is capable

of using the services of the respective CSE. The registration between CSEs is not mutually

achieved, but only from the child position of the hierarchy to its parent (see Section 4.3.6),

accordingly:

• The CSE of an ASN may register with the CSE of a parent CSE of a MN or of an IN.

• The CSE of an MN may register with the CSE of a parent CSE of another MN or of an

IN.

After completion of the unidirectional registration procedure, the communication is possible in

both ways (given that the registering entity is server-capable, which is given for every CSE, but

could be absent for AEs). Finally, besides identification and contact information, the registering

CSE may also provide a reachability schedule (on per Node basis) if it is not always reachable

(oneM2M TS-0001, 2015, p. 33).

Communication Management, Delivery Handling (CMDH)

The CMDH CSF basically provides capabilities for the communication of the CSE with AEs,

NSEs, and other CSEs. It “decides at what time to use which communication connection for

delivering communications (e.g., CSE-to-CSE communication) and, when needed and allowed,

to buffer communication requests so that they can be forwarded at a later time” (oneM2M TS-

0001, 2015, p. 22). This facilitates the specification of delivery policies for each communication

request through the originator. Besides, Service Provider can specify CMDH policies that

regulate the usage of Underlying Network(s), e.g., according to service contracts. Finally, the

CMDH also considers reachability policies if specified for the receiving node, e.g., during

registrations (cf. REG CSF).

The CMDH is an important CSF of the oneM2M service platform with regard to the handling

of M2M communication specifics (see Section 4.2.2). It has significant share in improving

“network-friendliness” of M2M traffic, e.g., by means of aggregation of small data packets to

bigger data packets. Considering this, the CMDH CSF contributes to the REQ 6 of the ASDP

concept.

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

84

Group Management (GMG)

The GMG CSF provides capabilities “to perform bulk operations on multiple devices,

applications or resources that are part of the group” (oneM2M TS-0001, 2015, p. 30). It can

leverage broadcast or multicast capabilities of the Underlying Network where applicable. This

is transparent to the using entity, such as an AE.

To enable group management capabilities, the GMG CSF facilitates the creation, retrieving,

updating, or deletion of a group, including joining and leaving the group according to policies

such as maximum number of group members, by use of the respective resource. It is the

responsibility of the GMG CSF to utilise the functionalities of other CSFs in the necessary way

to transfer the operations performed on the group internally to all group members. In addition

to others, these are functionalities related to SEC, SN, DMG.

Security (SEC)

The SEC CSF provides services related to security of the distributed oneM2M Service Platform.

Among others, this comprises(oneM2M TS-0001, 2015, p. 34):

• Sensitive data handling.

• Security administration.

• Security association establishment.

• Access control.

• Identity protection.

Thus, the SEC CSF provides services for basic security goals, such as confidentiality, integrity,

and authenticity.

Data Management & Repository (DMR)

Within the CSE a great deal of data must be stored and managed. This not only relates to

application data and its exchange but also to manifold configuration and management data,

which is also part of the resource tree (see Section 4.4.3). Due to that reason, the DMR CSF is

introduced, providing Data Management and Repository services at an abstracted level to other

CSFs of the CSE. The functionalities also comprise the aggregation of data from different

entities and the mediation of data between different entities. In the future, semantic

interoperability may become another important functionality provided by the CMR CSF

(oneM2M TR-0007, 2015). Currently, such capabilities are limited to the storage of semantic

descriptions for resources (oneM2M TS-0001, 2015). Furthermore, the DMR may become

enhanced towards a Big Data Repository, facilitating related scenarios (oneM2M TS-0001,

2015, p. 23).

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

85

Location (LOC)

The LOC CSF provides services to AEs, which facilitate the acquisition of geographical

location information of Nodes, e.g., for location-based services (oneM2M TS-0001, 2015, p.

31). For this purpose the LOC may use any of the following (oneM2M TS-0001, 2015, p. 31):

• a location server from the underlying network (e.g., by means of Cell-ID, assisted-

GPS, or fingerprint);

• a GPS module of the M2M device; or

• information for inferring the location of other nodes.

Service Charging & Accounting (SCA)

The SCA CSF provides services with respect to charging and accounting. In accordance with

the general approach of oneM2M and the CSFs of its CSE, the SCA is independent of network

and technology, although it may utilise capabilities provided by the underlying networks. The

charging models provided by the SCA may also reflect the oneM2M capabilities. For example,

charging could be subscription-based or event-based (oneM2M TS-0001, 2015, p. 35).

Device Management (DMG)

Another important CSF for M2M environments is Device Management (DMG). In contrast to

the ASM CSF, DMG addresses more low-level aspects, such as:

• Device Configuration.

• Device Diagnostics and Monitoring.

• Device Firmware Management.

• Device Topology Management.

The necessity for device management is not new. It is rather a well-known requirement, e.g., in

the area of mobile devices and network equipment. Thus, oneM2M here again can utilise

mature and widely-used standards. According to the philosophy of a technology-independent

horizontal CSE, these are adapted and wrapped for common usage in the oneM2M CSE.

Currently, oneM2M specifies bindings to the OMA Device Management Protocol (OMA TS

DM Protocol, 2016) and the OMA Lightweight Machine to Machine Protocol (OMA TS

LightweightM2M, 2016), (oneM2M TS-0005, 2016). Furthermore, it provides bindings to the

BBF TR-069 protocol (Broadband Forum, 2013).

Network Service Exposure, Service Execution and Triggering (NSSE)

The NSSE CSF “manages communications with the Underlying Networks for accessing

network service functions over the Mcn reference point” (oneM2M TS-0001, 2015, p. 32). It is

the adaptor for functions of specific network technologies and mechanisms of the Underlying

Network for the purpose of providing those functionalities to other CSFs and AEs technology-

independent (see Section 4.3.2).

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

86

Subscription and Notification (SN)

Besides direct communication capabilities for communication between AEs and CSEs,

oneM2M also provides indirect communication capabilities. These are provided by the SN

CSF. Here, AEs and CSEs can subscribe to particular resource changes including additional

notification policies. If such resource change occurs and the notification policies, if present, are

fulfilled, the CSE triggers the sending of a notification message to the subscriber. This may also

depend on CMDH policies.

Indirect communication capabilities are particularly suitable for oneM2M applications which

in many cases are event-triggered. Accordingly, the capabilities of the SN CSF are of major

importance for the efficiency of distributed oneM2M use cases and hence for the REQ 6. Hence,

the SN CSF capabilities provided by the current oneM2M standard are investigated in more

detail in the following (see Section 4.5.4 and Chapter 5).

4.3.4 Domains

The oneM2M Service Platform specifies two different domains, where the different nodes are

located. These are:

• Infrastructure domain.

• Field domain.

4.3.5 Nodes

The oneM2M Service Platform specifies the following Nodes:

• Infrastructure Node (IN), containing one CSE and optionally one or many AE(s)

• Middle Node (MN), containing one CSE and optionally one or many AE(s)

• Application Service Node (ASN), containing one CSE and at least one AE.

• Application Dedicated Node (ADN), containing only at least one AE but no CSE.

This specific node type is possible because the communication across the Mca

interface runs through the complete communication protocol stack (see Sections 4.3.2

and 4.4.5).

• Non-oneM2M Device Node (NoDN), containing neither an AE nor a CSE. Hence,

the NoDN cannot achieve interoperability with the oneM2M-compliant nodes

automatically. However, oneM2M describes several interworking scenarios possible

for NoDN (oneM2M TS-0001, 2015). For example, hybrid applications referred to as

Inter-working Proxy Application Entity (IPE) can implement the non-oneM2M

interface from the NoDN and the oneM2M-compliant Mca interface to facilitate

interworking. This fulfils the REQ 4 regarding migration paths for legacy

functionalities.

The various node types support scalable solutions with regard to the node capabilities.

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

87

4.3.6 Configurations

NoDN, ADN, ASN, and MN are located inside the Field Domain. The Infrastructure Domain

of a service provider from a functional view contains only one IN. The positioning of the nodes

facilitates hierarchical structures where

• One or many NoDN can connect to an ASN, a MN, or IN.

• One or many ADN can connect to an ASN, a MN, or IN.

• One or many ASN can connect to a MN or IN.

• One or many MN can connect to another MN or IN.

Figure 4.4 shows possible configurations supported by the oneM2M service platform at a

glance. According to the possible connections named above, even deeper hierarchies (e.g., with

several cascaded MNs) are possible that are not shown in this figure. These hierarchical

structures contribute to scalability and the REQ 6, because, e.g., communication can be limited

to certain sub-structures or regions, and data exchange can be aggregated and pre-processed at

the respective intermediary node of the sub-structure. This matches with and complements

approaches such as MEC (see Section 2.2.2): For example, an MN could be operated at the

edge of the infrastructure network, hosting the CSE or even selected AEs to enable their

required QoS. This also contributes to the prevention of network misalignments (cf. REQ 6)

Figure 4.4: Configurations supported by the oneM2M service platform (Source: oneM2M TS-0001, 2015,

p. 19)

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

88

4.4 Service/Resource Model and Technologies

After presenting the functional architecture of the oneM2M service platform, this section

introduces details of the technologies applied. To enable the assessment of oneM2M service

platform capabilities, a central aspect is to investigate its service (or resource model) and

implementation technology, which show the underlying architectural principles, patterns and

tactics. Identifying these architectural principles is important, because it facilitates inference

about the architectural capabilities or qualities and thus inference about how suited oneM2M is

as the enabler of an ASDP.

Considering this, the service and resource model of the oneM2M service platform is introduced

below, including description of the principles and related terms, e.g., service-orientation, SOA,

REST, and RESTful. Afterwards, oneM2M resources, methods, and the protocol stack and

bindings are presented.

4.4.1 Service-Orientation, Service-Oriented Architecture

The oneM2M standard specifies a Service-Oriented Architecture (SOA) for M2M

communication. Following Erl et al. in (2013), service-orientation can be defined as:

“Service-orientation is a design paradigm intended for the creation of solution logic

units that are individually shaped so that they can be collectively and repeatedly

utilized in support of the realization of a specific set of strategic goals and benefits

associated with SOA and service-oriented computing.” (Erl et al., 2013)

This definition of service-orientation provides the foundation to define the term SOA:

“[A] Service-oriented architecture is a technology architectural model for service-

oriented solutions with distinct characteristics in support of realizing

service-orientation and the strategic goals associated with service-oriented

computing.” (Erl et al., 2013)

Kral found in (2000) that the “Service-oriented (SO) paradigm and SOA are the proper solution

for the majority (if not almost all) of large software (intensive) systems”, which matches with

the considerations of Tiako et al. in (2008). Consequently, service-orientation is also considered

as a solution for automotive software and system development (C. Farcas, Farcas, Krüger, &

Menarini, 2010; I. H. Krüger, 2005; I. H. Krüger et al., 2004). Kazman et al. noticed in (2013):

“The SOA pattern is a natural and popular choice for many modern systems of systems. It is

organized around the concept of loosely coupled, distributed services, which are offered,

described, and implemented by service providers.”

The reason, why service-oriented approaches are beneficial solutions for software-intensive

systems as well as system-of-systems and hence also M2M are the design paradigms that are

basically following eight principles (Erl et al., 2013):

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

89

• Standardised Service Contract

• Service Loose Coupling

• Service Abstraction

• Service Reusability

• Service Autonomy

• Service Statelessness

• Service Discoverability

• Service Composability

Following service-oriented principles, besides others, contributes to interoperability and

maintainability (particularly modifiability) (Bass et al., 2012; Coulouris et al., 2012). Hence,

this architectural design decision of oneM2M contributes to REQ 5. Moreover, maintainability

respectively modifiability contribute to reusability and thus the REQ 2 (Erl et al., 2013).

Additionally, service-orientation provides new capabilities for reusability by means of service

composition, whereas according to Vinoski in (2008) “[the} goal of service composition is to

reuse existing services by means of assembling them in composite applications that combine

them in novel and unexpected ways” (Vinoski, 2008). These kinds of functionalities are also

referred to as mashups (cf. Daniel & Matera, 2014), and the dynamic and automated creation

of such mashups facilitates smart of intelligent system-of-systems.

4.4.2 REST, RESTful Architecture

There are different approaches to build a SOA and to design its service model and interfaces.

One possibility is the adaption of a RESTful SOA approach.

Principles

REpresentational State Transfer (REST) was first described by Fielding in his doctoral thesis

in (Fielding, 2000). REST, however, is often misunderstood and misused. As well as SOA,

REST is a design paradigm or an architectural style comprised of a number of design decisions

(Erl et al., 2013; Richardson & Ruby, 2007). Hence, REST is neither an architecture nor it is

tied to the Web or even “depends on the mechanics of HTTP” (Richardson & Ruby, 2007).

Architectures, following the REST design criteria, can be referred to as RESTful architectures.

The REST “design decisions are defined through constraints that are associated with

architectural properties that represent design goals” (Erl et al., 2013). The formal REST

constraints are:

• Client-Server

• Stateless

• Cache

• Uniform Interface

• Layered System

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

90

• Code-on-demand (optional)

An important principle of REST is the use of hypermedia as the engine of application state

(HATEOAS) (Fielding, 2000). This means, the server can guide the client through the

application or API by providing hypermedia (Fielding, 2000; Richardson, Amundsen, & Ruby,

2013). This aspect gains importance with respect to the resource structure, discussed in the

Section 4.4.3.

REST and M2M

In contrast to publications and presentations from oneM2M members, such as (Ben Alaya,

Medjiah, Monteil, & Drira, 2015; Elloumi, 2014), where the oneM2M service platform is

referred to as adapting the RESTful architecture principles, the oneM2M standards documents

(oneM2M TS-0001, 2015; oneM2M TS-0004, 2015) lacks in clearly committing or referring

to RESTful architecture principles or service-oriented principles. This means neither these

terms nor reference to their specifications or design principles are used. The absence of these

references aggravates the understanding of the oneM2M design decisions, their trade-offs, and

consideration of architectural alternatives. It further contributes to architecture erosion, as

discussed at the beginning of this chapter. Thus, it is proposed to refer to the oneM2M service

platform as a RESTful SOA, while at the same time clearly stating architectural design

decisions that reduce the compliance to the related principles. One example is the cessation of

the collection pattern, which is discussed in Section 4.4.3.

According to Erl, the “REST design goals directly or indirectly support and enhance the

interoperability potential of services within a service inventory” (Erl et al., 2013, p. 97),

whereas the service inventory in the context of oneM2M is the distributed CSE layer. Thus, the

selection of REST by the oneM2M standard, despite small deviations, contributes to the REQ 5.

Moreover, the REST constraints additionally to SOA are contributing reusability and

portability, hence REQ 2 and REQ 3. Not least, the simplicity and lightweight nature of

RESTful interfaces are particularly suitable for M2M communications (Pautasso, Zimmermann,

& Leymann, 2008).

4.4.3 Resources and Resource Structure

To provide the previously described CSFs following a RESTful SOA approach, the

functionalities are mapped to resources.

The ETSI M2M standard, which is the major precursor of the oneM2M standard that was

harmonised and evolved to the oneM2M service platform (see Section 4.1), specified a generic

resource tree structure (Boswarthick et al., 2012; ETSI TS 102 690, 2013). This resource tree

implemented the collection pattern, where resources of the same type are collected (i.e.,

subordinated) to the respective collection resource, typically indicated by the plural name of

the resource type (or a related abbreviation). Following this pattern, all AEs would be

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

91

subordinated below a respective collection resource, i.e., ApplicationEntities. This facilitates

the retrieve of all resources of a certain type possible through one Retrieve operation on the

superior collection resource. It further facilitates the modelling of the scope of those resources

that can occur at several positions in the resource tree. Examples are a (data) container resource,

subordinated to either an AE, or a (data) container resource, subordinated to a CSEBase

resource. While the first corresponds to AE-specific data, the second indicates CSE-global data.

However, oneM2M has broken with this collection pattern substituting the explicit collection-

resource-based methods with implicit discovery including filterCriteria and more excessive use

of links between resources. The reasons might be the shorting of URIs, a more flexible tree

structure, or the reduction of server processing overhead (Ben Alaya, Monteil, & Drira, 2014).

However, this decision was subject of discussions, and it is considered as an architectural design

decisions decreasing the compliance with RESTful principles (Ben Alaya et al., 2014;

Richardson et al., 2013), see Section 4.4.2.

Due to the cessation of the collection pattern and because resources nesting is variable,

oneM2M does not specify a resource tree structure, but merely standardises the different

resource types which can be arranged in a tree structure and linked together in various ways.

Table 4.1 presents a selection of oneM2M Resource Types, including description and selection

of possible child or parent resources.

Although oneM2M ceases the collection pattern, parent-child relations are still facilitated in

various ways, as the Table 4.1 shows. Hence, they are still used in the following for the

considered scenarios of the oneM2M-based ASDP because it supports the understanding of

resource relationships, even without collection resources. Figure 4.5 presents a resource tree

structure example of a CSEBase. It shows the relationships and types of Attributes and

Resources including their cardinality, whereas “(L)” states that the attribute itself contains a

list. This example details an AE with a container and a contentInstance resource. The light grey

attributes are for the purpose of CSE-internal resource management and will not be externally

accessible.

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

92

Resource Type Short Description
Child Resource
Types
(selection)

Parent Resource
Types
(selection)

accessControlPolicy

Stores a representation of privileges. It is
associated with resources that shall be
accessible to entities external to the Hosting
CSE. It controls "who" is allowed to do
"what" and the context in which it can be
used for accessing resources

subscription

AE, AEAnnc,
remoteCSE,
remoteCSEAnnc,
CSEBase

AE
Stores information about the AE. It is
created as a result of successful registration
of an AE with the Registrar CSE

subscription,
container, group,
accessControlPolicy,

remoteCSE,
remoteCSEAnnc,
CSEBase

container

Shares data instances among entities. Used
as a mediator that buffers data exchanged
between AEs and/or CSEs. The exchange
of data between AEs (e.g. an AE on a Node
in a field domain and the peer-AE on the
infrastructure domain) is abstracted from the
need to set up direct connections and allows
for scenarios where both entities in the
exchange do not have the same reachability
schedule

container,
contentInstance,
subscription, latest,
oldest

AE, AEAnnc,
container,
containerAnnc,
remoteCSE,
remoteCESAnnc,
CSEBase

contentInstance
Represents a data instance in the
<container> resource

None specified
Container,
containerAnnc

CSEBase

The structural root for all the resources that

are residing on a CSE. Stores information

about the CSE itself

remoteCSE,
remoteCSEAnnc,
node, AE, container,
group,
accessControlPolicy,
subscription,
schedule

None specified

group

Stores information about resources of the
same type that need to be addressed as a
Group. Operations addressed to a Group
resource shall be executed in a bulk mode
for all members belonging to the Group

subscription

AE, AEAnnc,
remoteCSE,
remoteCSEAnnc,
CSEBase

latest (V)
Virtual resource that points to most recently
created <contentInstance> child resource
within a <container> resource

None specified container

node Represents specific Node information subscription
CSEBase,
remoteCSE

oldest (V)
Virtual resource that points to first created
<contentInstance> child resource within a
<container> resource

None specified container

remoteCSE

Represents a remote CSE for which there
has been a registration procedure with the
registrar CSE identified by the CSEBase
resource

AE, container, group,
accessControlPolicy,
subscription,
schedule, node

CSEBase

schedule
Contains scheduling information for delivery
of messages

subscription
subscription,
CSEBase,
remoteCSE

subscription

Subscription resource represents the
subscription information related to a
resource. Such a resource shall be a child
resource for the subscribe-to resource

schedule

accessControlPolicy,
accessControlPolicyA
nnc, AE, AEAnnc,
container, CSEBase,
group, groupAnnc,
node, nodeAnnc,
remoteCSE,
remoteCSEAnnc,
schedule

Table 4.1: Selection of oneM2M resource types (oneM2M TS-0001, 2015)

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

93

Figure 4.5: Resource tree structure example of a CSEBase

4.4.4 Methods

Communication between entities is possible across the respective reference points (see

Section 4.3.2). This means, for example, AEs never communicate directly but by use of their

CSE(s) which reflects the middleware approach of the CSE.

The oneM2M service platform applies a request/response communication pattern between the

originator (AEs, or CSEs) and the receiver (CSEs, or AEs if they are server-capable). Each

request can be one of the respectively supported method, namely: Create, Retrieve, Update,

Delete, or Notify (in the following abbreviated as CRUD+N). Table 4.2 shows which of the

CRUD+N operations are allowed with respect to the originator and receiver of the request.

An AE always sends the request to its registrar CSE. If this registrar CSE is not the hosting

CSE of the requested resource, the receiving CSE gets a transit CSE and forwards the request

to another CSE which might be another transit CSE or the hosting CSE. Thereby the AE knows

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

94

its registrar CSE through its own registration and the CSE knows their next CSE hops, e.g.,

through pre-provision during the bootstrap phase.

 Receiver

Supported

Methods
AE CSE

O
ri

g
in

at
o
r

AE
not

supported

Create

Retrieve

Update

Delete

CSE Notify

Create

Retrieve

Update

Delete

Notify

Table 4.2: Supported operations between originator and receiver entity

To summarise: The resource tree is mapped to Uniform Resource Identifiers (URI) and exposed

through the standardised interfaces (Mca, Mcc, Mcc’), following the RESTful architectural

style. Accordingly, the resources are manipulated using CRUD+N operations, which are

mapped to the applied application layer protocols, most likely HTTP, CoAP, and MQTT, see

Section 4.4.5.

4.4.5 Protocol Stack and Bindings

The oneM2M standard specifies the CSE layer as a middleware on which the AE layer is placed

(see Figure 4.2). The communication across the reference points Mca, Mcc, Mcc’ is bound to

certain application layer protocols (see Figure 4.6)14. This is the technical foundation for the

fact that AEs and CSEs can be co-located in a single Node (i.e., ASN), or that AEs are also

capable of residing on a different Node than their registrar CSE. Possible configurations are

detailed in Section 4.3.6.

14 The Mcn reference point from the CSE to the NSE might also be bound to the named application layer

protocols. But, there could be also other mappings in order to integrate the respective network APIs (oneM2M TS-

0001, 2015, p. 35)

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

95

Figure 4.6: Current oneM2M protocol stack for Mca, Mcc, Mcc’ reference points

The oneM2M standard currently provides bindings for the following application layer

protocols:

• Hyper Text Transfer Protocol (HTTP) (oneM2M TS-0009, 2015)

• Constraint Application Protocol (CoAP) (oneM2M TS-0008, 2015)

• Message Queue Telemetry Transport (MQTT) (oneM2M TS-0010, 2015)

CoAP was especially designed for the RESTful communication of very limited electronics

devices (Bormann, Castellani, & Shelby, 2012; Shelby, Hartke, & Bormann, 2013). It typically

runs over User Datagram Protocol (UDP), which contributes to its simplicity (Bormann et al.,

2012). In contrast, MQTT typically runs over Transmission Control Protocol (TCP), as well as

HTTP. Hence, CoAP is more lightweight than MQTT, followed by HTTP that in comparison

is heavyweight in comparison (Pereira & Aguiar, 2014).

Besides, MQTT and CoAP, in comparison to HTTP, intrinsically support asynchronous

communication by means of the publish/subscribe communication pattern which could be

considered as a benefit for M2M communication. These are only few aspects as to why CoAP

and MQTT outperform the HTTP protocol in many M2M communication situations (Pereira &

Aguiar, 2014).

However, regarding the appropriateness of the oneM2M service platform for the enabling of

the distributed ASDP concept, the important aspect is that the protocol stack of the oneM2M

standard provides bindings for classic HTTP as well as modern MQTT and CoAP that are more

commonly dedicated to certain M2M scenarios. Due to the abstraction introduced by the CSE

layer the application layer protocol applied between nodes can be changed transparently, which

means without necessary modifications of the AEs. In this regard, the availability of those three

protocols bindings contributes to the fulfilment of the REQ 6 of the ASDP concept.

4.5 Communication and Data Exchange Mechanisms

Adequate data exchange capabilities are crucial for the oneM2M service platform as

middleware because it spans the design space for the communication of distributed AEs and

CSEs. This design space directly relates to the resulting data flows and network requirements

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

96

of the distributed functionality, and hence is a central aspect for the REQ 6. Due to this fact,

the communication and data exchange mechanisms decide which functional splits are

practicable between the applications and nodes of the oneM2M service platform (see

Section 3.3).

This section presents the currently available communication and data exchange mechanisms of

the oneM2M service platform and assesses their spanned design space. The focuses are

particularly those communication mechanisms relevant for the ASDP which expects AEs to be

server-capable. Thus, the polling channel as a mechanism to deal with non-server-capable AEs

is not considered here. Furthermore, the mechanisms are introduced without considering group

communication capabilities (see related CSF, Section 4.3.2).

4.5.1 Principles

The oneM2M service platform is designed as cross-domain platform. Hence, the

communication and data exchange mechanisms have to consider the fact that the nodes to be

integrated are very heterogeneous with respect to their computational and functional

capabilities. For example, in the Smart Home domain, quite limited nodes, such as temperature

sensors ADNs, might be operated, possibly without integrated storage capabilities. They may

provide measurements only at low frequency, e.g., one measurement per minute to an MN,

which connects such sensors to the oneM2M service platform. Such a simple sensor, storing its

data directly at a MN via existing in-house wireless technologies, may not require enhanced

communication mechanisms such as indirect communication techniques or filter criteria, but

may require mechanisms to deal with its missing server-capability of the AEs.

In comparison, within the context of an ITS, there might be nodes such as vehicles which

nowadays offer great computational capabilities, several gigabytes of storage, and potentially

could provide several hundred megabytes of sensor data per second (if optical sensors, such as

cameras, are also taken into account). While the vehicle node is expected to be server-capable,

it may require enhanced indirect communication capabilities to deal with the wireless cellular

network characteristics and temporary disconnections. Furthermore, enhanced data filtering

capabilities might be required because it is neither feasible nor reasonable to transfer such

amounts of vehicular data using the available wireless cellular networks (see Section 2.2.2).

It shall be noted that data exchange is not limited to the exchange of application data. Since

within the resource tree structure of a CSE much more than merely application data is stored,

and because data exchange in general refers to the full or partial transmission of sub-trees or

resources, it also includes all other parts, such as management and meta-data.

For the following explanations, a oneM2M configuration according to Figure 4.7 is assumed.

It consists of a Vehicle ASN and an OEM Server ASN. Within this example, a VehicleAE1 is

located on the Vehicle ASN, and an OEMAE1 is located on the OEM Server ASN.

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

97

Figure 4.7: Generic oneM2M configuration for communication and data exchange considerations

Figure 4.7 also illustrates a fundamental characteristic of oneM2M communication and data

exchange: AEs never communicate directly, but only by use of at least one CSE, even if the

AEs are registered at the same CSE or located on the same node. In this regard, the data

exchange between AEs refers to indirect communication that is defined as:

Indirect communication is defined as communication between entities in a distributed

system through an intermediary with no direct coupling between the sender and the

receiver(s). (Coulouris et al., 2012, p. 230)

The actual degree of coupling or uncoupling between AEs depends on the communication

mechanism used. The three possibilities, provided by the oneM2M service platform, namely

request/response, announcement, and subscribe/notify, are subsequently discussed.

4.5.2 Request/Response

The basic communication mechanism is a request/response. It is available on each reference

point. The originator of a request can choose between three different types for the response

handling (oneM2M TS-0001, 2015, p. 54):

1. blockingRequest: This means that the response is only sent, if the receiver CSE has

fully processed the request and is capable of responding with the result. The

originator is blocked during the whole processing until the response is received.

2. nonBlockingRequestSynch: The receiver CSE is requested to accept the request and

shall provide a reference to a resource where it stores the result of the request after

completion of the request. Here, a response is already sent on request acceptance. The

originator of the request is responsible to retrieve the result through a subsequent

request to the referenced resource. If the result is not yet available, it is the

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

98

responsibility of the originator to try again later. If the result is available, it is

provided within the response.

3. nonBlockingRequestAsynch: The receiver CSE is requested to accept the request

and shall respond to this individually. After processing of the request and availability

of the result, the receiver CSE provides the result through an asynchronous

notification request to the originator. For this variant, the originator can optionally

specify several notification targets with which the response can be directly distributed

to other entities.

The different response types (particularly nonBlockingRequestSynch) can facilitate the

minimisation of the communication time of the originator of the request which may have a

positive effect on energy efficiency (oneM2M TS-0001, 2015).

4.5.3 Announcement

Another possible communication mechanism is the resource announcement. It can be utilised

by an AE or CSE if the announcedTo attribute of a supported resource within the respective

Create or Update method is configured accordingly, e.g., with the target(s). Since a CSE is the

receiver of such a resource Create or Update, it is the responsibility of the CSE to announce the

resource to the target as intended by the originator (oneM2M TS-0001, 2015). The announced

resource “can have a limited set of attributes and a limited set of child resources from the

original resource” (oneM2M TS-0001, 2015, p. 138). In more detail: The oneM2M standard

specifies for each attribute of an announcable resource whether this attribute is:

• Mandatory Announced (MA): This attribute is announced from the original to the

announcedTo resource(s) in any case.

• Optionally Announced (OA): This attribute is optionally announced, if it is explicitly

specified within the announcedAttribute attribute at the original resource.

• Not Announced (NA): This attribute is never announced to the announcedTo

resource(s).

The announcement of resources facilitates, in addition to others, the discovery of AEs on remote

nodes, if they are announced with meaningful attributes, such as label or contentInfo to the

superior CSE. Furthermore, the announcement also enables the data exchange between nodes

if the announceTo and announcedAttribute attributes of the respective container and

contentInstance resources are configured accordingly. However, the announcement forces an

exact copy of the announced attributes of the original resource and does not enable additional

filtering which is the reason why it is of limited relevance for application data exchange.

4.5.4 Subscribe/Notify

The subscribe/notify mechanism of the oneM2M service platform can be considered as an

implementation of the publish/subscribe communication paradigm. Systems implementing this

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

99

paradigm can also be referred to as distributed event-based systems (Coulouris et al., 2012). In

the oneM2M implementation, the CSE middleware layer acts as neutral dealer, bringing

publisher and subscribers together. Intrinsic to the oneM2M implementation of the

publish/subscribe communication paradigm is its distributed nature, since each CSE on every

node has this neutral dealer capability. This puts efforts to the distributed discovery mechanism

and routing capabilities to interconnect those distributed dealer capabilities.

Figure 4.8 shows an exemplary sequence diagram of a subscription and notification procedure,

within the current oneM2M service platform. The example assumes the usage of a server-

capable OEMAE1.

Figure 4.8: Sequence Diagram of Subscribe/Notify example

Step 1: The OEMAE1 requests the creation of a subscription on the resource

vehicle<ID>.oem.com/VehicleAE1/container. This CREATE request is sent to

the OEMCSE, where the OEMAE1 is registered.

Step 2: The OEMCSE detects that the subscription request targets a resource located

within another CSE. It forwards the request to the VehicleCSE.

Step 3: The subscription request is accepted, and the subscription is created.

Response OK.

Step 4: The Response OK is forwarded to the initiating OEMAE1.

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

100

Step 5: The VehicleAE1 publishes data through the creation of a contentInstance at

/VehicleAE1/container.

Step 6: Response OK.

Step 7: Since subscriptions to the resource /VehicleAE1/container exist, the VehicleCSE

checks whether the constraints, in particular eventNotficationCriteria, are

fulfilled. If this is the case, a notification is sent to oem.com/OEMAE1. Since the

OEMAE1 is registered at the OEMCSE, the VehicleCSE sends the NOTIFY to

the VehicleCSE.

Step 8: The VehicleCSE re-targets the NOTIFY to the VehicleAE1.

Step 9: The VehicleAE1 acknowledges the correct receipt of the notification with

Response OK. This is sent to the OEMCSE.

Step 10: The OEMCSE forwards the Response OK to the VehicleCSE.

The design of the publish/subscribe communication pattern, respectively its occurrence as

subscribe/notify mechanism within oneM2M, offers advanced decoupling of sender and

receiver(s), i.e., AEs (Aldred, van der Aalst, Dumas, & Hofstede, 2005; cf. Coulouris et al.,

2012; Eugster, Felber, Guerraoui, & Kermarrec, 2003). In detail, subscribe/notify mechanism

of oneM2M enables the following decoupling (Aldred et al., 2005; cf. Eugster et al., 2003):

• Space Decoupling: Subscribing AEs do not need to know the identity/URI of the

actual producer of the data, but only the identity/URI of the providing resource that is

hosted within the CSE. Similarly, producing AEs do not need to know the

identify/URL of the actual receiver(s) AE(s). The producing AE only publishes its

data to a (neutral) resource, acting as dealer. This is the hosting CSE of the producer

which is then responsible for the forwarding (or notification) of the receiver(s).

This space decoupling between subscribing and publishing AE is achieved through the

“subscription and notification CSF” which checks for existing subscriptions to that

resource. It further checks the fulfilment of individual notification constraints, and

afterwards triggers notification to the subscriber AE(s). This also enables a one-to-

many relation, where one resource modification could be notified to many subscribers.

The space decoupling also exists for the subscribing AE: They do not know which

(and how many) AE(s) published data to the subscribed CSE resource hosted within

the CSE.

Example: Figure 4.8 steps 1-4 illustrate that the subscribing AE (OEMAE1) addresses

its subscription towards a container resource, located inside the VehicleCSE. This is

independent of the VehicleAE1, publishing its data (through a CREATE of a

contentInstance) at the same VehicleCSE resource: see Figure 4.8 steps 5-6.

• Time Decoupling: AEs publish their data to a related resource within the CSE layer.

Since the notification to subscribing AE(s) is performed through the “subscription and

notification CSF”, the originating AE is time-decoupled from the subscribing AE(s).

This means that both AEs do not need to be online at the same time. In the usual case

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

101

where the originating AE and the subscribing AE(s) are hosted on different nodes, the

node lifecycle and availability also get decoupled. The time-decoupling capabilities

are even greater, if the actual oneM2M configuration includes an MN – then, even the

CSEs (and hence complete Nodes) are time-decoupled.

Example: In the example illustrated in Figure 4.8, the VehicleAE1 must only be online

for the steps 5 and 6. The subsequent notification (steps 7-10) is time-decoupled.

Depending on the CMDH policies, it could happen that these steps are performed

hours later if the OEM-IN is not available at the time when the notification shall be

send.

• Synchronisation Decoupling: The AE only publishes its data to the related resource

within the CSE layer which is individually acknowledged. The originating AE is not

part of any subsequent, asynchronously triggered notification(s) to subscribing AE(s).

Hence, the originating AE is not blocked during that notification(s). Furthermore, the

subscribing AE(s) is/are not (necessarily) blocked until it/they get(s) a notification, as

the contact URI could be used as an asynchronous call-back. Therefore, the

originating AE is synchronisation decoupled from the receiving AE(s).

Example: Figure 4.8, steps 5 and 6 show the individual acknowledgement of the data

provision of the VehicleAE1 to the CSE. With the exception of these steps, the

VehicleAE1 is not active or blocked. Furthermore, the OEMAE1 is not active/blocked

between the steps 4 and 8, and it directly respond in the following step 9 and

afterwards again must not be active and is not blocked.

The subscribe/notify (i.e. publish/subscribe) communication mechanism is particularly suitable

to deal with the requirements of large-scale M2M communications (Eugster et al., 2003;

Uckelmann, Harrison, & Michahelles, 2011). Furthermore, the subscribe/notify contributes to

interoperability and hence REQ 5 (Bass et al., 2012; Kazman et al., 2013). Hence, it is

particularly suitable for application data exchange.

4.6 The oneM2M-based Automotive Service Delivery Platform

Similarities within the problem space of M2M and the ASDP concept motivated the

considerations as M2M as initial hypothesis. The previous analysis of the oneM2M service

platform by means of its functional architecture, service/resource model and technologies, and

general communication and data exchange mechanisms showed suitable fundamental

architectural design decisions. These contribute to the previously identified requirements of the

ASDP. In this regard the investigation of the solution space provided by the oneM2M service

platform supported its selection as enabler for the realisation of the ASDP concept.

However, the oneM2M service platform is a generic reference architecture. Hence, in the

following section a reference configuration for automotive environments by means of a

oneM2M-based ASDP is introduced. The term reference configuration thereby emphasises that

the oneM2M-based ASDP is a selection and instantiation of appropriate subsets in the sense of

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

102

the ASDP concept, but it remains fully compatible with the oneM2M service platform. Since

this reference configuration further constrains the solution space provided by the oneM2M

service platform towards the requirements of our ASDP concept, it continues the ideas of the

PBD methodology (see Section 2.4.5).

Despite the general suitability of the fundamental architectural design decisions of oneM2M,

particularly with respect to REQ 6 of the ASDP concept, the communication and data exchange

capabilities of oneM2M needs to be further investigated beyond the already introduced

fundamentals. As a starting point, the Section 4.6.2 introduces basic communication scenarios

of the oneM2M-based ASDP.

4.6.1 Reference Configuration

Following the oneM2M service platform specifications, a vehicle could be an ASN or a MN

that integrates all vehicle-internal ASNs or it could be a NoDN (see Section 4.3.5). Considering

that in a first deployment phase, the vehicular oneM2M endpoint might be a communication

gateway, the head-unit, or in general one single On-Board Unit, which hides vehicle-internal

non-oneM2M-compliant components, it has been decided that the vehicle externally appears

and works as a oneM2M-compliant ASN, called vehicle ASN. Further, the OEM server is being

realised as IN. The ASN is located inside the field domain and it is connected to the

infrastructure domain, using wireless cellular network technologies. Since oneM2M-compliant

third-party servers might themselves combine and abstract a multitude of nodes (e.g., if the

third party is another OEM, a traffic infrastructure provider, or an energy company), the

reference configuration assumes another IN, called 3rd party IN. Third party servers and

applications that are not oneM2M-compliant could be referred to as NoDN. However, because

the integration of NoDN is currently out of scope of oneM2M standardisation, the integration

of third party servers using other technologies are integrated at AE level through appropriate

adaptor AEs (e.g. IPE, see Section 4.3.5) residing on the OEM server IN.

Figure 4.9 illustrates the compound functional architecture of the reference configuration of a

oneM2M-based ASDP with the following reference points: Mca (vertical interface for AEs),

Mcc (horizontal between two CSEs). OneM2M-compliant third party server INs are connected

by use of the Mcc’ interface with the OEM server IN. This indicates that the OEM might restrict

the external functionalities provided to third parties. The integration of non-compliant 3rd Party

Server is an individual task out of scope of standardised reference points.

