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With requirements to improve life quality, smart homes, and healthcare have gradually

become a future lifestyle. In particular, service robots with human behavioral sensing for

private or personal use in the home have attracted a lot of research attention thanks to

their advantages in relieving high labor costs and the fatigue of human assistance. In this

paper, a novel force-sensing- and robotic learning algorithm-based teaching interface

for robot massaging has been proposed. For the teaching purposes, a human operator

physically holds the end-effector of the robot to perform the demonstration. At this stage,

the end position data are outputted and sent to be segmented via the Finite Difference

(FD) method. A DynamicMovement Primitive (DMP) is utilized tomodel and generalize the

human-like movements. In order to learn from multiple demonstrations, Dynamic Time

Warping (DTW) is used for the preprocessing of the data recorded on the robot platform,

and a Gaussian Mixture Model (GMM) is employed for the evaluation of DMP to generate

multiple patterns after the completion of the teaching process. After that, a Gaussian

Mixture Regression (GMR) algorithm is applied to generate a synthesized trajectory to

minimize position errors. Then a hybrid position/force controller is integrated to track

the desired trajectory in the task space while considering the safety of human-robot

interaction. The validation of our proposed method has been performed and proved by

conducting massage tasks on a KUKA LBR iiwa robot platform.

Keywords: hybrid force/position, teaching by demonstration, dynamic motion primitive, dynamic time warping,

gaussian mixture regression

1. INTRODUCTION

With the continuous development of technology, many traditional industries have been gradually
replaced by high-tech products. Among them, the development of robot technology plays an
important role. Robot technology integrates multiple disciplines, such as machinery, information,
materials, intelligent control, and biomedicine, and intelligent service robots are intelligent
equipment that provide humans with necessary services in an unstructured environment. The tasks
that a robot can accomplish are divided into two categories. One is non-contact operation: the
robot carries and operates the target in a free space, and the simple position control can be used for
another type of contact operation. For tasks such as assembly, grinding, polishing, debarring, etc.,
simple position control is no longer sufficient. In such cases where the contact force is required, the
slight positional deviation of the robot end may cause the contact force to damage the robot and

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.00030
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.00030&domain=pdf&date_stamp=2020-06-29
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:leeshaoxiang@126.com
https://doi.org/10.3389/fnbot.2020.00030
https://www.frontiersin.org/articles/10.3389/fnbot.2020.00030/full
http://loop.frontiersin.org/people/934118/overview
http://loop.frontiersin.org/people/1004970/overview
http://loop.frontiersin.org/people/1004975/overview


Li et al. Robot Massaging in Smart Homes

FIGURE 1 | Conception of robot massaging in smart homes.

the target. Therefore, the contact force control function must
be added to the contact robot control system. The traditional
robot control system for free space motion cannot meet
the requirements of the extended application of robots. The
perception and control of the robots of environmental forces
are problems that current robot technology needs to solve. The
control strategy combined with the end pose and the contact
force for a robot is defined as the robotic force/position control.
The key technologies of the current robotic force/position control
mainly include the following aspects:

1. the robotic impedance control under the condition that
the environmental parameter geometry and dynamic model
parameters are unknown or changed;

2. the robotic force/position hybrid control under system
interference (model error, measurement noise, and external
input interference);

3. the robotic collision contact control;
4. the engineering implementation of robotic force/

position control.

Service robots mimic humans in shape and behavior design; for
instance, they have hands, feet, heads, and a torso. This helps
them to adapt to human life and a work environment. Service
robots replace human beings to complete various tasks and
expand human capabilities in many aspects. Recently, research
into robot massaging in smart homes (shown in Figure 1) has
attracted widespread attention. Massaging is an important part
of people’s realization of a healthy lifestyle that can relieve stress
and relax the body. By relaxing the muscles and joints, massages
improve the flexibility of the body’s joints and muscles, thereby
reducing muscle pain caused by poor posture. However, for
the manual massage tasks, it takes lots of energy and labor
cost. Thus, in recent years, robot massaging has become a
research hotspot in the field of robots. In 1996, the Mechatronics
Research Center of Japan’s Sanyo Electric Co., Ltd. designed a
mechanical therapy unit and verified the feasibility of developing
an intelligent massage robot (Kume et al., 1996). In 2000s,
Toyohashi University of Technology and Japan’s Gifu Institute
of Technology carried out research on humanoid multi-finger

