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Investigation of microplastic debris in marine surface waters 

using different sampling methods 

Saeed Seyed Sadri 

Abstract 
 

  ‘Microplastics’ are pieces of plastic debris <5mm in diameter. They are 

introduced into the marine environment directly for example via release of small 

pieces of plastics used as abrasives and indirectly through the fragmentation of 

larger items. The European Marine Strategy Framework Directive 2008/56/EC 

(MSFD) regards microplastics as an emerging issue of concern and calls for 

more data on the quantity, distribution and composition of this debris. This 

thesis examines the amount, composition and distribution of buoyant 

microplastic debris in marine waters using different sampling devices and 

methodologies. 

To investigate the spatial distribution, abundance and composition of 

microplastic debris between nearshore and offshore marine subsurface waters 

a subset of samples from the Continuous Plankton Recorder (CPR) survey 

were examined. Abundance was generally higher in nearshore coastal waters 

than the offshore oceanic samples, with the highest mean concentrations 

observed in the UK’s coastal waters of the northeast Atlantic and the southern 

North Sea. 

To validate the accuracy of the presence/absence of microplastic debris 

reported in the Continuous Plankton Recorder (CPR)  samples by analysts at 

the Sir Alister Hardy Foundation for Ocean Science (SAHFOS) a subset of data 

was formally analysed using Fourier Transform Infrared (FTIR) spectroscopy. 

This analysis indicated a good level of accuracy (~66%) in the ability of the 
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SAHFOS’ analysts to detect visually microplastic fragments during their normal 

processing of plankton samples. 

To compare quantity and composition of buoyant microplastic debris 

collected by two different approaches (CPR vs. Manta net) samples were 

collected from a similar body of coastal waters. The results showed significantly 

higher abundance of microplastic in samples collected by the manta net per unit 

of distance but no significant difference once the results were standardised per 

cubic volume of water. 

To assess the susceptibility of each method to ‘procedural contamination’, 

repetitive controlled tests were conducted to quantify the amount and 

composition of contaminants before, during and after the sampling programme. 

In both methods the highest number of contaminants was found on the net and 

prior to the deployment to sea. The semi synthetic Rayon fibres were the most 

abundant type of contaminants in both cases. 

To compare the abundance and composition of buoyant plastic debris in 

estuarine waters according to daily and lunar tidal cycles a mensurative 

experiment was conducted in a macrotidal Estuary. Microplastics comprised 82% 

of the debris and there was a significant difference in size frequency distribution 

between the spring and neap tides with more fragments of larger size observed 

during spring tides. 

In conclusion, this study shows further evidence of the spatial heterogeneity of 

microplastic debris distribution in marine waters and therefore also highlights 

the need for more comparable data from different marine habitats using 

standardised methodologies.  
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1.1 Background and Rationale 

 

Plastic debris has been the subject of many scientific studies and there is 

now a strong body of evidence describing the ecological, social and economic 

problems associated with this debris in the marine environment worldwide. In 

particular, the presence of small pieces of plastic known as ‘microplastics’ is a 

matter of growing concern. Microplastic debris is introduced to the marine 

environment directly via release of small pieces of plastics used in personal 

care products and abrasives and indirectly through the fragmentation of larger 

items.  

The European Marine Strategy Framework Directive 2008/56/EC (MSFD) 

lists specific indicators for assessment of Good Environmental Status (GES) of 

the European marine waters.  Indicator 10.1.3 regards micro-particles, in 

particular microplastics as an issue and calls for research on the amount, 

composition, distribution and where possible trends in this debris. However, 

knowledge of the distribution, accumulation and temporal trends of this debris 

are incomplete and in order to more reliably assess the level of microplastic 

contamination and better understand its wider impact there is a need for 

comparable data within and between member states based on standard 

methodologies. 

  This thesis provides new information on the distribution, quantity and 

composition of buoyant microplastic debris in marine surface waters by 

comparing different methods of collection. Chapter one will start by providing a 

background to the problem of plastic as the most common type of debris in the 

marine environment and describes some of the sources, sinks and associated 
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harmful effects as well as the processes affecting the degradation of plastic. 

This is followed by a more detailed review of the distribution, abundance and 

consequences of microplastic debris. The chapter concludes by looking at 

current microplastic sampling and processing methods and an outline of the 

specific aims and objectives of the thesis. 

 

1.2 Plastic debris in the marine environment 

United Nations Environment Programme (UNEP) defines marine debris 

as ‘as any persistent, manufactured or processed solid material discarded, 

disposed of, or abandoned in the marine and coastal environment’ and marine 

litter as such ‘items that have been made or used by people and deliberately 

discarded into the sea or rivers or on beaches’ and plastic composes the largest 

proportion of this (GEF, 2012). Due to the lack of adequate waste management 

facilities in many countries, coupled with irresponsible disposal, a large amount 

of plastic waste is finding its way into the marine environment (Thompson et al., 

2009a). Our knowledge of the sources and sinks of this debris is not complete 

but it is believed that the majority have land-based sources such as poorly 

managed landfills, riverine transport, untreated sewage, manufacturing facilities 

with inadequate controls and recreational use of coastal areas by tourists 

(Barnes et al., 2009; UNEP, 2011).  

Other sources of plastic litter are offshore and include fishing and 

recreational vessels, merchant shipping and oil and gas platforms (Ryan et al., 

2009). Abandoned, Lost or Otherwise Discarded Fishing Gear (ALDFG) is the 

main concern in terms of larger debris (STAP, 2011) and plastic-based ALDFG 

could threaten not only marine habitats and fish stocks but also human health 
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(MacFadyen et al., 2009). Figure 1 shows schematic diagram of the sources 

and movement pathways of plastic debris in the marine environment. 

 

 

Figure 1) Diagram showing main sources and movement pathways of plastic 

debris with sinks occurring (1) on beaches, (2) in coastal waters and their 

sediments and (3) in the open ocean. Curved arrows depict wind-blown litter, 

gray arrows water-borne litter, stippled arrows vertical movement through the 

water column (including burial in sediments) and black arrows ingestion by 

marine organisms. (Source: Ryan, 2009) 

 

More than 70% of marine debris on continental shelves and slopes of 

Europe have been identified as plastic (Galgani et al., 2000) and there are 

reports of plastic debris in all zones of the marine environment including 

coastlines (Colton, Knapp & Burns, 1974; Morris, 1980) sea floor (Galgani et al., 

2000; Katsanevakis & Katsarou, 2004; Mordecai et al., 2011) and sea surface 

(Colton, Knapp & Burns, 1974; Dixon & Dixon, 1983; Law et al., 2010; Moore et 

al., 2001; Morris, 1980; Thompson et al., 2004). The occurrence of larger plastic 

items is especially evident on the coastlines with presence of plastic litter now a 
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common sight on most beaches around the world. The majority of plastic 

materials entering the marine environment are buoyant and once afloat their 

distribution is influenced by natural factors such as coastal currents, wind, tidal 

flow and the coastline geography (Moore, 2007; Andrady, 2011).  Some debris 

is washed up on shorelines while others drift out into the open oceans with 

reports of their presence even in remote seas far away from any population 

centres such as Antarctica (Barnes et al., 2009). 

In the open oceans, floating marine debris becomes subject to large 

scale currents and studies indicate that debris can accumulate in circular 

oceanic gyre systems such as those in the North Pacific and Atlantic oceans 

(Moore et al., 2001; Law et al., 2010) and more recently confirmed in the South 

Pacific tropical gyre (Eriksen et al., 2013). Satellite-tracked drifter data and 

probabilistic models have been used to study the pathways by which marine 

debris travels and have identified five main areas of debris accumulation in 

subtropical waters with predictions in close agreement with those observed by 

Law et al. (2010) in the North Atlantic (Maximenko, Hafner & Niiler, 2012). This 

study also indicated that the distribution of marine debris on small scales (<100 

km) is more influenced by local oceanic eddies and fronts rather than large 

scale oceanic gyres but the interaction between these is not fully understood. 

Some plastic debris are denser than seawater and will sink but even 

those that float initially may eventually become weighed down by fouling such 

that they sink to the seafloor (Stefatos et al., 1999; Galgani et al., 2000; Barnes 

et al., 2009; Keller et al., 2010). Some consider the seabed to be the ultimate 

sink for marine debris (Goldberg, 1997). The abundance and composition of 

marine benthic debris was investigated in shallow coastal areas of Greece 

where accumulation rates were shown to be higher in the shallow coastal areas 
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such as bays with weaker currents and less wave actions compared to 

continental shelves and deep seafloor (Katsanevakis & Katsarou, 2004). 

Research into the deeper seabed on European continental shelves 

shows that similar to the quantities found at the sea surface the Mediterranean 

seabed has high densities of debris, possibly as a result of densely populated 

coastlines, heavy shipping activities and limited water exchange (Galgani et al., 

2000). Recent studies of deep sea debris in Monterey Canyon, USA using a 22-

year video annotation database recorded by Remotely Operated Vehicles 

(ROVs) has shown that the highest relative frequencies of plastic is below 2000 

m, suggesting that submarine canyons maybe acting as sinks for debris from 

shallower coastal habitats (Schlining et al., 2013). 

The problem of marine debris is global and requires a combination of 

regionally coordinated measures. Improvement of waste management facilities 

and design of environmentally friendly products as well as management of the 

‘discarding behaviours’ are effective ways of reducing the input at the source 

points (Cheshire, 2009; STAP 2012).  

 

1.3 Harmful effects of plastic debris  

The harmful impacts of plastic debris in marine environment are manifold 

and can be categorised into three groups: ecological, social and economical 

(Piha et al., 2011; Hall K., 2000).  Most of our knowledge on the ecological 

impacts of debris is at individual level and from larger marine organisms such 

as seabirds, sea mammals and turtles (Derraik, 2002; Gregory, 2009; Jacobsen, 

Massey & Gulland, 2010; Lazar & Gracan, 2011). According to a recent report 

by UNEP as many as 663 species have been impacted by marine debris with 
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over half of these as a result of entanglement in and ingestion of marine debris 

(GEF, 2012). 

Furthermore, with the increasing amount of durable, synthetic and non-

biodegradable debris there are concerns that the dispersal rates and prospects 

for transport of aggressive invasive species could be enhanced as the hard 

surfaces of pelagic plastic debris could provide a suitable substrate for epibiota 

such as barnacles, worms and coralline algae (Barnes, 2002; Gregory, 2009; 

Goldstein & Goodwin, 2013). Examples of some invasive species are: the Indo-

Pacific oyster, Lopha cristagalli, found on plastic rope on remote beaches in 

Fiordland, New Zealand (Winston et al., 1997; Gregory, 2009); the intertidal 

anemone, Diadumene lineate native to Japan found on derelict trawl nets in the 

lagoon of Pearl and Hermes Reef in the north-western Hawaiian Islands (Zabin 

et al., 2004) and dispersal of harmful microalgae species to the Catalan coast in 

north-western Mediterranean via pelagic plastic debris (Maso et al., 2003).  

However, the relative importance of marine debris as a transport medium for 

invasion compared to other routes such as ballast waters from the haul of the 

vessels is not known. 

There is also growing concern that plastics may pose a risk to human 

health. For example potentially harmful chemicals such as nonylphenols (NP) 

and polybrominated diphenyl ethers (PBDE) that are incorporated into plastics 

as additives during manufacturing in order to enhance their properties (e.g. 

durability, colourfulness and safety) and these could leach from the plastic 

either while in use or when it becomes debris. Ingested plastic could provide a 

route for the accumulation of these chemicals in body tissues (Oehlmann et al., 

2009; Talsness et al., 2009). Additionally, evidence also suggests that small 
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plastic debris could facilitate the transport of persistent organic pollutants (POPs) 

such as polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloro 

ethylene (DDE) from contaminated seawater to marine organisms (Moore & 

Jones, 2007; Browne et al., 2013; Gassel et al., 2013; Rios; Rochman et al., 

2013; Bakir et al., 2014). Such chemicals are known to have endocrine 

disrupting, carcinogenic and immunotoxic effects (Mato et al., 2001; Rios, 

Moore & Jones, 2007; Teuten et al., 2007; Teuten et al., 2009; Andra, 2013).  

Other undesirable but less widely recognised socio-economic impacts of 

plastic litter include hazards to shipping, fisheries and maritime activities (Nash, 

1992). For example in UK removing beach litter is costing municipalities 

approximately €18 million per year (Mouat et al., 2010). 

 

1.4 International/EU conventions on marine litter 

Marine litter has been the focus of many international and regional 

agreements and conventions. The following lists some of these in chronological 

order as described by the United Nations Environment Programme. 

 The International Convention for the Prevention of Pollution from 

Ships (MARPOL (1973/78 and Annex V): an international convention for 

the prevention of pollution of the marine environment from the shipping 

industry. 

 UNEP Regional Sea Programme (1974): provides a set of 

comprehensive actions and aims to engage the neighbouring countries 

to protect their shared marine environment through sustainable 

management and use. 
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 The Basel Convention (1992): a global environmental agreement 

to control the trans-boundary movements of hazardous wastes and their 

disposal. 

 United Nations Convention on the Law of the Sea (UNCLOS, 

1994): sets out the legal framework for all activities in the oceans and 

seas through its General Assembly Resolutions. 

 Global Programme of Action (GPA, 1995): an intergovernmental 

programme for protection of marine environment from land-based 

activities. It also covers the linkage between freshwater and coastal 

environment. 

 The London Dumping Convention and its 1996 Protocol: a global 

agreement to control pollution of the sea by dumping of hazardous and 

harmful wastes. 

 Global Partnership on Marine Litter (2011): a UNEP-led 

coordinating platform for managing the marine litter problem based on 

the Honolulu Strategy - a global framework for tackling marine litter 

backed by governments, members of the plastics industry, scientists, 

NGOs and other groups. 

 

In Europe some of the problems of marine litter are now also considered 

by the Marine Strategy Framework Directive (MSFD) where marine litter has 

been defined as ‘items that have been made or used by people and deliberately 

discarded or unintentionally lost into the sea or coastline including such 

materials transported into the marine environment from land by rivers, drainage 

or sewage systems or wind’. The overall aim of the framework is to provide 

clear criteria and methodological standards in order to promote a more 
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consistent and effective approach towards protection of marine environment 

across Europe with a goal of achieving a Good Environmental Status (GES) in 

EU marine waters by 2020.  

The first step towards achieving this goal is to assess the current state of 

marine environment for member states to provide clear environmental targets 

and monitoring programmes (Hanke et al., 2013). In the UK Charting Progress 

2 (CP2) is the comprehensive report on the state of the UK seas and Chapter 4 

of this; “Clean and Safe Seas” addresses the issue of marine litter. Marine litter 

is one of the 11 qualitative descriptors that will be used for assessment of Good 

Environmental Status under the EU Marine Strategy Framework (DEFRA, 2011). 

 

1.5 Plastics: A general overview 

Plastics are synthetic polymers (large molecules) made of repeating 

chemical units called “monomers”. These are the basic units of plastic 

production which are extracted during the refinery of crude oil through the 

processes of “distillation” and “cracking” where heavy oil compounds are broken 

into smaller hydrocarbon molecules. These small hydrocarbon monomers are 

then linked together during a process known as “polymerisation” to form the 

polymer chains used in production of plastics (Plastics Europe, 2013; Saldivar-

Guerra & Vivaldo-Lima, 2013).  Plastics can be classified according to their 

chemical composition as ‘carbon-based’ or ‘heterochain’ polymers (Saldivar-

Guerra & Vivaldo-Lima, 2013; Environment Agency, 2001). 

Most of the common plastics are made of chains of carbon-based 

monomers. The main plastic types in this group are: polyethylene (PE), 

polypropylene (PP), polyvinyl chloride (PVC), polystyrene (solid PS and 
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expandable PS), polyethylene terephthalate (PET) and polyurethane (PUR). 

These are lightweight, versatile and strong plastics which have a wide range of 

applications especially in the packaging sector and together account for nearly 

39% of the overall demand for plastics in Europe (Plastic Europe, 2013). Table 

1 shows some of their applications and uses. 

Table 1) Common plastics and some of their applications 

Plastic type Applications and uses 

Low and high density 

polyethylene (LDPE, HDPE) 

Carrier bags, bin liners (LDPE). Milk, 

shampoo and detergent bottles 

(HDPE) 

polypropylene (PP) Food containers such as margarine 

and yogurt pots 

polyvinyl chloride (PVC) Cable, hoses and window frames 

polystyrene (solid PS and 

expandable PS) 

Vending cups and packaging 

materials 

polyethylene terephthalate 

(PET) 

Water and fizzy drink bottles 

 

Heterochain polymers are made of monomers containing other elements 

such as oxygen, nitrogen, sulphur as well as carbon. These are also known as 

‘engineering plastics’ and have had the highest growth in 2011 (Plastics Europe, 

2013). They have enhanced properties such as heat resistance, mechanical 

strength and chemical stability and are mainly used in manufacturing of more 

specialised products in areas such as electronics and automotive and 

compared to the more conventional plastics. For example, Acrylonitrile 
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butadiene styrene (ABS) is used to manufacture car bumpers, dashboard trim 

and Lego bricks, Polycarbonate (PC) is used in motorcycle helmets and 

Polyamides (nylons) are used for skis and ski boots and some fishing nets 

(Rosato, 1996). 

