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Abstract 

A cortical model of object perception based on Bayesian net­
works and belief propagation. 

Salvador Dura Bemal. 

Evidence suggests that high-level feedback plays an important role in visual perception by shap­
ing the response in lower cortical levels (Silliio el ul. 2006. Angelucci ;inil Bullier 2003, Hullicr 
2001, Harrison e! a!. 2(K)7). A notable example of this is reflected by ihe reiinotopic activation 
of VI and V2 neurons in response lo illusory conlours. such as Kani/.sa figures, which has been 
reported in numerous studies (Maertensei al. 200R, Seghierand Vuilleumier2006, Halgrenetal. 
200.̂ , Lee 2003. l,ee and Nguyen 2001)- The illusory contour activity emerges first in laleral 
occipital cortex (KC)C), then in V2 and linally in VI, strongly suggesling thai the response is 
driven by feedback connections. Generative models and Bayesian belief propagation have been 
suggested to provide a theoretical framework thai can account for feedback connectivity, ex­
plain psychophysical and physiological results, and map well onto the hierarchical distributed 
conical conneciiviiy {I-rision and Kieticl 20()y. Dayan el ai. l^yfi. Knill and Richards 1996. 
Geisler and Kerslen 2(X)2. Yuilie and Kersten 2006. Denevc 2008a. CJeorge and Hawkins 2009, 
Lee and Mumford 2003, Rao 2006. Lilvak and Ullman 2009, Steimer el al. 2009). 

The present study explores the role of feedback in object perceplion, taking as a starting point 
the HMAX model, a biologically inspired hierarchical model of object recognition (Riesen-
huber and Foggio 1999. Serrc cl al. 2007b), and extending it to include feedback connecliv-
ity. A Bayesian network that captures Ihe structure and properties of Ihe HMAX model is 
developed, replacing ihe classical deterministic view with a probabilistic inierpreiation. The 
proposed model approximates the selectivity and invariancc operations of the HMAX model 
using the belief propagation algorithm. Hence, Ihe model not only achieves successful feedfor­
ward recognilion invariant lo position and size, but is also able to reproduce modulatory effects 
of higher-level feedback, such as illusory contour completion, alienlion and mental imagery. 
Overall, ihe model provides a biophysiologically plausible interpretation, based on stale-of-lhe-
arl probabilistic approaches and supported by current experimenial evidence, of the interaction 
between lop-down global feedback and bottom-up local evidence in the context of hierarchical 
object perceplion. 
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Chapter 1 

Introduction 

1.1 Overview 

Visual perception is a complex and largely unexplained process, which involves making sense of 

two-dimensional ambiguous rciinal images by taking inio aecouni contextual and prior knowl­

edge about the world (l-riston 2005. HiKhstein and Ahissar 2002. Gilbert and Sigman 2007). 

Although, tradilionally, models of the visual system have focused on feedforward processes, 

il is becoming increasingly clear these are limited in capturing Uie wide range of complexities 

involved in visual perception. Keceni reviews (Carandini et al. 2005. Olshausen and Field 2005) 

suggest thai approximately only 20% of the response of a VI neuron is determined by conven­

tional feedforward pathways, while the rest arises from horizontal and feedback connectivity. 

Anatomically, feedforward sensory pathways are paralleled by a greater number of top-down 

connections, which provide lower areas with massive feedback from higher cortical areas (Felle-

man and Van Hssen 1991). Feedback terminations in the primary visual cortex (VI) arc func­

tionally organized and well-suited lo centre-surround interactions, and unlike hori/.ontal con­

nections, their spatial and temporal properties have been found to provide an explanation for 

extra-classical distal surround effects (Angelucci and Bullicr 2003). Experimcnial evidence 

shows that feedback originating in higher-level areas, such as V4, inferoiemporal (IT) cortex or 

middle temporal (MT) cortex with bigger and more complex receptive fields, can modify and 

shape VI responses, accounting for contextual or extra-classical receptive field effects (Hupe 

et al. 2001. Lee and Nguyen 2001, Murray ei al. 2004. Sillilo et al. 2006, Sterzer et a]. 2006, 

Huang el al. 2007). 

A notable example is observed in VI A'2 activity in response to illusory contours with no direct 

1 



J.I. OVERVIEW 

retinal stimulation (e.g. Kanizsa figures), as reported in functional magcntic resonance imaging 

(fMRIKMaertens el al. 2008). eleclroenceph;ilography (EEG) (Seghier and Vuilleumier 2006), 

magnetoencephalography (MliG) (Halgren el al. 2003) and single-cell recording (Lee 2003, Lee 

and Nguyen 2001) studies. The experiments show illusory contour-related activity emerging 

firsl in Lateral Occipital Corlcx (LOC). then in V2 and finally in VI. strongly suggesting that 

the response is driven by feedback (Lee and Nguyen 2(K)l, Murray et al. 2002). 

While there is relative agreement that feedback connections play a role in integrating global 

and l(K-al information from different cortical regions to generate an integrated percept (Bullier 

2001, Lee 2003). several differing approaches have attempted to explain the underlying mech­

anisms. Generative models and the Bayesian brain hypothesis provide a framework thai can 

quantitatively model the interaction between prior knowledge and sensory evidence, in order to 

represent the physical and statistical properties of the environment. This framework provides 

an elegant interpretation of how bottom-up and top-down inlbmiation across different cortical 

regions can be combined to obtain an integrated percept. 

Increasing evidence supports the proposal that Bayesian inference provides a theoretical frame­

work that maps well onto cortical connectivity, explains botli psychophysical and neurophysio-

logical results, and can be used to build biologically plausible models ofbrain function (Friston 

and Kiebel 2009. Dayan et al. 1995. Knill and Richards 1996. Geislcr and Kerslen 2002, Ko-

rding and Wolperl 2004, Yuille and Kerslen 2006. Deneve 2008a). Within this framework, 

Bayesian networks and belief propagation provide a rigorous mathematical implementation of 

these principles. Belief propagation has been found to be particularly well-suited for neural im­

plementation, due to its hierarchical distributed organization and homogeneous internal struc­

ture and operations (George and Hawkins 2009, Lee and Mumford 2003. Rao 2006, l.itvak and 

Ullman 2009, Steinier el al. 2009). 

The present study explores the role of feedback in object perception, taking as a starting point 

the HMAX model, a biologically inspired hierarchical model of object recognition (Riesenhu-

ber and Poggio 1999, Serre et al. 2007b). and extending il lo include feedback connectivity. 

By replacing the classical deterministic view with a probabilistic interpretation, a Bayesian net-



1.2. MAIN CONTRIBUTIONS 

work that captures the structure and properties of the HMAX model is described. The proposed 

model also approximjites ihe selectivity and invariance operations of the HMAX model using 

the belief propagation algorithm. Hence, the model not only achieves successful feedforward 

recoj^nition invariant to position and size, but is also able to reproduce modulatory effects of 

higher-level feedback on lower-level activity, such as illusory contour completion. 

The organization of this ihcsis is as follows. Chapter 2 reviews current evidence, theories and 

computational models of object perception. A special emphasis is placed on those that suggest 

moving from serial feedforward models towards more global and integrated approaches with 

feedback-mediated interactions between cortical regions. 

Chapter 3 introduces generative models and the Bayesian brain hypothesis, providing a signifi­

cant body of evidence that substantiates this approach. In the same chapter. Bayesian networks 

and belief propagation are described in detail, including an illustrative example. Existing com­

putational models and plausible biological and cortical implementations are also reviewed. 

Chapter 4 describes the methodology followed to develop the proposed model. This includes the 

probabilistic interpretation of HMAX as a Bayesian network, the model architecture, learning 

methods and feedforward and feedback functionality. Additionally, the chapter also describes 

several approximations and sampling methods to deal with the large scale of the network, the 

combination of information from multiple parents and the loops present in the network. 

Chapter 5 presents the simulation results for feedforward invariant categorization and feedback 

modulation, with a focus on illusory contour completion. 

Chapter 6 provides a deeper analysis and discussion of the simulation results and of the use of 

Bayesian networks lo model object perception. Additionally, this chapter describes the model 

in relation lo experimental data and to previous computational models, and suggest future lines 

of research, 

1.2 Main contributions 

The main conlnbulions of this study are as follows: 
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• A review and analysis of the literature reparding object perception, feedback connectiv­

ity, illusory contour completion, generative models, Bayesian networks and belief prop­

agation. This includes a detailed comprehensive explanation of behef propagation in 

Bayesian networks with several novel and illuslralive examples. 

• A Bayesian network implementing loopy belief propagation that captures the structure 

and functionality of HMAX, a feedforward objecl recognition model, and extends it to 

include dynamic recurrent feedback. 

• Specific approximations and sampling methods thai allow for the inlcgraiion of informa­

tion ill large-scale liaycsian networks with loops and nodes with multiple parents, 

• Demonstration that the model can account for invariant objecl categorization, mimicking 

the ventral path functionality. 

• Demonstralion that the model can account qualitatively for illusory contour formation 

and other higher-level feedback effects such as priming, attention and mental imagery. 



Chapter 2 

Object perception in the visual cortex 

This chapter is intended to provide the necessary background knowledge and context to un­

derstand the motivation and methodological approach employed in the thesis, as well as the 

relevance of the results and conclusions obtained. The work in this thesis extends an existing 

feedforward model of object recognition to include feedback. Thus, Section 2.1 describes the 

principles of object perception in the visual cortex, together with supporting experimental evi­

dence and existing computational models. Although object perception has been typically char­

acterized as a feedforward process, the crucial role of feedback connections in this process is 

now widely accepted and strongly supported by experimental findings. Section 2,2 reviews ex­

perimental evidence and theoretical interpretations of the role of feedback in the visual system. 

One of the most notable perceptual effects that has been attributed to feedback is the formation 

of subjective contours, i.e. illusory and occluded contours. The model proposed in this thesis 

offers a plausible explanation for this phenomenon and provides simulation results in support. 

The basis of subjective contour formation is therefore thoroughly explored in Section 2.3. 

2.1 Object recognition 

2.1.1 Principles and experimental evidence 

Object perception is an essential part of this thesis as it supplies the context and framework 

which is used to investigate and try to (ind answei-s to the research questions. These questions 

concern the functional role of feedback connections in the visual system, and, more precisely, 

along the object perception pathways. However, il is impractical to provide a comprehensive 

analysis of visual perception, as this is a vast area of research in itself, so this chapter is limited 

to covering the relevanl aspects for this thesis. Therefore in this section, we start by describing 
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ihe principles underlying object recognition in the visual cortex, which can be understood as 

the initial feedforward processing stage leading to fast object categorization and identification 

(Serre et al. 2007b), 

Note this section includes a general description of all the different areas involved in visual pro­

cessing and an overview of the interactions which lead to an integrated percept. However, the 

section focuses on the feedforward processing strategies which lead to rapid object categoriza­

tion, while Section 2.2 below deals specifically with feedback and the integration of information 

across the visual system. 

2.1.1.1 Hierarchical distributed organi/ution. 

The visual system is capable of transforming light falling on the retina into neuronal electrical 

signals, which give rise lo subjective visual perceplion. This is usually achieved in time periods 

measured in milliseconds, bm requires complex information processing and encompasses sev­

eral stages of analysis across many different regions. The macaque visual system, for example, 

has been classified into 32 distinct areas interconnected via over 300 reciprocal anatomical path­

ways (Felleman and Van Essen 1991), shown in Figure 2.1a. These areas have a hierarchical 

organization starting at the lateral geniculate nucleus (LGN), ascending through primary visual 

cortex (VI) and finishing in higher cortical structures. Kach of these areas is considered to be 

functionally specialized, and embodies in itself a set of subdivisions (e.g. 6-layer cortical struc­

ture). Two major parallel processing streams have been identified in the visual hierarchy: Ihe 

dorsal or where stream, and the ventral or w/wi/ stream, schematically represented in F-igure 2.1b 

(Van lissen and Gallant 1994). 
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The dorsal stream originates in the magnocellular layers of the retina and LGN, then projects 

onto magno-dominated regions of VI and upwards into the tliiclc regions of secondary visual 

cortex (V2). A high incidence of cells selective for direction of molion have been found in 

lliesc regions, The subsequent exlrasiriaie areas involved are medial temporal (MT) cortex, and 

medial superior temporal (MST) cortex, considered to be responsible for several motion analysis 

processes. These in lum project onio the poslerior parietal (PP) cortex involved in higher level 

funclions such as analyzing spatial relations and controlling eye movements. Overall the dorsal. 

or where pathway, which spreads along the parietal cortex, is mainly concerned with space, 

movement and action (Van Bssen and Gallant 1994). 

On Ihe other hand, the ventral stream, or what pathway, is mostly concerned with object identi-

licalion and perception. It encompasses the blob-dominated (BD) and the intcrhlob-dominated 

(ID) parallel streams, both of which receive input mainly from parvocellularand koniocellular 

neurons in subcortical regions. The BD stream, which mediates color perception, originates in 

ilie blob compartments of VI and feeds to the thin stripe regions of V2. The ID stream, respon­

sible for form perception, projects from inter-blob compartments of VI onto the inter-stripe 

regions of V2. Both streams converge onto the extrastriate regions V4 and IT cortex, which are 

associated with high-level funclions of pattern recognition (Van Essen and Gallant 1994). 

The complex interactions which exist between these two parallel processing paihways are still 

not well understood (Van Essen and Gallant 1994, Nassi and Callaway 2IX)9). To make things 

Caption for Figure 2.1. a) Hierarchical siniciure of areas involved in visual professing in ihe macai|ue, TTie 
diagram shows .12 different areas linked by 187 connection.s. ilie majoriiy of which are reciprocal paihways. [i high­
lights [he complexity and imricaLe inierdependency iif regions in ihe visual system (F-elleman and Van Essen I9yi). 
b| [•iineiional schematic representaiion of ihe Iwo hierarchical parallel visual pn)cessing sireams (veniralAiViiK and 
dimM/where) in die macaque. Bo\es represent visual regions, while lines represent ihe main cimnection pathways 
(usually bidirectional). Icons represent typical physiiilogical and functional properties allributed to each region. The 
where path originates in the magnocellular layers of Ihe retina and UON (gray), then projects iiniii magno-dominated 
regions i>f VI iind upwards into the thick regiiiii.s of V2 (reil). Cells in these regions typically show selectivity to 
direction of motiim. The subsequent exu'aesiriaie areas involved are MT and PP (red), responsible for several mo-
lion analysis processes. These in lum project onto the PI* cortex (orange) involved in higher level functions such as 
analyzing spatial relations and controlling eye mnvemenis. The what path encompasses the blob-dominated (BD) 
Iprcen) and the inierbiob-dominaleiJ (ID) (blue) parallel streams, both of which receive input mainly from parvocel-
lular (P) (pink) and konioceDular (K) (yelhwi neurons in subcortical regions. The BD stream, which mediates color 
perception, originates in the blob compartments of V! and feeds lo the thin stripe regions of V2. The ID stream, 
responsible for form perception, projects from inter-blob companments of VI onto intet-stripe region,s of V2, Both 
streams converge onto the extraesiriate regions V4 and IT cortex which are associated with high-level funclions 
o( pattern recognition [Van Es.sen and Gallant I 'W). Pathways are partly based on anatomical information from 
I'eMenuiii and Van Lssen (1991), represented in ligure a). Note colors in a) do not correspond with colors in b). 
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2.1. OBJECT RECOGNITION 

even more complicated, there are also direct connections between regions separated by several 

hierarchical levels, such as VI and MT (Felleman and Van Essen 1991). Further, each region 

may perform different visual processing functions at different times, requiring an iniricale flow 

of information spanning multiple conical areas (Bullier 2001, Leeet al. 1998). How this infor­

mation is combined to generate a global percept, particularly for object perception, is discussed 

in Section 2.2, and is one of the key elements of this Ihesi.s. Therefore it is vital lo provide a 

prior deeper analysis of the properties observed along the ventral processing stream. 

2.1.1.2 Receptive fivid Kt-lectivity and invariant-c. 

One of the main properties of the visual hierarchy concerns the selectivity of neurons at each 

level. The receptive lield. or the stimulus which elicits the maximum response of a neuron, 

shows progressive increases in size and complexity a.s one ascends in the hierarchy (l-'igure 2.2). 

Lateral geniculate nucleus (LG>ri cells, which receive retinal input, respond to stimuli within 

relatively small concentric receptive fields with a center-surround organization. Within the vi­

sual system, LGN neurons are those whose response is better captured by existing models, even 

when using complex stimuli. These models have progressively been extended to include both 

linear and nonlinear components and gain-control mechanisms, as described later in this section. 

However, although these manage lo predict a number of nonlinear phenomena (Carandini et al. 

2005), they still fail to capture response properties emerging as a consequence of contextual 

modulation. 

This is not surprising, firstly because even retinal cells, which project onto LGN and have 

been conventionally treated as simple prefilters for visual images, appear to be engaged in more 

complex compuialions, .such as global motion detection (Gollisch and Meister 2010). Secondly, 

most LGN models focus on these feedforward retinal connections, which only account for ap­

proximately 15 % of the LGN cell input, whereas feedback connections, presumably involved 

in contextual processing, can account for over 30 % of iheir synaptic input, 

VI presents a much wider and more complicated distribution of receptive fields than retina and 

thalamus. Neurons in VI can respond selectively to a variety of visual input attributes such as 

line orienlalion, direction of movement, contrast, velocity, colour, and spatial frequency. These 
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properties arise from retinal ganglion cells and LGN cells, which also exhibit some selectivity 

to contrast, velocity, colour and spatial frequency, V1 neurons with similar tuning properties 

lend to group together, leading t(i Ihe classical columnar organization of ocular dominance and 

orientation preference in cortex (Hubel and Wiesel 1965). 

Hubel and Wiesel (1965) were the first to propose the hierarchical organization of receptive 

tields, such thai VI simple cells are built from converging LGN cells aligned in space to pro­

duce the elongated on-off subregions observed. Additionally, the model provided the first clas­

sification of VI ceils, dividing them into simple and complex. Cells fell into the simple category 

if their receptive fields could be separated into on and off subregions, which could be linearly 

summaled to predict the cell's response to different artificial stimuli. The re,st of the cells, which 

did not have separate subregions, were categorized by exclusion as complex cells. However, the 

majority of VI cells fall into die complex category. As will be described further down, there are 

also numerous variants within the simple and complex categories. 

Several extensions improved the initial Hubel and Wiesel receptive held model of VI neurons. 

l-irstly, the linear filler was expanded to include a temporal dimension. Spatiolemporal receptive 

fields not only lake into account the spatial profile, but also the temporal course of the response, 

and have proved to be crucial in understanding direction selectivity. This first filtering stage 

was .shown to be well approximated by 2-dimensional Gabor filters (Jones and Palmer 1987). 

Secondly, a nonlinear stage was added, which described how the linear filter outputs were trans­

formed into an instantaneous firing rate via a nonlinear Poisson process. The two-stage model 

was therefore called the linear-nonlinear (l.N) model and provided a much better prediction of 

neuron responses than strictly linear lilters, specially for retina and thalamic cells (Carandini 

elal.2(M)5). 

Nonetheless, the model still had significant limitations (Ringach 2004). It was unable to account 

for the dependence on contrast of several response properties, such as saturation and summation 

size. For example, the greater the contrast of the stimulus, the smaller the degree of spatial 

summation, and thus the receptive field size. Furthermore, the LN model could not explain 

surround suppression, such as stimuli at an orthogonal orientation inhibiting the cells' response. 

10 
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This led to an additional extension of the model to include gain control mechanisms, such that 

the output of the linear filler is divided by the overall activity of a normalizauon pool. The 

normalization po<il typically includes cells in the near surround, but is not limited to those with 

similar tuning profiles, thus providing a normaiizaiion mechanism, which solved many of the 

previous limitations. 

With respect to complex cells, the characterization of their receptive fields is less well under­

stood and is still a topic of debate. Most models are derived from the original Huhel and Wiesel 

proposal and therefore assume complex receptive fields arise from combining the linear filters 

of a group of converging simple cells tuned to the same orientation. The most widespread ex­

ample of this type of circuit is known as the energy model, which consists of two phase-shifted 

linear fillers, tuned for orientation and spatial frequency, arranged in quadrature. The output of 

the filters is squared and then summed together to produce the response. Thus, the response will 

be high not only for images resembling Ihe filters, but also for their inverses (Ringach 2004). 

A recent study by Sasaki el al. (2010) analyzed the structure and and spatial relationship be­

tween the internal subunils and the overall receptive fields of complex cells. It concluded that 

complex eel! subunils cannoi be considered equivalent lo simple cells, suggesting ihai complex 

cell receptive fields are constructed by a more a elaborate combination of linear filters than that 

proposed by Hubcl and Wiesel. Alternative and more successful models of complex eel! re­

sponse, such as the spike triggered rovariance analysis, provide a more accurate prediction of 

the ceirs response to orientation and direction. This model is able lo identify the dilTerent sub-

units present in the complex cell receptive field and quantify ihcir contribution to the response 

of the cell (Carandini et al. 2005). 

However, all existing models have been strongly influenced, and perhaps wrongly biased, by 

the original hierarchy model with two distinct neuron categories. As an allemaiive, it has been 

suggested thai receptive fields in V1 lie along a continuum spectrum, with simple and complex 

cells at each end, allowing for additional cell types which would share properties of both simple 

and complex categories (Ringach 2004). A recent study, slill in a preliminary stage, further 

challenges the classical model by suggesting cell response properties are a function of the type 

I I 
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of input employed (Frcgnac 2010). Results showed the same neuron could exhibit simple or 

complex properties depending on whether the images presented dense or sparse noise. 

It can ea.sily be concluded that many crucial elements are still missing from current models of 

VI response. Estimates suggest only 35% of the variance in natural images can be accounted 

for (Olshausen and Field 2005). A general point of agreement indicates the necessity to move 

Ireyond botlom-up filtering models to incorporate top-down feedback modulation as one of the 

basic components in any model of visual perception (Lee 2003, Olshausen and Field 2005, 

Carandini el al. 2005). This is not an easy task, a.s the response of neurons in higher visual 

processing areas is still very ptiorly understood. 

The response properties of neurons in V2, which receive projections from area VI. are not 

nearly as well documented, and il is therefore uncerUiin what type of stimuli cause V2 neu­

rons to respond optimally. Nonetheless, Hegde and Van Kssen (2(X)7) studied the responses of 

a population of V2 neurons to complex contour and grating stimuli. They found .several V2 

neurons responding maximally for features with angles, as well as for shapes such as intersec­

tions, tri-stars, fivepoint stars, circles, and arcs of vailing length. Additionally, the receptive 

field sizesofV2 cells are approximately twice the size of those of VI. For example, at a retinal 

eccentricity of 2°, V1 receptive field size is -̂  2" of visual angle, while V2 receptive held size 

is "- 4" (Angelucci el al. 2(X)2). This is consistent with the hierarchical increase in the receptive 

lield size and complexity proposed at the beginning of this section. Crucially, the increase of 

RF size implies a decrease in spatial resolution, which is a key aspect of the modelling study in 

this thesis. 

Our current understanding of response selectivity in V4 neurons is also congruent with the hier­

archical increase in size and complexity (Hegde and Van Fssen 2(X)7). However, at this level il is 

more difficult to characierize the exact receptive lield of neurons, as these exhibit a wider range 

of preferred stimuli, and .stronger invariance to stimulus transformations. Nevertheless, lesions 

of V4 in the macaque have caused impairments in pattern discrimination tasks (Van Hssen and 

(iallani 1994). Further studies have shown V4 neurons can be tuned to shapes with specific 

type of boundary conformation at a given position within the stimulus, e.g. concave curvature 
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Figure 2.2: Idealized represeniaiinn of the increase in receptive field size and complexity, from 
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ger and exhibiting more complex spatial profiles ih;in in VI. Top-right: Schematic 
representation of large and invariant receptive liclds in IT associated with ohjecis, 
such Hi, laces. 

al the right, while being insensitive to other pans of the shape (Pasupathy and Connor 2001), 

Responses showed invariance to local transformations, such as small translations. [';istipathy 

and Connor (2002) also demonstrated how complete shapes were characleiized as aggregates 

of boundary fragments represented by populations of V4 cells. This speaks for a representa­

tion of a complex stimulus in terms of its constituent parts. Therefore it can be argued that V4 

response profiles roughly resemble shapes or small objecl parts of different complexities. 

In the pritnatc IT cortex neurons have been found to be selective to view-dependent repre­

sentation of complex two-dimensional visual patterns, or objects such as faces or body parts 

(Logothetis el al. 1994, 1995). However, the way in which Ihc objects are represented in IT 

is still an active area of research. Some results suggest objects are represented by a combina­

tion of cortical columns, each of which represents a visual feature, as depicted in Figure 2.3a. 

Others indicate not all columns are associated with a particular feature. A simpler object can 

sometimes be encoded by activating cortical columns that were not active for the more complex 

one. This suggests instead that objects arise as a combination of active and inactive columns, 

following sparse coding strategies (Tsunoda et al. 2001). Sparse coding refers to a type of neu­

ral code where each item is represented by the strong activation of a relatively small .subset of 
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Figure 2.3: a) Rcprcsenlalion of complex objects in IT area, through the activation of cortical 
columns. In this example, simplified stimuli (cat's face silhouette) elicit only u 
subset of the regions evoked by the complex stimuli (complete cm) Tsunoda et al. 
(20()l). b) Selectivity of cells in IT to different spatial arrannenientN of the parts 
of an object image. This suggests the spatial arrangement of object parts is also 
represented in IT (Yamane et al. 2006). 

neurons. This could be related to llie hierarchical categorical representation of IT populalions, 

demonstrated recently by Kiani et al. (2007). In this study, cluster analysis was employed to 

show that IT populations' responses reconstruct part ol" our intuitive category structure, such as 

the global division into animate and inanimate objects, or faces which clustered into primate 

and non-primale faces. 

Interestingly. Yamane el al. (2006) found neurons were sensitive to a particular spatial arrange­

ment of ihe parts, which suggests an encoding of the spatial relationship between object parts 

(Figure 2.3b). The counterpart of the primate's IT in humans is thought to be the lateral occipi­

tal complex (LOC), which also exhibits a feature-based representation of Ihe stimulus (Tanaka 

1997). It has been associated with the representation of object parts (Hayworth and Biederman 

2006), as well as wilh higher-level functions such as the perception of 3D volume from 2D 

shapes (Moore and tingel 2001). 

Invariance to certain transformations of the input image also appears to be a prominent prop-
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erty of higher-level neural responses. Population responses in IT have been shown to provide 

informalion about the identity and category of a novel object, generalizing over a range of posi­

tions and scales (Hung et al. 2005). Similar studies also show response invariance to the angle 

of view, and to intra-category identity (Hoffman and Logothetis 2009). Recently. Rust and 

DiCarlo (2010) demonstrated thai both selectivity and invariancc increased from V4 lo IT. In 

general, higher levels in the perceptual hierarchy achieve higher degrees of invariance, such as 

view-invariant recognition of objects by interpolating between a number of stored views (Logo­

thelis et al. 1994). Strikingly, Quiroga el al. (2005) demonstrated how neurons in hippocampus 

were able to respond selectively to more abstract concepts, such as 'the actress Halle Berry'. A 

particular neuron responded lo drawings of her, herself dressed as Caiwoman (a role she played 

in a movie), and lo her written name. However, invuriance lo these attributes demonstrates an 

invariance beyond visual features. 

2.1.2 Theorellcal and computational models 

Many cojnpuiational models of object recognition exist in the literature. These can be divided 

into two broad categories: object-based and view-based. In ihe first group of models, the recog­

nition process consists of extracting a view-invariant description of the object's structure which 

can then be compared to previously stored object descriptions. This can be done, for example, 

by decomposing the object into basic geometrical shapes which allows the structure of the ob­

ject to be extracted independently of the viewpoint. The second category of models assumes 

objects arc represented as a collection of view-specific features. The different views correspond 

to different image-based appearances due, for example, todilTerent viewpoints or illuminations. 

These models usually rely on higher visual areas interpolating between several view-luned units 

10 create a view-invariani or object tuned response. 

In this section, only those models relevant to this thesis are outlined. In particular the focus 

is placed on hierarchical view-based feedforward models constrained by the anatomical and 

physiological properties of the ventral path. These models usually span several regions of ihe 

visual cortex and therefore their biological realism is usually restricted to the network level of 

description. 
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2.1. OBJECT RECOGNITION 

2.1.2.1 HMAX / 'The Standard Model' 

In 1999, Riesenhuber and Poggio presented a landmark paper describing the fundamental ele­

ments of object recognition models in the visual .system (Riesenhuberand Poggio 1999). These 

principles were exemplified in a computalional model, HMAX, also known as the .-iiandani 

model. It was labelled standard as it attempts to consolidate in a single model many of the 

widely accepted facts and observations in the primate visual system (more specifically, the ven­

tral path). It has subsequently been employed to simulate other phenomena such as attention 

(Walther and Koch 2007). biological motion (Giese and Poggio 2003) and learning using spike-

lime dependent plasticity (STDP) (Masquelier and Thorpe 2010)- it is also the backbone of the 

architecture used for the model in this thesis, and for that reason il will be described in greater 

detail in this section. 

The HMAX model attempts to reproduce activity and functionality observed along the ventral 

visual pathway, comprising areas VI, V2, V4 and IT. Tlte model is based upon widely accepted 

basic principles such as the hierarchical arrangement of these areas, with a progressive increase 

in receptive field size and complexity of preferred stimuli, as well as a gradual build-up of 

invariance lo position and scale as we move further up the hierarchy. These concepts have been 

described in Section 2.1. 

Several versions of the model have been published, although they all share the same underlying 

structure. It usually comprises three different levels representing V1. V2/V4 and FT. which are 

subdivided into two layers, simple and complex. Figure 2.4 shows a schematic representation 

oflhcHMAX model including Ihc different types of units and operations, and the mapping onto 

the visual cortex. 

Two operations are performed in aliemaling layers of the hierarchy: the invariancc operation, 

which occurs between layers of the same level (e.g. from SI to CI); and the selectivity operalion 

implemented between layers of different levels (e.g. from CI lo S2}. 

Invariance is implemented by applying the max function over a set of afferenis selective lo the 

same feature but with slightly different positions and sizes. Thus, the respimse of a complex 
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Figure 2.4.- Schematic representation of the HMAX niottcl (right) with tentative mapping over 
the ventrul stream in the primate visual corlex (left). Tlic model attempts to repro­
duce activity and funciiimality nhserved along the ventral visual pathway, com­
prising areas V i , V2, V4 and IT. The model is based upon widely accepted basic 
principles such as the hierarchical arrangement of these areas, with a progressive 
increase in receptive held size and complexity of preferred stimuli, as well as a 
gradual build-up of invariance to position and scale as we move further up the hi­
erarchy. Two operations are performed in alternating layers of (he hierarchy; the 
invariance operation (the max function over a set of alTerents selective to the same 
feature) whicli occurs lietween layers of the same level .e.g. fromSl toCI (dotted 
circles and arrows); and the selectivity operation (a template-matching operation 
over a set of afferents luned to different features) implemented between layers of 
dilferent levels, e.g. from CI to S2 (plain circles and arrows). The main route to 
[T is denoted with black arrows, and the bypass route is denoted with blue arrows. 
Colours indicate the correspondence between model layers and cortical areas. The 
table (right) provides a summary of the main properties of the units at ihe differenl 
levels of the model (Serrc et al, 2007b). 
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unit will be equivalent to the response of the afferent simple unit with the highest value. If any 

of the simple units within the complex unit's spatial pmtling range is activated, then the complex 

unit will also emit an equivalent response. This means complex units achieve a certain degree 

of invariance to spatial translation and scale. 