massage robots with four fingers and 13 joints (Zhang and Zhang,
2017). Since 2004, Chinese scholars have carried out research
on massage robots based on the theory of traditional Chinese
massage and systematically discussed the robotic synthesis of
various traditional Chinese medical massage techniques (Ma
et al., 2005). However, existing massage robots are complicated to
operate with limited functions, a large size with bulky equipment,
and they are also expensive. Moreover, most of the existing
robot massage technology depends on the function of the robot
product itself; in other words, these robots cannot be used
for operations other than massage, and their tandem structure
stiffness is large, the motion inertia is unstable, and the working
space and flexibility are limited (Zhang and Zhang, 2017; Field,
2018). To overcome the abovementioned issues, this paper
develops a teaching-by-demonstration-based interface using a
hybrid position/force control strategy with adjustable stiffness,
which can be implemented onto a general robot manipulator
with high accuracy, taught by a human operator.

Goradia et al. (2002) studied robotic forces/positions under
different surfaces (i.e., unknown to the environment) to
better facilitate the polishing or grinding processes. Scherillo
et al. (2003) studied the force/position control of multi-finger
grasping, Nguyen et al. (2000) used the sliding mode variable
structure to control the force and the position of the robot,
Ha et al. (2000) and used the impedance control method to
control the force/position of the robot. In Fanaei and Farrokhi
(2006), authors used a robust adaptive method to control the
force and the position of the robot. Research on the force/position
intelligent control of the robot is still mainly theoretical, the
technical realization is at the stage of exploration, and there is still
a certain distance to go in terms of promotion and practicality.

Movement is necessary to directly produce skill effects.
The motion model generates a continuous robot space state
representation skill offline or online with clear meanings related
to the physical system, such as position, attitude, and contact
force. Generally, the motion is assumed to be nonlinear.
The motion model mainly includes two categories: trajectory
encoding modeling and dynamic system modeling. Trajectory
encoding is a compact mathematical model that represents the
shape, constraints, and other information of the trajectory. When
the human operators teach and store one or more specific
fixed trajectories in the robot, then the robot can accurately
reproduce the trajectory when the motion skills are executed.
Calinon and Billard (2007) used trajectory encoding with a
multivariate Gaussian mixture model (GMM), which expresses
the trajectory in a fixed coordinate system. However, considering
reality, the trajectory often needs to be expressed in different
reference coordinate systems, so the transformation relationship
of the reference coordinate system may also change. Thus,
in Silvério et al. (2015), they proposed a task-parameterized
Gaussian Mixture Model (TP-GMM) wherein the origin and
rotation transformation matrix of the coordinate system are used
as the task parameters in the model, which allows the observation
and reproduction of the motion trajectory in different reference
coordinate systems. However, the trajectory encoding modeling
method only explicitly generates a fixed trajectory. When the
robot is disturbed and deviates from the trajectory, the trajectory
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FIGURE 2 | Diagram of the proposed control architecture.

cannot be adjusted in real time, and a new trajectory needs to
be regenerated.