Plastics may also be categorised according to their physical properties 

into thermoplastic and thermosetting plastics. Thermoplastic polymers, such as 

polyethylene, and polystyrene can be reprocessed through heating while the 

thermosetting plastics cannot be reprocessed by heating as their monomer 

chains have been interlocked during polymerisation. Examples of thermoset 

plastics are: Epoxy resin and Urea formaldehyde which are mainly used in 

electrical insulators, melamine formaldehyde used in tableware and laminating 

of work surfaces and Polycarbonate used in spectacle lenses and crash 

helmets (Environment Agency, 2001; Dodiuk and Goodman, 2013; Plastics 

Europe, 2013). 

The main drivers for the widespread use of plastic are its enhanced 

chemical and physical properties and low cost of production which makes 

plastic suitable for a wide range of applications from food containers to 

automotive, household goods, aircraft parts, sports and medical equipment. 

Global production of plastic has been rising by almost 5% per year over the past 

20 years and currently  despite the current uncertain economic forecasts; its 

production increased by 2.8% since 2011 to a total of 288 million tonnes in 2012 

(Figure 2). The packaging sector comprises the highest (39.4%) of the total 

European plastics demand followed by building and construction (20.3%) and 

electrical and Automotive (8.2%). One area of potential growth is predicted to 

be the rapid developing Asian markets where the current use of about 20 kg 

http://en.wikipedia.org/wiki/Lego
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plastic per year per person is estimated to rise to 36 kg by 2015.  Examples of 

increases in Asia are apparent in countries such as China which, with its over-

average growth rate and production capacity, accounted for the highest (23.9%) 

of the world’s plastic material production in 2011 (Plastics Europe, 2013). 

 

Figure 2) Plastic global productions in 2012 (Plastic Europe, 2013) 

 

The majority of plastic packaging is made from one of six resin types: 

polyethylene terephthalate (PETE); high density polyethylene (HDPE); polyvinyl 

chloride (PVC or vinyl); low density polyethylene (LDPE); polypropylene (PP); or 

polystyrene (PS) and at the end of their useful lives most commodity plastic 

items can be recycled. The Society of the Plastics Industry, Inc. (SPI) 

introduced a resin identification coding system in 1988 as means of identifying 

the resin content of bottles and containers commonly found in the residential 

waste stream (Appendix 1). 
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However, despite recent improvements within the developed countries, 

the recycling and re-use efforts remain low and at best variable (UNEP, 2011). 

In Europe 51.3% of the total 24.9 million tonnes of post-consumer plastics were 

recovered of which only 5.3 million tonnes (10%) were recycled (EuPC, 2010). 

In the UK a large (48%) portion of the 5 million tonnes of plastics used in 2010 

was from plastic packaging items such as plastic bottles, pots, tubs, trays, films 

and plastic bags (BPF, 2010). The recent collection and consumption data from 

a UK household plastic packaging collection survey by the RECycling Of Used 

Plastics limited (RECOUP, 2013) indicates a recycling rate of 58% for plastic 

bottles 19% for pot, tubs and tray and 37% for rigid plastic packaging.  

The main aim of the household waste management programmes are to 

divert plastics from landfills but the immediate challenge seems to be the lack of 

efficient infrastructure capable of separating different types of plastics for 

recycling and energy recovery (Barnes et al., 2009). In the UK a recent study by 

the Waste & Resources Action Programme (WRAP) has assessed four different 

waste management options: Recycling, Incineration, Landfill and Pyrolysis for 

end of life plastic using four specific indicators: depletion of natural resources, 

global warming, energy demand and water consumption as drivers. The report 

suggests the mechanical recycling as the most and landfill as the least 

environmentally friendly options (WRAP, 2010) and considers the lack of 

adequate domestic recycling infrastructure in UK where around two-thirds of the 

packaging plastics recovered from the waste stream are exported overseas, a 

source of negative environmental impacts. 
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1.6 Degradation of plastic in the marine environment 

Degradation of plastic can be described as any change which has 

adverse effects on its chemical, physical or functional properties and often in 

the context of environmental studies the degradation process is referred to as 

“ageing” or “weathering” (Shashoua, 2009). Plastic is considered as one of the 

most durable synthetic materials available and some estimates suggest that 

plastics may persist in the marine environment for centuries (Gregory, 1996). 

Eventually all plastics will degrade due to the action of chemical, physical or 

biological factors. The rate and extent of the plastic degradation depends on the 

chemical composition of plastic and intensity of the degrading agents (Singh & 

Sharma, 2008) but timescales are likely to be considerable. 

Andrady (2011) has classified different types of plastic degradation in the 

environment according to the agent causing it as follows: 

a. Biodegradation – action of living organisms; 

b. Photodegradation – action of light; 

c. Thermooxidative – action of slow oxidative breakdown at low 

temperature; and 

d. Hydrolysis – reaction with water. 

In the marine environment most plastic debris will slowly break down as 

a result of prolonged exposure to solar ultraviolet, UV-B (315 – 280 nm 

wavelength) light and physical abrasion on the shorelines and beaches where 

the sunlight intensity and wave action are the strongest (Barnes et al., 2009; 

Corcoran, Biesinger & Grifi, 2009; Cooper & Corcoran, 2010). In seawater, 

however, due to lower temperatures and reduced oxygen concentration the 

effect of UV radiation is reduced; therefore slowing the degradation process but 
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once degradation is initiated it can progress even without further exposure to 

UV radiation as long as oxygen is available (Andrady, 1994; Barnes et al., 2009; 

Andrady, 2011). In addition, biota could grow on the floating plastic debris and 

cause it to sink deeper in the water column where its degradation rate will 

further be reduced due to the lower levels of UV light, oxygen and temperature 

(Andrady, 1994; Ye & Andrady, 1991). The degradation rate of plastic debris 

could also be reduced due to the formation of a biofilm on the plastic surface 

thus reducing exposure to sunlight (Muthukumar et al., 2011).  

Biobased plastics known also as  biopolymers are reletaviely new 

materials that may have the potential to reduce the negative impacts of plastic 

debris on the marine environment, however, the term “bio” should not be 

confused with biodegradability as it only refers to the carbon source of these 

plastics.  Most “biodegradable” plastics available today are designed to degrade 

under industrial conditions such as those in composting plants at high 

temperature and humidity are unlikely to degrade fully or within an acceptable 

time frame in the natural environment, hence they are of limited effectiveness in 

reducing the impacts of marine debris (O'Brine & Thompson, 2010). A 40 weeks 

study of two different oxo-biodegradable, a biodegradable and standard 

polyethylene bags showed that compostable plastics degraded relatively quickly 

compared to oxo-biodegradable and conventional plastics (O'Brine & 

Thompson, 2010).  

 

Reddy et al. (2013) have classified the biobased plastics in 3 main 

groups according to their production sources as follow: 

1) Renewable-sources: made from plants and animals and includes 

starch, cellulose, proteins and poly lactic acid (PLA). 
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2) Petroleum-sources: made from petroleum resources but are 

biodegradable at the end of their functionality. Polycaprolactone 

(PCL) and poly (butylene adipate-co-terephthalate)(PBAT) are 

examples in this category. 

3) Mixed sources: made form combination of biobased and 

petroleum monomers and includes polymers such as poly 

(trimethylene tereph-thalate) (PTT), bio-thermosets and biobased 

blends. 

 

Poly β-hydroxybutyrate (PHB), poly ε-caprolactone (PCL), poly ethylene 

succinate (PES), poly butyrene succinate (PBS) and poly lactic acid (PLA), are 

more examples of biopolymers and studies have identified that certain species 

of bacteria found in the deep-sea waters are able to degrade some of these 

biopolymers such as poly ε-caprolactone (PCL) (Tokiwa & Calabia, 2004; 

Bobek et al., 2009). However other studies have also shown that PHB, PBS and 

PLA could not be fully degraded by the deep-sea microorganisms (Sekiguchi et 

al., 2009). The ANIMPOL project is an initiative funded by the European 

Commission with an aim to use waste streams (e.g. hearts, livers, lungs) from 

slaughterhouses as a source of lipids and nitrogen that are needed for the 

production of polyhydroxyalkanoates (PHAs),  a group of biopolymers and 

biodegradable polyesters (Kettl et al., 2011).  

 

Biobased plastics such as Polyethylene furanoate (PEF) are now 

available in products such as beverage bottles, yogurt pots and haircare 

packaging (PlasticEurope, 2012) but only account for around 1% of global 

plastic production.  One study has estimated that the substitution potential of 
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biobased plastics replacing petrochemical plastics could be as high as 90% and 

highlights the potential of the biobased plastics in reducing the dependence on 

the currently mass produced and environmental unfriendly petrochemical 

plastics (Shen et al., 2010). Another rrecent research has demonstrated the 

transformation of edible vegetable waste such as parsley and spinach stems 

into ‘bioplastics’ with a wide range of mechanical properties but higher 

degradability rate (Bayer et al., 2014). 

 

1.7 Microplastic debris 

“Microplastic” is a relatively new term in the field of marine debris. It was 

first used by Thompson et al. (2004) referring to microscopic pieces some as 

small as 20 µm in size found in the Continuous Plankton Recorder (CPR) and 

sediment samples from the northeast Atlantic ocean. Microplastics were 

subsequently defined by the National Oceanic and Atmospheric Administration 

(NOAA) Marine Debris Program as plastic pieces typically in the size range of 

0.3-5mm (Arthur et al., 2009) in order to recognise the 333 µm mesh size used 

as the lower bound in most neuston nets used in sampling of floating debris. 

Gregory & Andrady (2003) refer to smaller size (~0.06–0.5 mm in diameter) 

pieces as “micro litter”. There is no agreed minimum size for microplastics but it 

is likely that even smaller manufactured plastic nanoparticles used in consumer 

products are introduced directly into the oceans via runoff (Maynard, 2006; 

Andrady, 2011). 

Microplastics pieces come in variety of shapes, sizes and colours  

(Figure 3) and on the basis of their sources could be classified in two groups: 
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1) Primary microplastics: produced for direct use in products such as 

spherules in personal care products like facial scrubs (Murray, 1996; 

Fendall & Sewell, 2009) and also as precursors to other products such 

as pre-production plastic pellets and powder raw material (Gregory, 

1978; Mato et al., 2001). Other sources into marine waters include 

accidental losses through runoff and sewage sludge dumping grounds at 

sea (Ryan et al., 2009; GESAMP, 2010; Browne et al., 2011). 

2) Secondary microplastics: formed from the breakdown of larger plastic 

debris as a result of weathering processes such as photo oxidation and 

mechanical abrasion (Thompson et al., 2004; Moore, 2008; Barnes et al., 

2009; Andrady, 2011). 

 

 

Figure 3) Microplastic debris of various sizes, shapes and colours collected from 

the surface water of the North Pacific Ocean by the SUPER expedition in 2008 

(source: C-MORE, http://cmore.soest.hawaii.edu/) 

The sources and sinks of microplastics are poorly understood but it is 

likely that secondary microplastics (those formed through fragmentation of the 

larger plastic items) comprise the major part of the total abundance of this 

debris in the marine environment (Thompson et al., 2004; Barnes et al., 2009; 

Andrady, 2011) and therefore linking prevention measures for microplastics to 

http://cmore.soest.hawaii.edu/
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the broader issues of solid waste management, plastic waste recovery and 

recycling (GESAMP, 2010).  

The occurrence of primary microplastics in the form of pellets and 

polystyrene spherules of the size range now described as microplastics found in 

the plankton net hauls from the north-western Atlantic Ocean were first reported 

in 1970s (Colton, Knapp & Burns, 1974) and have since been regularly reported 

worldwide on sediments (Gregory, 1978; Gregory, 1983; Ng & Obbard, 2006; 

Browne et al., 2010; Costa et al., 2010; Hirai et al. 2011; Browne et al., 2011; 

Claessens et al., 2011; McDermid & McMullen, 2004; Reddy et al., 2006; 

Vianello et al., 2013) and water column (Moore et al., 2001; Thompson et al., 

2004; Law et al., 2010; Collignon et al., 2012; Desforges et al., 2014).  

In intertidal habitats near Plymouth, UK small (<5mm) plastic pieces 

comprised ~10% of the samples by weight (Browne et al., 2010). In the 

northeast Atlantic Ocean, the multi-decadal (1960s-1990s) plankton records 

shows that the quantities of microplastics in the water column have increased in 

line with the production of synthetic fibres (Thompson, 2004). It is envisaged 

that even if the input of plastic debris were to reduce today; the abundance of 

microplastics would still continue to rise as the result of weathering of the 

existing plastic debris (Barnes et al., 2009; Thompson et al., 2009b). Nearly 88% 

of a subset of samples from the North Atlantic Ocean subtropical gyre were 

<10mm in size and most showed signs of physical deterioration such as 

brittleness and rough edges  (Law et al., 2010; Morét-Ferguson et al., 2010). 

Most of studies and media attention have been focused on macro size 

plastic debris as their effects are easier to detect and more visible to the public 

eye.  However a growing number of studies have recognised microplastic debris 
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as an important emerging contaminant (Thompson et al., 2004; Ng & Obbard, 

2006; Andrady, 2011; Barnes et al., 2009; Fendall & Sewell, 2009; Thompson et 

al., 2009a; Frias et al., 2010; Sutherland et al., 2010; Browne et al., 2011; 

Claessens et al., 2011; Cole et al., 2011; Harrison et al., 2011; Hirai et al., 2011; 

Karp, 2011; Bakir et al., 2012; Ivar and Costa, 2014). In comparison with larger 

plastic debris our knowledge of small particles is poor (STAP, 2011) and in its 

latest report on marine litter United Nations Environmental Programme (UNEP) 

acknowledges the accumulation and potential harmful impacts of microplastic 

particles in the marine environment and calls for further research (UNEP, 2011).  

A recent study by Browne et al. (2011) used samples from 18 shorelines 

around the world and found pieces of microplastics in all of them. Polyester, 

acrylic and polyamides (nylon) fibres were amongst the most abundant types 

and greater concentrations of this debris was found in areas near to the urban 

centres suggesting these be major source of these synthetic fibres into the 

marine environment (Browne et al., 2011). 

Due to their larger surface area to volume ratio, smaller pieces of plastic 

may have increased levels of contaminant uptake and release to the food web 

(Mato et al., 2001; Thompson et al., 2004; Teuten et al., 2007; Teuten et al., 

2009; Thompson et al., 2009a; Frias, 2010; Hirai et al., 2011). Furthermore 

because of their buoyant and persistent properties they are dispersed widely by 

the ocean currents and other hydrodynamic processes and hence may become 

available to a broader range of organisms (GESAMP, 2010). Boerger et al. 

(2010) were first to quantify the ingestion of microplastic debris by the lower 

trophic level planktivorous fishes in the North Pacific central gyre and found that 

the average size of ingested plastic to be 1.00–2.79 mm with a positive 
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correlation between the average number of pieces and the size of the fish, 

however, further research is needed to establish the extent to which fish retain 

the ingested plastic (Boerger et al., 2010). Microplastics has also been found in 

stomach contents of the commercially important lobster, Nephrops norvegicus, 

in the Clyde Sea where 83% of the samples contained strands (mostly filaments) 

of plastic (Murray & Cowie, 2011). This study also showed that lobsters fed with 

fish seeded with polypropylene strands retained some of the ingested plastics 

rising concerns over the potential impacts. A recent report by United Nations 

Environment Programme (UNEP) reveals that as much as 10% of the 

encounters between organisms and debris are with microplastics (UNEP, 2012). 

Laboratory experiments have demonstrated ingestion by a range of 

invertebrates including deposit feeding lug-worms, filter-feeding barnacles and 

suspension-feeding sea cucumbers (Thompson et al., 2005; Browne et al., 

2008; Graham & Thompson, 2009; Goldstein & Goodwin, 2013). Browne et al 

(2008) used the mussel, Mytilus edulis, to investigate ingestion, translocation, 

and accumulation of microplastics and showed evidence of accumulation in the 

gut as well as subsequent translocation of microplastics to the circulatory 

system where it persisted for over 48 days. This suggests that as plastic 

fragments into smaller sizes, the potential for accumulation in the tissues 

increases. A laboratory experiment by Graham & Thompson (2009) has 

provided evidence of selective ingestion of plastic fragments by three species of 

sea cucumber. More recent studies has shown the potential of zooplankton taxa 

to ingest plastic: Cole et al. (2013) demonstrated the capacity of as many as 13 

taxa of zooplankton to ingest 1.7–30.6 µm polystyrene beads and also showed 

that the adherence of this debris to appendages of at least one of the exposed 

zooplankton, Centropages typicus, significantly decreasing its algal feeding 
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implying that microplastic debris could negatively impact the function and health 

of zooplankton. Setälä et al. (2014) have recently shown the ingestion of 

polyestyrene microspheres by differen Baltic Sea zooplankton taxa such as 

mysid shrimps, copepods, cladocerans, rotifers, polychaete larvae and ciliates. 