Selectivity is generated by a template-matching operation over a set of afferents tuned to differ­

ent features, implemented as a Radial Basis function network (Bishop 1995). First, a dictionary 

of features or prototypes is learned. Each prototype represents a specific response configura­

tion of the afferent complex units from the level below, feeding into the simple unit in the level 

above. Each simple unit is then luned to a specific feature of the dictionary, eliciting the max­

imum response when the input stimuli in the spatial region covered by the unit matches the 

learned feature. The response is determined by a Gaussian tuning function which provides a 

similarity measure between the input and the prototype. The malhematical formulation for both 

the selectivity and invariance operations is described in Section 4.4. 

With respect to the implementation of the tup level, in the first proposed model (Riesenhubcr and 

Poggio 1999) this was described as a set of view-tuned units connected to the output of the C2 

layer The weights were set so that the center of the Ciaussian ass(K;iated with each view-tuned 

unit corresponded to a specific view of an input image. More recent versions have employed 

C2 features as the input to a linear support vector machine (Serre el al. 2005b, 2007c). or have 

implemented an additional unsupervised S,1/C3 level analogous to the intermediate level (Serre 

et al. 2005a), In one particular implementation the model was extended to include an additional 

supervised S4 level trained for a categorization task, possibly corresponding to categorization 

finiis in prefrontal cortex (Serre el al. 2007b,a), A further extension, consisting of two extra 

sublevels S2b and C2b, has enabled some of the models to account for bypass routes, such as 

direct projections from V2 to IT which bypass V4 (Serre et al. 2005a. 2007b.a). 

Learning in the model lakes place at the top level in a supervised way, while at the intermediate 

levels the feature prototypes are learned in an unsupervised manner. The model implements 

developmenlal-like learning, such that units store the synaptic weights of the current pattern of 

activity from its afferent inputs, in response to the part of image that falls within its receptive 
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field. The model simulates the temporal variation in the input images (motion) during learning 

by generalizing the selectivity of the unit to units in the same feature map across scales and 

positions. Furthermore, a recent study showed how -.pike-time dependent plasticity could be 

used to generate the selectivity weights between layers CI and S2 (Masqueiier and Thorpe 

2007). 

On ihe other hand, learning is not explicitly implemented at the bottom level, as the filter re­

sponses are hard-wired. These were initially characterized as derivative of Gaussian functions 

(Riesenhuber and Poggio 1999). In later versions (Serre et al. 2007c,b.a, 2005a) they were re­

placed by Gabor functions and the receptive field size and pooling parameters of the lower and 

inlerniediale levels were more closely tuned to anatomical and physiological data (Serre and 

Riesenhuber 2004). 

It is importanl lo emphasize the relation between the HM AX model and neurophysiology. With 

respect to the response of units at different levels, the Gabor filler has been shown lo provide a 

good fit with data from cal striate cortex (Jones and Palmer 1987). Moreover, the model param­

eters were adjusted so thai the tuning profiles of SI units match those of VI parafoveal simple 

cells in monkeys. Further adjustment of the pooling parameters resulted in the tuning proper­

ties of SI and CI units being in good agreement with physiological data on simple and complex 

cells. This provides realistic values for Ihe receptive lield size, spatial frequency and orienta­

tion bandwith of the lower level model units (Serre and Riesenhuber 2004). Nonetheless, it is 

still a very simplified account of VI neuron properties. For example, the model doesn't make 

any distinction between Ihe parvocellular and magnoccllular streams and ignores VI neurons 

concentraled in layer 4C beta which lack orientation specificity. 

Similarly, the S2-C2 hierarchy was shown to produce both selectivity and invariance thai matches 

observed responses in V4 (Cadieu el al. 2007), Regarding the top-level units in the model, these 

present bigger receptive fields and are tuned to complex composite invariant features, which are 

consistent with the so-called view-luned cells present in ihehigherlevelsof Ihe ventral pathway, 

such as the IT cortex (Hung el al. 2(H)5, Serre ei al- 2007a.c). 

The two operations performed in Ihe model, max for invariance and Gaussian-tuning for selec-
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tivity, stem from the original Hubel and Wiescl proposal (Hubel and Wiesel 1965), and have 

been supported by posterior physiological findings. Neurons in area V4 in the primate {Gawne 

and Martin 2002} and complex cells in the cat visual cortex (Lampl et al. 20(>4) have both been 

found to show responses that can be predicted relatively well by the nave operation. In the latter 

study, when optimal and non-optimal bars were presented simultaneously, the response of the 

complex cells closely resembled the response when the optimal stimulus was presented alone. 

A recent study (Masquelier et al. 2007) demimstrales the plausibility of this mechanism, by 

learning complex cell invariance from natural videos. For the selectivity operation, a normal­

ized dot product operation followed by a sigmoid function has been suggested as a biologically 

plausible implementation (Serre et al. 2005a. 2(K)7c). 

Although HMAX is a relatively abstract model, several attempts have been made to show its 

validity al a lower level of description. The max operation, which achieves invariance. has 

been shown to be implementahlc by different biologically plausible circuits, the most likely 

being the cortical microcircuits consisting of lateral and recurrent inhibition (Yu el al. 2002). 

Interestingly, a similar study (Kouh and Poggio 200X) extended the previous results showing 

how the two distinct neural operations, selectivity and invariance, were approximated by the 

same canonical circuit, involving divisive normahzation and nonlinear operations. The circuit 

was based on neurophysiological dala suggesting Ihc existence of a basic cortical structure 

similar wilhin and across different functional areas. At the biophysical level of description, 

Knoblich et al. (2007) propo,sed a detailed model that could approximate the HMAX operations, 

based on standard spiking and synaptic mechanisms found in the visual and barrel cortices. 

Their model was shown to implement both the invariance and tuning operations, satisfying 

the timing and accuracy constraints required to perform object n^ognition in a biologically 

plausible manner. 

Taken as a whole the HMAX model provides useful insights into how ihe selectivity and invari­

ance properties observed along the ventral path can be gradually built. It is grounded on widely 

accepted neurophysiological principles, such as a hierarchical increase in receptive field size 

and complexity. The model provides a relatively good fit to VI cells' tuning paraineters and 
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shows high level responses that are consistent with our current knowledge of extrastriate cortex 

fundionalily. These responses reproduce V4 shape selectivity distributions and predict human 

performance during a rapid categorization task. 

The model also has several serious limitations. Firstly, the framework relies entirely on a feed­

forward architecture, ignoring many connections which are known lo exist along the visual 

pathways. Both long-range horizontal and feedback connections are likely to play an important 

role in modulating and iniegrating information across cortical regions. To what degree these 

are involved in early stages of immediate object recognition is still an open question (Hochsidn 

and Ahissar 2002. Lee 2003). Secondly, ai present the model only provides a static account 

of the recognition process, i.e. each umi pr(xluces a single response for a given input image. 

This clearly doesn't capture the complexity and dynamics of neural compulations in cortex, 

and omits challenging aspects, such as the temporal evolution of responses and the interplay 

between excitation and inhibition to achieve stability. Thirdly, learning in the model occurs of­

fline during an initial training stage, and assumes a set of hard-wired features in the lowest level 

(SI), The model could be improved by adding online learning and adaptation mechanisms, 

such as Hehbian or spike-time-dependent plasticity, and possibly learning S1 tuning profiles in 

an unsupervised manner. 

2.1.2.2 Neocognitron 

Previous to HMAX, Fukushima had proposed iheNeocognilron model (I'ukushima 1988) which, 

due to its functional similarities, can be considered one of HMAX's predecessors. The model 

consists of a hierarchical network thai can be trained to peri'orm object recognition based on the 

similarity in shape between patterns. Recognition is not affected by deformation, changes in 

size or shifts in the position, thus resembling the invariance properties captured by IIMAX and 

present in the visual system. Similarly, each level of the network consists of simple cells, which 

extract the features; and a layer of complex cells, which allow for (he invariance properties by 

pooling over a group of simple cells. 

The main attribute thai differentiates the previous two mcxlels is the nui.r operation intr<xluced 

in HMAX complex layers as a new pooling mechanism. This allows HMAX to isolate the 
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response from the feature of interest from irrelevant background activity, increasing the recog­

nition robustness to translations, scaling and clutter. I'unhermore, the Neocognilron places a 

stronger focus on pattern recognition and less emphasis on capturing the anatomical and physi­

ological constraints imposed by the visual system. 

2.1.2.3 Fmgment-bascd hierarchies 

llllman (2007) proposes representing objecls within a class as a hierarchy of common image 

fragments. These fragments are extracted from a training set of images based on criteria which 

maximize the mutual information of fragments, then used as building blocks for a variety of 

objects belonging to a common class. The fragments are then divided into different types within 

each class of object, e.g. eyes, nose, mouth etc. for face recognition. During classilication, the 

algorithm then selects the fragment of each type closest to the visual input following a bollom-

up approach. Kvidence from all detected fragments is combined probabilistically to reach a 

final decision. By using overlapping features with different sizes and spatial resolutions, the 

model is able to achieve a certain degree of position invariance. Later versions of the model 

also include lop-down segmentation processes, which are beyond the scope of this chapter. 

The fragment-based method introduces several novelties in relation to previous feature-based 

approaches: object fragments are class specific, are organized into fragment types with vary­

ing degrees of complexity, and employ new learning methods to extract the most informative 

fragments. However, the model is derived from computer vision approaches, hence relating 

to the visual system only al a very abstract level. Some basic principles of hierarchical ob­

ject recognition are captured and the author puts forward psychophysical and physiological 

evidence suggestive of class specific features emerging in the visual system during category 

learning. Feature tuning is not based on physiological data (e.g. VI features arc richer than the 

standard model suggests), connectivity is not derived from cortical anatomy but from the image 

fragmcnialion process, and a biologically plausible implementation of the model operations has 

not been demonstrated. 
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2.1.2.4 Visnet 

The model (Wallis and Rolls 1997. Rolls and Milward 2000) comprises a series of competitive 

convergent networks organized in four hierarchical layers. The networks allows neurons to 

learn combinations of features (hat occur in a given spatial arrangement. The feedforward 

connections converging on a cell at a given layer originate from a small region of the preceding 

layer, hence allowing an increase of the receptive field size through the layers. Most importantly. 

a modified Hebb-like learning rule called the trace rule, allows neurons lo achieve invariance to 

several transformations, analogously to IT cortex neurons. 

The trace learning rule incorporates a decaying trace of each cell's previous activity, hence 

adapting synaptic weights according not only to current firing rates, but also to the firing rales 

elicited by recently seen stimuU. By studying natural image statistics, it is easy to conclude 

that slowly changing input over a short period of time is likely lo belong lo the same object. 

Therefore, by presenting sequences of gradually transforming objects, the cells in ihe network 

learn to respond similarly to all the natural transformations of an object. 

In contrast lo the Neocognitron and HMAX. which employ different mechanisms to attain in-

variance and seleclivity. Visnel manages to resolve bolh using an homogeneous archilecture. 

This is achieved by implementing the trace rule, a biologically plausible self-organizing com­

petitive learning method. 

One of the main limitations of the model is that il has been trained and tested with relatively 

few stimuli, compared to other models such as HMAX. The later version of the model, Visnel2 

(Rolls and Milward 2000). increased the number of stimuli in the dataset, although il was still 

limited to images of faces and only invariance to translation (face? at different locations) was 

tested. 

2.1.2.5 Slow Feature Analysis 

This method, introduced by Wiskoil, allows the model to extract a set of invariant or slow-

varying features from temporally varying signals. It can be used lo build simple models of 

object recognition in the visual cortex., by constructing a hierarchical network of these slow-
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feature analysis modules. Results show this type of network can learn invariance to translation, 

size, rotation and contrast, achieving good generalization to new objects even using only a small 

training datasel (Wiskott and Sejnowski 2(H)2, Malhias et al. 2008). 

The slow feature principle is closely related to the trace rule employed in the Visnet model 

(Rolls and Milward 2000) previously described. In contrast, the main advantage of slow feature 

analysis is thai it is not limited to extracting a single invariant representaiion. i.e. object iden­

tity, but also maintains a structured representation of other parameters such as object position, 

rotation angles and lighting direction. 

2.2 High-level feedback 

The previous section acts as an introduction to the visual system and in particular to object 

recognition. This provides the context to discuss the role of high-level feedback in percep­

tion, exposing many of the phenomena which remain unexplained and challenging some of the 

existing classical concepts. To avoid misinterpreialion, wc define feedback as activity origi­

nating in a high-level region targeting a lower-level region, which therefore excludes inlralevel 

inlerluminar activity. 

2.2.1 Experimental evidence 

2.2.1.1 Anatomical pcrspeclivc 

From the anatomical point of view, feedback connections extensively outnumber feedforward 

sensory pathways (Felleman and Van Essen 1991, Macknik and Marlinez-C'onde 2007). The 

great majority of connections between regions shown in Figure 2. la are reciprocal, which pro­

vides lower areas with massive feedback from higher cortical areas. For example, cat LGN 

intemeurons receive 25Cf of their inputs from the retina, while 37% come from cortex; for 

LGN relay cells, the corresponding percentages are 12% and 5S% (Montero 1991). The same is 

true for thalamic relay nucleus (TRN), which mediates the transfer of information to the cortex, 

where Ihe largest anatomical projection is from connections of cortical feedback and not die 

ascending collaterals of relay cells (Sillito and Jones 2008). For LGN relay cells it is generally 

believed that feedback exerts a mtnluiatory influence, whereas cortical feedback to TRN is more 
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likely to drive cell responses. Synchronized feedback from layer 6 cells is likely to exert rapid 

and very strong effects on TRN cell responses. Sillito and Jones (2008) argue this might be a 

consequence of the greater proportion of AMPA receptors thai are found on TRN cells vs. relay 

cells. 

In the primate area VI it has been estimated that less than 2% of the synaptic input to layer 4Ca 

originated from the magnocellular layers t)f the LGN, and lielween 4% and 9% of synaptic input 

to layer 4Cb originated from the parvoccliular layers of Ihc LGN Peters ct al- (1994). Despite 

these astonishing facts, which suggest feedback must have an important role in cortical function, 

feedback connections have been largely ignored, or considered to play a minor function, until 

recent years. 

li has been suggested thai the massive feedback versus feedforward connectivity ratio docs not 

necessary imply feedback connections are functionally more relevant. Macknik and Marlincz-

Condc (2007) argue that because higher visual areas are more selective than lower visual ar­

eas, they require larger connectivity to fill the entire lower-level feature space. Otherwise they 

would impose higher-level receptive licld properties on the lower level. For example, for each 

unnricnted thalamocortical feedforward projection, there must be many differently oriented cor­

ticothalamic feedback connections to represent the entire orientation space at each retinotopic 

location. Otherwise. I.GN receptive fields would show a substantial orientation bias. This 

suggests the relative large number of feedback connections would be necessary even if their 

functional role was limited in comparison lo that of feedforward connections, e.g. if feedback 

was limited to aiteniion;il modulation. 

Macknik and Martinez-Conde {2009} further argue for a weaker and more modulatory role 

for feedback connections than initially suggested by anatomical considerations, based on the 

following three argumonls. Firstly, whereas ihe thalami>corlical feedforward connections may 

be poieniially active irrespective of stimulus orientation al a given time, only a small fraction 

of the corticothalamic feedback connections (e.g. a specific orientation) will be functionally 

active. Secondly, the no-sirong-loops hypothesis states that neural networks can have feedback 

connections that fonn loops, but they will only work if the excitatory feedback is not too strong. 

25 



2.2. HIGH-LEVEL FEEDBACK 

Thirdly, physiological findings, some of which are described further on in this section, indicate 

feudback plays a modulatory rather than a driving role. 

A number of clarifications and remarks on Macknik's theory are now described. Firstly, ii is 

impohani lo make clear that the feedforward projection from an unoriented LtiN cell to several 

VI oriented neurons consists of a single axonal fibre which branches at the end to make the 

different synaptic connections. However, each VI neuron requires an individual axona! fibre to 

feedback to the original LGN neuron. Thus, although the number of feedforward and feedback 

synaptic connections is etjuivaienl, a larger number of feedback axonal (ibrcs is required. The 

explanatory diagram included in figure 81.3 in Macknik and Martinez-Conde (2009) shows a 

one-to-one relationship between feedforward and feedback connections (depicted as arrows), 

which contrasts with the one-to-many relationship described in the text, and may lead to confu­

sion. 

Furthermore, it is not clear whether Macknik's principle generalizes to higher extrastriate areas, 

presumably with a larger feature space at each location and consequently a more sparsely dis­

tributed connectivity pattern. For instance, it seems unlikely that a neuron coding for a specific 

orientation in VI receives feedback from all the complex features coded in V4 at that location. 

Overall. Macknik's claims seem reasonable and provide an explanation for the large ratio of 

feedback to feedforward projections in the visual system. Nonetheless, after taking into ac­

count this consideration, the effective connectivity ratio is still significant (one-to-one), thus 

still constituting an argument for a potentially .strong functional role for feedback connections. 

With respect to the relatively weak modulatory effects attributed to feedback, it must be noted 

that the modulatory strength might be dependent on the characteristics and context of the input 

stimuli. For example, the weight of top-down feedback might be stronger for more ambiguous 

images, 

2.2.1.2 ]*hysiolo|;icijl evidence 

In line with the functional role of feedback suggested by anatomical considerations, from a 

physiological perspective, there exists abundant evidence showing the modulatory effects of 

high-level feedback on lower levels. The most simple example comes from cortical areas feed-
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ing back to LGN. which sharpens the synchronization of spikes driven by contours precisely 

aligned over the I.GN RF, leading to a sharpening of the orieniation tuning curves of V! cells 

(Andolina et al. 2007, Sillilo el al. 2006). Similarly, feedback from area V2 modulating VI 

has been extensively reported, i-or example, inactivation experiments of area V2 (Angclucci 

et al. 2(X)2. Angelucci and Bullicr 2{H)3) resulted in a decrease in VI neurons" response. In 

general, inactivation of area V2 leads to a reduction of VI response, although in some cases 

enhancement has also been observed, specially in the regions surrounding the classical recep­

tive field (Macknik and Maninez-Condc 2009). The orienliition selectivity and other functional 

characteristics of most VI neurons remained unaltered. 

Further evidence suggests the involvement of V2 in mediating end-stopping in VI. a phe­

nomenon whereby cells decrease their response when the stimulus size exceeds the classical 

receptive field. The experiment showed how cells in the infragranular layers of VI lose the 

end-stopping property when ihe supragranular layer, which receives feedback from V2. is inac­

tivated (Bolz and Gilbert 19H6). Similarly, the temporal evolution of illusory contour fonnation, 

as well as other properties described in detail In Section 2.3. are suggestive of feedback from V2 

being involved in illusory contour formation in VI (Murray etal. 2(X)2, Seghierand Vuilleumier 

2006. Lee and Nguyen 2001). 

Higher prtxressing areas associated with object recognition, such as the postero-temporal visual 

cortex in cats, were also reported to influence the response of VI neurons. Inactivation of 

this high-level region {by cooling) generally reduced the response magnitude of VI neurons 

(Figure 2.6a), and provoked substantial changes in their orientation tuning widths or direction 

selectivity indices (Huang et al. 2{X)7). Analogously, the lateral occipital complex (LOG) region, 

associated with object recognition in humans, was also found to have an effect on lower cortical 

levels (Murray el al. 2004, Williams ei al. 2008. Fang et al. 200S). I'urtliermore, during mental 

imagery, natural object categories have been robustly readout from the LOC region (Reddy 

ct al. 2010) and relinoiopically organized activations have been observed in early visual areas 

(Sloinick et al. 20O.'i). 'I"his suggests that during mental imagery, in the absence of bottom-up 

input, conical feedback projections can selectively activate patterns of neural activity (Reddy 
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Figure 2.5: a) Siimuii with similar spatial properties bul increasing organizational complex­
ity: ranclimi lines., 2D shape anti 3D shape, bl IMKl percent signal change in VI 
and LOC regions for the three conditions. Percent signal change is from Ihe mean 
activation across all three conditions. Although the siimuluied input regions were 
very similar, activity in VI showed u reduction lor ihu 2D shape and IviUher re­
duction for the 3D shape stimulus. The LOC area exhibited the oppi)site paiteni. 
an increase in activity proporiional to ihc complexity of the input figure. The au­
thor suggests activity in lower areas is reduced when a simpler explanation of the 
stimulus can be represented in higher areas Murray ei ai, (2(X)4), 

eial. 2010. Ishai 2010). 

An illustrative example comes from Murray et al. (2004), who recorded VI and I.OC fMRI 

aciivily in response lo three differeni siimuli: random lines, lines of similar Icnjiih arranged 

to form a 2D shape, and similar lines lo form a 3D shape. Although (he stimulated input 

regions were very similar, activity in VI showed a reduction when the 2D shape insiead of the 

random lines was presented, and further reduction when (he 3D shape slimulus was employed. 

Inicrestingty, (he opposi(e pattern was observed in the LOC area, i.e. it exhibited an increase 

in activity proportional to the complexity of ihe input figure (I'igure 2.5). The author suggests 

activity in lower areas is reduced when a simpler explanation of the stimulus can be represented 

in higher areas {linked to perceptual grouping), which implies feedback modulatory effects 

between LOC and VI. 

Experiments involving feedback in the visual system have placed a strong focus on area MT, 

believed to be involved in motion processing. Although it is not Ihe focus of this thesis, il 

serves to illustrate the ubiquitous presence of feedback effects in visual processing. Proof that 

high-level motion processing modilies the lower level's response has been shown by inacti­

vating MT (Hupe et al. 2001, Galuske et al. 2002); artificially stimulating MT (Silliio el al. 

2006); statistical coupling of VI and MT in Ihe context of apparent motion (Sterzer el al. 2006); 
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and comparing ihe local V! response to coherent vs. incoherent global motion (Harrison el al. 

2007). Figure 2.6b illustrates the differential results observed in VI cells' response during arti­

ficial slimuialion of the reciprocally connected region MT. In general. V! simple cells showed 

an increase in respi>nse. while non-oriented cells exhibited a reduction in activity, suggesting 

area MT can potentially shape the response properties of VI cells (Silliio et al. 2006). More 

recently, a revealing study .showed how VI cells" response wa-s reduced when their onset or 

motion direction could be predicted by surrounding illusory motion (Alink el al. 2010). The 

surrounding stimuli were well outside the classical receptive field, suggesting the involvement 

of the visual motion area MT, 

An important question to ask is whether horizontal connections, rather than feedback connec­

tions, could be responsible for the described contextual effects. Theoretically, since receptive 

field size increases and magnification factor decreases with cortical distance from VI, feedback 

connections from the extrastriate cortex can convey information to a VI neuron from much 

larger regions of visual field than ihe VI neuron can access via horizontal connections. This 

matter was addressed in studies by Angelucci and Bullier (2003) and Angelucci et al. (2002) 

who compared the spatiotemporai properties of Ihe iwo potential candidates: feedback and hor­

izontal connections (Figure 2.7). They used injections of sensitive bidirectional tracers in VI to 

estimate the extent (measured in visual field degrees) of feedback connections from areas V2. 

\? and MT. Results confirmed thai feedback spatial properties provided a substrate for all sur­

round modulations, including those originating from the distal surround (over 13"). Addition­

ally, feedback terminations in VI are retinotopically and functionally organized, for example 

according to orientation preference (Angelucci and Bullier 2003, Macknik and Martinez-Conde 

2007). This makes them suitable for explaining the modulatory surround effects observed ex­

perimentally. 

With respect to the temporal properties, experimental results have shown both feedback and 

feedforward pathways are made of fast-conducting axons with a median velocity of 3.5 m/s 

(Girard el at. 2001). The speed of connections refer to effects mediated via the dorsal palh, 

whereas effects mediated by the venlrai/parvocellular palh are likely to be slower. Nonelheless, 
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Figure 2.6: a) Evidence showing Ihe inaclivalion of poslero-lemporal visual (PTV) cortex re­
duces VI response. The graph shows the peak response rales ol' ihe same cell 
oblained for dilTcreni orieniaiions before cooling, during cooling and -̂  30 mins 
after rewarming ITV coriex. Note that despite a dramatic reduction in the magni­
tude of responses during cooling, there is an excellent recovery of ihe magnitude 
of responses after rewarming the VIV cortex (Huang el ai. 2007). b) Enhancement 
of MT mtKluiaies VI respttnse lo visual stimulaiioii, T!ie visual response magni­
tude is enhanced in the MT ceil (lop graph) via a small Loniuphoretic current of ihe 
GABAB receptor aniagimisl CGP, Enhancement of MT feedback evoked eiiher an 
increase (bouom-righi graph) or decrease (boiiom-left graph) of the response in 
VI cells lo the same stimulus driving the MT cell. All graphs show ihe magnitude 
for the control condition (black bar labeled Con), during MT stimulation (green 
bar labeled MT) and after recovery (black bar labeled Hec) (Sillilo el al. 2006). 
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this suggests that, despite large differences in axonal lengths, initial processing stages can he 

considered to act within a common temporal window. This is consistent with the fast decrease 

of response observed (within the first !0 ms bin) on areas VI, V2, and V3 when inactivating 

area MT(Hupe el al.2001). 

Horizontal connections are intralaminar, although also usually reciprocal and linking cortical 

points of similar functional properties. Typically they do not drive largei neurons but elicit 

subthreshold modulatory responses. However Angelucci and Bullier (2003) demonstrated that 

the monosynaptic range of hori/onial connections cannot account for surround effects extend­

ing beyond the classical receptive held (approx. 2'), Although polysynaptic circuits could in 

principle underlie these long-distance effects, the slow conduction velocity of horizontal con­

nections makes it highly unlikely. Girard ct al, (2001) showed horizontal connections have a 

speed of approx. 0.1 to0.2m/s, which is more than ten times slower than feedback connections. 

For example, the effects of surround stimuli located 13' away (equivalent to approx. I cm of 

VI cortical surface), al a speed of 0.1 m/s, would take over 100 ms lo arrive. This is inconsistent 

with long range effects observed during the very early stages of the response (Hupeel al. 200]). 

Although this section is restricted to describing feedback within the visual cortex, there are 

examples present in many other areas. These include higher-level areas related to decision­

making, expectations (Summeriield and Egner 2{H)9), emotions (Sabatinelli et al. 2009) and 

motor-planning (Grossberg el al. 2007). One such example is the orbitofronial cortex, which 

has been found to feed back to the fusiform gyrus in the temporal cortex, providing top-down 

facilitation during object recognition (Bar et al, 2(K}6). Similarly, there is evidence suggesting 

feedback is present in other hierarchical sensory processing areas, such as the auditory system. 

where the superior temporal gyrus is believed to exert top-down modulating effects on the pri­

mary auditory cortex (Garrido et al. 2007). This strongly argues for considering feedback as a 

fundamental element in cortical processing. 

2.2.2 Theoretical implications 

In the past few years a great cITurt has been made lo try to understand the experimental results 

relating to feedback. Recent reviews (Carandini ct al. 2005, Olshau,sen and Field 200.̂ ) of our 
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H^ure2.7: Comparisiin of ihe spatial cxieni ofhori/onial and feedback conntuiions. The di­
agram scliemuiicaliy rcprusenis results iihtained using injeciions of sensitive bidi­
rectional tracers in VI to estimate the oxicni in visual field coordinaie.s of feedback 
connections from areas V2, V3 and MT, Note thai the siK of the receptive fit id 
centre will depend on eccentricity. Results confirmed that feedback spatial proper­
ties provided a substrate for all surround moilulalions, including! those originating 
from the disml surround {red region). However, Ihe monosynaptic range of hor­
izontal connections could only account for surround effecls wiihin ihc classical 
receptive lield (red region) and the proximal surround (yellow region) (Angelucci 
and Bullier 2(KB). Note diagram is nol to scale. 
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understanding of the early visual system suggest only approximately 20% of the response of 

a VI neuron is determined by conventional feedforward pathways, while the rest arises from 

horizonial and feedback connectivity. However, despite growing evidence, the way in which 

feedback operates in ihe brain is still far from being understood. This wa.s highlighted in Sec­

tion 2.2.1 by the lack of homogeneity and seemingly contradictory feedback effects observed 

ex peri menially, which sometimes acl lo enhance and other times lo suppress lower levels' ac­

tivity. 

The problem is rooted in a wider issue, which ties ai the core of neuroscience: understanding 

the tntricaie relationship between all the different regions involved, and how all these different 

sources of information are integrated over time and .space. From this perspective, visual neural 

responses not only depend on the interaction between stimulus and the surrounding context 

(Schwartz ei al. 2007). but can also be affected by other sen.sory modaUties, attentional priors, 

expectations, previous experience, emotional slates, or lask-oriented motor plans (Gilbert and 

Sigman2007, Sa.sakiet al. 2010). On top of this, neural responses may be involved indifferent 

processing stages which evolve over time. Feedback undoubtably plays a major role in this 

complex process. 

Although, as has been pointed out, many factors can potentially modulate visual responses, 

this section focuses only on the interactions between the different visual cortical regions. It 

describes several theoretical approaches derived from experimental observation, dealing with 

spatial contextual influences (extra-classical receptive field), time-evolving processing stages at 

different regions, and distinct modes of processing dictated by high-level properties (Reverse 

Hierarchy Theory). The section concludes by discussing a related signihcani aspect, namely 

the relationship between feedback and the neural representation of conscious visual perception. 

2.2.2.1 KxIra-clasNical receptive field. 

The experimental evidence presented in the previous section makes clear that Vt neurons are 

not only specialized for extracting local features, such as orientation, but also respond to events 

distant from the stimulation of their classical receptive field. One such experiment (Harrison 

et ai. 2007) clearly illusiraies this by measuring whether V i responses are sensitive to the global 
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context of motion. Two different sets of stimuli were used, one moving coherently and one 

incoherently. In each case ihe stimulus inter-element distance wa.s ai least 3" apart, so from 

a local perspective they were all identical. We define local as being wiUiin ihe range of the 

proximal surround lield, which is about 2.3". Nevertheless, VI responses were sensitive to 

the global context of motion, implying Iheir receptive held comprises not only the proximal 

surround field, but a further region which is known as the extra-classical receptive lield. Another 

remarkable .'cludy in support of this concept showed thai the feedback-mediated response in the 

foveal relinotopic corlex contains information about objects presented in the periphery, faraway 

Irom the fovea, even in the absence of foveal stimulation (Williams el al, 2008). 

This shift in (he traditional view of receptive field was reinforced by Ihe study comparing hori­

zontal to feedback connections (Angelucci and Bullicr 2003, Angelucci ei al. 2002). described 

in Section 2.2.]. Anatomical and physiological dala indicated that the spaliolemporal proper­

ties of feedback connections from higher levels provided a plau,siblc substrate for all observed 

extra-classical receptive field effects. Horizontal connections could also be involved, but only 

in center-surround interactions within the proximal surround range. 

2.2.2.2 Integrated model of visual processing. 

One main implication that can he derived from the existence of high-level feedback is that 

information doesn't necessarily have to be processed serially through successive cortical areas. 

Instead, multiple areas can carry out simultaneous computations, which evolve over time as 

successively higher cortical regions become involved in the process (Ixe 2(K)3.1.-ee et al. 1998). 