The dynamic system is automatically evolved according to
certain rules. Compared with the trajectory encoding, there are
two main differences: the dynamic system does not explicitly
depend on the time variable–only the relationship between
the spatial state and its time derivative; the dynamic system
can be online. The trajectory generated by such a dynamic
system obtains the online adaptive ability for disturbance. DMP
was proposed by Schaal (2003) in 2002 as a dynamic system
model that can generate trajectories of arbitrary shapes where
its basic idea is to drive a transform system with a canonical
system. Nanayakkara et al. (2004) proposed a Mixture of
motor primitives (MoMP) using a Gaiting network to calculate
the weight of each DMP in the current state. Ideally, the
Gaiting network should only choose one DMP implementation.
However, the reality is more complicated; in order to achieve
a good generalized performance, MoMP weights the output
of all DMPs based on the weight of the output of the gated
network to obtain the final output. In Matsubara et al. (2011),
the coordination matrix is used to represent the coupling
relationship between multiple DMPs corresponding to multiple
degrees of freedom, and the iterative dimensionality reduction
method is used to reduce the unnecessary degrees of freedom
in the cooperation matrix, which is beneficial to enhancing the
learning efficiently. DMP mainly depends on the target state and
weight coefficient. The former is determined by the environment
or setting. The latter can learn from the teaching trajectory based
on the linear weighted regression (LWR) method. However,
the LWR can only learn the DMP model parameters from a
single demonstration. This paper mainly presents two aspects
of research: the theory of hybrid force/position control with
direct human–robot interaction and the experimental studies
on a real robotic platform. The motion planning is performed
in 3D task space, where the GMM is employed to evaluate
the DMP to learn from multiple demonstrations, and GMR

is used for the reproduction of the generalized trajectory
with a smaller error. For the force input aspects, a hybrid
force/position controller is introduced to ensure the safety of
direct human–robot interaction. An overview of the presented
control architecture is shown in Figure 2. The contributions of
this paper are summarized.

1. This paper employs a teaching interface to perform the robot
massaging under the demonstrations of the human operator,
and the experimental studies show that, after the teaching
process, the robot can generate an even smoother trajectory
that strictly adheres to what is requested to be followed.

2. The application of the hybrid force/position control scheme
takes care of the safety issues and achieves massage services
performing without knowing subject profiles.

3. The generalization functions of our proposedmethod supplies
a more flexible and convenient option with only once teaching
for multiple tasks to the carers and patients, which promotes
the user experiences.

2. DATA PREPROCESSING

2.1. Motion Skills Segmentation
FD approximates the derivative by the limitable variance
and finds an estimated solution for the differential equation
(Chelikowsky et al., 1994). The differential form, especially, is
to substitute the differential with a finite difference and the
derivative with a finite differential quotient so as to roughly
change the fundamental formula and limit state (usually the
differential equation) into the differential equation (Algebraic
equation) (Gear, 1988). The solution of the differential equations
problem is updated so that the algebraic equations problem
is resolved.

Segmentation of skills is usually a complicated and systematic
process that requires more time and efforts on its algorithms
designing. For such a complex method, there are often difficulties
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in setting the priori parameters. Considering the situation that
the massaging motion is planed on a horizontal plane, and the
force is applied into vertical direction of that plane, during the
massaging tasks, it is easy to track for the system at which point
the position being massaged has been changed. This is because its
changing position represents the value varying in z coordinates.
Consequently, a simple segmentation method (FD) is employed
in this paper. In view of yi=f (zi) relies upon the zi variables,
where zi denotes the coordinate values in the vertical direction
at the ith time series, and yi represents the corresponding spatial
sequence of the whole dataset. If zi is changed into zi+1, the
corresponding changes in the whole dataset is df (zi) = f (zi+1)−
f (zi) and d is the differentiation operator. Difference has a
differential-like arithmetic value. This displays the following
equation (Li et al., 2018):

f ′(zi) = df (zi) = y′i ≈
yi+1 − yi

zi+1 − zi
(1)

where one significant massaging aspect is that the endpoint
would be lifted once every single massaging task is done. The “z”
alignment values of the experimental data are thus viewed as the
segmentation reference. We have received, pursuing the FD,

ξ (y
′

i) = sign(
∣

∣

∣
y
′

i

∣

∣

∣
− θ) (2)

Where ξ is the gaping variable, abd θ is a constant. We could
modify the segmented characters, such as, θ , here θ=0.5, by giving
different values of θ . Sign is the Signum function, and, for each
component of ξ , the formulation could be described as following:

sign(ξ ) =







−1 if ξ < 0,
0 if ξ = 0,
1 if ξ > 0.