As well as its direct physical effects microplastics could also affect the 

wellbeing of organisms indirectly by altering the physical and biogeochemical 

properties of their habitats. A recent examination of sediment samples from 

beaches of Hawaiian Islands has shown that, compared to sediments with less 

or no plastic fragments, those with higher concentration of plastic fragments are 

more permeable and retain water for a shorter length of time and hence are 

warmed more slowly (Carson et al., 2011). This study shows that even a small 

amount of plastic (1.5%) could decrease the maximum temperature of the 

sediment by 0.75 ˚C and authors argue that these changes could have 

disturbing effects on some beach organisms such as turtles with a temperature-

dependant sex-determination mechanism in their eggs. A multi-decadal study of 

the microplastic debris from surface waters of the North Pacific Ocean 

Subtropical gyre has shown a positive correlation between the increase in the 

egg densities of the pelagic insect Halobates sericeus and microplastic and 

emphasises the potential ecological impacts that microplastic could have on 

pelagic ecosystems (Goldstein et al., 2012) and a recent study by Wright et al. 

(2013) indicated that microplastic ingestion decreases energy reserves in 

marine worms due to a combination of reduced feeding activity resulted from 

longer gut residence time of ingested plastic and inflammation. 

Monitoring is important in assessing the effectiveness of any measures 

employed to reduce the abundance of plastic debris. However, this has mostly 

been carried out on beaches and focused on larger items of debris (Ryan et al. 
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2009). Monitoring microplastics in particular at sea, is a much more challenging 

task and requires large sample sizes in order to detect any spatiotemporal 

trends. 

 

1.8 Methods of sampling and processing microplastic debris in marine 

waters 

Microplastic sampling and processing methods vary considerably and 

there is a need for standardisation (GESAMP, 2010; Piha et al., 2011). In 

sedimentary environments the majority of work has been from sandy beaches 

with samples taken from different tidal levels using varying methods and 

equipment. Sea surface and water column samples are mostly taken by 

plankton nets (e.g. manta and bongo nets) with different mesh sizes and at 

varying depths and speeds.  A recent review of 68 studies by Hidalgo-Rez et al. 

(2012) described the main sampling strategies and processing as follows: 

Sampling strategies 

 Selective sampling: collecting microplastics directly from the 

environment. 

 Bulk sampling: extracting microplastics from the entire sample 

volume in the laboratory. 

 Volume-reduced sampling: extracting microplastics from the 

sieved sediment or filtered water samples in the environment. 

The selective strategy is more time consuming and could also 

underestimate the true abundance of microplastics since not all the 

microplastic pieces are located at the surface and even if they are this 
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approach could be biased towards the larger pieces as the smaller items are 

not easily detectable by the naked eye. 

Processing steps 

 Density separation: to separate low density microplastic from 

sediment samples. 

 Filtration: to separate suspended microplastic from bulk water or 

solution samples. 

 Sieving: to separate microplastic from sediment and water 

samples 

 Visual sorting: to separate microplastic by naked eye or dissecting 

microscope 

The extent and types of reported information such as units of abundance, 

colour, size, and shape is also in need of harmonisation. Size in particular is an 

important feature that could influence the level of potential harm and is also one 

that is directly affected by the sampling and processing methods. NOAA’s 

classification of microplastics as pieces <5mm in size represents a step forward 

towards standardisation of quantitative methods (Arthur et al., 2009); however 

this was to recognise the fact that most particles are captured during net based 

biological sampling and there is currently no consensus on what is to be 

considered as the smallest size (GESAMP, 2010). However microplastics down 

to around 20 µm have been caught on some plankton nets with larger mesh 

sizes and subsequently identified using Fourier Transformed Infrared (FT-IR) 

spectrometry (Thompson et al., 2004).  

In order to assess levels of microplastic contamination worldwide; there 

is a need for comparable data across marine environments that are based on 
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standard methodologies (Hidalgo-Ruz et al., 2012). Nets traditionally used to 

sample zooplanktons have also most commonly been used to sample the 

pelagic (sea surface and water column) plastics. For near surface samples a 

device known as manta net is towed behind the ship normally from a boom 

away from the bow wave of the ship and samples the topmost layer normally 

10-25 cm in thickness (David , 2009).  Bongo nets are usually paired mesh nets 

designed to sample deeper waters (down to 200m depth.) and are normally 

towed obliquely (in a V shape) so that all depths are sampled twice. Water 

enters through the net’s mouth also known as ‘aperture’ and particles larger 

than the mesh size (~300 µm) are collected at the end of the net into 

receptacles, called cod ends. There are flow meters in the mouths of the nets 

so that the volume of water filtered can be calculated accurately (Wiebe and 

Benfield, 2010).  

Archived samples from Continuous Plankton Recorder (CPR) survey run 

by the Sir Alister Hardy Foundation for Ocean Science (SAHFOS) have been 

used in past and shown the prevalence of microplastic in the Northeast Atlantic 

(Thompson et al., 2004) during the past fifty years (Figure 4). With its long-term 

archived data, consistent methodology and broad scale sampling programme 

the CPR survey could provide a unique opportunity for spatiotemporal study of 

microplastic debris in marine surface waters. However, its use as a standard 

platform needs to be evaluated. 



 

33 
 

 

Figure 4) Microplastic in CPR samples showed significant increase in abundance 

(Source: Thompson et al., 2004) 

 

1.9 Aims and Objectives 

The primary aim of this research was to evaluate the use of the CPR to sample 

buoyant microplastic debris in marine waters, and to compare the abundance 

and composition of plastic debris collected by CPR with that collected by manta 

trawl. This aim was accomplished through completion of the following objectives 

and is reported in the following chapters. 

 Chapter 2: To compare the spatial distribution, abundance and 

composition of microplastic debris between the nearshore and offshore 

marine subsurface waters as captured by the Continuous Plankton 

Recorder (CPR). 

 Chapter 3: To validate the accuracy of the presence/absence 

method of reporting microplastic debris in the Continuous Plankton 

Recorder (CPR) samples by the SAHFOS’s analysts and to quantify and 

formally identify this debris. And to investigate and quantify the levels of 
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‘procedural contamination’ by conducting inspections at different stages 

of the sample preparation and analysis. 

 Chapter 4: To compare quantity and composition of buoyant 

microplastic debris collected by two different approaches (CPR vs. Manta 

net) providing new data on the amount, composition and distribution of 

buoyant plastic debris in water column using different sampling devices.  

 Chapter 5: To compare the abundance and composition of 

buoyant plastic debris in estuarine waters according to daily and lunar 

tidal cycles using Manta net and to investigate and quantify the levels of 

‘procedural contamination’ by conducting inspections at different stages 

of the sample preparation and analysis. 

 Chapter 6: The final chapter summarises main findings of this 

study and introduces some guidelines for standardisation of microplastics 

sampling and processing methods by looking at gaps and shortcomings 

of current strategies. 
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Chapter 2. Distribution and composition of plastic debris 

captured by the Continuous Plankton Recorder (CPR)  
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2.1 Abstract 

‘Microplastics’ are pieces of plastic debris <5mm in diameter. They are 

introduced into the marine environment directly for example via release of small 

pieces of plastics used as abrasives and indirectly through the fragmentation of 

larger items. The full impacts of this debris are largely unknown but they have 

been reported in many parts of the world and known to be ingested by marine 

organisms. The European Marine Strategy Framework Directive 2008/56/EC 

(MSFD) regards microplastics as an emerging issue of concern and calls for 

more data on the quantity, distribution and composition of this debris. Reports 

by the analysts at the Sir Alistair Hardy Foundation for Ocean Science 

(SAHFOS) on presence of microplastic debris in Continuous Plankton Recorder 

(CPR) samples indicate there is a wide distribution of this debris in marine 

surface waters. This study examines the content of CPR plankton samples were 

and confirms the presence of synthetic polymers in samples collected from 

European waters (including North Sea, Irish Sea, English Channel and the 

Northeast Atlantic Ocean). Man made semisynthetic rayon fibres were the most 

abundant (62%) type of polymers followed by synthetic polymers: Polyester 

(20%), Polyethylene terephthalate (10%), Nylon (3%), Polyvinyl Chloride (2%), 

Polypropylene (2%) and Acrylic (1%). Total abundance was significantly higher 

in samples from nearshore coastal waters compared to that of the offshore 

waters, with the highest concentrations observed in UK’s coastal waters of the 

northeast Atlantic Ocean and the southern North Sea at 0.53/m³ seawater. This 

may be attributed to sources of debris from urban centres and riverine input as 

well as the modulating effects of oceanographic features such as frontal zones 

on distribution of flotsam in coastal waters. 
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2.2 Introduction 

Global plastic production has rapidly increased from 5 million tonnes in 

1950s to 288 million tonnes in 2012 with the packaging sector alone accounting 

for nearly 40% of the total demand (Plastics Europe, 2013). Due to the lack of 

adequate waste management facilities in many countries and irresponsible 

disposal a large proportion of the plastic waste is finding its way into the marine 

environment (Thompson et al., 2009a, b). The extent of the problem is global 

and the presence of plastic litter is now a common sight on most beaches 

around the world with plastic debris even reported floating in remote locations 

far away from any population centres such as Antarctica (Barnes et al., 2010). 

Most of our knowledge on the biological impact of this debris is at the individual 

level and from larger marine organisms such as seabirds, sea mammals and 

turtles through ingestion or entanglement (Derraik, 2002; Gregory, 2009; 

Jacobsen et al., 2010; Lazar & Gracan, 2011; Votier et al., 2011).   

There is growing evidence that as a result of weathering processes such 

as photo-oxidation and mechanical abrasion large items of plastic debris are 

fragmenting into “microplastic” pieces and therefore increasing the surface area 

and possibility of their interaction with a wider range of biota along the food 

chain (Colton et al., 1974; Thompson et al., 2004; Andrady, 2011). A recent 

review by the United Nations Environment Programme (UNEP) indicates that 

around 10% of the reported encounters between organisms and debris are with 

microplastics (UNEP, 2012).  Beside fragmentation some microplastics such as 

those used in plastics pre-production, abrasive products and clothing are 

regularly discharged into oceans via runoff and sewage effluents (Gregory, 

1996; Ryan et al., 2009; Browne et al., 2011). The environmental consequences 

of this debris is not fully understood but laboratory experiments have shown 
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evidence of ingestion by a range of invertebrates including filter feeders, deposit 

feeding worms, detritivores and zooplankton (Thompson et al., 2004, 2005; 

Browne et al., 2008; Cole et al., 2013).  

There are also growing concerns that microplastics might present a 

toxological hazard if these particles facilitate the transport of harmful persistent 

organic pollutants (POPs) such as  PCBs, DDE, nonylphenols and 

phenanthrene from the contaminated seawater (Mato et al., 2001; Derraik, 2002; 

Teuten et al. 2007, 2009; Bakir et al., 2012; Koelmans et al., 2013; Lee et al., 

2014). Furthermore, studies have shown that some of the additive chemicals 

used during the production of plastics to enhance its properties can have 

endocrine disturbing, carcinogenic and immunotoxic effects and could leach out 

of the ingested plastic (Mato et al., 2001; Endo et al., 2005; Rios et al., 2007; 

Oehlmann et al., 2009; Tanaka et al., 2013). 

Most commodity plastics such as Polyethylene (PE), Polypropylene (PP) 

and Polystyrene (PS) are less dense than seawater and once afloat in the 

marine waters their movement is influenced by currents, eddies and gyres on a 

large scale and by the density of sea water on a smaller scale (GESAMP, 2010). 

Larger items of plastic debris have been shown to accumulate in large oceanic 

zones such as gyres (Moore et al., 2001; Law et al., 2010; Morét-Ferguson et 

al., 2010) and also in nearshore coastal waters of the North Sea (Dixon and 

Dixon, 1983; Thiel et al., 2011) but in spite of several studies ( Colton, Knapp & 

Burns, 1974; Moore et al. 2001; Thompson et al., 2004 ; Ng & Obbard, 2006; 

Costa et al., 2010; Browne et al., 2011; Collignon et al., 2012) there is no 

evidence that smaller plastic debris follow a similar path and current knowledge 

of the sources, pathway and fate of microplastic debris in marine waters 

remains limited. Recent studies have highlighted wastewater from washing 
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machines as an important source of microplastic fibres such as polyester and 

rayon entering the marine waters through sewage-discharges (Browen et al., 

2011). A study of microplastic in 10 species of fish from English Channel found 

the rayon fibres as the most common semi-synthetic material ingested by fish 

(Lusher et al., 2012). 

 A worldwide study of microplastic debris from shorelines has shown 

greater concentrations of this debris in areas closer to the urban centres 

suggesting that they could be a major source of these synthetic fibres into the 

marine environment (Browne et al., 2011). Similarly spatiotemporal studies of 

floating objects in coastal waters around Chile found the sources of floating 

marine debris (mainly plastic objects and Styrofoam) to be mainly local 

(Hinojosa et al., 2011). 

Archived CPR samples were first used to evaluate microplastics 

abundance in subsurface waters of the northeast Atlantic (Thompson et al., 

2004) and subsequently SAHFOS decided to record on a presence/absence 

basis which samples they considered to be contaminated with pieces 

resembling microplastics (Richardson et al., 2006).  

This chapter presents data on the distribution and composition of 

microplastics debris found in CPR samples and specifically examines the: 

- Spatial distribution of microplastic debris in CPR samples based 

on formal analysis of the presence/absence reports by the 

SAHFOS analysts. 
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- Comparison of the microplastic concentrations between near-

shore coastal waters and offshore oceanic waters in the North 

Sea and Northeast Atlantic Ocean. 

- Quantity, composition and characteristics of the microplastic 

debris present in the CPR samples. 

2.2.1 Hypothesis tested 

H0: the quantity of microplastic debris captured by CPR is similar in nearshore 

coastal waters and offshore oceanic waters. 

2.3 Material and Methods 

2.3.1 Continuous Plankton Recorder Survey 

The Continuous plankton recorder (CPR) survey is the longest plankton 

recording program of its kind in the world and its aim is to regularly record the 

subsurface plankton community. It is run by the Sir Alister Hardy Foundation for 

Ocean Science and has a network of over 50 routes (Figure 5) currently 

sampling over 10,000 nautical miles of water every month from the North Sea, 

North Atlantic Ocean and Pacific Ocean. 

The CPR device is approximately 1 meter long and is towed behind 

commercial vessels at a speed of up to 25 knots (Warner and Hayes, 1994) at a 

depth of approximately 10 meters where the seawater passes through an 

entrance aperture of about 1.27 cm x 1.27 cm and plankton are filtered onto a 

slow-moving band of silk (270 micrometre mesh size) and then covered by 

another layer of silk. The silks and plankton are then spooled into a storage tank 

containing formalin (Figure 6). Once back in the laboratory, the silk roll is 

removed from the mechanism and divided into individual sections (each section 
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is referred to as a sample, approximately 15 x10 cm in size) each representing 

10 nautical miles of tow and approximately 3 m3 of water (Richardson et al., 

2006). 

 

Figure 5) North Atlantic routes used by the Continuous Plankton Recorder (CPR) 

(Source: SAHFOS) 
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Figure 6) Continuos Plankton Recorder device. Scale bar represents 20 cm 

(Source: SAHFOS) 

 

2.3.2 Study area and sample selection 

The study area included samples from nearshore and offshore waters in 

order to investigate the possible effects of land based sources and 

hydrographical features such as rivers and coastal fronts on abundance of 

microplastics. Since 2004 SAHFOS analysts have been looking for and 

reporting the presence of microplastic debris in the CPR samples during their 

standard analysis of plankton samples.  As the geographical location, time and 

date for each silk sample is known; this could allow mapping of the microplastic 

distribution. For this study to map the distribution of the microplastic we used 

35739 CPR samples that were processed between 2004 and 2011, about 5% 

(1994 samples) of which were reported to contain fragments that could 

potentially be microplastic debris (Figure 7). 
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Although CPR survey has broad scale spatial coverage with routes in 

almost all the oceans; in this study for comparison of microplastic abundance 

between the nearshore and offshore samples due to some of the inherent 

inconsistencies (described in Section 2.3.3) we only included samples from the 

northeast Atlantic Ocean and the North Sea which had the most complete and 

consistent temporal dataset. A total of 130 CPR silk samples from 3 areas with 

different hydrographical regimes were selected in order to compare the 

concentration of microplastic debris between the nearshore and offshore waters. 