For example, evidence shows thai the early pari of VI neuronal response is correlated with the 

orientation of local features, while the later response is correlated with higher order contextual 

processing. It has been suggested that VI could potentially lake an active part in all the different 

processing stages usually attributed to higher levels, such as the representation of surface shapes 

or object saliency (Hochstein and Ahissar 2002, Lee 2003. Builier 2001, Lee el al. 1998). 

This idea is consistent with conccpluaUzing VI as an active blackboard (Builier 2001) or high-

resoiufion buffer (Lee 2003). Higher cortical areas feed back global and contextual information 

10 complete or update the high-resolution detailed representation maintained at the lower levels, 
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Figure 2.8: Evolution of the compuialions performed in the different visual areas over time. 
Each column represents ilie invnlvemeni of a particular region in differenl compu­
lations over lime. Hach row represenis parallel computations, proposed hy Marr 
11982), across the multiple areas. As time progresses, the aciivily in V1 should 
reflecl the inv{ilvemenl in increasingly complex computations resultin)> from re-
eurrenl feedback from higher conical areas (l-ee 2CHW). 

in congruence with the extra-classical receptive field idea. This information is then propagated 

up the hierarchy again providing a new level of analysis which can be employed for Ihe next 

stage of compulation. As time progresses, the activity in VI should rellect the involvement 

in increasingly complex computations resulting from recurrent feedback from higher cortical 

areas. A represenlation of the suggested temporal evolution of the functions carried out by 

the different areas involved is illustrated in Figure 2.8. This challenges the classical serial 

feedforward model depicted in Section 2.1.1. 

2.2.2.3 Reverse Hierarchy Theory (RHT). 

This theory formulated by Hochstein and Ahissar (2002), proposes an interesting thct>retical 

point of view of the role of feedback connections in visual perception. Exphcit visual per­

ception is hypothesized to occur for Ihe first lime al the higher conical levels, after receiving 
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detailed information from low-level areas. The initial botlom-up feedforward processing is 

considered to be only implicit and nol dircclly available to conscious perception. This type of 

representation, denoted as vision at a glance, is obtained by generalizing low-level information 

over space, size and viewpoint, leading to high-level neurons which indicate the presence of 

basic categories or objects but not their precise parameters. Later, during vision with scruiiny, 

feedback connections gradually incoqioratc the lower-level details into the explicit perceptual 

representation. This includes features such as the precise location, retinal size, color, orcompo-

nenl motion, which are only available in the lower cortical areas with smaller receptive fields, 

and were lost in Ihe neurons with larger RFs. This concept is consonant with the high-resolution 

buffer and integrated model of visual processing previously described. 

Vision at a glance has been associated with a lypc of search called feature search, characleri7,ed 

by the amazing ability in humans to rapidly capture object categories. Although low-level 

areas were thought to be responsible for feature search, several argumenis suggest ihis ability, 

which has been related to fast pop-out mechanisms (approx. 100 ms from stimulus onset), 

actually reflects high-level cortical activity. Feature search works for a vast range of spatial 

scales, sizes and inter-element distances, including values which are greater than the small low-

level receptive field siz£s. These parameters are consistent with Ihe high-level large receptive 

(ields which reflect spread attention and lead to position and si/e invanani feature detection. 

Furthermore, the fast pop-out effect observed is usually related to high-level features, such as 

depth from shading. 3D shapes or facial expressions. An example is shown in Figure 2.9a 

where the non-face object immediately pops-out from the rest of the similar line drawings. 

Another example is depicted in Figure 2.9b where an incomplete square rapidly pops out while 

an identical shape is interpreted as an nccludcd sc|uarc due to aniodal completion, a feature of 

implicit high-level processing. 

On Ihe other hand, vision with scrutiny is associated with serial or conjunction search. This is 

illustrated by initial blindness to Ihe details in a scene, which disappears after longer and re­

pealed exposure. By focusing high-level mediated altenlion to different areas or objects, details 

from the low-level cortical representation are serially introduced. The extra-classical recep-
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Figure 2.9: a) Rapid high-level ohjecl cai;;gi'rizatiii[i. The scrambled face rapidly pops i>ul, 
whereas ihe noseless face requires a serial search, h) High-level implicit pro-
t:essin .̂ The irit̂ omplete square rapidly pops iiul whereas an idenlical shape is 
interpreled as an occluded square (Hothstein and Ahissar 2002J. 

live field approach accounts for feedback originating in high levels with large receptive tields 

which targets specific low-level features. An example is shown in Figure 2.9a where, although 

the non-facial object pops out immediately, a slower serial search mechanism is required to 

identify the noseless face. A similar tinding reported thai subjects require less time to identify 

target orientation than to accurately localize il. This is consistent with explicit perception later 

accessing low-level detailed represcntalions, such as those encoding spatial localization. 

The Reverse Hierarchy Theory also points out the initial coherence and feature binding prop­

erties of visual perception. liven for images containing ambiguous interpretations, such as 

illusions or bistable images, the initial explicit perception is typically of a complex coherent 

scene, and not of an unlinked collection of lines and coloured regions. This phenomenon can be 

considered a direct outcome of hierarchical perceptual organization (Ahis.'iar el al. 2009) and the 

resulting receptive field of high-level object-related neurons. Il is coherent with the template 

matching-like operation which assigns images to categories, implemented in the feedforward 

object recognition models described in Section 2.1.2. 

The temporal evolution of activity in low-level regions is also predicted by this theory. Initial 
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activity generated by feedforward hottom-up implicit processing should be driven by stimuli, 

kicalized and automalic. This will give rise to the first vision ai a glance high-level percept 

which mi[ihl in lum activate serial search or vision with scrutiny mechanisms. As a consequence 

later activity in lower-levels will reflect feedback lop-down effects such as those associated with 

spatial and object allention, matching the functional temporal evolution proposed by Lee (2003). 

2.2.2.4 Corlical representations of conscious visual perception. 

It may be inappropriate lo refer to consciousness, as ii is a highly controversial concept which 

is not well defined or understood. However, for the purpose of this section it will be interpreted 

as referring to the exphcil visual perception previously described, sometimes also denoted as 

visual awareness. Which area.s of the visual system are actually involved in representing the 

explicit or conscious visual percept? The hypothesis til" a dislribuled representation of explicit 

perception is gradually gaining favour over the traditional strictly high-level cortical reprcsen-

taiion. For the authors of the RHT, explicit perception begins a( high cortical levels and then 

proceeds in a lop-down fiishion, strongly influenced by attention, to gradually incorporate more 

detailed information from lower levels. It seems a reasonable assumption given that we are able 

to explicitly perceive high-resolution details which can only be accurately encoded by lower-

level regions. 

Supporting ihis argument, experiments based on perceptual rivalry conclude Ihat it would be 

more appropriale to begin thinking of consciousness as "a characteristic of extended neural 

circuits comprising several cortical levels throughout the brain" (Wilson 2(K)3). Along the 

same lines, several studies conclude unstimulated areas of VI can represent illusory contours 

(Maertenset al. 2008), or the illusory perception of apparent motion (Sterzereial, 2006), which 

corroborates the notion that subjective perceptual activity can be closely related to neural ac­

tivity in V l. Overall, evidence seems to indicate an important role for feedback connections in 

mediating explicit visual perception or awareness (Leo}X)ld and Logoiheiis 1996). 
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2.2.3 Functional models of feedback 

The previous sections review some of the experimental evidence which indicates feedback con­

nections act to modulate lower levels' response. This yields several theoretical conclusions 

which shift the traditional bottom-up serial processing ideas towards a more integrative and dy­

namic approach to visual perception. Ii has become clear thai inl'orniation from different visual 

cortical regions needs to be combined lo achieve perception, but how this happens and the ex­

act function of feedback conneclions in llii.s process is siill unknown. This section describes 

different approaches that provide a functional interpretation of the rnle of feedback, including 

attention, biased competition, adaptive resonance, predictive c(xling and generative models. Il 

is important lo note that the different interpretalions are not mutually exclusive and commonly 

have overlapping features, which means computational models often fall into more than one 

category. Likewise, each functional interpretation described below is likely lo be consistent 

withasigniticant subset of the theoretical considerations described in the previous section. 

2.2.3.1 Feedback as attention. 

The visual system receives vast amounts of input information every second from Hght entering 

the retina. Attention is aimed at reducing the associated computational cost by prioritizing and 

consequently processing only a subset of the visual information. This subset would typically 

correspond to Ihai of highest relevance in achieving the organism's goals (Summerlield and 

Egner 200y). The function of feedback connections would be to mixlulate the visual input, by 

enhancing or suppressing feedforward signals, in accordance with the attentional state. Alten-

tion can arise from high-level cognitive areas associated with task or motor-planning and be 

directed towards specific objects or locations. On the other hand, attention can also be attracted 

intrinsically by stimuli with strong visual salience, such as a sudden motion, which might lie an 

indicator of immineni danger. 

Another distinction which is usually made relates to the way of deploying attention. It can be 

broadly categorized into spatial aiteniion. which acts as a kind of spotlight thai enhances the 

processing at a specific location of the visual iield; and feature-based attention, whereby the 

processing of specific features is biased in a lop-down fashion in order lo achieve a specific 
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task, such as visual search. 

The different types of attention have been modelled extensively. Walther and Koch (2007) pro­

vide a comprehensive overview of existing models, and propose a unifying framework which 

captures most of the attentional effects. By implementing modulation functions at each pro­

cessing level, their model is capable of reproducing spuiial and feature based atiention both in 

a top-down and bottom-up fashion. 

Additionally, the model is capable of simulating object-based attention, which can encompass 

a variety of effects. These range from spatially focusing on an object to enhancing the rele­

vant features of the target object during a search task. This is achieved by making use of the 

same complex features employed for feedforward recognition, during the lop-down attention 

process. The HMAX model (Seire et al. 2007c) was extended to provide an example of feature-

based attention using this principle, and results showed an increased performance over a pure 

botlom-Hp attention implementation (Walther and Koch 2007). The present thesis also pro­

vides a feedback extension of the HMAX model, which has many theoretical similarities to this 

approach, including the sharing of features between object recognition and top-down attention. 

It has been argued that attention by itself may explain the existence of cortical feedback connec­

tions (Macknik and Martinez-Conde 2007), without requiring further complex interpretations. 

In fact, most of the approaches allude to some kind of atlentJonal mechanism when describ­

ing the role of feedback, in most bia.sed competition models, e.g. Deco and Rolls (2004). 

attention is taken as a synonym for feedback. For adaptive resonance approaches (Grossberg 

et al. 2007) attention is one of the multiple functions of feedback connections, which are also 

involved in learning or perceptual grouping. In contrast, Lee and Mumford (2003) argue the 

sophisticated machinery of feedback should not be limiled to biased competition models of at­

tention, but insiead should account for more complex perceptual inference processes. But even 

in generative-oriented models such as Bayesian inference or predictive coding, the top-down 

prit)rs or high-level predictions are sometimes referred to as a form of attentional modulation 

(Spratiing 2008a. Chikkeruret al, 2009). 

The inconsistency and disparity between the various definitions of attention might reflect the 
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lack of understanding of the role of top-down cortical feedback. Apparently divergent interpre­

tations mighi in fact be modelling a common phenomenon, but until this has been more thor­

oughly characterized by experimental evidence, several semantic definitions must be allowed to 

co-exist. 

2.2.3.2 Feedback in biasi'd competition model!*. 

The biased compelilion theory (Desimone and Duncan 1995) prop<ises thai differeni visual 

stimuli compete to be represented by cortical activity. Competition can occur al all levels in 

the hierarchy and is influenced both by feedforward and feedback connections. The model is 

consistent with an abundant body of experimental evidence (Hupe et al. 2001, Huang et al. 

2007, Murray el al. 2004) which suggest feedback enhances activity consistent with the higher-

level percepl (see Reynold.s and Chelazzi (2004) for a recent review). At the same time biased 

competidon appears lo disagree with evidence supporting the opposite effect, i.e. that Ihe lower 

level response is actually reduced when it can be predicted by higher levels (Harrison et al. 

2007). A possible explanation comes from the fact thai the decrease of inconsistent activity is 

greater than the enhancement of consistent activity leading to an overall reduction in activity 

(Murray el al, 2004). Further ways to reconcile biased competition with predictive coding lue 

discussed in Section 2.2.3, 

Biased competition models have managed lo successfully capture top-down attentional effects 

including spatial and objecl based visual search. Oeco and colleagues have proposed a model 

of invariant visual object recognition consisting of a hierarchy of visual cortical regions with 

convergent feedforward connectivity, reciprocal feedback conneclions and local compclition 

within each region (Deco and Rolls 2004). The model accounts for the increased atlentional 

modulation observed in higher cortical levels and the reduced receptive field size of IT neurons 

in highly cluttered images. 

Along the same lines, biased competition mtxiels have also been able lo replicate atlentional 

effects in V4 and IT resulting from active visual search (Lanyon and Denham 2004). as well as 

realistic search scan paths and saccade behaviours (l.anyon and l^enham 2009). Other models 

also account for motion disambiguation processes between MT and VI (Bayerl and Neumann 

41 



2.2. HIGH'lM^im,_WEDBACK 

2004), and perceptual grouping mechanisms (Roelfsema 2006). Furthermore, some research 

(Tiesinga and Buia 2009) has focused on the detailed circuitry required for biased compelilion 

10 emerge in V4, and concluded it can feasibly arise as a result of feedforward projections from 

VI and surround suppression mechanisms. 

2.2.3.3 Feedback in Adaptive Resonance Theory (ART). 

Although included in a different category, ART (Carpenter and Grossberg 1987. 1998) can be 

considered a type of biased competition model as it has many similar properties. A central 

feature in ART is the matching process that compares the bottom-up input with the stored pat­

tern. Unlike other networks, ART encodes only the matched or 'resonant" pattern and not the 

actual input, as it suppresses all the portions which do not match the lop-down expectation, A 

parameter, which specilies the minimum fraction thiii must remain in the matched palicni for 

resonance to occur, ensures thai if the input is too novel or unexpected a new pattern code is 

learned by the system. 

The LAMINART model (Grossberg 2003. Grossberg et al. 2007, Raizada and Grossberg 2003) 

implements the described ART mechanisms, mapping them over laminar visual cortical cir­

cuits. These mechanisms are hypothesized to occur in the neocortex to help stabilize cortical 

development and learning. The model employs feedforward, feedback and horizontal interac-

lions to achieve the unification of several processes including development, learning, perceptual 

grouping, attention and 3D vision. 

A special emphasis has been placed on mtxielling the detailed laminar circuits of V1 and V2 in 

order to achieve extra-classical receptive field effects such as perceptual grouping and allenlion. 

The authors identify a list of requirements that any successful cortical model of visual percep­

tion should accomplish. Cortical models must allow perceptual grouping to generate activity in 

a classical receptive Held with no direct visual stimuli (as happens with illusory contours) but 

must prevent lop-down feedback from doing the same (i.e. producing above-threshold activity 

on its own) in order to avoid hallucinations. However top-down feedback must be allowed to 

provide modulatory sublhreshnid activity to enhance matching incoming sensory signals. This 

is known as the prcattentive-attcntive interface problem. 
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A solution to the prnhlem ts offered by Grossberg and colleagues (Raizada and Grossberg 2001. 

Grossherg and Raizada 2000, Grossbcrg el al. 1997) which consists of distinguishing between 

top-down intraconical interlaminar preaiteniive feedback (a positive reinforcement loop within 

VI layers) and top-down inlercortical atlentional feedback {from V2 to VI). Perceptual group­

ing starts al layer 2/3, guided by bottom-up input signals and horizontal intralaminar connec­

tions. Top-down atlentional feedback and preallenlive feedback cells in layer 2/3 interact by 

reinforcing the same feedforward selection circuits. However, atlentional feedback is forced to 

pass Ihrough a modulatory laminar circuit before reaching layer 2/3, ensuring that it can only 

provide subthreshold modulatory effecUi but never directly drive the cell. 

A later model named ARTSCAN {FazI et al. 2009. Bhalt et al. 2007) accounts for the interaction 

between spatial and object attention in order to search a scene and learn the object categories 

which are present. The model is based on the concept of an attentional shroud, a distribution 

of spatial attention generated by the object's surface filling-in process. Stronger shrouds can 

inhibit weaker ones, leading to a winner shroud which will guide the category learning process 

and the deployment of object attention. 

The ART approach provides a detailed theory of how laminar cortical circuits implement a 

wide range of learning and percepd on-related functions in the brain. Although it doesn't place 

a strong focus on high-level object categorization, the ARTSCAN model proposes a role for 

feedback, connections in the process of integrating boliom-up and top-down object-related in-

fonnation. It is based on the concept of atlenlionai shrouds, includes interactions with the where 

path, but has only been tested with relatively simple character recognition tasks. 

For the purpose of this thesis, which uses relatively abstract models ba.sed on Bayesian ap­

proaches to explain object perception, the HMAX model seems a better starting poini than ART, 

for the following reasons. Firstly, HMAX is strongly oriented to object recognition and has been 

tested successfully on natural images. Secondly, ffMAX's more abstract nalure, which, for ex­

ample, does not deal with intricate laminar connections, makes it more suitable to implement 

large-scale Bayesian computations. Thirdly. HMAX lacks feedback connectivity, which makes 

it a perfect candidate to test this new approach. 
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However, this doesn't mean the ART model's interpretation of feedback is in disagreement 

wiih Bayesian interpretations. Grossberg ei al- (1997) suggests the ART approach clarifies the 

current appeal of Bayesian approaches, but goes beyond this type of model. It is therefore likely 

that many aspects of the more abstract inierprelation of feedback connecliviiy proposed in this 

thesis are compatible with Grossberg's detailed circuitry. 

2.2.3.4 Feedback an predictive coding 

Tn predictive coding each level of the hierarchical structure attempts to predict the responses of 

the next lower level via feedback connections. The difference between the predicted and actual 

input is then transmitted lo higher order areas via feedforward connections, and used to correct 

the estimate. The predictions are made on progressively larger scale contexts, such that, if the 

surround can predict the centre, lilllc response is evoked by the crror-deiecling neurons. In 

other words, when top-down predictions match incoming sensory information, the lower-level 

conical areas are relatively inactive. However, when the central stimulus is isolated or difficult 

to predict from the surrounding context, then the lop-down predictions fail, and a large response 

is elicited. 

Although predictive coding is presented as an isolated theory in this section, it is related, to 

a major or minor extent, lo all the previous approaches. To start with, it is in fact a specific 

example of a broader and more general theoretical approach termed hierarchical perceptual in­

ference in generative models (Frision 2003. 2005, Spraihng 2010). This is described in detail in 

Chapter 3, In fact, the Kalman filter, used to implement predictive coding in a hierarchical archi­

tecture, is a particularization of the Bayesian Belief Propagation algorithm (Kschischang et al. 

2001). and is derived under the Bayesian framework by maximizing the posterior probability at 

each layer {Rao 1999). 

Furthermore, it has recently been shown that predictive coding can be interpreted as a form 

of biased competition model (Spratling 2(H)8b). Traditionally Ihe.se two approaches have been 

considered opposite to each other, as shown in Figure 2,10 (Murray et al. 2004). The discrep­

ancy is resolved, firstly, by taking into account the two distinct subpopulations, one encoding 

the current prediction, or active representation of the stimuli; the other encoding the prediction 

44 



2.2. HIGH-LEVEL FEEDBACK 
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Figure 2.10: Comparison of predictive coding (left) and sharpening (righl)i;ffects in mediating 
response reduclimi in lower levels. In predictive coding, a high-level prediction 
of the expected inpui is fed back and subiracied at the inpul level. What is sent 
forward is the dillerenee heiween the expected value and ihe ueiual input. With 
sharpening (presenl in biased compelilion and adaptive re.sonance models), the 
same high-level predieiion is fed back but is instead used loenhance those aspects 
of ihe input thai are consi.sleni wilh ihc high-level percepi and reduce all other 
aspects. The result, in both eases, can he a reduciion in activity. (Murray el al. 
20(M). 

error. While the error population will show reduction with high-level feedback, the prediction 

population may show enhancement. Predictive coding theories can be misleading, as they place 

a stronger focus on the error-delecting nodes and consequently under-emphasize or omit predic­

tion nodes. A second requisite to reconcile biased competition and predictive coding theories 

regards the connectivity of feedback. In most biased competition mtxlels. nodes al each level 

compete by inhibiting Ihe output of neighhotiring nodes, while feedback in predictive coding 

typically acts on the level below. Therefore, the bia,sed conipeiiiion model thai was shown to 

be mathematically equivalent to predictive coding (Spratling 2008b). required an alternative 

implementation thai suppressed the inputs of neighbouring nodes, 

It is not therefore surprising that predictive coding models are also compatible with theories 

of feedback as attention. Both Rao (2005). by extending his original model, and .Spralling 

(2008a). using the previously described architecture, demonstrated thai predictive coding could 

account for spatial and feature attentional effecls. Turihermore, Spratling (2()08a) hypothe-
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sizes that perceptual grouping results from collinear facilitation, and demonstrates this using a 

detailed physiological model of the interaction between horizontal and feedback connections. 

These interactions are proposed to occur in the dendritic trees of pyramidal cells (De Meyer and 

Sprat ling 2009). 

Nonetlieless, as Suggested by a recent study (Summerfield and Egncr 2009). predictive cod­

ing mighi be more related to the effects of expectation, which facilitates visual perception by 

constraining the interpretation space based on prior infonnation, than to attention. Although be-

haviounilty bolh attention and expectation can have similar effects, ihey might exert opposing 

induenccs on the responses of Ihe neural populations involved, i.e. expectation might reduce 

the response while attention might enhance ii. However, this distinction at the neural level is 

only hypothetical and remains to be substantiated by further experimenlal and modelling work 

on this research topic, which is still at a very early stage. 

Independently of its relalionship with other theoretical approaches, predictive ctxling has been 

outstandingly successful in explaining feedback experimental results. It is also consistent with 

the growing collection of evidence showing thai lower level responses are inversely correlaled 

to stimulus predictability (Alink el al. 20K), Murray et al. 2004, Sterzer et al. 2006, Harrison 

et al. 2007. Rao and Ballard 1999), Furthermore, existing computational models can account for 

several well-known phenomena, such as repetition suppression (Friston el al. 2006), biphasic 

responses in LGN (Jehee and Ballard 2009}. objcci segmentation (Rao and Ballard 1997. 2005); 

and a wide range of classical and extra-classical receptive field effects, including receptive 

field luning properties, surround suppression and facilitation (Spratling 2010). and end-slopping 

effects (Rao and Ballard 1997, Rao 1999). 

Note that predictive coding might appear incompaiihic with the observation that feedback acts 

to enhance activity consistent with the high-level percept, supported by evidence showing the 

response in VI is reduced when higher areas are inactivated (e.g. by freezing MT) (Hupe et al. 

2001. Huang el al. 2007, Galuske el al. 2002, Angelucci and Bullier 2003). However, as pre­

viously mentioned, this might be the result of over-emphasizing the error-detecling population 

over the prediction population (Spratling 2008b, Friston 2005), 
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2.2.3.5 Feedback as liayesian inference in generative models 

The perceptual inrerence framework (Lee and Mtimford 2003, Friston and Kiebel 2009) pro­

vides an integrative approach thai accommodales feedback as attention (Chikkerur ei al. 2009), 

biased compelition (Sprailing 2010) and predictive coding (Friston 2005). It constitutes the 

focus of this thesis and is therefore described in detail in Chapter 3. 

2.2.3.6 Key questions 

Understanding the role of" feedback connections in visual perception still poses many challenges 

which need lo be resolved. The following lisi includes several key questions which remain 

unanswered. 

• Is there evidence in cortex of two distinct populations, one coding for the prediction (or 

active representation) and one coding the prediction error? In which case, docs the former 

account for feedback sharpening effects, and the latter for feedback response reduction 

effects? 

• What is the specific role of feedback during a) Ihe learning stage and b) ihe subsequent 

adaptation of visual features ? 

• Can the different altentional effects be understood as part of a more integrative theory 

such as biased compelition or prediclive coding'.' 

• What are the neural mechanisms thai allow the inlegraiion and adequate weighting of the 

different sources of information (e.g. botiom-up siimuli, top-down feedback from several 

regions, hori/oniai connections) ? 

• Are feedback effects limited to a subthreshold nioduiiitory role or can they be understood 

in some cases as the driving signal? Given that Anderson and Martin (2006) demonstrates 

both feedforward and feedback synaptic connections can be considered to have driving 

properties, can the temporal dynamics account for the functional asymmetries observed? 

• Does feedback allow VI to be progressively involved in more complex computations, 
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typically attributed to high-level regions, as suggested by the active blackboard and high-

resolulion buffer hypotheses? 

• What are the neural correlates of explicit visual perception (or visual awareness) and 

are these guided by feedback effects (for example when focusing on the high-resolulion 

details of an object) as suggested by the Reverse Hierarchy Theory? 

• What effects does the inactivalion of the different higher visual areas (V4, IT, MT) have 

on lower level representations? How do these compare under conditions of simple artifi­

cial stimuli (e.g. gratings), natural stimuli, and highly cluttered/illusory/occluded stimuli? 

How do these correlate to subjective visual perception and the performance of vision-

related tasks? 

2.3 Illusory and occluded contours 

Despite living in a cluttered world where the majority of objects we see are partially occluded, 

we do not have the impression of constantly being surrounded by object fragments. Our visual 

system appears to have developed the appropriate lilling-in or completion mechanisms that cru­

cially allow us to perceive complete objects and make sense of the world. These mechanisms, 

which compensate for mi.ssing or ambiguous information in the retinal image, can be divided 

into two categories: modal and auKxial completion. 

Modal completion, the induced perception of contours and surfaces in empty regions, results 

in perceptually salient effects, such as illusory contours. In contrast, amodal completion, the 

continuation of contours and surfaces behind occluders, has no visually salient manifestation. 

Although neither of them have a physical counterpan in the retina, they both show clear neural 

correlates at different levels of the visual system. Both of these phenomena are closely re­

lated to other conspicuous aspects of visual prtx;eKsing, such as feature binding and perceptual 

grouping. This section provides an overview of the existing experimental evidence for both 

illusory and occluded contours. The different theoretical approaches and computational models 

are discussed in the subsequent section. 



2.3. ILLUSORY AND OCCLUDED CONTOURS 

2.3.1 Experimental evidence 

2.3.1.1 Illusory contours 

The retinotopic aclivaiion of VI and V2 neurons in response to illusory contours, such as 

Kanizsa figures, has been reponed in fMRI (Macrlens et al, 2008), EEG (Seghier and Vuilleu-

mier 2006). MliG (Halgrcn el al. 2(M)3) and single-cell recording (Lee 2003. l.ee and Nguyen 

2001) studies. The illusory contour response is weaker, significantly delayed, and only arises in 

a fraction of VI A'2 cells, in relation lo thai of real contours. Previous controversy as to whether 

VI rcpresenis illusory conlours seems lo have been clarified by ihe results reported in the previ­

ously cited articles. Nonetheless, VI tends to show a weaker respon.se than V2 and sometimes 

requires task-related altenlion lo emerge (Lee 2003), Ramsden ci al. (2001) also reported orien­

tation reversal between V2 and VI, such that the illusory contour orientation is de-emphasized 

in VI, while the orthogonal orientation is enhanced. This was suggested to constitute a cortical 

balancing process which could play an important role in illusory contour signaling, and was 

later supptwed by psychophysical data (Dillenburger 200S). 

The fact that the illusory contour response does not arise from ordinary feedforward pathways, 

i.e. retina and LGN. and that it is delayed relative to real contours, suggests the involvement 

of lateral and feedback connections. Interestingly, the response in VI emerges later than in V2 

(Lee and Nguyen 2001, Halgren ei al. 2003, Ramsden el al. 2001, Maenens el al. 2008, Dillen­

burger 200.'i) suggesting contour completion in VI might arise as u consequence of feedback 

connections from V2, The question arises as lo why is it necessary to feed back infonnalion 

10 VI if the illusory contour is already represented in V2. The mosi likely reason is thai V! 

neurons' smaller receptive field size provide higher spatial resolution to accurately represent 

the illusorj' contour. Bigger receptive field sizes in V2 allow the system to integrate global 

contextual information which is then fed back to VI circuits. When required by environmenial 

demands, these circuits can then construct a more precise representalion, which explains why 

illusory contours in V1 sometimes emerge as a consequence of task-related attention (Lee and 

Nguyen 2001). 

Furthermore, a large number of studies have reported neural correlates of illusory contours in 
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1) Higher level iibject-processing regions are first lo 
represeni illusory conlours. eliciting a response lo Ihc 
compleicd surface of ihc object. 
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*2) Response to illusory contours in lower-level regions, with 
no dirccl retinal stimulation. Delayed relative lo real contours. 
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.1) Response in VI emerges approx. 35 ms later than in V2. 

* 

Suggests contour completion 
is driven by Tecdback 

Figure 2.11: Neural correlate and timing of illustiry contour emergence along the visual sys­
tem, wilh relevant references. Higher-level iibjecl processing regions are Ihe first 
to represent illusory contours after rapid object categorization. Retinotopic re­
sponses to illu.sory contours are then observed in lower level regions such as VI 
and V2, which receive no direct retinal stiinuialiori. The response in V1 emerges 
later tlian in V2, Overall, the evolution of illusory mntour emergence suggests it 
is driven by fi;edback connections from higher level regions. 

higher level object processing regions such as monkey IT (Sary et al. 2008) and the human 

equivalent, the LOC region (Halgrcn et al. 2003. Maertens el al. 2008. Murray ei al. 2(X)2. 

Seghier and Vuilleumier 2006, Yoshino et al, 2006. Stanley and Rubin 2003). A subset of these 

point out that high-level activity generated by objects containing illusory contours (such as the 

Kanizsu triangle) is notably similar lo the activity of complete objects, despite presenting longer 

latencies (Stanley and Rubin 2003, Maerlens el al. 2008. Sary el al. 2(K)8). IT cells with spe-

ciTic selectivity for illusory contour figures have been reported (Sary et al. 2008). It has been 

suggested Ihat the large non-retinotopic receptive ticlds in IT/LC)C. which receive bilateral stim­

ulation from massive regions oflhe visual field, present the best subslraie to perform grouping 

across large distances, such as thai required for illusory contours. 
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A number of key findings strongly substantiate the hypothesis that feedback from high-level ex-

trastriate areas is responsible for subjective contours emerging in lower levels (see Figure 2.11). 

To begin with, Huxlin el al. (2000) found thai monkeys with lesions of IT lost their ability io 

detect illusory contours. The lemporal sequence of events is also consisleni with this hypoth­

esis, as LOC/IT regions are the lirsi lo signal the appearance of illusory contours, reporting 

extremely fast response times, such as 90-100 ms (Murray etal. 2002) or 140 ms(Halgrenel al. 

2003). These studies also show how the visual responses later spread to lower regions includ­

ing V3, V2 and VI. This is consistent with the multiple processing stages reported by various 

groups (Yoshino et al. 2006), which distinguish between initial region-based segmentation and 

laier boundary completion processes. In consonance with this finding, an IMRI study (Sian-

ley and Rubin 2(K)3) showed ihal a Kani/sa ligure with well-delined sharp contours and one 

wiih blurred contours were represented equivalenlly in the LOC region. Psychophysical testing 

demonstrated subjects were indeed able lo perceive the sharp and well localized edges in the 

first case but not in the second, suggesting some oUier region must be responsible for neurally 

coding this information, most likely V I and V2. 