For the sake of completeness, the possibility of a direct connection between the vehicle and

other M2M-conformant IN or MN, e.g., third party servers, via the Mcc interface is hinted at.

Against the background of the envisaged mediation capabilities between a vehicle ASN and 3rd

party server IN, the ASDP concept describes the value of an interposed OEM server (see

Section 3.1). Hence, the direct connection to third party servers is currently not favoured

although technically – because of similar reference points – feasible. Within a real-world

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

103

deployment there might be additional MN introduced between ASN and IN, e.g., for

optimisation purposes by means of deeper hierarchies. This could be done transparently and

needs no further consideration here.

Figure 4.9: Functional architecture of the reference configuration of a oneM2M-based Automotive Service

Delivery Platform

4.6.2 Basic Communication Scenarios

Considering the reference configuration of oneM2M for the ASDP two basic communication

scenarios can be identified whenever communication across at least one intermediate node is

considered. This is the case, e.g., for the communication of vehicle AEs with 3rd party AEs, or

if in a real-world deployment additional MNs are integrated. Thereby, the intermediate Node

(e.g., the OEM-IN) can either occur transparent or with back-to-back functionalities realised

through one or more AEs. These communication scenarios are introduced in the following with

examples utilising the subscribe/notify mechanism.

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

104

Transparent Intermediary Node

The oneM2M service platform meet the REQ 1 of the ASDP concept and offers a standardised

End-to-End solution. Moreover, the horizontal Mcc interface occurs between ASNs, MN, and

IN, and also the Mcc’ interface between INs of two different Service Providers (see Section

4.3.2) must not necessarily differ from the Mcc interface, depending on the service contract.

Accordingly, from the functional point of view, CSEs and respectively AEs residing on these

nodes are capable of direct interworking. Nevertheless, the actual deployment configuration

might introduce intermediary nodes. OneM2M uses a re-targeting mechanism to forward

requests (and responses) that are not addressing a local resource to another CSE, according to

pre-configuration. This re-targeting is transparent to the actual request (and responses).

Figure 4.10: Sequence diagram of subscription setup within transparent intermediary node scenario

Considering a configuration with a Vehicle-ASN, hosting a VehicleAE1, an OEM-IN, and a 3rd

Party-IN, hosting two applications 3rdPartyAE1 and 3rdPartyAE2 that want to subscribe to the

data container of VehicleAE1. Hereby, Figure 4.10 illustrates the sequence diagram for the

message flow of the subscription setup:

Step 1: VehicleAE1 requests creation data container

Step 2: Response OK

Step 3: 3rdPartyAE1 requests creation of subscription at

vehicle<ID>.oem.com/VehicleAE1/container/subscription

Step 4: The 3rdPartyCSE determines that the requested resource is not part of the local

CSE and re-targets the request to the OEMCSE

Step 5: The OEMCSE determines that the requested resource is not part of the local CSE

and re-targets the request to the VehicleCSE with the address

vehicle<ID>.oem.com. The VehicleCSE determines that the requested resource

is local, and performs the create request on the

VehicleAE1/container/subscription resource

Step 6: Response OK to OEMCSE

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

105

Step 7: Re-targeting of response OK to 3rdPartyCSE

Step 8: Re-targeting of response OK to 3rdPartyAE1

Step 9: 3rdPartyAE2 requests creation of subscription at

vehicle<ID>.oem.com/VehicleAE1/container/subscription

Step 10: The 3rdPartyCSE determines that the requested resource is not part of the local

CSE and re-targets the request to the OEMCSE

Step 11: The OEMCSE determines that the requested resource is not part of the local CSE

and re-targets the request to the VehicleCSE with the address

vehicle<ID>.oem.com. The VehicleCSE determines that the requested resource

is local, and performs the create request on the

VehicleAE1/container/subscription resource

Step 12: Response OK to OEMCSE

Step 13: Re-targeting of response OK to 3rdPartyCSE

Step 14: Re-targeting of response OK to 3rdPartyAE1

Afterwards, two subscriptions exist for the VehicleAE1 data container. Figure 4.11 shows the

sequence diagram for the related notifications.

Figure 4.11: Sequence diagram of notification within transparent intermediary node scenario

Step 1: VehicleAE1 requests creation of data within its container

Step 2: Response OK

Step 3: In case that the filterCriteria of the Notification (according to the subscription of

3rdPartyAE1) are fulfilled, notify request to 3rdParty.com/3rdPartyAE1 is

performed. Because this target is not at this originating CSE, it is forwarded to

the OEMCSE.

Step 4: The OEMCSE determines that the notification target is not a local resource and

forwards the request to the 3rdPartyCSE.

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

106

Step 5: The 3rdPartyCSE performs re-targeting of the notify request to the 3rdPartyAE1

Step 6: Response OK to 3rdPartyCSE.

Step 7: 3rdPartyCSE forwards the response to the OEMCSE

Step 8: OEMCSE forwards the response to the VehicleCSE

Step 9: In case that the filterCriteria of the Notification (according to the subscription of

3rdPartyAE2) are fulfilled, notify request to 3rdParty.com/3rdPartyAE2 is

performed. Because this target is not at this originating CSE, it is forwarded to

the OEMCSE.

Step 10: The OEMCSE determines that the notification target is not a local resource and

forwards the request to the 3rdPartyCSE.

Step 11: The 3rdPartyCSE performs re-targeting of the notify request to the 3rdPartyAE2

Step 12: Response OK to 3rdPartyCSE.

Step 13: 3rdPartyCSE forwards the response to the OEMCSE

Step 14: OEMCSE forwards the response to the VehicleCSE

The transparent forwarding of requests (and responses) is a fundamental functionality of the

oneM2M service platform that is necessary to enable hierarchical structures (see Section 4.3.6).

However, this scenario of a transparent intermediary OEM-IN has several drawbacks: At first,

the transparent forwarding of subscriptions and notifications potentially causes redundant data

transmissions from the Vehicle-ASN over the OEM-IN to the 3rdParty-IN. Although redundant

data transmissions should be avoided at any time, they are particularly negative between the

Vehicle-ASN and the OEM-IN, since this will utilise wireless cellular network bandwidth.

Furthermore, considering privacy and mediation capabilities, the OEM might not favour the

fact that 3rdPartyAEs can directly connect to the vehicle. Summarised, the fully transparent

connection of VehicleAEs with 3rdPartyAEs is not considered as a favoured communication

scenario for the ASDP. An alternative is described in the next paragraph.

Intermediary Node with Back-to-Back AE

In contrast to the transparent intermediate node scenario, the communication can be limited to

a certain intermediate node, e.g., an OEM server IN. In this regard, an AE that realises a back-

to-back functionality can be meaningful.

The foundations are different views on its resources (including AEs) that can be provided by

an OEM Server IN. These can, e.g., depend on the role of the communication counterpart to

distinguish between an internal view/access for the vehicle ASNs of the OEM and an external

view/access towards 3rd Party Nodes. This can be realised by means of oneM2M

accessControlPolicies, which support constraints according to the originator, the operations

(i.e., Create, Retrieve, Update, Delete, Discovery, Notify), and contexts, such as time, address

or location (oneM2M TS-0001, 2015; oneM2M TS-0003, 2015).

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

107

Figure 4.12: oneM2M Node with back-to-back functionality: Realisation of different views on the same

node

Figure 4.12 illustrates the use of those accessControlPolicies to realise an internal and external

view of the OEM Server IN: Here, the InternalAE1 should only be available for internal usage,

the ExternalAE2 should only be available for external usage and the CommonAE3 should be

available to both. CommonAE3 further shows that access constraints are possible at different

levels of the hierarchical structure and for different resources. Accordingly, the

InternalContainer1 of the CommonAE3 is restricted to internal usage, the ExternalContainer2

is restricted to external usage, and the CommonContainer3 is visible and modifiable for both.

AEs, such as the CommonAE3, which are accessible for two or more counterparts but also

contain resources that are dedicated to one (or a subset of the overall counterparts), can be used

to realise the envisaged back-to-back functionalities. For example, data that is received at the

InternalContainer1 can be processed at the CommonAE3 and provided differently at the

ExternalContainer2.

Figure 4.13 shows the sequence diagram of the subscription setup according to a back-to-back

intermediary node scenario.

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

108

Figure 4.13: Sequence diagram of subscription setup within back-to-back intermediary node scenario

Step 1: VehicleAE1 requests the creation data container.

Step 2: Response created.

Step 3: OEMAE1, which is the AE with back-to-back functionality, requests the creation

of a data container that is accessible for 3rdPartyAEs.

Step 4: Response created.

Step 5: OEMAE1 requests creation of subscription at

vehicle<ID>.oem.com/VehicleAE1/container/subscription.

Step 6: The OEMCSE determines that the requested resource is not part of the

originating CSE and forwards the request to the VehicleCSE.

Step 7: Response created to OEMCSE.

Step 8: Response created re-targeting to OEMAE1.

Step 9: 3rdPartyAE1 requests creation of subscription at

oem.com/OEMAE1/container/subscription.

Step 10: The 3rdPartyCSE determines that the requested resource is not part of the

originating CSE and forwards the request to the OEMCSE.

Step 11: Response created to 3rdPartyCSE.

Step 12: Response created re-targeting to 3rdPartyAE1.

Step 13: 3rdPartyAE2 requests creation of subscription at

oem.com/OEMAE1/container/subscription.

Step 14: The 3rdPartyCSE determines that the requested resource is not part of the

originating CSE and forwards the request to the OEMCSE.

Step 15: Response created to 3rdPartyCSE.

Step 16: Response created re-targeting to 3rdPartyAE2.

This setup facilitates the following message flow, as illustrated in Figure 4.14:

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

109

Figure 4.14: Sequence diagram of notification within back-to-back intermediary node scenario

Step 1: VehicleAE1 requests creation of data within its container

Step 2: Response OK

Step 3: In case that the filterCriteria of the notification (according to the subscription of

OEMAE1) are fulfilled, notify request to oem.com/OEMAE1 is performed.

Because this target is not at this originating CSE, it is forwarded to the

OEMCSE.

Step 4: The OEMCSE performs re-targeting of the notify request to the OEMAE1

Step 5: Response OK to OEMCSE.

Step 6: OEMCSE forwards the response to the VehicleCSE

Step 7: The OEMAE1 stores the notification data (i.e., content of data container) within

its container through a create request of /OEMAE1/container/data.

Step 8: Response created to OEMAE1.

Step 9: In case that the filterCriteria of the Notification (according to the subscription of

3rdPartyAE1) are fulfilled, notify request to 3rdParty.com/3rdPartyAE1 is

performed. Because this target is not at this originating CSE, it is forwarded to

the 3rdPartyCSE.

Step 10: The 3rdPartyCSE performs re-targeting of the notify request to the 3rdPartyAE1

Step 11: Response OK to 3rdPartyCSE.

Step 12: 3rdPartyCSE forwards the response to the OEMCSE

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

110

Step 13: In case that the filterCriteria of the Notification (according to the subscription of

3rdPartyAE2) are fulfilled, notify request to 3rdParty.com/3rdPartyAE2 is

performed. Because this target is not at this originating CSE, it is forwarded to

the 3rdPartyCSE.

Step 14: The 3rdPartyCSE performs re-targeting of the notify request to the 3rdPartyAE2

Step 15: Response OK to 3rdPartyCSE.

Step 16: 3rdPartyCSE forwards the response to the OEMCSE

The usage of AEs with back-to-back functionalities can be a meaningful communication

scenario for certain situations. It can be used for the purpose of information hiding, or to

increase privacy and mediation capabilities. However, it requires the deployment of the

respective AE at the intermediate node, which might not be possible or reasonable in any case

(e.g., with respect to ownership or operation of the intermediate node). Furthermore, the

indirection that occurs through the multiple transfers of data between the AE that realises the

back-to-back functionality and its CSE is inefficient.

Considering this, the communication mechanisms of oneM2M particularly with regard to data

exchange between AEs should be considered in more detail.

4.7 Summary

The oneM2M standard describes a domain-independent and universal service platform for

M2M communication. It introduces a common middleware layer (i.e., CSE) that implements

functionalities, referred to as Common Service Functions (CSF), that are shared across

applications (i.e., AE). Its End-2-End approach includes various node types and supports

hierarchical network configurations. Although architectural design decisions can be identified

that pose minor deviation on related principles, oneM2M can be considered as following a

RESTful Service-Oriented Architecture approach. The available protocol binding that in

addition to HTTP also support CoAP and MQTT, in combination with the available

communication mechanisms including the subscribe/notify mechanism, provide meaningful

capabilities for the requirements of M2M communications as well as the ASDP concept.

In this regard, the analysis of the key architectural design decisions of oneM2M service

platform confirmed its general suitability as enabler for the concept of a distributed Automotive

Service Delivery Platform. Hence, the initial hypothesis that was based on similarities of the

related problem spaces could be confirmed through the investigation of the provided solution

space. Consequently, a reference configuration of oneM2M to realise the distributed

Automotive Service Delivery Platform concept has been described. On this basis, basic

communication mechanisms have been discussed which are a starting point for more detailed

investigation of communication mechanisms and data exchange capabilities facilitated by

oneM2M.

An Automotive Service Delivery Platform Based on the oneM2M Service Platform

111

However, particularly with respect to the considerations about the distribution and portability

of functionalities between the vehicle and backend, and towards an Automotive Embedded

Internet, a more detailed consideration of the existing data exchange capabilities is necessary

to enable final assessments about the appropriateness of oneM2M as enabler for the ASDP

concept. This analysis is performed in the following chapter.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

112

5 Analysis of Current Data Exchange Capabilities of

the oneM2M Service Platform

The previous chapter introduced the oneM2M service platform and showed its general

suitability as enabler for the distributed ASDP concept through the analysis of architectural

design decisions and trade-offs being made against the background of the prior identified

requirements of the concept (see Section 3.4). Afterwards, it introduced a reference

configuration of a oneM2M-based ASDP for automotive environments. Thereby, the detailed

analysis of the current data exchange capabilities of the oneM2M service platform has been

motived.

One beneficial architectural design decision is the uniform Mca interface between the CSE and

AEs. From the functional point of view this facilitates the movement of AEs between Nodes,

e.g., between the vehicle and the OEM server, hence contributes to the REQ 3. Nevertheless,

the placements and functional splits which are actually feasible between AEs and Nodes are

limited by the resulting requirements against the intermediate networks. Hence, in the context

of an ASDP, the capabilities of the wireless cellular network (see Section 2.2.2) constrain the

design space for functional splits and distributions of AEs between the vehicle, the OEM server,

and other nodes. In more detail, the available maximum bandwidth between Nodes, minimum

latency, potential jitter, and error rate, are initially constrained by the cellular network

technology. Moreover, upper layer protocols, i.e., IP, TCP, HTTP (see Section 4.4.5) in general

introduce additional overhead, which could be expected to further diminish the actually

achievable communication performance at application layer, hence between AEs. On the

highest oneM2M layer, the AEs provide consuming and processing application data according

to their use case. In this regard, the distributed AEs introduce requirements against the

communication layers that are derived from the (distributed) use case to be realised. If these

requirements already exceed the capabilities of the underlying network technologies and

protocols, the intended distribution or functional split is not feasible, independent of the

oneM2M service platform capabilities.

However, AEs never exchange data directly, but by use of the CSE middleware. Hence, if the

requirements derived from the distributed use case in theory could be realised by the underlying

communication networks and protocols, it is a matter of the oneM2M data exchange capabilities

if the intended distribution or functional split is actually feasible. The data exchange capabilities

of the oneM2M service platform further affect the network efficiency of the distributed

5

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

113

application, which has implications on scalability and costs. Since the oneM2M data exchange

capabilities directly influence its applicability for and the potential of a oneM2M-based ASDP,

they are analysed in more detail in the following.

Towards the detailed analysis of current oneM2M data exchange capabilities, this chapter first

introduces a condensed ASDP scenario. Secondly, principle considerations with respect to data

exchange, data subsets and filtering positions are presented. Afterwards, the existing data

exchange capabilities of the subscribe/notify mechanism, which is the most advanced

communication mechanism provided, are comprehensively analysed. Finally, existing

shortcomings of oneM2M data exchange and their consequences are revealed, using the prior

introduced condensed scenario.

5.1 Condensed ASDP Scenario

To analyse the data exchange capabilities of the oneM2M service platform for application data,

the following condensed ASDP scenario is used. It is derived from the scenarios that were

introduced and discussed in Section 3.2.

5.1.1 Node Configuration

This ASDP scenario considers one vehicle (realised as ASN) and one OEMServer (realised as

IN) which reflect the proposed reference configuration of the oneM2M service platform for the

realisation of the ASDP concept (see Section 4.6).

Figure 5.1: Condensed ASDP scenario

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

114

5.1.2 Application Entities

In this scenario, the ASN hosts one AE, namely AE1 ‘Vehicle Data Provider’. The IN hosts two

AEs, namely AE2 ‘Extended Floating Car Data’ and AE3 ‘Vehicle Maintenance’. Their

functionalities and use cases are introduced below.

AE1: Vehicle Data Provider

Since vehicular sensor data is the foundation for many automotive-related applications, a

generic AE1 ‘Vehicle Data Provider’ is integrated into the vehicle that facilitates the provision

of vehicular data to the oneM2M service platform.

To obtain the vehicular data, the AE1 is connected with the in-vehicle communication networks,

such as the CAN-bus (see Section 2.2.2). These proprietary in-vehicle connections are currently

out of scope of the oneM2M service platform and standardisation activities. The AE1 is capable

of reading the proprietary data formats of the in-vehicle networks and can transform them to a

universal and vendor-independent data format according to the oneM2M necessities. In this

regard, the AE1 can also be considered as a hybrid Inter-working Proxy Application Entity

(IPE) (oneM2M TS-0001, 2015, p. 310) containing both – a oneM2M-compliant Mca reference

point as well as a proprietary (non-oneM2M reference point) to the in-vehicle networks.

However, since the focus here is on the vehicle-to-backend part of the ASDP, the distinction

between an AE and an IPE is from minor importance. Hence, the ‘Vehicle Data Provider’ is

treated as a usual AE, hiding the proprietary vehicle internals.

Since the AE1 ‘Vehicle Data Provider’ is a generic data provider, it could provide manifold data

within several different data containers in the resource tree. However, this scenario focuses one

exemplary data format, providing the following vehicular data within the attribute content of

contentInstance resources of the container ‘VehicleData’:

• The vehicle position, determined through the values ‘latitude’ and ‘longitude’,

including the vehicular driving direction, provided by the ‘heading’ value.

• The vehicle driving speed (‘speed’ value) in km/h.

• The remaining fuel range in km, as calculated by the vehicle, e.g., through usage of a

(weighted) moving average of the fuel consumption and remaining fuel level. This

data is provided through the value ‘fuelRange’.

• The information as to whether a driving dynamic control intervention is currently

applied or not, represented through a Boolean ‘ESP’ value (i.e., true or false).

This vehicular data is provided with the content attribute by use of an Extensible Markup

Language (XML) document, including a reference to a XML Schema Definition (XSD) that

provides detailed specification of XML structure and data types. The following listing shows

an example of an XML document.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

115

<?xml version="1.0" encoding="UTF-8"?>

<VehicleData xmlns="http://oem.com/xml/VehicleData">

 <Position>

 <latitude>49.866208</latitude>

 <longitude>8.640403</longitude>

 <heading>90</heading>

 </Position>

 <speed>35</speed>

 <fuelRange>96</fuelRange>

 <ESP>true</ESP>

</VehicleData>

Within the automotive context as well as most other typical M2M-scenarios, fundamental data

available at a node or AE typically relates to vehicle-internal sensors measurements and

computations. Hence, the data provided by such an application with respect to its accuracy and

resolution initially reflects the physical capabilities of the sensors behind them. Position data is

usually determined using an internal Global Positioning System (GPS) receiver connected to

the CAN-bus with a typical update rate of 1 to 4 Hz, while other sensor values might be

available at a much higher rate. Other sensor values might be available at a much higher rate,

particularly safety-relevant values such as wheel rotational speeds, driving dynamic

interventions, etc. Others, such as fuel level might be provided less frequently. Since the AE1

is unaware of data resolution requirements of (future) AEs within the ASDP, it provides the

values with undiminished resolution. In any case, since the Vehicle Data Provider targets

universality, the resolution cannot be tailored to one specific consuming AE. For this condensed

scenario, it is assumed that the AE1 provides a new contentInstance to the VehicleData

container every one to two seconds.

AE2: Extended Floating Car Data

One of the two AEs within the scenario hosted on the IN, is the AE2 ‘Extended Floating Car

Data’. It implements selected, related application logic (see Section 3.2.1). Considering the data

provided by the AE1, the AE2 can, among other things, beneficially utilise the following

vehicular data:

• To enable inference concerning the current traffic situation, it acquires the position

(latitude, longitude, heading) and may also determine the speed of the vehicle

(together with the respective timestamp) at reasonable intervals, which, e.g., might be

time-related or distance-related.

• To detect the occurrence of dangerous traffic and road situations, the AE2, among

other things, can utilise the ‘ESP’ value. To locate the dangerous situation, the

position (latitude, longitude, heading) and perhaps as well the speed of the vehicle and

the timestamp of occurrence could be acquired.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

116

AE3: Vehicle Maintenance

The second AE, which is hosted at the IN, is the AE3 ‘Vehicle Maintenance’. It implements

selected aspects of the respective application logic (see Section 3.2.2). In this condensed

scenario, the value ‘fuelRange’ is of interest to initiate subsequent use cases, such as the

offering of nearby gas stations when the remaining distance falls below a certain threshold.

However, such subsequent use cases are not part of this condensed scenario. The focus here is

on the acquisition of the ‘fuelRange’ according to suitable policies.

5.2 Principles

AEs within an M2M scenario typically provide data, reflecting the capabilities of their source,

such as its sensor or computational capabilities. This does not necessarily reflect the data

requirements of consuming AEs, which may come from a different vendor or domain.

In the previously introduced ASDP scenario, the AE1 is a general vehicle data provider that

basically reflects the capabilities of the vehicular sensors. Thus, consuming AEs might only

need a subset of the overall data provided according to their to be realised functionality.

In preparation for detailed analysis of the oneM2M data exchange capabilities, this Section

details such principles, considering filter requirements in contrast to filter capabilities. It further

investigates possible filter positions within the data flow and discusses their appropriateness.

5.2.1 Filter Requirements vs. Capabilities

With respect to the data exchange between AEs, it is a matter of the filtering capabilities, as to

how precisely the data being transferred can be tailored to the necessary data subset required

according to the AE functionality. Since in general, within an M2M/IoT context, it could be

assumed that the nodes or AEs are from different vendors or domains, and oneM2M as

application and domain independent horizontal integration platform targets universality, so that

filtering capabilities might not exactly match the requirements of the AEs.

Figure 5.2 illustrates such typical circumstances with respect to the data set provided by AE1

and the subsets required by AE2 and AE3. It further indicates that the data subsets required by

different AEs are not necessarily disjoined but might have overlaps, such as the left two blue

and green rectangles which are intended to illustrate the (nearly) exact overlaps of a required

data subset.

Figure 5.2: Data set provided by an AE and required subset by other AEs

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

117

This illustration indicates requirements placed on the data exchange capabilities of the oneM2M

platform. However, the oneM2M service platform is universal, and possible effects of filter

design or selection capabilities are illustrated by Figure 5.3: It is assumed that the AE2 requires

the data subset, symbolised by the blue rectangle, from the overall available data subset

provided by AE1 (that is symbolised by the grey circle). The left black bordered rectangle

represents the data selected by an exemplary filter. Ideally this filter exactly matches the data

subset required by the respective AE2. If the filter differs, it could cause two situations: Either

the filter might select more data than required which would result in an overhead (see red

hatching), or the filter would cut off required data that causes a filter loss (see yellow hatching),

or both.

Figure 5.3: Data set provided/required by AEs, filter selection and resulting loss or overhead

Thereby the filter loss may prevent the AE from correctly fulfilling its intended functions, so

that this is why in most cases it should be prevented (i.e., through selection of a sufficiently

large filter, see Figure 5.4).

Figure 5.4: Data set provided/required by AEs, increased filter selection and resulting overhead

However, the filter overhead should be as small as possible, since the remaining filter overhead

in any case decreases the network efficiency of the distributed application. The filter overhead

is particularly critical if it remains at a transmission path that is realised through wireless

networks. In the given scenario, this transmission path is between the vehicle and the OEM

server. Thus, in a worst-case scenario, the absence of appropriate filtering capabilities of the

oneM2M service platform might result in too much overhead, which would prevent the

practical realisation of distributed use cases or functional splits between AEs, although in

theory, the network capabilities are sufficient.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

118

5.2.2 Filter Positions

The prior section detailed general considerations with respect to application data filtering

capabilities and requirements. This section continues the discussion, adding the basic data flow

between two different AEs residing on different nodes. In the simplified ASDP scenario, such

data flow is present, in addition to others, between the AE1 and AE2.

The basic data flow consists of four single transmission paths (see Figure 5.5):

1. Data acquisition of the AE1 through a proprietary interface.

2. Data provision of AE1 to its local ASN-CSE through the Mca interface.

3. Data transmission from the ASN-CSE to the IN-CSE through the Mcc interface.

4. Data transmission from the IN-CSE to the AE1 through the Mca interface.

Independent of the actual communication mechanisms used on the single transmission paths

(see Section 4.5), this data flow leads to four different positions where filtering can be applied:

• FilterPosition1 is located inside the data providing AE that in this example is the

Vehicle Data Provider AE1.

• FilterPosition2 is located inside the originating CSE that in this example is the ASN-

CSE.

• FilterPosition3 is located inside the receiving CSE that in this example is the IN-CSE

• FilterPosition4 is located inside the receiving AE that in this example is the Extended

Floating Car Data functionality AE2.

Figure 5.5: Dataflow with possible filter positions between a distributed AE scenario

These filter positions are subsequently discussed with respect to their appropriateness for data

filtering against the background of network efficiency, particularly at the wireless network. The

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

119

assessment focuses the functionalities to be realised and hence starts from the data consuming

AE2 backwards to the data providing AE1.

FilterPosition4

The most “expensive” filter position within this data exchange example is filterPosition4, since

it means that the remaining overhead at this position will be discarded because it is not required

by the AE2 to fulfil the functionality (see Figure 5.4). Thereby “expensive” relates to the fact

that every data which has been transferred until AE2 has passed the transmission path 3 (see

Figure 5.5) and hence has utilised wireless network capacity.

FilterPosition3

If other AEs on the receiving node, such as AE3 up to AEj are left aside, filterPosition3 is

equally “expensive” for network efficiency compared to filterPosition4, since again the data

has already passed the transmission path 3 (see Figure 5.5). FilterPosition3 is becoming more

relevant for data aggregation of different AEs, requiring not disjoint data subsets of remote

AEs. Thus, it is discussed in more detail at an extended data exchange example, including more

than one AE on each side. For this basic example, the filterPosition3 could be assessed as equal

to filterPosition4.

Finally, filterPosition1 and filterPosition2 at the originating node are remaining, which are most

important for network efficiency of the distributed functionality, since they have the capability

to decrease potentially overhead before being transferred across the critical transmission path 3.

FilterPosition1

FilterPosition1 is located inside the AE1 Vehicle Data Provider. As discussed, the AE1 is merely

a general provider of vehicular data (see Section 5.1.2). With respect to the decoupling of AEs

with one another against the background of facilitating vendor and domain independent

functionalities, the AE1 cannot be aware of required data resolutions of current or future

consuming AEs. In this regard, the general and a priori clipping of sensor data at filterPosition1,

is basically considered as inappropriate.

In particular, the clipping of sensor data at filterPosition1 in anticipation of possible remote

consuming AEs and possible resulting wireless access network requirements is not a suitable

approach. This prevents other AEs that might be located on the same node from consuming and

benefiting from the data at the its original accuracy.

However, this does not mean that each available data in any case has to be provided completely

raw without any pre-processing or clipping. In automotive context, visionary sensors, such as

cameras, radar, LiDAR (Light Detection And Ranging) or LaDAR (Laser Detection And

Ranging) could be counterexamples: Their raw data might be so high that the handling thereof

within the vehicle could already be considered as neither effective nor meaningful. In such

cases, it is often appropriate to provide pre-processed data that might be smaller by several

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

120

orders of magnitude, such as data about objects recognised instead of the raw image. But this

counterexample shall not affect the basic statement that filtering at filterPosition1 in general is

inappropriate because of the absence of knowledge regarding potential (future) AEs that might

even come from other vendors or domains. Particularly, it should be emphasised that design

decisions regarding data clipping at the first place shall be guided through their anticipated

usefulness for functionalities and not through possible bandwidth or computational

requirements.

FilterPosition2

Finally, these explanations lead to the filterPosition2 as the most important position to achieve

both functional flexibility and network efficiency. Since the filterPosition2 is located within the

(data providing) CSE, related capabilities according to oneM2M service platform will be

analysed in the following15.

5.3 Detailed Analysis of oneM2M Data Exchange Capabilities

In continuation of the previous Section, where the principle considerations regarding filter

requirements and positions are discussed, now the actual oneM2M data exchange capabilities

are analysed in more detail. These are of major importance with respect to the capabilities and

the feasibility of the proposed oneM2M-based ASDP.

Thus, this section starts by presenting the detailed application data handling within the oneM2M

service platform. Afterwards, the existing filtering capabilities will be investigated.

5.3.1 Application Data Handling

Prior to data exchange between different AEs, they have to provide their data to the oneM2M

service platform. This Section details the related mechanisms.

The general frame for the handling of application data is the container resource where the actual

application data is stored within the content attribute of a contentInstance resource (see Figure

5.6). The container can be located below the CSE root, an AE, or another container. The

positioning of the data container within the resource tree facilitates coarse-grained modelling

of its scope. In addition, the RESTful approach including HATEOS principle, enables links

between resources, which can be used to build virtual, “mash-up” resources (see Section 4.4.2).

The container itself is a data collection resource whose storage characteristics (retention

policies) can be specified with respect to maximum number of stored contentInstance resources

15 It should be noted here that the technical capabilities of filterPosition2 are equal to those of filterPosition3,

because both relate to the CSE, which functionalities are standardised. However, the given example shows that

within a scenario with two AEs residing on two different nodes, the filter located inside the data providing node,

i.e., the data providing CSE, is that one of major importance.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

121

(maxNrOfInstanes), the maximum storage size (maxByteSize), and the maximum age of

contentInstance resources (maxInstanceAge).

Inside the container resource zero to n contentInstance resources can be stored according to the

previously named constraints. It must be considered that contentInstance resources can only be

created, read, and deleted - the update of an existing contentInstance is not supported. Finally,

the contentInstance resource can be divided into the application data itself, which is stored

within the attribute content, and accompanying meta data. A reduced illustration of this twofold

contentInstance resources within their container, as used in some figures in the following, is

exemplified on the right side of Figure 5.6 by means of a VehicleDataProvider AE with an

VehicleData container including three contentInstance resources.

Figure 5.6: Resource structure of container and contentInstance

Application meta data are, for example, textual descriptions within the attribute label, the size

of the content, attributes related to creation and expiration time, as well as the universal

lastModifiedTime attribute, which is equal to the creationTime since an update is not supported.

Further, two attributes are related to resource announcement capabilities (see Section 4.5.3),

which are also present for contentInstance resources.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

122

Finally, two attributes are available for specification of the actual application data which is

stored within the content attribute: These are the attribute contentInfo, which provides the

syntactical information, and the attribute ontologyRef that provides a reference (URI) to the

semantic information, i.e., an ontology. Both attributes are intended to facilitate the

interoperability between AEs without a priori knowledge (see Section 4.2.1).

ContentInfo is composed from two parts: The first part is the Internet Media Type according to

IETF RFC 6838 (Freed, Klensin, & Hansen, 2013), followed by a “:” as separator and the

encoding information (oneM2M TS-0001, 2015; oneM2M TS-0004, 2015). Up to now,

possible encodings are “0” for plain, “1” for base64-encoded string, and “2” for base64 encoded

binary (oneM2M TS-0004, 2015). The default value of the attribute contentInfo is

“text/plain:0” (oneM2M TS-0004, 2015), specifying that the attribute content provides a plain

text. Another common setting might be “application/xml:1”, if the attribute content provides

base64-encoded application-related XML data (cf. Freed et al., 2013). The fact that the

contentInfo attribute is (only) available within the contentInstance resource and thus only for

each contentInstance individually but not commonly for the whole container resource, reflects

the RESTful approach of different representations of a single resource (see Section 4.4.2). For

example, the speed of the car might be provided as “application/xml:1”, “application/json:1”,

or even visually rendered as “image/jpeg:2”. All of these different representations can be stored

within the same container resource.

The ontologyRef attribute is a first outcome from considerations about semantic

interoperability between different AEs (cf. oneM2M TR-0007, 2015). However, its detailed

usage is out of scope within the current release oneM2M (oneM2M TS-0001, 2015; oneM2M

TS-0004, 2015). Hence the attribute ontologyRef, specifying a URI is currently more or less a

placeholder. However, semantic interoperability is an important aspect within M2M, IoT and

automotive scenarios, which is why it will be subject of a more detailed excursion below (see

Section 6.3.3). It should be noted that the ontologyRef attribute is also present for the container

and for AE resources, to enable the reference to their superior semantics.

After having detailed the attributes that technically can be used to specify the syntax and (with

restrictions) semantic of the content, their concrete usage for the purpose of storage, provision

and exchange of application data remains. The oneM2M service platform only provides the

framework for it and does not specify particular rules or guidelines. In this regard, it is up to

the AE (developer), how application data is structured and split across different containers, and

what media types and encodings are provided. For example: The content might contain only a

single value, such as the speed of the vehicle. Then again, it might also be possible to provide

a content that composes several values, as it might be meaningful, e.g., for the vehicle position

that is specified by longitude, latitude, and altitude. The decision as to whether application data

such as sensor values are provided within a single or different container is a trade-off that must

be decided individually. Common practices for RESTful service and resource modelling might

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

123

also be an appropriate methodology here (cf. Erl et al., 2013, p. 155 ff.). However, the smallest

unit of application data exchange is currently a single contentInstance resource. Consuming

AEs cannot adapt the application data splitting across different containers, and hence must be

capable of handling the application data, i.e., the content attribute, as provided. This increases

the necessity to build adequate data containers, albeit envisaged enhancements towards full

semantic interoperability might enable individually tailored data containers through

dynamically build virtual resources (see Section 6.3.3).

Although AEs are capable of providing in particular the syntactical information by use of the

contentInfo attribute to facilitate the decoding of their application data stored within the content

attribute, this information is currently not being used at CSE level. During the process of

developing a universal horizontal integration platform, oneM2M has been chosen to handle

application data in a first step opaque at CSE level. This means any application data gets a black

box at CSE level, and hence is not transparent to the CSE functionalities (CSFs) of the oneM2M

service platform. This has strong implications on the data exchange and filtering capabilities

which are the subject of the next paragraph.

5.3.2 Existing Filtering Capabilities for Exchange of Application Data by

Use of the Subscribe/Notify Mechanism

The prior Section detailed the application data handling within oneM2M service platform. This

is the foundation to analyse the existing capabilities for exchange of application data between

AEs in more detail.

Application data exchange within the oneM2M service platform refers to the transmission of

contentInstance resources between two AEs. As discussed in Section 4.5, the oneM2M service

platform offers different mechanisms for this resource exchange, which are combinations of

Create/Retrieve, Announcement, and Subscribe/Notify. In any case, filtering in the context of

application data exchange refers to the capability to select (and transmit) only a subset of the

overall available application data, i.e., the selection of certain contentInstance resources from a

container resource (cf. Section 5.2.1).

The analysis of application data exchange capabilities is subsequently performed by means of

the subscribe/notify mechanism for to the following reasons: At first, the subscribe/notify

mechanism enables the most decoupling of the involved communication entities, see Section

4.5.4. Furthermore, currently the subscribe/notify mechanism provides the most extensive

capabilities for application data filtering. Both make the subscribe/notify mechanism

particularly suitable for a oneM2M-based ASDP.

The subscribe/notify mechanism is not limited to the monitoring of contentInstance resources

within a container resource for the purpose of application data exchange. It is a general

mechanism that enables the subscription to and detection of resource changes, referred to as

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

124

resource events. In this regard, filtering at first means the decision as to whether a particular

resource event triggers a notification or not. Thus, the filterCriteria within the subscription

resource has been renamed to the more adequate term eventNotificationCriteria over time of

M2M/oneM2M standardisation and harmonisation process (cf. ETSI TS 102 690, 2013;

oneM2M TS-0001, 2015). Furthermore, it emphasises the difference to a resource retrieve,

where the term filterCriteria is still present because here it actually specifies a filter that may

provide a subset of the resource being retrieved. However, if the subscribe/notify mechanism

is used to monitor the creation of application data (i.e., the creation of contentInstance

resources), the notification criteria and all other criteria that decide on the triggering and

transmission of notification can be considered as filter criteria for application data exchange.

In this regard, the term filter criteria can be used synonymously for that purpose.

Initial Filter Considerations

Section 5.2.1 discussed general considerations about the significance of appropriate filtering

capabilities with respect to network efficiency of the distributed use case. In this regard, the

filtering capabilities for the subscribe/notify mechanism of oneM2M are investigated.

Continuing the illustrations of Section 5.2.1 there must be analysis performed to determine

which capabilities the oneM2M service platform provides “cut the data filtering shape” to the

actually required data subset, such as the respective AEs of the exemplary ASDP scenario (see

Section 5.1). While the analysis by use of the ASDP scenario is treated in the next Section, here

the entire filtering capabilities provided by the current version of the oneM2M standard are

discussed in detail.

Ultimately, AE developers want to know their actual filter capabilities for notifications

provided by the oneM2M service platform (i.e., the CSE) to evaluate how this relates to their

requirements. As this Section will show, these actual filter capabilities (referred to as

filterCombined) are the combination of three single filterAspects (see Figure 5.7).

Figure 5.7: Combined filter for notifications

Figure 5.8 shows the compound container resource including child resources related to

application data storage (contentInstance resource) and exchange through the use of the

subscription/notify mechanism (subscription resource), including filter criteria

(eventNotificationCriteria attribute and schedule resource).