(3)

Up to now, the segmented motion trajectories sign(ξ ) for
massaging have been outputted to different local text files for
the use of GMM and DMP generalization, which correspond to
the “z” coordinate information in the robot space, suddenly and
sharply rising, which implies every time the massaging for one
position was done. The flowchart of the segmentation is shown
in Figure 3.

2.2. Alignment of Time Series
The DTW employed in this paper aligned the
outputted trajectories curves in the form of W =
{

w1,w2, · · · ,wp, · · · ,w(p)
}

in which w(p) = (ip, jp) denotes the
match variable in Petitjean et al. (2014). In this situation, the
skewed characteristic W is required to reduce the discrepancy
between the pending trajectory and the reference trajectory. The
formula is therefore described as

D = min

K
∑

k=1

d[w(p)] (4)

where d[w(p)] = d[Ti(p),Rj(p)] represents the measured
distance from the i(p)th featured point of the pending trajectory

FIGURE 3 | The flowchart of the segmentation.

to the j(p)th featured point of the reference trajectory, which is
normally described by a square measure specified as follows:

d[w(p)] = [Ti(p)− Rj(p)]
2 (5)

We need to construct amatrix grid ofm×n in order to coordinate
the two specimens; the matrix element (I, j) represents the range
d(Ti,Rj) between the two points Ti and Rj, and each matrix
element (i, j) represents the alignment of points Rj and Rj. DTW
aims to find a direction which reflects the matched points for
both samples to be determined via several grid points. First we
illustrate, as DAcc(i, j), the total minimum range between the two
trajectories, then we consider (Senin, 2008)

DAcc(i, j) = d(Ti,Rj)+min(qi ,qj)[DAcc(qi, qj)] (6)

where (qi, qj) belongs to the set of points between (1, 1) and (i, j)
within a certain direction. From the above components it can be
seen that the average cumulative distance of the (i, j) element is
linked not only to the regional distance d(Ti,Rj) of the own values
Ti, Rj but also to the total cumulative distance earlier than this
stage in the coordinate system.

We thus assume that (i, j − 1), (i − 1, j), and (i − 1, j − 1) for
any point c(p) = (i, j) within the coordinate systemmay enter the
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preceding point of c(p), so the choice of the preceding variable
also needs to agree with the above three factors. We may measure
the corresponding DTW range between the test pattern vector
and the comparison model vector, as shown below, according to
the formula.

D′ = DAcc(L1, L2). (7)

3. TRAJECTORY GENERATION

DMP is an innovative model (Schaal, 2006) dynamic system
learned from biological research that learns from motor
primitives. The definition of dynamic primitive can be separated
into two groups. One is to use different formulas based on
dynamic system to represent the state, and the other is to produce
the track by interpolation through the interpolation points (Li
et al., 2017). DMP is made up of two parts: the transformed
model r and the canonical framework h. The equation is shown
as follows:

ṡ = h(s) (8)

ṫ = r(t, s,w) (9)

where t and s are the transformed process states and the canonical
function, and the canonical system output variable h is referred to
as w.

The canonical model is defined by an exponential differential
equation, which is given:

τ ṡ = −αf s (10)

where s is a step function varying from 0 to 1, τ > 0, and αf is a
temporal scaling variable and a balanced component.

The transformed model consists of two nonlinear term
sections and a Cartesian space spring damping mechanism, the
formulas are defined as (Schaal, 2006):

τ v̇ = k(g − p)− cv+ X(g − p0) (11)

τ ṗ = v (12)

where p0 is the starting position, p ∈ R is the Cartesian position,
v ∈ R is the end-effector velocity of the robot, g is the goal,
k is the spring variable, and c is the damping factor. X is a
conversion method of dynamic nonlinear structures capable of
transforming the outcomes of the canonical model found in the
following formula:

X =

N
∑

i=1

wil(s) (13)

Where the GMM number is N, wi ∈ R is the weights, and l is the
uniform radial variable value that can be supplied as follows:

l(s) =
exp(−hi(s− ci)

2)
∑N

m=1 exp(−hm(s− cm)2)
(14)

where ci > 0 are the centers, and hi > 0 are the widths of
the functions of the Gaussian foundation. N is the number of
functions in Gaussian.