The above body of evidence is consistent with ihe high-resolution buffer hypothesis (Lee 2003). 

the active blackboard concept (Bullier 2001) and the Reverse Hierarchy Theory (Hochstein 

and Ahissar 2002) described in seclion 2.2.2. These approaches hypothesize that VI might be 

involved in more complex computations usually atlribuied lo higher-level regions, by interacting 

with these regions through feedback connections, 

2.3.1.2 Occluded contours 

It has been suggested amtxial completion processes are carried oul by the same cortical circuits 

as illusory contour completion. In this section we will review experimental evidence that indeed 

highlights the striking similarilies between them. These similarities suggest the same high-level 

feedback mechanisms are being used. In Section 2.3.2 we will further subslanliate this argument 

from a more theoretical poini of view. 

Neural correlates of occluded coniours in early visual areas such as VI and V2 have been found 

using iMRI (Weigelt ct al. 2007, Rauschcnberger et al. 2006). HBG (Johnson and Olshausen 
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2005) and single-cell recording (Lee and Nguyen 2001, Lee 2003). Rauschenbergeret al. (2006) 

showed how the representation in early visual cortex of an occluded disc evolved from that of a 

notched disc to one corresponding lo a complete disc after approximately 250 ms. The amodal 

completion process shows temporal properties similar lo those of illusory conlours, i,e, a delay 

of approximately 100-200 ms with respect to real contours; although the response tends to be 

significantly lower Ihan for illusory contours (Lee 2003). This is consistent with the weaker, 

non-visually salient, perceptual experience associated with occluded conlours. 

The representation of occluded ohjecis in high-level objcci recognition areas, such as IT and 

LOC, has also been repeatedly documented (Hegde et al. 2008, Murray et al, 2006. Weigelt 

et al. 2007, Hulme el al. 2007). Consistenl with this observation, abundant evidence sustains 

the multistage model of object processing, and shows the temporal representation of occluded 

contours occurs in atop-down fashion (Murray el al. 2(K)6, Rauschenbcrger el al. 2006. Weigell 

et al. 2007), This is indicative of high-level feedback being responsible for amodal completion 

in lower regions. However, two diverging interpretations exist as to what exactly is represented 

by higher-level neurons. 

The first interpretation rests upon evidence showing ihat high-level represenlalions of occlusion 

are invariant, and have similar time courses and magnitude to those of complete objects (Weigelt 

ei al. 2007, Hulme et al. 2007, Rauschcnberger el al. 2006). It therefore suggests that, although 

the occluded-objecl and incomplete-object interpretations are both kept alive in lower visual 

areas, in ihe higher levels only ihe occluded-object interpretation persists. This means the high-

level neurons represent just the completed object, which becomes the explicit percept. This is 

consistenl with the lileralure on bistable stimuU which indicates only ihe conscious percept is 

represented in high-levels (Fang ei al. 2008). 

Contrastingly, an fMRl study (Hegde et al- 2(X)8) reported regions in ihe LOC area which show 

significantly stronger responses to occluded object,s than to unoccluded objects. Along the same 

lines, Murray et al. (20O6) identified within the LOC region a specific object recognition stage 

which included boundary completion processes. This would suggest ihc incomplete object is 

also represented al some stage in this high-level region. The siudy pointed out thai this does not 
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exclude the involvement of early visual areas in the same contour completion process. 

2.3.2 Theoretical and Computational Models 

2.3.2.1 Idenlily hypothesis 

Prior to describing the different theoretical approaches to contour completion, it is important 

to clarily tlie relation between illusory and occluded contours. Typically, illusory contours are 

treated as a perceptual phenomenon, because they produce a clear sensorial experience. On the 

other hand, occluded contours are usually categorized as cognitive phenomena, as they cannot 

be directly seen, and are better described as being known or inferred. 

However, both experimental evidence and theoretical approaches indicate thai in fact the same 

interpolation process is responsible for both seemingly different effects. This controversial 

claim is known as the identity hypothesis (Kellman 2003). From a representational perspective 

there shouldn't be any significant difference between a contour which is behind another surface, 

and a contour which is in front. They cannot be divided into real, perceived and inferred con­

tours, as Ihey all try to represent the realily of the outside world as accurately as possible. The 

occluded contour is not any more or less real than the illusory contour. 

The question then arises as to why such phenomcnological differences exist between illusory 

and occluded contours, if they are both a consequence of the same representational process. This 

may be due to the fact that different aspects of a scene need to be neurally coded in different 

ways. Whether a contour is in front of or behind another surface shouldn't afl'ect the process 

of completing that object to make sense of the world. However, when coding the graspability 

of a given surface, it is vital to clearly signal occluded non-reachable surfaces, and thai may 

be the role of the modal/amodal phenomenology. On these grounds, and for the purpose of 

this section, we will treat illusory and occluded contours as stemming from the same contour 

completion process. 

2.3.2.2 Good continuation, relalabilily and the bipolc 

One of the Geslaii principles formulated in the eaHy 20lh century was the so-called good con­

tinuation principle. It describes the innate tendency to perceive lines as continuing in their 
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established directions, and is considered one of the milestones of perceptual organization. A 

similar concept, known as relatability, has been suggested as the guiding principle for contour 

completion in the visual system. It is based on smtwlhness principles such as contours being 

differentiable at least once, monotonic, and having bending angles below 90" (Kellman 2003). 

An important tool to explain contour completijin is the bipole (Neumann and Mingolla 2001. 

(irossberg et al. 1997. Roelfsema 2006). Although it can have diverging definitions depending 

on the author, most generally its function is to evaluate the effect a contour element at a given 

location has on the likelihood of perceiving a contour at a second k)cation. The bipole is typ~ 

ically represented by a characteristic hgure-eighl shape which describes the coupling strength 

between the centre unit and surrounding units according to their relative position and orienta­

tion. A neural implementation of this concept gives rise to bipole cells, defined as nonlinear 

grouping operators which receive input from real edges falling inside the bipole lobes (see Fig­

ure 2.12). It is strongly grounded on anatomical, psychophysical and physiological data (see 

Neumann and Mingolla (2001) Cor a review), and provides a biologically grounded method of 

implementing good continuation and relatabilily principles. 

This section discusses existing approaches and models that show how these geometric concepts 

can be implemented with neural mechanisms and how they relate to the physiology and anatomy 

of the visual cortex. 

2.3.2.3 Clas.sjficati(in or theoretical models 

Two broad theoretical categories for contour completion models have been considered. The first 

one relies on feedforward processing, and is also known as base grouping. The second deals 

with recursive mcxlels, placing the focus on lateral and feedback connections, and is also known 

as incremental grouping (Roclfsema 2006, Neumann and Mingolla 2001), 

An alternative, though compatible, classification focuses on the specific mechanisms involved 

ill contour completion, and proposes three broad classes: 1) contour interpolation, which in­

wardly extends two aligned line segments; 2) contour extrapolation, which outwardly extends 

a segment of a single line segment; and 3) figural feedback, whereby a high-level representa­

tion feeds back to complete missing contours (Halko et al. 2{K)8). The lirst two classes can 
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4 ^ 
Figuif 2.12: The bipole applied lo illusory contour formaiiori. The bipole is used to evaluate 

the effect of" a contour elernetn at a given location on the likelihood of perceiving a 
ctmtour ai a second location. Ii is typically represcnied by a characierisiic iigure-
eighi shape which describes the coupling strength between the centre unit and 
surrounding units according to their relative position and orientation. A neural 
iniplcnienlalion of this concept gives rise to biptilc cells, dclined as nonlinear 
grouping operators which receive inpul from real edges <e.g. contours of the 
pacmen) falling inside ihe bipole lobes. 

somelimes be considered equivalenl, and are usually believed lo occur as a consequence of 

feedforward or lateral processing, while feedback connections are the obvious candidate for the 

third class. As will be di.scussed funher on, evidence suggests ii is actually a combination of all 

three mechanism.s that is responsible for contour completion. Note that lo avoid confusion we 

use the term contour completion to refer lo the general process of fining in mis,sing contours, 

while we reserve contour inivrpolatian for the specific mechanism described above, responsible 

for contour completion. 

2.3.2.4 Feedforward miHlels 

This category refers to models based on the feedforward hierarchical architecture of neurons 

with gradually increasing receptive fields sizes and a spatial overlap between them. Higher pro­

cessing stages, such as V2, receive converging input from partially activated VI palches leading 

to the activation of units with bigger receptive fields which span the gap. These inlegralion units 

are sometimes referred lo as bipole cells, as they group the input from units within the bipole 

figure-eight geometry, as shown in Figure 2.12. The cooperation stage in Grossberg's model 

(Grossbei^ et al, 1997) implements the bipole. although as described further on in this section, 

it also combines aspects of hori/onlal processing. Another example of this type of feedforward 

architecture is HMAX. which was described in Section 2,1,2, ahhough it does not explicitly 
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implement bipole units. 

A similar model which also falls into die base-grouping category focuses on the feed-forward 

integration of end-stopped responses (Heitger ct al, 1998). This approach extends the classi­

cal simple and complex cell nuxiel to include end-stopped neurons, cells which decrease iheir 

response when the stimulus size exceeds the classical receptive held, The response of the ori­

ented end-stopped cells is important as it is associated with figure-ground segregation, lividencc 

shows that partial occlusion typically generates abrupt terminations at the side of the occluded 

surface, which can be accounted for by ligure-ground segregation mechanisms. Furthermore. 

the model end-slopped neurons also distinguish and encode the direction of contrast between 

figure and ground surfaces. It was found that neurons in V2 that respond to illusory contours 

are sensitive to the direction of contrast, and that this usually matches the occlusion direc­

tion. Thus, the model performs contour interpolation of subjective contours by integrating over 

die end-stopped cells according to the bipole weighting function, and taking into accouni the 

contrast-direction selectivity of these cells. 

This feedforward processing stage is sometimes referred to as the preattenlive phase, and al­

though some highlight the exclusive involvement of feedl'orward as an advantage, the general 

consensus is that feedforward processing by itself is insuflicient to perform contour completion, 

specially across large areas of the visual field. For example, the size of receptive fields in lower 

level regions, where contour completion effects are observed, is insuflicient lii cover the visual 

field distance (> lO'') between the inducer line segments of large illusory figures (Angelucci and 

Bullier 2003. Sterzer et al, 2006). However, as pointed out al the end of this section, preallentive 

processing can also be underslotxJ as an important initial stage in the more global completion 

process, which also involves recurrent processing. 

Horizontal and feedback models A second category of models, also denoted as incremental 

grouping models (Roelfsema 2UU6), lake into account the context of the elcmenls involved 

by making use of horizonial and feedback connectivity. Under this network scheme, neurons 

stimulated directly from luminance-defined contours provide facilitalive interactions to neurons 

which do not receive direct retinal stimulation. It is usually considered an attentive, and thus 
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more lime-consuming process, which gradually strengthens the responses of features which are 

perceptually grouped together. 

An important concept for these models is the local association field which formalizes the Gestalt 

good continuation principle. It states that contour elements which are well aligned will tend 

to be grouped together, by mutually exciting and increasing each other's saliency, while non-

collinear element.', tend to inhibit each other. Several studies have shown the neural interactions 

thai represent contour elements in VI and V2 are dictated by the selectivity of horizontal con­

nections which follow the local association field principle (Roelfsema 2006). The local associ­

ation field provides an alternative method of implementing the bipole principle, based on lateral 

recurrent circuits (Li 2001) instead of strictly feedforward connections. 

Grossberg and colleagues proposed the Boundary Contour System (BCS), one of the most 

prominent models based on the above principles. The BCS is encompassed by the more general 

Adaptive Resonance Theory (see Section 2.2.3), and comprises a number of stages thai perfonn 

detection, competition and cooperation of boundary segments. Later versions of the model 

combine both feedback, lateral competition and feedforward integration of responses through 

the so-called bipole cells to achieve contour completion (Grossberg ei al. 2(X)7). Here we fo­

cus on previous models (Grossberg et al. 1997, Raizada and Grossberg 2001) that show how 

contour completion is achieved by implementing the hipole propeny using strictly horizontal 

connections. 

Bipole cells are activated only when both sides of their receptive Held are sufficiently stimulated 

as shown in the schematic diagram of Figure 2.13. Ovals represent pyramidal celts located in 

layer 2/3 with collinear and co-oriented receptive fields. They are connected to each other via 

excitatory long-range horizontal synapses. These connections also excite a pool of inhibitory 

iniemeurons (black circles) connected via short range synapses to the pyramidal cell. The 

balance of excitation and inhibition accomplishes the desired bipole property. 

When only one of a pair of pacmen is present, the excitation from the inducing pyramidal 

cell to the target pyramidal cell is not enough to elicit the cell's response. This is because the 

excitation also targets the inhibitory neurons that balance out the excitation. On the other hand, 
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Figure 2.IS: Bipole impiemenlalion by kaizuduand Grossberg (2001), Ovuls represent pyra­
midal cells located in layer 2/3 wiih collinear and co-oriented receptive fields. 
They arc connected lo each other via excitatory long-range hori/.onlul synapses. 
These conticclions also excite a pool of inhihilury interneuroiis (black circles) 
connected via short range synapses to the pyramidal cell, a) Input froin jusl one 
side is insullicient lo elicit a response in the larget pyramidal cell. This is ihe 
result of exciiaiion also targeting the inhihiiory neurons whicli balance out Ihe 
excitation, h) When inpui arrives from collinearly aligned inducers on either 
side, the bipole property arises due to the circuits' exciiaiory/inhibitory balance, 
leading to coniour completion. The target neuron summates inducing excitation 
arising from neurons at both sides. Additionally, this excitation falls onto the 
shared pool of inhibitory intcrneurons, which also inhibii each other, normalizing 
Ihe lolal amount of inhibition .sent to the larget pyramidal neuron. 
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when inducing excitation comes from neurons at both sides of the target neuron, it summates. 

Additionally, this excitation falls onto the shared pool of inhibitory intemeurons. which also 

inhibit each other, normalizing the total amount of inhibition sent to the target pyramidal neuron. 

The combination of summating excitation and normalized inhibition leads to neurons without 

direct retinal stimulation, representing contours as a result of lateral connectivity. 

Tlie key mechanism to achieve contour completion in Grossberg's model is interpolation as 

defined by the bipole property. Extrapolation is also present in a sense but only when supported 

by the interpolation bipole mechanism. The model also supports the involvement of figural 

feedback but is limited to enhancing contours already formed by lateral connections, in what 

has been called the attentive stage (Halko el al. 2008). As explained in Section 2.1.2, during 

the attentive stage feedback can only provide subthreshold modulatory effects but never directly 

drive Ihe cell. This is consistent with the idea that feedback connections from areas V2, V4 and 

IT have a role in shaping Ihe Itjcal association lield (Roelfsema 2006). 

A similar theoretical approach, which places a sU-onger emphasis on figuraJ feedback, was pro­

posed by Lee (2003). h suggested illusory contours originated in higher levels wilh bigger 

receptive fields which could take into account a greater contextual range. This spatially diffuse 

activity can act as a top-down prior which feeds back to VI 's high resolution buffer. The local 

association field implemented via VI horizontal connections can then reline the feedback to 

construct spatially sharp and precise contours. Figure 2.14 summarizes the described contour 

completion process resulting from the interaction between feedback and lateral connections. 

Further evidence suggests that, although global feedback can interact with local boundary com­

pletion, these two processes are distinguishable and indcpendenl. Feedback, which emerges 

after processing the available partial information during feedforward recognition, leads to im­

precise boundary completion unless guided by the appropriate local cues dictated by contour 

relatability (Kellman ct al. 200.'1). This was shown using the dot localization paradigm, whereby 

an occluded image is presented, followed by a dot in front of the occluder which is rapidly 

masked. Subjects need to judge whether the dot is perceived to appear inside or outside of the 

occluder's contour. 

S9 



2.3. ILLUSORY AND OCCLUDED CONTOURS 

v: 

VI 

^ 

^ 

^ 

^ 

Time 

Figow 2.M: Contour compleiion resulting from ihe inleraetion between global fefdbai:k and 
local horizontal connections as proposed by l^e (2003). I.efl; A V2 neuron 
receives feedl'orward connections fnun a .set of VI neurons of a particular ori-
eniaiion activated by real edges. Right: Tlie V2 neuron projecis leedbuck to the 
same set of VI neurons. The excited V2 neuron broadcasts (he possibility that 
an extended contour exists lo all VI neurons. This distributed feedback signal 
introduces the global context that motivates the completion of contour by the V1 
neurons based on local evidence precisely represented in V!. 
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Results showed the representation of boundaries was highly precise and accurate only when 

the contour could be predicted by local relaiahility cues. However, when completion had lo be 

predicted from long-range contextual infbrmalion. such as from global symmetry patterns, the 

precision strongly diminished. This suggests feedback alone can provide widespread activity 

indicating the presence of subjective contours, but is insufficient to perform accurate contour 

completion. 

Inlegration uf multiple mechanisms Recent reviews of illusory contour formation suggest 

that ii results from the interaction between the different proposed mechanisms, i.e. extrapo­

lation, interpolation and ligural feedback, i-vidence suggests they all play a role in subjec­

tive contour perception, although the signihcance of their contribution may vary according lo 

the conditions of the stimuli. This addresses previous conflict between evidence in supp*)rt uf 

boltom-up versus top-down processing. Feedforward and horizontal connections would be in­

volved in interpolation and extrapolation processes, which interact with the high-level figural 

feedback, as supported by psychophysical, physiological and anatomical data. For a detailed 

review see Haiko et al. (2008). 

This interaction of mechanisms is consistent with models where the input image is preattcn-

tiveiy segmented based on Geslalt principles and subsequently processed following high-level 

focal attention (Grossberg and Raizada 2(X)0, Marr 1982). Under this perspective the initial 

feedforward base grouping would generate the high-level percept which would then attention-

ally guide, from coarse to fine scale, the local incremental grouping process that leads to illusory 

contour formation. This could in turn provide more detailed representation, which could im­

prove higher level object recognition (Hochslein and Ahissar 2002). For example, the fact that 

perceptual grouping does not occur during the inaitentional blindness condition (inability lo per­

ceive something that is within one's direct perceptual field as a result of a lack of attention) of 

an image provides further support for this conclusion (Roelfsema 2()0f)). Overall, the different 

approaches described in this section can be integrated into a common global recurrent pnKess 

spanning several regions of the visual system, each of which interacts in parallel to achieve the 

completion effect. 



2.3. a.LVSORY AND OCCLUDED CONTnURS 

To conclude, il is important to stress the significance of subjective contours not only for per­

ceptual purposes, but also for related functions such as action and other cognitive processes. 

Contour completion incorporates missing information which leads to a more unfaithful repre­

sentation of the two-dimensional input image, but a more accurate and reliable reprcsenlaiion 

of the surrounding physical environment. From this perspective, they are not merely illusions 

which should be discarded, but are in fact representations which bring our perceptual experience 

closer to reality (Kellman 2003), 

2.3.2.5 Key questions 

Overall, the conlour completion phenomenon poses an intriguing and exciting challenge to the 

scientific community, with many open questions still to be resolved. Answering these ques­

tions about what appears lo be one nf the key elements in visual perception will undoubtedly 

constitute an enormous coniribuiion to our understanding of this and other related lields. 

• Are modal (illusory) and amtKlal (occluded) completion effects mediated by common 

neural mechanisms (identity hypothesis)'.' If so, how are the striking phenonienological 

differences represented in cortex? 

• Why do studies show contradictory evidence in relation to whether subjective coniours 

are represented in VI or not? Are these inconsistencies a consequence of task/behaviour-

related demands (e.g. more visual precision is required for certain tasks) or internal 

methodological differences? 

• What are the neural mechanisms that mediate the integration of bottom-up, horizontal 

and feedback information in order to generate subjective coniours? Does the reliabil-

ily/unambiguity of each of the sources detennine the weight of its contribution? If so. 

how is the weighting process neurally coded? 

• If feedback from high-level object-related areas is responsible for lower level conlour 

completion effects, docs this feedback proceed in a serial sequence (e.g. IT-V4-V2-V1) 

or via parallel streams (e.g. U-Vl, V4-VI, V2-VI)? In the latter case, a) how are the 
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different feedback sources integrated? b) if one of the sources is inactivated (e.g. IT) are 

the remaining regions sufficient to generate the subjective contour in VI ? 

• Are illusory and occluded objects represented in high-level regions in a dirierent way to 

complete objects? U' so, are they represented with their missing parts, or as complete 

objects but with a watermark indicating they are occluded/illusory? 

• For Kanizsa figures with ambiguously defined inducers, e.g. rounded comers, the illusory 

contour is no longer perceived (based on psychophysical data). I.̂ J feedback equivalent 

in Kanizsa figures with ambiguously vs. precisely defined inducers? Is the perceptual 

difference due to the lack of local precise cues which prevents horizontal connections 

from lorming the illusory contour? If the rounded comers were gradually transfomied 

into siraighi comers, a) at what point would the illusory contour be perceived?, and b) 

how would this correlate to the neural representation in V2 and VI? 

• What neural processes are being activated when a human observer decides to voluntarily 

change the perception of a Kanizsa ligure to that of individual pacmen? Is feedback 

responsible for inhibiting the generation of the illusory contours? 

2.4 Original contributions in this chapter 

• Review evidence and identify key questions on the role of cortical high-level feedback in 

object perception. 

• Analyze and compare the different functional interpretations of feedback and identify 

points of convergence between them. 

• Review evidence and identify key questions on the representation in the visual system of 

illusory and occluded contours. 
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Chapter 3 

Bayesian networks and belief propagation 

As described in Chapter 2, ihe classical feedforward processing model fails lo capture many 

observed neurophysiological phenomena, and thus is gradually being replaced by a more global 

and integrative approach which relies on feedback connections. However, theoretical and com­

putational models stiil strive lo accommodate feedback connections and the dilTerenl observed 

conlexlual effect.s within a single general theorelica! framework. The probabilistic inference 

approach described in this chapter attempts to solve this problem. Results presented in this the­

sis are based on this methodological approach, and more specifically on belief propagation in 

Bayesian networks. Thus, Section 3.1 offers an introduction lo Generative models and Bayesian 

inference, providing the theoretical background and roots of this approach. Section 3.2 reviews 

evidence that supports this framework as being a good candidate for modelling the visual cor­

tex. Section 3.3 dehnes and formulates mathematically both Bayesian networks and the belief 

propagation algorithm, and includes an illustrative example. Finally, existing theoretical and 

computational models based on belief propagation are described in Section 3.4. 

3.1 The Bayesian brain hypothesis 

3.1.1 Generative models 

It has long been appreciated that information falling on the rclina cannot be mapped unambigu­

ously back onto the real-world; very different objects can give rise to similar retinal stimulation, 

and the same object can give rise to very different retinal images. So how can the brain perceive 

and understand the outside visual world based on these ambiguous two-dimensional retinal im­

ages? A possible explanation comes from the generative modelling approach, which has as 

its goal Ihe mapping of external causes to sensory inputs. By building internal models of the 
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world the brain can generate predictions and explain observed inputs in terms of inferred causes. 

Formulating perception as a process based on generative models which employs Bayesian prob­

ability theory to perl'orm inference is known as the Bayesian brain hypothesis (Frislon 2010). 

From this perspective the brain acts as an inference machine that actively predicts and explains 

its sensations. The basic idea is that making predictions is an effective strategy for discovering 

what's out there, and for refining and verifying the accuracy of representations of the world; 

in this way the world can act as its own check. Mismatches between expected and actual 

sensory experience allow us to identify the things that we don't know about, and hence fail 

to predict. This information can then be used in the creation and relinemcnt or updating of 

internal representations or models of the world, which in turn lead to better predictions, 

A natural consequence of these ideas is that the processing architecture and sensitivities should 

reflect the structure and statistics of natural sensory inputs. This suggests the visual cortex might 

have evolved to reflect the hierarchical causal structure of the environment which generates the 

sensory data (Frision and Kiebel 2(X)9. Friston 2005. Friston el al. 2{M)6, Friston 2010) and that 

it can consequently employ processing analogous to hierarchical Bayesian inference to obtain 

the causes of its sensations, as depicted in I-igurc .'1.1. 

3.1.2 Bayesian inference 

Making inferences about causes depends on a probabilistic represenlalion of the different val­

ues the cause can take. i.e. a probability distribution over the causes. This suggests replacing 

the classical deterministic view, where patterns are treated as encoding features (e.g. the orien­

tation of a contour), with a probabilistic approach where population activity patterns represent 

uncertainly about stimuli (e.g. the probability distribution over possible contour orientations). 

The Bayesian formulation provides the tools to combine probabilistic infomiation, i.e. prior 

knowledge and sensory data, to make inferences about the world. 

According to the Bayesian formulation the generative model is decomposed into two terms: the 

Ukelihood function or the probability that certain causes would generate the sensory input in 

question; and the prior or unconditioned marginal probability of those causes. The likelihood 

nKxiel, which maps causes to sensations, can be inverted using the Bayes theorem, yielding the 
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posterior probability of the causes given the inputs (mapping from sensations to causes). This 

can be written as: 

where P{C\I) represents the posterior probabihty of the causes C given the input /, for example 

the probability over the different physical causes given a particular retinal image; P{I\C) rep­

resents the likelihood of the input / given the causes C, for example the probability of a given 

retinal image having been generated by one or another of the potential different physical causes; 

P(C) represents the prior probability of the causes C, for example the different physical slates 

of the world; and P{!] simply represents a normalization factor 

3.1.3 Free-energy principle 

The free-energy principle proposed by Prislon (Friston and Kiebel 2009, Friston lOOfi, Friston 

et al. 2006, Friston 2010) conceptualizes the brain as an adaptive system which tries to resist 

a natural tendency to disorder, or entropy. Entropy can also be understood as a measure of 

unccnainiy or surprise, thus informally, the system needs to avoid surprises to ensure its state 

remains wiihin physiological bounds. One of the main characteristics of biological systems is 

ihal they maintain their internal stales within operational bounds, even with constantly changing 

environments. 

However, how can a system know if its sensations are surprising? The free energy principle 

provides a framework to do this as the free energy of a system is an upper bound on surprise. 

Thus by minimizing free energy, the system is implicitly minimizing surprise. Importantly, free 

energy can be evaluated because it depends on two probability densities which are available to 

the system: the recognition density and the conditional or posterior density. 

The recognition density, P(i?|^). provides a probabilistic representation of the causes. iJ, of a 

particular stimulus, given a set of internal slates, /i. In the brain these internal states hypolheli-

cally correspond to neuronal activity and synaptic weights. The conditional density, P{s. i?|m). 

provides the joint probabilistic representation of causes, i?, and sensory signals, s. It is based 
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on a probabilistic generative model m, which captures the dependencies between causes and 

sensory data, and can thus generate sensory samples from given causes, and likewise obtain a 

posterior distribution of causes given the sensory input. The generative model is hypothesized 

to be implicitly imprinted in the hierarchical stmclure of the brain. 

The theory accomnKxJaies several aspects of brain function in terms of optimizing the differ­

ent parameters in order to minimize the free energy of the system. For example, perception is 

understood as the process of minimizing free energy with respect to the neuronal activity (en­

coded as part of the internal stale, n), which entails m;Kimi/ing the posterior probability of the 

recognition density. The recognition density therefore becomes an approximation of the true 

posterior density. This is cquivatenl to the Baycsian inference approach described previously 

in this section. Similarly, learning or plasticity in the brain is explained as the optimization of 

synaptic weights, also enctxlcd by the internal state variable, ;i. These two processes minimize 

free energy by changing the recognition density, which modifies the expectations about sensory 

data, but without modifying sensory data itself. 

On the other hand, action is understood as a process of active inference, aimed at modifying 

sensory data so that it conforms to the predictions or expectations made by the recognition den­

sity. Increasing the accuracy of predictions also reduces the free energy of the system. Broadly 

speaking, the prediction error (i.e. sensations minus predictions), and thus free energy, can be 

minimized by either changing the sensory input through action, or changing the predictions 

through perception and learning. For a comprehensive description of the mathemalieal formu­

lation of free energy minimi/alion the reader is referred lo l-rision and Kiebel (2009), 

The free energy fonnulation was originally developed to deal with the problem of obtaining 

exact inferences in complex systems. It tackles the problem by converting it into an easier 

optimization problem. The inversion of the likthhood function (based on the Hayes theorem) 

to infer the posterior distribution over causes, thus becomes an optimization problem which 

consists of minimizing the difference between the recognition and the posterior densities to 

suppress free energy. This technique can be described as a type of variational Bayesian method 

(Beal 2003, Friston and Kiebel 2009. Winn and Bishop 2005), also called ensemble learning. 
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These methods provide an analytical approximation to the posterior probability of intractable 

Bayesian inference problems. 

Tn summary, ihe free energy principle provides a unifying framework for Ihe Bayesian brain 

and predictive coding approaches, which understand the brain as an inference machine trying to 

oplimi/e the probabihstic representation of what caused its sensory input. As stated by Friston 

(2010), the theory can be implemented by many different schemes, most of which involve some 

form of hierarchical message passing or belief propagation among regions of the brain. 

The model proposed in this thesis describes such a hierarchical message passing scheme, and 

thus is theoretically grounded on the free energy principle and the Bayesian brain hypothe­

sis. Panicuhirly. the focus of this thesis is on Bayesian networks, a type of graphical model 

which represents ihe causal dependencies present in generative models: and the Bayesian belief 

propagation algorithm, which perfonn.s inference in this type of network. A more formal defi­

nition and the relevant mathematical formulation of Bayesian networks and belief propagation 

is included in Section 3.3. 

3.1.4 Origins 

One of ihe first people to propose formulating perception in terms of a generative model was 

Mumford, who based his ideas on (irenader's pattern theory and earlier suggestions by Helmholiz 

(Mumford 1996). Applied to visual perception, this theory states thai what we perceive is noi 

ihe true sensory signal, but a rational reconstruction of what the signal should be. The am­

biguities present in the early stages of processing an image never become conscious because 

the visual system finds an explanation for every pecuHarily of the image. Pallem theory is 

based on the idea ihat pattern analysis requires patlem synthesis, thereby adding to the previous 

purely boliom-up or feedforward structure a top-down or feedback process in which the signal 

or pattern is reconstructed. 

The Helmholtz machine (Dayan el al. I99.'i) extended these ideas by implementing inferential 

priors using feedback. Here, the generative and recognition models were both implemented 

as slruclured networks whose parameters had to be learned. The connectivity of the system 

is based on the hierarchical lop-down and botiom-up connections in the cortex. This layered 
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hierarchical connectionist network provides a tractable implementation to computing the expo­

nential number of possible causes underlying each pattern, unlike other approaches such as the 

Expectation-Maximization algorithm, which runs into prohibitive computational costs. The key 

insight is to rely on using an explicit recognition model with its own parameters instead of using 

the generative model parameters to perform recognition in an iterative process. 

In recent years, the Bayesian brain hypothesis has become increasingly popular, and several 

authors (Friston 2005, Dean 2006. Lee and Mumford 2003. Rao 2006. Deneve 2005, I.ilvak 

and Uilman 2009. Steimer et al. 2009. Hinion et al. 2006) have elaborated and extended this 

theory. Many of their contributions arc described in this chapter. One of the main reasons for 

the rising recognition of the Baycsian brain hypothesis is its ability to accommodale disparale 

experimental results and existing models within a common framework, as will be illustrated in 

the following sections. 

3.2 Evidence from the brain 

The Bayesian brain irnxlel maps well onto anatomical, physiological and psychophysical as­

pects of the brain. Visual cortices are organized hierarchically {Felleman and Van lissen 1991) 

in recurrent architectures using distinct forward and backward connections with functional 

asymmetries. While feedforward connections are mainly driving, feedback connections arc 

mostly modulatory in their effects (Angelucci and Bullicr 2003, Hupe et al. 2001). Evidence 

shows that feedback originating in higher level areas such as V4, IT or MT. with bigger and 

more complex receptive fields, can modify and shape VI responses, accounting for contextual 

or extra-classical receptive lield effects (Guo et al. 2007, Harrison et al. 2007, Huang et al. 