These included 60 silk samples from the CPR-V route ( between Sule Skerry, 

Scotland 59°10'N 04°20'W and South East Iceland 62°30'N 18°00'W) in the 

northeast Atlantic Ocean, 35 silks samples from the CPR-HE route (between 

Cuxhaven, Germany 54°00'N 08°07'E and Immingham, UK 53°33'N 00°14'E) in 

the southern North Sea and 35 silks from the CPR-M route (between Aberdeen, 

Scotland 57°08'N 02°02'W and Tananger, Norway 58°41'N 05°25'E) in the 

northern North Sea.  

All samples were selected from the winter months to exclude seasonal 

effects and were equally distanced along the sampling routes. For this study 

samples within 50 nautical miles of land were considered as the ‘nearshore’ and 

those further away (> 50 Km) as the ‘offshore’. This distance was selected in 

order to ensure that the influence of any discharge from land as well as the 

effects of the coastal currents and frontal systems was included. Figure 8 shows 

the location of the selected samples in the study areas along the selected CPR 

routes.           
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Figure 7) Spatial distribution of CPR samples reported to contain microplastic debris in the North Atlantic Ocean and the North Sea. 

 Each dot represents a CPR sample equivalent to 10 nautical miles of tow (~3 m³ of seawater). 
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Figure 8) Location of CPR samples analysed for spatial patterns in the northeast Atlantic Ocean and North Sea
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2.3.3. Data Reduction 

Closer examination of the database that used to produce the distribution 

map in Figure 7 revealed high variability in the analysts’ report of microplastics 

both in time and also between the individual analysts with over 80% of all 

samples that were reported as containing plastic being since 2008. As the total 

number of samples processed in each year and also by each analyst was 

similar, this increase in reports suggested improved ability of the analysts in 

detecting microplastic fragments in plankton silk samples as a result of 

experience.  Therefore, to produce a map of frequency of occurrence for 

microplastic debris in the North Atlantic Ocean (Figure 9), the data were 

reduced to include only samples from 2008, which was then normalised for the 

sampling effort and mapped in ArcGIS (ESRI 2011, ArcGIS Desktop: Version 

10). However, even after this reduction; there still remained some considerable 

variability in the number of plastic reports amongst the analysts which was not 

easy to eliminate. To reduce any influence from these inconsistencies, samples 

were selected from those prior to the inclusion of microplastic in CPR sample 

processing protocol (e.g. pre-2004).  
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Figure 9) Frequency of occurrence of microplastic debris in CPR samples (2008-20011) normalised for sampling effort and presented in a 
5˚x5˚ gridded map. Numbers in each grid cell represent (red): percentage of plastic, (blue): total number of plastics and (black): total 

number of samples examined.
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2.3.4 Sample processing protocol 

Each CPR sample was then taken out of its protective plastic cover and placed on a 

mobile sliding glass stage and examined inside a ventilated fume cupboard under a 

binocular dissecting microscope at x50 magnification (Figure 10). This magnification was 

used for the initial identification and gave a field of view of approximately 2mm. Both 

“covering” and “filtering” silks were examined in a systematic manner using a longitudinal 

top to bottom traverse method starting from top left hand corner (Figure 11). 

Similar to the analysts’ approach, the initial discrimination of plastic fibres or 

fragments was mainly based upon basic physical features such as colour and form. 

Exceptionally bright hues of colours, that are not typically present in planktonic organisms 

or natural particulates, were selected for further examination. Fibres and fragments 

suspected of being plastic were manipulated using forceps and a fine needle mounted on 

an inoculation loop handle to better distinguish them from the naturally occurring material 

such as plants and soft gelatinous animal parts. These unknown, but potentially plastic 

pieces were then transferred on to labelled filter papers and kept covered in petri dishes 

before being taken for identification by Fourier Transform Infrared Spectroscopy (FT-IR). 
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Figure 10) Analyst examining CPR samples under the specialised microscope 

(Source: SAHFOS) 

 

 

Figure 11) Diagram showing the method used in examining CPR samples 

(Adapted from Richardson, 2006) 
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2.3.4.1 Minimising operator contamination 

Due to the nature of the investigation particular care was taken to avoid introduction 

of any external synthetic material into samples. Tiny synthetic fibres used commonly in 

clothing (e.g. polyester, rayon and nylon) could easily detach, become airborne and 

contaminate the samples. To avoid this cotton laboratory coat and latex gloves were worn 

at all times and handling of samples was kept to the minimum necessary. Samples were 

also stored in covered petri dishes at all times to reduce their exposure to open air. 

 

2.3.5 Plastic Identification 

Fourier Transform Infrared Spectroscopy (FT-IR) is the most reliable method for 

identifying the types of plastic found in the environment. In infrared spectroscopy, samples 

are exposed to IR radiation (4000-200 wavelength per centimetre) causing chemical bonds 

to vibrate as specific frequencies where some of the radiation is absorbed by the sample 

and some of it is passed through (transmitted). FT-IR is a more advanced form of infrared 

spectroscopy in which an infrometer is used to determine the absorption level at all 

wavelengths simultaneously (Shashoua, 2009). The resulting spectrum represents the 

molecular absorption and transmission, creating a molecular fingerprint of the sample 

(Figure 12). 
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Figure 12) Diagram showing the sample analysis process of FT-IR spectrometry  

 (Source: Thermo Nicolet Corporation) 

 

Fragments were identified using a Bruker IFS66 Fourier transform infrared (FT-IR) 

spectrometer with a MCT detector operating in the 4000-600 cm-1 wave number range and 

attached to a Bruker Hyperion 1000 microscope. A Specac DC2 Diamond compression 

cell (2 mm in diameters) was used to prepare the samples. Each sample was transferred 

from the petri dish on to the diamond cell and compressed between the two plates into a 

thin uniform thickness enough to allow for adequate transmission of IR beam through the 

sample to the detector and resulting in a better quality spectrum. For measurement, 

processing and evaluation of the spectra Burker’s Opus 6.5 spectroscopy software was 

used to best match spectra of the unknown debris following a protocol similar to that used 

by Thompson et al. (2004) as follows: 

 

1. Sample spectra were corrected for background noise. 

2. An initial search was conducted against the reference spectra in a database 

of common polymers to find the best match. 
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3. The top 10 matches with the highest hit quality score were selected and a 

Euclidean distance analysis performed (see Appendix 3 for details) 

4. Matches with quality index ≥0.7 were accepted. Any border line matches with 

quality index <0.7 but ≥ 0.6 were individually examined and interpreted based on 

the closeness of their absorption frequencies to those of chemical bonds in the 

known polymers. Matches with quality index < 0.6 were rejected. 

Spectra of the latex gloves used during the CPR silk sample and the protective plastic 

sheet in which they are wrapped were added to the spectra library and was included in the 

search in order to eliminate any contamination from these unlikely, but possible sources. 

2.3.6 Data Analysis 

2.3.6.1 Normalisation of data 

The presence / absence data reported by the analysts (Figure 7) was normalized to 

produce a frequency of occurrence map (Figure 9) using the data management and spatial 

analysis tools in ArcGIS (ESRI 2011, ArcGIS Desktop: Version 10). This was achieved by 

first producing a sampling grid (5˚x5˚) for the whole of the North Atlantic Ocean using the 

Fishnet data management tool and then the Spatial Joint analysis tool to join the data 

points to the gridded sampling area.  

Using the Dissolve data management tool the girded point data was then 

normalized for sampling effort to calculate the frequency of occurrence of microplastics for 

each of the grid cells as follow: 

Frequency of occurrence   
                                    

                                 
 

2.3.6.2 Standardisation of results 
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The concentration of microplastics was standardised by dividing the total number of 

pieces per CPR silk sample by the volume of water that had passed through each silk, 

approximately 3m³, thus giving the standardised value for the average number of pieces 

per m³ of seawater. 

Concentration   
                                              

                                            
 

2.3.6.3 Statistical analysis 

All statistical analysis were conducted using SPSS (IBM 2011, SPSS Desktop: 

Version 20) software package. Data was first assessed for normality using the  Shapiro-

Wilk test and was shown not to be normally distributed hence the non-parametric Mann-

Whitney U test was used to test for difference in the abundance data between the 

nearshore and offshore samples. 

 

2.4 Results 

2.4.1 Distribution and abundance of microplastic debris in CPR samples 

In all areas of study the mean concentration of microplastics along the selected 

CPR routes was higher in the nearshore samples compared to those from the offshore 

waters with samples from UK’s nearshore waters having generally higher concentrations 

compared to those from the European waters (Figure 13). The difference in abundance of 

microplastic was significant in samples from 2 of the 3 routes: the M route in northern 

North Sea (Mann Whitney U=76.50, n=35, P=0.045) and the V route in northeast Atlantic 

Ocean (Mann Whitney U=160.50, n=60, P=0.048) (Figure 14). 
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The overall mean concentration between routes was highest in samples of southern 

North Sea (HE-Route-: 0.29/m³; n=35) followed closely by the northeast Atlantic Ocean (V- 

Route: 0.21/m³; n=60) and lowest in the northern North Sea (M-Route: 0.18/m³; n=35) 

(Figure 15).  
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Figure 13) Mean abundance of microplastics along CPR routes across the southern North Sea (HE), northern North Sea (M) and the 

northeast Atlantic Ocean (V). Each bar represents the mean concentration of microplastic/m³.
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Figure 14) Abundance of microplastic debris from the samples along CPR routes 

in southern North Sea (HE), northern North Sea (M) and northeast Atlantic Ocean 

(V). Values expressed as means/m³ ± SE. 

 

Figure 15) Overall abundance of microplastic debris was significantly higher in 

samples from routes in southern North Sea (HE, n=35) compared to those from 

northern North Sea (M, n=35) and northeast Atlantic Ocean (V, n=60). Values 

expressed as means/m³ ± SE. 
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2.4.2 Composition of microplastic debris in CPR samples 

A total of 89 pieces of suspected microplastic debris from 130 CPR silk 

samples were identified by the FT-IR spectrometry (Figure 16). These included 

38% plastics and a substantial (62%) quantity of the semi-synthetic polymer 

‘rayon’. The most common types of plastics were Polyester (20%), Polyethylene 

terephthalate (10%), Nylon (3%), Polyvinyl Chloride (2%), Polypropylene (2%) 

and Acrylic 1% (Figure 17). Most pieces were in the form of filaments such as 

polyester fibres and lines similar to those used in the fishing industry and the 

occurrences of fragments were rare (Figure 18). 

 

Figure 16) Examples of Fourier Transform Infrared spectra of microplastic debris 

found in CPR samples from North Atlantic Ocean 
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Figure 17) Composition (%) of microplastic debris found in the CPR samples 

 

 

Figure 18) Examples of different forms of microplastic debris found in CPR 

samples from the North Atlantic Ocean. Polyester fibres (a,b), nylon (c) and 

Polyethylene terephthalate fragments (d). Scale bar represents 270 µm. 
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2.4.2.1 Rayon fibres 

The ubiquity of rayon fibres in samples demanded further investigation. 

This was examined by considering both natural and anthropogenic materials as 

possible sources of these fibres. Spectra were obtained from a range of 

potential sources of natural cellulosic fibres such as algae, seagrass and salt 

marsh plants as well as manmade products including sanitary towels, cigarette 

filters and oil absorbing synthetic material that are commonly used by the 

industry in the marine waters after accidental spillages. The respective FT-IR 

spectrum of these fibres was added to the existing FT-IR library and compared 

these to that of rayon fibres. Figure 19 shows electron-micrographs of some of 

the rayon fibres found in CPR samples and those of natural and synthetic fibres. 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

60 
 

 

Figure 19) Electron-micrograph of rayon fibres found in CPR samples (a, b), 

Natural fibre: seagrass leaf (c). Synthetic fibres: sanitary towel (d), 

Polypropylene fishing line (e) and Polyester (f)
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Characteristics and photos of some of the fibres from CPR samples 

compared to the natural and synthetic fibres are presented in Table 1. As 

expected most of the cellulosic fibres produced similar spectrum with spectrum 

of seagrass blade (Zostera marina) matching the spectra of rayon fibres closely 

(80% confidence); however the slightly better (84% confidence) match was that 

of the sanitary towel fibres (Figure 20).  

Table 2) Characteristics of rayon fibres found in CPR samples compared to those 

of natural (seagrass) and synthetic (sanitary towel) fibres 

Source Image Form Colour size 

Rayon 

(CPR sample) 

 

Fibre black 
~167 

µm 

Sanitary towel 

 

Fibre 
Pale 

brown 

~1.5 

mm 

Seagrass 

(Zostera Marina) 

 

Fibre 
Dark 

green 

~ 2.5 

mm 
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(a) 

 

(b) 

Figure 20) FT-IR spectra of rayon in red compared to that of (a) sanitary towel 

fibre with ~84% similarity and (b) seagrass leaf with ~80% similarity. 
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2.5 Discussion 

2.5.1 Spatial distribution of microplastics in the North Sea and Northeast 

Atlantic Ocean 

This study has provided new data on the amount and composition of 

microplastics and shown higher concentrations of microplastic debris in the 

CPR samples from coastal waters of the northeast Atlantic Ocean and North 

Sea compared to those of oceanic waters from further offshore. 

The higher concentration of plastic debris in the nearshore waters is 

consistent with findings of other studies who also found greater abundance of 

floating debris in the nearshore coastal waters (Dixon and Dixon, 1983; Theil et 

al., 2003; Desforges et al., 2014;). It is not easy to determine whether the 

origins of microplastic debris in the nearshore samples are all from the nearby 

coastal zones or transported by currents. However these studies all emphasise 

the importance of hydrographic features such as coastal and estuarine fronts, 

upwelling systems and eddies. Frontal zones in particular are a common feature 

in the North Sea and are known to have an accumulating effect on floating 

objects by restricting their horizontal dispersion (OSPAR, 2000) and the higher 

concentrations of microplastic debris observed in the nearshore samples of this 

study may be attributed to these frontal systems. 

The frequency of occurrence map in (Figure 9) indicated areas of high 

concentration mainly in coastal waters but also in the offshore waters close to 

the North Atlantic Ocean subtropical gyre where high concentrations of plastic 

and microplastic debris have been reported (Lavender et al., 2010).  

It is likely that some of this debris are pushed deeper as a result of wind 

induced mixing of water column similar to those observed by Kukulka et al. 
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(2012) and also become negatively buoyant due to fouling by marine organisms 

where they may be captured by CPR. 

CPR samples are from subsurface waters (~10 m depth) hence this 

study provides new information on spatial distribution of microplastics in marine 

subsurface waters, however, more studies with broader spatial and temporal 

coverage are required to more comprehensively characterise any patterns of 

abundance and its relation to the hydrographical features. 

2.5.2 Amount and composition of synthetic pieces 

Rayon and polyester fibres were the most abundant types of fragment 

found this study. These fibres are also amongst the most commonly used 

synthetic material in clothing which could easily detach from clothing during the 

laundering and have been shown to find their way into the marine waters 

through the sludge produced by the waste water treatment plants (Zubris & 

Richards, 2005; Browne et al., 2011). Rayon has absorbent properties and is 

commonly used in hygiene products and nappies. Although the occurrences of 

these items have decreased in beach litter since 2010; they remain among 

common litter items (MCS, 2012). Rayon is also known to break up easily (Park 

et al., 2004) and hence dispersed more widely which may explain its ubiquitous 

presence in our samples. Lusher et al. (2012) also found the rayon fibres as the 

most common type of microplastic debris ingested by 10 species of fish from 

the English Channel. 

The prevalence of fibres commonly used in clothing (i.e. rayon and 

polyester) in comparison to other types and forms elevated the concerns about 

the potential risk of contamination of plankton silk samples during the 

preparation and analysis at SAHFOS and required further examination. This is 
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addressed in Chapter 3 where the validity of the analysts’ reports of 

microplastics and the question of procedural contamination are more closely 

examined. 
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Chapter 3. Validation and analysis of microplastic debris from 

the Continuous Plankton Recorder (CPR) samples  
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3.1 Abstract 

Plastic is the most abundant type of marine debris and as it fragments 

into smaller pieces it becomes even more widely dispersed and harder to 

detect. Monitoring the abundance of plastic litter will be an important factor in 

assessing the Good Ecological Status (GES) in marine waters as required by 

the European Marine Strategy Framework Directive 2008/56/EC (MSFD). 

Monitoring is important in evaluating the effectiveness of any measures 

implemented to reduce the inputs of marine debris. However, because of 

considerable temporal and spatial variability in their distribution large sample 

sizes and reliable processing procedures are required to accurately detect any 

changes in abundance.  

The Continuous plankton recorder (CPR) survey by the Sir Alister Hardy 

Foundation for Ocean Science (SHAFOS) is the largest plankton recording 

program of its kind in the world. The aim of this chapter was to establish the 

extent to which the consistent CPR methodology and widespread archived 

samples could be used to provide a reliable index of microplastic in surface 

waters. The most conclusive method of confirming the identity of unknown 

fragments that could potentially be plastic is to use Fourier Transform Infrared 

(FT-IR) spectroscopy but this method is time-consuming and the equipment 

relatively expensive.  