In addition, we can use the weight variable to produce
motions by specifying the starting point of the canonical process
(s=0) X0 and aim g, which is the canonical system integration.
The theory of DMP is to measure the nonlinear transition
feature X by observing the presenter’s movements. Nonetheless,
there are drawbacks in developing a multi-demonstration
conversion model, which is why the GMM is used to solve the
above problems.

GMM’s parameter estimation is the method by which the
design parameters are obtained under certain conditions. In
fact, it is the process of knowing the parameters of the model,
namely, the method of resolving λ =

{

µi,
∑

i,ωi

}

to bring
the GMM sequence of observation (Tong and Huang, 2008).
The most commonly employed parameter estimation is the total
probability approximation process. The basic idea is to consider
the system parameter λ when the peak likelihood of GMM
is obtained by providing the observation sequence X obtained
by DMP from the previous chapter, then λ is the model. The
optimum function, λ, defines to the maximum extent practicable
the distribution of the observed string.

The end goal of the total probability calculation after
providing the training information is to seek a template variable
that maximizes the GMM’s likelihood. For a training vector series
of X = {x1, x2 . . . xD} of duration D, it is possible to describe the
likelihood of GMM as

P(X | λ) =

D
∏

t=1

P(Xt | λ) (15)

The parameter λ is then continuously updated until a set of
parameters λ is found to maximize P(X | λ):

λ̂ = argmax
λ

P(X | λ) (16)

For the convenience of analysis, P(X | λ) usually takes its log
likelihood, giving us

log(P(X | λ)) =

D
∑

t=1

logP(Xt | λ) (17)

The Expectation Maximization (EM) algorithm can be used for
parameter estimation provided that there is a relatively complex
nonlinear interaction between the probability function and the
template parameters, and the peak value cannot be determined
according to the standard probability estimation process. The
EM algorithm is in essence an iterative method for calculating
the probability model’s maximum likelihood. The process of each
iteration is to estimate the unknown data distribution based on
the parameters that have been acquired and then calculate the
newmodel parameters under themaximum likelihood condition.
Let the initial model parameter be λ, which satisfies

P(X | λ′) > P(X | λ) (18)
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Next, we calculate the new model variable λ′ according to the
equation above and then use the λ′ parameter as the original
parameter for the next iteration. It iteratively iterates until the
state of convergence is met. Here we assume a Q function that
represents the E phase of the EM process shown below:

Q(λ, λ′) =

M
∑

i=1

P(X, i | λ)logP(X, i | λ) (19)

where i is an elusive and unpredictable secret country. Q(λ, λ′)
corresponds to all observable data’s log likelihood assumptions.
Calculating the maximum value of Q(λ, λ′) increasing give the
maximum log likelihood of the observed data, which is the M
stage of the EM process. It is possible to obtain replacement
formulas (15) and (16) for equations (6):

Q(λ, λ′) =

M
∑

i=1

T
∑

t=1

rt(i)logωibi(x) (20)

rt(i) = P(Xt , i | λ) (21)

The approximate values of each variable are then computed
according to E and M. Phase E calculates the posterior likelihood
of the tth test Xt of the training data according to the Bayesian
equation in the ith state; phase M first uses the Q method to
extract the three parameters independently and then evaluate the
corresponding figures. To re-evaluate the variables, we iteratively
perform measures E and M. The loop is halted when the peak
value of the likelihood function is reached.

The first step when using the EM method to calculate the
GMM parameters is to determine the number of Gaussian
components in the GMM, such as system M order and model
initial parameter λ (Howlett et al., 2009). Based on the actual
situation, such as the sum of training data, it is appropriate to
choose the order M of the template. The most widely employed
approach for the model’s initial variable λ is the K-means
algorithm. Currently, the K-means algorithm is the simplest
and most effective classification algorithm, commonly used in
different models (Nazeer and Sebastian, 2009). The GMM used
in this paper chooses the basic parameters using the K-means
method. The K-means algorithm partitions the information into
K clusters according to the in-cluster number of squares in the
category theory. After using the K-means method to cluster
the feature vectors, the mean and variance of each group are
determined and the percentage of each class ’feature vectors is
calculated as the blending weight (Tatiraju andMehta, 2008). The
average, variance, and combined weight can be then collected
as the predicted values. Finally, by applying the GMR, the same
theory as our previous work (Li et al., 2018), the reconstructed
motion trajectories can be then obtained.