2001. Sillito et al. 2006). Chapter 2 describes these aspects in more detail. As we will see in 

this section, hierarchical generative models are reminisceiii of the described cortical architec­

ture, sharing many structural and connectivity properties. 

In terms of the neural mechanisms involved, although il is not yet practical to test the proposed 

framework in detail, there are some relevant findings from functional magnetic resonance imag­

ing (fMRI) and electrophysiological recordings, Murray ei al. (2004) showed ihal when local 

information is perceptually organized inlo whole objects, activity in VI decreases while acliv-
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ity in higher areas increases. They interpreted this in terms of high-level hypolheses or causes 

explaining away the incoming sensory data. I^urther. Lee and Mumford (2003) studied the 

temporal response of early visual areas to different visual illusions, concluding that there are in­

creasing levels of complexity in information processing within VI, and that low-level activity is 

highly interactive with the rest of the visual system. Results of both experiments are consistent 

with the generative modelling approach. 

The generative model is also in agreement with evidence suggesting that the representations 

activated along the ventral pathway that are activated during mental imagery and visual per­

ception are surprisingly similar (Reddy el al. 2010, Ishai 2010). In fact. Slotnick el al. (20ll'5) 

showed that visual mental imagery can evoke topographically organized activity in striate an ex-

trastriate cortex, suggesting the involvement of feedback connections from higher-level object-

representation regions (Reddy ct al. 2010). 

The model is also consistent with evidence showing feedback from higher levels acts to reduce 

responses in lower levels (Alink et al. 2010, Murray et al. 2004. Slerzer et al. 200ft, Harrison 

el al. 2007, Rao and Ballard 1999). This is related to the predictive coding approach (Section 

2.2..'?). which is a particularination of hierarchical Bayesian inference in generative models. The 

reduction in response can be explained either by the reduction in feedforward error-detection 

populations, as a consequence of more accurate high-level predictions, or by a reiinement of the 

belief maintained al the different levels, due to the reduction of activity coding for features in­

consistent with high-level predictions. Furthermore, predictive coding models have been shown 

to be successful in explaining several phenomena observed in cortex, such as repetition suppres­

sion (Friston et al. 2006). biphasic responses in LGN (Jehee and Ballard 2009), end-stopping 

effects (Rao and Ballard 1997. Rao 1999) and a wide variety of VI extra-classical receptive 

lield effects, including surround suppression and facilitation (Spratling 2010). 

The model also accommodates evidence, such as the reduction of V1 activity when higher areas 

are inactivated (Hupe et al. 2001, Huang et al. 2007, Galuske et al. 2002, Angelucci and Hullicr 

200.3). which suggest that feedback acts to enhance lower level activity consistent with the 

high-level percept. This is consistent with biased competition and atientional interpretations of 
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feedback, which can also be accommodated within Bayesian inference theory (Chikkerur et al, 

2009, Spratling 2008b, Friston 201(1). These results are explained as an increase in the belief 

or prediction populations, as a consequence of an enhancement of features consistent with the 

global percept. 

Moreover, the Bayesian framework is also compatible with basic synaptic physiology such as 

Hebbian plasticity, which results from the optimization of the generative model parameters in 

order to reduce prediction error (Friston et al. 2006). A recent study (Nessler et al. 2009) 

further showed how a winner-lake-all network of spiking neurons implementing a spike-timing-

dependent plasticity rule could be understood in terms of a hierarchical generative model which 

discovered the causes of its input. 

Research has also made progress in accommodating the probabilistic framework at a neuronal 

processing level, describing how simple spiking neuron responses and population codes can 

represent probability di.stributions and implement inference (Pouget ei al. 2003, Zemel et al. 

2004, Deneve 2008a,b, Ma et al. 2006, Wu and Amari 2001). A recent outstanding publication 

(Soltani and Wang 2010) demonstrated how neuronal synaptic computations could underlie 

probabilistic inference by integrating information from individual cues. The model, validated on 

data from an experiment on a monkey performing a categorization task, showed how synapses, 

based on reward-dependent plasticity, naturally encode the posterior probability over different 

causes given the presentation of specific cues. 

Our understanding of the psychophysics of action and perception has also strongly benefited 

from Bayesian inference approaches. These have provided a unifying framework to model the 

psychophysics of object perception (Kerslen et al, 2004, Knill and Richards 1996. Yuille and 

Kersten 2006), resolving its complexities and ambiguities by probabilistic integration of prior 

object knowledge with image features. Interestingly, visual illusions, which are typically inter­

preted as errors of some imprecise neural mechanism, can in fact be seen as the optima! adap­

tation of a perceptual system obeying rules of Bayesian inference (Geisler and Kcrsten 2002). 

Similarly, Weiss and Adelson (1998) presented a Bayesian model of motion perception which 

predicted a wide range of psychophysical results, including a set of complex visual illusions, by 
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combining information from different image regions with a probabilistic prior favouring slow 

and smooth velocities. In further support of this view, Kording and Wolpert (2004) concluded 

that ihc central nervous system also employs a Bayesian inferential approach during sensorimo­

tor learning. 

Probabilistic models arc currently widely used to successfully capture different aspects of brain 

function, and provide a unifying perspective across a broad range of domains and levels of ab­

straction, They are not limited to modelling perception, and have been employed to explain 

other cognitive functions such as psychological conditioning, semantic memory, and decision­

making (Chater el al. 2006). For example, a recent study employs a probabilistic inference 

computational model, based on the neural representations in prefrontal cortex, to explain deci­

sion making during social interactions (Yoshidaet al. 2010). 

3.3 Definition and mathemattcal formulation 

In this section we define and formulate the mathematical tools used to develop the model in 

this thesis, namely Bayesian networks and belief propagation. These provide a specific imple­

mentation of the theoretical principles described in Section 3.1, i.e. the Bayesian inference and 

generative model framework. A body of experimental evidence highlighting the similarities be­

tween this approach and a set of functional, anatomical, physiological and biological properties 

of the brain has been presented in Section 3.2. 

This section first introduces basic probability theory concepts, and then describes what a Bayesian 

network is and how belief propagation works, with the aid of a practical example. Subsequent 

subsections describe two challenging aspects of belief propagation: combining infonnation 

from multiple parents and dealing with loops in the network using approximate inference meth­

ods. 

3.3.1 Probability theory 

Before describing Bayesian networks in detail, and to facilitate understanding, this section in­

troduces some essential concepts and terminology from probability theory. Note capital letters 

denote random variables, e.g. X, Y, while lower-case letters denote specific values of a random 
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variable, e.g. P{x) is equivalent to P{X = J:). 

Jiiinl probability Given a sel of random variables X — {X\ X„}, the joint probability 

distribution f'{Xi, ....X„] defines the prohability of the evenis specified by the variable stales 

X = {x],...,XN) occurring together (in conjunction), and satisfies the following properly, 

£ P ( A - | , , . . , ^ „ ) = 1 (3.2) 
' I <ii 

Marginal probability Given a joini probabiUiy distribution P(X\, ....X„). the marginal prob­

ability for a subset of variables Y — {Y\,...,Y„} <zX h given by 

P{yi .v.)= Z Pi^i^---^") (3.3) 

The marginal probability for a given variable is therefore 

P{^<)= £ Pixi:-,x„) (3.4) 
{xi....^„]\x, 

The marginalization process, also called variable eliminalion. entails summing over all the 

possible values of the variables we want to eliminate from the resulting marginal probability 

distribution. 

Conditiiinul probability Given two disjunctive sets of variables X and Y. the conditional 

probability of Y given X is defined as 

Conditional independtncc Two sets of variables X and Y arc conditionally independent 

given a third setZ if 

Piy\x,z) = Pim (3.6) 
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In this case it can be said that set 2 separates sets X and ?. written as X ±L Y\Z. 

Factorization From the definition of condilional probability it follows that the joint probabil­

ity distribution of a set of hierarchically organized variables X can be faclorized as follows (also 

referred to as the chain rule), 

P{Xu...,X„)=PiXi\x2 X„)-P{X2\Xi....X„)-...-P{x„)=llP(Xi\x.+ ,....,X„) (3.7) 

I 

The different condilional probability terms can be simplified according to conditional indepen­

dence assumptions. 

Baycs theorem Given two sets X and ?, the conditional probability of Y given )( (also called 

the posterior probability) satisfies the following equation, 

where the conditional probability P{x\y) is also called the liki-lihuoii; the marginal probability 

P{y) is also called \hepnor; and the marginal probability P{x) acts as a narmalizaliun constant. 

The marginalization and factorization of the joint probability disiribiilion, together with the 

application of the Bayes theorem, are the three key elements of the belief propagation algorithm 

described in the following section. 

3.3.2 Bayesian networks 

A Bayesian network is a specific type of graphical model, more specilically a directed acyclic 

graph, where each node in the network represents a random variable, and arrows establish a 

causal dependency between nodes. Therefore, each arrow represents a condilional probability 

distribution P{X\nx) which relates node X with its parents Uy- Crucially, the network is de­

fined such thai the probability of a node X being in a particular slate depends only on the slate 

of its parents. Fix- Consequently, a Bayesian network of N random variables X, defines a joint 

probability distribution which can be faclorized as follows, 
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P{Xl,....XN)=^l\P{X^\nx^ (3.9) 
i 

Note for nodes without parents (root nodes), the conditional probability of X, is equal to its 

prior probabiUty. i.e. P{X,]X\x,) — P{Xi). Thus, defining the whole structure of a Bayesian net­

work requires specirtcalion of the conditional probability distribution of each node with parents, 

P(A^4njv,).plus the prior probability distributions of all root nodes,/'(Xr,„„). 

More formally, a Bayesian network is a pair B — {G, / '), where 

• G — (V,^) is an acyclic directed graph with V = {Xi,X2,....X„}, a set of nodes (vertices): 

and A =C V x V, a set of arcs defined over the nodes; 

• PiV). a joint probability distribution over V. given by Equation (3.9). 

An explanation of why ihc griiph is denoted as acyfl.it: and direaed, and why these two prop­

erties are imponant, can be found further down in this section after intnxlucing a clarifying 

example. 

3.3.2.1 .^n inu.strative example 

Figure 3.2 shows a Bayesian network with six random variables representing a toy model sce­

nario which can be used to illustrate the above concepts. For simplicity we use discrete binaî y 

variables, i.e. each variable can be in either of two states, true or false. However, in a real 

scenario these variables are typically either continuous, or discrete with several slates. 

The scenario assumes the presence of big waves in the sea is a consequence of two causes: the 

presence of gales, as strong winds are associated with large wind-generated waves; and whether 

the moon is aligned with the sun or not. When the moon and the sun are aligned (which occurs 

during full moon and new moon periods) their gravitational force is combined increasing the 

amplitude of tidal waves. The presence of big waves is represented by the variable Wave.f (W); 

the presence of gaies is represented by the variable Gale.s (G); and whether the moon is aligned 

with the sun or not is represented by the variable Moon (M). 

Because both Gale.s and Moon have no parent nodes, they are considered to be root nodes, and 
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thus require a prior probability distribution. The prior distributions. P{G) and P{M). indicate 

ihat, with no other information available, it is more likely thai Gales are not present (0.8 vs. 

0.2); while both stales of the Moon arc equally likely (0.5). 

The model assumes when both high-level causes. Gales and Moon, are present {G = l.M — 

I), the probability of Waves is higher than when either of the causes is present by itself e.g. 

Galeft hut no Moon (G — l,Af = 0). When presented exclusively, Gales is considered to have 

a stronger effect over the generation of Waves ihan Moon. All this information is captured 

by the conditional probability distribution, in this case a conditional probability table (CPT) 

as variables are discrete, over the states of Waves given the stales of Gales and Moon, i.e. 

I'{W\G.M). 

At the same time. Waves acts as the cause of ihe two lower level effects: the presence of fishing 

activity, which is affected negatively by big waves, e.g.fishermen at a pier/beach or small fishing 

boats; and the presence of surfing activity, a sport which strongly benefits from big waves. The 

presence of fishing activity is denoted by die variable Fishing {F), while the presence of surling 

activity is denoted by the variable Surfing {S). 

Crucially, the stale of the parent node. Waves, is a determinant factor for the stale of both child 

nodes. Fishing and Surfing. The causality dependency between the stale of the node Fishing 

with respect to the state of its parent nixle Waves is given by the CPT P{F\W). Analogously, 

P{.S\W) represents the conditional probabifity over the states of the node Surfing given the state 

of the node Waves. 

Using the more formal definition, the Bayesian network in Figure 3.2 can be described as B = 

{G,P), where 

» G = {V.A) is a directed acyclic graph with a set of vertices V = {G.M.W.F.S}; 

and a set of arcs A = ((G.W),(M.W),(W,F).(W.S)); 

• P is the joint probability distribution over V given by, 

P{G,M,W,F,S) = P{S\W] • P{F\W) • PiW\G.M) • P{G) • P{W) (3.10) 
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Figure 3.2: Toy model Bayesian network. The scenario assumes the presence of big waves in 
the sea, Waves (W), is a consequence of iwo causes: the presence of gales, Gaies 
(G); and whelher the moon is aligned with the sun or not, Moon (M). At the 
same lime, Waves acts as the cause for the two lower level et'fecls: the presence of 
tisliing activity, Fishing (F); and ibe presence of surling activity, Surjiri}; (S). The 
prior distributions, P{G) and P{M). indicate that, without any other information 
available, it is more likely that Gales are not present (0,8 vs. 0.2); while both 
state.s of the Moon are equally likely (0,.^). The conditional probability over the 
stales of Waves given the slates of Gales and Moon is represented in the conditional 
probability table P{W\G.M). The causality dependency between ibe stale of the 
node Fishiii)^ with respect to the stale of its pareni node IVuvcv is given by the 
CiT P{F'.W). Analogously. P{S]W} represents the conditional probability over 
the stales of the mxle Surfing given the states of the mxie Waves. 
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Note the example described is just a toy scenario which does not accurately reflect the physical 

factors affecting wave generation, or the effects waves may have on surhng and fishing activity. 

Any real life situation is practically impossible to capture using such a reduced number of 

variables and states. However, the analogy with a real-world situation is useful to explain the 

different maihematicrtl constructs in this section. 

3,3.2.2 Directiunal separation and explainin|> away 

Graphical models can be divided into two categories: directed and undirected. Undirected 

graphical models, also called Markov random fields, have a simple definition of independence. 

Two sets of nodes A and B are conditionally independent given a third set, C, if all paths 

between the nodes in A and B are separated by a node in C. By contrast, directed graphical 

models (Bayesian networks), have a more complicated notion of independence, which lakes 

into account the directionality of the arcs. Directionality, however, has several advantages. The 

most imponanl is thai causality is clearly defined, such that an arc from A -> B indicates that 

A causes B. This facilitates the construction of the graph structure, and the parameter learning 

process or fitting to data. Not all causal relationships captured with directed graphical models 

can be represented using undirected graphical models, and vice versa (I'earl 1988, Murphy 

2002). 

Before describing directional separation in Bayesian networks, it is important lo define the 

concept and the different types o(evidence. An evidence function that assigns a zero probability 

lo all but one slate is often said to provide hard evidence; otherwise, it is said to provide soft 

evidence (e.g. 90%probability of being true and 10% probability of being false). Hard evidence 

on a variable X is also often referred to as instantiation of X or lo X being observed or known. 

Note that, as soft evidence is a more general kind of evidence, hard evidence can be considered 

a special type of soft evidence. If the disiinciion is unimportiml we will leave out the hard or 

soft qualifier, and simply talk about evidence. 

Due to the directionality of arcs, there are three ditTerent types of connections in Bayesian 

networks: 
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• Serial connections: For example, the conneclion Af —» W —̂  S in Figure 3.2. Node S is 

condilionally dependent on mxle IV, and node W is conditionally dependent on node M. 

This means entering evidence at nodes M or S will update the prnbabilily distribution or 

node W. However, entering hard evidence in node W blocks or direttionally separates 

{d-separates) nodes M and S. 

In other words, nodes M and ,S are condilionally independent given hard evidence in node 

W, also written as A/ J l 5 | W. Thus, information may flow through serial connections 

unless (he stale of the middle variable iW) is known. Inluitively speaking, given that we 

already know the size of the waves (W), the moon alignmenl [M) does nol alTeci ihe 

presence of surfing activity (S). 

• Diverging connections: For example, ihe conneclion /*' <— W —> .? in Figure 3.2, Child 

nodes F and S are conditionally dependent on parent node W, thus entering evidence on 

W will modify the probability dislribulion in nodes F and S. However, knowing the state 

of W blocks {d-separates) nodes F and .V. 

Therefore, nodes F and S are conditionally independeni given hard evidence al node W, 

i.e. F }LS \'W. Hence, information may flow along diverging connections, unless the 

state of Ihe middle node W is known. Intuitively, if we don't know the state of the waves 

(W). the presence of fishing activity (F) could provide us some information about the 

presence of surling activity {S). However, once we know the exact slate of the waves 

(W). the presence of lishing activity [F) does nol affect the presence of surfing activity 

(5) and vice versa. 

• Converging connections: For example, the connection G ~^W i- M \n Figure 3.2. Child 

node IV is conditionally dependent on parent nixies G and M. lintering hard evidence al 

node G will update node W but have no effect on node M. However, if some evidence 

is already present in node IV, then entering information in any of the parent nodes G or 

M will update lh<j other parent ntxle. Here, soft or hard evidence in node IV or any of its 

descendants, d-connecis nodes G and M. 

Thus, it can be said that nodes G and M are conditionally dependent if evidence on IV or 
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its descendants is available. This rule tells us that if nothing is known about a common 

effect of two (or more) causes, then the cau.ses are independent. In other words Gales is 

not an indicator of Moon, and vice versa. However, as soon as some evidence is available 

on a common effect, the causes become dependent. If, for example, we receive some 

information on the state of VVijvcv. then Gales and Moon become compeiing explanations 

for this effect. Thus, receiving infonnation about one of the causes either confirm.s or 

dismisses the other one as the cause of Waves. Note that even if the initial information 

about the Waves is not reliable (soft evidence), Gales and Moon still become dependent. 

The property of converging connections, where information about the state of a parent 

node provides an explanation for an observed effect, and hence contirms or dismisses 

another parent node as the cause of the effect, is often referred to as the explaining away 

effect or as inlercausal inference. I-or example, knowing Gales are present strongly sug­

gests these are responsible for the Waves, hence explaining away the Moon as die cause 

of the Waves. 

Critically, one of the fundamental properties of directed acyclic graphs (Bayesian networks) is 

that for a given node X. the set of its parents, rijf, d-separales this node from all other subsets 

Y with no descendants of X, such thatX ±L f | Ilx. In other words, each node in the network is 

conditionally independent from its non-descendants, given its parents. This allows us to obtain 

the factorization of the joint probabiHly distribution shown in h^^uation (3.9), as the following 

property is satisfied; 

p{x,\nx„Y) = p{x^nx^ (3.11) 

3.3.2.3 Cycles and acyclic graphs 

A chain consists of a series of nixies where each successive node in the chain is connected to 

the previous one by an edge. A path is a chain where each connection edge in the chain has the 

same directionality, i.e. all are serial connections. For example, nodes M —> W -^ 5 (l-igure 3.2 

form a path; while nodes M ^W <— G form a chain but not a path. A cycle is a path that starts 
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M Ih) 

Figure 3.3: Bayesian networks can have loops but not cycles, a) A cycle: a palh ihai siarls and 
ends al the same node, h) A liicip: a chain with no cycles, where al leasi one node 
is visited mure than once. 

and ends al the same node (Figure 3.3a). A loop, however, is a chain where al least one node is 

visiiec! more than once (i.e. has two or more parents), but has no cycles (Figure 3.3b), 

The distinction is important because Bayesian networks by definiiion have no cycles (acyclic), 

but can have loops. Bayesian networks with no loop.s are usually called singly-connected net­

works, while those with loops are called multiply-connected networks. 

3.3.3 Belief propagation 

3.3.3.1 Inference 

Given the structure of the network and the conditional probabilities delining the joint probability 

distribution (Equalion (3,9)), il is possible to analyiically tompuie the marginal probability of 

each node, in terms of sums over all the possible stales of all other niKies in the system i.e. 

using marginalization, as shown in Hquation (3.4). Ibr example, the marginal probability of the 

variable Wean be calculated from the joint probability given by Equation 3.10 as follows. 

S F (J M 

As can be seen, this computation is impractical, specially for large networks, as the number of 

terms in the sums grows exponentially with the number of variables, l-urthermore, there are 
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many common intermediate terms in the expressions for Ihe difTerent marginal probabilities, 

which implies a high redundancy and thus low efficiency in the calculations. Additionally, when 

new evidence arrives into the network, the effect.̂  of the observed node modify the marginal 

probabilities of all other nodes, requiring the whole marginalizaiion process to be repeated for 

each variable. 

Belief propagation, a message-passing algorithm, manages to perform inference in a Bayesian 

network in a way that grows only linearly with the number of nodes, as it exploits Ihe common 

inlermediaie terms that appear in the calculations. In belief propagation the effects of the obser­

vation are propagated throughout the network by passing messages between nodes. The Hnal 

belief, or posterior probability, is computed locally at each node by combining all incoming 

messages, i.e. evidence from higher and lower levels. 

The belief propagation algorithm is not restricted to solving inference problems in Bayesian net­

works. In fact, a generalized version of the algorilhm, also called the sum-product algorithm, 

can be shown to encompass a number of methods from different disciplines such as physics, 

digital communications and artihcial intelligence. Some of the methods that can be considered 

particular cases of belief propagation arc the forward-backward algorithm, the Viierbi algo­

rithm, decoding algorithms such as turbo-codes, the Kalman lilter and Ihe transfer-matrix in 

physics {Yedidia et al. 2003. Kschischang et al. 2001). 

To derive particular instantiations of the belief propagation algorithm it is necessary lo consider 

maihcmatical scenario.s with very specific conditions in each case. For example, the Kalman fil­

ter is derived from applying ihc Ihe generalized belief propagaiion algorithm to a set of Gaussian 

random variables thai follow certain discrete-lime dynamical equations. It is useful lo represent 

the different problems using factor graphx, a graph-based language that allows us lo represent a 

set Lif variables, together with a generic set of functions which relates different subsets of these 

variables (Yedidia et al. 2003). It has been shown that factor graphs can capture a wide range of 

malhematical systems, including Markov random fields and Bayesian networks. It is therefore 

possible to convert any arbitrary Bayesian network into a precisely mathematically equivalent 

factor graph (and vice versa) and apply the generalized belief propagation algorithm to solve 
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the inference problem defined by the network (Kschischang el al. 21)01). 

In this thesis however, I have used Pearl's original belief propagation algorithm applied to 

Bayesian networks (Pearl 1988). The rationale behind this choice is that, although factor graphs 

can capture the same phenomena, Hayesian networks provide a more intuitive and explicit ac­

count of the causal relations between the variables, T believe this is crucial when modelling 

hierarchical object recognition in Ihe visual system from the the generative model perspective. 

3.3.3.2 Combination of evidence and belief calculation 

The aim of behef propagation is to calculate the marginal probability of u variable X given 

some evidence e. The inllucnce of evidence can propagate to ntxie X either Ihrough its parent 

or ihrough its child nodes, thus evidence can be divided into two subsets such that. 

c - e ^ U C x (3.13) 

e ^ n e x - 0 (3.14) 

where C;t represents the evidence oftovf node X, and 6;̂  represents ihc evidence below node X. 

This is shown in Figure 3.4. Similarly, in this section we will use the symbol e,;;^ to designate 

the evidence above the link (I, -> X: while e[̂ r̂  refers to the evidence below the link Uj —> X. 

The probability of a node X given some evidence e, i.e. P(xle), is usually referred to as the 

posterior probability, P'iX), or the belief. Bel{X). Taking into account all the above, as well a-s 

Bayes rule (Equation (3.8)), we can write, 
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Figure 3.4: Message passing in belief propagation in a Bayesian network. Node X receives all 
hotioni-up messages Â , (.V),...,ACM(.V) from its ciiildrcn. and all lup-dnwn mes­
sages jrx(i/;),.••,%("«} from ils parents. The belief can ihen be calculated by 
combining all boitom-up evidence ej( and lop-down evidence ej . Node X gen­
erates outgoing messages Ax(ui),..,̂ ;f(wjv) for ils parent nodes, and messages 
'tj(-v),-.,?iCM{< )̂ for ils child rmdes. 

Belix)=P-{x) = P{x\t) = P{x\4,ei) 

^P(e,\x,e^^)-P[x\4) 

= a-ne-^\x)-P{x\4] 

= a-X{x) -nix) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

where a = [P(e;^]eJ)]"', represents a noniialization constant; X{x) = f'{e'^\x), represents the 

diagnoslic or retrospective support that the assertionX =x receives from A"s descendants; and 

K[X) — P{x\Vi^x), represents the causal ox predictive support that the assertion X - x receives 

from all non-descendants of X. via X's parents. Thus, the total strength of the belief X = jr can 

be obtained by combining or fusing the contribution of bottom-up diagnostic evidence, X{x), 
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and top-down causal evidence, 7r(jr), as shown in Equation (3.18). The A and n symbols (greek 

letter for / and p) are chosen because the terms are derived from the likelihood and prior terms, 

respectively, in the Bayes theorem (Equation (3.8)). 

To understand how information from several descendants is combined at node X. we partition 

the set C;̂  into disjoint subsets, one for each child of X, For example, for the graph in Figure 3.4, 

if X is not instantiated, we can write e^ —^xci ^^xci^--^^XCM- yi<-'ltJmg the following ex­

pression. 

^x)^p^ex\x) 

=pi^xcM)---nexcj^) 

j= I .-M 

where A<: (x) — P{^xc W- represents the support the assertion X — x receives from the set of 

nodes below the link X -+ Cj. In other words, it represents how well the cause x explains the 

effects observed in the nodes under the t',. Tlie Ac, (v) terms can be understood as messages that 

node X receives from Its children, which combined via the product rule yield the A [x) function. 

Next T will describe how to obtain the n{x) function, firstly for a single parent, and secondly 

for the case with multiple parents (polytrees), Assuming X has a single parent node I! and 

conditioning on the values of f/, we gel. 
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n(x) = P{x\et) 

= Y^P{x\u)-P{u\4) 
u 

= Y,P{x\ii)-7lxiu) (3.20) 

where P{x\u) is the conditional probability distribution stored on the link V —> X: and % ( H ) = 

/'[it'lc^). represents how probable the value u is, based on causal evidence above the link U —> Jf. 

jrx(w) can be understood as a message that node X receives from ils parent, which, multiplied 

by the conditional probability Tunction that relates both nodes, yields the n{x) function. 

In the more general case where multiple parents are present, we assume the evidence can be 

partitioned such thai c j - e^^y UeJ ;̂̂  U ... Ue^ .̂ĵ  (Figure 3.4). Therefore. 

Jtix) = Pix\4) 

= n^Kx 4,x) 

= £ Pi^l" I'N)-P(U\ »N\tu,x *^u^x) 
U]....,tlK 

= Y, P{x\ut.....,UN)-P{i,t\e^^xy^-'-P("'^K,x) 
Ul UN 

" I "N 

H | , . ..IIH l=i..S 

where P(X\II\....,UM) represents the conditional probability distribution that relates node X to 

88 



3.3. DEFINITION AND MATHEMATICAL FORMULATION 

all of its parents; and %(«;) represents the support the assertion t/,- = M,- receives from the 

nodes above Uj. %(»,) can also be understood as the message X receives from its parent 

node Ui, which combined with the messages from all other parent nodes, and multiplied by the 

appropriate values of the conditional probability function, yields the n{x) function. 

Therefore, as has been demonstrated, the generic node X in Figure 3.4 can calculate its own 

belief if it receives the messages V; (••:) from its children and KX{UI} from its parents. In the rest 

of this section we will consider how to generate these messages, which allow the evidence lo 

propagate across the network. 

3.3.3.3 Bottom-up mes-sattes 

Taking into account that all nodes in a Bayesian networit perform the same operations, we will 

consider the generic message Aĵ («,}, which node X must send lo its parent node IJ, (Figure 3,4). 

It is therefore convenient to treat all parents of X, except the one receiving the message, as a 

common set V, such that V —V-U, = {f/i,....(7,_i,t/n.|,...,iy/i/} as shown in Figure 3.5. 

The message Xx{ui) must lake into account all evidence under die link Uj —> X, which includes 

evidence coming from all other parent-s of X (Sy^ — U *(/ ;f)'- and evidence arriving from 
k-\..N\i ' 

the descendcnts of X (e^). Given thatX separates eyj^ from ejj^ and V separates e,̂ ;̂  from U„ 

we can write, 

[conditioning on .V and v] = ^Y,fi^vx^^x\"<''^'-'^)'^{^-A"') 

[applying Bayes theorem] ^ fiY.I,P{ex^x) • ^ i j l ^ .p(.t|i.,«,) •P(v|«,.) 

[since/'{i'|«/)-P(v)] = /3££/'(e^,x)-P(t.|c,^;v)-n-^l''-";) (3.22) 
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e uix -vx 

P{evx*.ex-|u,) = A,(Ui) ') = nk.iTrx(Uk) 

x) = A(x) 

e% 

Figure 3.5: Bollom-up k messages explanalory diagram. The message Ax(«,) musi take into 
account all evidence under the link [/, -+ X, which includes evidence coming 
from all other parents of X (ey^ -- IJ Cy x); and evidence airiving from ihe 

descendenls of X (e^). It is therefore convenieni lo Ireal all piirenls of X, ex­
cept the one receiving the message, as a common set V, such thai t' = U - f/, = 
{'̂ 1 t^,-hf^.+ i ^A-
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Afler resioring ihe original meaning of V, such thai P{x\v.ui) ~ P{x\u\,...u\). and 

pi^Hx)- n ^'("^Kx)- n 'r̂ f"*) (3.23) 
k^\..N\i k=i..N\l 

the final expression is 

^X(M,) = ^ L Mx) £ /'(.V|"I,.-."N) n '̂ f̂"*) 
H I , . . . , U N \ ( ( , k^\..N\i 

(3.24) 

where /3 is a normalizing constant, and A(x) is defined in Equation (3.24). Note, in the previous 

derivation we assume nodes X and V themselves are not instantiated and are therefore not part 

of the evidence setse^;^ and e^j^, respectively, 

3.3.3.4 Top-down mcs.sa(>es 

We now consider the generic message 7lCj(x) that node X sends to its child node Cj, as shown 

in Figure 3.4. The body of evidence which must be sent in this message includes all evidence 

available, except the evidence found in the subnetwork below the link X -t Cj, i.e. e j ^ -

c-fixc,- Therefore. Tic^ix) is equivalent to the belief of X (Equation (3.18)) when the evidence 

e^c is suppressed, which can be written as, 

^M) = 4c 
Belix) 

- a f ] kc,{x)-n{x) (3.26) 
*=l..M\j 

where a is a normalizing constant, and n(x) is defined in Equation (3.20). 
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3.3.3.5 Summary of belief pnipagation rules 

Here we sum up the computations performed locally by a niKJe in (he generic section of a 

hierarchical Bayesian network represented in Figure 3.5. Given a node X with parent nodes 

(/|,...(yAr,andaset of child nodes Cj,...CM. ihe belief propagation algorithm can be performed 

in three steps as follows: 

1. Node X receives all bouom-up messages X(:^{x),....^Cm{x) from its children, and all 

top-down messages 7ix{ui),.-,nx{uj^) from its parents. 