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

125

Figure 5.8: Compound resource structure of container, contentInstance, subscription,

eventNotificationCriteria, and schedule

A closer investigation of the subscribe/notify mechanism shows that the overall filter

capabilities can be considered as the concatenation of three single filter aspects or filter

functions on their respective (remaining) data subsets. These three filter aspects in their entirety

decide whether a notification is being sent or not (see Figure 5.9). Before detailing every single

filter aspect, they are briefly introduced in the following enumeration:

• filterAspect1 decides if a particular resource event triggers a notification. Instantiated

for the purpose of application data exchange, the filterAspect1 hence filters which

contentInstance basically should get notified.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

126

• filterAspect2 facilitates the specification determining which subset of the resource

that is to be announced shall be part of the notification. In the context of application

data exchange, the filterAspect2 specifies which subset of the contentInstance

resource should be included in the notification.

• filterAspect3 provides several capabilities for specifying notification transmission

constraints. Since these constraints could also discard previously triggered

notifications, these CMDH-related policies constitute another filter criterion.

Figure 5.9: Concatenation and interaction of three filter aspects of subscribe/notify mechanism

Furthermore, Figure 5.9 shows, that filterAspect1 and filterAspect2 are realised within the

Subscription and Notification (SN) CSF, and that filterAspect3 is part of the Communication

Management and Delivery Handling (CMDH) CSF (see Section 4.3.2).

The functionalities of these three filters are discussed afterwards in more detail, focusing their

usage for conditional application data exchange by means of the subscribe/notify mechanism.

With respect to differentiation and understanding, capabilities beyond data exchange and the

respective resources are indicated, where appropriate.

FilterAspect1: Event Notification Criteria

Due to the fact that the actual application data is currently handled opaque within the oneM2M

CSE (see Section 5.3.1), the filtering constraints can only address application meta-data (see

Figure 5.6), which means they can only refer to attributes other than the content attribute itself.

Such application meta-data criteria to trigger a notification can be configured by means of the

eventNotificationCriteria attribute.

To comprehensively explain the existing notification capabilities, Figure 5.10 illustrates the

supported list of notification criteria of the eventNotificationCriteria attribute and related

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

127

attributes (of the container or contentInstance resources) to which they may be applied to,

indicated through the same colouring.

Figure 5.10: Compound resource structure of container, contentInstance, subscription,

eventNotificationCriteria, and schedule including relations of the notification criteria

Those criteria that finally determine whether a resource event trigger triggers a notification or

not are described subsequently in more detail, according to (oneM2M TS-0001, 2015). Criteria

related to the resourceStatus:

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

128

• This value relates to the operation that has been performed on the subscribed-to

resource. In the context of application data exchange, an appropriate value is “child

created”, which puts the focus on the contentInstance (or schedule) resources.

Alternatively, it could be set, e.g., to “updated” and hence focus/monitors the

container resource itself. If the resourceStatus value puts the monitoring toward child

resources, the other eventNotificationCriteria are applied to child resources, too (i.e.,

the contentInstance resources). Otherwise they are partially applied to the resource

container. For the exchange of application data which is stored within the content

attribute of a contentInstance, the configuration “child created” is appropriate to detect

the creation of new contentInstance resources (including application data), and to

trigger notifications depending on other notification criteria.

Criteria related to the operationMonitor:

• This attribute is similar to the resourceStatus, but it monitors every operation (create,

retrieve, update, delete) that is attempted to be performed, although it might not be

successful. This is useful for finding malicious AEs. However, for the purpose of

application data exchange, this is of minor significance.

Time-related criteria/conditions (green coloured attributes and notification criteria):

• The criteria createdBefore and createdAfter refer to the attribute creationTime of the

resource container or contentInstance.

• The criteria modifiedSince and unmodifiedSince refer to the attribute

lastModifiedTime of the resource container or contentInstance.

• The criteria expireBefore and expireAfter refer to the attribute expirationTime of the

resource container or contentInstance.

State-related criteria/conditions (blue coloured attributes and notification criteria):

• Each time a resource is modified, the stateTag is increased. This offers a simplified

analysis of resource changes in addition to time-related analysis capabilities. The

variables stateTagSmaller and stateTagBigger are criteria that refer to the attribute

stateTag of the resource container. Since the update of existing contentInstance

resources is not supported, they do not have a stateTag.

Size-related criteria/conditions (orange coloured attributes and notification criteria):

• The criteria sizeAbove and sizeBelow refer to the attribute contentSize of the resource

contentInstance. This attribute always refers to the contentSize, independent from the

configured resourceStatus.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

129

Description-related criteria/conditions (purple coloured attributes and notification criteria):

• This value facilitates “full-text filtering” on resource attributes, which is, besides

others, particularly suitable for the following purposes:

o Descriptive information for containers and contentInstance resources can be

provided within the attribute labels which might contain a list of values. For

example, a possible configuration of the labels attribute criteria might be

‘labels=(type=temperatureValue;device=vehicle)’16.

o The creator of a container or contentInstance is stored within the attribute

creator. The attribute criteria can be used to filter accordingly, such as

‘creator=VehicleDataProvider’16.

o Finally, the attribute criteria can also be used to filter notifications to supported

content encodings such as ‘contentInfo=application/xml:1’.

The attribute preSubscriptionNotify of the subscription resource specifies, if (and how many)

notifications shall also be triggered for past resource events which may have occurred prior to

the subscription creation and are still stored. Further constraints, such as the previously

described eventNotificationCriteria, may also be applied to these earlier events, and hence

finally decide if past resource events trigger notifications.

FilterAspect2: Notification Content

The filterAspect1 has selected the resource that is to be notified, such as a contentInstance

resource in the context of application data exchange. The filterAspect2 specifies the resource

attribute subset that is included in the notification. For example, it specifies which subset of the

contentInstance resource to be notified is actually included in the notification message. This is

specified by use of the notificationContentType of the subscription resource (see Figure 5.11).

However, since the actual application data, stored within the content attribute, remains opaque

at CSE level (see Section 5.3.1), filtering with the filterAspect2 cannot address the actual

content (i.e., the value) of attributes. This means if a content attribute of a single contentInstance

provides, for instance, the position (latitude, longitude, heading), the speed, and ESP control

intervention status, filtering to a subset, e.g., that the content attribute only contains the speed

value, is not supported.

16 The semicolon is used here as separator for the list items, which might not be the syntax of oneM2M.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

130

Figure 5.11: Compound resource structure of container, contentInstance, subscription,

eventNotificationCriteria, and schedule including content-related notification criteria

Nonetheless, at the level of resource attributes, filtering capabilities exist: The attribute

notificationContentType specifies such resource subset, actually delivered within the

notification message. Possible configuration values are (oneM2M TS-0001, 2015):

• ‘modifiedAttributes’: The notification only contains the modified attributes.

• ‘wholeResource’: The notification contains the whole resource.

• ‘referenceOnly’: The notification contains only a reference to the resource, i.e., a

reference to the contentInstance created.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

131

With respect to the current release of oneM2M standards, it is not exactly specified as to

whether the value ‘modifiedAttributes’ refers to the delta related to the most recent notification

of this particular subscription or if it refers to the delta between the two latest contentInstance

resources. It could be assumed that the latter will be the case, which in combination with

eventNotificationCriteria could possibly cause an incomplete or incorrect view of the current

status of the contentInstance resource for the subscriber. Hence, the configuration value

‘modifiedAttributes’ might be inappropriate for certain considerations related to exchange of

application data.

Besides, it must be noted that the configuration ‘referenceOnly’ implies that the actual

application data exchange does not occur as part of the notification message: hence not as part

of the subscribe/notify mechanism. The subscriber may afterwards receive the related resource

(which may include the application data) within a separate retrieve operation. However, this

violates the intended beneficial indirect communication characteristics of the subscribe/notify

mechanism for application data exchange. Thus, this configuration has not been chosen.

In summary, it can be stated that the configuration ‘wholeResource’ is to date the most

appropriate value for the attribute notificationContentType with respect to the direct exchange

of application data by use of the subscribe/notify mechanisms. Thus, it is presumed for the

following considerations.

FilterAspect3: Notification Delivery

After the selection of resources and their attributes that are part of a notification through the

filterAspect1 and filterAspect2, a third filter capability (FilterAspect3) exists. It is related to the

CMDH CSF (see Section 4.3.3), which means that the filterAspect3 is applied before the

notification is actually being sent. Figure 5.12 illustrates the two categories of notification

delivery policies consisting of time-related notification schedule criteria and delivery-related

notification criteria.

The notification delivery policies were originally motivated by and derived from the network

characteristics of M2M (see Section 4.2.2). For example:

• The attribute batchNotify facilitates the local collection of notifications to send them

afterwards as a batch at once. Therefore, the number of notifications cached and the

timespan can be specified.

• The attribute rateLimit enables the specification of a maximum number of

notifications within a selected time period. If the limit is exceeded, further

notifications are temporarily stored.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

132

Figure 5.12: Compound resource structure of container, contentInstance, subscription,

eventNotificationCriteria, and schedule including time-related notification schedule criteria

Although these mechanisms and attributes were introduced for the purpose of delivery

handling, e.g., of notification messages, they generate a third filtering capability: In

combination with the attribute latestNotify it is possible that only a subset of the cached

notifications, i.e., the most recent notification at the time of actual notification delivery, are

being sent to the subscriber. Thus, the combination of those attributes generate an additional

filtering capability for notifications, and – assuming an appropriate usage of the

subscription/notify mechanism – the filtering of application data that is being exchanged.

Another policy that is related to notification message delivery can be specified by means of the

attribute scheduleElement as part of the schedule resource (oneM2M TS-0001, 2015). It can be

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

133

used to configure schedule policies when the subscriber wants to receive notifications from his

subscription17. The pattern facilitates the definition of a notification schedule policy by use of

second, minute, hour, day of month, month of the year, and day of the week, including asterisks

(‘*’), ranges (‘-‘), and enumerations (separated by ‘,’). Assuming, for example, that the

subscriber wants to receive notifications from the related subscription every 10 seconds, a

scheduling policy could be ‘0,10,20,30,40,50 * * * * *’. It must be considered that this, in fact,

refers to absolute points in time (in the given example the seconds 0, 10, 20, 30, 40, 50 of a

minute) and does not specify relative time differences between notifications. In comparison to

batchNotify and rateLimit, a notification schedule hence does not depend on the time when

notifications become eligible for delivery. The attribute pendingNotification specifies how to

handle notifications that have been cached because they became eligible for delivery outside of

a permissible time window, specified by the notification schedule. Possible values are

‘sendAllPending’, which leads to the sending of all cached notifications, and ‘sendLatest’,

which leads to the sending of the latest notification being cached. The latter again might lead

to the selection of a subset of the overall available notifications or contentInstance resources

and hence is another indirect filtering capability.

Within the current release of oneM2M, the mechanisms related to batchNotify and rateLimit,

although specified as resource attributes, are not supported (oneM2M TS-0004, 2015, p. 144).

However, the general idea of the two accompanying delivery constraints on eligible

notifications that are batchNotify and rateLimit on one hand and subscription notification

schedule (and node reachability schedule) on the other hand are understandable. However, all

possible permutations, e.g., with respect to eventNotificationCriteria, preSubscriptionNotify,

pendingNotification, might require detailed consideration and specification through oneM2M.

Concluding Considerations Regarding Conditional Application Data Exchange

The filterAspect1 related to the eventNotificationCriteria provide limited capabilities for the

subscribe/notify mechanism:

• Since the Update method is not supported on contentInstance resources, creationTime

and lastModifiedTime values are equal. Thus, createdBefore actually equals

unmodifiedSince, and createdAfter actually equals modifiedSince. All four criteria

specify a particular moment in time, which means once the time is reached, these

criteria are either true or false for all future contentInstance creations, and hence

provide limited filter capabilities with respect to application data exchange.

17 Furthermore, there is the capability of optionally specifying a scheduling policy for an entire node, which is

referred to as the reachability schedule (in contrast to the notification schedule of a single subscription) and which

is located below a CSEBase resource. The CMDH functionality may need to consider both scheduling policies in

combination before the sending of notifications. Within the scope of the examples here this does not provide an

added-value and hence is not part of further consideration.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

134

• The stateTagSmaller and stateTagBigger criteria are similar, since these policies, once

fulfilled, apply either only for all prior contentInstance resources or for all future

contentInstance resources.

• The expireBefore, expireAfter, sizeAbove, sizeBelow may provide certain filter

capabilities, since these criteria can at least vary independently from the timeline. In

this regard, they provide the capabilities of selecting a subset of contentInstance

resources over time. However, expirationTime-related and size-related filters are

considered as less relevant with respect to data exchange requirements of distributed

use cases.

• The filter capabilities related to the attribute criteria of the eventNotificationCriteria

attribute provide certain filter capabilities with respect to full-text searches within

attributes of contentInstance resources. Nevertheless, it excludes the content attribute

itself. Indeed, there are some examples, where such attribute criteria may provide a

useful filter, e.g., for filtering with respect to the sensor type that is unveiled in the

label attribute. However, these descriptions are not standardised: thus they lack

syntactical and semantic standardisation (cf. Section 4.2.1). This means extending the

filter capabilities of the attribute criteria towards a generic and interoperable capability

raises similar requirements to the oneM2M service platform evolution as the

enhancements necessary for direct filtering against the content attribute itself. This is

why firstly it does not provide an adequate solution for application data today, and

secondly it might face limited importance for the future, if full semantic

interoperability is achieved (see Section 6.3.3).

The notificationContentType attribute (filterAspect2) specifies what is actually included in a

notification but has no impact on whether a notification is triggered or not. In this regard its

functionality is of minor importance with respect to conditional application data exchange.

Finally, the filterAspect3 relates to the CMDH CSF (see Section 4.3.3) and shall enable

adequate capabilities regarding time-related filtering and related policies. In this regard, it could

be used to implement time-triggered data exchange policies.

In summary, it can be stated that the current form of the subscribe/notify mechanism of

oneM2M regarding application data exchange corresponds at most to the topic-based

(alternatively referred to as subject-based) model of the publish/subscribe system, because AEs

basically subscribe to resources, which can be considered as topics (Coulouris et al., 2012;

Mühl, Fiege, & Pietzuch, 2006). Additionally, the subscribe/notify mechanism has certain

capabilities of the type-based model for a publish/subscribe system (Coulouris et al., 2012;

Mühl et al., 2006): The current eventNotificationCriteria can refer to the contentInfo (i.e., data

type), respectively the label (that can be used, e.g., for the description of the type or class).

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

135

5.3.3 Analysis with ASDP scenario

Above, the principle considerations related to data exchange within the oneM2M service

platform were discussed. This Section analyses these capabilities by means of the ASDP

scenario introduced in Section 5.1. Following the previous consideration, the data exchange is

performed by use of the subscribe/notify mechanism.

Bootstrap

Step 1: The CSEVehicle<ID>Base registers at the CSEOEMServer<ID>Base.

Step 2: The AE1 registers at the ASN-CSE as ‘VehicleDataProvider’ through the

creation of respective AE resource.

Step 3: The AE1 creates the data container ‘VehicleData’.

Step 4: The AE2 registers at the IN-CSE as ‘ExtendedFloatingCarData’ through the

creation of respective AE resource.

Step 5: The AE3 registers at the IN-CSE as ‘VehicleMaintenance’ through the creation

of respective AE resource.

Subscription Setup

It is assumed that all necessary bootstrap procedures are successfully performed. Furthermore,

this example presumes that AE2 and AE3 already have the necessary information that the

Vehicle<ID> is available and that it has an application AE1 ‘VehicleDataProvider’ that is

capable of providing data for the implementation of the use cases of AE2 and AE3. This

information can be obtained by use of discovery functionalities of the oneM2M service platform

or through a-priory configuration. However, this research focuses the data exchange

capabilities. Thus, discovery considerations are bypassed here (cf. DIS CSF in Sections 4.3.2

and 6.3.3).

The most important aspects for data exchange between the AEs by use of the subscribe/notify

mechanism are the notification criteria. This is where the requirements of AEs, respectively

(distributed) use case, meets the capabilities of the platform (i.e., the oneM2M CSE). Diverse

policies could be beneficial for the AEs according to their application logic (see Section 5.1.2).

However, according to the existing oneM2M capabilities (see Section 5.3.2), time-related

criteria are defined for the ASDP scenario:

• SubscriptionAE2: The AE2 creates this subscription resource at the VehicleData

container of the VehicleDataProvider AE of the CSEVehicle<ID>Base to receive

notifications in case of the creation of new contentInstance resources. For time-related

constraints, AE2 includes a schedule resource into the subscription, with a

scheduleElement, configured to receive notifications at a maximum of every

10 seconds. Additionally, the configuration sendlatest is applied to receive only the

most recent contentInstance resource. These subscriptions are sent through the local

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

136

IN-CSE, where they are both re-targeted to the target ASN-CSE. For the opposite

notifications, local callbacks (within the IN-CSE) are created to route them to the AEs.

• SubscriptionAE3: The AE3 creates this subscription resource at the VehicleData

container of the VehicleDataProvider AE of the CSEVehicle<ID>Base to receive

notifications in case of the creation of new contentInstance resources. For time-related

constraints, AE3 includes a schedule resource into the subscription, with a

scheduleElement, configured to receive notifications at a maximum of every 5

seconds. Additionally, the configuration sendlatest is applied to receive only the most

recent contentInstance resource. These subscriptions are sent through the local IN-

CSE, where they are both re-targeted to the target ASN-CSE. For the opposite

notifications, local callbacks (within the IN-CSE) are created to route them to the AEs.

Data Exchange

Figure 5.13 illustrates the current data exchange capabilities of oneM2M with the given

condensed ASDP scenario (see Section 5.1). It is shown, how two AEs (AE2 and AE3) that

registered with two subscriptions (SubscriptionAE2 and SubscriptionAE3) for VehicleData of

AE1 get notified with VehicleData in a time frame of about 15 seconds.

Figure 5.13: Application data exchange example of ASDP scenario with current oneM2M data exchange

capabilities

• Step 1. GET(CANData):

The AE1 proprietary obtains the vehicle data from the in-vehicle CAN-bus.

This step is performed six times within this example, generating the six vehicle data

samples, as illustrated.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

137

• Step 2. CREATE(VehicleData):

The AE1 provides this data without filtering (cf. Section 5.2.2) as new contentInstance

resource to the VehicleData container within its local ASN-CSE. Thereby, the

VehicleData is transformed to a vendor-independent application/xml representation

(cf. Section 5.1).

This step is also performed six times within this example, generating the six

contentInstance resources including VehicleData, as illustrated.

The ASN-CSE checks at every contentInstance creation event to determine if the notification

criteria of existing subscriptions are met and if a notification should actually be sent (SN and

CMDH, see Section 5.3.2).

• Step 2a. NOTIFY(VehicleData(AE2)):

If the notification criteria of the subscription of AE2 is fulfilled, the related

notification is sent. This policy leads to a filtering of two of six VehicleData

contentInstance resources which are being sent from the ASN-CSE to the IN-CSE as

single notification messages.

• Step 2b. NOTIFY(VehicleData(AE3)):

If the notification criteria of the subscription of AE3 is fulfilled, the related

notification is sent. This policy leads to a filtering of three of six VehicleData

contentInstance resources which are sent from the ASN-CSE to the IN-CSE as single

notification messages.

• Step 3a. NOTIFY(VehicleData(AE2)):

Each of the two single notification messages is re-targeted at the IN-CSE to the

(server-capable) AE2.

• Step 3b. NOTIFY(VehicleData(AE3)):

Each of the three single notification messages is re-targeted at the IN-CSE to the

(server-capable) AE3.

The detailed assessment of this scenario is part of the following section.

5.4 Shortcomings of the Current oneM2M Data Exchange and Their

Impacts

The exemplified ASDP scenario reveals two significant shortcomings of current oneM2M data

exchange capabilities, namely the absence of application-data-dependent criteria for data

exchange and missing aggregation of different subscriptions. These shortcomings and their

impacts are discussed in the following.

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

138

5.4.1 No Application-Data-Dependent Criteria for Data Exchange

Although the attribute contentInfo of the contentInstance resource is introduced to facilitate the

specification and provision of syntactical information of the application data (see Section 5.3.1),

by design-choice of the current oneM2M standard, it is not used at the CSE. Hence the

application data remains opaque at the CSE level. This has a significant impact on the available

notification criteria (i.e., filter conditions) of the subscribe/notify mechanism. These criteria

cannot depend on application-data (stored and transferred within the content attribute) but can

only depend on application meta data (see Section 5.3.1).

Accordingly, reasonable application-data-dependent criteria for data exchange that are directly

derived from the distributed use case to be implemented, cannot be specified, such as:

• Notification, when remaining fuel range is smaller than 100 km. (see Vehicle

Maintenance / Fleet Management, Section 3.2.2)

• Notification, when heavy rain is detected. (see Extended Floating Car Data, Section

3.2.1)

• Notification, when there is a risk of freezing rain. (see Extended Floating Car Data,

Section 3.2.1)

• Notification, when there is an electronic stability control intervention. (see Extended

Floating Car Data, Section 3.2.1)

• Notification, when a strong deceleration is detected. (see Extended Floating Car Data,

Section 3.2.1)

Reduced Network Efficiency

In the absence of application-data-dependent filter criteria for data exchange, it has to be

assumed that the filtering that can be applied at CSE level (filterPosition2 and filterPosition3,

see Section 5.2.2) only enables insufficient tailoring of the application data exchanged (see

Section 5.3.2).

The absence of application-data-dependent criteria for data exchange prevent the subscription

to application-data-dependent events such as a threshold exceedance which is only reflected

within the opaque structure of a related content attribute. To avoid unwanted loss of such data,

the filter must be courser, which in general leads to the transmission and acquisition of more

data than required (see Section 5.2.1). Consequently, typically, further filtering at the receiving

AE (filterPosition4, see Section 5.2.2) is required. Hence it must be assumed that the actual

network bandwidth consumption of the distributed M2M applications is above the theoretical

requirements of the use case.

Moreover, limited capabilities to tailor the data acquisition according to the requirements of the

consuming AE causes that the actually exchanged data to depend to a great extent on the data

providing AE or sensor resolution, and not on the implemented use case. This, for example,

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

139

could result in different network utilisations for a single use case, depending on the data

providing Node, AE, or container. Particularly against the background of inter-vendor and inter-

domain applications where the data provider could conceivably be controlled from another

party and might not be known a-priori, this effect is a clear drawback.

In summary, it could be anticipated that all named aspects lead to the reduction of network

efficiency for many distributed usage scenarios of the oneM2M service platform in general,

and a oneM2M-based ASDP in particular. Hence, it is also a shortcoming with regard to the

REQ 6.

Reduced Privacy

Missing application-data-dependent filter criteria for data exchange in general cause the

receiving AEs to get more data than required to implement the use case. However, this does not

prevent the receiving AE from consuming and analysing the additional data. In this regard, the

absence of application-data-dependent filtering capabilities cause privacy concerns.

Thus, with respect to privacy, inappropriate data exchange capabilities of the oneM2M service

platform may also lead to a conflicting with legislation. The German Federal Data Protection

Act18, in addition to others, regulates the principle of “data reduction and data economy” in

Section 3a (Federal Ministry of Justice and Consumer Protection, 2009): “Personal data are to

be collected, processed and used, and processing systems are to be designed in accordance with

the aim of collecting, processing and using as little personal data as possible. In particular,

personal data are to be aliased or rendered anonymous as far as possible and the effort involved

is reasonable in relation to the desired level of protection.” Section 19 further requires

“provision of information to the data subject”: “[…] information shall be provided only in so

far as the data subject supplies particulars making it possible to locate the data and the effort

needed to provide the information is not out of proportion to the interest in such information

expressed by the data subject. […]” (Federal Ministry of Justice and Consumer Protection,

2009). To which extent vehicular data must be considered as personal data depends on several

aspects, and as the technical capabilities and usage scenarios evolve, this will continue to be a

subject of discussion in society and law (Cacilo et al., 2016). However, in summary it can be

stated that inadequate filtering capabilities empower AEs to gain more data than necessary

which in general also reduces privacy. Despite the potential of law violations, this fact is quite

likely unwanted and may reduce user acceptance of oneM2M-based ASDP in particular, and

M2M and IoT solutions in general.

5.4.2 No Aggregation of Subscriptions

The current oneM2M standard deals with every subscription individually. In this regard,

different subscriptions to the same resource are not aggregated or harmonised. This applies to

18 Bundesdatenschutzgesetz

Analysis of Current Data Exchange Capabilities of the oneM2M Service Platform

140

the hosting CSE, as well as to transit CSE(s): At the hosting CSE, notifications are generated

and sent individually, as well as transit CSE(s) individually forward the notifications.

Reduced Network Efficiency

This could potentially lead to redundant data transmissions between nodes, as the ASDP

scenario, illustrated in Figure 5.13 unveils: Here, five notification messages with the respective

latest contentInstance resource are transmitted from the ASN-CSE to the IN-CSE. Only three

of these notification messages contain different contentInstance resources: hence, two of five

notifications are transmitting redundant data. This diminishes network efficiency of distributed

applications, too. It is also a shortcoming with regard to the REQ 6.

5.5 Summary

This chapter delves deeply into application data handling and data exchange capabilities of the

current oneM2M service platform, which is of major importance with regard to the feasible

functional splits and distribution of AEs and network efficiency.

Based on the reference configuration of the oneM2M service platform for the distributed ASDP

concept, firstly a condensed scenario is introduced which is used for the analysis. Afterwards,

principle consideration has been given about the source and sinks of application data and the

resulting data flows are performed. It has been found that the filterPosition2, which is the

hosting CSE of the originating AE is the most appropriate to perform data filtering.

The subscribe/notify mechanism of oneM2M is particularly suitable for distributed event-based

systems and the ASDP, and provides decoupling regarding space, time, and synchronisation.

At the same time, its oneM2M implementation provides the most comprehensive filtering

capabilities of exiting oneM2M data exchange mechanism. For this reason, it is utilised for the

implementation of the scenario and the data exchange analysis.

The analysis shows that the totality of filtering capabilities can be considered as the

concatenation of three single filter aspects, of which two are directly related to the SN CSF,

and one indirect capability through the CMDH CSF. The detailed analysis based on the

condensed scenario identifies shortcomings which are the absence of application-data-

dependent filter criteria for subscribe/notify mechanism and the lack of subscription

aggregations. Both potentially reduce the network efficiency of the distributed application, as

it is also the case for the condensed scenario. Furthermore, the absence of application-data-

dependent notification criteria may also reduce the privacy since the data acquisition cannot be

exactly tailored to the necessities, and this according to the use case typically leads to the

reception of more data than essentially required.

For the efficient realisation of distributed functionalities within the oneM2M service platform

in general and functionalities related to the automotive ASDP in particular, novel enhanced data

exchange capabilities are required. These are introduced in the next chapter.

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

141

6 Proposal of Novel Data Exchange Capabilities for

the oneM2M Service Platform

The comprehensive analysis of the data exchange capabilities of the oneM2M service platform

reveals shortcomings that have a negative impact on network efficiency and privacy of

distributed functionalities. This motivates enhancements – the subject of this chapter. Hence,

the next section proposes enhancements to address the identified shortcomings and derives

related requirements. Afterwards, the approach to implement these requirements within the

oneM2M service platform is presented and put into context, by means of related concepts and

work. Finally, in advance of a prototypical implementation, two alternative architectural

approaches are described and assessed.

6.1 Proposed Enhancements and Derived Requirements

To address the identified shortcomings of existing oneM2M data exchange capabilities, this

Section proposes two enhancements: namely, application-data-dependent notification criteria

for data exchange with subscribe/notify mechanism and the aggregation of subscriptions. Based

on these enhancements, requirements are derived, which enable the enhancements.

6.1.1 Enhancement 1: Application-Data-Dependent Notification Criteria

for Data Exchange with Subscribe/Notify Mechanism

The first enhancement that is proposed for the evolution of oneM2M standards is the enabling

of application-data-dependent notification criteria for data exchange with subscribe/notify

mechanism. It addresses the related shortcoming (see Section 5.4). Accordingly, the

enhancement should increase network efficiency and privacy of oneM2M AEs. To implement

this enhancement, two requirements are derived.

To facilitate application-data-dependent notification criteria, the opaque application data must

be transparent at the level or component (e.g., within the CSE), where the filtering shall be

applied. Here, transparent application data refers to the syntax of the application data (i.e., data

structure and data types). To enable this, applications (i.e., AEs) shall be capable of providing

their application data in a standardised way, including the reference to the specification. This

leads to the following requirement:

6

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

142

REQ E.1: Applications (AEs) shall be capable of providing their application

data in a standardised way.

The second requirement to enable application-data-dependent notification criteria for

subscribe/notify mechanism relates to the policy language for describing the notification

criteria. To enable advantageous notification criteria, the policy language shall be very

comprehensive and shall support at least basic arithmetical and logical operations on common

data types. Further, the policy language shall have the capability of dealing with individual data

structures of common data types, reflecting the variability of the oneM2M standard given to

the AEs. This is reflected in the following requirement:

REQ E.2: A comprehensive policy language shall be provided to enable the

standardised description of gainful application-data-dependent

notification criteria including basic arithmetical and logical

operations on common data types.

6.1.2 Enhancement 2: Aggregation of Subscriptions

The novel application-data-dependent notification criteria as well as all existing notification

criteria work as filter functions, selects a subset of the overall available data from the

subscribed-to resource, e.g., a container of an AE. Since different subscriptions to the same

resource might not select orthogonal subsets, the aggregation of these subscriptions that is a

union of the respective subsets is proposed to further increase network efficiency (see Section

5.2.1). To achieve this, two requirements for two different scenarios can be derived.

Subscriptions that originate in the same local CSE shall be aggregated at this local CSE.

Accordingly, the aggregated subscription shall be placed at the remote resource, which also

reflects filter position considerations (see Section 5.2.2). This leads to the following

requirement:

REQ E.3: Different subscriptions to the same remote resource shall be

aggregated at the local CSE.

The hierarchical oneM2M configurations (see Section 4.3.6) may lead to one or more transit

CSEs involved in the subscription setup and data exchange. In this regard, the aggregation of

subscriptions at transit CSEs may have a high potential for optimisation, since compared to a

local CSE, an even greater number of subscriptions typically get handled here. This reflects in

the following requirement:

REQ E.4: Different subscriptions to the same remote resource should be

aggregated at transit CSE(s).

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

143

However, it must be considered that the technical impact of the REQ E.4 is also greater with

respect to the fact that the transit CSE would have to interpose the subscription and data

exchange message flows, which may have negative implications for (end-to-end) encryption.

Further, more AEs or CSEs that are connected via a transit CSE will most likely lead to more

(different) subscriptions and data exchange messages that would then need to be handled which

may lead to less stable subscription setups. As a result, the organisational overhead may

mitigate the potential for subscription aggregations. Nevertheless, similar improvements may

be achievable with the REQ E.3, if the transit CSE is substituted by the remote CSE,

implementing a back-to-back approach (see Section 4.6.2).

6.2 Approach

This Section presents the general approach(es) to implement the proposed enhancements within

the oneM2M service platform. Firstly, the intention is to mainly limit the description of the

approaches without considering architectural design decisions or trade-offs that might be

necessary. Moreover, the approaches are discussed here at an abstracted technology level,

which means the approaches do not considering concrete products for implementing the

technologies within a prototype.

As the previous analysis shows, current criteria for data exchange are the concatenation of three

filter criteria which in total decide whether a notification is sent or not (see Section 5.3.2).

Continuing this, the application-data-dependent notification criteria can be considered and

realised as an additional filter (named filterAspectNew), concatenated with the existing filters

(named filterCombined), see Figure 6.1.

Figure 6.1: Enhanced data exchange capabilities as concatenation of new filter capabilities with existing

filter capabilities

In the following, the approaches dealing with how such application-data dependent

filterAspectNew can be realised are presented.

6.2.1 XML and XSD to Enable Transparent Application Data

As discussed previously (see Section 5.3.1), the oneM2M service platform currently handles

application data in an opaque manner outside of AEs. Nevertheless, to enable interoperability

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

144

of AEs across vendors and domains in the context of an IoT as unbounded system (see Sections

3.4.2 and 4.2.1), generic and machine-readable data specifications have to be provided. Hence,

the current version of the oneM2M standard already introduces two attributes, namely

contentInfo and ontologyRef, which facilitate exchange of syntactic specifications and

semantic descriptions of the content (see Section 5.3.1). Although the means to enable semantic

interoperability are currently not yet sufficient (see Section 6.3.3), the envisaged enhancements

can be enabled solely upon transparent data syntax. This means: It is not necessary to

understand the semantics (i.e., the meaning, such as that the value is a temperature) of a content,

but it is sufficient to know its data type (i.e., that it is an integer), because logical or arithmetical

operations depend solely on the data type (i.e., value is greater or equal to 100).

The oneM2M standard already enables generic description of the content syntax by means of

the contentInfo attribute. In particular, if the content is an Extensible Markup Language (XML)

document, the combination with its inbuilt reference to an XML Schema Definition (XSD)

provides sufficient syntactic information about the elements and structure of the XML

document, and thus finally about the content (cf. Salminen & Tompa, 2011). Accordingly, the

approach to enable transparent application data utilises XML, which means that it requires a

contentType “application/xml:1” (or “application/xml:0”). This addresses the REQ E.1.

6.2.2 Complex Event Processing to Enable Application-Data-Dependent

Notification Criteria for Data Exchange With Subscribe/Notify

Mechanism

The oneM2M standard does not define the data format or structure of the application data (i.e.,

of the content attribute). The approach to focus on XML as the content format (see Section

6.2.1) does not define it either but provides the capability for sufficient specification by means

of XML and XSD. Nevertheless, the application data exchanged remain heterogeneous and,

together with the variety of conceivably useful application-data-dependent acquisition policies,

so that a comprehensive but generic approach is required. As a solution, this research proposes

the utilisation of Complex Event Processing (CEP) as the enabling technology. It is

subsequently briefly introduced and followed by the description as to how it is utilised to

address REQ E.2.

Introduction to CEP

The term Complex Event Processing (CEP) was first introduced by Luckham in (2002). Eckert

and Bry in (2009) describe CEP as a traditional database system turned upside down: Instead

of one-time queries against a finite set of existing data as within traditional database scenarios,

in CEP the query is “’standing’ against a (conceptually) infinite stream of events [i.e.,

data]”(Eckert & Bry, 2009).

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

145

CEP and oneM2M: Utilisation of CEP to Enhance Subscribe/Notify Mechanism

The capability of CEP to process events while they are occurring enables its utilisation for

notification policies. Following the sense & respond behaviour (Chandy & Schulte, 2010),

which is the basic cycle of Event-Driven Architectures (EDA), a CEP-based application-data-

dependent notification policy can (Bruns & Dunkel, 2015):

1. Sense the event of application data being created (i.e., contentInstance resources

within) the subscribed container.

2. Process or Analyse the detected event, whether or not it matches the defined policy

(i.e., event pattern).

3. Respond to the event if the policy is met. Here, this means that this filtering stage is

passed, and a notification message is sent, given that other subsequent oneM2M

notification criteria (i.e., filterAspect1, filterAspect2, and filterAspect3) that might

also be set, are also met.

According to its term, CEP facilitates not only the detection of simple events (e.g., based on

logical and arithmetical policies), but also complex events which, are e.g., based on (Bruns &

Dunkel, 2015):

• Sequential policies, e.g., an event A that must be followed by an event B

• Sliding windows, e.g., a time-based or length-based window which is considered

• Aggregation, e.g., sum, average, min, max

The complete policy can be built by combinations of the elementary event types or pattern. It

must be considered that CEP is first of all a technology and that different CEP implementations

may provide slightly different but typically rather more capabilities for specification of event

patterns with regard to those named here. As a result, CEP outperforms the minimum

requirements of REQ E.2 and provides a comprehensive means to specify application-data-

dependent policies.

Consequently, CEP requires a comprehensive language that facilitates the specification of the

event patterns. This is the Event Processing Language (EPL), which is an extension of the

Structured Query Language (SQL) that is known from traditional database systems for event

processing purposes. The EPL is a declarative language to express event processing rules

(Bruns, Dunkel, Masbruch, & Stipkovic, 2015). The condition part is used for the description

of application-data-dependent notification criteria (cf. step 2: process and analysis of EDA-

cycle, see above). The Table 6.1 presents five examples of meaningful application-data-

dependent notification criteria in the context of the automotive scenarios used in this research.

Example 5 shows that the comprehensive EPL facilitates the description of novel values (e.g.,

deceleration) as criteria, which are not present in the application data. Accordingly, the

subscription to strong deceleration (e.g., greater than 6 m/s2) requires no modification of the

AE vehicle data provider, but only the creation of appropriate enhanced subscription.

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

146

Example Description EPL Statement

1
Notification, when remaining

fuel range is less than 100 km.

SELECT * FROM VehicleData

WHERE fuelRange < 100

2
Notification, when heavy rain

is detected.

SELECT * FROM VehicleEnvironmentData

WHERE rainSensor > 4

3
Notification, when there is a

risk of freezing rain.

SELECT * FROM VehicleEnvironmentData

WHERE temperature < 3 AND rainSensor > 0

4

Notification, when there is an

electronic stability control

intervention.

SELECT * FROM VehicleData

WHERE ESP=true

5

Notification, when a strong

deceleration of more than

6m/s^2 is detected (calculated

on speed delta [km/h] and

time delta [s]).

SELECT * FROM pattern[a=Position ->

b=Position((b.speed - a.speed)/((b.timestamp-

a.timestamp)*3.6) < -6)]

Table 6.1: Examples of beneficial automotive application-data-dependent notification criteria and their

EPL statement representation.

Related Concepts and Work

The utilisation of CEP to implement enhanced data exchange capabilities for the oneM2M

service platform constitutes a novelty. However, related concepts and work can be found.

Papageoriou et al. in (2013) investigates “smart m2m data filtering using domain-specific

thresholds in domain-agnostic platforms”, which does not include the capability of filtering on

M2M devices and does not use EPL to describe filters respectively CEP to enforce them. Also

Bruns et al. in (2015) considered the usage of CEP for M2M. They also emphasised its

advantages for the detection of meaningful situations and events, considered the mapping or

adaption of the event model, but again performed CEP only on the incoming unfiltered raw

events in the backend.

In-network CEP in (wireless) sensor networks is considered by Saleh et al. in (Saleh, 2013;

Saleh & Sattler, 2013) which shows significant improvements regarding network requirements

and energy efficiency of the sensors because of reduced communication.