The results of the validation and analysis of microplastic fragments found 

in the CPR samples as reported by the SAHFOS’ analysts are presented. 

These showed a good level of accuracy (66%) in the ability of the SAHFOS’ 

analysts to detect microplastic fragments visually during their normal processing 

of plankton samples (i.e. without use of FT-IR). However, it also indicated the 

susceptibility of CPR samples to contamination prior to sea deployment and 
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also during examination after deployment. This suggested that more rigorous 

protocols should be developed and adopted and quality assurance measures 

should be implemented before CPR samples could be used as a reliable 

microplastic monitoring tool. 
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3.2 Introduction 

The occurrence of plastic debris in the marine environment was first 

reported in the coastal regions in 1970s (Carpenter et al., 1972; Morris and 

Hamilton, 1974; Gregory, 1978) and has since been the focus of many studies 

(Laist, 1987; Derraik, 2002; Moore, 2008; Thompson et al., 2009; Law et al., 

2010; Frías et al., 2011, Sul et al., 2011). Plastic is the largest component of 

marine debris accounting for up to 80% of the debris that contaminates and 

degrades marine habitats at a global scale (STAP, 2011). We know less about 

the distribution of smaller (< 5mm in diameter) fragments known as 

‘microplastic’. 

The occurrences  of microplastics in the form of pellets and polystyrene 

spherules found in the plankton net hauls from the north-western Atlantic were 

first reported in 1970s (Colton et al., 1974) and have since been reported 

worldwide on beaches (Gregory, 1978; Gregory, 1983; Ng & Obbard, 2006; 

Browne et al., 2010; Costa et al., 2010; Hirai et al. 2011; ), sediments 

(McDermid & McMullen, 2004; Reddy et al., 2006; Rios, Moore & Jones, 2007; 

Browne et al., 2011; Claessens et al., 2011; Vianello et al., 2013) and water 

column (Moore et al., 2001; Thompson et al., 2004; Law et al., 2010; Collignon 

et al., 2012). This debris could enter the marine environment either via direct 

discharge from the land based sources or through the gradual fragmentation of 

larger items of plastic debris into smaller pieces by the photo-oxidation and 

mechanical processes in the environment also known as ‘weathering’. 

The European Marine Strategy Framework Directive 2008/56/EC (MSFD) 

recognise Marine Litter as one of the indicators for the Environmental State of 

the European Seas. The Commission decision on criteria and methodological 
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standards on good environmental status (GES) of marine waters (Commission 

Decision 2010/477/EU), lists specific indicators for assessment of Marine Litter. 

Indicator 10.1.3 considers marine micro-particles, in particular microplastics and 

calls for more data on the amount, distribution and, where possible, composition 

of this debris (MSFD, 2011). 

However, current knowledge of the sources and fate of microplastic 

debris in marine waters is limited and there is no evidence that this small debris 

is transported in the same manner as larger items. For example, particles of 

relatively buoyant polymers such as polyester have been found on the seabed 

alongside denser polyvinyl-alcohol which would have been expected to sink 

(Thompson et al., 2004). Furthermore recent data shows that traditional net 

based surface measurements may significantly underestimate abundance 

through the effect of wind mixing on the vertical distribution of buoyant debris 

(Kulkulka et al., 2012). In order to assess the extent of microplastic 

contamination, and its impact worldwide, there is a need for comparable data to 

be collected across different marine habitats using standard methodologies 

(Hidalgo-Ruz et al., 2012).  

 The efficacy of any measures implemented to reduce the abundance of 

plastic debris need to be assessed by an effective monitoring programme 

capable of addressing the inherent spatial and temporal heterogeneity in 

distribution of plastic debris. At-sea this task is further complicated as it is 

harder to access than shoreline habitats and requires large sample sizes for 

reliable statistical analysis (Ryan et al., 2009; Hanke et al., 2013). 

 The Continuous plankton recorder (CPR) survey is the longest plankton 

recording programme of its kind in the world and is currently under 
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consideration as a possible platform for monitoring the abundance of 

microplastic debris in near surface marine waters (TSG, 2012). The presence of 

microplastics in CPR samples as reported by Thompson et al. (2004) led 

SAHFOS to include the inspection of samples for ’suspected‘ microplastic 

pieces as part of their standard visual analysis protocol which includes up to 

500 planktonic taxa. This inspection is based on a visual examination and 

reporting of silks which appear to contain particles resembling plastics and 

indicates the presence or absence of these particles. However, for small 

particles it can be difficult to distinguish plastics from natural debris based on 

visual examination alone.  

The most conclusive method to confirm the identity of unknown 

fragments that are potentially plastic is to use FT-IR spectroscopy but this 

method is time-consuming and the equipment is expensive. In this study, given 

the clear trends shown in Chapter 2, I aimed to validate the accuracy of the 

analysts reports which were obtained through visual examination by re-

examining a subset of the samples that they had marked to contain microplastic 

pieces and then conclusively identified this using FT-IR spectrometry. I also 

investigated the susceptibility of CPR samples to ‘procedural contamination’ 

prior to sea deployment and also during examination after deployment. The 

objectives being:  

1) To establish if SAHFOS’s analyst detection of microplastic fragments 

by eye under the microscope during their normal plankton analysis could be 

used to give a reliable index of contamination without need for formal FT-IR 

analysis. If so this would facilitate more rapid monitoring and permit the use of 

archived data. 
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 2) To establish whether the contamination was introduced into CPR 

samples during routine preparation and analysis. 

3.2.1 Hypothesis tested 

H01: The presence of microplastic in CPR samples as reported by visual 

examinations of SAHFOS’ analysts is accurate and agrees with the results of 

the more detailed FT-IR analysis. 

3.3 Materials and method 

3.3.1 Sample processing protocol 

Each sample was examined under a binocular dissecting microscope at 

5x magnification and a circular field of view of approximately 2mm. This was the 

magnification that had been used by the analysts for the initial identification.  

Both ’covering‘ and ‘filtering‘ silks were examined in a systematic manner using 

a longitudinal top to bottom traverse method starting from top left hand corner.  

During visual examination the same criteria as used by the analysts was 

adapted. Initial discrimination of plastic fibres or fragments was mainly based on 

basic physical features such as colour and form. Exceptionally bright hues of 

colours that are not usually present in planktonic organisms or natural 

particulates were selected for further examination. Fibres and fragments 

suspected of being plastic were manipulated using forceps and a fine needle 

mounted on an inoculation loop handle to better distinguish them from the 

naturally occurring material such as plants and soft gelatinous animal parts. 

These unknown, but potentially plastic, pieces were then transferred on to filter 

papers, labelled and kept covered in petri dishes prior to identification using a 

Bruker IFS66 Fourier transform infrared (FT-IR) spectrometer. Sample spectra 

were corrected for background noise, and then compared to the reference 
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spectra in a database of common polymers (Bruker Optics ATR-Polymer Library) 

to match spectra of the unknown debris to those of known polymers 

3.3.2 Accuracy of Analysts in detecting microplastics 

Out of the total of 399 CPR samples marked as plastic contaminated by 

SAHFOS analysts since 2004, 54 were randomly selected from the year 2009 

(Figure 21) as this was the most recently completed set and also exhibited the 

highest number of samples containing plastic. To further assess the reliability of 

analysts’ reports an additional 40 samples from the same sampling area and 

time which were not marked as “contaminated” was randomly selected and 

examined for comparison. 

To get a true value for the amount of plastic on each sample after 

deployment, but before analysis, 15 previously unexamined samples were 

examined. These samples closely resembled the analysed samples spatio-

temporally. 
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3.4 Statistical Analysis 

To determine the extent of agreement between quantities of microplastic 

confirmed by the FT-IR technique to those of the analysts visual accounts, the 

Fisher test function in RStudio software package, version 0.98 was used to 

calculate the P-value of the Fisher’s Exact test for the count data 

To test if there was a significant difference between the results from even 

samples (those not examined by the analysts) and those that were analysed by 

the analysts and used for the pilot study the Mann Whitney U non-parametric 

test was used.  

 

3.5 Results 

3.5.1 Accuracy of Analysts’ reports 

In total 94 silks were examined. Thirty-five of the 54 samples that were 

marked as “contaminated” and 6 out of the 40 that were marked as 

“uncontaminated” contained synthetic fragments, giving an overall accuracy of 

~66% between the FT-IR results and those reported by the analysts. The Fisher 

test function in R was used to calculate the P-value of the Fisher’s Exact test for 

the count data (Fisher's Exact Test, P = 0.03474).



 

75 
 

  

Figure 21 Map of CPR samples examined and confirmed for microplastics by FT-IR. 
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3.5.2 Amount and composition of microplastics 

Most pieces were in the form of fibres and included a substantial (43%) 

amount of the semi-synthetic cellulosic material, rayon. The most common 

plastic types were Polyethylene Terephthalate (PET/Polyester) comprising 35% 

of the samples followed by Nylon (11%), Acrylic (7%) and Polyethylene 4% 

(Figure 22). Mean concentration of microplastics was 0.26 /m³ seawater and 

varied in between routes from 0.13/m³ to 0.53/m³ (Figure 23). Analysis of the 

samples not processed by the analysts found on average 1.66 pieces of plastic 

on each silk which equals to mean concentration of 0.55/m³ (each CPR silk 

sample filters ~ 3 m³ of seawater). 
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Figure 22) The relative proportions of different polymers found in CPR samples 
from the North Sea and North Atlantic Ocean 

 

 

Figure 23) Mean concentrations of microplastics/m³ (± SE) for each CPR route. 

Number of silk samples examined (n), number of silk samples with plastic (np).
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3.6 Discussion 

3.6.1 Accuracy of the Analysts reports 

In this study we have confirmed the presence of microplastic debris in 

marine surface waters around the UK and also have provided evidence for 

reliability (overall accuracy of ~66%) of SAHFOS’s analysts to visually detect 

this debris during their standard analysis of plankton samples. This, along with 

the long-time archive of CPR samples and the broad spatial coverage of the 

survey, could be a cost effective standard method to investigate spatiotemporal 

trends of the floating microplastics in oceans. However, the CPR needs an 

operational speed of at least 20 knots and towed at about 10 m depth so is not 

suitable for sampling from slow vessels or in shallow coastal waters and 

estuaries; it has a relatively small aperture and so is also likely to significantly 

under-sample the more buoyant types of microplastics at the sea surface. 

3.6.2 Amount and composition of microplastics 

These preliminary findings indicate low concentrations of microplastic in 

UK waters but this data are too limited to establish spatial trends. A more 

comprehensive analysis of the dataset and mapping the distribution of more 

samples is needed in order to determine regional trends.  

Further studies such as comparisons with other commonly used 

sampling devices (e.g. manta and bongo nets) will also provide more 

information on the amount and characteristic of microplastics in the surface 

waters and help to better understand the vertical distribution and residency time 

of various floating plastic debris in the marine waters under different 

environmental and biological conditions. 
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The comparison between the quantities of microplastic found on the even 

samples (those not analysed by the analysts) and those that were examined by 

the analysts showed that there were greater  quantities of microplastics on the 

even samples (average 1.66/silk than on the odd samples that  were examined 

by analysts ~ 0.55/silk  ). One possible consideration was that perhaps some of 

the microplastics captured at sea being lost during the analysis in labs, most 

likely during the eye-count analysis where the contents of silk is washed into a 

petri dish for closer examination and then put back on the silk. If not done 

thoroughly it is possible that some microplastic particles could have remained in 

the petri dish and become lost and resulted in lower counts of microplastic in 

the samples that were previously examined by the analysts and used for this 

study. 
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Chapter 4. Comparison of the quantity and composition of 

buoyant microplastic debris collected by two different methods 

(CPR vs. Manta) 
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4.1 Abstract 

‘Microplastic’ debris (pieces < 5mm) is contaminating marine habitats via 

both direct sources such as those used in personal care products and indirectly 

through mechanical and photo-oxidative fragmentation of larger plastic debris 

into smaller pieces. In comparison to the larger items of plastic debris our 

understanding of distribution and full impact of microplastic debris is relatively 

limited. The European Marine Strategy Framework Directive 2008/56/EC 

(MSFD) regards microplastics as an emerging issue of concern and calls for 

more data on the quantity, distribution and composition of this debris.  

However, this task is complicated due to the spatial and temporal 

heterogeneity of this debris and lack of sufficient comparable data from different 

marine habitats.  Most studies of buoyant microplastic debris have been 

conducted using equipment designed to sample plankton. Two commonly used 

devices are the Continuous Plankton Recorder (CPR) and the Manta net. The 

aim of this chapter was to compare the amount and composition of the debris 

collected by these two different approaches.  

The results showed significantly higher abundance of microplastic in 

samples collected by the manta net per unit of distance (0.58 pieces/km vs. 

0.02 pieces/km). However, when the results were standardised per cubic 

volume of water there was no significant difference between the two 

approaches (0.14 pieces/m³ vs. 0.13 pieces/m³). There was also greater variety 

(type, form and size) of plastic debris in the manta net samples than that 

collected by the CPR. The most common type of plastic collected by the manta 

net was Low Density Polyethylene (LDPE) whereas Polyester fibres were the 

most common type in CPR samples. These results provide additional data on 
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the amount, composition and distribution of buoyant plastic debris in water 

column using different sampling devices.
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4.2 Introduction 

Plastic is the most abundant type of marine debris and its detrimental 

socioeconomic and ecological impacts is well documented (Hall, 2000; GEF, 

2012; UNEP, 2011). Successful management of marine debris problem requires 

a comprehensive approach that is within the context and in relation to regional, 

national and international legislations and includes all the marine compartments 

such as shorelines, sea surface and seabed.  On-going monitoring of 

abundance and composition of plastic debris is essential for better 

understanding of its sources, pathways and fate and also for assessing the 

efficacy of the implemented measures to reduce its abundance.  Current 

monitoring programmes in Europe have been predominantly conducted by the 

volunteers through Non-Governmental Organisations (NGOs) and have been a 

valuable source of information.  

However these programmes have mainly focused on the larger items of 

debris from beaches and used varying methodologies (Hidalgo-Ruz et al. 2012) 

which too often makes the results incomparable and also further complicated by 

large spatial and temporal heterogeneity of plastic debris (Cheshire et al., 2009; 

Ryan et al., 2010; Hanke et al., 2013).  

Many plastics are positively buoyant and once adrift they can spend a 

long time floating around but studies shown that even the most buoyant plastics 

will be slowly fouled by micro-organisms and eventually sink deeper in the water 

column (Lobelle and Cunliffe, 2011). Most studies have only considered debris 

from the surface waters but some have shown that wind induced turbulence 

during the stormy conditions plays a significant role in vertical transport of 

floating debris from the surface layer. The affected water depth is typically a few 
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meters and the residence time of the floating objects will depend on its density 

and the sea state. Size and shape of the objects are also play a role and one 

study indicates that smaller particles might rapidly be mixed under water, but 

take longer time to re-surface (Prokurowski et al., 2011). 

Floating marine litter objects come in a great variety of shapes and sizes 

and nearly 80% of them are estimated to have been made of synthetic polymers 

and have anthropogenic origin.  They are introduced to the oceans from various 

sources such as riverine input, shoreline runoff and from sources at sea such as 

direct disposal or loss from ships and installations. It is important to understand 

the dynamics of floating litter as they represent the pathway between different 

marine compartments and therefore necessary to development of monitoring 

strategies. 

Indicator 10.1.3 of the Commission Decision (2010/477/EU) specifically 

highlights need for information on trends in the amount of microliter in the water 

column including analysis of its composition and spatial distribution. For plastic 

waste these are small (<5mm) pieces of plastics commonly referred to as 

microplastics. They come from both primary sources such as those used as 

exfoliates in cosmetic products from spillage of preproduction plastic pellets and 

powders but they are also formed from breakdown of larger plastic material and 

are known as secondary sources of microplastics (Arthur et al. 2009; Fendal & 

Sewell, 2009; Thompson et al. 2009; Andrady 2011). 

Current methodologies for monitoring larger items of litter are based on 

observational techniques from fixed platforms, ships and airplanes. These are 

highly dependent on weather conditions and do not collect and identify the litter 

items (Ribic et al., 1992). The suitability of existing approaches for the 
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implementation of MSFD Descriptor 10 for marine litter are currently being 

assessed based on the size range of the objects to be monitored (Piha et al., 

2011).  For micro-litter and in particular microplastics as described in Descriptor 

10.3 of MSFD, the widely accepted size category of <5mm puts it within the 

range of mesh sizes typically used in the trawl nets for sampling planktonic 

organism including: manta, bongo and plankton nets. However, these are small, 

and believed to be more widely dispersed, therefore much harder to monitor. In 

order to acquire a better understanding of the potential risks of this debris to 

marine organisms at different trophic levels it is important to monitor its 

abundance and distribution at several depths in water column and to 

standardise and compare the results from different methodologies.  