2. Given the fixed conditional probability distribution P(jr|Hi M/I;) thai relates node X to 

its immediate parents U],..., (7;;, node X can calculate its belief as 

Bel(x)^a-X(x)-7i{x) (3.27) 

Xix)^ n -^yW < -̂28) 

n{x)^ I Pix\ui,....u^). Yl ^xiu^) 0-29) 
" I WJV i=l,,N 

where k{x) represents the combination of bottom-up evidence arriving al node X and 

n{x) represents the combination of top-down evidence arriving at node X. 

3. Node X generates outgoing messages XX[UJ)....?.X{UN} for its parent nodes, and mes­

sages ^•,{X),..,JICM{J() for its child nodes, given by the lullowing equations: 

hiu,] = Pl^ 
u[ Uf/\iii k = \..N\i 

(3.30) 

7zc,{x)^a n V ' , W - ^ W - a - f ^ (3.31) 
k=i..M\j '^M) 
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Note the Xx{ui) message can be sent to node U, as soon as messages from all other 

nodes, except node Uj, have been received. Analogously %^ (j;) can be sent as soon as all 

messages, except that arriving from node Cj, have been received, 

3.3.3.6 Boundary conditioiLs and evidence nodes 

There are four types of nodes that are considered special cases and need to be initialized as 

follows: 

1. Root nodes: For a node X without parents, n{x) is set equal to the prior probability P{x). 

2. Aniicipatoiy nodes: I-or a node X without children, which has not been instantiated, X{x) 

is set equal to u flat disiribulion (1,1 I), so thai liel{x) is equal lo n{x). 

3. Evidence nodes: For a node X Ihat has been instantiated, such Ihat the /-Ih value of X is 

observed to be Irue. X{x) is set equal to (0 0,1,0, ...0) with 1 at the _/-lh ptisilion. This 

is usually referred to as hard evidence. 

4. Dummy nodes: A nodcX can receive virtual or judgmental evidence from a child dummy 

node C. In this case the X[c) and n{c) do not exist, but instead a Xc{x) message from 

Clo X is generated where Xc-[x") = p • P{ohsfrvalion\x). The observation can consist of 

any probability distribution over the states of node X, and is usually referred to as soft 

evidence. 

3.3 J.7 Example of hcliel' prupagation with diagnostic evidence 

When evidence occurs in the child node and propagates to the parent node, from known effects 

to unknown causes, this is denoted as diagnostic reasoning or bonom-up recognition. Figure 3.6 

shows a scenario, based on the previously described toy example, where evidence about Surfing 

propagates across the network, updating the beliefs in all other nodes. 

Note that because variables arc binary, the pwbability ofX or the belief of X refer lo the proba­

bility of variable X being in the true state. 
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Figure 3.6: For caption see footnote' 
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We assume the following initial conditions; the iwo root nodes M and C lake the value of their 

prior probabilities; child node F acts as an anlicipatory node, thus maintaining a flal distribution, 

and node S is an evidence node with a dislrihulion (0,1), i.e. hard evidence indicating that 

there is definitely Surfinf; activity, tiiven this information and ihe condilional probability tables 

provided In Figure 3.6, all the nodes are ready to send messages to the intermediate node IV. 

The initial conditions, and the subsequent generated messages following Equations (3.30) and 

(3.31), are shown below: 

'Capiion for Figure 3.6. Example of belief propaga[ii}n wilh diagnosiic evideiice. The scenario, based an the 
previously described loy example, shows how evide[ice abou[ Surfing propagates across ihe ne[w(irk, updating the 
beUefs in all mhcr nodes. In the ftrsi step Ihe iwo rod nodes iind the two leaf nodes send messages to ihe intermediate 
node IV. which multiplies the combined lop down evidence, !t{w) and boiiom-up evidence, A(»'), toohiaiiiiis belief. 
Step two shows the ouigoititi messages irimi node W lo its child and parent nodes, Ihî  key property here is thai 
ihe ouigoing messages take inio account all evidence encepi that which originated Iroiii the desiinaiiim node, f-or 
example the message from W to G, Aiv(s)- doesn'l take into account the prior inlomimion conveyed through the 
incoming message Kw[g]. The belief, or posterior probability, of both parent nodes is higherihan Iheir original prio/" 
probabilily. Node F also u|idaies its belief according lo ihe new incoming message, showing a lower probability. 
Iniuiiively. evidence of surfing activity suggests the pre.scnee of big waves, which in turn suggests ihe presence of 
gales and/or ihe moon as ihe generaiing causes. Ai the same time, ihe presence of big waves suggests lishing activity 
Is less likely to be present. See the text for a detailed step by step description of the mathematical operations. 
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33. DEFINITION AND MATHEMATICAL FORMULATION 

A{/) = ( l , l ) : A(.v)-(0,1): ;r(g) = (0,8.0.2); ;r(/n) - (0.5,0.5) 

V(H') = P-£A(/).P(/M 
/ 

= p - ( r 0.2+1-0.8,1-0.7+1-0.3) = (1,1) 

= (0 .0 .7+10.3,0 .0 .2+1-0.8) 

= ^•(0.3,0.8) = (0.27,0.73) 

Jrw(g)-;r(^)-(0.8,0.2) 

nwim) = nim) = {0.5.0-5) 

Once ntxie W has received all incoming messages, it can genemle X{w), which combines all 

botlom-up evidence, and 7t{w). which combines all top-down evidence (in this case the pri­

ors). The final belief can be obtained by multiplying together these two factors, thu.s ohlaining 

the marginal probability of W given all the infoimalion available in the network. Following 

Equations (3.27). (3,28) and (3.29). we oblain 
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= i;i,l)'(0.27,0.73)^(0.27,0.73) 

K{W) - ^ n ^ g , " ! ) • nw(g) • rcw[m) 

n{w = 0) = {P{w ^ OIJ? = 0,m = 0) • iZv^iR - 0) • nw{m - 0)) +.. . 

+ ( ^ ( ^ - - 0 1 ^ - l,ffl = 0)-;riv(j?- I}-;rvv(m-0)) + ... 

+ {P{w = 0[ '̂ = 0.;/i = I) • T̂ivĈ  - 0). TTivlm - 1)) + ... 

+ {P{w = Q\g= \.m= \)-nw{g= \)-nw(m= \)) 

- ( 0 . 9 0.8 0.5)+ (0.2-0.2-0.5)+ (0.3 0.8-0.5)+ (0.9'0.2-0.5)-0.51 

n{w - 1) = (0.1 0.8 • 0.5) + (0.8 • 0.2 • 0.5) + (0.7 • 0.8 • 0.5) + (0.9 • 0.2 • 0.5) - 0.49 

;r(>v)-(0.51,0.49) 

Bel{w) - a-X{w)-n{w) 

-a(0.27,0.73)-(0.51,0.49)-ct-(0.138,0.358) 

^(0.278,0.722) 

In this case, the evidence in Surfing yields a value of k{w) that suggests there is a high prob­

ability of Waves (0.73). The top-down prior information i:{w) is practically a flat distribution 

(0.51,0.49), i.e. doesn't add any inforniaiion. ihu.s the resulting Ixilief suggests there is u high 

probability of Waves (0.722). This is shown graphically in the top diagram of Figure 3.6. 

The next step is to generate the outgoing messages from node IV to its child and parent nodes. 

The key property here is that the outgoing messages take into account all evidence except that 

which originated from the destination node. For example, the message from W to G. An'(^), 

doesn't take into account the prior information conveyed through the incoming message Ttwig). 

Given Equations (3.30) and (3.31). the resulting expressions are 
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Xw(g ^ 0) = A(M' = 0} • {P(w = 0\g = O.m = 0) • Kwim - 0) + ... 

+ />(» - 0|JE; - 0,m - 1) • nwim = 1)) + ... 

+ A ( M ' ^ {)-{P[W= l |g-O,m-O)-;rw(m = 0) + ... 

+ P[w^ l | i ' - 0 , m - I ) - ; rw(m-l ) ) 

-0.27-(O.9-0.5 + 0.3-0.5)+O.73(O.|.0.5 + 0.7-0.5) =0.454 

Xy^{^ = I) = 0.27 • fO.2 -0.5 + 0.1 -0.5) + 0.73 • (0.8 • 0.5 -f 0.9 • 0.5) - 0.661 

AwU) - ^ • (0.454.0.661) = (0.407,0.593) 

^iv('")-^'^A(H')£P(iv|^.ffl)-;rH.(^) 
11 in 

Atv(m = 0) = 0.27-(0.9-0.8 + 0.2-0.2) +0.73 • (0.1 -0.8 + 0.8 0.2) - 0.38 

^[m =\) = 0.27 • (0.3-0.8 + 0.1 -0.2) +0.73 • (0.7 -0.8 + 0.9 0.2) - 0.61 

AH.(/M) = i3-(0.38,0.61) = (0.384,0.616) 

nf{w) - (i • ks{w) • 7i{w) 

= j5 • (0.27,0.73) • (0.51,0.49) ^ /J(0.138,0.358) = (0.278,0.722) 

ns{w)^ji-XF{w)-n{w) 

= ^-{l.l)-(0.5l,0.49) = (0.51,0,49) 

Note how the bottom-up messages. Xw {g) and X}\i{m), take into account, not only the bottom-up 

evidence, but also the prior probability conveyed by the parent node to which the message is not 

destined. This is sometimes referred lo as horizonial or sideways interactions between parent 

nodes with a common successor, and results in the explaining away effect. Analogously, the lop-
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down messages, n/Hw) and }Cs{w). convey information about the top-down prior information 

logelher with evidence arriving from the non-recipienl child node. Once the above messages 

reach their destination ntxles, it is possible lo calculate the Belief in each of the periphery nodes, 

as shown in the bottom diagram of Figure 3.6, 

= a • (0.407,0.593) • (0.8,0.2) ^ a(0.326,0.119) = (0.733,0.267) 

Bel{m) - a-A(m) •;r(m) - a-Xw{m)-7i{m) 

- a- (0.384,0.616) • (0.5,0,3) = a(0.192.0.308) = (0.384,0.616) 

Bel{f) = a-kif)-n{f) = aX{f)Y^P{f\w)-K,{w) 

w 

= •(1,1)- (0.2 • 0.278 + 0.7.0.722.0.8 • 0.278 + 0.3 • 0.722) 

= (1,1)-{0.561,0.439) = (0.561,0.439) 

Bel(.s) - a • A(.s) • K{.S) = a • A(.v) •£P(.V|M') • ns{w) 

-•{0,1)-(0,7 0,.SI f 0.2-0.49.0.3-0.51-1-0.8-0.49) 

-(0,1)-(0.455,0.545) = (0,1) 

Overall, the evidence in S has propagated across the network updating the beliefs of all other 

variables. First, the evidence arrives at node W, increasing its belief. Node W then sends 

messages to both parent nodes which show a higher belief, or posterior probabilily, than the 

original prior probabilily. Node W also sends a message to node F, which decreases its belief 

accordingly. Inluilively. evidence of surfing activity suggests the presence of big waves, which 

in turn suggest ibe presence of gales and/or the moon as the generating causes. At the same 

time, the presence of big waves suggests fishing activity is less likely to be present. 
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Note thai node W also sends a message back to the evidence node S, but in this case the resulting 

belief is equal to the initial evidence and is not affeclcd by the message, i.e. Bel{s) — A{s) = 

(0,1). This is because the type of evidence was hard evidence. If instead, soft evidence was 

used (e.g. X(s) = (0.1.0.9)), the top-down message ns{w) would be able lo modify the belief 

in S. This can he understood if we consider that soft evidence contains a certain degree of 

uncertainly, and is therefore susceptible lo being modulated (confirmed or contradicted) by 

other information in the network, while hard evidence is assumed lo be irrefutable fact. 

3.3.3.8 Example of belief propagalion with diagnostic evidence and causal evidence (ex­

plaining away) 

In this scenario there is both bottom-up and top-down evidence. When evidence is propagated 

from a parent lo a child node, from known causes to unknown effects, this is called causal 

reasoning or top-down prediction. The main purpose of this scenario is lo illustrate the explain­

ing away effect. For clarity, we omit the detailed numerical calculations for the beliefs and 

messages, as the reader can easily follow the example using Figure 3.7, which shows all the 

relevant resulting values. These have been obtained using the same Equations ((3.27)-(3.31)) 

and procedure described in Ihc previous example. 

In this example, the prior probability of Gales is set equal lo hard evidence asserting the true 

state of the variable. Consequently, top-down evidence from the high-level cause Gales is com­

bined with boiiom-up evidence from the low-level effect Surfing. This is sometimes referred to 

as data fusion. The resulting belief in Waves is higher than in the previous scenario (0,87 vs. 

0.722). This makes sense, as the variable Waves is now receiving positive evidence not only 

from the child node Surfing, but also from the parent node Gales, providing further support for 

the belief Waves=true. 

This in lum also leads to an update in the belief of Fishing, indicating its value is now even 

lower than for Uie previous scenario (0.365 vs. 0.439). This is a direct consequence of the 

probability of Waves being higher due to the new evidence introduced in the variable Gales. In 

other words, knowing that Ihc moon i.s in a stale which is likely to generate big waves reduces 

ihe chances of fishing activity. 
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However, the most interesting effect happens at the mxJe Moon, where its belief shows a re­

duction with respect to the previous scenario (0.524 vs. 0616). This is a consequence of the 

increased probability of Gales, which suggests il is the cause responsible of Waves, thus explain­

ing away the Moon cause. In other words, once there is an explanation for Waves, namely Gales, 

the probabilily of alternative explanations, such as Mnon, is reduced. Note the probabihly of 

Moon is still relatively high, as according to the conditional probabilily table P(W\G,M), both 

high-level causes can coexist, and in fact, when hoih are present, the conditional probability of 

Waves is higher. 

3.3.3.9 Example of belief propagation with no evidence 

This example serves to illustrate how belief propagation operales when there is no evidence 

available. All the resulting beliefs and ihe flow of messages are depicted in detail in Figure .1.8. 

Strictly speaking Ihe resulting beliefs arc not the posterior probabilities, P{X\Q), as there is no 

evidence available. Instead ihey represent the marginal probabilities of the variables when the 

network is in an initial equilibrium stale before presenting any evidence. Therefore it is also 

useful to compare the resulting beliefs in the network in equilibrium with those when there is 

evidence, to obtain a better understanding of the effects of evidence propagation. 

When all the bottom-up A mes,sages received by a node show Hal distributions (i.e. no evidence 

below), inevitably all the A messages sent to its parents will also show llai distrihuiions, regard­

less of the incoming n messages. This is the case of node W in Figure 3.8. The prior probability 

(or evidence) at the lop causal nodes <7 and M does not intluence the other causal node, until 

their common child IV gathers some diagnostic evidence. This reflects the d-separalion con-

^Caplion fur Figure 3.7. Example of tielief propagation wilh diagnostic evidence and causal evidence (explain­
ing away). The prior probability of Galea is wl etjual to harii evidence asserting the irui- state of the variable. 
Consequently, top-down evidence I'roni the high-level cause Gales is combined with bottom-up evidence from the 
low-level elfeet Surfing. This in .>iomeiimes referred to as data fusion. The resulting belief in Waves is higher than in 
Ihe previous scenario [0.87 vs. 0.722]. This makes sense, as the variable Waves is now receiving positive evidence 
not only from the child node Surfing, but also from the parent node Gales, providing further support for the lieliel 
Wai'es=irye. This in mm also leads lo an update in the beliel of Fishing. inJicaiing ils value is now even lower 
than for the previous scenario ^^).^t^ vs. 0.4.19|, This is a direct consequence of the probability of Waves being 
higher due lu the new evidence introduced in the variable Gates. In other words, knowing that the moon is in a stale 
which is likely to generate big waves, reduces die chances of fishing activity. However, the most interesting effect 
happens at the node Moon, where ils belief shows a reduction wiih respect to the previous scenario (0.524 vs. 0616), 
This is a consequence of the increased probability of Galfi. which suggests it is the cause responsible of Waves, 
Ihus explaining nway the Moon cause. In other words, once there is an oiplanation for Waves, namely Gates, the 
probabilily ot allernaiive explanalions, such as Moon, is reduced. 
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Figure 3.7: For caption see footnote^ 
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dition established by converging nodes, described in Section 3.3.2, and matches our intuition 

regarding multiple causes. Without any information about the state of the Waves, data on the 

slate of Gales should not influence the state of Moon, as they are conditionally independent 

causes. 

3.3.3.10 Example of belief propagation with tree structure 

The previous examples are all based on a network with the same simple structure; a central node 

with two parents and two children node. Although this type of structure serves to demonstrate 

the main concepts behind belief propagation, it does not capture an inten2,sting effect of h^e-

stnictured networks, which is therefore described in this subsection. 

In this case the network has three levels organized in a tree structure as shown in Figure 3.9. In 

the first step, evidence propagates from two of the child nodes in the lower level, leading to the 

update of the belief in the intcnnediaie nodes. In the second step, the belief at the top level is 

updated, together with the belief of the lower-lever child nodes that hadn't been instantiated. 

The crucial process occurs in step three when a message is sent downward from the top node. 

Note this didn't happen in the network of the previous examples, where Ihe propagation ended 

once the message reached the top nodes. The reason is that in this case the top node receives 

messages from the two intermediate child nodes (the left and the right branches of the tree), and 

therefore it must generate a top-down message for each node convcyinp the evidence collected 

from the other node. In other words the evidence from the left branch must be propagated to the 

nodes in the right branch and vice versa. This is depicted graphically in steps three and four. 

In the original example, an equivalent flow of evidence would happen, for example, if node 

Gales had a second child node, such as Fallen frees. Evidence originating in the node Surfing 

would propagate up the node Waves to the root node Gales and back down the opposite branch. 

'Caption for Figure 3.8. Cjtample of belief propagation wiih no evidence. When all the boltomup A messages 
received by a node show Hat ilistribuiions, as is ihe erase of node W, jnevKabiy all [he A messages sent to its parent 
nodes will also show flat distributions, regardless of the incoming n messages. The prior probability (or evidence) 
at Ihe top causal nodes 0 and M does not influence the other causal node, until their common child W gathers 
some diagnostic evidence. This reflects the d-separntion condiLioii established by converging nodes, described in 
Section 3.,̂ .2, and matches our intuition regarding multiple causes. Without iiny inlormaiiiin about the state of the 
Woven, data on the state of Gnies should not influence the stale of Moon, as they are conditionally independent 
causes, 
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Figure 3.9: Example nt'belief propagation inairec-siruciured network. The network has three 
levels iirganizeil in a tree slructare. In the first step evidence propagates from 
two of [he child nodes in the lower level, leading lo the updiite of ihe belief in 
Ihe iniermediale nodes, in the second step, the helief at the lop level is updated, 
together with Ihebelief at the lower-levcrchiJdnodes thai hadn't been instantiated. 
The crucial process occurs in slep ihree when a message is sent downward from 
the lop node. Noie this didn't hjp|>en in ihe network of the previous examples, 
where the propagation ended once the message reached the top nixies. The reason 
is Iha! in ihis case ihe lop node receives messages from the two inlennediale child 
nodes (the left and [he righi branches of ihe Iree), and therefore ii musi generaie a 
top-down message for each node conveying the evidence collected from Ihe other 
node. In oihcr words the evidence from the left branch must be propagated to the 
nodes in ihe right branch and vice versa. This is shown in steps three and tour. 

updating the belief of Fallen trees. Analogously, evidence originating from Ihe node Fallen 

trees would update the belief of all the nodes in Ihe opposite branch, by flowing up to node 

Gales and down through node Waves lo nodes Surfing and Fishing. 

We can therefore distinguish between three types of networks. The first two fall into the cat­

egory of singly-connected networks, those without loops, and the number of steps required to 

obtain the exact beliefs of all nodes is proportional lo the diameter of Ihe network. In singly-

connected tree networks (no loops wiiJi one parent per node), evidence propagates from the leaf 

nodes to the root node and back down again (Figure 3.9), This happens because outgoing A 

messages do no! lake into account the n me,ssage received from the parent node. In singly-

connected polytrees (no loops with multiple parents), there is a single bottom-up top-down 
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pass for each branch, such that for every connecting arc in the network only one X and one n 

messages are required to effectively obtain the exact beliefs (e.g. Figure 3.6). 

Note Uiat for a singly-connected network lo have nodes with multiple parents, these parents 

niiisi not be interconnected, otherwi.se it becomes the third type of network, i.e. a multiply-

connected network. In these networks the number of steps required is not fixed as mes.sages 

circulate indelinitely. Thus, messages from intermediate nodes are typically initialized to a 

Mat distribution and propagate upwards and downwards simultaneously from the first time-step 

onwards. Feedback in multiply connected networks is described in more detail in .Section 3.3.5. 

In singly-connected networks, although messages from the root and intermediate nodes could be 

initialized to a fiat distribution and propagated from the first time step, these would just generate 

temporal beliefs that would not affect the final exact belief. To avoid these extra calculations, 

belief propagation dictates that nodes only generate output messages once they have received 

all the required incoming messages. This means the 7t messages (red arrows) in steps I and 

2 of Figure 3.9 are redundant, i.e. they don't contribute to the final belief. For this reason, 

in singly-connected networks, belief propagation can be argued to occur in a single bottom-up 

and a top-down pass. Another important property of Ibis type of network is that the message 

propagation scheme can be implemented asynchronously, in other words, it does not require 

any particular order to provide the correct beliefs. 

3.3.4 Combining messages from multiple parents 

In discrete Bayesian networks, the conditional probability table (CPT) which relates states of the 

parent nodes to those of a child node includes entries for all possible combinations of the child 

and parent node stales. Given a node X with kx stales, and its parent ntxJes lJ\,...Mtj with ku 

states each, the number of entries in the CPT is equal to kx -k^. This means the number of entries 

is exponential lo the number of parents, such that even for relatively moderate dimensions 

(kx —ku-4,N = 8), the size of the CPT becomes large and unmanageable (262,144 entries). 

Not only does the storage space increase exponentially with the number of parents, but so does 

the compulation time required to compute the belief and the messages at node X. Additionally, 

learning all the values of the CPT can be problematic as the training data may not include all 
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combinations of parent node states, and even if it does, large quantities of data are required to 

avoid overfilling. U the Bayesian network is based on expert's opinions, such as in medical 

expert systems, it is also usually infeasihlc lo consider all parental slate combinations. 

In this subsection I present Iwo methods which try to solve this problem by generating CPTs 

using a number of parameters that is linear to the number iil parenl nodes. For the model 

presented in this thesis, these approximations lo the CPTs are crucial as the number of parents 

and states per node is very high. 

3.3.4.1 The Noisy-OR gate 

This method assumes each of Ihe A' parent nodes (7, is suflicient lo cause X in absence of 

other parent nodes, and Iheir ahiliiy to cause X is independenl of ihc presence of other causes. 

For example, the presence of Gales by itself is sufficient to cause Waves, independently of the 

presence of the cause Moon. This is equivalent to saying thai the exceptions or jViMji/or̂  which 

may prevent the different parent nodes from causing the effect are independent of each other, 

denoted as (exception indepemknce). F-or example, an exception that might prevent Gales from 

causing Waves is the wind direction (although it docs not affect Ihe Moon's ability to cau.se 

Waves); while an exception which might prevent Moon from causing Waves is shallow water 

depth (although it does not affect the Gales's ability to cause Waves). 

For binary variables this means the entire conditional probability distribution can be specified 

with only N parameters pi pfj, where p, represents the probability that effect X will be true 

if the cause (7, is present and all other causes UjJ / /, are absent. The system can also be 

described using the inhibitor probabilities ^i,...,(j,v, where (?, denotes the probability thai the 

inhibitor or exceplion for cause U, is present. Therefore, we can write, 

pi^ I -qi^ P{x\ui ^0,M2^0,•••,"; = 1,...,H/V-I ^0,UN^O) (3,32) 

If Tij represents the indices of the parent nodes which contain TRUE values, Ty — i :ui = \, 

then we can derive the complete CFfofX given its predecessors U\, ...,Ufj as, 
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For the example described in the Section 3,3.2. if we assume paahi^ - 0'8 and pMnon = 0.7, the 

CPT value for Waves=l in the case when both causes are irue can be obtained as follows. 

P(W = 1 |g - 1. m - 1 ) - I - (1 - PGales) * (1 " PMocn) - 1 " 0 .2 • 0 . 3 = 0 . 9 4 

which yields a value consistent with the value that was intuitively generated for the CPT of 

the original example. This serves lo illustrate the concept behind the Noisy-OR gate, although 

obviously in Ibis case il does not make sense lo use ihe method as the number of parent nodes 

and stales is very small. 

The Noisy-OR method was originally d&scribed for binary variables (Pearl 1988), although 

it was later extended to variables with multiple stales {Srinivas 1993, Diez 1993). However, 

the main limitation of this method is thai it requires graded variables to work (Diez 1993), 

variables who,se slates can be ordered from lower to higher. The speed of the wind is an example 

of a graded variable. However, a variable whose slates are differenl object categories is not. 

The model has also been extended to include different weights for each of the parent links 

(Kokkonen et al. 2005), such that the relative contribution of each of them can be mi)dulated 

according to some learned or hardwired crileria. 

Tlie Noisy-OR model describes how causes interact disjunctively. Other canonical models de­

scribe different types of parental interaction, such as the Noisy-AND model which describes 

the conjunctive interaction of causes. For more details on ihe Noisy-OR and other canonical 

models see Peari (1988) and Die/ (1993). 

3.3.4.2 Weighted sum based on compatible parental configurations 

An alternative method lo the Noisy-OR is that proposed by Das (2004), based on the concept 

of compaiible parental amfigurations. The rationale behind it is to facilitate the acquisiiion of 

probabilistic knowledge, when this is obtained from human experts, by reducing the number 
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of questions they need to answer Instead of asking a question for each of the combinations of 

parental states, the model assumes that for each state of each parent node, the rest of the parents 

are in a compatible or most-likely state. 

Previous models, such as the Noisy-OR, are constrained by the assumption that parents act 

independently without synergy. This means parents individually influence the child and that 

there are negligible cross-interactions between individual pareni-lo-child inlliiences, such as in 

the Wave*-example. 

However, this method is derived for a different class of Bayesian networks in which there nec­

essarily exists a coherent frame of knowledge where the effect is a result of the interactions be­

tween the parents. An excellent example is provided by Das (2004), where the efficiency (E) of a 

company is affected by three parent nodes; personnel nwralc (VM.).personnel training (PT)and 

managerial expertise (ME), with states very-low.low,average,high,very-high. Clearly these 

causes are related, such that a possible compatible parental configuration when the personnel 

morale is high is {Comp{PM = high)} — {PM = high.PT — high,ME = high]. This means 

when the personnel morale is high, it is also likely that the personnel training and the manage­

rial expertise are high. 

More formally, given a node X with a set of parents IJ\, ...,lJs, the stale Uj = uj is compatible 

with the state IJj ~ «,-, if according to the expert's mental model the state Uj — Uj is most 

likely to coexist with the state Ui =• «,-. Let {CompiUi = M,)} denote the compatible parental 

configuration where U, is in the state », and the rest of the parents are in states compatible with 

Ui = «/• 

For each compatible parental conhguration it is now possible to calculate the conditional prob­

ability distribution over the .slates of the child node X in ihc form 

PiX = 0\{Comp{U, = Ui)}),P{X = ]\{Comp{U^ = «,•)}) P{X - kx\{Comp(U< - «;)}) 

for I = 1 ,.A' and u, = i-.ka,, where kx is ihe number of slates of X, and ky, is the number of 

states of parent node U,. 
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Therefore the link is defined using ft;;, +ki;^ + ... + kn^ probabilily distributions over X for 

Ihe different conipaiible parental confignraiinn. Note Ihese grow linearly with the number of 

parents. Given a set of weights W|,...,ii'^', which quantify the relative strength of the parent 

nodes' inlluence on ihe child node, the entries of the CPT can be generated using the following 

weighted sum expression, 

P{X\UU...,UN)= Y. ^'rP{x\(Comp(Vi = Ui)}) (3.34) 
i=\..N 

It is important to stress thai {Coinp{U, = «,)} is a parental conliguration in the menial model 

of the expert where he has chosen to focus on the slate M; of parent (/,, while the rest of the 

states of the parents are perceived in his judgement to be in compalible stales with ii,. This 

helps ihe expert to simplify his mental model in order lo judge the possible cflect. It does not 

mean ihat compalible parental configurations are the only ones lo be found in reality, bul these 

are assumed to be more common or normal. 

The method described here proposes combining the probability distributions of X given com­

patible parental conligurations, to calculate the states of X given invompanbU: or less common, 

parental configurations, by using the weighted sum expression in Hquaiion (3.34). This can 

be understood as a kind of interpolation mechanism Ihat exploits the known dala points. Das 

(2004) makes use of information geometry to demonstrate how these weighted sums capture 

Ihe expert.s' judgemental strategy. The method is being employed to design strategic military 

applications for the Australian Deparlmenl of Defence. 

Although the method was derived for populating CFTs using human experts, theoretically il 

can be extended to systems that obtain their information using training dala with supervised 

learning methods. One such domain is hierarchical object recognition, where, due to the greal 

ovedap between receptive fields, parent nodes show contextual inlerdependency and can there­

fore exploit this technique. This is discussed further in Chapter f>. where a toy example is used 

to illusiraie the concept. 
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3.3.5 Networks with loops and inference methods 

A loop is a chain where at least one node is visiled more than once, as described in Section 3.3.2 

and illustrated in Figure 3.3b, Loops arc very common in Bayesian networks which try to model 

real-world data. The belief propagalion equations described for singly connected networks are 

not correct for multiply connected networks (those with loops). The reason is thai the equations 

are based on the a.ssumption that all parents of a node X are mutually independent as long 

as none of iheir common descendants are instantiated. This assumption is no longer valid in 

networks with loop.s, where some of the parents of JV will share a common ancestor. 

Consider, for example, the network in 3.4, with nodes Surfing and Fishinf- having a common 

child node Waier poUulion (which we assume can be caused by both fishing and surfing activ­

ity). The conditional independence of the parent nodes would not be satisfied, as they would 

both share a common cause, i.e. IVflvcs. To illustrate ihe recursiveness of the loop, consider the 

7t message from Surjin^ lo Water pollulion. It would convey top-down evidence from Waves, 

which in turn would include evidence from its descendants Fishing and Walerpollution. 

Several methods have been developed to deal with the problem of multiply-connected graphs. 

Exact inference methods all have a complexity that is exponential to the width of the network. 

Approximate inference methods are designed to reduce the processing complexily. although the 

trade-off is reduced accuracy of the result. Most approximate inference methods yield message-

passing algorithms which can be implemented in a dislribuled manner, equivalent lo the original 

belief propagation. Note these methods are used not only tor networks with loops, but also for 

networks with other type of complexities, such as high fan-in or a large number of layers. 

3.3.5.1 F.xact inference methods 

• Clustering/junction tree algorithm: This method provides exact marginalization of multi­

ply connected Bayesian networks. Ii entails performing belief propagalion on a modified 

version of the Bayesian network called a junction tree. The junction tree is an undi­

rected graph in which groups of nodes are clustered logelher into single nodes in order to 

eliminate the cycles. The algorithm can be very computationally expensive, specially for 
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large-scale networks (Jordan and Weiss 2002). 