4. HYBRID FORCE/POSITION CONTROL

The robot kinematics model of n DOF robot is presented in the
subsequent form

x(t) = 9(2) (22)

where x(t) ∈ Rn represents the position and direction vector,
and 2 ∈ Rn represents the joint angle vector. The inverse
kinematics are

2(t) = 9−1(x). (23)

The derivative of (23) can thus be rewritten:

ẋ(t) = J(2)2̇ (24)

where J(2) is the Jacobian matrix of the robot. Moreover,
differentiating (24), we can get

ẍ(t) = J̇(2)2̇ + J(2)2̈. (25)

The relationship between wrench and joint force can
be described:

Text = JT(2)f . (26)

In addition, the robot manipulator dynamics in joint space is

M2(2)2̈ + C2(2, 2̇)2̇ + G2(2)+ Tfric = T + Text (27)

where 2̇ and 2̈ are the vectors of velocity and accelerations,
respectively. Mq(2) ∈ Rn is the inertia matrix; C2(2, 2̇) is
the Coriolis and centripetal torque; G2(2) is the gravity; T
is the robot torque; Tfric is the friction torque and Text is the
external torque.

• Property 1: Matrix M2(2) is bounded above and below and
positive definite symmetric.

• Property 2: Matrix M2(2)2̈ − 2C2(2, 2̇) is skew
symmetric. matrix.

FIGURE 4 | Illustration of the experimental system.
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A force-position model of the relationship between the external
force and position in joint space is

DgJ(2)(2̈r − |2̈g)+ (CgJ(2)+Mg J̇(2))(2̇r − 2̇g)

+ Kg(φ
(

qr
)

− φ
(

qg)
)

= −J−TText

(28)

where qg ∈ Rn and qr ∈ Rn are the desired trajectory generated
from GMR algorithm and virtual desired trajectory, respectively.
The Mg , Cg , and Kg are gain matrix of the mass, damping and
stiffness matrices designed by the controller, respectively.

• Assumption 1: c1; c2; and c3 are positive constants, and both qg
and qr are differentiable and bounded: qg , qr ≤ c1, 2̇g , 2̇r ≤

c2, 2̈g , 2̈r ≤ c3.
• Remark 1: In the specific cases, force-position models such as

the damping-stiffness model and stiffness model are applied

Cg

(

2̇r − 2̇g

)

+ Kg

(

qr − qg
)

= −Text

Kg

(

qr − qg
)

= −Text

(29)

In the case that the desired manipulator’s motion is free and no
external collisions are generated, we can get qr = qg ; Text = 0.
In the opposite, while there is an external collision, the robot will
generate and follow the new trajectory, which is the adaptation
to the force-position model and the external torque specified
in Bernhardt et al. (2005) illustrates the relationship.

Regarding to the safety consideration, a moveable limit
has been added to the KUKA iiwa platform in both of the
Cartesian spaces to make sure the manipulator can only reach
the areas in front of it with a radian of 0.6 m; in this
case, the robot manipulator cannot fully stretch. Meanwhile,
the stiffness of its endpoint in all directions is set upon
a reasonable level, hence participants can easily afford the
force from the robot. Furthermore, by adjusting the threshold

FIGURE 5 | Experiment snapshots of the Kuka LBR iiwa manipulator for massage tasks by the proposed hybrid position/force control method.
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in SafetyConfiguration.sconf of the KUKA controller, the
Collision Detection Framework can be activated. It is relevant
to decide at what levels the external force is to lock down

the robot to protect the participants. Here, we set up this
parameter at a low level, which avoids all the touching with
high force.