Floating micro and macro plastic debris in the marine environment have 

commonly been sampled using manta plankton nets (Brown & Cheng, 1981; 

Lattin et al., 2004; Law et al., 2010). In addition, examination of CPR samples 

has shown the capability of this device in capturing plastic debris in subsurface 

waters (Thompson et al., 2004). However, CPR and plankton nets vary in many 

ways such as speed, volume, mesh size and operational depth and no studies, 

as yet, have compared these methods in terms of amount and type of 

microplastics captured. 

The aim of this chapter was to quantify and describe the types of 

microplastic debris collected by the CPR and manta net as two commonly used 

and possible methods for monitoring buoyant microplastics in marine waters. 

The objective of this experiment was to provide baseline information on 

characteristics of the microplastic debris captured by each device. These data 

would help in better understanding of the vertical position and movement of 
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microplastics in water column as well as giving an insight into the strength and 

limitations of each method for the monitoring microplastics in marine waters. 

Due to the nature of the investigation particular care was taken to avoid 

introduction of any additional contamination from synthetic clothing worn during 

these investigations. A cotton laboratory coat and latex gloves were worn at all 

times. However, small pieces of synthetic material from the laboratory and 

storage area could accidently be introduced on to the sampling equipment and 

potentially contaminate the samples. This could happen before, during and after 

the deployment of the CPR. In order to assess the level of contamination from 

these sources and to compare the potential for contamination between 

sampling approaches I also performed checks during different stages of sample 

processing both before and after deployment of sampling devices to the sea 

and found the presence of polyester and rayon fibres in the sampling equipment 

used in both methods.  

4.2.1 Hypotheses tested 

H01: The amount and characteristics of microplastics captured by CPR and 

manta net do not differ significantly. 

H02: The CPR samples are free from contamination by ‘external/non -marine’ 

sources of microplastic (procedural contamination). 
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4.3 Methods 

4.3.1 Study area and sampling design 

RV Quest of Plymouth Marine Laboratory (PML) and Sepia of Marine 

Biological Association (MBA) were used to tow the CPR and a Manta net along 

a similar path in Plymouth’s coastal waters during the 3 days of sampling in 

August and September 2012. On each day the tows started at the same time 

and passed through two different bodies of water: first through the shallower 

(~25m) nearshore waters and the other further away from coast in deeper 

(~50m) offshore waters. There were 6 replicates of manta samples on each day 

and 2 of the CPR. However, due to the operational and time limitations, the full 

coverage of the CPR’s sampling area by manta was not possible and, therefore, 

partial comparison of the overlapping segments of the path closer to the shore 

was made (Figure 24). 

 

Figure 24) Map of UK showing location of Plymouth (insert top right corner). 

Plymouth coastal waters and traverses (black line: manta; blue line: CPR) used 

to collect debris. 
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Surface samples were collected using a manta trawl with a rectangular 

opening of 0.5 x 0.15 m² lined with a 3m long 300 µm net fitted with a 30 x 10 

cm² screw-fit collecting bag. Each trawl sampled on average the top 7.5 cm of 

the sea surface at an average speed of 4 knots for 30 minutes covering an 

approximate total linear distance of 24 km. The net was towed from a boom 

installed on the side of the boat away from the wake to minimise the 

disturbance of the debris by the bow wave and propulsion system. 

Subsurface samples were collected using a CPR device with a square opening 

of 1.27x1.27 cm² lined with a 270 µm silk net. The same CPR unit was in all 

three days of sampling and the silks were prepared and cut into sample blocks 

following similar protocols as the ones used by SAHFOS for sampling plankton 

(detailed in Chapter 2, Section 2.3.1). Samples were taken at an average depth 

of 10m and speed of 9.6 knots covering an approximate linear distance of 31 

km (Figure 25). 

 

Figure 25) Photographs of the Continuous Plankton Recorder (left) and Manta 

net (right). 
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4.3.2 Procedural contamination checks (Manta net) 

Small pieces of synthetic material from the laboratory and storage area 

could accidently be introduced on to the sampling equipment and potentially 

contaminate the samples. This could happen before, during and after the 

deployment of the. In order to assess the level of contamination from these 

sources the following checks were conducted: 

Procedural check before the deployment 

The Manta net and its cod end mesh were washed out thoroughly with 

high pressure clean water and then stored in an outdoor area. After one week 

the manta net was washed again this time with its cod end mounted, to capture 

any contaminants that might have been introduced on to the net during the 

storage time. The content of the cod end was then washed into a stainless steel 

bucket and finally transferred into a clean glass jar which was taken back to the 

laboratory for further analysis. This experiment was repeated 3 times with one 

week between each.  

Procedural check after the deployment 

A similar experiment to that of manta net was carried out on the sieve 

with the smallest (27 µm) mesh size that was used for filtering the contents of 

the samples back in the laboratory. First the sieve was washed with high 

pressure clean water and stored away as it was done during the investigation.  

After a week the sieve was washed again but this time into a clean glass jar the 

content of which was captured onto the finely pored filtering papers using a 

filtration system that is commonly used for separating the suspended material 

from liquids (Figure 26). This experiment was repeated 3 times with one week 

between each.  
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Figure 26) Filtration system used for separation of suspended material (Source: 

SciLabWare Ltd) 

 

Furthermore, to assess the level of potential contamination from the 

microscopy laboratory at Plymouth University, a petri dish loaded with a clean 

filter paper (55mm in diameter ~ 24 cm²) was placed exposed to open air at 

different locations close to the microscopes where are commonly used for 

processing of the samples. This was done once during each working day of the 

week between 10:00 and 13:00 hours (5 replicates in total). During this time the 

lid of the petri dish were kept wrapped in clean tissue paper and was not 

exposed to the air. 

4.3.3 Procedural contamination checks (CPR) 

Small synthetic particles, in particular fibrous forms that are commonly 

used in textiles can become airborne and could contaminate samples. During a 

meeting with the analysts and technicians at SAHFOS the possible sources of 

contamination on to the silk samples were discussed and were identified to be: 
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 Before the CPR deployment  at the workshop during the:  

1. Preparation of silk role for loading into the CPR device 

2.  Loading of the prepared silk role into the CPR device 

 After the CPR deployment:   

1. Unloading and cutting of the silk role into sample blocks. 

2. During the analysis of silk blocks in the microscopy lab.  

To quantify contamination introduced during these stages the following checks 

were conducted.  

4.3.3.1 Procedural checks during the silk preparation 

To determine the level of contamination introduced during the silk 

preparation process prior to the loading of silk roll into the CPR device, 15 silk 

rolls were randomly selected and examined under a similar staged-microscope 

as those used by the SAHFOS’s plankton analysts. To make the data as 

representative as possible the silk rolls were selected from those that were cut 

at different years (i.e. 2008, 2009 and 2010) and also from different size 

categories (e.g. 25, 40, 70, 80 and 110 division). On each silk roll an area 

equivalent to that of the plankton silk samples (~ 150 cm²) typically examined by 

the analysts was checked. Silks were examined at 3 different locations 

(beginning, middle and end of silk) along the silk’s length and in a systematic 

way using a longitudinal top to bottom traverse method. 

4.3.3.2 Procedural checks during the loading/unloading and cutting 

A short length (~50 cm) of the silk roll typically used for the CPR routes 

(in this case the PR route from Plymouth to Roscoff) was visually examined 

under the microscope in a systematic way using a longitudinal top to bottom 

traverse method to check that the silk as supplied to SAHFOS was free from 
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any particles. The silk was then put through the normal loading and unloading 

procedures (apart from the CPR unit being deployed at sea) and subsequently 

cut into silk samples same as those typically examined by SAHFOS analysts 

and were re-examined for any contamination.  

4.3.3.3 Procedural checks during sample analysis in microscopy 

laboratory 

A stretch of silk roll typically used for the CPR routes was prepared, 

loaded into the CPR device, unloaded from the CPR device and cut into silk 

samples block of same size as those typically examined by SAHFOS analysts 

using the normal procedures. These samples were thoroughly examined under 

the microscope and cleared from any contamination and were subsequently 

distributed between the analysts for mock analysis using the standard ‘traverse’ 

analysis technique for same length of time that is normally used for plankton 

samples (~ 20-30 minutes). Samples were analysed at 3 different locations in 

the laboratory using different microscopes and different analysts. 18 silk 

samples were equally divided between the morning and afternoon sessions and 

examined by the analysts during 3 days (e.g. 6 samples per day, 3 mornings 

and 3 afternoons).  

During the above checks all the unknown pieces found on the silks or 

settled onto the filter papers were transferred and stored in petri dishes prior to 

identification by the Fourier transform infrared (FT-IR) spectrometry following 

the same protocol as previous experiments (See Chapter 2, Section 2.3.5). 
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4.3.4 Data Analysis 

A mechanical flowmeter was initially used to measure the amount of 

water filtered through the manta net but due to the repetitive entanglement of its 

propeller by the floating vegetation its use became a hindrance and was 

eventually abandoned. However, since the speed and length of tows were 

known the volume of water passing through the net was calculated using the 

following formula: 

        

Where   is the length of the linear distance covered by each tow and was 

calculated based on the average boat speed of 4.3 nautical miles per hour for a 

30 minutes tow equating to 3780m.   width of the aperture (0.5 m) and   the 

height of the aperture with a 1/3 of the aperture submerged on average 

(0.15/3=0.05 m), hence   the volume of water filtered through the net calculated 

to 97m³ for each tow. 

The amount of water filtered through the CPR was similarly calculated 

based on the total length of the tow (~31284m) and the aperture size of 1.27cm²  

and equated to ~ 5m³ (31284x 0.0127 x 0.0127=5.04). 

 

4.4 Results 

4.4.1 Quantity and composition of microplastic (Manta net) 

In total 70 pieces of suspected plastic debris were found in the manta net 

samples. FT-IR analysis conducted on 50% of these pieces and conclusively 

identified 30 pieces (85%) as plastics. Figure 27 shows the relative proportions 

of different polymer types. The most common synthetic polymer types were 
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Polyethylene (50%), Polypropylene (27%) and Polystyrene (17%). Microplastic 

(pieces <5mm) comprised 60% of samples and ranged from 0.6 mm to 4.87mm 

in size with the 1-3mm size class being the most abundant. Figure 28 shows the 

relative proportions of different microplastic forms. The most common forms of 

microplastic were fragment (84%) and pellets (10%) followed by lines, sheet 

and fiber with similar proportions (~2%). The most abundant form of 

macroplastic (>5mm) were lines (79%) followed by fragment (14%) and sheet 

(7%). Figure 29 shows photographs of different types and forms of plastic 

debris found in the manta samples. 

 

Figure 27) The relative proportions of different polymers found in manta net 
samples. 
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Figure 28) Percentage of plastic pieces found in Manta and CPR samples from 

the whole sampling period by form. 

 

 

Figure 29) Photographs of plastic debris identified using FT-IR.  

Top row CPR: (A) Rayon, (B) Polypropylene, (C) Polyester, 

Bottom row Manta: (D) Nylon, (E) Polypropylene, (F) Polyethylene.  

Scale bars represent 1 mm. 
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4.4.2 Quantity and composition of microplastic (CPR) 

In total 7 pieces of suspected microplastic were found in CPR samples of which 

using the FT-IR analysis, 3 pieces were conclusively confirmed as synthetic 

polymers: one Polypropylene fragment (~ 0.49 mm), one Polyester fiber (0.82 

mm) and one Rayon fiber (1.4 mm). The average number of pieces across 3 

days of sampling was one. 

The average number of microplastic pieces was 1 giving a concentration of 0.2 

per cubic of water over total of 5 m³ filtered water compared to that of 0.14 for 

the Manta with average of 14 pieces over 97 m³ filtered water (Figure 30). 

 

 

 

Figure 30) Average number of plastic pieces/m³ (±SE, n=3) found in the CPR and 

Manta samples 
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4.4.3 Procedural contamination (Manta net) 

On average the numbers of contaminant particles found were: 7.3 pieces 

on the manta net mesh, 1 piece on the sieve’s mesh and 1piece on the petri 

dish from the microscopy lab. Rayon fibres were the most common type of 

contamination and were observed in samples from all 3 items of equipment 

(Manta net, sieve and petri dish). Other contaminant fibres were polyester and 

acrylic fibres as well as polypropylene and PVC fragments. PVC was found only 

on sieve samples (0.3 pieces on average) and Polypropylene only on Manta 

samples (0.18 pieces on average). Petri dish samples contained only rayon and 

polyester fibres on average at 0.6 and 0.4 pieces respectively. Figure 31 shows 

proportion and total number of the contaminants found on each equipment. 

 

 

Figure 31) Proportion and total number of the contaminants found on each of the 

sampling equipment. 
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4.4.4 Procedural contamination (CPR) 

The highest level of contamination was observed during the silk 

preparation process prior to the deployment to sea at an average of 3.6 pieces 

per silk. Levels of contamination from processes after the deployment were 

lower: 1.66 pieces per silk for the laboratory and 0.2 for the “silk loading and 

cutting” process (Figure 32). Using the FT-IR technique the contaminants were 

analysed and formally identified as rayon or polyester fibres. Figure 33 shows 

photos of some of the contaminant fibres found on the silk. The fibres were 

mostly dark blue and typically 2 to 6 mm in size but fibres as small as 0.5 mm 

were also observed. 

 

Figure 32) Mean number of synthetic pieces (± SE) found on CPR samples after 

silk preparation but before examination by the analysts (Workshop) and after 

examination by the analyst  (Laboratory/loading/cutting) compared to 

microplastics found in CPR samples from sea without laboratory analysis 

(Control) and with laboratory analysis (Pilot). Number of silk samples examined 

(n). 
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Figure 33) Photographs of some contaminant fibres found on CPR silks. Scale 

bar represents 1mm. 

 

4.5 Discussion 

4.5.1 Quantity and composition of microplastic debris 

In this study I have shown that the composition (type, size and form) of 

microplastic debris in surface waters as captured by the manta net are clearly 

more diverse than those sampled in subsurface waters by the CPR. The Manta 

net captured significantly more plastic when assessed by the number of items 

but not when standardised by the volume of water (Figures 31). This was 

expected as the Manta filters more water than CPR but it may also be an 

indication of a shorter suspension time in the middle column possibly due to the 

increased mixing regimes at this depth pushing the debris to lower depths. 

 A study by Lattin et al. (2004) who compared the abundance of plastic 

debris at different depths in the water column (surface, middle and bottom) 

before and after storm events using different plankton nets (manta, bongo and 

epibenthic sled) found the middle column (10m) samples less abundant than 

surface samples and the near bottom samples most abundant in both 
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nearshore and offshore waters. However in the nearshore waters the middle 

column samples taken after a storm event showed higher abundance than the 

ones before storm highlighting the effect of wind on vertical positioning of debris 

within the surface boundary layer similar to those reported in a more recent 

study by Kukulka et al. (2012). The higher concentrations of microplastic debris 

in nearshore subsurface waters is also consistent with findings of recent study 

by Desforges et al. (2014) which found the concentration of microplastic debris 

to be 4–27 times greater at sites nearshore than sites offshore in NE Pacific 

Ocean. 

4.5.2 Procedural contamination (CPR) 

The fact that most of the contamination was found during the silk 

preparation stage and prior to the deployment of the CPR at sea was not 

surprising since it is during this stage that the silk is most manipulated and 

exposed and therefore highly likely to pick the contaminant fibres from the 

surrounding environment such as clothing of the technicians and also the 

surface of the table on which they are prepared. In this stage both the filter and 

cover silk are unrolled on a table in the workshop in order to be marked into 

sections then edges are glued and finally aligned on top of each other before 

being rolled back. 

The next step involves mounting of the prepared silk roll into the CPR 

device. In this phase the silk remains mostly rolled with minimal contact with the 

working table but it is still exposed to air and likely to be contaminated by the 

fibres detached from the technician’s clothing and the mechanisms within the 

CPR device. However both the time period and exposed area of the silk during 

this stage are much less than the preparation stage. 
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After return from sea the spooled CPR silk is unloaded from the device 

and cut into silk blocks in the cutting room. The cutting room is the most isolated 

environment in SAHFOS’s laboratories covered by a protected screen and a 

ventilated hood to keep the air clear from the toxic formalin vapour. Therefore it 

is least likely that silks get contaminated during this stage. Once the silk is cut 

into sample blocks they are ready for analysis in the laboratory. On average it 

will take 20-30 minutes for silk sample to be analysed during a traverse 

screening, however it is not unlikely for silks to be exposed longer due to other 

tasks such as need for close examination of specimen under a more powerful 

microscope or consultation with other analysts and/or identification catalogues.  

The analysis stage after the preparation is the second, most likely, period 

during which samples could get contaminated by external fibres. These 

scenarios are consistent with results of our experiment in which the highest 

contamination levels were observed during the preparation stage (3.6 

pieces/silk) followed by the laboratory/loading/cutting stage at 1.86 pieces/silk 

(Figure 32). 