• Cutset conditioning^: This method, also cjilled reasoning by assumplion. also provides 

the exact marginal probabilities. It involves breaking the loops by finding a small set of 

variables which, if known (i.e. instantiated), would render the remaining graph singly 

connected. For each value of these variables, belief propagation obtains the beliefs of the 

nodes in the the singly connected network. The final value is obtained by averaging the 

resulting beliefs with the appropriate weights obtained from the normalization constants. 

3.3.5.2 Appruximale inl'erencc methods 

• hiopy belief propagation: This method implies naively applying the belief propagation 

algorithm on a network despite it having loops. The formulation would be theoretically 

incorrect, and the messages would circulate indefinitely through the network due to its 

recursive nature. Nonetheless, empirical results in error-correciing networks, such as 

the turbo code (Weiss 1997), demonstrate the method provides a good approximation 

10 the correct beUefs. The method has also been applied satisfactorily to other type of 

network structures, such as the P VRAM ID network, which resembles those used for i mage 

processing (Murphy ct al. 1999, Weiss 2000). The resulting beliefs in these networks 

showed convergence, as opposed lo oscillations, after a number of iterations, 

• SampHnfi/Monle-Carlo algorithms: These methods rely on the fact that, while it might be 

infeasible lo compute the exact belief distribution, it may be possible to obtain samples 

from it, or from a closely-related distribution, such that the belief can be approximated 

averaging over ihesc samples. For large deep networks these methods can be very slow 

(Hintonelal.2006). 

The Gihhs sampling and Metropolis-Hastings algorithm are both special cases of the 

Markov Chain Monte Carlo algorithm. The first one involves selecting a variable, x\ 

for example, and computing a simplified version of its belief based only on the slate of 

its neighbours at time f, such that Be/(y,"^') = P{J:||A2, ..•,.*1,)' The priKcss is repealed 

for all variables using always the latest (most recently updated) value for its neighboura. 
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e.g. 8^/(^2^') = P(x2\^]' ',y-(..-.,-t'n)- ^^ second algorithm provides a less computa­

tionally demanding alternative, by choosing a value at random for each variable of the 

distribulion and ihcn calculating the acceptance probahiliiy of the new distribution. Both 

methods applied lo graphical models yield a message-passing algorithm similar to belief 

propagation. 

In importance sampling (also called panicle filtering), on the other hand, samples are 

chosen from a similar but simpler distribulion than the original joint probability disiri-

buiion. This simpler distribulion can be obtained by simplifying the original graph, for 

example, by deleting edges. The .samples arc then re-weighted appropriately. 

• Variational approximation: Variational methods, such as the mean fie hi approximation, 

convert the probabilistic inference problem into an optimization problem. The basic ap­

proach is to choose from a family of approximate distributions by introducing a new 

parameter for each node, called a variational parameter. These variational parameters 

are updated iteratively as to minimize the variational free energy of the system, which is 

equivalent to the cross-entropy (Kullback-I.eibler divergence) between the approximate 

and the true probability distributions. When the variational free energy is minimum, the 

approximate and Ihe true probabihty distributions are equivaleni. More elaborate approx­

imations lo the free energy, such as the Bethe free energy, provide better approximate 

marginal probabilities (Jordan and Weiss 2002. Murphy 2001, Winn and Bishop 2005). 

This method has become more popular in recent years due to the high computational 

cost of sampling methods, li is currently being used by several research groups to model 

complex systems such as the visual system (Frision and Kiebel 2(XJ9, Hinion et al. 2006). 

Section 3.4.2 describes some of these models. 

3.4 Existing models 

Bayesian inference has been employed extensively to model different aspects of conical pro­

cessing, from singie neuron spikes (Deneve 2005) to higher-level functions, such as object per­

ception (Kersten et al. 2004) and decision making (C:hater et al. 2006). In this section, the focus 
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is on models that use Bayesian belief propagation or similar inference algorithms in the context 

of hierarchical generative models. In particular. Section 3.4.1 describes several implementa­

tions of belief propagation using spiking neurons; Section 3.4.2 describes implementations of 

belief propagation at a higher level of abstraction, specilically those attempting to model object 

perception In the visual system; and Section 3.4,3 compares diftcrcni speculative mappings of 

the algorithm over the cortical laminar circuitry. 

3.4.1 Biological models with spiking neurons 

There have been several proposals for how spiking neurons can implement belief propagation 

in graphical models such as Bayesian networks. Three of these models are described in this 

subsection. 

3.4.1.1 Single layer hidden Markov model 

The first one. by Rao (2()04, 2()0.'i. 2U06). describes a single-layered recurrent network that is 

able to perform a simple visual motion detection task. The input lo the model is a I -dimensional 

30 pixel image, with a moving pixel. The model contains 30 neurons, each one coding the 30 

different states of a hidden Markov model. The stales code a specific spatial location (15 lo­

cations with 2 pixel intervals), and the direction of motion (leftward or rightward). The firing 

rate of each neuron encodes the log of the posterior probability (belicO of being in a specific 

state, such that the neuron with the highest hring rate indicates the state of the world. To model 

the likelihood function, equivalent to the bottom-up messages, the input image was filtered by 

a set of feedforward weights (Gaussian functions), which represent the conditional probabil­

ity function. The prior, or lop-down message, was approximated by multiplying the posterior 

probability at the previous time-step by a set of recurrent weights which represent the transition 

pnibabilities between states. 

The model was later extended by adding a second layer of Bayesian decision-making neurons 

that calculated a log-posterior ratio lo perform the random-dot motion detection task. A similar 

implementation using a simple two-level hierarchical network with two interconnected path­

ways for features and locations, modelling the ventral and dorsal paths, was used to simulate 
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attenlmn. 

The main contribution of this model is that it managed lo implement Bayesian inference us­

ing equations representing a recurrently connected network of spiking neurons. However, the 

main limitation of the model is that it does not offer a general solution lo implementing belief 

propagation with spiking neurons, but rather very specific and simple examples with heuristic 

implementations. The main model consists of just a single layer containing 30 neurons, which 

does not capture the complexities of belief propagation, nor its many benefits, such as a local 

and distributed implementation; furthermore, it does not capture the complexities inherent in 

visual processing. Additionally, the implementation in the log domain requires the use of an 

approximation lo the conditional probability weighl.s, which has not been proven to provide 

accurate results when the system is scaled up. 

3.4.1.2 Liquid state machine model 

A more recent model of belief propagation in networks of spiking neurons was provided by 

Steimer et al. (2009). The model approximates belief propagation in Forney factor graphs, a 

type of graphical model that is considered more general than Bayesiun network.s, and therefore 

can capture all of ils properties. The model makes use of liquid stute machines composed of 

liquid pools of spiking neurons lo represent the function nodes in the factor graph, similar to the 

conditional probability functions in Bayesian networks. The internal dynamics of each pool of 

neurons aUows it lo combine Ihe incoming messages from Ihe corresponding input nixies. Mes­

sages from one node to another are transmitted using iradouT populations of neurons which 

extract the output information from the liquid pools. The readout populations need to be cali­

brated and trained to map the input synaptic current with desired output message (probability 

from 0 to 1). encoded using an average population rate. Figure 3.10 shows the neural imple­

mentation of belief propagation in a factor graph using the liquid and readout populations of a 

liquid stale machine. 

The model was evaluated using two simple examples: a classical inference problem dealing 

wiih ihe transmission of binary infomiation in an unreliable channel, and a more biologically-

grounded example dealing with the integration of psychophysical information to elucidate the 
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Figure J. 10: Neural implemcnlalion of belief propagalion in a hbrney faclor firaph using ihe 
liquid and readoui neuronal pupulaiions of a liquid slate machine. Left) lllusira-
lion of a homey faclor graph where the nodes represent faclors/i, .-,/) (condi­
tional probabiliiy funciions). ;ind the edges represent variables Jfj X7. Arrows 
represeni ihe messages exchanged during belief propagalion. Hifihi) Neural im­
plementation of ihe Fmey factor graph and belief propagalion shown in the lefl. 
The liquid pools (L) represeni Ihe fueiors of ihe graph and eombino input mes­
sages from neighbouring nodes. The messages (and, itnpliciily, the variables) 
are encoded by the population rate of readout p<K>ls (R) and are injected to the 
corresponding liquid pools via ihe synaptic connections (Sieimer et al. 2tX)9). 

shape and illumination of an object. The population rales of Ihe readout pools, resulting from 

Ihe network dynamics, were in agreement wilh the direct numerical evaluation of belief propa­

gation. 

Although both networks consisted of a very small number of binary variables (9 and 4 respec­

tively), ihe authors claim the model can be generalized to more large-scale and complex sce­

narios. Nonetheless, the number of neurons required to do ihis, both for ihe liquid and readout 

populaUons, would be extremely high and thus very expensive from the computalional perspec­

tive. According to the audiors, a current line of research aims at increasing the ctxiing efficiency 

of the neuron pools by making use of a place-coding scheme. A further limitation of scaling 

up is related lo ihe accuracy of Ihe results in networks wilh several hierarchical levels. It was 

shown that messages deep in the network were less correlated to the exact numerical values, 

than those near the input layer. 
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3.4.1.3 Local inference circuits model 

Concurrent lo the publication of the previous model, I jtvak and Ullman (2009) published an 

alternative implementation of belief propagation using spiking neurons. The latter employs pop­

ulations of standard leaky integrale-und-lire neurons to implement the belief revision algorithm 

in pairwise Markov random fields. Belief revision is analogous to belief propagation except 

that it replaces the sum operation with the max operation, i.e. uses the max-product instead of 

the sum-product algorithm, thus obtaining the maximum-a-posleriori estimate (also called the 

most probable explanation) instead of the posterior marginal probability. Additionally, the algo­

rithm is implemented in the log domain, which leads to a linal neuronal implementation based 

on a max-sum scheme, called belief consolidalion. Pairwise Markov random lields are a type 

of undirected graphical model, which share many properties with directed graphical models 

(Bayesian networks), but are not inlfrchangeable (see Section 3.J.3). 

To implement the belief consolidalion algorithm, the model uses building blocks called local 

inference circuit.̂  (MNCs). Fach neuronal LINC is connected to other LINCs according to the 

graph structure, and propagates the same message to all neighbours. Each LINC roughly im­

plements the operations peri'ormed locally by each node in the graph using smaller elementary 

circuits thai approximate the two mathematical operations: a linear summation circuit and a 

maximization circuit. The model uses populations of leaky integrate-and-fire neurons to im-

plemenl these computations. The synaptic weights between the different elementary circuits 

define their specific functional properties. The mean rate of ihe neural populations during short 

peritKls of lime (few tens of milliseconds), represents the values of messages computed during 

the inference process, 

Hach neuron.il I.INC uses A' (number of neighbours) x S (number of states) weighted maxi­

mization circuits, which compute the maximum value for each slate of the inpul nodes. Before 

finding the maximum value, the circuit uses a linear summation element to add the correspond­

ing weight to each input message (in Ihe log domain, weights are additive). The weighted 

maximum results for each state are then combined in the N corresponding summation circuits. 

The vector of single valued outputs of each summation circuit represents the output message of 
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the node encoded by the LINC. In a final step, the output message is normalized via a normaliza­

tion circuit where Ihe different values are recurrently inhibiting each other This is achieved by 

connecling Ihe excitatory population of all sunimalion units to a central inhibitory population. 

A schematic representation of a neuronal LINC node is shown in Figure 3.11. 

The model was tested using two sets of graphs, one wilh 12 hidden binary variables and one 

with 6 hidden ternary variables. In each case 100 different random conliguralions of the node 

weights and evidence values were tested and compared with the original analytical methods. 

Results showed ihc neuronal circuit was able to effectively approximate the marginal distri­

butions, although Ihe accuracy decreased when using temaiy variables as compared to binary 

variables. The inaccuracy of the model was shown to arise not only from the sub-circuit's ap­

proximations (sum, max and normalization), but from inherent network phenomena such as the 

evolving desynchronization in subpopulalions. 

With regard to the scalability, the model can map any arbitrary graph structure and discrete 

variables with any number of stales, with a linear relation between the number of neurons and 

the number of nodes. However, for large-scale networks and variables with many slates, the 

number of neurons might be prohibitive (6 hidden variables each wilh 3 stales require over 

16.000 neurons). The speed of the computation provides a biologically reahslic inference time 

{^ 400 ms) due to the highly dislributed implementation. The model also attempts to map the 

different algorithm operations onto the conical laminar circuits, as described in Section 3,4,3. 

A comparison between the most significant feaiures of the previous two models is depicted in 

Table 3.1, including a summary of the main advantages and drawbacks of each model, 

3.4.1.4 Kleclronic implementation of networks of .spiking neurons 

An emerging and rapidly growing field of research is dedicated to the implementation of real­

istic spiking neural circuits in hybrid analog/digital very large scale integration (VLSI) devices. 

Recent advances have allowed the implementation of winner-iake-all networks in the VLSI de­

vices, which has lead to the development of simple state-dependent systems (Neftci el ;il. 2010). 

Simple graphical models, such as factor graphs and belief propagation, can be approximated us­

ing winner-take-a 11 networks wilh state-dependent processing. Lxamplcs of graphical models, 
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Figure S.lI: Neuronal local inference circuit (LINC) implemenling the operations of a node 
in a Forney fucUff graph wilh fi input nodes (K;| and 6 hidden variables {X,}. 
Each LINC is built from populiilions of leaky integrate-and-fire neurons (small 
red, black and dashed rectangles), which implement the two basic operations: 
weighted m;iximi/,aiioii circuits {max frames) and summation circuits ( I frames). 
The main black frame shows ihe neuronal LINC for the variable Xj. which re* 
ceives input from neighbour nodes and Xs (although due to size limitations only 
projcciions frimi nodes Xi ""d X^ are shown). For each neighbour ntxle, and for 
each of the three stales of Xj, a maximization node finds the maximum of the 
weighted message values. Note a linear summation circuit adds the correspond­
ing weight (log domain) to each input message prior to the maximization step. 
The set of weighted maximum results (or each slate are then combined in the 
three corresponding summation circuits. The three sums are then noniialized by 
a normaii/aiion circuit (green doited frame), which contains a recurrendy con­
nected inhibitory population (black rectangle in the centre). Tlie vector of single 
valued outputs of each summation circuit represents the output message of Xj, 
which will be propagated to all of its neighbours (Litvak and Ullman 2009). 
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Type of f>raph 
Algurithni 

Neuron model 
Building blocks 

Number of neu­
rons 
Coding strategy 
for messages 
Coding strategy 
for trondilionai 
probability func­
tions 
Use of inhibitory 
connections 

Advantages 

Drawbacks 

Steimer, Maus and Douglas 
Forney factor graph 
Belief propagation 

Leaky iniegrale-and-fire 
Liquid slaic niuchines fliqiiid and 
readout poolsj 

^] 592/stale/node" 

Popiilation rate of trained readout 
neurons 
Neural dynamics of liquid stale 
machine 

Dynamics of liquid pool 

Scalability, generality and rela­
tively simple structure (two types 
of neural populations liquid and 
readout pools) 
Number of neurons, loss of accu­
racy in deeper layers, tuning of 
liquid pool dynamics to factors 
and training of readout popula­
tions 

Litvak and Ullman 
Pairwise Markov random field 
Belief consolidation ^ log belief 
revision 
Leaky integralc-and-fire 
Local inference circuits (LINCs) 
(summation and weighted niaxi-
mizaiion circuits) 

t^lU/siale/node" 

Population rate of output summa­
tion circuits in each LINC 
Additive weight (log domain) in 
weighted maximization circuit 

Winner-take-all implementation 
in maximization circuits and nor­
malization in summation circuits 
Scalability, generality, realistic 
biological time scale, mapping 
onto cortical circuitry. 

Number of neurons, loss of accu­
racy in deeper layers, reslricled to 
log domain and belief revision al-
goriUim, 

"Between 300 and 1950 neurons per factor node (liquid pool) + 343 neurons per binary message (readout popu­
lation) X 4 neighbour nodes (equivaleni to Lilvak and Dllman. 2009) = 1125 (avetage) + 2058 = 1592 neurons per 
Slate per node 

''12 hidden binary variables = 13.512 ; 6 hidden ternary vatiables = 16.656 neurons; average = 744 neurons per 
stale per node 

Table 3.1: Comparison of two iinplenienlalioiis of graphical models and belief propagation 
using spiking neurons. 
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using two of the implementation methods described in this section {Lilvak and LHIman 2009, 

Steimer et al. 2009), have already been implemented using the slate-depcndenl VLSI technol­

ogy (Emre Neftci, personal communication). 

Although the technology is still ai a very early stage and the scalability of the V1.SI spiking neu­

ral networks is limited, it provides a slarting point for the development neuromorphic hardware 

capable of reproducing graphical models with cortical functionality. 

3.4.2 Functional models of visual processing 

This subsection focuses on mtxJels based on generative modelling approaches, which employ 

Bayesian networks/belief propagation or similar implementation methods. Specifically, we de­

scribe models which deal with visual perception (recognition, reconstruction, etc) and have 

biologically grounded architectures. The literature in this area is very extensive so only mcxlels 

most relevant to this thesis are included. To facililalc comparison between models, they have 

been grouped according to the inference method employed (exact inference, sampling approx­

imation, or variational approximation), although the classitication is not .strict as some models 

share characteristics of several methods. A summary and comparison of the models is included 

al the end of this subsection. 

3.4.2.1 Models based on exact inference mclhods 

The model proposed by Epshiein et aJ. (2008) extends a well-known feedforward object recog­

nition model, namely Ultman's fragment-based hierarchical model described in Section 2.1.2. 

A hierarchy of informative Iragments and its corresponding smaller sub-fragments are learned 

for each class of objects. This information is stored using a factor graph where each variable 

represents an object fragment, which can take A' different values/.slates indicating the po.sition 

of that fragment within the image (a value of 0 indicates the fragment is not present). The 

relation (conditional probability function) between a sub-fragment and its parent fragments de­

pends on the coordinate difference between the locations of child and parent fragments, and not 

on their absolute position. This allows the model to perform recognition with certain position 

invariance. 
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The model computes the similarity between each low-level feature and the image at H different 

ItKations. which is used as input evidence for the network (similar to dummy nodes in Bayesian 

networks). A simple bottom-up sweep of the belief propagation algorithm then obtains the 

probability distribution for each variable (i.e. presence/location of each fragment), including 

that of the root node, which represents the class. Note, unlike conventional feedforward meth­

ods, the model computes the relative likelihoods of all cla.ss sub-hierarchies given the stimuli 

(i.e. there is a graph for each class of objects), leading to multiple alternatives at each level of 

the model. Later, a top-down cycle obtains the optimal value for all the object parts given the 

state/location of the root/class node, correcting most of the errors made during the bottom-up 

pass. This provides not only object recognition, bui a detailed interpretation of the image ai 

different scales and levels of detail. The model was tested a large number of natural images 

belonging to three different object classes. 

Unlike most related models (Riesenhuber and Poggio 1999, George and Hawkins 2009, Murray 

and Kreutz-Delgado 2007, Lewicki and Sejnowski 1997), where nodes represent locations and 

states represent features, the model by lipshtein et al. (200B) uses nodes to represent features and 

stales to represent locations. In essence, the network includes a fixed hierarchical representation 

of ail the possible combinations of features and subfealures of a class of objects. The graph is a 

singly connected tree (no loops and a single parent per node) which makes tractable the use of 

belief propagation to perform exact inference. 

However, the previous properties imply that features are not shared within the same object (each 

feature can only be present at one given location), amongst different objects of the same class 

(the graph for each class is singly connected), or within objects of different classes (there is an 

independent network for each object class). This lack of overlap between features speaks for 

an inefficient coding strategy, as low-level features of distinct objects are likely to be similar. 

Additionally, the model is restricted to a set of informative learned fragments, which, for exam­

ple, limit its ability to explain retinotopic contour completion at an arbitrary (less informative) 

object region. 

A second model falling into this category is that proposed by Chikkerur et al. (2010). It uses 
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ihL- output of the standard HMAX model (Serre el al. 2007b), described in Section 2.1.2, as the 

input to a Bayesian network which simulates the effects of spatial and feature-based attention 

(modelling the prefrontal cortex and the lateral intraparietal regions). The network consists of 

a node L. encoding the location and scale of the target object; a node O. encoding the identity 

of the object; and a set of nodes X, that c(xle the different features and their locations. The 

feature nodes receive evidence from the HMAX-based preprocessing network, which extracts 

a set of high-level features (roughly corresponding to V2/V4 receptive fields) from the image. 

At the same time, they receive top-down feedback from the object location (L) and identity 

(O), using conditional probability distribution P{X,\0,L). This distribution is constructed based 

on whether the object contains a given feature (obtained from the HMAX parameters), and 

whether Ihe feature location matches the spatial attention location (Gaussian centred around 

that location). 

The model is successful at capturing several attenlional effects such as the pop-out effect and 

fealure-based and spatial attention, and predicts eye fixaiions during free viewing and visual 

search tasks. However, it cannot be considered a generative model of the visual system as it 

cannot produce input images, i.e. the model relies on the HMAX framework to analyze and ex­

tract features. This means the effects of attention on lower visual areas cannot be modelled. The 

Bayesian network is limited to a relatively abstract implemenlalion of the high-level interactions 

between the ventral and dorsal pathways, lixact inference can be performed using a single up 

and down pass of the belief propagaiion algorithm due to the simplicity of the network, where 

only the feature layer has more than one node. 

Another interesting architecture, and one which takes into account temporal as well as spatial 

information, is the Hierarchical Temporal Memory (HTM) proposed by George and Hawkins 

(2009). The model assumes that images are generated by a hierarchy of causes, and that a 

particular cause at one level unfolds into a sequence of causes ai a lower level. An HTM can 

be considered a special type of Bayesian network which contains a variable coding the spatial 

patterns, and a second variable coding sequences of those spatial patterns (represented using a 

Markov chain). 
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Figure 3.12: Toy example of belief propagation in Hierarchical Temporal Networks (HTM), 
The network segment shown includes two nodes ul level 1 (W' ' and J V ' - ) and 
one node at level 2. Each nixie at level one has six coincidence paltems (spa­
tial variable) and two Markov chains (temporal sequence variables), which are 
illustrated qualitatively to correspond to visual patterns within the receptive field 
of each level I node. The Markov chain '̂Z corresponds to a corner moving left 
and Markov chain g2 corresponds to a horizontal line moving upward. The dis­
tribution >'•' represents the bottom-up likelihood of coincidence patterns in node 
N'-' given the evidence. The bottom-up message A ' ' represents (he bottom-up 
likelihood of Markov chains in node W''' given the evidence. Note V'^ shows 
a Hal distribution rellectinp the fact (hat the horizontal line pattern participates 
in both Markov chains. The parent node A'^' has only two coincidence patterns 
in this toy world, corresponding to a ctmeatenation of the lower level bottom-
up messages. The coincidence pattern likelihood y' indicates thai pattern 2 is 
more likely given ihe input messages. Even though child A ' ' ' receives bottom-up 
amhifiuous information about its Markov chains, integrating more global infor­
mation gives rise to a peaked top-down distribution, n:* \ Note the distributions 
shown are jusi qualilative examples and do not correspond to any real computa­
tion. From George and Hawkins (2009). 
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During the learning stage. HTMs attempt to discover the causes underlying the sensory data. 

Each node makes use of a spatial pooler that learns the most common input spatial patterns, and 

a temporal pooler that groups these patterns according to their temporal proximity and assigns 

them a label. For example a set of comer lines ai dilTerent positions (input spatial patterns), 

could be grouped into a common temporal group labeled comer. Note the icnns temporal 

group, sequence and Markov chain represent the same concept in an HTM network. 

The spatial pooler in the parent node combines the output of several lower-level nodes, which 

takes the form of a probability distribution over the temporal groups of those nodes. This 

allows it to find the most common co-occurring temporal groups below, which then become 

the alphabet of spatial patterns in the parent node. e.g. features of a face (eyes, nose, mouth) 

which always move together. The concept is similar to that of invariant features obtained by the 

complex layers of the UMAX model (Serre et al. 2007c), 

The learning process is repeated throughout the hierarchy to obtain the causes at the highest 

level. As a result, a tree stniclurcd Bayesian-ljkc network is obtained, based on the spatio-

temporal characteristics of the inputs which reflect that high-level features vary more slowly 

than low-level features. This strategy is similar to that employed by the trace rule in the Visnet 

model (Deco and Roils 2004) and slow-feature analysis (Wiskolt and Sejnowski 2002) (see 

Section 2.1.2). 

During the inference stage, a variant of the belief propagation algorithm adapted to HTM net­

works propagates sensory evidence from multiple low-level regions (conveying competing hy­

potheses), which converge on a high-level cause, leading to recognition. Top-down feedhauk 

then proceeds, analogously to Bayesian networks, disambiguating lower level patterns. The 

process is illustrated in Figure 3.12, using a toy example with three HTM nodes in a two-level 

hierarchy. 

The algorithm is different from the original belief propagation in that it takes into account the 

temporal information included in the Markov chains of each node to compute the belief and 

output messages. In standard IJayesian networks (Peari 1988) each node represents a single 

random variable. In addition, to solve the problem of nodes with multiple parents, the author 
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3A. EXISTING MODELS 

proposes a trivial extension of the algorithm using the Noisy-OR gate. However, this melhtxl 

is only valid for graded variables (see Section 3.3.4 and Pearl (1988)), which is noi the case 

for variables in HTM nelworks. .Similarly, the problem of networks with loops is solved by 

implementing loopy belief propagation, which is claimed lo provide good results, although no 

evidence is provided. 

Model simulations shows succesful recognition (72%) of 48 hnc drawing objects (32 x 32 pix­

els) despite translations, distortions and clutter. When tested on the standard Caltech-JOl bench­

mark of natural images, the performance decreased signiHcantly (56%); although when using 

their own 4-calegory testset of natural images, the accuracy was very high (92%). Preliminary 

results also suggest top-down feedback in the model can account for segmentation, feature bind­

ing, attention and contour completion. Only the last phenomenon is explicitly demonstrated, by 

lirstly recognizing a Kanizsa square (input image) as a square (high-level cause), and later alow-

ing lop-down feedback lo increase the response of nodes coding the retinotopic location of the 

illusory contours. Due lo the significani similarities between HTMs and the model proposed in 

this thesis, a more detailed comparison between them is included in Section A. 

3.4.2.2 Model<< based on sumplint; approximation mi'lhiKls 

The firsl model in this subsection was described in a landmark paper by Lee and Mumford 

(2003). From a relatively absiraci perspective, the belief propagation approach was proposed 

to account for processing in Ihe ventral visual pathway (VI, V2, V4 and IT). The visual cortex 

was suggested to represent beliefs or conditional probability distributions on feature values, 

which are passed forward and backward between the areas to update each other's distribution. 

The authors extended ihis model, proposing an alternative way of implementing approximate 

Baycsian inference by using a sampling method called particle filtering. This mathematical 

tool approximates high-dimensional probability distributions using a sel of sample points or 

panicles and an attached set of weights thai represent their probabililies. The es,senlial idea is 

lo compute for each area not only one hypothesis for the true value of its sel of features, but 

a moderate numlwr of hypotheses. This allows multiple high-probability values to stay alive 

until a larger number of feedback loops have had a chance to exert an inlUience. However, no 
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High-level representalion 
with aDsIract fealures 

Bollom-up cues 
Frorn illuminalea B 1 
part of the face 

Top-down foe d back 
B 2 recognizes shadowed 

edge as part of the fece 

Low-level re prose nia lion 
with high resolution 

I I P(X3/X4) 

x,= P(x^x,) • P(x,;x.) 

Xi 

P(X2/X3) 

X,= P(X,/X,)- P(X^Xj) 

P(X,/X2) 

X,= P(X^X,1- P(X,/X,1 

T 

Figure 3.J J: Bayesian belief prupagat ion archileclure applied lo the visual system, a) Inilially, 
bottom-up cues from the illuminated part of the face (Bl) cause a face hypoth­
esis iLi hci'ome aclivaicil ai ihc higher levels. Then inrormaiiim about ihe likely 
features and propiirliuns of a faue is amveyed through top-down feedback (B2j 
lo Ihe lower-level high resoluiion buffer. Re-examiriaiion of ihc data results in a 
reinierprelalion ol" ihf Faint edj;c in the shadtiwed area as an iiTiportani part of the 
face contour b] Hacli area conipuios a .set of beliefs, Xj, based on boitoin-up sen­
sory data (X,-])and top-down priors (/'fX/X+i). which are iniegraied according 
lo ihe Bayesian inference equation. Beliefs rue continually updated according to 
changes in earlier and higher areas to obtain ibc niosl probable distribution of 
causes al each level. Adapicd from Lee and Mumford (2003). 

practical implementaiion of this theoretical approach was provided by the authors. 

Nonetheless, this theoretical paper has strongly inspired and motivated ihc present thesis, and 

provides an intuitive example which allows one to heller understand the concept of how belief 

propagalitin can be applied to visual processing. Consider the shadowed face example shown in 

Figure 3.13. Initially, bottom-tip cues from the illuminated part of the face cause a/ocf hypoth­

esis to become activated at the higher levels. Then informalion about the likely features and 

proportions of a face is conveyed through top-down feedback to the lower-level high resolution 

buffer. Re-examination of the data resuhs in a reinlerpretaiion of the faint edge in the shadowed 

area as an important part of the face contour. This new detailed information can then be used 
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by the higher levels to infer additional characteristics of the image, such as the precise identity 

of the face. 

Lewicki and Sejnowski (1997) demonstrate the efficiency of Gibbs sampling in learning higher 

level parameters in Bayesian networks. A simple 3-ievcl network of sl(x;hasiic binary variables 

with a 5x5 pixel input image is used lo discover higher level motion patterns from the inpiil 

image correlations (the Shifter problem). Importantly, feedback from the third layer, containing 

the global direction of motion, is used lo disambiguate the local shift direction in layer two. The 

combination of information from multiple parents/causes was approximated using the Noisy-

C)R gate, previously described in Section 3.3.4. 

I linton et al. (2006) proposed a new type of network called a deep belief nei which is composed 

of a Bayesian network (directed acyclic graph) with two undirected associative memory layers 

al the lop. The motivation for this model is lo ease the inlraciable unsupervised leaminj; pro­

cess in hierarchical Bayesian networks, where, in order lo learn the weights of the bonom layer 

il is necessary to calculate the posterior probability which depends not only on the likelihood 

(bottom-up data) but also on the prior (top-down data). In other words, as a result of the ex­

plaining away effect, the weights of all the higher layers are required. Turther. it is necessary to 

sum over all possible configurations of the higher variables in order to obtain the bottom layer 

prior. 

The authors introduce the concept o( complementary priurs, which are prior distributions that, 

when multiplied by the corresponding likelihood function, yield a posterior distribution which 

can be factorized. This implies eliminating the expiaining-away effect, thus making each hid­

den layer independent of its parents' weights. This yields a network which is equivalent to 

a Restricted Boll/mann Machine, i.e. a network with an independent hidden layer of binary 

variables with undirected symmetric connections to a layer of observed nodes. Under these 

conditions a fast learning algorithm is derived which obtains the approximate parameters of the 

network layer by layer. First, a visible layer (input image) is used to train the bottom hidden 

layer of the network. After learning the weights of the hidden layer, the activations of that 

layer, given the input image, are used as the input data for the hidden layer above, thus always 
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maintaining the 2-layer structure characteristic of Restricted Boltzmann Machines. 