Wang in (2013), among other things, investigates approaches for privacy-preserving within

CEP via event suppression, which could be used for enhanced privacy considerations of

application-data-dependent notification policies with EPL statements. Furthermore, research of

Cugolar et al. in (2012) about deployment strategies for distributed CEP could provide guidance

for optimised usage of the proposed enhanced data exchange capabilities towards overall

optimisation.

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

147

6.2.3 Aggregation of Subscriptions Enabled Through Criteria Unification

Basically, the aggregation of subscriptions means the unification of their notification criteria.

As a result of the mathematically union of notification criteria, the resulting subset of the overall

available data set is also the union of all subscriber subsets. For the existing filter aspects of

oneM2M (i.e., filterAspect1, filterAspect2, and filterAspect3), the unification of criteria has to

be manually implemented. For the filterAspectNew that is based on EPL language constructs,

this language may support unification (e.g., diverse variants of joins are normal language

construct in the database context). Further, different filter criteria can also be combined with a

logical OR which is used for this approach. The following listing provides an example:

SELECT * FROM VehicleData

WHERE ESP=true;

// aggregated with

SELECT * FROM VehicleData

WHERE fuelRange < 100;

// can be unified to

SELECT * FROM VehicleData

WHERE ESP=true OR fuelRange < 100;

Figure 6.4 presents a flowchart for the implementation of subscription aggregations as part of

the subscription create or update at the local CSE 19 . This addresses the REQ E.3. The

functionalities can be integrated into the existing methods of the SN CSF.

Figure 6.3 presents a possible flowchart for the implementation of subscription aggregations as

part of the subscription forwarding at transit CSE(s)19. It shows that the implementation of the

REQ E.4 is basically feasible. The functionalities have to be integrated into the existing CMDH

CSF where related methods need to be extended accordingly. However, oneM2M

configurations with transit CSEs have not been given consideration within the scenarios of this

research. Hence, REQ E.4 is not further investigated in the following.

19 Deletions or expirations of subscriptions have to be implemented similarly to subscription update but are not

dealt with here.

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

148

Figure 6.2: Flowchart for aggregation of subscriptions at local CSE

Figure 6.3: Flowchart for aggregation of subscription at transit CSE

6.3 Alternative Architectural Approaches

Different architectural approaches are possible to implement the proposed enhancements.

However, the implementation of the enhancements within each single AEs is neither reasonable

nor feasible due to the following reasons: REQ E.3 (and REQ E.4) cannot be appropriately

fulfilled since the enhancements are individual AE parts that share no common view on the data

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

149

containers and subscriptions. Further, it would be inefficient to individually implement the

enhancements in every AE, because this leads to the duplication of a significant number of

functionalities. Finally, this would also violate the oneM2M design principle to implement

functionalities that are shared across many AEs commonly (see Section 4.3.1), which in the end

also reduces interoperability (see Section 4.2.1) due to the lack of standardisation.

Figure 6.4: Design space for Mca interface

Nevertheless, with respect to the Platform-Based Design approach (see Section 2.4.5), the

central architectural design decision is, whether or not the enhancements are implemented

within the CSE layer. In more detail, the design decision is whether the Mca interface exposes

the proposed enhancements to the AEs, or if the enhancements shall be implemented above the

Mca interface, i.e., within the AE layer (but outside of the AEs). This architectural design

decision regarding the capabilities provided by the Mca interface is illustrated in Figure 6.4.

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

150

In order to facilitate an adequate architectural design decision about these two alternative

architectural approaches, they are described below in more detail and evaluated by use of the

previously-introduced scenario (see Section 5.1) which, however, is now modified to reflect

the enhanced capabilities provided. Afterwards, these two architectural alternatives and

respective architectural trade-offs are discussed, and an architectural design decision is made

in advance to a prototypical implementation as proof of concept. In addition to the investigated

scenario, the anticipated future developments of oneM2M are also considered, particularly

those necessary to gain full semantic interoperability.

6.3.1 Approach 1: Within oneM2M AE Layer

This architectural approach implements the proposed enhancements above the Mca interface.

In order to implement the enhancements still not within the single AEs, an intermediate layer

within the M2M AE layer of each Node is introduced, referred to as Enhanced Data Exchange

Layer (EDEL). The Figure 6.5 illustrates the concatenation and interaction of new application-

data-dependent filter aspect with existing filters.

Figure 6.5: Concatenation and interaction of new application-data-dependent filter aspect with existing

three filter aspects of subscribe/notify mechanism for alternative architectural approach 1

The EDEL interposes the subscribe/notify and the container-related communication primitives

between the AEs and the local CSE. For this purpose, the EDEL exposes enhanced versions of

the underlying interface Mca, referred to as Mca-E (see Figure 6.6). The application-data-

dependent filtering is performed within the EDEL, where the data structure remains transparent

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

151

through the utilisation of the syntax-specifying attribute contentInfo provided by the AEs,

according to the described approach (see Section 6.2.1).

For the scenario-based evaluation of this architectural alternative, the previously-introduced

scenario is consulted again (see Section 5.3). However, at this point, the enhanced data

exchange capabilities provided to the AEs have to be reflected to evaluate their benefits. In this

regard, a criterion derived from the use case ‘Extended Floating Car Data’ is used instead of an

unspecific time constraint for the notification criteria of AE2. In this example, this criterion is

a remaining fuel range below 100 km. Afterwards, the AE3 ‘Vehicle Maintenance’ also creates

a subscription to the container VehicleData with the criteria(AE3) that requests notifications

when an interference of the ESP occurs (ESP=true). At the time of the second subscription

Create, the EDEL detects that a subscription to the same remote resource already exists and

aggregates the two criteria (denoted criteria(AE2,AE3)). The AE2 and AE3 work against the

local stubs of their subscriptions, located within their local EDEL.

All communication and data exchange between those two EDELs can be realized with existing

resource capabilities of the M2M CSE: For example, the EDEL itself can register at the

unmodified oneM2M CSEs as an AE. The exchange of the enhanced data exchange policies

can then be performed proprietarily between those EDEL by use of standard data exchange

mechanisms of the current oneM2M standard. Figure 6.6 merely illustrates the final result of

these setup procedures and the consequent data exchanges. As the figure shows, with this

approach the data is already provided filtered to the unmodified oneM2M CSE.

Figure 6.6: Enhanced data exchange with alternative architectural approach 1

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

152

The resulting data exchanges are described in the following:

• Step 1. GET(CANData):

The AE1 proprietary obtains the vehicle data from the in-vehicle CAN-bus.

This step is performed six times within this example, generating the six vehicle data

samples, as illustrated.

• Step 2. CREATE(VehicleData):

The AE1 provides this data without filtering (cf. Section 5.2.2) via the Mca-E

interface to the EDEL. Thereby the VehicleData is transformed to a vendor-

independent representation, such as application/xml (cf. Section 5.1).

This step is also performed six times within this example, generating the six data

instances within the EDEL as illustrated.

The EDEL checks at every data-instance creation event whether the notification criteria of the

existing subscriptions are met and whether the application data sample shall be provided to the

ASN-CSE. Here, the EDEL provides the enhanced data exchange capabilities, as proposed.

• Step 3. CREATE(VehicleData(AE2AE3)):

If the application-data-dependent aspect of notification criteria(AE2,AE3) of the

subscriptionAE2AE3 is fulfilled, the data is provided to the VehicleData container

within its local ASN-CSE as new contentInstance.

This step is performed two times, generating two contentInstance resources including

VehicleData, as illustrated.

The ASN-CSE checks at every contentInstance creation event whether the notification criteria

of existing subscriptions are met and whether a notification shall actually being sent (cf. SN

and CMDH, see Section 5.3.2). This utilises the existing oneM2M data exchange capabilities

only.

• Step 4. NOTIFY(VehicleData(AE2,AE3)):

When the notification criteria of the subscriptionAE2AE3 is fulfilled, the related

notification is sent. This policy leads to no additional filtering here. Hence two single

notification messages are being sent from the ASN-CSE to the IN-CSE.

• Step 5. NOTIFY(VehicleData(AE2,AE3)):

Each of the two single notification messages is re-targeted at the IN-CSE to the

(server-capable) EDEL. The VehicleData contentInstance resources are stored at the

IN-CSE within the corresponding resource.

The EDEL checks at every contentInstance creation event to determine which of the existing

subscriptions are met (according to the application-data-dependent criteria) and triggers the

related notification messages.

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

153

• Step 6a. NOTIFY(VehicleData(AE2)):

When the notification criteria of the subscription of AE2 is fulfilled, the related

notification is sent. This policy leads the selection of two of two VehicleData

contentInstance resources which are sent from the EDEL to the (server-capable) AE2

as single notification messages.

• Step 6b. NOTIFY(VehicleData(AE3)):

When the notification criteria of the subscription of AE3 is fulfilled, the related

notification is sent. This policy leads the selection of one of two VehicleData

contentInstance resources which is sent from the EDEL to the (server-capable) AE3 as

single notification message.

Both AE2 and AE3 consume the vehicle data (and attributes, if applicable) according to their

use case without additional filtering, i.e., discarding of received vehicle data.

6.3.2 Approach 2: Within oneM2M CSE layer

An alternative architectural approach is the enhancement of the oneM2M service platform

itself. This means that additional functionalities are implemented within the CSE. This makes

modifications of the related interfaces Mca and Mcc necessary to provide the enhanced

capabilities. Accordingly, they are referred to as Mca-E and Mcc-E. Hereby, the interface

enhancements could be implemented to preserve downwards compatibility, i.e., the

enhancements are optional usage patterns, not preventing the interface usage in accordance to

the current standard.

Figure 6.7: Concatenation and interaction of new application-data-dependent filter aspect with existing

three filter aspects of subscribe/notify mechanism for alternative architectural approach 2

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

154

The previously introduced scenario is also used for the evaluation of this architectural

alternative (see Section 5.3). Similar to the previous alternative, at this point, the enhanced data

exchange capabilities provided to the AEs have to be reflected to evaluate their benefits. Hence,

for the AE2 the notification criterion “remaining fuel range below 100 km” is applied instead

of an unspecific time constraint. Afterwards, the AE3 ‘Vehicle Maintenance’ again creates a

subscription to the same container VehicleData with the criteria(AE3) that requests notifications

when an interference of the ESP occurs (ESP=true). The existence of a subscription to the same

remote resource is now detected directly at the CSE, which aggregates the two criteria (denoted

criteria(AE2,AE3)). The AE2 and AE3 work against the local stubs of their subscriptions, which

are here located here within their local CSE.

Figure 6.8: Enhanced data exchange for alternative architectural approach 2

With this approach, data is still provided to the CSE without pre-filtering at its original

resolution. The existing filterCriteria resources and meta-data filter capabilities are merely

enhanced with the proposed capabilities of facilitating application-data-dependent policies and

aggregation according to the proposed enhancements. This results in the following steps for the

exchange of application data by means of this enhanced subscribe/notify mechanism:

• Step 1. GET(CANData):

The AE1 proprietary obtains the vehicle data from the in-vehicle CAN-bus.

This step is performed six times within this example, generating the six vehicle data

samples, as illustrated.

• Step 2. CREATE(VehicleData):

The AE1 provides this data without filtering (cf. Section 5.2.2) as new contentInstance

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

155

resource to the VehicleData container within its local ASN-CSE. Hereby, the

VehicleData is transformed to a vendor-independent application/xml representation (cf

Section 5.1)

This step is also performed six times within this example, generating the six

contentInstance resources including VehicleData, as illustrated.

The ASN-CSE checks at every contentInstance creation event whether the notification criteria

(including application-data-dependent criteria) of existing subscriptions are met and if a

notification shall actually being sent (SN including enhancements and CMDH, see Section

5.3.2).

• Step 3. NOTIFY(VehicleData(AE2,AE3)):

If the notification criteria of the subscriptionAE2AE3 is fulfilled, the related

notification is sent. This policy leads to a filtering of two of six VehicleData

contentInstance resources which are being sent from the ASN-CSE to the IN-CSE as

single notification messages. The VehicleData contentInstance resources are stored at

the IN-CSE within the corresponding resource.

The IN-CSE checks at every contentInstance creation event whether the notification criteria

(including application-data-dependent criteria) of existing subscriptions are met and whether a

notification shall actually being sent (SN including enhancements and CMDH, see Section

5.3.2).

• Step 4a. NOTIFY(VehicleData(AE2)):

When the notification criteria of the subscriptionAE2 is fulfilled, the related

notification is being sent. This policy leads to the selection of two of two VehicleData

contentInstance resources which are sent from the IN-CSE to the (server-capable)

AE2.

• Step 4b. NOTIFY(VehicleData(AE3)):

When the notification criteria of the subscriptionAE3 is fulfilled, the related

notification is sent. This policy leads to a selection of one of two VehicleData

contentInstance resources which are sent from the IN-CSE to the (server-capable)

AE2.

Both AE2 and AE2 consume the vehicle data (and attributes, if applicable) according to their

use case without additional filtering, i.e., discarding of received vehicle data.

6.3.3 Excursion: Towards (Full) Semantic Interoperability in oneM2M

The ultimate goal of M2M considerations is the interconnection of machines without human

intervention. A simple example is that the light switch or dimmer should be able to control

lights from different vendors, whose communication technology or interface might not be

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

156

known during development of the switch or dimmer. An enhanced example is that someone

may be in a room and simply say “I’m freezing”: A microphone from the smart home system

shall captures the speech and should be able to derive related information and control

commands such as the current location (i.e., room) of the person, discovers devices related to

the room’s temperature (e.g., a thermostat) finally give the command to increase the

temperature set. In the automotive context, electric vehicles should be able to communicate

with manifold charging infrastructure and vendors. In ITS scenarios, traffic management may

be interested in the average speed on a certain route that should utilise every connected vehicle

on that route, independent of its vendor. This information may be provided by an automatically

generated mash-up AE or service, utilising the speed of the vehicles that are currently driving

on that route in combination with an average calculation service.

Such scenarios, which are usually intended as M2M or IoT solutions are referred to as “smart”

(e.g., Smart Home, Smart Grid, Smart City), and require that AEs and nodes are able to gain

(full) semantic interoperability. Full semantic interoperability includes semantics of the

application data and is not limited to interface semantics (i.e., CRUD methods). A common

approach to achieve semantic interoperability is standardisation of data formats which is then

explicitly implemented within each AE, node, etc. during development time. However,

considering the great number of M2M nodes that should be interoperable, the lifetime of

devices, the evolution of standards and technology, this common methodology reach its limits.

Instead, generic methodologies that are able to gain interoperability automatically during

runtime might become necessary. Coulouris et al. in (2012) described this problem area to the

point: “Often the semantics of operations may vary as well as the syntax, and overcoming

semantic incompatibility is in general difficult and error-prone. Then there is the scale of the

problem: if there are N interfaces, then potentially N2 adaptors have to be written, and more

and more interfaces will be created over time. Moreover, there is the question of how

components are to acquire suitable interface adaptors as they reassociate in a volatile system.

Components (or the devices that host them) cannot come preloaded with all possible N2

adaptors, so the correct adaptor has to be determined and loaded at runtime.”

The oneM2M service platform so far only unifies the communication between nodes and

applications through the abstraction from specific communication technologies and protocols.

The RESTful interface design leads to interoperability at communication level with respect to

interface (i.e., connector) semantics which are the CRUD+N methods (see Section 4.4.4).

Furthermore, the standardised oneM2M resources ensures basic syntactic interoperability at the

level of oneM2M resource types, e.g., AE, container, subscription. However, the current release

of oneM2M lacks (full) semantic interoperability between AEs, which still requires “a-priori

agreement between the two [AEs] regarding the meaning, i.e., the semantics of the data, which

is then implicitly coded into the producer and the consumer.” (oneM2M TR-0007, 2015).

Moreover, although technically (i.e., syntactically) accessible, the meaning and hence

capabilities of the AEs, containers, nodes or their services which are exposed through URIs is

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

157

not clear. Fielding stated in (Fielding, 2000) with respect to the RESTful architectural style and

semantics: “Semantics are a by-product of the act of assigning resource identifiers and

populating those resources with representations. At no time whatsoever do the server or client

software need to know or understand the meaning of a URI – they merely act as a conduit

through which the creator of a resource (a human being naming authority) can associate

representations with the semantics identified by the URI. In other words, there are no resources

on the server; just mechanisms that supply answers across an abstract interface defined by

resources. It may seem odd, but this is the essence of what makes the Web work across so many

different implementations.”

Certainly, the generality and simplicity of a RESTful interface enables technical

interoperability between the myriad computers, building the “traditional” Internet. However, it

has to be considered that this refers to an Internet made for humans, who are capable of deriving

the semantic information and manually creating the connection between resources through

implementing a-priori knowledge. For example, a human being may gain a fundamental

understanding of the data provided by an URI because of its naming, see URI1 example below.

Together with documentation of the AEs, containers, etc., human beings can develop

interconnected functionalities. But it must be considered that, towards an Internet made for

machines (i.e., M2M and IoT), machines must be able to autonomously gain full semantic

interoperability, even on demand during runtime.

URI1: /CSEVehicle1Base/VehicleDataProvider/VehicleData/VehicleDataInstance1/content

URI2: /CSEBase/AE/container/contentInstance/content

URI3: /AB/CD/EF/GH/content

With respect to the current status of the oneM2M standards, the machine-readable information

for the URI1 remains on the level of resource types (see URI2). Since the resource naming

typically has no meaning to machines, in general the URI3 provides the same amount of

information to them as the URI1. This is in accordance with the RESTful architectural style as

cited above.

These examples indicate the necessity of enhancements of the oneM2M standard to gain full

semantic interoperability between AEs and nodes of different venders and domains. In this

regard, semantic annotation of resources together with ontologies are considered as an enabling

technology (Alaya, Banouar, Monteil, Chassot, & Drira, 2014; Ben Alaya et al., 2015; Colace

et al., 2015; Daniel & Matera, 2014). Ben Alaya et al. propose an IoT-O ontology facilitating

the description of the service, actuation, actuator, sensor, and observation model for a thing

(Ben Alaya et al., 2015). Such semantic descriptions could be integrated into the oneM2M

resources by reference (i.e., through a link to the providing resource) or inline, where the

description is stored within an attribute of the resource (Ben Alaya et al., 2015). In combination

with the integration of appropriate technologies such as semantic reasoning, novel resource

discovery methodologies and dynamic resource creations as mash-ups are enabled: For

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

158

example, resources can be discovered depending on their capabilities, as described in the smart

home example above, where the thermostat of the room may be identified by its capability of

controlling the room’s temperature. Here, discovery besides matching may also include ranking

of possible service candidates and the selection of one (Domingue, Fensel, & Hendler, 2011, p.

982). Dynamic resource creation combines such discovery capabilities with mash-up

approaches where, e.g., manifold vehicle speeds are combined with a resource or service that

is able to calculate averages. This enables the ITS example from above, where the oneM2M

platform is capable to dynamically built a resource that provides the average speed on a certain

road segment.

Although the approaches to gaining (full) semantic interoperability within the oneM2M service

platform to a certain extend are still part of research and standardisation, the necessity for such

capabilities is widely agreed upon (Ben Alaya et al., 2015; oneM2M TR-0007, 2015). In this

regard, respective enhancements of the oneM2M standard can be anticipated for future releases.

6.3.4 Assessment

In advance of a prototypical proof-of-concept realisation, the two alternative approaches are

assessed considering the architectural trade-offs to be made. Besides technical aspects of the

architectural design decision, the assessment also has to consider the anticipated future

enhancements of the oneM2M standard such as the semantic interoperability (see Section 6.3.3)

or enhanced access rights to improve privacy20. Furthermore, the assessment should consider

the philosophy that stands behind the oneM2M standardisation efforts.

Both approaches basically fulfil the identified requirements REQ E.1 and REQ E.2, by which

the implementation of application-data-dependent notification criteria is facilitated. They

provide the same enhanced data exchange capabilities including application-data-dependent

notification policies to the AEs through the enhanced Mca-E interface when a deployment

scenario with two nodes is considered, similar to the ASDP scenario as utilised here.

Besides, REQ E.3 can also be realised with both alternatives. However, considering oneM2M

deployment scenarios with deeper hierarchies where data exchange between AEs will pass

more CSEs than the respective up to two hosting CSEs, functional capabilities of the two

alternative approaches differ: Since forwarded messages (e.g., related to subscription and data

exchange) probably will not reach the EDEL of intermediate CSEs, inter-node-AE aggregation

at intermediate CSEs (REQ E.4) is not possible with approach 1. However, as already

discussed, this specific situation is not being further considered within this research, although

20 The implementation of enhanced access rights for the oneM2M service platform is beyond the scope of this

research. Nevertheless, they are considered as a meaningful step to improving privacy. Nevertheless, since

enhanced access rights are enabled through the proposed enhancements for data exchange, they are another aspect

for the assessment of the architectural trade-off with respect to the two alternative approaches.

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

159

it also might be an argument for approach 2, where aggregation of data subscriptions and data

exchange across nodes could be implemented.

However, also with respect to the wireless cellular network utilisation both approaches are

equal. This shows the considered scenario where in both cases only three notification messages

including the most recent contentInstance resource are transferred between the ASN-CSE and

the IN-CSE. Nevertheless, although the results for AEs are equal, the architectural approaches

are fundamentally different, not only because of the technical realisation, but also with respect

to the philosophy behind them.

Since enhanced functionalities shall be provided to the AEs, which are exceeding the existing

capabilities of the oneM2M service platform, the AEs in both cases have to utilise an enhanced

interface (Mca-E). Nevertheless, the architectural approach 1 (see Section 6.3.1) is technically

more complex: It requires the subscriptions to be maintained twice – at the EDEL and within

the CSE. Accordingly, significant functionalities, such as the CSF SN must be implemented

twice. Besides the few attributes that are different within the event notification criteria, the data

to be stored and maintained at the EDEL and the CSE is quite similar. Moreover, the approach

1 requires also the doubling of access criteria management and enforcement which not only

causes doubling of functionalities but may also be unwanted with respect to security

considerations. Due to the above-named reasons, where functionalities are duplicated in both

layers (EDEL and CSE), the architectural approach 1 is assessed as technically more complex.

Both approaches extend the existing capabilities of oneM2M. Thus, it must be assumed that

this increases the memory and computational requirements in case of approach 1 of the AE

layer (containing the EDEL), and in case of approach 2 of the CSE layer. However, it must be

assumed that approach 1 in total has a higher memory and computational requirements than the

approach 1 because of less efficient implementation capabilities (looser coupling because of

intermediate reference points), including duplicated functionalities.

Since both approaches increase memory and computational requirements and because the

oneM2M standard currently describes functionalities which are not to be considered optional,

this results in increased minimum hardware requirements. Given that the AE layer and the CSE

layer are running on the same node (i.e., IN, MN, and ASN), as also proposed for the oneM2M-

based ASDP, this may decrease the scalability to more constraint nodes. Following the prior

considerations, the approach 1 may thereby decrease the scalability more than approach 2. In a

oneM2M configuration, where the AE layer and the CSE layer are not hosted on the same node,

the two approaches only affect the hardware requirements of those nodes hosting the respective

layer where the enhancements are implemented: Accordingly approach 1 increases the

hardware requirements to ADNs and ASNs, and to MNs or the IN, if an AE (or the AE layer

containing the EDEL) is present. Approach 2 increases the hardware requirements of ASNs,

MNS, and the IN. However, it could be assumed that the most constraint nodes will be realised

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

160

as ADN, where the CSE is not co-located. From this point of view, approach 1 may again have

higher negative implications for scalability towards constraint nodes compared to approach 2.

Another aspect is the handling of application data at the CSE layer. So far, the actual application

data is handled opaquely at the CSE (see Section 5.3.1). With approach 1, this can be continued.

However, approach 2 requires that the application data becomes transparent at the CSE to

enable the application-data-dependent notification criteria. Opaque application data at the CSE

layer might be assessed as beneficial with respect to encapsulation and information hiding

considerations. At the same time, from the perspective of the OSI reference model, it must be

considered that the CSE layer already works on the level of the application layer. In this context,

it must be considered, where the architectural design decisions resulting in opaque application

data at CSE have their origin and what will occur to this decision in anticipation of envisaged

enhancements of the oneM2M standard. This question not only has a technical dimension, but

also an organisational dimension regarding the oneM2M standardisation activities. Towards a

standardised platform for the interconnection of machines across vendors and domains,

oneM2M at first unifies the communication with respect to communication technologies and

protocols (see Section 4.4.5). For this first step, standardisation of application data (description)

was out of scope, and opaque application data and subscriptions that cannot be referred to

application data is a consequence (see Sections 5.3.1 and 6.3.3). Then again, oneM2M aims full

semantic interoperability to enable functionalities perceived as smart (see Section 6.3.3). In this

context, besides others, dynamic mash-ups, which result in the creation of virtual resources

(e.g., a virtual AE that provides a data container providing the average speed on a certain route)

are requirements for oneM2M standards’ respectively CSE enhancements. To enable the CSE

to build such virtual mash-up resources, application data must be transparent at the CSE level,

even up to its semantic description. Hence, making the application data a white box through

utilisation of its syntactic description, is considered as anticipation of reasonable upcoming

oneM2M standards’ evolvements. Thus, this is not assessed as a counterargument of

approach 2.

Alone these oneM2M standardisation objectives provide further assessment criteria for the

architectural trade-off between the two alternative approaches: The oneM2M standardisation

activities aim to overcome fragmentation of solutions arising from technologies, protocols, and

domain-specific or vendor-specific approaches. As a solution, the reference points and the CSE

layer are standardised. The range of functionalities by the latter shall be driven by the question,

as to whether a functionality is to be shared by or is advantageous for many AEs (across many

vendors and domains). As discussed earlier, the proposed enhancements are considered as

beneficial beyond an ASDP. If so, the functionalities should be part of oneM2M standardisation

because otherwise AEs have to again agree on several standards not harmonised or integrated.

This again fosters fragmentation and hence weakens the positioning of the oneM2M

standardisation activities as a means to overcome this challenge. Accordingly, approach 1

without standardisation of enhancements by oneM2M is assessed as a less beneficial trade-off.

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

161

Approach 2 inevitably has to be part of the oneM2M standardisation activities because it

extends the CSE. As previously discussed this should also apply to the approach 1. If so,

proposed enhancements and existing functionalities are maintained by oneM2M. In this regard,

oneM2M can choose the most efficient architectural approach. This is approach 2, where

functionalities must not be duplicated.

To summarise: Approach 2 is the more efficient way to implement the proposed enhancements

within the oneM2M service platform. It constitutes the logical continuation of the oneM2M

standardisation philosophy and anticipates future enhancements, e.g., to gain full semantic

interoperability between AEs and nodes. Clearly, like most functional enhancements, also those

proposed here might also increase the hardware requirements for nodes, running the CSE. Then

again, against the background of the resulting improvements as well as existing and anticipated

future functionalities, the additional amount of memory and computation capabilities is

assessed as reasonable. Approach 1 is assessed as less efficient and contrary to the oneM2M

objectives. However, if oneM2M does not intend to implement the proposed enhancements,

approach 1 might be the best alternative, to not implementing these enhancements in every

single AE. In conclusion, the two presented alternative approaches do not mutually exclude one

another – a combination wherein certain fundamental enhancements are implemented at CSE

level that are further extended with a less-common building block at application layer might be

possible. Nevertheless, the prototypical implementation shall utilise the approach 2, where the

enhancements are made in the related CSFs of the CSE layer.

6.4 Summary

The current data exchange capabilities of the oneM2M service platform have shortcomings

which can result in reduced network efficiency and privacy of distributed applications. Novel

enhancements for the data exchange capabilities for the subscribe/notify mechanism of the

oneM2M service platform are proposed to address these shortcomings. These are application-

data-dependent criteria for data exchange and the aggregation of different subscriptions to the

same remote resource.

The approach consists of three building blocks to address the four requirements, derived from

the two named enhancements. XML and XSD are used to enable AEs to provide their

application data in a standardised way including syntactic specification. Complex Event

Processing technologies and the related Event Processing Language are proposed to facilitate

comprehensive application-data-dependent notification policies and to enforce them within the

subscribe/notification mechanism. CEP, respectively the EPL, also provide means for the

aggregation of different notification policies. In addition, related flowcharts for the aggregation

of subscriptions at the local CSE and the remote CSE are presented, whereas the latter is not

further investigated in this research.

Proposal of Novel Data Exchange Capabilities for the oneM2M Service Platform

162

The approach describes the technologies and fundamentals on how the enhanced data exchange

capabilities can be realised. However, there are different architectural approaches which are

capable of implementing the proposed enhancements within the oneM2M service architecture.

With respect to the Platform-Based Design methodology, in general two different architectural

design decisions can be taken, although combination might be possible. The central decision is

whether the enhancements are realised within the oneM2M AE layer or within the oneM2M

CSE layer. Both approaches are introduced and discussed by means of the known condensed

scenario. This facilitates the final assessment of the architectural trade-off, which also takes

into account the oneM2M philosophy, design principles, objectives, and anticipated

developments. It is clearly explained why the approach 2 of implementing the enhancements

within the oneM2M CSE layer is considered as the more appropriate and thus intended solution.

Its practical feasibility is shown through a prototypical proof-of-concept implementation, which

is subject of the next chapter.

Prototype Implementation

163

7 Prototype Implementation

The applicability of the proposed enhancements for data exchange through the subscribe/notify

mechanism and the appropriateness of the selected architectural alternative was validated by

means of a prototypical implementation as proof of concept. This chapter introduces this

prototype and related considerations, starting with the presentation of the selected technologies.

Afterwards, the building blocks are described that implement the enhancements and integrate

them into the oneM2M CSE, respectively the OM2M prototype. Finally, the efficiency

improvements enabled through the enhanced data exchange capabilities are assessed through

exemplary experiments and estimations, followed by concluding considerations.

7.1 Technologies

Basically, two technologies or projects build the basis for the prototype: The Eclipse OM2M

project (Eclipse OM2M project, 2016) is used for basic functionality of the oneM2M service

platform. The Esper CEP Engine (EsperTech, 2016a) is integrated into OM2M as additional

core plugin to facilitate the realisation of CEP-based functionalities, see Figure 7.1. The

technologies are introduced in the following.

7

Prototype Implementation

164

Figure 7.1: Component diagram of enhanced OM2M prototype showing modified and new CORE plugins

7.1.1 Eclipse OM2M Project

Although the release 1 of the oneM2M service platform on which the considerations of this

research mostly rely on was released in January 2015 (see Chapter 4), the standard continues

to evolve and still requires improvements (see Sections 4.1 and 6.3.3). Accordingly, there are

currently only few implementations available which do not in any case implement the latest

releases available.

One promising activity is the OM2M project (Alaya et al., 2014), hosted as open source project

from the Eclipse foundation. This prototype implementation is based on the version 0.8.0 of

OM2M which was the most recent version at the time of implementation but still implements

the ETSI M2M standards (ETSI TS 102 690, 2013; ETSI TS 102 921, 2013). Table 7.1 shows

a mapping of the oneM2M terms to the ETSI M2M standard (ETSI TS 102 690, 2013; ETSI

TS 102 921, 2013) terms21. An additional difference are the collection resources that are still

present in the ETSI M2M and OM2M prototype (see Section 4.4.3). In detail, in addition to the

21 The description of the building blocks continues the wording according to the oneM2M standard in order to ease

the understanding and traceability to previous chapters. For some details, in addition to Table 7.1, the mapping to

the ETSI M2M standard is described to reflect the actual implementation in the enhanced OM2M prototype.

Prototype Implementation

165

terms, some attributes and/or capabilities are evolved as well from the ETSI M2M to the

oneM2M standard (oneM2M TS-0001, 2015; oneM2M TS-0004, 2015). However, since the

ETSI standard is the main precursor of the oneM2M service platform, the relevant

characteristics for data exchange such as data containers, contentInstance resources,

subscriptions including the subscribe/notify mechanism, and eventNotificationCriteria (see

Section 5.3.2) are comparable. This is also emphasised by the fact that an ETSI M2M platform

can easily be upgraded to a oneM2M platform (Elloumi, 2014). In summary, it can be stated

that this motivates the usage of OM2M as foundation for the prototypical implementation and

ensures the validity of the results with respect to the proof-of-concept of the proposed

enhancements for the oneM2M standards.

oneM2M ETSI M2M

AE

(see Section 4.3.1)

Device Application (DA),

Gateway Application (GA),

Network Application (NA)

CSE

(see Section 4.3.1)

Device Service Capability Layer (DSCL),

Gateway Service Capability Layer (GSCL),

Network Service Capability Layer (NSCL)

Mca

(see Section 4.3.2)

dIa (between DA and DSCL, or GA and GSCL),

mIa (between NA and NSCL)

Mcc

(see Section 4.3.2)
mId (between DSCL and NSCL, or GSCL and NSCL)

eventNotificationCriteria

(see Section 5.3.2)
filterCriteria

Table 7.1: Mapping of selected oneM2M terms to ETSI M2M terms

The OM2M implementation of the oneM2M service platform is based on the OSGi Equinox

framework which enables the creation of highly modular Java systems (Alliance, 2014;

McAffer, VanderLei, & Archer, 2010). Hence, the CSE implementation itself follows a service-

oriented approach which contributes to the extension of its capabilities such as those proposed

here.

7.1.2 Esper CEP Engine

To implement CEP capabilities into the CSE layer of the prototype, the Esper CEP Engine has

been selected. It is available, e.g., as a lightweight open-source Java library (EsperTech, 2016a),

which eases its integration into the OM2M prototype. The Esper CEP Engine has proven its

suitability in several contexts, including (automotive) embedded systems and M2M (Bruns et

al., 2015; Bruns & Dunkel, 2015; Terroso-Sáenz, Valdés-Vela, Campuzano, Botia, &

Skarmeta-Gómez, 2015).

Prototype Implementation

166

Esper supports various types of event representations including XML respectively XSD.

Moreover, it supports a tailored EPL to express the description of event conditions (Bruns &

Dunkel, 2015).

7.2 Building Blocks

The OM2M prototype is enhanced to implement the proposed enhanced data exchange

capabilities for the subscribe/notify mechanism of the oneM2M service architecture (see

Section 6).

This section describes the building blocks which implement the related functionalities for the

enhanced data exchange. These building blocks are integrated into the existing CSE handlers

of the methods (see Section 4.4.4), provided by the respective reference points (see

Section 4.3.2). In this regard, the reference points as well become enhanced (i.e., Mca-E22 and

Mcc-E, see Section 6.3).

Figure 7.2: Integration of enhanced data exchange capabilities for subscribe/notify within CSE layer of

oneM2M service platform

Figure 7.2 shows at a glance the integration and interplay of the new building blocks (colour-

coded red) to implement enhanced data exchange capabilities for the oneM2M CSE. In regard

22 In the enhanced OM2M prototype, this refers to dIa-E or mIa-E.

Prototype Implementation

167

to enhanced notification criteria evaluation, three building blocks have been added: Content

Decoder, Esper Event Adaptor, and Esper Statement Adaptor. Furthermore, it is indicated by

the grey building block Subscription & Notification Criteria Aggregator, where such

aggregation of subscriptions (see Section 6.2.3) could be added. However, since OM2M in

version 0.8.0 has too few retargeting capabilities across CSEs, this is not part of this enhanced

OM2M prototype. Nevertheless, to provide further implementation considerations, it is

illustrated in Figure 7.2 and detailed afterwards. For the experiments, it is expected that already

aggregated eventNotificiationCriteria are provided.

The Content Decoder and Esper Event Adaptor have been integrated into the CREATE method

for contentInstance resources (Figure 7.2, steps 1.x). The Esper Statement Adaptor has been

integrated into the CREATE, UPDATE, and DELETE methods of the subscription resource

(Figure 7.2, steps 2.2-2.3). Further, parts of the Esper Statement Adaptor are integrated into the

Notify method (Figure 7.2, steps 3.x).

In the following, these building blocks and the Subscription & Notification Criteria Aggregator

are introduced in more detail, including the description of the steps in which they are involved

by means of an example.

7.2.1 Content Decoder

The oneM2M CSE currently handles application data opaque at the CSE (see Section 5.3.1).

This on the one hand preserves maximum variability for the M2M applications with respect to

the structuring of application data and formats. Nevertheless, on the other hand, towards

interoperability in the context of unbounded systems (see Sections 3.4.2 and 4.2.1), generic and

machine-readable data specifications should be provided. The prototypical implementation

follows the proposed approach of utilising XML and XSD to gain transparent data syntax of

the content (see Section 6.2.1). For this purpose, the existing oneM2M attribute contentInfo to

decode a base64-encoded content attribute is used.

The starting point is the creation of a new contentInstance within a container. Figure 7.2

illustrates an example where the contentInstance VehicleDataInstance1 within the container

VehicleData is created (Figure 7.2, step 1). The CREATE method handler checks whether the

contentInfo is set to ‘application/xml:1’ (which indicates a base64 encoded string of an XML

document). If so, this encoding information together with the related content is forwarded to

the Content Decoder (Figure 7.2, step 1.1a, step 1.1b). Then the decoded application data (i.e.,

an XML document) is passed on to the Esper Event Adaptor (Figure 7.2, step 2).

7.2.2 Esper Event Adaptor

The Esper Event Adaptor implements two functionalities: First, it enables the registration of an

event type for the respective application data format. Second, it enables the propagation of

Prototype Implementation

168

incoming application data (i.e., content) as event. For both, the decoded XML document from

the Content Decoder is the input.

First, the Esper Event Adaptor verifies whether the XML document includes a link to at least

one XML Schema Definition (XSD), formally describing the XML document with respect to

its structure, elements, and their simple or complex data types, etc. (Salminen & Tompa, 2011).

If this is the case, the Esper Event Adaptor determines whether the XSD document is already

known. If not, the XSD document is obtained (i.e., downloaded) and passed on to the Esper

CEP Engine to register an associated event type (Figure 7.2, step 1.3). In the example of Figure

7.2, the XSD is located at http://oem.com/xml/VehicleData. Thus, the Esper CEP Engine is

aware of the application data format by means of syntax and data types which is the foundation

for the specification, verification, and processing of related event queries. Given that the XSD

does not change, this step 1.3 is only executed once at the first creation of a new contentInstance

within the container.

Second, the XML document is passed on to the Esper CEP Engine as new event (Figure 7.2,

step 1.4) of the respective event type. This step is repeated for every new contentInstance

creation, given that a subscription to the respective container exists.