FIGURE 6 | The trajectories of the robot endpoint in Cartesian space generated by demonstrations and the proposed teaching interface.

FIGURE 7 | Angular joint values of the robot while massaging the first participant.

FIGURE 8 | Angular joint values of the robot while massaging the second participant.
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5. EXPERIMENTAL STUDIES

5.1. Experiment Setup
A KUKA LBR iiwa robot, which has 7 DOFs of flexible joints,
is implemented in our experimental studies to validate the
proposed method. It is controlled utilizing the KUKA Smartpad.
A massage glove was attached to the end-effector of the robot.
As can be seen from Figure 4, there is a master computer lying
by the robotic controller for offline data training purposes, and it
is linked to the robot controller by an Ethernet cable. The labels
A1–A7 in Figure 4 show the joint actuator’s position with force
sensor each. In addition, there is a treat table placed in front of the
robot base, which is in the workspace of the robot manipulator.

The control frequency is set as 10Hz for the KUKA LBR
iiwa manipulator, and the running time is limited to 30 s for
the massage path tracking, and thus 300 time samplings are
executed for the control loop. The endpoint stiffness in X, Y, and
Z directions, Roll, Pitch, and Yaw orientations are set as 1,000,
1,000, 100, 300, 300, and 300 N/m, respectively. The control
gains Mg , Cg and Kg are gain matrix of the mass, damping and
stiffness and respectively set as diag[1.0], diag[1.0], and 0.5. The
reason for setting those values are that we planned the motion
path in horizontal plane using GMM-evoluted DMP algorithms
with implementing the force in Z directions, which resulted
in the impedance effectiveness in the vertical direction of the
patient’s back.

First of all, we conducted an experiment to test the accuracy
of our proposed robotic teaching interface where only position

control was considered. As in some particular situations during
the massage, the service robot may require to manipulate as
accurately as our human carer; there are specific areas of the
patients required to be massaged. This is the reason behind

the accuracy of the teaching interface matters. In order to test
the accuracy, firstly the position of the KUKA iiwa robot end-

effector in the Cartesian space was chosen as the performance
index. The human operator physically guided the robot to draw

a sine curve for five times in the treat table by holding its end-

effector. After training process, the robot could regenerate a
new smooth trajectory. For the second experiment, one human

operator physically taught the robot to perform the massage
movements on the first participant by holding the end-effector

of the robot. After the robot was taught, a participant as well as
the operator himself were massaged by the robot; the participants

slowly and smoothly lifted their back up and down. Figure 5

shows the teaching-based massage process and we can observe
that the KUKA LBR iiwa robot successfully accomplished the

desired massage task with only one time teaching. Consequently,
our proposed massage system could automatically fit different
body shapes. Meanwhile, the instantaneous external force and
torque of the robot endpoint in Cartesian space were outputted
to the master PC for data analysis. The real position in both the
Joint space and Cartesian space were plotted by MATLAB.

In addition, the third experiment has been conducted to
validate the spatial generalization functions of our proposed
robotic teaching interface. To do this, three participants were

FIGURE 9 | Contact force variables of the end-effector of the robot in X Y Z directions during the massage for the first participant.

FIGURE 10 | Contact force variables of the end-effector of the robot in X Y Z directions during the massage for the second participant.
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FIGURE 11 | Illustration of the third experimental process.

sought to be undertaken the massage services of their shoulder
by seating under the robot manipulator. The operator taught
the robot to do the massage task on all the three participants
with only once teaching. All the parameters kept the same as
those from the second experiment. The massage services were
reproduced by the robot for all the participants one by one with
different orders.