4.5.3 Procedural contamination (Manta) 

Similar to the CPR the highest number of contaminants was found on the 

net and prior to the deployment to sea an average of 7.3 pieces which is much 

higher than average of 3.6 pieces in CPR but this is expected as manta net has 

a much larger surface area hence more likely to pick higher levels of 

contamination. However, level of contamination was slightly lower at the 

Plymouth University microscopy laboratory compared to the SAHFOS’s lab (1 

vs 1.66 pieces per silk). 

 



 

102 
 

This study has shown the susceptibility of both the CPR and manta net to 

contamination prior to sea deployment and also during the laboratory 

examination after deployment. Therefore, more rigorous protocols and quality 

assurance measures should be implemented if these methods are to be used 

as a reliable microplastic monitoring tool. Chapter 6 will address some of these 

issues and recommends measures that could help in lowering the 

contamination levels.  
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Chapter 5. On the quantity and composition of floating plastic 

debris entering and leaving the Tamar Estuary, Southwest 

England 
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5.1 Abstract 

The majority of plastic debris found in the marine environment has land 

based sources and rivers are considered an important medium for the transfer 

of this debris. However, there are few published studies on the amount, 

composition or trends of riverine plastic debris. Here we report on the quantity 

and composition of floating plastic debris collected from surface waters of the 

Tamar Estuary.  This represents the first study of riverine transport of plastic 

debris in to European waters during different tidal regimes.  

A key question in this study was to establish whether the estuary was a 

net source or a net sink for plastic debris. This was evaluated during both spring 

and neap tides. Plastics were found in a variety of forms (fragments, line, fibres, 

and sheet) and sizes (0.2mm-112mm). Microplastics (<5 mm) comprised 82% 

of the debris.  FT-IR analysis indicated the most abundant types of plastic to be 

Polyethylene (40%), Polystyrene (25%) and Polypropylene (19%). The overall 

mean concentration of plastic items was (0.028/m³) and there was a significant 

difference in size frequency distribution between the spring and neap tides with 

more fragments of larger size observed during spring tides.  While it is clear that 

debris has accumulated on shorelines within the estuary, during our study this 

river did not identify as a net source or sink.
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5.2 Introduction 

Plastic production has increased rapidly in recent years from 5 million 

tons in 1950s to 288 million tons in 2012 (Plastics Europe, 2013). With its 

unique properties and multifaceted applications plastic has become an 

indispensable part of modern life. Plastic are inexpensive, durable and versatile, 

however these attributes have also led to extensive use in disposable items that 

are used once and then discarded. This combined, with inadequate recycling, 

waste management and littering behaviour, have made the accumulation of 

plastic waste a global environmental problem (Thompson et al., 2009).  

The occurrence of plastic debris in the marine environment was first 

reported in the coastal regions in 1970s (Carpenter et al., 1972; Morris and 

Hamilton, 1974; Gregory, 1978;). Since then it has been the focus of numerous 

studies and has been shown to be widely distributed (Thompson et al., 2004; 

Barnes et al., 2009; Browne et al., 2011; Moore, 2008; Sul et al., 2011) as well 

as ingested by a wide range of organisms. However, we know relatively little 

about the associated environmental impacts (Laist, 1987; Derraik, 2002; 

Thompson et al., 2009; Lusher et al., 2012). 

Plastic is the largest component accounting for 50-80% of debris that 

contaminates marine habitats at a global scale (Barnes et al., 2009). The 

majority of this litter has land-based sources such as: landfill sites, tourism, 

storm water outflows. Rivers are considered to be an important medium for 

transfer of different types of debris to the sea; however there are few published 

data on the riverine and estuarine plastic debris. A study of the intertidal banks 

of the River Taff, UK by Williams and Simmons, (1996) showed plastic as the 
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most abundant type of debris with sewer overflows and fly tipping as main 

sources. 

The analysis of the solid wastes in one isolated beach in Brazil also 

identified plastic, with urban origins, as being the most abundant type of debris 

and highlighted the importance of the riverine contribution (Araújo& Costa, 2007; 

Ivar & Costa, 2013). There is one published study on shorelines in the Tamar 

Estuary, UK showing that habitats that are downwind could act as potential 

sinks for debris (Browne et al., 2010), and thus indicating the potential 

importance of water movement and wind patterns within the estuary in the 

transport of debris. A recent study in the tidal River Thames (Morritt et al., 2014) 

also reports on the movement of substantial quantities of debris close to the 

river bed. However because sampling was not stratified according to tidal cycles 

it is not possible to determine the direction of transport.  

It is important to monitor the quantity and distribution of marine litter in 

order to fully assess its socio-economic and ecological impacts and to monitor 

the success of measures targeted at reducing litter. The European Marine 

Strategy Framework Directive 2008/56/EC (MSFD, 2011) recognises Marine 

Litter as one of the indicators for the Environmental State of the European Seas 

and calls for more data on the amount, distribution and, where possible, 

composition of this debris (Piha et al., 2011).  A key part of any strategy to 

reduce marine litter is to understand and then potentially regulate its sources. 

Current knowledge of the sources and fate of plastic debris, particularly 

for microplastics is limited and it is not clear whether this small debris is 

transported in the same manner as larger items. Floating debris could be 

pushed into estuaries during the rising tide from nearby coastal waters and/or 
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travel out into the coastal waters during the falling tide. But estuarine water 

circulation is complex and influenced by many environmental parameters such 

as riverine inflow, tides, wind and evaporation. The nature of estuarine 

circulation affects the residence time of its water body and consequently the 

concentration of its solutes and suspended solids some with human-induced 

sources such as litter that may affect the health of estuaries (Balls, 1994). A 

recent study (Bakir et al., 2014) has suggested a correlation between the 

desorption rates of the Persistent Organic Pollutants (POPs) from the 

contaminated microplastics and their retention time in estuaries and marine 

waters and highlights the importance of both natural and anthropogenic 

processes such as flushing and dredging in pulse release of these substances. 

This chapter presents the first comparison of the quantity and 

composition of buoyant plastic debris in European estuarine waters according to 

daily and lunar tidal cycles. The specific aims were: a) to describe the 

abundance and composition of floating litter in estuarine surface water; b) to 

compare the abundance,  size frequency and composition of debris between 

the different stages of the daily tidal cycles  (flood vs. ebb) and  different lunar 

phases (spring and neap). 

 

5.3 Material and methods 

5.3.1 Study area 

The River Tamar has a catchment area of ca. 1700 km² and flows south 

from North Cornwall for about 78 km (Evans et al., 1993). The estuary is tidal 

for about 31 km from Gunnislake Weir to its mouth at Plymouth Sound (Figure 
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34) and is considered macrotidal with semi-diurnal tidal flows ranging from 6.5 

m at Devonport during the springs and 1.5 m at neaps in the upper reaches 

(Miller, 1999). Land use in the upper reaches of the catchment is mainly 

agricultural with relatively clean waters (Mighanetara, et al., 2009). There are no 

major landfill sites along the estuary but a number of anthropogenic impacts 

such as run off form historic mining sites and discharges from sewage works 

are visible towards the mouth of the estuary around naval dockyard closer to 

the more populated areas of the city of Plymouth (Miller, 1999; Langston et al., 

2003) As such the estuary could be considered typical of many other estuaries 

within Northern Europe. 

  

Figure 34) Map of UK showing location of Plymouth (insert top left corner). 

Tamar catchment and the traverse used to collect debris  

(black line in insert top right). 
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Figure 35) Manta net on board RV Aquatay (left) and deployed in the Tamar 

Estuary (right). The overall width of manta including its floating wings was ~ 

150cm. 

 

5.3.2 Sampling and processing protocol 

Samples were collected from surface waters during May and July 2012 

near to the mouth of the river during both spring and neap tides using a 0.50m 

by 0.15m manta net (300 µm mesh) aboard the Plymouth University’s RV 

Aquatay (Figure 35). Spring and neap tides were both sampled on three 

replicate dates and on each occasion with three replicate samples taken during 

both the flood and the ebb tides. The net was towed against the tidal flow at a 

speed of 4 knots for 30 minutes during the maximum flow period. Samples were 

transferred into glass jars and taken to the laboratory where their content was 

filtered through a set of sieves with varying mesh sizes (3mm, 1mm and 270 

µm). Any unknown but potentially plastic pieces were transferred on to Petri 

dishes and categorised under 4 different size groups (>5mm, 3-5mm,1-3mm 

and <1mm) and forms (Fragments, Sheet, Fibre and Pellet). Fourier transform 

infrared (FT-IR) spectrometry analysis was conducted on 50% of the pieces 
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from each size groups in order to indicate the relative proportions of different 

polymers.  

Fragments were identified using a Bruker IFS66 Fourier transform 

infrared (FT-IR) spectrometer with a MCT detector operating in the 4000-600 

cm-1 wave number range and attached to a Bruker Hyperion 1000 microscope. 

A Specac DC2 Diamond compression cell (2 mm in diameters) was used to 

prepare the samples. Each sample was transferred from the petri dish on to the 

diamond cell and compressed between the two plates into a thin uniform 

thickness enough to allow for adequate transmission of IR beam through the 

sample to the detector and resulting in a better quality spectrum. For the 

measurement, processing and evaluation of the spectra Burker’s Opus 6.5 

spectroscopy software was used to best match spectra of the unknown debris 

following a protocol similar to that used by Thompson et al. (2004). 

Due to the nature of investigation special measures were taken to reduce 

the likelihood of introduction of any contaminations into the samples. Before 

sampling all equipment including the manta net were thoroughly washed with 

clean fresh water and a cleaned steel bucket and funnel were used to transfer 

the content of each sample into glass jars. In the laboratory, during the 

processing and analysis of the samples, a cotton coat and latex gloves were 

worn to reduce the contamination of samples by synthetic fibres from the 

clothing material. 

5.4 Statistical Analysis 

The non-parametric Kolmogorov-Smirnov (2 sample K-S test) was used 

to test the differences in size frequency distribution pattern between the tidal 

states. To test for any difference in the abundance of debris across the tidal 
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states (neap vs. spring and flood vs. ebb) the non-parametric Mann-Whitney U 

test was used. 

5.5 Results 

In total 204 pieces of suspected plastic were found and of these 84% 

were confirmed to be plastic in the following relative proportions: Polyethylene 

(40%), Polystyrene (25%) and Polypropylene (19%) (Figure 36). Polyvinyl 

Chloride, Polyester and Nylon were amongst the other types of plastics present. 

Microplastic (<5mm) comprised 82% of this debris and were found in different 

forms in all samples (Figure 37).  The 1-3mm size category was the most 

abundant and contained all the polymer types. The proportion of polyethylene 

was similar across all the size categories. PVC was present only in 1-3mm and 

3-5mm and nylon only in <1mm and 1-3mm size groups (Figures 38 and 39). 

 

 

Figure 36) The relative proportions of different polymers found. 
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Figure 37) Photographs of some of the plastic debris found in the River Tamar 

and identified using FT-IR as: (A) Polypropylene, (B, C and D) Polyethylene, (E) 

Nylon, (F) Polystyrene. Scale bars represent 1 mm. 

 

 

Figure 38) Total number of plastic pieces found in the River Tamar from the 

whole sampling period by polymer type and size. 
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Figure 39) Total number of plastic pieces found in the River Tamar from the 

whole sampling period by form and size. 

 

The frequency distribution of size classes across tidal states was 

significantly different between the spring and neap tides (Kolmogorov-Smirnov 

Z = 1.832, p = 0.002, n=36) with a shift towards a smaller central tendency 

during the neap/ebb tide (Figure 40). Mean abundance between tidal phases 

varied but there was no significant differences between the tidal phases or 

cycles (Mann Whitney U=283, n=18, P=0.118; U=287, n=18, P=0.152). The 

overall mean concentration of plastic was 0.028/m³ (Figure 41)    
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Figure 40) Lognormal of frequency distribution across different size categories 

and tidal cycles, showing a shift during neap/ebb tides. 

 

 

Figure 41) Abundance of plastic/m³ ( x ± SE) found in River Tamar by tidal cycles 

(Flood/Ebb) and according to the tidal phases (Spring/Neap). 
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5.6 Discussions 

Composition and quantity of plastic 

As with other studies (Browne et al., 2010; Costa et al., 2010), 

microplastics (<5 mm) accounted for the majority of the debris in terms of 

numerical abundance, which generally is an indication of weathering (photo 

oxidation) and physical (abrasion by waves) defragmentation. However, in this 

study the 1-3mm size class was the most abundant size class whereas in the 

study by Browne et al. (2010) it was the <1 mm class. The skew towards 

smaller debris seen in the study of Browne et al. (2010) is probably due to the 

difference in sampling and extraction methodology where the use of glass filter 

papers would have given them a much lower cut-off value compared to the 300 

µm mesh of manta used in this study. 

 

It is not easy to determine the origins of plastic debris in the marine 

environment, in particular, the buoyant plastic, but the types of polymer used for 

different applications provide a potential indication. In this study similar to those 

of the larger items found on adjacent shorelines by Browne et al. (2010) 

buoyant polymers: polyethylene, polypropylene and polystyrene were the most 

abundant types of debris (Figure 38). These polymers are predominantly used 

in the packaging industry which could indicate an urban origin of this debris.  

However, polymers such as polyester, nylon and PVC are denser than 

seawater and their presence in our samples indicates that the transport of 

debris is influenced by factors other than density alone. One likely explanation 

could be the introduction of some of these fibres via the sewage outlets on to 

shorelines (Browne et al., 2011) and/or their re-suspension in water column as 

a result of turbulent mixing induced by wind and tidal currents. 
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Influence of tides on the abundance and size distribution of floating plastic 

debris 

In this study we found a shift towards the smaller debris and although not 

significant also some indication of lower abundance during the neap/ebb tide. It 

is possible for some particles that leave the estuary on the ebb tide to re-enter 

the estuary during the flood tide and vice versa. This is especially likely near the 

mouth of estuaries where complex circulation patterns can occur (Wolanski, 

2007). Perhaps the similar overall abundance in the spring tide samples (Figure 

41) in this study could be partially attributed to this phenomenon. The shift 

towards the smaller pieces and lower abundance of debris during neap tide 

could be due to the elevated clogging of the net if phytoplankton concentrations 

were greater during neap tides compared to spring tide as observed by Cloern 

(1991). The cumulative effect of clogging could result in a bias towards the 

smaller particles and also decrease in the overall sampling rate, thereby 

artificially reducing the overall amount of microplastics that are eventually 

captured. However, visual inspection of the recovered nets did not reveal 

substantial clogging and our short sampling durations were chosen to help 

minimise clogging. Clearly, in future sampling, the duration of tow needs to be 

considered in relation to potential clogging so as to maximise the capture of 

debris. 

The wind direction and force could also have an important role in the 

spatial distribution of floating debris as indicated by Browne et al. (2010) where 

shores downwind accumulated a greater abundance of plastic debris. There are 

some indications in our data of higher abundance of debris in samples collected 

during North-westerly wind regime than the predominant South-westerly 

(Table1); however more work would be needed to confirm this. 
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Table 3) Wind directions and speed data. Samples with highest number of 
plastics are shown in bold. 

Trawl Id Sampling 
Day 

Date Tidal 
Phase 

Tidal 
Cycle 

Wind 
Speed/knots 

Wind 
Direction 

Plastics 
count 

MFOD2S2 2 14/05/2012 Neap ebb 7-10 NW 20 

MFOD4S2 4 29/05/2012 Neap ebb 7-10 S 6 

MFOD5S2 5 13/07/2012 Neap ebb 7-10 W 6 

MFID4S2 4 29/05/2012 Neap flood 7-10 NW 29 

MFID2S2 2 14/05/2012 Neap flood 11-15 W 18 

MFID5S2 5 13/07/2012 Neap flood 11-15 SW 8 

MFOD1S2 1 08/05/2012 Spring ebb 4-6 W 31 

MFOD3S2 3 24/05/2012 Spring ebb 4-6 S 7 

MFOD6S2 6 20/07/2012 Spring ebb 4-6 NW 21 

MFID1S2 1 08/05/2012 Spring flood 4-6 W 21 

MFID3S2 3 24/05/2012 Spring flood 7-10 S 19 

MFID6S2 6 20/07/2012 Spring flood 4-6 SW 18 

 

The stratification and mixing processes between the saline and fresh 

water are important factors affecting both horizontal and vertical positions of 

buoyant items such as plastic debris. Wind direction and force have been 

shown to play an important role in distribution and positioning of floating objects 

(Browne et al., 2010; Thiel et al., 2011; Kukulka et al., 2012) future studies 

should therefore examine more extensively the temporal effects of different 

wind regimes. Tidal currents are typically strongest between high and low tides 

and could considerably influence the residence time and transport of floating 

objects within an estuary.  