7.2.3 Subscription and Notification Criteria Aggregator

In order to implement the aggregation of different subscriptions to the same remote resource

before forwarding the subscription to transit or remote CSEs23, the subscription CREATE

method handling at the origin oneM2M CSE has to be enhanced (Figure 7.2, step 2.1). It utilises

the fact that the oneM2M CSE interposes such subscription creation requests in any case to

enable the subscription routing across one or many CSEs and notification retargeting, if

applicable. This implementation would follow the selected approach and architectural

alternative (see Sections 6.2 and 6.3.2). To implement the related enhancement, the related

methodology has to be enhanced to additionally save all relevant notification constraints such

as eventNotificationCriteria including the new application-data-dependent notification criteria

(i.e., the EPL statement), schedule, etc. (cf. Section 5.3.2). If an additional subscription to the

same remote resource runs through the CSE (this is a given for the CSE as origin or transit

CSE), such subscription could be detected and the aggregation workflow according to Section

6.2.3 could be performed. However, as stated above, this is not part of the enhanced OM2M

prototype.

23 Since the aggregation of different subscriptions to the same resource is only reasonable for remote resources,

the subscription to local resources has not been considered here.

Prototype Implementation

169

7.2.4 Esper Statement Adaptor

The Esper Statement Adaptor implements two functionalities: The registration of EPL

statements at the respective event types of the Esper CEP and the handling of related

notifications in cases where the statement is fulfilled.

To implement the application-data-dependent notification policies with minimal changes to the

oneM2M service platform and its reference points, and to continue preliminary design decisions

of oneM2M, the existing eventNotificationCriteria attribute capabilities are utilised (see

Section 5.3.2). The list of condition tags of the eventNotificationCriteria attribute already

facilitates policies, addressing single attributes of the subscribed-to resource. This, in addition

to others, enables full-text notification constraints which can be used, e.g., to filter on specific

creator, contentInfo or labels (see Section 5.3.2). Those existing capabilities are enhanced to

support criteria addressing the content attribute of the subscribed-to resource which are

expressed through an EPL statement. The handler of the subscription CREATE method is

enhanced to check whether the eventNotificationCriteria list includes an item following the

syntax “content=[EPLstatement]”24 such as “content=SELECT * FROM VehicleData WHERE

ESP=true OR fuelRange<100;” (see example of Figure 7.2). If this is the case, the subscription

is forwarded to the Esper Statement Adaptor (Figure 7.2, step 2.2).

The Esper Statement Adaptor extracts such EPL statement of a subscription and adds it to the

list of events being evaluated by the Esper CEP Engine (Figure 7.2, step 2.3)25. Consequently,

the application-data-dependent notification criteria, represented and referred to as the

filterAspectNew(applicationDataDependentCriteria), is evaluated within the Esper CEP

Engine according to the envisaged approach (see Section 6.2).

During the registration of an EPL statement at the Esper CEP Engine, the Esper Statement

Adaptor additionally provides a callback for the related notification. This callback is integrated

into the existing notification preparation functionality of the oneM2M CSE. When the EPL

statement, e.g., filterAspectNew(applicationDataDependentCriteria), is fulfilled through the

incoming events (see Section 7.2.2), this callback is called (Figure 7.2, step 3) and the Esper

Statement Adaptor forwards it to the existing notification criteria evaluation (Figure 7.2,

step 3.1), e.g., filterAspectNew(applicationDataDependentCriteria). This realises the envisaged

concatenation of the filterAspectNew(applicationDataDependentCriteria) with the existing

filter capabilities, namely filterCombined(filterAspect1, filterAspect2, filterAspect3),

following the approach (see Section 6.2).

24 In this enhanced OM2M prototype, this is realized through a check whether the filterCriteria ifMatch starts with

“select”.
25 This proof-of-concept prototype requires the creation of at least one contentInstance containing the reference to

the related XSD before a subscription can be created to ensure that the related event type is already registered at

the Esper CEP Engine.

Prototype Implementation

170

If a subscription is being updated or deleted, the Esper Statement Adaptor is responsible for the

adoption or deletion of the related EPL statements and callbacks at the Esper CEP engine.

7.3 Experiments and Estimations

Section 7.2 detailed the implementation of the CSE prototype and therefore used a white-box

view of the enhanced CSE. To reflect the actual usage of the CSE layer, the experiments are

performed using the CSE as black-box. This means, the CSE is used through the respective

enhanced reference points. This section describes one possible experimentation setup, which

facilitates the proof-of-concept of the proposed enhancements and the assessment of the related

results.

7.3.1 Setup and Test Strategy

This section describes the setup of the experiments to enable the assessment of the prototype

and estimations about the benefits of the proposed enhancements. It starts with the explanation

of the general setup, followed by the description of the bootstrap. Finally, the approach to

execute the experiments and to gather the results for further assessment is presented.

General

Figure 7.3 illustrates the entities and their relationship for the setup of the experiment. Here,

the data exchange is broken down to its minimum setup by means of one AE connected to a

single CSE. This facilitates the assessment of the enhanced data exchange capabilities by means

of enhanced subscribe/notify of a single CSE which provides a good basis for further

considerations and estimations.

In order to build a generic AEPrototype that is able to mimic the behaviour of various AEs, the

“Simple REST Client” is used. It enables a high degree of freedom with regard to the http

requests sent to the CSE, while at the same time ensuring full http compliance. The

AEPrototype is used as a kind of test harness that sets up and executes the experiments (i.e.,

test cases). Figure 7.4 shows the usage of “Simple REST Client” as AEPrototype showing the

creation/registration of a VehicleDataProvider application at the CSE/NSCL.

Figure 7.3: Experiment setup

Prototype Implementation

171

The Monitor is used to supervise the experiments and to collect the results. This means, that the

current state of the CSE (that is manifested in the resource tree of the CSE) can be investigated

through the enhanced mIa-E interface with the appropriate degree of detail (e.g., various

retrieve operations at different resource (sub-)trees) at any time during the experiment

execution. Accordingly, again either the “Simple REST Client” or the built-in OM2M Web

Interface can be used to realize this Monitor functionality. Figure 7.5 shows the usage of OM2M

Web Interface as Monitor showing the evaluation of the resource tree after the

creation/registration of a VehicleDataProvider application at the CSE/NSCL. Similar to the

AEPrototype, the Monitor is a passive entity in this experiment setup, which means that it does

not provide its own server capabilities. However, considering the design of the oneM2M service

platform together with the setup of the experiments, this does not limit the validity of the results

and their transferability to the condensed ASDP scenario (see Section 5.1).

Prototype Implementation

172

Figure 7.4: Usage of Simple REST Client as AEPrototype showing the creation/registration of a

VehicleDataProvider application at the CSE/NSCL

Prototype Implementation

173

Figure 7.5: Usage of OM2M Web Interface as Monitor showing the evaluation of the resource tree after

the creation/registration of a VehicleDataProvider application at the CSE/NSCL

The CSE is realized by the enhanced OM2M prototype as explained in Section 7.2. The NSCL

(representing the example CSE) is started on the localhost on port 8080. Accordingly, it can be

accessed at http://127.0.0.1:8080/om2m/nscl/. The OM2M NSCL by default is protected by

basic access control which was also kept for this enhanced prototype. Default

username/password are admin/admin. When accessing the OM2M Web Interface, these can be

entered in the logon form. Every request through the mIa-E reference point has to provide the

login data base64 encoded separated by a colon: base64(admin:admin) =

YWRtaW46YWRtaW4=. Following this, the complete http header should be: Authorization:

Basic YWRtaW46YWRtaW4=.

Finally, the XSD file specifying the XML application data of experiment has to be accessible

at the specified location. In this setup, it is provided by an apache webserver running on

localhost on port 80. Thus, the XSD reference within the XML application data (e.g.,

VehicleData) specifies http://127.0.0.1:80/xsd/VehicleData.xsd.

Test Strategy

The basic idea of the three experiments performed and described in the following are to

compare the number of NOTIY messages resulting from the standard oneM2M data exchange

to the number of NOTIFY messages resulting from the enhanced data exchange capabilities.

Various test strategies are possible: For example, the test can be completely performed and

afterwards the number of NOTIFY messages (respectively contentInstance resources in the

related containers) can be counted. Besides, boundary tests (cf. Kossiakoff et al., 2011) derived

from the standard and the enhanced data subscriptions can be used, as it is done with the

Prototype Implementation

174

following experiments. The boundary tests facilitate a proper test of the CSE and ensure that

the results can be used as basis for further estimations.

Bootstrap

This section details which steps are performed to bootstrap the experiment. Figure 7.6 shows

the related sequence diagram of the interactions between the AEPrototype, the CSE, and the

Monitor. The steps are afterwards explained in detail including the requests performed and

responses received.

Figure 7.6: Sequence Diagram of Experiment Bootstrap

Step 1: The CREATE of an application resource VehicleDataProvider at

nscl/applications is requested by use of the AEPrototype.

URL: http://127.0.0.1:8080/om2m/nscl/applications

Method: POST

Headers: Authorization: Basic YWRtaW46YWRtaW4=

Data: <om2m:application xmlns:om2m="http://uri.etsi.org/m2m"

appId="VehicleDataProvider">

</om2m:application>

Step 2: The NSCL sends a RESPONSE with status 201 Created to the AEPrototype.

Status: 201 Created

Headers: location: nscl/applications/VehicleDataProvider

server: Jetty(8.1.16.v20140903)

content-length: 1410

Prototype Implementation

175

content-type: application/xml;charset=ISO-8859-1

Data: <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<om2m:application xmlns:om2m="http://uri.etsi.org/m2m"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime"

appId="VehicleDataProvider">

 <om2m:accessRightID>nscl/accessRights/AR_ADMIN</om2m:accessRightID>

 <om2m:searchStrings>

 <om2m:searchString>ResourceType/Application</om2m:searchString>

 <om2m:searchString>ResourceID/VehicleDataProvider</om2m:searchString>

 </om2m:searchStrings>

 <om2m:expirationTime>2049-05-

18T15:05:47.823+02:00</om2m:expirationTime>

 <om2m:creationTime>2017-09-09T13:19:08.825+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T13:19:08.825+02:00</om2m:lastModifiedTime>

 <om2m:announceTo>

 <om2m:activated>false</om2m:activated>

 <om2m:global>false</om2m:global>

 </om2m:announceTo>

<om2m:containersReference>nscl/applications/VehicleDataProvider/containers</o

m2m:containersReference>

<om2m:groupsReference>nscl/applications/VehicleDataProvider/groups</om2m:gr

oupsReference>

<om2m:accessRightsReference>nscl/applications/VehicleDataProvider/accessRight

s</om2m:accessRightsReference>

<om2m:subscriptionsReference>nscl/applications/VehicleDataProvider/subscriptio

ns</om2m:subscriptionsReference>

<om2m:notificationChannelsReference>nscl/applications/VehicleDataProvider/noti

ficationChannels</om2m:notificationChannelsReference>

</om2m:application>

Step 3: The CREATE of a container resource VehicleData at

nscl/applications/VehicleDataProvider/containers

is requested by use of the AEPrototype.

URL: http://127.0.0.1:8080/om2m/nscl/applications/VehicleDataProvider/containers

Method: POST

Headers: Authorization: Basic YWRtaW46YWRtaW4=

Data: <om2m:container xmlns:om2m="http://uri.etsi.org/m2m"

om2m:id="VehicleData">

</om2m:container>

Step 4: The NSCL sends a RESPONSE with status 201 Created to the AEPrototype.

Status: 201 Created

Headers: location: nscl/applications/VehicleDataProvider/containers/CONT_923464169

server: Jetty(8.1.16.v20140903)

content-length: 1179

content-type: application/xml;charset=ISO-8859-1

Data: <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<om2m:container xmlns:om2m="http://uri.etsi.org/m2m"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime"

om2m:id="CONT_923464169">

 <om2m:accessRightID>nscl/accessRights/AR_ADMIN</om2m:accessRightID>

 <om2m:searchStrings>

 <om2m:searchString>ResourceType/Container</om2m:searchString>

 <om2m:searchString>ResourceID/CONT_923464169</om2m:searchString>

Prototype Implementation

176

 </om2m:searchStrings>

 <om2m:expirationTime>2049-05-

18T15:07:44.908+02:00</om2m:expirationTime>

 <om2m:creationTime>2017-09-09T13:21:05.908+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T13:21:05.908+02:00</om2m:lastModifiedTime>

 <om2m:announceTo>

 <om2m:activated>false</om2m:activated>

 <om2m:global>false</om2m:global>

 </om2m:announceTo>

 <om2m:maxNrOfInstances>100</om2m:maxNrOfInstances>

<om2m:contentInstancesReference>nscl/applications/VehicleDataProvider/containe

rs/CONT_923464169/contentInstances</om2m:contentInstancesReference>

<om2m:subscriptionsReference>nscl/applications/VehicleDataProvider/containers/

CONT_923464169/subscriptions</om2m:subscriptionsReference>

</om2m:container>

Step 5: The CREATE of an application resource VehicleDataSubscriber at

nscl/applications is requested by use of the AEPrototype.

URL: http://127.0.0.1:8080/om2m/nscl/applications

Method: POST

Headers: Authorization: Basic YWRtaW46YWRtaW4=

Data: <om2m:application xmlns:om2m="http://uri.etsi.org/m2m"

appId="VehicleDataSubscriber">

</om2m:application>

Step 6: The NSCL sends a RESPONSE with status 201 Created to the AEPrototype.

Status: 201 Created

Headers: location: nscl/applications/VehicleDataSubscriber

server: Jetty(8.1.16.v20140903)

content-length: 1424

content-type: application/xml;charset=ISO-8859-1

Data: <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<om2m:application xmlns:om2m="http://uri.etsi.org/m2m"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime"

appId="VehicleDataSubscriber">

 <om2m:accessRightID>nscl/accessRights/AR_ADMIN</om2m:accessRightID>

 <om2m:searchStrings>

 <om2m:searchString>ResourceType/Application</om2m:searchString>

<om2m:searchString>ResourceID/VehicleDataSubscriber</om2m:searchString>

 </om2m:searchStrings>

 <om2m:expirationTime>2049-05-

18T15:09:44.953+02:00</om2m:expirationTime>

 <om2m:creationTime>2017-09-09T13:23:05.953+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T13:23:05.953+02:00</om2m:lastModifiedTime>

 <om2m:announceTo>

 <om2m:activated>false</om2m:activated>

 <om2m:global>false</om2m:global>

 </om2m:announceTo>

<om2m:containersReference>nscl/applications/VehicleDataSubscriber/containers</

om2m:containersReference>

<om2m:groupsReference>nscl/applications/VehicleDataSubscriber/groups</om2m:

groupsReference>

Prototype Implementation

177

<om2m:accessRightsReference>nscl/applications/VehicleDataSubscriber/accessRig

hts</om2m:accessRightsReference>

<om2m:subscriptionsReference>nscl/applications/VehicleDataSubscriber/subscripti

ons</om2m:subscriptionsReference>

<om2m:notificationChannelsReference>nscl/applications/VehicleDataSubscriber/n

otificationChannels</om2m:notificationChannelsReference>

</om2m:application>

Step 7: The CREATE of a container resource VehicleDataFilteredStd at

nscl/applications/VehicleDataSubscriber/containers

is requested by use of the AEPrototype.

URL: http://127.0.0.1:8080/om2m/nscl/applications/VehicleDataSubscriber/containers

Method: POST

Headers: Authorization: Basic YWRtaW46YWRtaW4=

Data: <om2m:container xmlns:om2m="http://uri.etsi.org/m2m"

om2m:id="VehicleDataFilteredStd">

</om2m:container>

Step 8: The NSCL sends a RESPONSE with status 201 Created to the AEPrototype.

Status: 201 Created

Headers: location:

nscl/applications/VehicleDataSubscriber/containers/VehicleDataFilteredStd

server: Jetty(8.1.16.v20140903)

content-length: 1215

content-type: application/xml;charset=ISO-8859-1

Data: <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<om2m:container xmlns:om2m="http://uri.etsi.org/m2m"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime"

om2m:id="VehicleDataFilteredStd">

 <om2m:accessRightID>nscl/accessRights/AR_ADMIN</om2m:accessRightID>

 <om2m:searchStrings>

 <om2m:searchString>ResourceType/Container</om2m:searchString>

<om2m:searchString>ResourceID/VehicleDataFilteredStd</om2m:searchString>

 </om2m:searchStrings>

 <om2m:expirationTime>2049-05-

18T15:12:38.110+02:00</om2m:expirationTime>

 <om2m:creationTime>2017-09-09T13:25:59.110+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T13:25:59.110+02:00</om2m:lastModifiedTime>

 <om2m:announceTo>

 <om2m:activated>false</om2m:activated>

 <om2m:global>false</om2m:global>

 </om2m:announceTo>

 <om2m:maxNrOfInstances>100</om2m:maxNrOfInstances>

<om2m:contentInstancesReference>nscl/applications/VehicleDataSubscriber/contai

ners/VehicleDataFilteredStd/contentInstances</om2m:contentInstancesReference>

<om2m:subscriptionsReference>nscl/applications/VehicleDataSubscriber/container

s/VehicleDataFilteredStd/subscriptions</om2m:subscriptionsReference>

</om2m:container>

Prototype Implementation

178

Step 9: The CREATE of a container resource VehicleDataFilteredEnh at

nscl/applications/VehicleDataSubscriber/containers

is requested by use of the AEPrototype.
URL: http://127.0.0.1:8080/om2m/nscl/applications/VehicleDataSubscriber/containers

Method POST

Headers: Authorization: Basic YWRtaW46YWRtaW4=

Data: <om2m:container xmlns:om2m="http://uri.etsi.org/m2m"

om2m:id="VehicleDataFilteredEnh">

</om2m:container>

Step 10: The NSCL sends a RESPONSE with status 201 Created to the AEPrototype.

Status: 201 Created

Headers: location:

nscl/applications/VehicleDataSubscriber/containers/VehicleDataFilteredEnh

server: Jetty(8.1.16.v20140903)

content-length: 1215

content-type: application/xml;charset=ISO-8859-1

Data: <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<om2m:container xmlns:om2m="http://uri.etsi.org/m2m"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime"

om2m:id="VehicleDataFilteredEnh">

 <om2m:accessRightID>nscl/accessRights/AR_ADMIN</om2m:accessRightID>

 <om2m:searchStrings>

 <om2m:searchString>ResourceType/Container</om2m:searchString>

<om2m:searchString>ResourceID/VehicleDataFilteredEnh</om2m:searchString>

 </om2m:searchStrings>

 <om2m:expirationTime>2049-05-

18T15:14:12.561+02:00</om2m:expirationTime>

 <om2m:creationTime>2017-09-09T13:27:33.562+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T13:27:33.562+02:00</om2m:lastModifiedTime>

 <om2m:announceTo>

 <om2m:activated>false</om2m:activated>

 <om2m:global>false</om2m:global>

 </om2m:announceTo>

 <om2m:maxNrOfInstances>100</om2m:maxNrOfInstances>

<om2m:contentInstancesReference>nscl/applications/VehicleDataSubscriber/contai

ners/VehicleDataFilteredEnh/contentInstances</om2m:contentInstancesReference>

<om2m:subscriptionsReference>nscl/applications/VehicleDataSubscriber/container

s/VehicleDataFilteredEnh/subscriptions</om2m:subscriptionsReference>

</om2m:container>

Step 11: The successful bootstrap of the experiment can be assessed by use of the

Monitor through the RETRIEVE of certain (sub-)trees of the resource tree. In the

given example, a RETRIEVE of the nscl/applications is performed.

URL: http://127.0.0.1:8080/om2m/nscl/applications

Method: GET

Headers: Authorization: Basic YWRtaW46YWRtaW4=

Step 12: The NSCL sends a RESPONSE with status 200 OK to the AEPrototype. It

shows the successful creation of the applications VehicleDataProvider and

VehicleDataSubscriber.

Status: 200 OK

Headers: content-length: 922

server: Jetty(8.1.16.v20140903)

content-type: application/xml;charset=ISO-8859-1

Prototype Implementation

179

Data: <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<om2m:applications xmlns:om2m="http://uri.etsi.org/m2m"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime">

 <om2m:accessRightID>nscl/accessRights/AR_ADMIN</om2m:accessRightID>

 <om2m:creationTime>2017-09-09T13:17:39.513+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-09T13:23:05.956+02:00</om2m:lastModifiedTime>

 <om2m:applicationCollection>

 <om2m:namedReference

id="VehicleDataProvider">nscl/applications/VehicleDataProvider</om2m:namedReference>

 <om2m:namedReference

id="VehicleDataSubscriber">nscl/applications/VehicleDataSubscriber</om2m:namedRefere

nce>

 </om2m:applicationCollection>

 <om2m:applicationAnncCollection/>

<om2m:subscriptionsReference>nscl/applications/subscriptions</om2m:subscriptionsRefere

nce>

 <om2m:mgmtObjsReference>nscl/applications/mgmtObjs</om2m:mgmtObjsReference>

</om2m:applications>

This kind of bootstrap and the AEs and containers created are rather universal and enable the

execution of diverse experiments. However, if required, the bootstrap could also be modified

in order to evaluate different experiments and estimations.

Experiment Execution and Result Retrieve

This section details which steps are performed to execute the experiment and to retrieve the

results. Figure 7.7 shows the related sequence diagram of the interactions between the

AEPrototype, the CSE, and the Monitor. The steps are afterwards explained in detail including

the requests performed and responses received.

Prototype Implementation

180

Figure 7.7: Sequence Diagram of Experiment Execution and Result Retrieve

Step 1: The CREATE of a contentInstance resource (type: VehicleData XML) at

nscl/applications/VehicleDataProvider/containers/VehicleData/contentInstances

is requested by use of the AEPrototype. This is done to trigger the registration of

a new event type related to the referenced XSD, see Section 7.2.2.

URL: http://127.0.0.1:8080/om2m/nscl/applications/VehicleDataProvider/↩

containers/VehicleData/contentInstances

Method: POST

Headers: Authorization: Basic YWRtaW46YWRtaW4=

Data: <?xml version="1.0" encoding="UTF-8"?>

<VehicleData xmlns:xs="http://127.0.0.1:80/xsd/VehicleData.xsd">

 <Position>

 <latitude>49.866208</latitude>

 <longitude>8.640403</longitude>

 <heading>90</heading>

 </Position>

 <speed>35</speed>

 <fuelRange>750</fuelRange>

 <ESP>false</ESP>

</VehicleData>

Prototype Implementation

181

Step 2: The NSCL sends a RESPONSE with status 201 Created to the AEPrototype.

Status: 201 Created

Headers: location:

nscl/applications/VehicleDataProvider/containers/VehicleData/contentInstances/CI_

787760297

server: Jetty(8.1.16.v20140903)

content-length: 1073

content-type: application/xml;charset=ISO-8859-1

Data: <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<om2m:contentInstance xmlns:om2m="http://uri.etsi.org/m2m"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime" om2m:id="CI_787760297"

href="nscl/applications/VehicleDataProvider/containers/VehicleData/contentInstanc

es/CI_787760297">

 <om2m:creationTime>2017-09-09T13:45:42.392+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T13:45:42.392+02:00</om2m:lastModifiedTime>

 <om2m:delayTolerance>2017-09-

09T17:05:42.392+02:00</om2m:delayTolerance>

 <om2m:contentSize>310</om2m:contentSize>

 <om2m:content

xmime:contentType="application/xml">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNv

ZGluZz0iVVRGLTgiPz4KPFZlaGljbGVEYXRhIHhtbG5zOnhzPSJodHRwOi8vM

TI3LjAuMC4xOjgwL3hzZC9WZWhpY2xlRGF0YS54c2QiPgogIDxQb3NpdGlvbj

4KICAgIDxsYXRpdHVkZT40OS44NjYyMDg8L2xhdGl0dWRlPgogICAgPGxvb

mdpdHVkZT44LjY0MDQwMzwvbG9uZ2l0dWRlPgogICAgPGhlYWRpbmc+OT

A8L2hlYWRpbmc+CiAgPC9Qb3NpdGlvbj4KICA8c3BlZWQ+MzU8L3NwZWV

kPgogIDxmdWVsUmFuZ2U+NzUwPC9mdWVsUmFuZ2U+CiAgPEVTUD5mY

WxzZTwvRVNQPgo8L1ZlaGljbGVEYXRhPg==</om2m:content>

</om2m:contentInstance>

Step 3: The CREATE of a subscription resource VehicleDataSubStd26 at

nscl/applications/VehicleDataProvider/containers/VehicleData/↩

contentInstances/subscriptions is requested by use of the AEPrototype. This

subscription uses just the standard subscription capabilities without the

enhancements. In this example, it subscribes to every VehicleData

contentInstance creation. To ease the assessment of the result, the target for the

NOTIFY requests is the container resource

nscl/applications/VehicleDataSubscriber/↩

containers/VehicleDataFilteredStd.

URL: http://127.0.0.1:8080/om2m/nscl/applications/VehicleDataProvider/↩

containers/VehicleData/contentInstances/subscriptions

Method: POST

Headers: Authorization: Basic YWRtaW46YWRtaW4=

Data: <om2m:subscription xmlns:om2m="http://uri.etsi.org/m2m">

 <om2m:contact>http://127.0.0.1:8080/om2m/nscl/applications/↩

VehicleDataSubscriber/containers/VehicleDataFilteredStd/contentInstances↩

</om2m:contact>

</om2m:subscription>

Step 4: The NSCL sends a RESPONSE with status 201 Created to the AEPrototype.

Status: 201 Created

26 The subscription name VehicleDataSubStd serves identification and reference purposes within the experiments.

Actually, the subscription resource names are generated automatically by the NSCL and cannot be set externally.

Prototype Implementation

182

Headers: location:

nscl/applications/VehicleDataProvider/containers/VehicleData/contentInstances/sub

scriptions/SUB_556424748

server: Jetty(8.1.16.v20140903)

content-length: 654

content-type: application/xml;charset=ISO-8859-1

Data: <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<om2m:subscription xmlns:om2m="http://uri.etsi.org/m2m"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime"

om2m:id="SUB_556424748">

 <om2m:expirationTime>2049-05-

18T15:39:47.184+02:00</om2m:expirationTime>

 <om2m:creationTime>2017-09-09T13:53:08.184+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T13:53:08.184+02:00</om2m:lastModifiedTime>

 <om2m:filterCriteria/>

 <om2m:subscriptionType>ASYNCHRONOUS</om2m:subscriptionType>

<om2m:contact>http://127.0.0.1:8080/om2m/nscl/applications/VehicleDataSubscri

ber/containers/VehicleDataFilteredStd/contentInstances</om2m:contact>

</om2m:subscription>

Step 5: The CREATE of a subscription resource VehicleDataSubEnh27 at

nscl/applications/VehicleDataProvider/containers/VehicleData/↩

contentInstances/subscriptions is requested by use of the AEPrototype. This

subscription uses the enhanced subscription capabilities as proposed and

developed with this research. In this example, it subscribes to every VehicleData

contentInstance creation where the remaining fuelRange is lower than 100. To

ease the assessment of the result, the target for the NOTIFY requests is the

container resource nscl/applications/VehicleDataSubscriber/↩

containers/VehicleDataFilteredEnh.

URL: http://127.0.0.1:8080/om2m/nscl/applications/VehicleDataProvider/↩

containers/VehicleData/contentInstances/subscriptions

Method: POST

Headers: Authorization: Basic YWRtaW46YWRtaW4=

Data: <om2m:subscription xmlns:om2m="http://uri.etsi.org/m2m">

 <om2m:filterCriteria>

 <ifMatch>select * from VehicleData where fuelRange < 100</ifMatch>

 </om2m:filterCriteria>

<om2m:contact>http://127.0.0.1:8080/om2m/nscl/applications/↩

VehicleDataSubscriber/containers/VehicleDataFilteredEnh/contentInstances↩

</om2m:contact>

</om2m:subscription>

Step 6: The NSCL sends a RESPONSE with status 201 Created to the AEPrototype.

Status: 201 Created

Headers: location:

nscl/applications/VehicleDataProvider/containers/VehicleData/contentInstances/sub

scriptions/SUB_960200273

server: Jetty(8.1.16.v20140903)

content-length: 785

content-type: application/xml;charset=ISO-8859-1

Data: <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

27 The subscription name VehicleDataSubEnh serves identification and reference purposes within the experiments.

Actually, the subscription resource names are generated automatically by the NSCL and cannot be set externally.

Prototype Implementation

183

<om2m:subscription xmlns:om2m="http://uri.etsi.org/m2m"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime"

om2m:id="SUB_712784690">

 <om2m:expirationTime>2049-05-

19T09:27:10.398+02:00</om2m:expirationTime>

 <om2m:creationTime>2017-09-10T07:40:31.398+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

10T07:40:31.398+02:00</om2m:lastModifiedTime>

 <om2m:filterCriteria>

 <ifMatch>select * from VehicleData where fuelRange < 100</ifMatch>

 </om2m:filterCriteria>

 <om2m:subscriptionType>ASYNCHRONOUS</om2m:subscriptionType>

<om2m:contact>http://127.0.0.1:8080/om2m/nscl/applications/VehicleDataSubscri

ber/containers/VehicleDataFilteredEnh/contentInstances</om2m:contact>

</om2m:subscription>

Step 7: The CREATE of a contentInstance resource (type: VehicleData XML) at

nscl/applications/VehicleDataProvider/containers/VehicleData/contentInstances

is requested by use of the AEPrototype. This step 7 (incl. step 8) can be repeated

as often as necessary, in order to execute the experiment and generate the related

results. In this example, it is repeated three times, with changed fuelRange of

749, 100, 99 in order to check the boundary values of the experiment (see

Section 7.3.2).

URL: http://127.0.0.1:8080/om2m/nscl/applications/VehicleDataProvider/↩

containers/VehicleData/contentInstances

Method: POST

Headers: Authorization: Basic YWRtaW46YWRtaW4=

Data: <?xml version="1.0" encoding="UTF-8"?>

<VehicleData xmlns:xs="http://127.0.0.1:80/xsd/VehicleData.xsd">

 <Position>

 <latitude>49.866208</latitude>

 <longitude>8.640403</longitude>

 <heading>90</heading>

 </Position>

 <speed>35</speed>

 <fuelRange>749</fuelRange>

 <ESP>false</ESP>

</VehicleData>

Step 8: The NSCL sends a RESPONSE with status 201 Created to the AEPrototype.

Status: 201 Created

Headers: location:

nscl/applications/VehicleDataProvider/containers/VehicleData/contentInstances/CI_

537453077

server: Jetty(8.1.16.v20140903)

content-length: 1073

content-type: application/xml;charset=ISO-8859-1

Data: <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<om2m:contentInstance xmlns:om2m="http://uri.etsi.org/m2m"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime" om2m:id="CI_537453077"

href="nscl/applications/VehicleDataProvider/containers/VehicleData/contentInstanc

es/CI_537453077">

 <om2m:creationTime>2017-09-09T14:03:23.449+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T14:03:23.449+02:00</om2m:lastModifiedTime>

 <om2m:delayTolerance>2017-09-

09T17:23:23.449+02:00</om2m:delayTolerance>

Prototype Implementation

184

 <om2m:contentSize>310</om2m:contentSize>

 <om2m:content

xmime:contentType="application/xml">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNv

ZGluZz0iVVRGLTgiPz4KPFZlaGljbGVEYXRhIHhtbG5zOnhzPSJodHRwOi8vM

TI3LjAuMC4xOjgwL3hzZC9WZWhpY2xlRGF0YS54c2QiPgogIDxQb3NpdGlvbj

4KICAgIDxsYXRpdHVkZT40OS44NjYyMDg8L2xhdGl0dWRlPgogICAgPGxvb

mdpdHVkZT44LjY0MDQwMzwvbG9uZ2l0dWRlPgogICAgPGhlYWRpbmc+OT

A8L2hlYWRpbmc+CiAgPC9Qb3NpdGlvbj4KICA8c3BlZWQ+MzU8L3NwZWV

kPgogIDxmdWVsUmFuZ2U+NzQ5PC9mdWVsUmFuZ2U+CiAgPEVTUD5mYW

xzZTwvRVNQPgo8L1ZlaGljbGVEYXRhPg==</om2m:content>

</om2m:contentInstance>

Step 9: To collect the results of the experiment, firstly the AEPrototype requests to

RETRIEVE the nscl/applications/VehicleDataProvider/containers/↩

VehicleData/contentInstances resource that constitutes the VehicleData initially

provided by the AEPrototype.

URL: http://127.0.0.1:8080/om2m/nscl/applications/VehicleDataProvider/↩

containers/VehicleData/contentInstances

Method: GET

Headers: Authorization: Basic YWRtaW46YWRtaW4=

Step 10: The RESPONSE in addition to others contains the currentNrOfInstances, which

can be used as basis to calculate the savings of the VehicleDataSubStd and

VehicleDataSubEnh in contrast to the VehicleData totally provided.

Status: 200 OK

Headers: content-length: 4629

server: Jetty(8.1.16.v20140903)

content-type: application/xml;charset=ISO-8859-1

Data: <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<om2m:contentInstances xmlns:om2m="http://uri.etsi.org/m2m"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime">

 <om2m:creationTime>2017-09-09T14:43:23.560+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T15:01:20.957+02:00</om2m:lastModifiedTime>

 <om2m:currentNrOfInstances>4</om2m:currentNrOfInstances>

 <om2m:currentByteSize>1239</om2m:currentByteSize>

 <om2m:contentInstanceCollection>

 <om2m:contentInstance om2m:id="CI_66122943"

href="nscl/applications/VehicleDataProvider/containers/VehicleData/contentInstanc

es/CI_66122943">

 <om2m:creationTime>2017-09-

09T15:00:29.953+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T15:00:29.954+02:00</om2m:lastModifiedTime>

 <om2m:delayTolerance>2017-09-

09T18:20:29.953+02:00</om2m:delayTolerance>

 <om2m:contentSize>310</om2m:contentSize>

 <om2m:content

xmime:contentType="application/xml">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNv

ZGluZz0iVVRGLTgiPz4KPFZlaGljbGVEYXRhIHhtbG5zOnhzPSJodHRwOi8vM

TI3LjAuMC4xOjgwL3hzZC9WZWhpY2xlRGF0YS54c2QiPgogIDxQb3NpdGlvbj

4KICAgIDxsYXRpdHVkZT40OS44NjYyMDg8L2xhdGl0dWRlPgogICAgPGxvb

mdpdHVkZT44LjY0MDQwMzwvbG9uZ2l0dWRlPgogICAgPGhlYWRpbmc+OT

A8L2hlYWRpbmc+CiAgPC9Qb3NpdGlvbj4KICA8c3BlZWQ+MzU8L3NwZWV

kPgogIDxmdWVsUmFuZ2U+NzUwPC9mdWVsUmFuZ2U+CiAgPEVTUD5mY

WxzZTwvRVNQPgo8L1ZlaGljbGVEYXRhPg==</om2m:content>

 </om2m:contentInstance>

Prototype Implementation

185

 <om2m:contentInstance om2m:id="CI_669633475"

href="nscl/applications/VehicleDataProvider/containers/VehicleData/contentInstanc

es/CI_669633475">

 <om2m:creationTime>2017-09-

09T15:01:11.779+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T15:01:11.779+02:00</om2m:lastModifiedTime>

 <om2m:delayTolerance>2017-09-

09T18:21:11.779+02:00</om2m:delayTolerance>

 <om2m:contentSize>310</om2m:contentSize>

 <om2m:content

xmime:contentType="application/xml">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNv

ZGluZz0iVVRGLTgiPz4KPFZlaGljbGVEYXRhIHhtbG5zOnhzPSJodHRwOi8vM

TI3LjAuMC4xOjgwL3hzZC9WZWhpY2xlRGF0YS54c2QiPgogIDxQb3NpdGlvbj

4KICAgIDxsYXRpdHVkZT40OS44NjYyMDg8L2xhdGl0dWRlPgogICAgPGxvb

mdpdHVkZT44LjY0MDQwMzwvbG9uZ2l0dWRlPgogICAgPGhlYWRpbmc+OT

A8L2hlYWRpbmc+CiAgPC9Qb3NpdGlvbj4KICA8c3BlZWQ+MzU8L3NwZWV

kPgogIDxmdWVsUmFuZ2U+NzQ5PC9mdWVsUmFuZ2U+CiAgPEVTUD5mYW

xzZTwvRVNQPgo8L1ZlaGljbGVEYXRhPg==</om2m:content>

 </om2m:contentInstance>

 <om2m:contentInstance om2m:id="CI_277229607"

href="nscl/applications/VehicleDataProvider/containers/VehicleData/contentInstanc

es/CI_277229607">

 <om2m:creationTime>2017-09-

09T15:01:16.913+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T15:01:16.913+02:00</om2m:lastModifiedTime>

 <om2m:delayTolerance>2017-09-

09T18:21:16.913+02:00</om2m:delayTolerance>

 <om2m:contentSize>310</om2m:contentSize>

 <om2m:content

xmime:contentType="application/xml">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNv

ZGluZz0iVVRGLTgiPz4KPFZlaGljbGVEYXRhIHhtbG5zOnhzPSJodHRwOi8vM

TI3LjAuMC4xOjgwL3hzZC9WZWhpY2xlRGF0YS54c2QiPgogIDxQb3NpdGlvbj

4KICAgIDxsYXRpdHVkZT40OS44NjYyMDg8L2xhdGl0dWRlPgogICAgPGxvb

mdpdHVkZT44LjY0MDQwMzwvbG9uZ2l0dWRlPgogICAgPGhlYWRpbmc+OT

A8L2hlYWRpbmc+CiAgPC9Qb3NpdGlvbj4KICA8c3BlZWQ+MzU8L3NwZWV

kPgogIDxmdWVsUmFuZ2U+MTAwPC9mdWVsUmFuZ2U+CiAgPEVTUD5mY

WxzZTwvRVNQPgo8L1ZlaGljbGVEYXRhPg==</om2m:content>

 </om2m:contentInstance>

 <om2m:contentInstance om2m:id="CI_761829680"

href="nscl/applications/VehicleDataProvider/containers/VehicleData/contentInstanc

es/CI_761829680">

 <om2m:creationTime>2017-09-

09T15:01:20.933+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T15:01:20.933+02:00</om2m:lastModifiedTime>

 <om2m:delayTolerance>2017-09-

09T18:21:20.933+02:00</om2m:delayTolerance>

 <om2m:contentSize>309</om2m:contentSize>

 <om2m:content

xmime:contentType="application/xml">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNv

ZGluZz0iVVRGLTgiPz4KPFZlaGljbGVEYXRhIHhtbG5zOnhzPSJodHRwOi8vM

TI3LjAuMC4xOjgwL3hzZC9WZWhpY2xlRGF0YS54c2QiPgogIDxQb3NpdGlvbj

4KICAgIDxsYXRpdHVkZT40OS44NjYyMDg8L2xhdGl0dWRlPgogICAgPGxvb

mdpdHVkZT44LjY0MDQwMzwvbG9uZ2l0dWRlPgogICAgPGhlYWRpbmc+OT

A8L2hlYWRpbmc+CiAgPC9Qb3NpdGlvbj4KICA8c3BlZWQ+MzU8L3NwZWV

kPgogIDxmdWVsUmFuZ2U+OTk8L2Z1ZWxSYW5nZT4KICA8RVNQPmZhbH

NlPC9FU1A+CjwvVmVoaWNsZURhdGE+</om2m:content>

 </om2m:contentInstance>

Prototype Implementation

186

 </om2m:contentInstanceCollection>

<om2m:subscriptionsReference>nscl/applications/VehicleDataProvider/containers/

VehicleData/contentInstances/subscriptions</om2m:subscriptionsReference>

</om2m:contentInstances>

Step 11: To collect the results of the experiment, secondly the AEPrototype requests to

RETRIEVE the nscl/applications/VehicleDataSubscriber/containers/

VehicleDataFilteredStd/contentInstances resource that reflects the filtering of the

VehicleDataSubStd.