5.2. Experimental Results
The first group of experiments aimed to verify the learning
performance of our proposed teaching interface when the
demonstrations are defective. To verify the learning performance
of the modified DMP better, we designed a drawing task for the
robot, and the experiment setup is shown in Figure 5. In this
experiment, the robot is required to draw an image of sinusoid
on the paper after the human operator demonstrates the task five
times. The parameters of the DMP model are set as τ = 1, k = 25,
c = 10, and αf = 8. As is shown in Figure 6, the demonstrations
are defective and the curves are irregular. One of the reasons
is that the demonstrator is drawing on the paper indirectly
by holding the wrist of the robot, which affects the exertion
of drawing skill. The demonstrations are modeled in the task
space. As is shown in Figure 6, comparing the performance index
of the demonstrations and the generated trajectory, a smooth
curve is accurately retrieved from multiple demonstrations using
the modified DMP without any unexpected drawing. The robot

performs the drawing task after learning, and the curve that the
robot draws is smoother than the demonstrations.

For the second experiment, two participants are massaged
by the robot by only teaching once. During the massaging,
the A7 joint of the robot is set as fixed value because it
is only related to the end-effector’s orientation. Figures 7, 8
illustrate the robot’s angular data of all the seven joints when
the robot was reproducing the massage on the first and second
participant, respectively. Because the massage task was first along
the direction of the back of the participants and then pounded the
back; from the figures, we can thus see that the first joint of the
robot A1 was firstly fluctuating and then kept stable; the A2, A4,
and A6 joints were firstly kept stable and then fluctuated. This
is because the robot via A1 joint moves left and right; via A2,
A4, and A6, joints move up and down. Comparing Figures 7,
8, we can notice that the A2 and A4 joints were increasing,
and the A6 joint was decreasing during the whole massage
process. This is caused by the fact that the second participant
has a thicker body shape, and when the robot is in a lift-up
configuration, its 6th joint will be more folded. Figures 9, 10
show the contact force variables of the end-effector of the robot in
X, Y, and Z directions during the massage for the first and second
participants. Here we define the moving direction is the positive
direction of the robot endpoint. We can notice that the contact
forces in X and Y directions are the positive values while those in
Z direction are negative values with bigger figures. This is caused
by the fact that, during the massage paths playback process, the
endpoint of the robot in Z direction met resistance comparing
to its original teaching configuration. In addition, the contact
force vertical to the massage paths (Z direction) also differed
with two participants. Contact force variables when massaging
the first participant are in the interval [−3.5 −5] N, while the
variables when the robot was massaging the second participant
are in [−5 −6.5] N. This is owing to the two participants
differing in body thickness. The third test has validated the
generalization ability of our proposed massaging system. The
training results are shown in Figure 11. The motions of the robot
are regenerated from an one time teaching based demonstration,
which synthesize the features of the demonstration and enable
the robot to perform the massage task successfully as shown
in Figure 11. The target order of the massage service is then
modulated to be changed. A conclusion can be drawn from the
video abstract; the profile of the reproduction is obtained.

5.3. Remark
Through the above conducted three experiments, we can note
several things.

1. Our proposed hybrid position/force mode teaching interface
was able to generate an accurate path after being taught, which
reduces the errors in 3D space.

2. Our proposed hybrid position/force mode teaching interface
was able to automatically and adaptively fit all body shapes
with smooth force implementing.

3. The spatial generalization ability was validated, where the
whole massage tasks can be segmented into several unit
movement primitives, which can be regrouped into different
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orders with only one-time teaching, and it promoted the
working flexibility.

6. CONCLUSION

In this paper, an enhanced force-sensing and robotic-learning
algorithm-based robotic teaching interface has been developed
to perform the massaging tasks. In the motion generation
part, the discrete DMP is selected as the basic motion model,
which can generalize the motions. To improve the learning
performance of the DMP model, the GMM, and GMR are
employed for the estimation of the unknown function of the
motion model. With this modification, the DMP model is able
to retrieve a better motion from multiple demonstrations of a
specific task. For the force input aspects, a hybrid force/position
controller is introduced to ensure the safety of direct human-
robot interaction. Several experiments have been performed on
the KUKA LBR iiwa robot to test the performance of our
proposed methods, which has proven that our proposed method
can be used to establish a novel robot learning framework for
massaging and facilitate the robot learning at a higher level. Our
future work will focus on combining with visual monitoring
technology, where the acupuncture point and bones of the
patient’s back will be clearly recognized and tracked, which results
in better demonstrations for the robot to learn from.
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