When designing sampling or monitoring programmes, factors such as 

timing, location and length of trawls in relation to the strength of tides should be 
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carefully considered in order to ensure that the most representative body of 

water is being sampled. If effects of a particular land-based feature (e.g. landfill, 

sewage output, etc.) are of interest then the spatial coverage of the trawls 

relative to these features becomes a priority compared to trawl times or 

distance . However, if like our study the effect of tides is the main interest then 

the timing of trawls must be standardised in preference to spatial coverage. For 

instance, in our study (trawl time: 30 minutes; Boat speed: 4 knots) all samples 

were taken during periods of maximum-flow-in and maximum-flow-out 

(approximately 2.5 hours after the high and low tides). This allowed for relative 

consistency with regards to the tidal flow but resulted in less linear distance 

towed along the estuary during the spring tides.  

Ultimately data should be standardised for the volume of water through 

the net using either a flowmeter or calculations based on the distance travelled 

by the boat at a constant speed. In order to gain comprehensive estimates of 

the volume of litter that is transported via estuaries it will be necessary to use a 

combined approach to ensure various types and sizes of debris are captured 

and that different parts of the water body are sampled including mid-water and 

the river bed. For example substantial quantities of litter have recently been 

reported in a study using traps fixed near to the seabed in the tidal Thames 

(Morritt et al., 2014).  
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Chapter 6. General Discussion: Investigation of microplastic 

debris in marine surface waters 
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6.1 Summary of the research findings 

The research validates existing data and also acquires new data using 

different sampling and processing methodologies. It also identifies some of the 

methodological challenges that are to be considered and recommends 

measures for addressing some of these issues . 

Archived CPR samples were first used to evaluate microplastics 

abundance in sub-surface waters of the northeast Atlantic Ocean (Thompson et 

al., 2004). The analysis and mapping of microplastic debris using samples from 

the Continuous Plankton Recorder (CPR) reported by the SAHFOS’ analysts as 

presented in Chapter 2 showed a wide distribution of microplastic debris in the 

North Atlantic Ocean and confirmed the presence of synthetic and semi-

synthetic polymers in several European waters (including North Sea, Irish Sea, 

English Channel and the Northeast Atlantic Ocean) with the abundance 

generally being higher in the nearshore coastal waters than in offshore oceanic 

samples; potentially indicating the importance of the urban centres similar to 

findings by Browne et al. (2011) and the modulating effect of oceanographic 

features such as frontal zones on distribution of plastic debris in coastal waters 

(e.g. Hinojosa et al. 2011, and references therein). 

The validation and analysis of microplastic fragments reported by the 

SAHFOS’ analysts in the CPR samples as presented in Chapter 3 showed an 

acceptable level of confidence in the accuracy of the SAHFOS’ analysts to 

visually detect microplastic fragments during their normal processing of 

plankton therefore allowing for a tentative consideration of CPR methodology as 

an index of microplastic in subsurface marine waters. 
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Selecting a suitable sampling method and depth is crucial for evaluating 

floating microplastic pollution (Lattin et al., 2004; Kukulka et al., 2012; Song et 

al., 2014). Field trials comparing data from manta trawl net and CPR as 

presented in Chapter 4 showed a significantly higher abundance of microplastic 

in samples collected by the manta net per unit of distance (0.58 pieces/km vs. 

0.02 pieces/km) however, there was no significant difference between the two 

approaches when the results were standardised for cubic volume of water (0.14 

pieces/m³ vs. 0.13 pieces/m³). There was also greater variety in type, form and 

size of plastic debris in the manta net samples than that collected by the CPR 

suggesting a wider spatial distribution of microplastic debris in marine surface 

waters. 

Further field trials as presented in Chapter 5 evaluated for the 

composition and abundance of microplastic debris in estuarine waters of the 

River Tamar during different tidal regimes showed that microplastic debris 

compromised 82% of the total debris and the most abundant types of plastic 

were: Polyethylene (40%), Polystyrene (25%) and Polypropylene (19%) with a 

significant difference in size frequency distribution between the spring and neap 

tides with more fragments of larger size observed during spring tides. 

These results provide additional data on the amount, composition and 

distribution of buoyant plastic debris in marine waters using different sampling 

devices and show further evidence of the spatial heterogeneity of this debris 

and therefore also highlighting the need for more comparable data from 

different marine habitats using standardised methodologies. 
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6.2 Importance of Monitoring Programme 

On-going monitoring programme to assess the abundance and 

composition of plastic debris are essential for better understanding of its 

sources, pathways and fate as well as for assessing the efficacy of the 

implemented measures to reduce its abundance.  Current monitoring 

programmes in Europe have been predominantly conducted by the volunteers 

through Non-Governmental Organisations (NGOs) and have been a valuable 

source of information. However these programmes have mainly focused on the 

larger items of debris from beaches and used varying methodologies which too 

often makes the results incomparable (Cheshire et al., 2009; Ryan et al., 2010; 

Hidalgo-Ruz et al., 2012; MCS, 2013). Public awareness and engagement is an 

integral part of any remedial solution to tackle the marine debris problem and 

monitoring programmes can also provide important information for raising public 

awareness (Cheshire et al., 2009). 

Most marine litter monitoring programmes have focused on beaches at a 

local scale, however, regional and local surveys do not provide a suitable 

baseline since the selection of sampling sites is subjective and, therefore, not 

representative of the area in general. Marine debris is a global problem and 

increasingly in need of a harmonised scientific approach with tailored protocols 

that are specific to the questions being asked (Ryan et al.,  2010; Hanke et al., 

2013) and sensitive to changes in the amount of ‘new’ plastic litter entering the 

marine waters (Thompson, 2007). 
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6.3 Suitability of CPR and Manta trawl for investigation of 

microplastics in the marine surface waters 

 

Monitoring floating debris in particular is a logistically complex, expensive 

and time consuming operation.  Net-based methods used on board of research 

vessels have been the most common sampling approach as they give 

researchers a greater control over choosing the time and area of sampling. 

However, net-based methods are suitable for calmer coastal waters since in 

oceanic waters their operational capabilities are significantly reduced under the 

adverse weather conditions. Also they can only cover relatively small areas and 

for large scale offshore sampling due to their limited maximum operational 

speed (~ 6 Nm) would prove impractical and costly as large numbers of net 

tows are required to sufficiently estimate the average density of the floating litter 

(Ryan et al., 2010). In order to understand the dynamic and spatio-temporally 

heterogeneous processes that drive the composition and distribution of the 

floating debris at global scale a more extensive sampling in both space and time 

is required. 

In contrast to conventional net based sampling programmes with limited 

spatial and temporal coverage the CPR survey has over 75 years of archived 

samples and a network of over 50 routes sampling nearly 10,000 nautical miles 

of water every month.  In addition its sampling and analysis methods have 

remained largely unchanged since 1939 (Richardson et al., 2006) and therefore 

provides a standardised framework for spatiotemporal studies. Another 

advantage of CPR samples is the ease of their geographical traceability in that 

for each sampling unit the exact location, time and date is known therefore 

allowing for convenient and efficient investigation of temporal and spatial 

patterns. 
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However, the CPR only samples sub-surface waters and despite the 

mixing of water by the ship’s wake, it is believed that some plastic items will 

remain at the surface, only sinking lower if their overall density changes as a 

result of fouling. Though not substantiated there may also be some limitations 

on the type and amount of microplastic debris collected by CPR. This could be 

a product of the speed at which the CPR unit is towed, its rather small aperture 

size as well as the inherent patchiness of this debris in the marine waters. 

Although validation of the plankton analysts on microplastic from the examined 

samples shows good agreement with the formal identification (FT-IR) results the 

closer examination of the original records had revealed high variability in the 

analysts’ report of microplastics both in time and also between the individual 

analysts therefore requiring some data reduction before final analysis (see 

Section 2.3.3). 

Nonetheless, with the exception of laboratory based contamination which 

clearly needs corrective measures in order to be reduced (see Section 6.4) 

based on both published and unpublished results so far the advantages of CPR 

survey seem to outweigh its limitations, in particular for broad scale and remote 

offshore locations where the operational cost would be much more affordable 

compared to surface nets. 

 

6.4 Measures to reduce the procedural contamination 

 

The problem of ‘procedural contamination’ in general is a well-recognised 

issue in other areas of research with standardised protocols in place to 

minimise and control its effect. Our understanding of microplastic debris is 

grown as reflected in the increasing number of studies, at the same time so is 
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our appreciation of the limitations and subtlety of some of the procedural and 

methodological challenges that must be considered. For researchers of 

microplastic debris the problem of microplastic contaminants from sources other 

than the sampling area is even more challenging due to the widely presence 

and usage of plastic products in all aspects of today’s modern society. 

We need to build a comprehensive and harmonised body of knowledge 

not only on the raw compositional and spatiotemporal but also methodological 

to help us devise standardised protocols to be followed by the microplastic 

research community such as the recommendations by the Marine Strategy 

Framework Directive Task Group 10 published by EU (Galgani et al. 2010). 

Some of these measures may be generic and applicable more widely and some 

may be more specific and depend on the underlying question and the adapted 

sampling methodology. Appendix A lists some of the generic and specific 

measures that are believed to reduce the likelihood of ‘microplastic 

contamination’ from external sources. 

 

6.5 Future research recommendations 

 

6.5.1 Spatiotemporal patterns of floating microplastic 

 

Research presented in this thesis has confirmed the presence of 

microplastic debris in marine subsurface waters as reported in CPR plankton 

samples and also provided evidence of its higher abundance in coastal, 

compared to, oceanic waters. However to prepare for effective monitoring of 

floating plastic debris at sea more samples over larger spatial and temporal 

scales is needed in order to ensure patterns can be observed despite the large 
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heterogeneity in distribution of plastic litter at sea. This is a very challenging 

task both in terms of size and also the dynamicity of the sampling environment 

and would require the sampling programmes to be prioritised based on a goal-

oriented approach that is tailored to answer specific questions regarding the 

floating plastic litter.   

For instance if the main question is the sources of plastic litter then 

sampling of the inshore waters should be the priority for which based on 

practical field data Manta trawl would be the most suitable sampling method. 

However, if the question is focused on distribution and spatiotemporal patterns 

of the floating microplastic debris in wider oceans then CPR would be a more 

appropriate sampling method. Regardless of what sampling tools are used 

targets must be clearly defined and linked to specific legislations and mitigation 

measures. For example, if a new code of practice has been introduced to 

reduce the accidental loss of raw pellets during transport in an urban catchment, 

then a goal-oriented monitoring approach would allow for use of appropriate 

sampling methods with adequate spatial and temporal scales to assess the 

effectiveness of such measures. 

6.5.2 Identification, processing and recording of microplastic debris in 

CPR  

 

Since only fragments that differed in appearance from plankton were 

reported and identified, the amount of microplastic recorded in this research is 

likely to have underestimated the amount of microplastic in the natural 

environment. Further research is needed to investigate the applicability of novel 

identification methods such as portable FT-IR spectroscopy techniques (Sorak 
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et al., 2012; Šuštar et al., 2014) so that a more complete and efficient 

assessment can be performed. 

Although the CPR’s archived samples and its relatively unchanged 

methodology offer a promising monitoring platform, further work is needed to 

establish standardised plastic detection and ‘clean’ sample processing protocols 

in order to minimise the variability in the analysts’ reports of microplastic and 

also reduce the amount of ‘procedural contamination’ as highlighted in this 

thesis. Currently the SAHFOS analysts only report the presence and absence of 

microplastic debris during their routine examination of plankton in CPR samples. 

Further properties such as quantity, colour, size and form must also be 

recorded in order to allow for a more complete analysis of the amount and 

composition of the debris. Also ongoing training and practical workshops would  

ensure a common approach and interpretation of the microplastic composition 

in between the analysts. 

6.5.3 Vertical distribution of floating microplastic debris 

 

The persistence of floating plastic debris in water column under different 

environmental conditions is poorly understood. Knowing the degradation and 

persistence properties of different plastic types under different conditions would 

be useful for predicting its pathways and sinks and also for devising targeted 

monitoring approach using most suitable sampling methods that are most 

appropriate for the body of water and/or plastic type of interest. This information 

would also be helpful in assessing the likelihood of exposure and impact of a 

particular type of plastic on marine organisms at different trophic levels more 

accurately. 
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The data presented in Chapter 4 of this thesis provides some preliminary 

data on the amount and composition of microplastic debris as collected by 

manta trawl from surface waters and CPR from subsurface waters but only over 

a very short spatial and temporal scale. Further field and laboratory experiments 

using different types of buoyant plastics that is commonly found as litter across 

a range of marine habitats and over larger spatiotemporal scales is needed to 

better understand the effects of environmental variables such as UV radiation, 

temperature, salinity and wind on vertical distribution of floating plastic debris in 

water column. 
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Appendix 1:  

Resin types and codes of the recyclable plastics 

 

 

Recycling Code Resin Type Common uses 

 

Polyethylene terephthalate Fizzy drink bottles and 

oven-ready meal trays 

 

High-density polyethylene Bottles for milk and 

washing-up liquids 

 

Polyvinyl chloride Food trays, cling film, 
bottles for squash, 
mineral water and 
shampoo. 

 

Low/ Linear low density 

polyethylene 

Meat and poultry 
wrapping. Carrier bags 
and bin liners. 

 

Polypropylene Margarine tubs, 

microwaveable meal 

trays. 

 

Polystyrene Yoghurt pots, foam 
meat or fish trays, 
vending cups. 

 

Any other plastics that do 

not fall into any of the above 

categories 

An example is 
melamine, which is 
often used in plastic 
plates and cups 

 

 

  

http://www.clker.com/clipart-29906.html
javascript:edit(68588)
http://en.wikipedia.org/wiki/File:Resin-identification-code-6-PS.svg
http://en.wikipedia.org/wiki/File:Plastic-recyc-07.svg
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Appendix 2:  

Recommended measures to reduce contamination of field samples from 

external microplastic sources. 

 

Generic Measures 

 

 Use of non-synthetic clothing such as cotton laboratory coats and gloves 

during the sample processing 

 Use of non-plastic laboratory equipment such as glass petri dishes, 

metal tweezers, etc. when possible. 

 Thorough cleaning of the sampling device and equipment before and at 

the end of sampling day. 

 Ensuring that the exposure of the dishes used for storage of the 

specimens is kept to the minimum necessary. 

 Storage of the sampling equipment in a clean and preferably enclosed 

area in between the sampling days/sessions. 

Specific Measures - CPR 

 

Before deployment to sea: 

 Ensure that the silk roles are stored in an enclosed storage area away 

from any sources of contamination after being delivered. 

 Discard of the first section (~ 1m) of each role of silk before use. 

 Make sure that the surface area where the silk role is to be opened up 

for marking is clean (use special surface cleaner which reduces the 

dust/particle attraction) 



 

151 
 

 Ensure that when the silk is too long to fit on the table the end of it 

doesn’t fall on the floor. Use a cardboard box at the end of the table for 

the silk to fall on. 

 Ensure that the marked silk roles are stored in a clean enclosed area 

while waiting to be loaded onto CPR device. 

 Ensure that CPR device is as clean as possible from synthetic particles 

before loading of the silk role (use high pressure air to blow away any 

particles). 

After deployment from sea: 

 Once the silk role is unloaded from the CPR unit make sure it is stored in 

an enclosed are. 

 Ensure the surface use for cutting and silk preparation is clean 

 Make sure the surface and area around the microscopes are free from 

dust and particles. 

 Minimise the exposure of the silk samples to the open air by covering 

them with a glass lid when it is not being processed. 
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Appendix 3:  

Normalisation of spectral data 

 

Normalisation is used to compensate for the differences in sample 

quantity used for acquiring the database spectrum and the unknown spectrum. 

There are two commonly used methods to normalize spectral data: 

1. The dot product normalization, which essentially normalizes the 

spectrum base on the total area under the curve 

2. The scaling normalization, which normalizes the spectrum based 

on the height of the strongest peak. 

The Euclidean search normalizes spectra by the dot product method. 

This is done by dividing each data point for both the reference and the unknown 

by the square root of the dot product of its spectrum. 

The spectroscopic software, Opus by Bruker provides for a ‘Quick Identity 

Search’ test which allows to judge the similarity of two spectra. The test 

determines the Euclidean distance between the test and reference spectrum. 

Selecting the ‘Vector Normalisation’ as the data preprocessing method (as used 

in this study) will produce a report shown spectral distances compared to that of 

reference spectrum in a value range between 0 and 2 displayed as Hit Quality 

in the results section as seen here: 
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Quick Identity Test Report (source: Bruker/OPUS Reference Manual) 

 

The Euclidean Hit Quality index value is calculated by summing the square of 

the difference between each data pair. Unlike other methods such as the scaling where 

normalisation is done using only maximum and minimum data points, the Euclidean 

algorithm uses all of the data points of the spectrum. However, as the Euclidean 

distance algorithm aims at areas under the curve it is possible for certain bands in 

spectrum with broad area under curve  such as O—H to being weighted heavily 

whereas with small areas and sharp peaks such as C—N ignored or underestimated. 
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