URL: http://127.0.0.1:8080/om2m/nscl/applications/VehicleDataSubscriber/↩

containers/VehicleDataFilteredStd/contentInstances

Method: GET

Headers: Authorization: Basic YWRtaW46YWRtaW4=

Step 12: The RESPONSE beside others contains the currentNrOfInstances, which can be

used as basis to calculate the savings of the VehicleDataSubEnh in contrast to

the VehicleData totally provided and the VehicleDataSubStd. According to the

request and the subscription VehicleDataSubStd, the response also provides the

received NOTIFY messages within contentInstance resources in a

contentInstanceCollection. These are the base64 encoded content (i.e., the XML

VehicleData), nested in a base64 encoded contentInstance (e.g.,

nscl/applications/VehicleDataProvider/

containers/VehicleData/contentInstances/CI_669633475), nested in a base64

encoded NOTIFY message.

Status: 200 OK

Headers: content-length: 10068

server: Jetty(8.1.16.v20140903)

content-type: application/xml;charset=ISO-8859-1

Data: <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<om2m:contentInstances xmlns:om2m="http://uri.etsi.org/m2m"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime">

 <om2m:creationTime>2017-09-09T14:44:14.291+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-09T15:01:44.969+02:00</om2m:lastModifiedTime>

 <om2m:currentNrOfInstances>3</om2m:currentNrOfInstances>

 <om2m:currentByteSize>5705</om2m:currentByteSize>

 <om2m:contentInstanceCollection>

 <om2m:contentInstance om2m:id="CI_175375118"

href="nscl/applications/VehicleDataSubscriber/containers/VehicleDataFilteredStd/contentIns

tances/CI_175375118">

 <om2m:creationTime>2017-09-09T15:01:11.821+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T15:01:11.821+02:00</om2m:lastModifiedTime>

 <om2m:delayTolerance>2017-09-09T18:21:11.820+02:00</om2m:delayTolerance>

 <om2m:contentSize>1903</om2m:contentSize>

 <om2m:content

xmime:contentType="application/xml">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0

iVVRGLTgiIHN0YW5kYWxvbmU9InllcyI/Pgo8b20ybTpub3RpZnkgeG1sbnM6b20ybT0ia

HR0cDovL3VyaS5ldHNpLm9yZy9tMm0iIHhtbG5zOnhtaW1lPSJodHRwOi8vd3d3LnczLm

9yZy8yMDA1LzA1L3htbG1pbWUiPgogICAgPG9tMm06c3RhdHVzQ29kZT5TVEFUVVN

fQ1JFQVRFRDwvb20ybTpzdGF0dXNDb2RlPgogICAgPG9tMm06cmVwcmVzZW50YXR

pb24geG1pbWU6Y29udGVudFR5cGU9ImFwcGxpY2F0aW9uL3htbCI+UEQ5NGJXd2dkb

VZ5YzJsdmJqMGlNUzR3SWlCbGJtTnZaR2x1WnowaVZWUkdMVGdpSUhOMFlXNWtZ

V3h2Ym1VOUlubGxjeUkvUGdvOGIyMHliVHBqYjI1MFpXNTBTVzV6ZEdGdVkyVWdl

RzFzYm5NNmIyMHliVDBpYUhSMGNEb3ZMM1Z5YVM1bGRITnBMbTl5Wnk5dE1tM

GlJSGh0Ykc1ek9uaHRhVzFsUFNKb2RIUndPaTh2ZDNkM0xuY3pMbTl5Wnk4eU1EQTF

MekExTDNodGJHMXBiV1VpSUc5dE1tMDZhV1E5SWtOSlh6WTJPVFl6TXpRM05TSW

dhSEpsWmowaWJuTmpiQzloY0hCc2FXTmhkR2x2Ym5NdlZtVm9hV05zWlVSaGRHRlFj

Prototype Implementation

187

bTkyYVdSbGNpOWpiMjUwWVdsdVpYSnpMMVpsYUdsamJHVkVZWFJoTDJOdmJuU

mxiblJKYm5OMFlXNWpaWE12UTBsZk5qWTVOak16TkRjMUlqNEtJQ0FnSUR4dmJUS

nRPbU55WldGMGFXOXVWR2x0WlQ0eU1ERTNMVEE1TFRBNVZERTFPakF4T2pFeE

xqYzNPU3N3TWpvd01Ed3ZiMjB5YlRwamNtVmhkR2x2YmxScGJXVStDaUFnSUNBOG

IyMHliVHBzWVhOMFRXOWthV1pwWldSVWFXMWxQakl3TVRjdE1Ea3RNRGxVTVR

VNk1ERTZNVEV1TnpjNUt6QXlPakF3UEM5dmJUSnRPbXhoYzNSTmIyUnBabWxsWkZ

ScGJXVStDaUFnSUNBOGIyMHliVHBrWld4aGVWUnZiR1Z5WVc1alpUNHlNREUzTFR

BNUxUQTVWREU0T2pJeE9qRXhMamMzT1Nzd01qb3dNRHd2YjIweWJUcGtaV3hoZV

ZSdmJHVnlZVzVqWlQ0S0lDQWdJRHh2YlRKdE9tTnZiblJsYm5SVGFYcGxQak14TUR3

dmIyMHliVHBqYjI1MFpXNTBVMmw2WlQ0S0lDQWdJRHh2YlRKdE9tTnZiblJsYm5RZ

2VHMXBiV1U2WTI5dWRHVnVkRlI1Y0dVOUltRndjR3hwWTJGMGFXOXVMM2h0Yk

NJK1VFUTVOR0pYZDJka2JWWjVZekpzZG1KcU1HbE5VelIzU1dsQ2JHSnRUblphUjJ4

MVdub3dhVlpXVWtkTVZHZHBVSG8wUzFCR1dteGhSMnhxWWtkV1JWbFlVbWhKU0

doMFlrYzFlazl1YUhwUVUwcHZaRWhTZDA5cE9IWk5WRWt6VEdwQmRVMUROSGh

QYW1kM1RETm9lbHBET1ZkYVYyaHdXVEo0YkZKSFJqQlpVelUwWXpKUmFWQm5i

MmRKUkhoUllqTk9jR1JIYkhaaWFqUkxTVU5CWjBsRWVITlpXRkp3WkVoV2ExcFVO

REJQVXpRMFRtcFplVTFFWnpoTU1uaG9aRWRzTUdSWFVteFFaMjluU1VOQloxQkhlS

FppYldSd1pFaFdhMXBVTkRSTWFsa3dUVVJSZDAxNmQzWmlSemwxV2pKc01HUlhVb

XhRWjI5blNVTkJaMUJIYUd4WlYxSndZbTFqSzA5VVFUaE1NbWhzV1ZkU2NHSnRZe

XREYVVGblVFTTVVV0l6VG5Ca1IyeDJZbW8wUzBsRFFUaGpNMEpzV2xkUkswMTZ

WVGhNTTA1M1dsZFdhMUJuYjJkSlJIaHRaRmRXYzFWdFJuVmFNbFVyVG5wUk5WQ

kRPVzFrVjFaelZXMUdkVm95VlN0RGFVRm5VRVZXVkZWRU5XMVpWM2g2V2xSM

2RsSldUbEZRWjI4NFRERmFiR0ZIYkdwaVIxWkZXVmhTYUZCblBUMDhMMjl0TW0w

NlkyOXVkR1Z1ZEQ0S1BDOXZiVEp0T21OdmJuUmxiblJKYm5OMFlXNWpaVDRLPC9

vbTJtOnJlcHJlc2VudGF0aW9uPgogICAgPG9tMm06c3Vic2NyaXB0aW9uUmVmZXJlbm

NlPm5zY2wvYXBwbGljYXRpb25zL1ZlaGljbGVEYXRhUHJvdmlkZXIvY29udGFpbmVy

cy9WZWhpY2xlRGF0YS9jb250ZW50SW5zdGFuY2VzL3N1YnNjcmlwdGlvbnMvU1VCX

zMyMjg4MzAxOTwvb20ybTpzdWJzY3JpcHRpb25SZWZlcmVuY2U+Cjwvb20ybTpub3R

pZnk+Cg==</om2m:content>

 </om2m:contentInstance>

 <om2m:contentInstance om2m:id="CI_349759828"

href="nscl/applications/VehicleDataSubscriber/containers/VehicleDataFilteredStd/contentIns

tances/CI_349759828">

 <om2m:creationTime>2017-09-09T15:01:16.943+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T15:01:16.943+02:00</om2m:lastModifiedTime>

 <om2m:delayTolerance>2017-09-09T18:21:16.942+02:00</om2m:delayTolerance>

 <om2m:contentSize>1903</om2m:contentSize>

 <om2m:content

xmime:contentType="application/xml">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0

iVVRGLTgiIHN0YW5kYWxvbmU9InllcyI/Pgo8b20ybTpub3RpZnkgeG1sbnM6b20ybT0ia

HR0cDovL3VyaS5ldHNpLm9yZy9tMm0iIHhtbG5zOnhtaW1lPSJodHRwOi8vd3d3LnczLm

9yZy8yMDA1LzA1L3htbG1pbWUiPgogICAgPG9tMm06c3RhdHVzQ29kZT5TVEFUVVN

fQ1JFQVRFRDwvb20ybTpzdGF0dXNDb2RlPgogICAgPG9tMm06cmVwcmVzZW50YXR

pb24geG1pbWU6Y29udGVudFR5cGU9ImFwcGxpY2F0aW9uL3htbCI+UEQ5NGJXd2dkb

VZ5YzJsdmJqMGlNUzR3SWlCbGJtTnZaR2x1WnowaVZWUkdMVGdpSUhOMFlXNWtZ

V3h2Ym1VOUlubGxjeUkvUGdvOGIyMHliVHBqYjI1MFpXNTBTVzV6ZEdGdVkyVWdl

RzFzYm5NNmIyMHliVDBpYUhSMGNEb3ZMM1Z5YVM1bGRITnBMbTl5Wnk5dE1tM

GlJSGh0Ykc1ek9uaHRhVzFsUFNKb2RIUndPaTh2ZDNkM0xuY3pMbTl5Wnk4eU1EQTF

MekExTDNodGJHMXBiV1VpSUc5dE1tMDZhV1E5SWtOSlh6STNOekl5T1RZd055SWdh

SEpsWmowaWJuTmpiQzloY0hCc2FXTmhkR2x2Ym5NdlZtVm9hV05zWlVSaGRHRlFjbT

kyYVdSbGNpOWpiMjUwWVdsdVpYSnpMMVpsYUdsamJHVkVZWFJoTDJOdmJuUmxi

blJKYm5OMFlXNWpaWE12UTBsZk1qYzNNakk1TmpBM0lqNEtJQ0FnSUR4dmJUSnRP

bU55WldGMGFXOXVWR2x0WlQ0eU1ERTNMVEE1TFRBNVZERTFPakF4T2pFMkxqa

3hNeXN3TWpvd01Ed3ZiMjB5YlRwamNtVmhkR2x2YmxScGJXVStDaUFnSUNBOGIyM

HliVHBzWVhOMFRXOWthV1pwWldSVWFXMWxQakl3TVRjdE1Ea3RNRGxVTVRVN

k1ERTZNVFl1T1RFekt6QXlPakF3UEM5dmJUSnRPbXhoYzNSTmIyUnBabWxsWkZScG

JXVStDaUFnSUNBOGIyMHliVHBrWld4aGVWUnZiR1Z5WVc1alpUNHlNREUzTFRBN

UxUQTVWREU0T2pJeE9qRTJMamt4TXlzd01qb3dNRHd2YjIweWJUcGtaV3hoZVZSdmJ

HVnlZVzVqWlQ0S0lDQWdJRHh2YlRKdE9tTnZiblJsYm5SVGFYcGxQak14TUR3dmIyM

HliVHBqYjI1MFpXNTBVMmw2WlQ0S0lDQWdJRHh2YlRKdE9tTnZiblJsYm5RZ2VHM

XBiV1U2WTI5dWRHVnVkRlI1Y0dVOUltRndjR3hwWTJGMGFXOXVMM2h0YkNJK1V

FUTVOR0pYZDJka2JWWjVZekpzZG1KcU1HbE5VelIzU1dsQ2JHSnRUblphUjJ4MVdub3

dhVlpXVWtkTVZHZHBVSG8wUzFCR1dteGhSMnhxWWtkV1JWbFlVbWhKU0doMFlrY

zFlazl1YUhwUVUwcHZaRWhTZDA5cE9IWk5WRWt6VEdwQmRVMUROSGhQYW1k

M1RETm9lbHBET1ZkYVYyaHdXVEo0YkZKSFJqQlpVelUwWXpKUmFWQm5iMmRK

UkhoUllqTk9jR1JIYkhaaWFqUkxTVU5CWjBsRWVITlpXRkp3WkVoV2ExcFVOREJQV

Prototype Implementation

188

XpRMFRtcFplVTFFWnpoTU1uaG9aRWRzTUdSWFVteFFaMjluU1VOQloxQkhlSFppYld

Sd1pFaFdhMXBVTkRSTWFsa3dUVVJSZDAxNmQzWmlSemwxV2pKc01HUlhVbXhRW

jI5blNVTkJaMUJIYUd4WlYxSndZbTFqSzA5VVFUaE1NbWhzV1ZkU2NHSnRZeXREY

VVGblVFTTVVV0l6VG5Ca1IyeDJZbW8wUzBsRFFUaGpNMEpzV2xkUkswMTZWVGh

NTTA1M1dsZFdhMUJuYjJkSlJIaHRaRmRXYzFWdFJuVmFNbFVyVFZSQmQxQkRPVz

FrVjFaelZXMUdkVm95VlN0RGFVRm5VRVZXVkZWRU5XMVpWM2g2V2xSM2RsSld

UbEZRWjI4NFRERmFiR0ZIYkdwaVIxWkZXVmhTYUZCblBUMDhMMjl0TW0wNlkyO

XVkR1Z1ZEQ0S1BDOXZiVEp0T21OdmJuUmxiblJKYm5OMFlXNWpaVDRLPC9vbTJt

OnJlcHJlc2VudGF0aW9uPgogICAgPG9tMm06c3Vic2NyaXB0aW9uUmVmZXJlbmNlPm5

zY2wvYXBwbGljYXRpb25zL1ZlaGljbGVEYXRhUHJvdmlkZXIvY29udGFpbmVycy9WZ

WhpY2xlRGF0YS9jb250ZW50SW5zdGFuY2VzL3N1YnNjcmlwdGlvbnMvU1VCXzMyMj

g4MzAxOTwvb20ybTpzdWJzY3JpcHRpb25SZWZlcmVuY2U+Cjwvb20ybTpub3RpZnk+C

g==</om2m:content>

 </om2m:contentInstance>

 <om2m:contentInstance om2m:id="CI_193870689"

href="nscl/applications/VehicleDataSubscriber/containers/VehicleDataFilteredStd/contentIns

tances/CI_193870689">

 <om2m:creationTime>2017-09-09T15:01:20.992+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T15:01:20.992+02:00</om2m:lastModifiedTime>

 <om2m:delayTolerance>2017-09-09T18:21:20.992+02:00</om2m:delayTolerance>

 <om2m:contentSize>1899</om2m:contentSize>

 <om2m:content

xmime:contentType="application/xml">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0

iVVRGLTgiIHN0YW5kYWxvbmU9InllcyI/Pgo8b20ybTpub3RpZnkgeG1sbnM6b20ybT0ia

HR0cDovL3VyaS5ldHNpLm9yZy9tMm0iIHhtbG5zOnhtaW1lPSJodHRwOi8vd3d3LnczLm

9yZy8yMDA1LzA1L3htbG1pbWUiPgogICAgPG9tMm06c3RhdHVzQ29kZT5TVEFUVVN

fQ1JFQVRFRDwvb20ybTpzdGF0dXNDb2RlPgogICAgPG9tMm06cmVwcmVzZW50YXR

pb24geG1pbWU6Y29udGVudFR5cGU9ImFwcGxpY2F0aW9uL3htbCI+UEQ5NGJXd2dkb

VZ5YzJsdmJqMGlNUzR3SWlCbGJtTnZaR2x1WnowaVZWUkdMVGdpSUhOMFlXNWtZ

V3h2Ym1VOUlubGxjeUkvUGdvOGIyMHliVHBqYjI1MFpXNTBTVzV6ZEdGdVkyVWdl

RzFzYm5NNmIyMHliVDBpYUhSMGNEb3ZMM1Z5YVM1bGRITnBMbTl5Wnk5dE1tM

GlJSGh0Ykc1ek9uaHRhVzFsUFNKb2RIUndPaTh2ZDNkM0xuY3pMbTl5Wnk4eU1EQTF

MekExTDNodGJHMXBiV1VpSUc5dE1tMDZhV1E5SWtOSlh6YzJNVGd5T1RZNE1DSW

dhSEpsWmowaWJuTmpiQzloY0hCc2FXTmhkR2x2Ym5NdlZtVm9hV05zWlVSaGRHRlFj

bTkyYVdSbGNpOWpiMjUwWVdsdVpYSnpMMVpsYUdsamJHVkVZWFJoTDJOdmJuU

mxiblJKYm5OMFlXNWpaWE12UTBsZk56WXhPREk1Tmpnd0lqNEtJQ0FnSUR4dmJUSn

RPbU55WldGMGFXOXVWR2x0WlQ0eU1ERTNMVEE1TFRBNVZERTFPakF4T2pJd0x

qa3pNeXN3TWpvd01Ed3ZiMjB5YlRwamNtVmhkR2x2YmxScGJXVStDaUFnSUNBOGIy

MHliVHBzWVhOMFRXOWthV1pwWldSVWFXMWxQakl3TVRjdE1Ea3RNRGxVTVRV

Nk1ERTZNakF1T1RNekt6QXlPakF3UEM5dmJUSnRPbXhoYzNSTmIyUnBabWxsWkZSc

GJXVStDaUFnSUNBOGIyMHliVHBrWld4aGVWUnZiR1Z5WVc1alpUNHlNREUzTFRB

NUxUQTVWREU0T2pJeE9qSXdMamt6TXlzd01qb3dNRHd2YjIweWJUcGtaV3hoZVZSd

mJHVnlZVzVqWlQ0S0lDQWdJRHh2YlRKdE9tTnZiblJsYm5SVGFYcGxQak13T1R3dmI

yMHliVHBqYjI1MFpXNTBVMmw2WlQ0S0lDQWdJRHh2YlRKdE9tTnZiblJsYm5RZ2V

HMXBiV1U2WTI5dWRHVnVkRlI1Y0dVOUltRndjR3hwWTJGMGFXOXVMM2h0YkNJ

K1VFUTVOR0pYZDJka2JWWjVZekpzZG1KcU1HbE5VelIzU1dsQ2JHSnRUblphUjJ4MV

dub3dhVlpXVWtkTVZHZHBVSG8wUzFCR1dteGhSMnhxWWtkV1JWbFlVbWhKU0doM

FlrYzFlazl1YUhwUVUwcHZaRWhTZDA5cE9IWk5WRWt6VEdwQmRVMUROSGhQY

W1kM1RETm9lbHBET1ZkYVYyaHdXVEo0YkZKSFJqQlpVelUwWXpKUmFWQm5iM

mRKUkhoUllqTk9jR1JIYkhaaWFqUkxTVU5CWjBsRWVITlpXRkp3WkVoV2ExcFVORE

JQVXpRMFRtcFplVTFFWnpoTU1uaG9aRWRzTUdSWFVteFFaMjluU1VOQloxQkhlSFpp

YldSd1pFaFdhMXBVTkRSTWFsa3dUVVJSZDAxNmQzWmlSemwxV2pKc01HUlhVbXh

RWjI5blNVTkJaMUJIYUd4WlYxSndZbTFqSzA5VVFUaE1NbWhzV1ZkU2NHSnRZeXR

EYVVGblVFTTVVV0l6VG5Ca1IyeDJZbW8wUzBsRFFUaGpNMEpzV2xkUkswMTZWV

GhNTTA1M1dsZFdhMUJuYjJkSlJIaHRaRmRXYzFWdFJuVmFNbFVyVDFSck9Fd3lXak

ZhVjNoVFdWYzFibHBVTkV0SlEwRTRVbFpPVVZCdFdtaGlTRTVzVUVNNVJsVXhRU

3REYW5kMlZtMVdiMkZYVG5OYVZWSm9aRWRGS3p3dmIyMHliVHBqYjI1MFpXNT

BQZ284TDI5dE1tMDZZMjl1ZEdWdWRFbHVjM1JoYm1ObFBnbz08L29tMm06cmVwcm

VzZW50YXRpb24+CiAgICA8b20ybTpzdWJzY3JpcHRpb25SZWZlcmVuY2U+bnNjbC9hc

HBsaWNhdGlvbnMvVmVoaWNsZURhdGFQcm92aWRlci9jb250YWluZXJzL1ZlaGljbGV

EYXRhL2NvbnRlbnRJbnN0YW5jZXMvc3Vic2NyaXB0aW9ucy9TVUJfMzIyODgzMDE5

PC9vbTJtOnN1YnNjcmlwdGlvblJlZmVyZW5jZT4KPC9vbTJtOm5vdGlmeT4K</om2m:co

ntent>

 </om2m:contentInstance>

 </om2m:contentInstanceCollection>

Prototype Implementation

189

<om2m:subscriptionsReference>nscl/applications/VehicleDataSubscriber/containers/Vehicle

DataFilteredStd/contentInstances/subscriptions</om2m:subscriptionsReference>

</om2m:contentInstances>

Step 13: To collect the results of the experiment, thirdly the AEPrototype requests to

RETRIEVE the nscl/applications/VehicleDataSubscriber/containers/

VehicleDataFilteredEnh/contentInstances resource that reflects the filtering of

the VehicleDataSubEnh.

URL: http://127.0.0.1:8080/om2m/nscl/applications/VehicleDataSubscriber/↩

containers/VehicleDataFilteredEnh/contentInstances

Method: GET

Headers: Authorization: Basic YWRtaW46YWRtaW4=

Step 14: The RESPONSE in addition to others contains the currentNrOfInstances, which

can be used as basis to calculate the savings of the VehicleDataSubEnh in

contrast to the VehicleData totally provided and the VehicleDataSubStd.

According to the request and the subscription VehicleDataSubEnh, the response

also provides the received NOTIFY message within a contentInstance resource

in a contentInstanceCollection. This is the base64 encoded content (i.e., the

XML VehicleData), nested in a base64 encoded contentInstance (e.g.,

nscl/applications/VehicleDataProvider/

containers/VehicleData/contentInstances/CI_761829680), nested in a base64

encoded NOTIFY message.

Status: 200 OK

Headers: content-length: 3818

server: Jetty(8.1.16.v20140903)

content-type: application/xml;charset=ISO-8859-1

Data: <?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<om2m:contentInstances xmlns:om2m="http://uri.etsi.org/m2m"

xmlns:xmime="http://www.w3.org/2005/05/xmlmime">

 <om2m:creationTime>2017-09-09T14:44:37.206+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-09T15:01:20.995+02:00</om2m:lastModifiedTime>

 <om2m:currentNrOfInstances>1</om2m:currentNrOfInstances>

 <om2m:currentByteSize>1899</om2m:currentByteSize>

 <om2m:contentInstanceCollection>

 <om2m:contentInstance om2m:id="CI_23657356"

href="nscl/applications/VehicleDataSubscriber/containers/VehicleDataFilteredEnh/contentIn

stances/CI_23657356">

 <om2m:creationTime>2017-09-09T15:01:20.988+02:00</om2m:creationTime>

 <om2m:lastModifiedTime>2017-09-

09T15:01:20.988+02:00</om2m:lastModifiedTime>

 <om2m:delayTolerance>2017-09-09T18:21:20.988+02:00</om2m:delayTolerance>

 <om2m:contentSize>1899</om2m:contentSize>

 <om2m:content

xmime:contentType="application/xml">PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0

iVVRGLTgiIHN0YW5kYWxvbmU9InllcyI/Pgo8b20ybTpub3RpZnkgeG1sbnM6b20ybT0ia

HR0cDovL3VyaS5ldHNpLm9yZy9tMm0iIHhtbG5zOnhtaW1lPSJodHRwOi8vd3d3LnczLm

9yZy8yMDA1LzA1L3htbG1pbWUiPgogICAgPG9tMm06c3RhdHVzQ29kZT5TVEFUVVN

fQ1JFQVRFRDwvb20ybTpzdGF0dXNDb2RlPgogICAgPG9tMm06cmVwcmVzZW50YXR

pb24geG1pbWU6Y29udGVudFR5cGU9ImFwcGxpY2F0aW9uL3htbCI+UEQ5NGJXd2dkb

VZ5YzJsdmJqMGlNUzR3SWlCbGJtTnZaR2x1WnowaVZWUkdMVGdpSUhOMFlXNWtZ

V3h2Ym1VOUlubGxjeUkvUGdvOGIyMHliVHBqYjI1MFpXNTBTVzV6ZEdGdVkyVWdl

RzFzYm5NNmIyMHliVDBpYUhSMGNEb3ZMM1Z5YVM1bGRITnBMbTl5Wnk5dE1tM

GlJSGh0Ykc1ek9uaHRhVzFsUFNKb2RIUndPaTh2ZDNkM0xuY3pMbTl5Wnk4eU1EQTF

MekExTDNodGJHMXBiV1VpSUc5dE1tMDZhV1E5SWtOSlh6YzJNVGd5T1RZNE1DSW

dhSEpsWmowaWJuTmpiQzloY0hCc2FXTmhkR2x2Ym5NdlZtVm9hV05zWlVSaGRHRlFj

bTkyYVdSbGNpOWpiMjUwWVdsdVpYSnpMMVpsYUdsamJHVkVZWFJoTDJOdmJuU

mxiblJKYm5OMFlXNWpaWE12UTBsZk56WXhPREk1Tmpnd0lqNEtJQ0FnSUR4dmJUSn

Prototype Implementation

190

RPbU55WldGMGFXOXVWR2x0WlQ0eU1ERTNMVEE1TFRBNVZERTFPakF4T2pJd0x

qa3pNeXN3TWpvd01Ed3ZiMjB5YlRwamNtVmhkR2x2YmxScGJXVStDaUFnSUNBOGIy

MHliVHBzWVhOMFRXOWthV1pwWldSVWFXMWxQakl3TVRjdE1Ea3RNRGxVTVRV

Nk1ERTZNakF1T1RNekt6QXlPakF3UEM5dmJUSnRPbXhoYzNSTmIyUnBabWxsWkZSc

GJXVStDaUFnSUNBOGIyMHliVHBrWld4aGVWUnZiR1Z5WVc1alpUNHlNREUzTFRB

NUxUQTVWREU0T2pJeE9qSXdMamt6TXlzd01qb3dNRHd2YjIweWJUcGtaV3hoZVZSd

mJHVnlZVzVqWlQ0S0lDQWdJRHh2YlRKdE9tTnZiblJsYm5SVGFYcGxQak13T1R3dmI

yMHliVHBqYjI1MFpXNTBVMmw2WlQ0S0lDQWdJRHh2YlRKdE9tTnZiblJsYm5RZ2V

HMXBiV1U2WTI5dWRHVnVkRlI1Y0dVOUltRndjR3hwWTJGMGFXOXVMM2h0YkNJ

K1VFUTVOR0pYZDJka2JWWjVZekpzZG1KcU1HbE5VelIzU1dsQ2JHSnRUblphUjJ4MV

dub3dhVlpXVWtkTVZHZHBVSG8wUzFCR1dteGhSMnhxWWtkV1JWbFlVbWhKU0doM

FlrYzFlazl1YUhwUVUwcHZaRWhTZDA5cE9IWk5WRWt6VEdwQmRVMUROSGhQY

W1kM1RETm9lbHBET1ZkYVYyaHdXVEo0YkZKSFJqQlpVelUwWXpKUmFWQm5iM

mRKUkhoUllqTk9jR1JIYkhaaWFqUkxTVU5CWjBsRWVITlpXRkp3WkVoV2ExcFVORE

JQVXpRMFRtcFplVTFFWnpoTU1uaG9aRWRzTUdSWFVteFFaMjluU1VOQloxQkhlSFpp

YldSd1pFaFdhMXBVTkRSTWFsa3dUVVJSZDAxNmQzWmlSemwxV2pKc01HUlhVbXh

RWjI5blNVTkJaMUJIYUd4WlYxSndZbTFqSzA5VVFUaE1NbWhzV1ZkU2NHSnRZeXR

EYVVGblVFTTVVV0l6VG5Ca1IyeDJZbW8wUzBsRFFUaGpNMEpzV2xkUkswMTZWV

GhNTTA1M1dsZFdhMUJuYjJkSlJIaHRaRmRXYzFWdFJuVmFNbFVyVDFSck9Fd3lXak

ZhVjNoVFdWYzFibHBVTkV0SlEwRTRVbFpPVVZCdFdtaGlTRTVzVUVNNVJsVXhRU

3REYW5kMlZtMVdiMkZYVG5OYVZWSm9aRWRGS3p3dmIyMHliVHBqYjI1MFpXNT

BQZ284TDI5dE1tMDZZMjl1ZEdWdWRFbHVjM1JoYm1ObFBnbz08L29tMm06cmVwcm

VzZW50YXRpb24+CiAgICA8b20ybTpzdWJzY3JpcHRpb25SZWZlcmVuY2U+bnNjbC9hc

HBsaWNhdGlvbnMvVmVoaWNsZURhdGFQcm92aWRlci9jb250YWluZXJzL1ZlaGljbGV

EYXRhL2NvbnRlbnRJbnN0YW5jZXMvc3Vic2NyaXB0aW9ucy9TVUJfMTUxNzE0NDU

2PC9vbTJtOnN1YnNjcmlwdGlvblJlZmVyZW5jZT4KPC9vbTJtOm5vdGlmeT4K</om2m:c

ontent>

 </om2m:contentInstance>

 </om2m:contentInstanceCollection>

<om2m:subscriptionsReference>nscl/applications/VehicleDataSubscriber/containers/Vehicle

DataFilteredEnh/contentInstances/subscriptions</om2m:subscriptionsReference>

</om2m:contentInstances>

The steps described are intended to support various experiments. The example used here relates

to the Experiment 1, as described in the following Section 7.3.2. However, the example can

also be used as basis for other experiments and estimations. These are usual

modifications/variants and the steps that have to be modified:

• Different XML application data format:

In order to use a different XML data format, the Step 1 has to be adopted: The data in

the related request should be the new XML application data format including the

reference to the location of the corresponding XSD file.

Modified data may also require adoptions of Steps 3, 5, and 7.

• Different data subscriptions:

To adopt the VehicleDataSubStd or the VehicleDataSubEnh subscription in order to

perform different experiments and estimations, the Steps 3 and 5 have to be modified

accordingly.

7.3.2 Experiment 1: Remaining fuelRange with Single-Steps Provider,

Variant 1

The first experiment is derived from the condensed ASDP scenario (see Section 5.1): The AE3

Vehicle Maintenance subscribes to the remaining fuelRange, in order to initiate subsequent use

cases, e.g., to offer nearby gas stations, when the remaining fuelRange is below a certain

Prototype Implementation

191

threshold. In this experiment, the threshold should be less than 100 KM remaining fuelRange.

For this reason, the AE3 subscribes to VehicleData that is provided by the AE1 Vehicle Data

Provider.

The AEPrototype is used as test harness by means of setting up the VehicleDataProvider and

respective containers, as well as two subscriptions. The notification target of the two

subscriptions are the respective containers VehicleDataFilteredStd and

VehicleDataFilteredEnh in the VehicleDataSubscriber application, which mimic the AE3

Vehicle Maintenance. Furthermore, the AEPrototype provides the VehicleData to the

respective container resource in the CSE.

Assumptions

• The vehicle provides the VehicleData with each single-step modification of the

fuelRange attribute.

• The fuelRange continuously decreases, starting from 750 KM.

Subscriptions

• VehicleDataSubStd: Since the event, when the remaining fuelRange falls below 100

KM must not be missed, no filter criterion can be applied, as the standard oneM2M

data exchange capabilities do not facilitate appropriate filter criteria (cf. Section 5.3).

• VehicleDataSubEnh: The subscription VehicleDataSubEnh uses the enhanced data

exchange capabilities as developed and proposed in this research by means of the

following EPL statement: select * from VehicleData where fuelRange < 100;

Test and Estimations

The CSE prototype is tested with boundary values 750, 749, 100, and 99, that are derived from

the VehicleDataSubEnh. The test is performed according to the setup and test strategy as

presented in Section 7.3.1. Based on this, further estimations are made:

(1.1) (750 − 99) + 1 = 652

According to 1.1., the VehicleDataSubStd triggers 652 NOTIFY messages until the fuelRange

99 KM is reached, which result in 652 contentInstance resources created at the

VehicleDataFilteredStd.

The VehicleDataSubEnh triggers only one NOTIFY message exactly when the fuelRange

99 KM is reached, which result in only one contentInstance created at the

VehicleDataFilteredEnh.

(1.2) (1 − (
1

652
)) ∗ 100 = 99,84662

Prototype Implementation

192

According to 1.2, the saving of NOTIFY messages of the VehicleDataSubEnh is 99,84662 %

until a fuelRange of 99 KM is reached.

(1.3) (1 − (
99 + 1

750 + 1
)) ∗ 100 = 86,68442

Considering the number of NOTIFY messages until a remaining fuelRange of 0 KM is reached,

the VehicleDataSubStd triggers 751 NOTIFY messages, and the VehicleDataSubEnh triggers

100 NOTIFY messages, which lead to the corresponding number of contentInstance resources

in the VehicleDataFilteredStd and VehicleDataFilteredEnh data containers. This results in

savings of 86,68442 % for the enhanced data exchange capabilities as utilised by the

VehicleDataSubEnh (see 1.3).

Figure 7.8 illustrates the number of notifications for both subscriptions during decrease of

fuelRange from 750 KM to 0 KM according to the conditions of this Experiment 1.

Figure 7.8: Comparison of the number of notifications for VehicleDataSubStd and VehicleDataSubEnh

during fuelRange decrease according to the conditions of Experiment 1

7.3.3 Experiment 2: Remaining fuelRange with Decimal-Steps Provider

The second experiment constitutes a variation of the Experiment 1 (see Section 7.3.2). Most

important difference is that the AE1 Vehicle Data Provider now provides the VehicleData only

with each decimal-step modification (i.e., decrease) of the remaining fuelRange. Thus, the

threshold should be less than or equal to 100 KM remaining fuelRange.

0

100

200

300

400

500

600

700

800

750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0

N
u

m
b

er
 o

f
n

o
ti

fi
ca

ti
o

n
s

fuelRange

VehicleDataFilteredStd VehicleDataFilteredEnh

Prototype Implementation

193

Assumptions

• The vehicle provides the VehicleData with each decimal-step modification of the

fuelRange attribute.

• The fuelRange continuously decreases, starting from 750 KM.

Subscriptions

• VehicleDataSubStd: Since the event, when the remaining fuelRange is equal to or

less than 100 KM must not be missed, no filter criterion can be applied, as the

standard oneM2M data exchange capabilities do not facilitate appropriate filter criteria

(cf. Section 5.3).

• VehicleDataSubEnh: The subscription VehicleDataSubEnh uses the enhanced data

exchange capabilities as developed and proposed in this research by means of the

following EPL statement: select * from VehicleData where fuelRange <= 100; In

order to avoid getting the first notification at 90 KM, the EPL statement is modified.

Test and Estimations

The CSE prototype is tested with boundary values 750, 740, 110, 100, and 90, that are derived

from the VehicleDataSubEnh. The test is performed according to the setup and test strategy as

presented in Section 7.3.1. Based on this, further estimations are made:

(2.1) (
750 − 100

10
) + 1 = 66

According to 2.1., the VehicleDataSubStd triggers 66 NOTIFY messages until the fuelRange

100 KM is reached, which result in 656 contentInstance resources created at the

VehicleDataFilteredStd.

The VehicleDataSubEnh triggers only one NOTIFY message exactly when the fuelRange

100 KM is reached, which result in only one contentInstance created at the

VehicleDataFilteredEnh.

(2.2) (1 − (
1

66
)) ∗ 100 = 98, 48̅̅̅̅

According to 2.2, the saving of NOTIFY messages of the VehicleDataSubEnh is 98,48 % up to

a fuelRange of 100 KM.

(2.3) (1 − (
10 + 1

75 + 1
)) ∗ 100 = 85,5263

Considering the number of NOTIFY messages until a remaining fuelRange of 0 KM is reached,

the VehicleDataSubStd triggers 76 NOTIFY messages, and the VehicleDataSubEnh triggers

11 NOTIFY message, which leads to the corresponding number of contentInstance resources

Prototype Implementation

194

in the VehicleDataFilteredStd and VehicleDataFilteredEnh data containers. This results in

savings of 85,5263 % for the enhanced data exchange capabilities as utilised by the

VehicleDataSubEnh (see 2.3).

Figure 7.9 illustrates the number of notifications for both subscriptions during decrease of

fuelRange from 750 KM to 0 KM according to the conditions of this Experiment 2.

Figure 7.9: Comparison of the number of notifications for VehicleDataSubStd and VehicleDataSubEnh

during fuelRange decrease according to the conditions of Experiment 2

7.3.4 Experiment 3: Remaining fuelRange with Single-Steps Provider,

Variant 2

The third experiment constitutes a variation of the two previous experiments (see Sections 7.3.2

and 7.3.3). The difference is the VehicleDataSubEnh that now not only subscribes to a

fuelRange lower than or equal to 100, but also wants to receive the related events only at

intervals of 10 KM decrease of remaining fuelRange. This mimic the decimal-steps provider of

Experiment 2, although the Vehicle Data Provider here provides single-step fuelRange changes.

Assumptions

• The vehicle provides the VehicleData with each single-step modification of the

fuelRange attribute.

• The fuelRange continuously decreases, starting from 750 KM.

0

10

20

30

40

50

60

70

80

750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0

N
u

m
b

er
 o

f
n

o
ti

fi
ca

ti
o

n
s

fuelRange

VehicleDataFilteredStd VehicleDataFilteredEnh

Prototype Implementation

195

Subscriptions

• VehicleDataSubStd: Since the event, when the remaining fuelRange falls below 100

KM must not be missed, no filter criterion can be applied, as the standard oneM2M

data exchange capabilities do not facilitate appropriate filter criteria (cf. Section 5.3).

• VehicleDataSubEnh: The subscription VehicleDataSubEnh uses the enhanced data

exchange capabilities as developed and proposed in this research by means of the

following EPL statement: select * from VehicleData where fuelRange <= 100 and

fuelRange%10=0;

Test and Estimations

The CSE prototype is tested with boundary values 750, 110, 101, 100, 99 and 90, that are

derived from the VehicleDataSubEnh. The test is performed according to the setup and test

strategy as presented in Section 7.3.1. Based on this, further estimations are made:

(3.1) (750 − 100) + 1 = 651

According to 3.1., the VehicleDataSubStd triggers 651 NOTIFY messages until the fuelRange

100 KM is reached, which result in 651 contentInstance resources created at the

VehicleDataFilteredStd.

The VehicleDataSubEnh triggers only one NOTIFY message exactly when the fuelRange

100 KM is reached, which result in only one contentInstance created at the

VehicleDataFilteredEnh.

(3.2) (1 − (
1

651
)) ∗ 100 = 99,84639

According to 3.2, the saving of NOTIFY messages of the VehicleDataSubEnh is 99,84639 %

up to a fuelRange of 100 KM.

(3.3) (1 − (
10 + 1

750 + 1
)) ∗ 100 = 98,53528

Considering the number of NOTIFY messages up to when a remaining fuelRange of 0 KM is

reached, the VehicleDataSubStd triggers 751 NOTIFY messages, and the VehicleDataSubEnh

triggers 11 NOTIFY messages, which leads to the corresponding number of contentInstance

resources in the VehicleDataFilteredStd and VehicleDataFilteredEnh data containers. This

results in savings of 98,53528 % for the enhanced data exchange capabilities as utilised by the

VehicleDataSubEnh (see 3.3).

Figure 7.10 illustrates the number of notifications for both subscriptions during decrease of

fuelRange from 750 KM to 0 KM according to the conditions of this Experiment 3.

Prototype Implementation

196

Figure 7.10: Comparison of the number of notifications for VehicleDataSubStd and VehicleDataSubEnh

during fuelRange decrease according to the conditions of Experiment 3

7.4 Concluding Considerations

The focus of this research is vehicle-to-backend platform architectures (see Section 1.1).

Related distributed functionalities, scenarios, and applications are introduced to derive common

architecturally significant requirements that should be addressed by platform capabilities. In

this regard, the scenarios and distributed functionalities do not claim to become similarly

realised in real-world deployments, but they are selected as relevant considerations and

abstractions for the functionalities associated with connected vehicles.

This prototypical implementation of the novel data exchange enhancements within the OM2M

prototype confirmed the applicability of the proposed approaches for the oneM2M CSE (see

Section 6.2). Moreover, the only minimal necessary enhancements of the reference points, and

the suitable integratability of the enhancements within the CSE, support the assessment about

the appropriateness of the selected architectural alternative (see Section 6.3). Hence, this

prototype successfully provides a proof of the concept.

Network Efficiency and Performance

The identified shortcomings of the current oneM2M data exchange capabilities through

subscribe/notify mechanism constrain the filtering capabilities at the CSE level (see Section

5.4). As a consequence, AEs have limited capabilities to tailor the data acquisition according

to the requirements of the use case. Since this in general leads to the transmission of more data

0

100

200

300

400

500

600

700

800

750 700 650 600 550 500 450 400 350 300 250 200 150 100 50 0

N
u

m
b

er
 o

f
n

o
ti

fi
ca

ti
o

n
s

fuelRange

VehicleDataFilteredStd VehicleDataFilteredEnh

Prototype Implementation

197

than actually required, this results in reduced network efficiency (see Section 5.4). In this

regard, the existing limitations constitute a shortcoming with respect to the capabilities offered

by a oneM2M-based distributed ASDP to prevent network misalignments (cf. REQ 6,

Section 3.4.3).

The three experiments aimed to use a realistic scenario derived from the condensed ASDP

scenario. The results showed savings of from 85,5% up to 98,5% with regard to the number of

NOTIFY messages through the constant decrease of the remaining fuelRange from 750 KM to

0 KM. This demonstrates the potential of the proposed novel data exchange capabilities for the

oneM2M service platform. However, the quantities strongly depend on the considered

scenarios including data sources and sinks and aspects such as design of the related distributed

AEs and data containers. In this regard, also the novel enhancements and improvements by

means of increased platform capabilities have to be considered qualitatively as well: They

enable the increase of the correlation of theoretical network requirements of a distributed

functionality with its actual network requirements (cf. initial considerations about filter

requirements versus capabilities in Section 5.2.1). Besides, the proposed enhancements extend

the existing data exchange capabilities which in themselves remain fully available. As a result,

the suitable usage of the enhancements cannot result in worse network efficiency. Thus, the

novel enhancements fully contribute to the prevention of network misalignments (cf. REQ 6,

Section 3.4.3) through increased CSE capabilities.

Nevertheless, adding functionalities to the CSE in general raises the computational and memory

requirements of the implementation. This likewise applies to the introduced Esper CEP

component (see Section 7.1.2) and related building blocks to implement the proposed enhanced

data exchange capabilities (see Section 7.2). Furthermore, the enhancements may degrade the

latency of the respective methods such as the creation of contentInstance resources, the creation,

update, and deletion of subscription resources and the preparation of the notification messages

(see Section 7.2). Furthermore, in this regard, the proposed architectural enhancements, as most

architectural decisions constitute a trade-off decision (see Section 2.4.4). However, the

enhanced data exchange capabilities widen the design space for distributed AEs but remain

optional. Hence, despite an increased memory footprint of the CSE, data exchange is basically

still possible with the performance of the unmodified oneM2M CSE. Furthermore, the creation

of subscriptions can be rejected by the receiving CSE (oneM2M TS-0004, 2015). This might

be appropriate when a subscription exceeds the (remaining) computational capabilities of the

node, e.g., because there already exist too many subscriptions or because of too complex

notification criteria (i.e., EPL statements), the evaluation of which requires too much

performance. Nevertheless, this is basically not limited to subscriptions utilising the proposed

enhancements, but also could occur with existing subscriptions.

However, the general applicability of CEP technologies respectively the Esper CEP Engine in

the context of constraint embedded devices has been shown. Saleh et al. in (2013) have utilised

Prototype Implementation

198

CEP in the context of Wireless Sensor Networks (WSN) to perform “in-network complex event

processing”. Their work showed that even sensors with very limited computational power,

limited memory and battery power are capable of performing CEP queries. Moreover, they also

showed the benefits of CEP with respect to a reduced number of messages (i.e., increased

network efficiency of the distributed functionalities). The reduced number of messages even

increased the energy efficiency of the sensor, although the processing of the CEP (sub-)queries

on the sensor increase computational efforts (Saleh, 2013). This matches with the performance-

related information about the Esper CEP Engine (EsperTech, 2016b).

Considering these results as well as the current and planned future functionalities of the

oneM2M standard, the proposed enhancements can generally be assessed as machine-capable.

Finally, the E2E approach of oneM2M facilitates the deployment of the CSE on a variety of

machines, which besides constraint machines also includes more powerful MNs and INs (see

Section 4.3.6). It can be assumed that these MNs and INs which are located further up in the

hierarchical network are less constraint and at the same time have to deal with an increased

amount of data. In this regard, this also supports the proposed enhancements and approach. Not

of least importance, vehicles (respectively the related On-Board Unit) can be considered as

rather powerful machines, which is the reason why the proposed enhancements are particularly

suitable for the realisation of a oneM2M-based ASDP.

7.5 Summary

The applicability of the proposed enhancements for data exchange by means of the

subscribe/notify mechanisms of the oneM2M service platform was proven by a prototypical

implementation. With respect to the selected approach and architectural alternative, the

enhancements have been integrated into the Eclipse OM2M project, which is extended by the

Esper CEP Engine. In more detail, the integration of Content Decoder, Esper Event Adaptor,

Subscription and Notification Criteria Aggregator, and the Esper Statement Adaptor constitute

the building blocks to implement the proposed enhancements. Experiments, derived from the

condensed ASDP scenario, showed significant improvements with regard to the network

efficiency of distributed functionalities. Finally, these and further performance aspects are

elaborated upon as part of concluding considerations.

Conclusions and Future Work

199

8 Conclusions and Future Work

It is particularly software in combination with Internet connectivity (e.g., by use of wireless

cellular networks), which has already kicked off the drive leading to significant change of

vehicular functionalities and capabilities. The connected vehicle will offer enhanced In-Vehicle

Infotainment systems (IVI), Advanced Driver Assistant Systems (ADAS) up to Highly

Automated Driving (HAD) to its driver and passengers. Moreover, the connected vehicle will

become an integrated part of an Intelligent Transportation System (ITS), which will facilitate

increased traffic safety, traffic efficiency, and comfort.

These functionalities with heterogeneous or even contradictory requirements already make up

today’s cars complex software-intensive embedded systems, which is one aspect why the

integration of these functionalities is a very challenging task. It is becoming even more

challenging with respect to the implementation of envisaged future functionalities within the

functional domains named against the background of further objectives such as increased time-

to-market, customisability, and maintainability during the entire vehicle lifecycle. Furthermore,

interoperability across vehicle series, Original Equipment Manufacturers (OEMs), or even with

other industries or sectors beyond automotive (e.g., energy, or healthcare) is required so that

the visions of an ITS can materialise. The key to building such future automotive systems that

are capable of dealing with these manifold requirements are adequate software architectures

and platforms which are not vendor-specific. While AUTOSAR introduced such an

architectural approach for in-vehicle Electronic Control Units (ECUs) and related

functionalities, others (e.g., the GENIVI alliance) are focussing on IVI; a common approach

for standardised and universal vehicle-to-backend platform architecture is currently missing.

8.1 Achievements of the Research

This research has its foundation in the automotive domain and its emerging functionalities in

the context of connected vehicles. The latter leads to new domains and technologies becoming

relevant for automotive development. Due to this regard, this research provides a holistic and

interdisciplinary view on connected vehicles at the interface of automotive, software, and

telecommunication. For that reason, this research starts with a comprehensive literature

research on the characteristics of the automotive domain and current challenges within

automotive software development against the background of future functionalities, originating

8

Conclusions and Future Work

200

from the functional domains IVI, ADAS, and ITS. Connectivity, in this regard, on one hand

introduces new challenges but on the other hand provides new capabilities to deal with the

limitations of the “traditional approach” of integrating functionalities through true installation

into the vehicular ECUs. Considering this, the importance of the software and system

architecture is pointed out as a key to successfully deal with these challenges. With respect to

related frameworks and platforms, the necessity of a common vehicle-to-backend platform was

identified.

As a solution, this research has been developed and proposed the novel concept of a distributed

Automotive Service Delivery Platform (ASDP). It facilitates identified valuable principles such

as the integration or offloading of vehicular functionalities at/to an OEM server in the backend

as well as its usage as main hub for the integration of third parties. Related to these principles

and as a further aspect for the development of an ASDP, criteria have been identified to

qualitatively assess automotive functionalities which facilitates inferences regarding their

suitable decomposition and distribution between the vehicle and the backend. These criteria

can also be used beyond this research as a basis to assess distributed functionalities of a

connected vehicle and, e.g., to derive different deployment or distribution strategies. Finally, to

reflect the range and interdisciplinary of future connected vehicles with regard to the

functionalities and challenges, this research has been utilised three different viewpoints to

derive six architecturally significant requirements to an ASDP enabling platform. These

viewpoints consider previously described principles and selected scenarios as well as the

distribution considerations which have been performed to further examine the problem space

of an ASDP.

Similarities with regard to the problem space motivate the consideration of the oneM2M service

platform which is currently being developed and standardised, as an enabler for the

implementation of an ASDP. However, conclusions about the appropriateness of the oneM2M

service platform should be based on its provided solution space. For that reason, the

architectural building blocks and central architectural design decisions of the oneM2M standard

have been analysed in detail. Although shortcomings were identified, such as the lack of full

semantic interoperability, the general suitability of oneM2M as enabler for the ASDP has been

shown. Consequently, a reference configuration of the oneM2M service platform for the ASDP,

respectively automotive environments, is described.

Nevertheless, the general analysis of the oneM2M standard also identified the necessity to a

comprehensive investigation of the data exchange capabilities provided by the oneM2M service

platform. After principle considerations about filter requirements vs. capabilities and filter

positions with regard to distributed functionalities, a condensed ASDP scenario has been used

for profound scenario-based analysis. It unveiled shortcomings of current data exchange with

subscribe/notify mechanism, which in typical usage scenarios results in decreased network

efficiency and privacy. To overcome these shortcomings, novel enhancements of the oneM2M

Conclusions and Future Work

201

standard, such as application-data-dependent notification criteria for subscribe/notify

mechanism and aggregation of subscriptions, are proposed. The approach proposes in particular

the utilisation of Complex Event Processing to facilitate specification and evaluation of

enhanced notification criteria. In advance of a prototypical implementation as proof-of-concept,

the proposed enhancements are assessed with respect to the design philosophy of current

oneM2M standard, anticipated future enhancements, and possible architectural alternatives

considering also the Platform-Based Design methodology.

Finally, a prototypical implementation of the proposed enhancements demonstrated their

feasibility and the appropriateness of the selected architectural design decisions. Experiments

and estimations with a typical vehicle maintenance scenario where a backend application

subscribes to a low remaining fuel range of the vehicle to initiate further activities showed

significant savings of the number of notification messages sent compared to the oneM2M

service platform without the proposed enhancements: Depending on the assumed scope

conditions and the exact subscriptions applied, the savings are 85,5% up to 98,5% for this

scenario. These network efficiency improvements as well as further performance aspects of the

enhancements have been put into context within concluding considerations.

This research has developed a novel oneM2M-based Automotive Service Delivery Platform.

With the introduced enhanced data exchange capabilities for the oneM2M service platform, this

oneM2M-based ASDP offers a universal vehicle-to-backend platform solution that is capable

of addressing the key requirements of automotive environments. In this regard, this research

provides significant contributions to the field of enhanced automotive software and system

architectures that will enable the functionalities and visions related to future connected vehicles

to become true.

While the enhanced data exchange capabilities for the oneM2M service platform are motivated

by distributed automotive functionalities, their benefits are not limited to the ASDP or

automotive environments. Particularly whenever applications require only a small but specific

subset of an existing high amount of sensor and application data, the enhancements are

beneficial. In this regard, the contributions made to the oneM2M standard are also profitable

for many other M2M scenarios and domains.

8.2 Limitations

Although the objectives of this research have been met, limitations can be identified. These

basically are owing to practical reasons with regard to differentiation to on-going related

research and standardisation activities, or due to given time scope for the research project. The

key limitations are summarised below.

The proposed enhancements of the oneM2M service platform for enhanced data exchange

aimed at most compatibility with the current version of the oneM2M standard. As a result, the

Conclusions and Future Work

202

capabilities of the CEP and EPL-based notification criteria are not fully exploited. For example:

The EPL statements would also enable the detailed specification about which data of a content

resource shall be selected and hence would facilitate individual content of the notification

message. This possibility is not utilised in this research, since the notification message remains

standard-conformant and hence, e.g., includes a full contentInstance resource. Thus, the usage

of the EPL statements is limited to the detection of the fulfilment of application-data-dependent

notification criteria, i.e. as trigger.

The aggregation of EPL-based notification criteria among themselves and with existing

notification criteria of oneM2M have not been investigated in depth by means of providing the

mathematical foundation for their aggregation. However, with the selection of the

comprehensive EPL, which is based on SQL, the foundation for comprehensive aggregation

mathematics has been provided.

Although the massive deployment of connected vehicles is reflected within the considered

scenarios and hence within the ASDP concept, the considerations of the oneM2M service

platform capabilities are limited to the fundamentals. This means, e.g., the platform capabilities

and building blocks are considered with one vehicle-ASN and one OEM-IN, but deployment

scenarios with thousands of vehicles have not been considered. Accordingly, no considerations

about regional distributions or multi-node query optimisations of EPL-based notification

criteria for data exchange have been made.

8.3 Suggestions for Future Work

This research project has made valid contributions to the knowledge for future software and

system architectures in the context of connected vehicles, and the applicability of oneM2M-

based vehicle-to-backend platforms as enabler for such ASDP concept. However, a number of

areas for future work can be identified. These suggestions are detailed below.

1. This research introduced CEP as basis for enhanced data exchange capabilities.

Having such CEP technology and related EPL as comprehensive policy language

available could be used for further improvements of the oneM2M service platform

capabilities and mechanisms, such as:

a. EPL-based policies can provide the foundation for more advanced

accessControlPolicies for resource access: Currently, the oneM2M standard

only supports black or white configuration, as to whether a certain method is

allowed to perform on a resource. EPL-based accessControlPolicies could

facilitate more qualified access constraints, and that, moreover, can contribute

to privacy considerations (cf. He, Barman, Di Wang, & Naughton, 2011;

Olumofin & Goldberg, 2010).

Conclusions and Future Work

203

b. Existing notification criteria for subscribe/notify mechanism can be completely

substituted by EPL-based notification criteria, in continuation of proposed

enhancements of this research.

c. Considerations about deployment strategies of EPL-based notification criteria

can be intensified. This may include multi-query optimisation of distributed

CEP (Cugola & Margara, 2012). It may also include inference about

geographical distribution of nodes and configurations, e.g., including Mobile

Edge Computing considerations (Beck, Feld, Linnhoff-Popien, & Pützschler,

2016; cf. Y. C. Hu et al., 2015), etc.

2. With regard to the already-envisaged enhancements of the oneM2M service platform

towards the enabling of full semantic interoperability (oneM2M TR-0007, 2015), the

existing subscribe/notify (i.e., publish/subscribe) mechanism of the oneM2M service

platform could be enhanced accordingly. The concept-based publish/subscribe

approach, introduced by Cilia et al., may provide a starting point for beneficial

improvements here (Cilia, Antollini, & Bornhövd, 2004).

3. The interplay of a oneM2M-based ASDP with the legacy in-vehicle components of

the automotive software and system landscape could be investigated in more detail.

This may include considerations about interworking in contrast to integration

(oneM2M TS-0001, 2015, p. 313). Furthermore, concrete bindings to other standards

could be developed, such as the realisation of the vehicle-ASN as AUTOSAR SW-C

or complex device driver, or the utilisation of SOME/IP for the integration (or

interworking) of AUTOSAR-conformant functionalities with a vehicle-ASN.

Bibliography

204

Bibliography

1. Abdalla, G. M., Abu-Rgheff, M. A., & Senouci, S. M. (2007). Current Trends in

Vehicular Ad Hoc Networks. Ubiquitous Computing and Communication Journal,

1–9.

2. Accenture. (2012). Perspectives on In-Vehicle Infotainment Systems and Telematics.

accenture.com.

3. ADASIS. (2017). Advancing map-enhanced driver assistance systems. Retrieved

September 10, 2017, from http://adasis.org/

4. AIOTI. (2017). High Level Architecture (HLA) (3rd ed., pp. 1–40). AIOTI - Alliance

for Internet of Things Innovation.

5. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015).

Internet of Things: A Survey on Enabling Technologies, Protocols and Applications.

IEEE Communications Surveys & Tutorials, 1–33.

http://doi.org/10.1109/COMST.2015.2444095

6. Alasti, M., Neekzad, B., Hui, J., & Vannithamby, R. (2010). Quality of service in

WiMAX and LTE networks. IEEE Communications Magazine, 48(5), 104–111.

http://doi.org/10.1109/MCOM.2010.5458370

7. Alaya, M. B., Banouar, Y., Monteil, T., Chassot, C., & Drira, K. (2014). OM2M:

Extensible ETSI-compliant M2M Service Platform with Self-configuration Capability.

Procedia Computer Science, 32, 1079–1086.

http://doi.org/10.1016/j.procs.2014.05.536

8. Aldred, L., van der Aalst, W. M. P., Dumas, M., & Hofstede, ter, A. H. M. (2005). On

the Notion of Coupling in Communication Middleware. In M. Akşit & S. Matsuoka

(Eds.), Formal Methods for Software Architectures (Vol. 3761, pp. 1015–1033).

Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/11575801_6

9. Alliance, T. O. (2014). OSGi Core (6 ed., pp. 1–450).

10. Alljoyn. (2017). OCF - AllJoyn. Retrieved September 9, 2017, from

https://openconnectivity.org/developer/reference-implementation/alljoyn

11. Alt, O. (2009). Car Multimedia Systeme Modell-basiert testen mit SysML.

Wiesbaden: Vieweg+Teubner. http://doi.org/10.1007/978-3-8348-9567-7

Bibliography

205

12. Amazon Web Services. (2017). Übersicht über AWS IoT Core – Amazon Web

Services. Retrieved September 7, 2017, from //aws.amazon.com/de/iot-core/

13. Android Auto. (2016). Android Auto. Retrieved December 6, 2016, from

https://www.android.com/intl/en_en/auto/

14. Apple. (2016). iOS - CarPlay. Retrieved July 1, 2016, from

http://www.apple.com/de/ios/carplay/

15. ARIB. (2017). Association of Radio Industries and Businesses. Retrieved September

10, 2017, from https://www.arib.or.jp/english/

16. ATIS. (2017). ATIS - The Alliance for Telecommunications Industry Solutions.

Retrieved September 10, 2017, from http://www.atis.org/

17. Audi AG. (2016a). Audi connect > Audi Deutschland. Retrieved December 1, 2016,

from https://www.audi.de/de/brand/de/neuwagen/layer/audi-connect-lp.html

18. Audi AG. (2016b). Everything combined, all in one place: The central driver

assistance control unit. Retrieved August 24, 2016, from

http://www.audi.com/com/brand/en/vorsprung_durch_technik/content/2014/10/zentral

es-fahrerassistenzsteuergeraet-zfas.html

19. AUTOSAR. (2013). AUTomotive Open System ARchitecture. Retrieved April 10,

2013, from http://www.autosar.org/

20. AUTOSAR. (2014). Project Objectives (4.2.1). AUTOSAR.

21. AUTOSAR. (2015a). Layered Software Architecture (4.2.2). AUTOSAR.

22. AUTOSAR. (2015b). Software Component Template (4.2.2). AUTOSAR.

23. Basole, R. C., & Karla, J. (2011). On the Evolution of Mobile Platform Ecosystem

Structure and Strategy. Wirtschaftsinformatik, 53(5), 301–311.

http://doi.org/10.1007/s11576-011-0286-y

24. Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in Practice, 3rd

edition. Software Architecture in Practice, 3rd Edition.

25. Bassi, A., Bauer, M., Fiedler, M., Kramp, T., Kranenburg, R., Lange, S., & Meissner,

S. (2013). Enabling Things to Talk. (A. Bassi, M. Bauer, M. Fiedler, T. Kramp, R. van

Kranenburg, S. Lange, & S. Meissner, Eds.). Berlin, Heidelberg: Springer.

http://doi.org/10.1007/978-3-642-40403-0

Bibliography

206

26. Bauer, M. (2017). IoT Platforms for Smart Cities (pp. 1–51). Presented at the 22.

VDE/ITG Fachtagung Mobilkommunikation. Retrieved from https://www.hs-

osnabrueck.de/fileadmin/HSOS/Forschung/Recherche/Laboreinrichtungen_und_Versu

chsbetriebe/Labor_fuer_Hochfrequenztechnik_und_Mobilkommunikation/Mobilkomt

agung/2017/Vortraege/4_Martin_Bauer.pdf

27. Bauer, S. (2010). Das vernetzte Fahrzeug – Herausforderungen für die IT. Informatik-

Spektrum, 34(1), 38–41. http://doi.org/10.1007/s00287-010-0504-9

28. Baun, C., Kunze, M., Nimis, J., & Tai, S. (2009). Cloud Computing. Springer-Verlag.

http://doi.org/10.1007/978-3-642-01594-6

29. Bechler, M., Berninger, H., Biehle, T., Bohnert, T. M., Bossom, R., Brignolo, R., et al.

(2010). European ITS Communication Architecture. COMeSafety.

30. Beck, M. T., Feld, S., Linnhoff-Popien, C., & Pützschler, U. (2016). Mobile Edge

Computing. Informatik-Spektrum, 39(2), 108–114. http://doi.org/10.1007/s00287-016-

0957-6

31. Beck, M. T., Werner, M., Feld, S., & Schimper, S. (2014). Mobile edge computing: A

taxonomy. http://doi.org/10.1.1.670.9418

32. Ben Alaya, M., Medjiah, S., Monteil, T., & Drira, K. (2015). Toward semantic

interoperability in oneM2M architecture. IEEE Communications Magazine, 53(12),

35–41. http://doi.org/10.1109/MCOM.2015.7355582

33. Ben Alaya, M., Monteil, T., & Drira, K. (2014). The importance of the collection

pattern for OneM2M architecture (pp. 1–19).

34. Bhalla, M. R., & Bhalla, A. V. (2010). Generations of mobile wireless technology: A

survey. International Journal of Computer Applications, 5(4). Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.206.5216&rep=rep1&type=

pdf

35. Blair, G. S., Paolucci, M., Grace, P., & Georgantas, N. (2011). Interoperability in

Complex Distributed Systems. In M. Akşit & S. Matsuoka (Eds.), Formal Methods for

Software Architectures (Vol. 6659, pp. 1–26). Berlin, Heidelberg: Springer Berlin

Heidelberg. http://doi.org/10.1007/978-3-642-21455-4_1

36. Blaupunkt. (2017). BLAUPUNKT: Success Story. Retrieved September 8, 2017,

from http://www.blaupunkt.com/en/company/success-story/

37. BMW ConnectedDrive. (2016). BMW ConnectedDrive Online Guide. Retrieved April

17, 2016, from http://features.bmw.connecteddrive.info/en.html

Bibliography

207

38. Booysen, M. J., Gilmore, J. S., Zeadally, S., & van Rooyen, G.-J. (2012). Machine-to-

Machine (M2M) Communications in Vehicular Networks. Korea Society of Internet

Information (KSII). http://doi.org/10.3837/tiss.2012.02.005

39. Bormann, C., Castellani, A. P., & Shelby, Z. (2012). CoAP: An Application Protocol

for Billions of Tiny Internet Nodes. IEEE Internet Computing, 16(2), 62–67.

http://doi.org/10.1109/MIC.2012.29

40. Bose, R., Brakensiek, J., & Park, K.-Y. (2010). Terminal mode: transforming mobile

devices into automotive application platforms (pp. 148–155). Presented at the 2nd

International Conference on Automotive User Interfaces and Interactive Vehicular

Applications, New York, New York, USA: ACM.

http://doi.org/10.1145/1969773.1969801

41. Bose, R., Brakensiek, J., Park, K.-Y., & Lester, J. (2011). Morphing Smartphones into

Automotive Application Platforms. IEEE Computer, 44(5), 53–61.

http://doi.org/10.1109/MC.2011.126

42. Boswarthick, D., Elloumi, O., & Hersent, O. (2012). M2M Communications. John

Wiley & Sons.

43. Broadband Forum. (2013). TR-069 (Issue: 1 Amendment 5, V1.4) (pp. 1–228).

Broadband Forum.

44. Broadband Forum. (2017). Broadband forum. Retrieved September 10, 2017, from

https://www.broadband-forum.org/

45. Brownsword, L. (2004). Current Perspectives on Interoperability.

46. Broy, M. (2006a). Challenges in automotive software engineering (pp. 33–42).

Presented at the 29th IEEE International Conference on Distributed Computing

Systems.

47. Broy, M. (2006b). The “Grand Challenge” in Informatics: Engineering Software-

Intensive Systems. IEEE Computer, 39(10), 72–80.

http://doi.org/10.1109/MC.2006.358

48. Broy, M., Kruger, I. H., Pretschner, A., & Salzmann, C. (2007). Engineering

Automotive Software. Proceedings of the IEEE, 95(2), 356–373.

http://doi.org/10.1109/JPROC.2006.888386

49. Broy, M., Reichart, G., & Rothhardt, L. (2011). Architekturen softwarebasierter

Funktionen im Fahrzeug: von den Anforderungen zur Umsetzung. Informatik-

Spektrum, 34(1), 42–59. http://doi.org/10.1007/s00287-010-0507-6

Bibliography

208

50. Bruns, R., & Dunkel, J. (2015). Complex Event Processing. Wiesbaden: Springer-

Verlag. http://doi.org/10.1007/978-3-658-09899-5

51. Bruns, R., Dunkel, J., Masbruch, H., & Stipkovic, S. (2015). Intelligent M2M:

Complex event processing for machine-to-machine communication. Expert Systems

with Applications, 42(3), 1235–1246. http://doi.org/10.1016/j.eswa.2014.09.005

52. Burns, A., & Davis, R. (2013). Mixed criticality systems-a review.

53. Buschmann, F., Henney, K., & Schmidt, D. C. (2007). Pattern-Oriented Software

Architecture, A Pattern Language for Distributed Computing. John Wiley & Sons.

54. Cacilo, A., Schmidt, S., Wittlinger, P., Herrmann, F., Sawade, O., Doderer, H., et al.

(2016). Hochautomatisiertes Fahren auf Autobahnen – industriepolitische

Schlussfolgerungen (Dienstleistungsprojekt 15/14). Fraunhofer-Institut für

Arbeitswirtschaft und Organisation IAO.

55. Car Connectivity Consortium. (2016). MirrorLink. Retrieved July 1, 2016, from

http://www.mirrorlink.com/

56. Carloni, L. P., De Bernardinis, F., Pinello, C., Sangiovanni-Vincentelli, A. L., &

Sgroi, M. (2005). Platform-Based Design for Embedded Systems. Embedded Systems

Handbook 2005, 6, 22–1–22–26. http://doi.org/10.1201/9781420038163.ch22

57. Carney, D., Fisher, D., Morris, E., & Place, P. (2005). Some current approaches to

interoperability. Integration of software intensive systems initiative (CMU/SEI-2005-

TN-033). Pittsburgh: Software Engineering Institute, Carnegie Mellon University.

58. CCSA. (2017). China Communictions Standards Association. Retrieved September

10, 2017, from http://www.ccsa.org.cn/english/

59. CEN. (2017). European Committee for Standardization. Retrieved September 10,

2017, from https://www.cen.eu/Pages/default.aspx

60. CENELEC. (2017). Welcome to CENELEC – European Committee for

Electrotechnical Standardization. Retrieved September 10, 2017, from

https://www.cenelec.eu/

61. Chandy, K. M., & Schulte, W. R. (2010). Event Processing - Designing IT Systems

for Agile Companies.

62. Charette, R. N. (2009). This car runs on code. IEEE Spectrum.

Bibliography

209

63. Cilia, M., Antollini, M., & Bornhövd, C. (2004). Dealing with heterogeneous data in

pub/sub systems: The Concept-Based approach. 3rd Int’l Workshop on Distributed

Event-Based Systems.

64. Colace, F., De Santo, M., Moscato, V., Picariello, A., Schreiber, F. A., & Tanca, L.

(2015). Data Management in Pervasive Systems. Springer. http://doi.org/10.1007/978-

3-319-20062-0

65. COMAND Online. (2016). Mercedes-Benz TechCenter: COMAND Online. Retrieved

April 17, 2016, from http://techcenter.mercedes-

benz.com/_en/comand_online/detail.html

66. COMeSafety. (2013). COMeSafety 2 Project. Retrieved April 8, 2013, from

http://www.comesafety.org

67. Coulouris, G. F., Dollimore, J., & Kindberg, T. (2012). Distributed Systems (Fifth

Edition). Pearson Education.

68. Cugola, G., & Margara, A. (2012). Deployment strategies for distributed complex

event processing. Computing, 95(2), 129–156. http://doi.org/10.1007/s00607-012-

0217-9

69. Daniel, F., & Matera, M. (2014). Mashups. Berlin, Heidelberg: Springer Berlin

Heidelberg. http://doi.org/10.1007/978-3-642-55049-2

70. Dar, K., Bakhouya, M., Gaber, J., Wack, M., & Lorenz, P. (2010). Wireless

communication technologies for ITS applications. IEEE Communications Magazine,

48(5), 156–162. http://doi.org/10.1109/MCOM.2010.5458377

71. Davis Paul, K., & Anderson Robert, H. (2003). Improving the Composability of

Department of Defense Models and Simulations. Santa Monica CA.

72. Dodig-Crnkovic, G. (2002). Scientific methods in computer science. Presented at the

Conference for the Promotion of Research in IT at New Universities and at University

Colleges in Sweden.

73. Domingue, J., Fensel, D., & Hendler, J. A. (2011). Handbook of Semantic Web

Technologies. Springer Science & Business Media. http://doi.org/10.1007/978-3-540-

92913-0

74. Eckert, M., & Bry, F. (2009). Complex Event Processing (CEP). Informatik-Spektrum,

1–8.

Bibliography

210

75. Eclipse OM2M project. (2016). Eclipse OM2M - Open Source platform for M2M

communication. Retrieved July 21, 2016, from http://www.eclipse.org/om2m/

76. Ekström, H. (2009). QoS control in the 3GPP evolved packet system. IEEE

Communications Magazine, 47(2), 76–83.

http://doi.org/10.1109/MCOM.2009.4785383

77. Elloumi, O. (2014). oneM2M architecture principles and benefits (pp. 1–24).

Presented at the KuVS NGSDP Expert Talk, Berlin, Germany.

78. Erl, T., Carlyle, B., Pautasso, C., & Balasubramanian, R. (2013). SOA with REST -

Principles, Patterns and Constraints for Building Enterprise Solutions with REST (pp.

1–577). Prentice Hall.

79. Eskandarian, A. (2012). Handbook of Intelligent Vehicles. (A. Eskandarian, Ed.).

London: Springer London. http://doi.org/10.1007/978-0-85729-085-4

80. EsperTech. (2016a). Esper - EsperTech. Retrieved July 21, 2016, from

http://www.espertech.com/esper/

81. EsperTech. (2016b). EsperTech - How does Esper scale? Retrieved July 21, 2016,

from http://www.espertech.com/esper/esper-faq/#scaling

82. ETSI (2017). ETSI - Welcome to the World of Standards! Retrieved September 10,

2017, from http://www.etsi.org/

83. ETSI TR 102 638. (2009). Intelligent Transport Systems (ITS); Vehicular

Communications; Basic Set of Applications; Definitions (V1.1.1). European

Telecommunications Standards Institute (ETSI).

84. ETSI TR 102 898. (2013). Machine to Machine communications (M2M); Use cases of

Automotive Applications in M2M capable networks (V1.1.1). European

Telecommunications Standards Institute (ETSI).

85. ETSI TS 102 689. (2013). Machine-to-Machine communications (M2M); M2M

service requirements (1st ed.) (pp. 1–34). European Telecommunications Standards

Institute (ETSI).

86. ETSI TS 102 690. (2013). Machine-to-Machine communications (M2M); Functional

architecture (2nd ed.) (pp. 1–332). European Telecommunications Standards Institute

(ETSI).

Bibliography

211

87. ETSI TS 102 921. (2013). Machine-to-Machine communications (M2M); mIa, dIa and

mId interfaces (2nd ed.) (pp. 1–618). European Telecommunications Standards

Institute (ETSI).

88. Eugster, P. T., Felber, P., Guerraoui, R., & Kermarrec, A.-M. (2003). The Many Faces

of Publish/Subscribe. ACM Computing Surveys, 35(2), 114–131.

http://doi.org/10.1145/857076.857078

89. European Parliament, Council of the European Union. Regulation (EU) 2015/758 of

the European Parliament and of the Council of 29 April 2015 concerning type-

approval requirements for the deployment of the eCall in-vehicle system based on the

112 service and amending Directive 2007/46/EC, eur-lex.europa.eu.

90. European Research Cluster on Internet of Things (IERC). (2017). European Research

Cluster on the Internet of Things. Retrieved September 8, 2017, from

http://www.internet-of-things-research.eu/about_iot.htm

91. Faezipour, M., Nourani, M., Saeed, A., & Addepalli, S. (2012). Progress and

challenges in intelligent vehicle area networks. Communications of the ACM, 55(2).

http://doi.org/10.1145/2076450.2076470

92. Farcas, C., Farcas, E., Krüger, I. H., & Menarini, M. (2010). Addressing the

Integration Challenge for Avionics and Automotive Systems - From Components to

Rich Services. Proceedings of the IEEE, 98(4), 562–583.

http://doi.org/10.1109/JPROC.2009.2039630

93. Federal Ministry of Justice and Consumer Protection. Federal Data Protection Act.

(Translations provided by the Language Service of the Federal Ministry of the

Interior, Trans.) (2009).

94. Festag, A. (2014). Cooperative intelligent transport systems standards in europe. IEEE

Communications Magazine, 52(12), 166–172.

http://doi.org/10.1109/MCOM.2014.6979970

95. Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Software

Architectures. University of California, Irvine.

96. Fisher, D. A. (2006). An Emergent Perspective on Interoperation in Systems of

Systems (CMU/SEI-2006-TR-003) (pp. 1–67). Carnegie Mellon Software Engineering

Institute.

97. FIWARE. (2017). FIWARE | Open APIs for Open Minds. Retrieved September 7,

2017, from https://www.fiware.org/

Bibliography

212

98. Freed, N., Klensin, J., & Hansen, T. (2013). Media Type Specifications and

Registration Procedures (p. 32). Internet Engineering Task Force (IETF).

99. Fuhrmann, W. F., & Brass, V. (1994). Performance aspects of the GSM radio

subsystem (Vol. 82, pp. 1449–1466). Presented at the Proceedings of the IEEE.

http://doi.org/10.1109/5.317088

100. Fürst, S., & Bunzel, S. (2015). AUTOSAR. In H. Winner, S. Hakuli, F. Lotz, & C.

Singer (Eds.), Handbuch Fahrerassistenzsysteme (pp. 105–122). Wiesbaden: Springer

Fachmedien Wiesbaden. http://doi.org/10.1007/978-3-658-05734-3_7

101. Gajski, D. D., Abdi, S., Gerstlauer, A., & Schirner, G. (2009). Embedded System

Design. Springer Science & Business Media. http://doi.org/10.1007/978-1-4419-0504-

8

102. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns. Addison-

Wesley.

103. GENIVI. (2013). GENIVI Alliance. Retrieved April 16, 2013, from

http://www.genivi.org/

104. Gieraths, A. (2014). Umsetzung der Anforderungen aus der ISO 26262 bei der

Entwicklung eines Steuergeräts aus dem Fahrerinformationsbereich. Automotive -

Safety & Security.

105. Glass, R. L., Ramesh, V., & Vessey, I. (2004). An analysis of research in computing

disciplines. Communications of the ACM, 47(6), 89–94.

http://doi.org/10.1145/990680.990686

106. GlobalPlatform. (2017). GlobalPlatform. Retrieved September 10, 2017, from

https://www.globalplatform.org/

107. Gryc, A. (2011, February). Making Sense of the Smartphone-Vehicle Cacophony.

Retrieved April 10, 2013, from

http://www.qnx.com/download/download/21914/qnx_auto_smart_phone.pdf

108. Gryc, A., & Johnson, K. (2011). Why Automakers (Should) Care about HTML5 (pp.

1–7). QNX Software Systems. Retrieved from

http://www.qnx.de/download/download/22989/qnx_auto_html5.pdf

109. Hardung, B., Kölzow, T., & Krüger, A. (2004). Reuse of software in distributed

embedded automotive systems (pp. 203–210). Presented at the 4th ACM international

conference on Embedded software, New York, NY, USA: ACM.

http://doi.org/10.1145/1017753.1017787

Bibliography

213

110. Harrison, N. B., & Avgeriou, P. (2010). How Do Architecture Patterns and Tactics

Interact? A Model and Annotation. The Journal of Systems & Software, 83(10), 1735–

1758. http://doi.org/10.1016/j.jss.2010.04.067

111. He, Y., Barman, S., Di Wang, & Naughton, J. F. (2011). On the complexity of

privacy-preserving complex event processing (pp. 165–174). Presented at the PODS

'11: Proceedings of the thirtieth ACM SIGMOD-SIGACT-SIGART symposium on

Principles of database systems, New York, New York, USA: ACM.

http://doi.org/10.1145/1989284.1989304

112. Holle, J., Groll, A., Ruland, C., Cankaya, H., & Wolf, M. (2011). Open Platforms on

the Way to Automotive Practice. 8th ITS European Congress.

113. Horowitz, B., Liebman, J., Ma, C., Koo, T. J., Sangiovanni-Vincentelli, A., & Sastry,

S. S. (2003). Platform-based embedded software design and system integration for

autonomous vehicles. Proceedings of the IEEE, 91(1), 198–211.

http://doi.org/10.1109/JPROC.2002.805827

114. Hoymann, C., Astely, D., Stattin, M., Wikstrom, G., Cheng, J.-F., Hoglund, A., et al.

(2016). LTE release 14 outlook. IEEE Communications Magazine, 54(6), 44–49.

http://doi.org/10.1109/MCOM.2016.7497765

115. Höhn, R., & Höppner, S. (2008). Das V-Modell XT. Springer-Verlag.

http://doi.org/10.1007/978-3-540-30250-6

116. Hu, R. Q., Qian, Y., Chen, H.-H., & Jamalipour, A. (2011). Recent progress in

machine-to-machine communications [Guest editorial]. IEEE Communications

Magazine, 49(4), 24–26. http://doi.org/10.1109/MCOM.2011.5741142

117. Hu, Y. C., Patel, M., Sabella, D., Sprecher, N., & Young, V. (2015). Mobile Edge

Computing - A Key Technology Towards 5G. ETSI White Paper.

118. Huber, W., Lädke, M., & Ogger, R. (1999). Extended floating-car data for the

acquisition of traffic information. 6th World Congress on Intelligent Transportation

Systems (ITS 1999).

119. IEEE Computer Society. (2007). Systems and software engineering — Recommended

practice for architectural description of software-intensive systems (No. ISO/IEC

42010:2007(E) IEEE Std 1471-2000) (pp. c1–24). Piscataway, NJ, USA: IEEE.

Retrieved from http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=4278472

120. IEEE Standards Association. (2000). IEEE Recommended Practice for Architectural

Description of Software-Intensive Systems. Piscataway, NJ, USA: IEEE.

Bibliography

214

121. Ionita, M. T., Hammer, D. K., & Obbink, H. (2002). Scenario-based software

architecture evaluation methods: An overview. Icse/Sara.

122. IoTivity. (2017). Home | IoTivity. Retrieved September 7, 2017, from

https://www.iotivity.org/

123. ISO 26262. (2011). Road vehicles functional safety. International Standard

ISO/FDIS, 26262.

124. ISO/IEC/IEEE. (2011). ISO/IEC/IEEE 42010:2011(E), Systems and software

engineering — Architecture description, 1–46.

125. ITU-T. (2013). ITU-T Rec. Y.2060 (06/2012) Overview of the Internet of things, 1–

22.

126. Jansen, A., & Bosch, J. (2005). Software Architecture as a Set of Architectural Design

Decisions (pp. 109–120). Presented at the 5th Working IEEE/IFIP Conference on

Software Architecture (WICSA'05), IEEE. http://doi.org/10.1109/WICSA.2005.61

127. Jiang, D., & Delgrossi, L. (2008). IEEE 802.11p: Towards an International Standard

for Wireless Access in Vehicular Environments (pp. 2036–2040). Presented at the

Vehicular Technology Conference, 2008. VTC Spring 2008. IEEE.

http://doi.org/10.1109/VETECS.2008.458

128. Johanning, V., & Mildner, R. (2015). Car IT kompakt. Springer-Verlag.

129. Kazman, R., Abowd, G., Bass, L., & Clements, P. (1996). Scenario-based analysis of

software architecture. Software, IEEE, 13(6), 47–55. http://doi.org/10.1109/52.542294

130. Kazman, R., Klein, M., & Clements, P. (2000). ATAM: Method for Architecture

Evaluation (CMU/SEI-2000-TR-004) (pp. 1–83). Pittsburgh PA: Carnegie-Mellon

University, Software Engineering Institute.

131. Kazman, R., Nielsen, C. B., & Klein, J. (2013). Understanding Patterns for System of

Systems Integration (CMU/SEI-2013-TR-017). SoSE (pp. 141–146). IEEE.

132. Knirsch, A., Schnarz, P., & Wietzke, J. (2012). Prioritized access arbitration to shared

resources on integrated software systems in multicore environments. Nesea, 1–8.

http://doi.org/10.1109/NESEA.2012.6474014

133. Knirsch, A., Wietzke, J., Moore, R., & Dowland, P. (2010). An Approch for

Structuring Heterogeneous Automotive Software Systems by use of Multicore

Architectures. Proceedings of the Sixth Collaborative Research Symposium on

Security, E-Learning, Internet and Networking (SEIN2010), 19–30.

Bibliography

215

134. Knirsch, A., Wietzke, J., Moore, R., & Dowland, P. (2011). Resource Management for

Multicore Aware Software Architectures of In-Car Multimedia Systems. In H.-U.

Heiß, P. Pepper, H. Schlingloff, & J. Schneider (Eds.), (p. 216). Presented at the

Informatik schafft Communities, Berlin.

135. Kopetz, H. (2011). Real-Time Systems. Springer Science & Business Media.

http://doi.org/10.1007/978-1-4419-8237-7

136. Kosch, T., Kulp, I., Bechler, M., Strassberger, M., Weyl, B., & Lasowski, R. (2009).

Communication architecture for cooperative systems in Europe. IEEE

Communications Magazine, 47(5), 116–125.

http://doi.org/10.1109/MCOM.2009.4939287

137. Kossiakoff, A., Sweet, W. N., Seymour, S., & Biemer, S. M. (2011). Systems

Engineering Principles and Practice. John Wiley & Sons.

138. Krajewski, J., Sommer, D., Trutschel, U., Edwards, D., & Golz, M. (2009). Steering

wheel behavior based estimation of fatigue. Presented at the 5th International Driving

Symposium on Human Factors in Driver Assessment, Training and Vehicle Design,

Big Sky, Montana, USA.

139. Král, J., & Žemlička, M. (2000). Autonomous Components. In SOFSEM 2000:

Theory and Practice of Informatics (Vol. 1963, pp. 375–383). Berlin, Heidelberg:

Springer Berlin Heidelberg. http://doi.org/10.1007/3-540-44411-4_26

140. Krüger, I. H. (2005). Service-oriented software and systems engineering-a vision for

the automotive domain (p. 143). Presented at the Proceedings Second ACM and IEEE

International …. http://doi.org/10.1109/MEMCOD.2005.1487906

141. Krüger, I. H., Nelson, E. C., & Prasad, K. V. (2004). Service-based software

development for automotive applications. SAE Technical Paper.

142. Laya, A., Alonso, L., & Alonso-Zarate, J. (2014). Is the Random Access Channel of

LTE and LTE-A Suitable for M2M Communications? A Survey of Alternatives. IEEE

Communications Surveys & Tutorials, 16(1), 4–16.

http://doi.org/10.1109/SURV.2013.111313.00244

143. Lee, E. A. (2006). The future of embedded software. Presented at the 21st

International Technical Conference on the Enhanced Safety of Vehicles (ESV).

144. Lee, E. A. (2007). Computing foundations and practice for cyber-physical systems: A

preliminary report. University of California.

Bibliography

216

145. Lee, J., Kim, Y., Kwak, Y., Zhang, J., Papasakellariou, A., Novlan, T., et al. (2016).

LTE-advanced in 3GPP Rel -13/14: an evolution toward 5G. IEEE Communications

Magazine, 54(3), 36–42. http://doi.org/10.1109/MCOM.2016.7432169

146. Lequerica, I., Garcia Longaron, M., & Ruiz, P. M. (2010). Drive and share: efficient

provisioning of social networks in vehicular scenarios. IEEE Communications

Magazine, 48(11), 90–97. http://doi.org/10.1109/MCOM.2010.5621973

147. Lu, Y., Li, S., & Shen, H. (2011). Virtualized Screen: A Third Element for Cloud-

Mobile Convergence. Multimedia, IEEE, 18(2), 4–11.

http://doi.org/10.1109/MMUL.2011.33

148. Luckham, D. C. (2002). The Power of Events. Addison-Wesley Professional.

149. Maia, P., Cavalcante, E., Gomes, P., Batista, T., Delicato, F. C., & Pires, P. F. (2014).

On the Development of Systems-of-Systems based on the Internet of Things (pp. 1–8).

Presented at the 2014 European Conference on Software Architecture Workshops,

New York, New York, USA. http://doi.org/10.1145/2642803.2642828

150. Maier, M. W. (1996). Architecting Principles for Systems‐of‐Systems. INCOSE

International Symposium, 6(1), 565–573. http://doi.org/10.1002/j.2334-

5837.1996.tb02054.x

151. Marwedel, P. (2010). Embedded System Design. Springer Science & Business Media.

http://doi.org/10.1007/978-94-007-0257-8

152. Masak, D. (2009). Der Architekturreview. Springer-Verlag.

http://doi.org/10.1007/978-3-642-01659-2

153. McAffer, J., VanderLei, P., & Archer, S. (2010). OSGi and Equinox. Addison-Wesley

Professional.

154. Medjiah, S. (2017). IoT Standards Landscaping & IoT LSP Gap Analysis (pp. 1–20).

Presented at the Final STF 505 Presentation Workshop, Brussels.

155. Medvidovic, N., & Taylor, R. N. (2010). Software architecture: foundations, theory,

and practice (Vol. 2). Presented at the 32nd ACM/IEEE International Conference on

Software Engineering. http://doi.org/10.1145/1810295.1810435

156. Messelodi, S., Modena, C. M., Zanin, M., De Natale, F. G. B., Granelli, F., Betterle,

E., & Guarise, A. (2009). Intelligent extended floating car data collection. Expert

Systems with Applications, 36(3), 4213–4227.

http://doi.org/10.1016/j.eswa.2008.04.008

Bibliography

217

157. Microsoft. (2017). Azure IoT Suite | Microsoft Azure. Retrieved September 7, 2017,

from https://azure.microsoft.com/en-gb/suites/iot-suite/

158. Mohammad, S. A., Rasheed, A., & Qayyum, A. (2011). VANET Architectures and

Protocol Stacks: A Survey. Lecture Notes in Computer Science, 6596(Chapter 9), 95–

105. http://doi.org/10.1007/978-3-642-19786-4_9

159. Mumtaz, S., Huq, K. M. S., & Rodriguez, J. (2014). Direct mobile-to-mobile

communication - paradigm for 5G. IEEE Wireless Communications, 21(5), 14–23.

160. Mühl, G., Fiege, L., & Pietzuch, P. (2006). Distributed Event-Based Systems.

Berlin/Heidelberg: Springer Science & Business Media. http://doi.org/10.1007/3-540-

32653-7

161. Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., & Morris, R. (2011). Smarter

Cities and Their Innovation Challenges. IEEE Computer, 44(6), 32–39.

http://doi.org/10.1109/MC.2011.187

162. Natale, M. D., & Sangiovanni-Vincentelli, A. L. (2010). Moving From Federated to

Integrated Architectures in Automotive: The Role of Standards, Methods and Tools.

Proceedings of the IEEE, 98(4), 603–620.

http://doi.org/10.1109/JPROC.2009.2039550

163. NDS. (2017). NDS Association. Retrieved September 10, 2017, from

https://www.nds-association.org/#thestandard

164. OASIS. (2006). Reference Model for Service Oriented Architecture 1.0. (C. M.

MacKenzie, K. Laskey, F. McCabe, P. F. Brown, & R. Metz, Eds.).

165. Olumofin, F. G., & Goldberg, I. (2010). Privacy-Preserving Queries over Relational

Databases. Privacy Enhancing Technologies.

166. OMA. (2017). Open Mobile Alliance. Retrieved September 10, 2017, from

http://openmobilealliance.org/

167. OMA TS DM Protocol. (2016). OMA Device Management Protocol (V2_0-

20160209-A) (pp. 1–105). Open Mobile Alliance.

168. OMA TS LightweightM2M. (2016). Lightweight Machine to Machine Technical

Specification (V1_0-20160407-C) (pp. 1–127). Open Mobile Alliance.

169. OMA TS NGSI Context Management. (2012). NGSI Context Management.

openmobilealliance.org (1st ed.).

Bibliography

218

170. oneM2M TS-0021. (2016). oneM2M and AllJoyn Interworking, (V2.0.0) (pp. 1–62).

171. oneM2M TR-0007. (2015). Study of Abstraction and Semantics Enablements (V2.5.1)

(pp. 1–127). oneM2M.

172. oneM2M TS-0001. (2015). Functional Architecture (V1.6.1) (pp. 1–321). oneM2M.

173. oneM2M TS-0003. (2015). Security Solutions (V1.0.1) (pp. 1–91). oneM2M.

174. oneM2M TS-0004. (2015). Service Layer Core Protocol Specification (V1.0.1) (pp.

1–217). oneM2M.

175. oneM2M TS-0005. (2016). Management Enablement (OMA) (V1.4.1) (pp. 1–60).

oneM2M.

176. oneM2M TS-0008. (2015). CoAP Protocol Binding (V1.0.1) (pp. 1–14). oneM2M.

177. oneM2M TS-0009. (2015). HTTP Protocol Binding (V1.0.1) (pp. 1–13). oneM2M.

178. oneM2M TS-0010. (2015). MQTT Protocol Binding (V1.0.1) (pp. 1–27). oneM2M.

179. Oxford Dictionary Online. (2012). Concept - definition of concept. Retrieved

February 20, 2012, from https://en.oxforddictionaries.com/definition/concept

180. Oyman, O., Foerster, J. R., Tcha, Y., & Lee, S.-C. (2010). Toward enhanced mobile

video services over WiMAX and LTE. IEEE Communications Magazine, 48(8), 68–

76. http://doi.org/10.1109/MCOM.2010.5534589

181. Papageorgiou, A., Schmidt, M., Song, J., & Kami, N. (2013). Smart M2M Data

Filtering Using Domain-Specific Thresholds in Domain-Agnostic Platforms (pp. 286–

293). Presented at the 2013 IEEE International Congress on Big Data (BigData

Congress), IEEE. http://doi.org/10.1109/BigData.Congress.2013.45

182. Parkvall, S., Dahlman, E., Furuskar, A., Jading, Y., Olsson, M., Wanstedt, S., &

Zangi, K. (2008). LTE-Advanced - Evolving LTE towards IMT-Advanced (pp. 1–5).

Presented at the 2008 IEEE 68th Vehicular Technology Conference, IEEE.

http://doi.org/10.1109/VETECF.2008.313

183. Parnas, D. L. (1972). On the Criteria To Be Used in Decomposing Systems into

Modules. Communications of the ACM, 15(12), 1053–1058.

http://doi.org/10.1145/361598.361623

Bibliography

219

184. Pautasso, C., Zimmermann, O., & Leymann, F. (2008). Restful web services vs. “big”'

web services: making the right architectural decision. Presented at the 17th

international conference on World Wide Web, ACM.

http://doi.org/10.1145/1367497.1367606

185. Pereira, C., & Aguiar, A. (2014). Towards Efficient Mobile M2M Communications:

Survey and Open Challenges. Sensors, 14(10), 19582–19608.

http://doi.org/10.3390/s141019582

186. Picone, M., Busanelli, S., Amoretti, M., Zanichelli, F., & Ferrari, G. (2015). Advanced

Technologies for Intelligent Transportation Systems. Springer 2015, 139.

http://doi.org/10.1007/978-3-319-10668-7

187. Pretschner, A., Broy, M., Kruger, I. H., & Stauner, T. (2007). Software Engineering

for Automotive Systems: A Roadmap. FOSE '07: 2007 Future of Software

Engineering, 55–71. http://doi.org/10.1109/FOSE.2007.22

188. Protzmann, R., Massow, K., & Radusch, I. (2014). An Evaluation Environment and

Methodology for Automotive Media Streaming Applications (pp. 297–304). Presented

at the 2014 Eighth International Conference on Innovative Mobile and Internet

Services in Ubiquitous Computing (IMIS), IEEE. http://doi.org/10.1109/IMIS.2014.38

189. Quintero, R., Llamazares, A., Llorca, D. F., Sotelo, M. A., Bellot, L. E., Marcos, O., et

al. (2011). Extended Floating Car Data system - experimental study. Intelligent

Vehicles Symposium (IV), 2011 IEEE, 631–636.

http://doi.org/10.1109/IVS.2011.5940444

190. Raja, B. S., Iqbal, M. A., & Ihsan, I. (2005). Moving From Problem Space to Solution

Space. World Academy of Science, Engineering and Technology.

191. Ramesh, V., Glass, R. L., & Vessey, I. (2004). Research in computer science: an

empirical study. Journal of Systems and Software, 70(1-2), 165–176.

http://doi.org/10.1016/S0164-1212(03)00015-3

192. Richardson, L., & Ruby, S. (2007). RESTful Web Services. O'Reilly Media, Inc.

193. Richardson, L., Amundsen, M., & Ruby, S. (2013). RESTful Web APIs. O'Reilly

Media, Inc.

Bibliography

220

194. Rost, P., Banchs, A., Berberana, I., Breitbach, M., Doll, M., Droste, H., et al. (2016).

Mobile network architecture evolution toward 5G. IEEE Communications Magazine,

54(5), 84–91.

http://doi.org/10.1109/MCOM.2016.7470940&orderBeanReset=true&startPage=84&e

ndPage=91&volumeNum=54&issueNum=5","displayPublicationTitle“:”IEEE

195. Sagstetter, F. R. (2016). Schedule Synthesis for Time-Triggered Automotive

Architectures. Technische Universität München.

196. Saleh, O. (2013). Complex Event Processing in Wireless Sensor Networks.

Grundlagen Von Datenbanken.

197. Saleh, O., & Sattler, K.-U. (2013). Distributed Complex Event Processing in Sensor

Networks (pp. 23–26). Presented at the 14th IEEE International Conference on Mobile

Data Management (MDM), IEEE. http://doi.org/10.1109/MDM.2013.60

198. Salminen, A., & Tompa, F. (2011). Communicating with XML. Boston, MA: Springer

Science & Business Media. http://doi.org/10.1007/978-1-4614-0992-2

199. Sandonis, V., Soto, I., Calderón, M., & Urueña, M. (2016). Vehicle to Internet

communications using the ETSI ITS GeoNetworking protocol. Transactions on

Emerging Telecommunications Technologies, 1–16. http://doi.org/10.1002/ett

200. Sangiovanni-Vincentelli, A. (2002). Platform-based Design, 1–20.

201. Sangiovanni-Vincentelli, A., & Di Natale, M. (2007). Embedded System Design for

Automotive Applications. IEEE Computer, 40(10), 42–51.

http://doi.org/10.1109/MC.2007.344

202. Sangiovanni-Vincentelli, A., & Martin, G. (2001). Platform-Based Design and

Software Design Methodology for Embedded Systems. IEEE Design & Test, 18(6),

23–33. http://doi.org/10.1109/54.970421

203. SAP. (2017). Internet of Things | SAP Solutions. Retrieved February 24, 2018, from

https://www.sap.com/uk/products/supply-chain-iot/iot.html

204. Sauter, M. (2015). Grundkurs Mobile Kommunikationssysteme. Wiesbaden: Springer-

Verlag. http://doi.org/10.1007/978-3-658-08342-7

205. Schäuffele, J., & Zurawka, T. (2013). Automotive Software Engineering. Wiesbaden:

Springer-Verlag. http://doi.org/10.1007/978-3-322-91194-0

Bibliography

221

206. Scheider, T., & Böhm, M. (2010). Extended Floating Car Data in Co-operative Traffic

Management. In Traffic Data Collection and its Standardization (Vol. 144, pp. 161–

170). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4419-6070-

2_11

207. Schneider, J., & Nett, T. (2014). Safety Issues of Integrating IVI and ADAS

functionality via running Linux and AUTOSAR in parallel on a Dual-Core-System.

Automotive - Safety & Security, 55–68.

208. SEBoK authors. (2015). Guide to the Systems Engineering Body of Knowledge

(SEBoK), 1–1005.

209. Segal, J. (2003). The Nature of Evidence in Empirical Software Engineering (pp. 40–

47). Presented at the Eleventh Annual International Workshop on Software

Technology and Engineering Practice, IEEE. http://doi.org/10.1109/STEP.2003.33

210. Seo, H., Lee, K.-D., Yasukawa, S., Peng, Y., & Sartori, P. (2016). LTE evolution for

vehicle-to-everything services. IEEE Communications Magazine, 54(6), 22–28.

211. Shelby, Z., Hartke, K., & Bormann, C. (2013). Constrained Application Protocol

(CoAP). CoRE Working Group, IETF.

212. Shimizu, N. (2004). Analysis of Automotive Telematics Industry in Japan.

213. Siebenpfeiffer, W. (2014). Vernetztes Automobil. (W. Siebenpfeiffer, Ed.).

Wiesbaden: Springer-Verlag. http://doi.org/10.1007/978-3-658-04019-2

214. Simoens, P., De Turck, F., Dhoedt, B., & Demeester, P. (2011). Remote Display

Solutions for Mobile Cloud Computing. IEEE Computer, 44(8), 46–53.

http://doi.org/10.1109/MC.2011.70

215. simTD-Consortium. (2013). simTD: Safe and intelligent mobility - test field Germany.

Retrieved April 8, 2013, from http://www.simtd.de

216. simTD-Consortium. (2009, October 6). Deliverable D11.4. Retrieved April 16, 2013,

from

http://www.simtd.de/index.dhtml/15516d4d95665060970r/object.media/enEN/6486/C

S/-/backup_publications/Projektergebnisse/simTD-Deliverable-

D11.4_Funktionsanforderungen_Architektur.pdf

217. Smethurst, G. (2010). Changing the In-Vehicle Infotainment Landscape. GENIVI

Allliance. Retrieved from

http://www.genivi.org/sites/default/files/GENIVI%20White%20Paper%20-%20Chang

ing%20the%20IVI%20Landscale.pdf

Bibliography

222

218. Sommerville, I. (2010). Software Engineering. Addison-Wesley.

219. Song, J. (2014). Global IoT/M2M Service Framework Standardizations – oneM2M

perspective (pp. 1–49). Presented at the IoT - Beyond Connectivity Workshop.

220. Strasser, A., Cool, B., Gernert, C., Knieke, C., Körner, M., Niebuhr, D., et al. (2014).

Mastering Erosion of Software Architecture in Automotive Software Product Lines. In

SOFSEM 2014: Theory and Practice of Computer Science (Vol. 8327, pp. 491–502).

Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-04298-

5_43

221. Swetina, J., Lu, G., Jacobs, P., Ennesser, F., & Song, J. (2014). Toward a standardized

common M2M service layer platform: Introduction to oneM2M. IEEE Wireless

Communications, 21(3), 20–26. http://doi.org/10.1109/MWC.2014.6845045

222. Takei, Y., & Furukawa, Y. (2005). Estimate of Driver's Fatigue Through Steering

Motion (Vol. 2, pp. 1765–1770). Presented at the 2005 IEEE International Conference

on Systems, Man and Cybernetics, IEEE.

http://doi.org/10.1109/ICSMC.2005.1571404

223. Talbot, S. C., & Ren, S. (2009). Comparision of Fieldbus Systems CAN, TTCAN,

Flexray and LIN in Passenger Vehicles. Presented at the 29th IEEE International

Conference on Distributed Computing Systems.

224. Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device

communication in 5G cellular networks - challenges, solutions, and future directions.

IEEE Communications Magazine, 52(5), 86–92.

225. Terroso-Sáenz, F., Valdés-Vela, M., Campuzano, F., Botia, J. A., & Skarmeta-Gómez,

A. F. (2015). A complex event processing approach to perceive the vehicular context.

Information Fusion, 21, 187–209. http://doi.org/10.1016/j.inffus.2012.08.008

226. Tesla Motors. (2016). Model S Autopilot Press Kit | Tesla Motors. Retrieved January

18, 2016, from https://www.teslamotors.com/presskit/autopilot

227. The GridWise Architecture Council. (2008). GridWise Interoperability Context-

Setting Framework. Smart Grids Interoperability.

228. TIA. (2017). Telecommunications Industry Association. Retrieved September 10,

2017, from http://www.tiaonline.org/

229. Tiako, P. F. (2008). Designing Software-Intensive Systems. (P. F. Tiako, Ed.). IGI

Global. http://doi.org/10.4018/978-1-59904-699-0

Bibliography

223

230. Tolk, A., & Jain, L. C. (2011). Intelligent-Based Systems Engineering. Springer

Science & Business Media. http://doi.org/10.1007/978-3-642-17931-0

231. Tolk, A., & Muguira, J. A. (2003). The levels of conceptual interoperability model.

Presented at the 2003 Fall Simulation Interoperability Workshop, Orlando, Florida.

232. Tolk, A., Diallo, S. Y., & Turnitsa, C. D. (2007). Applying the levels of conceptual

interoperability model in support of integratability, interoperability and composability

for system-of-systems engineering. Journal of Systemics.

233. TSDSI. (2017). TSDSI | Welcome to TSDSI. Retrieved September 10, 2017, from

http://www.tsdsi.org/

234. TTA. (2017). Welcome to TTA - Telecommunications Technology Association of

Korea. Retrieved September 10, 2017, from http://www.tta.or.kr/English/

235. TTC. (2017). The Telecommunication Technology Committee. Retrieved September

10, 2017, from http://www.ttc.or.jp/e/

236. Uckelmann, D., Harrison, M., & Michahelles, F. (2011). Architecting the Internet of

Things. (D. Uckelmann, M. Harrison, & F. Michahelles, Eds.). Berlin, Heidelberg:

Springer Science & Business Media. http://doi.org/10.1007/978-3-642-19157-2

237. Venkatesh Prasad, K., Broy, M., & Krueger, I. (2010). Scanning Advances in

Aerospace & Automobile Software Technology. Proceedings of the IEEE, 98(4), 510–

514. http://doi.org/10.1109/JPROC.2010.2041835

238. Vergata, S., Knirsch, A., & Wietzke, J. (2012). Integration zukünftiger In-Car-

Multimediasysteme unter Verwendung von Virtualisierung und Multi-Core-

Plattformen. In Herausforderungen durch Echtzeitbetrieb - Echtzeit 2011, Fachtagung

des gemeinsamen Fachausschusses Echtzeitsysteme von Gesellschaft für Informatik

e.V. (GI), VDI/VDE-Gesellschaft für Mess- und Automatisierungstechnik (GMA) und

Informationstechnischer Gesellschaft im VDE (ITG), Boppard, 3. und 4. November

2011 (pp. 21–28). Springer.

239. Vergata, S., Wietzke, J., Schütte, A., & Dowland, P. (2010). System Design for

Automotive Applications. Proceedings of the Sixth Collaborative Research

Symposium on Security, E-Learning, Internet and Networking (SEIN2010), 53–60.

240. Vinoski, S. (2008). Serendipitous Reuse. IEEE Internet Computing, 12(1), 84–87.

http://doi.org/10.1109/MIC.2008.20

241. Vogel, O., Arnold, I., Chughtai, A., Ihler, E., Kehrer, T., Mehlig, U., & Zdun, U.

(2009). Software-Architektur. Springer Science & Business Media.

Bibliography

224

242. Völker, L. (2013). SOME/IP–Die Middleware für Ethernet-basierte Kommunikation.

HANSER Automotive Networks Special.

243. W3C. (2013). Web Services Glossary. Retrieved April 12, 2013, from

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

244. Wang, D. (2013). Extending Complex Event Processing for Advanced Applications.

Worcester Polytechnic Institute.

245. Wang, W. (2009). The Levels of Conceptual Interoperability Model: Applying

Systems Engineering Principles to M&S, 1–9.

246. Wannstrom, J. (2013, June). LTE-Advanced. Retrieved September 9, 2017, from

http://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced

247. Wietzke, J. (2012). Embedded Technologies. Springer-Verlag Berlin Heidelberg.

http://doi.org/10.1007/978-3-642-23996-0

248. Wietzke, J., & Tran, M. T. (2005). Automotive Embedded Systeme (Xpert.press).

Berlin/Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/3-540-28305-6

249. Winner, H., Hakuli, S., & Wolf, G. (2012). Handbuch Fahrerassistenzsysteme. Aufl.

Vieweg+ Teubner.

250. Winner, H., Hakuli, S., Lotz, F., & Singer, C. (2015). Handbuch

Fahrerassistenzsysteme. (H. Winner, S. Hakuli, F. Lotz, & C. Singer, Eds.).

Wiesbaden: Springer-Verlag. http://doi.org/10.1007/978-3-658-05734-3

251. Wise-IoT. (2017). Home. Retrieved September 7, 2017, from http://wise-

iot.eu/en/home/

252. Wu, G., Talwar, S., Johnsson, K., Himayat, N., & Johnson, K. D. (2011). M2M: From

Mobile to Embedded Internet. IEEE Communications Magazine, 49(4), 36–43.

http://doi.org/10.1109/MCOM.2011.5741144

253. Zave, P. (1993). Feature interactions and formal specifications in telecommunications.

IEEE Computer, 26(8), 20–28. http://doi.org/10.1109/2.223539

254. Zhang, Q. (2008). Visual Software Architecture Description Based on Design Space

(pp. 366–375). Presented at the 8th International Conference on Quality Software

(QSIC), IEEE. http://doi.org/10.1109/QSIC.2008.59

Bibliography

225

255. Zhu, L., Babar, M. A., & Jeffery, D. R. (2004). Mining Patterns to Support Software

Architecture Evaluation. (pp. 25–36). Presented at the Proceedings of the Fourth

Working IEEE/IFIP Conference on Software Architecture, IEEE Comput. Soc.

http://doi.org/10.1109/WICSA.2004.1310687

256. Zimmermann, W., & Schmidgall, R. (2014). Bussysteme in der Fahrzeugtechnik.

Springer-Verlag. http://doi.org/10.1007/978-3-658-02419-2

257. Zorzi, M., Gluhak, A., Lange, S., & Bassi, A. (2010). From today's INTRAnet of

things to a future INTERnet of things: a wireless- and mobility-related view. IEEE

Wireless Communications, 17(6), 44–51. http://doi.org/10.1109/MWC.2010.5675777

Abbreviations

226

Abbreviations

3GPP 3rd Generation Partnership Project

ABS Antilock Brake System

ACC Adaptive Cruise Control

AD Autonomous Driving

ADAS Advanced Driver Assistance System

ADASIS Advanced Driver Assistance Systems Interface Specification

ADN Application Dedicated Node

AE Application Entity

AMP Asymmetric Multiprocessing

API Application Programming Interface

ASDP Automotive Service Delivery Platform

ASIL Automotive Safety Integrity Level

ASM Application and Service Layer Management

ASN Application Service Node

ASR Architecturally Significant Requirements

ATAM Architectural Trade-off Analysis Method

AUTOSAR AUTomotive Open System ARchitecture

BSD Blind Spot Detection

BSW Basic Software

CAN Controller Area Network

Car2Car Car-to-Car

Car2Infrastructure Car-to-Infrastructure

Car2X Car-to-X

Abbreviations

227

CD Compact Disc

CE Consumer Electronic

CEP Complex Event Processing

CMDH Communication Management, Delivery Handling CSF

CoAP Constraint Application Protocol

CPS Cyber-Physical System

CPU Central Processing Unit

CRUD Create, Retrieve, Update, Delete

CRUD+N Create, Retrieve, Update, Delete, and Notify

CSE Common Services Entity

CSF Common Services Functions

D2D Device-to-Device

DA Device Application

DAB Digital Audio Broadcasting

DIS Discovery

DM Device Management

DMG Device Management CSF

DMT Data Management and Repository CSF

DSCL Device Service Capability Layer

DSRC Dedicated Short Range Communication

E2E End-to-End

eCall Automatic Emergency Call

ECU Electronic Control Unit

EDA Event-Driven Architectures

Abbreviations

228

EDEL Enhanced Data Exchange Layer

eHorizon Electronic Horizon

EMC Electro-Magnetic Compatibility

ESP Electronic Stability Program

ETSI European Telecommunications Standards Institute

FCD Floating Car Data

FCW Forward Collision Warning

FM Frequency Modulation

GA Gateway Application

GENIVI Geneva In-Vehicle Infotainment

GMG Group Management CSF

GPS Global Positioning System

GPU Graphics Processing Unit

GSCL Gateway Service Capability Layer

GSM Global System for Mobile Communications

GUI Graphical User Interface

H2M Human-to-Machine

HAD Highly Automated Driving

HATEOAS hypermedia as the engine of application state

HMI Human-Machine Interface

HTTP Hypertext Transfer Protocol

ICM In-Car Multimedia

ICT Information and Communications Technology

IEC International Electrotechnical Commission

Abbreviations

229

IEEE Institute of Electrical and Electronics Engineers

IERC IoT European Research Cluster

IN Infrastructure Node

IoT Internet of Things

IP Internet Protocol

IPE Inter-working Proxy Application Entity

ISO International Organization for Standardization

ITS Intelligent Transportation System

IVI In-Vehicle Infotainment

KB Kilobyte

LCIM Levels of Conceptual Interoperability

LDW Lane Departure Warning

LIN Local Interconnect Network

LKA Lane Keeping Assistance

LOC Location CSF

LTE Long Term Evolution

LTE-A Long Term Evolution Advanced

M2H Machine-to-Human

M2M Machine-to-Machine Communication

MANET Mobile Ad hoc NETwork

MEC Mobile Edge Computing

MN Middle Node

MOST Media Oriented System Transport

MP3 MPEG-2 Audio Layer III

Abbreviations

230

MQTT Message Queue Telemetry Transport

MTC Machine-Type-Communication

NA Network Application

NDS Navigation Data Standard

NFV Network Function Virtualisation

NoDN Non-oneM2M Device Node

NSCL Network Service Capability Layer

NSE Network Services Entity

NSSE Network Service Exposure, Service Execution and Triggering CSF

OASIS Organization for the Advancement of Structured Information Standards

OBU On Board Unit

OEM Original Equipment Manufacturer

OMA Open Mobile Alliance

OS Operating System

OSI Open Systems Interconnection

OTA Over The Air

PBD Platform-Based Design

PC Personal Computer

POI Points-of-Interest

POSIX Portable Operating System Interface

PSAP Public Safety Answering Point

RDP Remote-Desktop-Protocol

REG Registration

REQ Requirement

Abbreviations

231

REST REpresentational State Transfer

RFID Radio-Frequency Identification

RSU Road Side Unit

RTE Runtime Environment

SCA Service Charging and Accounting CSF

SDK Software Development Kit

SDN Software-Defined Networking

SDO Standard Developments Organisation

SEC Security CSF

SN Subscription and Notification

SOA Service-Oriented Architecture

SoC System on Chip

SOME/IP Scalable Service-Oriented Middleware over IP

SoP Start of Production

SQL Structured Query Language

SW-C Software Components

TCP Transmission Control Protocol

T-CPS Transportation Cyber-Physical System

TCS Traction Control System

TJA Traffic Jam Assistant

TJC Traffic Jam Chauffeur

TPMS Tire Pressure Monitoring System

TR Technical Report

TS Technical Specification

Abbreviations

232

TSR Traffic Sign Recognition

TTCAN Time-triggered CAN

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

VANET Vehicular Ad hoc NETwork

VCG Vehicle Communication Gateway

VFB Virtual Function Bus

VMM Virtual Machine Monitor

VoIP Voice over IP

W3C World Wide Web Consortium

WAVE Wireless Access in Vehicular Environments

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

XFCD Extended Floating Car Data

XML Extensible Markup Language

XSD XML Schema Definition

	A Distributed Service Delivery Platform for Automotive Environments: Enhancing Communication Capabilities of an M2M Service Platform for Automotive Application
	Recommended Citation

	tmp.1730155388.pdf.XFRDa