The above learning method can be seen as a variational approximation wherein the constraint 

is thai the weights in the higher levels ensure the complementary priors condition, therefore 

yielding a factorial posterior distribution. However, as weights in higher-levels are learned, the 

priors for lower layers cease to be complementary, so ihe weights used during inference are 

incorrect. Nonetheless, it can be shown that each time the weights of a layer are adapted, the 

variational lower bound on ihe log probability of the training data is improved, consequently 

improving the overall generative model. The weights of ihe model are then linely tuned in a 

final stage by performing an up and down pass of a variant of the wake-sleep algorithm (Hinton 

et al. 1995). Although Ihe learning is unsupervised in the directed layers, the lop two associative 

layers can be used to learn labeled data. 

Inference is achieved by a single up pass along the bottom directed layers, yielding the binary 

states of Ihe units in the lower associative memory layer. Further Gibbs sampling or free-

energy optimization activates the correct label unit at the top layer. The pertbmiance of the 

model on the MNIST digit recognition task was superior to that of previous models, including 

Support Vector Machines and back-propagation. This demonstrates that generative models can 

learn many more parameters than discriminative models without overfilting. The model is still 

limited in that top-down feedback during inference is restricted to the top associative layers. 

Additionally, it does noi deal systematically with perceptual invariances. Instead, invariance 

arises as a consequence of the wide range of sample images that can be generated by the model 

for each given category, 

3.4.2.3 Models based on variatiimul approximation methods 

The free-energy model proposed by rri>ilon (Frislon 200;i. 2('H),'i, Friston et al. 2(M)6, Frislon and 

Stephan 2007. Friston and Kiebel 2()()9, Frislon 2010) has already been described in some detail 

in Section 3,l.,l. It is based on a variational approximation and therefore converts the complex 

inference problem into an optimization task which tries to minimize the free-energy between 

the true posterior distribution and and the recognition distribution. By assuming a Gaussian ap­

proximation (l-aplace assumption) to the recognition distribution, optimization becomes equiv-
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aleni lo finding the means of the unknown causes of sensory data given the generative mtxlel. 

The specific form of the generative model is given by the equations of a hierarchical dynamic 

model which impose slructural and dynamical constraints on the inference process. Solving 

these equations implies implementing a message-passing algorithm reminiscent of the predic­

tive coding scheme. 

Frislon (2005) then reviews anatomical and physiological data from the brain, suggesting the 

proposed hierarchical dynamical system and message-passing scheme could be implenienied by 

the cortex. At the same time brain responses related lo perception and action can be understood 

in teims of the proposed model. However, the model remains in a relatively theoretical fomi 

and is only applied practically to two simple scenarios: a birdsong recognition problem, and a 

4-pixel image recognition. The second example, more relevant for this section, comprises a a 

2-layer network which illustrates the dynamics of the free-energy model and how the prediction 

error is reduced after the parameters are gradually learned. 

A similar approach was previously implemented by Rao and Ballard (1999) using the Kalman 

filter, which is derived from ihc Minimum Description Length principle, similar in flavour lo 

free-energy minimization. The model could have been included in this section as it employs a 

variational approximation, but was previously described in Section 2.2.3, together with other 

predictive coding models of the visual .system. 

The model by Murray and Kreulz-Dclgado (2(H)7) also attempts to solve several visual percep­

tual tasks such as recognition or reconslruclion, formulating them as inference problems in a 

stochastic generative model. The joint probability distribution is defined using the neighbour­

ing layer conditional probability (NLCP). which stales that the nodes of a layer only depend 

on the nodes of its immediaie neighbouring layers (closely related to belief propagation in 

Bayesian networks). The NLCl's can conveniently be formulated using Boltzmann-like distri­

butions. A variational approximation (factorial Bernoulli distribution) is employed to deal with 

the intractable exact inference problem. This leads to the development of a simplified genera­

tive model which can be implemented using a hierarchical dynamic network with feedforward, 

feedback and lateral connections. The model places a strong focus on overcomplete sparse 
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representations (suggested by experimental evidence), which are enforced during the learning 

stage, and improve recognition performance. 

A four-layer network with a 64x64 pixel input image simulates object recognition in the vi­

sual system. The network managed to correctly recognize, segment and reconstruct occluded 

versions of the trained images, although no invariance to position and size transformations is 

achieved. The study illustrates some interesting properties, such as the possibility of simulat­

ing imafiinalion by running the network generatively (i.e. top-down and not bottom-up input); 

and expeclalion-driven segmentation, whereby the top-down input (e.g. prior expectations) im­

proves recognition in cluttered scenes. However, the model fails to provide mechanisms for 

position and scale invariance during recognition. Furthermore, despite being based on a gener­

ative model, the resulting dynamic network derived from the simplified model is far from the 

original belief propagation scheme. 

3.4.2.4 Comparison and umclusions 

This subsection has outlined some of the attempts to model visual perception in the brain using 

the generative modelling approach, and in particular those employing algorithms similar to be­

lief propagation. Table ^.2 lists the models, comparing the type of network, inference algorithm 

and results obtained in each case. 

The complexity that emerges from the large-scale and intricate cortical connectivity means ex­

act inference methods are intractable, making it necessary to use approximate solutions such as 

loopy belief propagation (George and Hawkins 2009), sampling methods (Hinton et al. 2006, 

Lee and Mumford 2003. Lewicki and Sejnowski 1997) or variational methods (Murray and 

Kreut/.-Dclgado 2007, Kao and Ballard 1999.1-riston 2010). Sampling methods typically main­

tain the probabilistic nature and structure of Bayesian networks, while variational approxima­

tion methods yield a hierarchical dynamic network which deals with the optimization problem 

(minimizing the difference between the approximate and Uie true posterior distributions). Nev­

ertheless, in both cases the resulting dynamics lead lo local, recursive message-passing scheme.s 

reminiscent of belief propagation. 

Exact inference is only possible when the generative model avoids physiological constraints, 
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Model 

Epshtein & 
Ullman, 2008 
(rragmenl-based 
model) 

Chikkcrur el aL, 
2009 (Allenlion 
model) 

George & 
Hawkins, 2010 
(Hierachical Tem­
poral Memory) 

Lee & Mumford, 
2003 

Hinton et al. 2006 
(Deep belief nets) 

Lewicki & Se-
jnowski, 1997 

Friston, 2010 
(Free-energy 
model) 

Rao & Ballard, 
1997 (Predictive 
coding) 

Murray & Kreutz-
Delgado, 2007 

Type of network 

Factor graph. 
singly-connected. 
one graph per 
object class. 

Bayesian network. 
4 layers (only one 
layer with more 
than one node) 

HTM network -
Bayesian network 
with Markov 
chains inside each 
node 

Bayesian network 

Bayesian network 
(3 layer DAG). 2 
top undirected as­
sociative memory 
layers 

Bayesian network 
(2 layers) 

Hierarchical dy­
namic network 
(example uses 
simple 3 layers) 

Hierarchical dy­
namic network 
(examples uses 2 
layers) 

Hierarchical dy­
namic network 
with lateral con­
nections, 4-layers 

Inference algo­
rithm 
Belief propagation 

Belief propagation 

Belief propagation 
adapted to HTM.s 
(+ loopy) 

Belief propagation 
with sampling 
(particle filtering) 
Gihbs sampling 
with variational 
approximation 
(complementary 
priors) 

Belief propagation 
with (iihbs sam­
pling 

Message-passing 
derived from 
variational approx­
imation, predictive 
coding 
Message-passing. 
Kaltnan filler 

Message-passing 
derived from 
variational approx­
imation 

Results 

Natural images (120x210 
px), 3 object classes, recog­
nition, position invariance. 
feedback corrects informa­
tion on object fragments. 
Models atlenlional ef­
fects, not image recogni­
tion/reconstruction. Images 
first processed with HMAX 
model (not Bayesian). 
Line-drawing images 
(32x32 px) and natural 
images (160x160 px), 
recognition, reconstruction. 
contour completion of 
Kanizsa square. 
Theoretical 

Hand-written number im­
ages (28x28 binary px). 
recognition (heller than pre­
vious methods), implicit in­
variance due to generative 
variability. 
Line-drawing images (5x5 
px). teams higher-order cor­
relations, feedback disam­
biguates lower layers. 
Mainly iheorelical; ID input 
image (4 px). reduction of 
prediction error. 

Natural object images 
(128x128 px), recognition. 
t>cclusion and rotation 
invariance, feedback recon­
struction and RF learning. 
Natural object images 
(64xM px), recognition, 
occlusion invariance, image 
reconstruction. 

Tahle .i.2: Comparison between models of visual processing hasud on generative modelling 
approaches, similar ]o Bayesian networks and belief propagation, 
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such as mulliply-connected networks, and a shared dictionary of low-level features (Epshlein 

et al. 2008); nr models exclusively higher level phenomena such as allemion, relying on non-

Bayesian object recognition models (Chikkerur et al. 2009). 

The results of model simulations on real-world data arc still limiied. Some models remain 

purely theoretical (Lee and Mumford 200.1), or provide simple toy examples (I'riston and Kiebel 

2009, Lewicki and Sejnowski 1997, Hinton et al. 2006). Those that use bigger and more 

complex input images fail to account for certain aspects of object perception, such a.s posi­

tion and scale invariance (Rao and Ballard 1997, Murray and Kreutz-Delgado 2(X)7, Chikkerur 

el al. 2009), or feedback reconstruction (e.g. illusory contour completion) (llinton el al. 2006, 

Epshtein et al. 2008); or are not implemeniing rigorous. Iheorelically-grounded generative mod­

els (George and Hawkins 2009). 

Generative mcxiels have been described as the iicxi generation of neural networks (Hinlon et al. 

2006). However, their application to visual perception using realistic data is still at a very early 

stage. Much work needs to be done exploring the different approximate inference methods, 

network .structures, learning meih(Kls and scalability of these networks, which allow them lo 

deal with natural image statistics and capture the wide variety of perceptual phenomena, while 

using realistic physiological parameters. 

3.4.3 Cortical mapping of models 

The homogeneous, local and distributed implementation of belief propagation in graphical mod­

els is reminiscent of the concept of u canonical local circuit that has been suggested to exist in 

the mammalian cortex. These ubiquiiious circuits, shared by many species and cortical areas, 

are repeated within ct)rtical columns of a few hundred microns, which contains neurons with 

similar feature tuning properties. Several studies have focused on a theoretically precise map­

ping between the local structures of graphical mcxlels and the layered cortical structure within a 

cortical column. These also describe the intercorllcal projections which lead to the larger scale 

fundi onahty. 

Two of the cornerstone studies thai have set the theoretical grounds for understanding cortical 

compulation within the hierarchical Bayesian inference framework (Lee and Mumford 2003, 
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Fristonelal. 2006) have sketched the role that some of the laminar connections may play. They 

both suggest the bollom-up messages of belief propagation may be encoded in the aclivity of 

pyramidal neurons in [he superficial layers 2/3; while lop-down messages might result from 

activity in deep layer 5 pyramidal neurons. 

Litvak and Ullman (2009) provide a more precise and comprehensive account of how the 

anatomical and physiological aspects of the cortical local circuitry can be mapped onto the 

elements of graphical models, more precisely those implemenling ihcir belief consolidation 

(max-sum operations) model. Their study provides evidence for the existence of local func­

tional subnetworks which may represent the stales of variables, and a higher-level organization 

(possibly conical columns) which groups several possible states into variables. According lo 

the authors, empirical data suggests these subneiworks or neuronal cliques are characterized by 

having excitatory pyramidal neurons and inhibitory fast-spiking basket cells, which are strongly 

interconnected, and receive input from a common source. 

The maximization nodes in the model (see Section 3.4.2) are hypothesized to be implemented 

in superficial cortical layers by indejiendcnt minicolumns, small ensembles of neurons orga­

nized in vertical arrays, covering approximately 50 microns. Hach minicolumn computes the 

maximum of several weighted input messages, making use of several neural subnetworks with 

central inhibition. Double-bouquet inhibitory cells reciprocally connected to all inputs drive 

the nonlinear responses, l-'eedforward projections from the superlicial neuronal subneiworks of 

these minicolumns in a lower cortical area terminate on a neuronal subnelwork in layer 4 of 

a higher cortical area. The dynamics between excitatory and inhibitory neurons in the target 

subnetwork allow it to produce a linear response to the sum of its inputs, providing the cor­

responding cortical mapping to the linear summation circuits proposed in the model. Further 

details and a thorough review of evidence in support ofthe proposed functional roles for cortical 

microcircuits are included in Litvak and Ullman (2009). 

George and Hawkins (2009) also provide a detailed description of the possible mapping between 

conical microcircuits and their belief propagation model. The mapping is based on Ihcir specific 

formulation of belief propagation adapted to the Hierarchical Temporal Memory networks (see 
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Section 3.4,2). Similariathc previous mapping, cortical columns implemenl the different nodes 

or variables {e.g. coding for a specific region of Ihe input image), while minicolumns represent 

the different possible states or features at that location {e.g. different orientations). 

According to the authors, projections from lower cortical to layer 4 levels are responsible for 

the storage and detection of coincidence patterns. The synaptic connections between these lay­

ers represent the co-ocurrence of palicms on its inputs. Layer 4 then projects onto layer 2/3 

pyramidal ceUs which are assumed to behave as complex ceils which respond to invariant fea­

tures or motion sequences. Thus, layer 2/3 is responsible for the calculation of the feedforward 

Markov chains' (groups nr sequences) states as suggested by the high density of lalerai con­

nections. At the same time, anatomical connections suggest these neurons project the Markov 

chain information to higher cortical levels, and incorporate high-level information, received via 

layer 1 projections, into Ihc computation of the Markov chains. Layer 5 pyramidal neurons wiih 

dendriies in layers 1. 3 and 4 are responsible for the Belief calcuiaiion, hinally, layer 6 neurons 

with dendrites in layer 5 compute the feedback messages for hiwer regions. 

Further inspection of the proposed mappings reveals several key similarities and differences 

between them, which are summarized in Figure 3.14. Each variable or graph node Is roughly 

understood as a cortical functional column, containing smaller functional units or minicolumns, 

which correspond to the dlffcrenl variable states (George and Hawkins 2(K)9. Litvak and Ullman 

2009). Feedforward outgoing mes,sages from a node are assumed to originate from pyramidal 

cells in layer 2/3 (George and Hawkins 2009, Litvak and Ullman 2009, Lee and Mumford 2003, 

Friston et al. 2006). Feedback outgoing messages originate from pyramidal cells In the infra-

granular layers (Frision cl al, 2006), either layer 5 (Lee and Mumford 2003) or layer 6 (George 

and Hawkins 2009). Feedforward incoming messages from lower cortical areas target layer 4 

neurons (Frision et al. 2006. Litvak and Uliman 2009, George and Hawkins 2009). 

However, ihere are two dlffereni neural popuhiions that could polenlially encode the incom­

ing feedback messages from higher-levels; neurons in supragranular layers (Liivak and Ullman 

2009, Friston 2010), more precisely, in layer 1 according to George and Hawkins (2009); or 

neurons in infragranular layer 6 (Litvak and Ullman 2009, Friston et al. 2006). Both of them 
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Fiffure .?. 14: Schemaiic Cdiiipurisnn htiween several propn.sed m;ippiiigs between belief prop-
agaliim unii the cortical layers, Lcfi) Lucal message-passing scheme dictated 
by belief pri>pagaii()n in a Bayt̂ sian network. Ri^hi) Potential mapping of this 
scheme on the laminar cortical structure according lo four diftereni key refer­
ences which are labelled in the lop-right box. Arrows represent the origin or tar­
get layer of the four differenl incuming/ouigoing feedforward/feedback message 
lypes, together with ihe relevant references which support this view. Addition­
ally, the diagram also compares Ihe cortical layer hypLiihesized to implement the 
belief calculation in two of the proposed mappings. 

are major target of feedback connections. The mapping for the calculation of the belief (conver­

gence of feedforward and feedback infomialion) is also a major point of disagreement. While 

George and Hawkins (2009) suggests it occurs at layer 5. (Litvak and Ullman 2(K)9) suggests 

either the synapses between layer (i and 4 neurons, or (he strongly laterally connected layer 

2/3 neurons, are responsible for the higher and lower information interaction. The discrepancy 

might result from the ambiguous detinition of belief, which can be considered equivalent to the 

output messages in some of the specific algorithms (Friston 2010, Litvak and Ullman 2009, Lee 

and Mumford 2003). 

The mapping of belief propagation models lo the cortical architecture is highly speculative and 
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an over generalization and a simplification of the function of the different cortical layers. The 

mapping is based on incomplete anatomical and physiological data regarding the standard six-

layered sensory cortex structure. The different belief propagation operations are mapped to 

specific cortical layers, ignoring the fact that these operations may be the result of complex in­

teractions involving several layers simultaneously. I'unhermore, the proposed mappings ignore 

vast amounts of known details, such as the different neuronal types and existing connections 

(Thomson and Lamy 2007), and assumes a crysliilline homogeneity across cortical regions 

which are known to have substantial structural differences (e.g. VI and FT cortices - Tsun-

oda el al. (2001)). Nonetheless, the level of detail is enough lo generate testable predictions 

and guide future modelling and experimental work, while al the same time keeping the models 

open lo future modilications and improvements through Ihe incorporation of further biological 

details. 

3.5 Original contributions in this ciiapter 

• Review evidence suggesting the visual cortex can be understood in terms of a generative 

model, Bayesian inference and belief propagation. 

• Provide a clear explanation of belief propagation in Bayesian networks, including an 

original illustrative toy network, with intuitive variables and causal relationships; and 

numerical slep-by-step examples of the different types of evidence propagation. 

• Compare analytically the two spiking neuron models of belief propagation in graphical 

models. 

• Review and compare analytically Ihe most relevant models of visual perception based on 

generative modelling approaches similar to belief propagation in flayesian networks. 

• Compare analytically several tentative cortical mappings of graphical models, and extract 

the main points of agreement and disagreement amongst them. 
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Chapter 4 

Methods 

This chapter describes in detail a theoretical and computational model which employs the maih-

emaiical tools described in Chapter 3, namely Bayesian networks and belief propagalion, lo 

simulate some of the anatomical and physiological properties of the ventral visual palhway, 

embodied in the HMAX model, rurthermore. the model tries to reproduce some of the ob­

served phenomena described in Chapter 2, such as feedback modulation and illusory contour 

completion. 

The chapter is organized as follows. Section 4.1 sums up the differeni layers and operations of 

the HMAX model and describes a how this model can be fonnulated as a probabilistic Bayesian 

Network implementing belief propagation. Section 4.2 specifies the exad network parameters 

of three different HMAX archilcclures and describes the corresponding Bayesian network thai 

captures each sci of parameters. Section 43 examines the learning methods used to generate the 

conditional probability tables of the Bayesian network, and how these weights approximately 

capture the original prototypes and operations of the HMAX model. Section 4.4 details how the 

selectivity and invariance operation of the HMAX model are approximated using the Bayesian 

belief propagalion algorithm. Section 4.5 describes how feedback is implemented inherently 

in the proposed Bayesian network through the belief propagation algorithm. Additionally, it 

discusses the solutions implemented lo deal wiUi the problem of having multiple parents and 

loops in Ihe network. Finally, Section 4.6 recapitulates and justifies the different approximations 

used by the model. 
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4.1 HMAX AS A BAYESIAN NETWORK 

4.1 HMAX as a Bayesian network 

4.1.1 HMAX model summary 

Tile HMAX mode! (Riesenhuberand Poggio 1999, Serre el ai. 2007b), which captures the basic 

principles of I'eedforward hierarchical object recognition in the visual system, has already been 

described in some detail in Section 2.1.2. This model was chosen as a starting point, firstly 

because it reproduces many anatomical, physiological and psychophysical data from regions 

VI, V4 and IT. The second reason is that it has been repeatedly argued that the main limitation 

of the HMAX model is that it docs not account for the extensive feedback projections found 

in the visual cortex (Serre 2006, Walther and Koch 2007). Our proposed methodology, namely 

Bayesian nelworks and belief propagation, is ideal to tackle this problem and provide such an 

exiension. Below is a brief technical outline of the different layers and operations in the original 

HMAX model, which will faciUtate understanding of the proposed model. I'igure 2.4 provides 

a graphical representation of the dilTerent layers in HMAX. 

SI layer - Units in this layer implement Oabor filters, which have been extensively used lo 

model simple cell receptive fields (RJ-). and have been shown lo fit well the physiological daia 

from striate cortex (Jones and Palmer 1987). There are 64 types of units or fillers, one for each 

ofthe KsK^ 4) orientations (0°, 45°.90°. 135") xA/Vsi(^ 16) sizes or peak spatial frequencies 

(ranging from 7x7 pixels to M x 37 pixels, in steps of 2 pixels). The four different orientations 

and 16 different sizes, although an oversimplification, have been shown to be sufficient lo pro­

vide rotation and size invariance at the higher levels. Phases are approximated by centring the 

Gabor filters at all locations. The RF size range is consistent with primate visual cortex (0.2" lo 

1 °). The input image, a gray-valued image (160 x 160 pixels Rs 5''j.'i° of visual angle) is filtered 

at every IcKaiion by each of the 64 Ciabor fillers described by the following equation; 

Gij. = exp l - - i ^- '-—^ •• '-\ xcosi 2;r-(j:cose + .vsine)-|-iJ 

(4.1) 

The paraniciers in the equation, that is, the orientation 6, the aspect ratio 7. the effective width 

140 



4.1. HMAX AS A BAYKSIAN NETWORK 

(7. the phased and the wavelength A. determine the spatial receptive field of the SI units. These 

parameters were adjusted so ihal the tuning profiles nf SI units match those of VI parafoveal 

simple cells in monkeys (Serre and Riescnhuber 2004). 

CI layer - Units in this layer correspond to cortical complex cells showing a bigger RF size and a 

certain degree of position and si/e invariance. Liach CI unit receives input from a AWci x ANc\ 

square array of reiinotopically organized SI units with the same orientation, thus preserving 

feature specificity. CI units arc arranged in 8 scale bands, where units at each scale band pool 

from two SI Ri' sizes, e.g. CI scale band I pools from SI units with RH sizes 7 and 9. The 

pooling grid size, ANn. ranges from 8 pixels to 22 pixels, in steps of 2 pixels, according to the 

CI scale hand. The pooling operation used is the mac operation, i.e. Lheactivily of eachCI unit 

is determined by the strongest of its (AA'n x ANci positions x 2 RF sizes) afferent SI units. 

This is shown in the following equation: 

CU..|.;^.,,,.n,*= max (Sl,(,„r,,,,|,i) (4.2) 

where k represents the feature (in this case the filter orientation), 

f>c\^x.c\.yc] represents the band and location of the CI unit, 

{bi,Xi,yi} represents the hand and location of the afferent SI units, and are given, as a function 

of the CI unit's band and location and the network parameters, by the following expressions; 

i , e { 2 - i c i - l , 2 f i n } (4.3) 

Xie{\ + {xn - 1) •ei,(fc(i),-... \+{xn ~ I)-fv,(bn) + AA'n(tn)} (4.4) 

yie{\+(yn-\)-eci{hn).---,i+(yc\-i)-£ciibci) + ANci{bci)} (i.5) 

This means each CI unit represents a Gabor-like feature of the same orientation as the SI 

units thai feed into it. but with a certain position and size invariancc. Additionally. CI units 
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iniptement contrast invarlance, mimicking complex cells in striate cortex, hy taking the absolute 

value of their SI inputs, Thererore, at each C! location there are 32 CI units, one for each of the 

f^ci {= 4) orientations x 8 scale bands. Note that, unlike S1 units, CI units are not computed at 

every possihle location but are .sampled every ffi pixels or SI units, where Cfi ranges from 3 

pixels to 15 pixels, in steps of 2 pixels, according lo lite CI scale band. 

Physiological data on simple and complex RF size, spatial frequency and orientation band­

width are in good agreement with the model S! and CI tuning properties, as well as with the 

hyiKtthesis of complex cells performing a imix operation over simple cell afferents (Serre and 

Riesenhuber 2004). 

S2 layer - The response of each S2 unit depends in a Gaussian-like way on the F.uclidean dis-

lance between the input and previously learned prototypes. More specilically. it implements 

a Radial Basis Function (RBF) network, where the prototypes are ihe RBF centres. Dur­

ing the training phase, Ks2 prototypes are learned from ihe CI layer, each one composed of 

AA'.s7 X AA'52 X Kc[{= 4) elements. In some HMAX versions (Scrre el al. 2007c) Ksj ^ 2000 

and AA'̂ j - 3, which yields 2000 prototypes with 3 x 3 x 4 = 36 elements; while other imple­

mentations (Serre et al. 2007b) use values of ^̂ 52 - 1000 and ANs2 in the range (4,8, 12,16[. 

In summary, at each S2 location there iû e Ksi S2 units coding each of the learned proloiypes. 

During the recognition phase, the response of an S2 unit at a particular kx;ation and coding a 

specific learned prototype or RBI- centre is calculated as the distance between the input patch 

of ANs2 X AA's2 CI units, and the k"' stored protoiype F^. such that, 

^2i,,„,AM,„,,* - exp(- / i • j|c:i{6,^„j,,) - /*( |p j (4.6) 

where 0 is the square of the inverse width of the RBF and therefore defines the sharpness of the 

tuning curve, 

bs2TXs2^ys2 represents the band and location of the S2 unit, 

{h,.x,,yi\ represents the band and location of the afferent CI units, and Is given, as a function 

of the S2 unit's band and kxalion and the network parameters, by the following expressions: 
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-t, e{-ts2:'--.Jrs2+ANs2} (4,7) 

J:, G {ys2.---,ys2 + ̂ s2} (4.8) 

C2 layer - In ilie C2 layer, units perform the max operation pooling over a A/Vf 7 x ^C2 square 

laliice of ,S2 units tuned to the same prot'errcd stimulus, i.e. the same learned prototype. C2 

units are therefore selective to the same stimulus as their S2 input units but present an increased 

position invariance. At each location, C2 units will code each of the Kci — f(s2 learned pro­

totypes, which can now be considered position invariant prototypes. In some HMAX versions 

(Serre el al. 2(XJ7c) ANci is set such that a single C2 unit for each prototypes receives input from 

52 units al all locations and scale bands tuned to the same prototype. Other HMAX implemen­

tations (Serre e[ al. 2007b) employ values similar to those of the CI layer, such that ANci takes 

the values {8,12.16,20}. and the shift between S2 units, £̂ 2 takes the values {3,7,10,13}, for 

each of the 4 C2 scale bands, Analogou.sly to the CI layer, each C2 scale band pools from iwo 

of the S2 scale bands, achieving size invariance in the C2 responses. It has been shown that 

the S2-C2 hierarchy produces both selectivity and invariance parameters thai match observed 

responses in V4 (Cadieu ei al. 2007). 

53 and C3 layers - For Serre et al. {2007c), S3 constitutes the top layer of the model. However, 

Serre ci al. (2(H)7b) implement two extra layers, C3 and S4, In this version of the model, the 

response of S3 units is based on a Radial Basi.s Function operation which computes the distance 

between patches of ANsi x &Ns3 C2 units and the Ks^ previously stored prototypes of the same 

dimensions, analogous to the computation performed by S2 units (see liquation (4.fi)), Finally. 

C3 units arc obtained by performing the mcu operation over all S3 units tuned to the same 

prototype at all of the different spatial positions and scale bands. This leads to Kci — A'.vi C3 

units, coding each of the feature prototypes but with larger spatial invariance, so that if the 
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feature is present at any position in the input image, the corresponding C3 unit will elicit a 

response. 

The top layer, S4 in Serre et al, (2007b) and S3 in Serre el al. (2(X)7c). is implemented as a 

support vector machine (SVM) that uses the Kr?. or Kc2 output features in each case, to learn, in 

a supervised manner, the objects or input images. Using a training set of images, the weights of 

the support vector machine are adjusted in order to classify the output C2/C3 features generated 

by the input images into the different learned object categories. 

Although the number of layers varies among previous versions of HMAX, in all cases the top 

layer tries to simulate the higher regions of the ventral path. Top level units present bigger RFs 

and arc tuned to complex composite invariant features, which are consistent with the so-called 

view-luned cells present in the higher levels of the ventral pathway, such as the infero-lemporal 

cortex (Serre el al. 2007b. Quiroga et al. 2005, Hung et al, 2<.H)5), 

Note that learning occurs in a developmental-like manner, meaning thai weights are obtained 

from snapshots of activity paltems falling on the receptive field of unils, which are then gener­

alized across scales and positions (Scire 200ft, Masquelicr el al. 2007, Masquelier and Thorpe 

2010). This is described in more detail in Section 2.1.2. 

4.1,2 Probabilistic interpretation of HMAX: conversion to a Bayesian network 

Chapler 3 has illusiraled how Bayesian networks can model a wide variety different scenarios 

and facilitate probabilistic reasoning under conditions of uncertainly. The key to doing this is 

to correctly capture the structural and causal relationships belween the factors involved in the 

target scenario to be modelled. The target scenario is object perception in the visual system, 

and for thai reason I have developed a Bayesian network that captures the structural and causal 

relationships in the HMAX model. It is imporlanl to draw a line between the previous subsec­

tion, which describes the prof)erties of an exisiing object recognition model (HMAX), and ihe 

rest of Ibis chapler, which describes the methodology employed to develop a Bayesian network 

(with belief propagation) that reproduces Ihe stniclure and functionality of the HMAX model, 

and extends ii to include feedback processing. 

144 



4.J. HMAX AS A BAYESJAN m-TWORK 

The first step in this process is to define the equivalences between the HMAX model and the 

proposed Bayesian network. These are summed up in Figure 4.1 and are as follows: 

1. Each node of the Bayesian network represents a specific location, band and layer of ihe 

HMAX model. 

2. The discrete states of each node of the Bayesian network represent the different feuiures 

coded al thai location, band and layer of the HMAX model. For example each Bayesian 

node at layer SI will have Ks\(- 4) features, representing the four different filler orien­

tations of HMAX. 

3. The discrete probability distribution over the slates of each Bayesian node represents 

the sum-normalized responses of the HMAX units coding the different features ai that 

location, band and layer. Therefore, the probability distriliution of each node comprises 

the response of K HMAX units, where K is the number of different features ai that layer. 

4. The conditional probability tables (CPTs) that link each node in the Bayesian network 

with its parent nodes in the layer above represent the prototype weights used lo implc-

menl selectivity in the HMAX model. Additionally, die CPTs are used to approximate 

the max (invariance) operation between simple and complex layers of the HMAX model. 

Learning the appropriate CPT parameters allows the model to approximate the HMAX 

functionality during the inference stage (using belief propagation) of the Bayesian net­

work. This is described in further detail in Section 4.3. 

Each node in the network implements the belief propagation algorithm, which has been de­

scribed in detail in .Section 3..1,3, ['igures 4.2 and 4.3 show the specific operations implemented 

by each node, in the case of a single parent structure and a multiple parent structure, respec­

tively. The former corresponds lo a parlicularization of the latter. The operations performed 

correspond to Hquations (3,27) to (3,31). The diagrams illustrate how to effectively implement 

belief propagation in a local and distributed manner. Note that to do this the top-down output 

messages of the node are made equivalent to the belief of the node. Therefore, the incoming 
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Figure 4.1: Probabilisiie interpret a lion ol' ITMAX as a Tiayesian network. Left) Schemalic 
representation of the HMAX model. At each layer, the response of eaeh uniteodes 
the presence of a speeitlc feuiure at i\ given location. The invarianec (max) and 
selectivity (weighted sum) operations iiri: implemented in alierniUing layers. Right) 
Baycsian network representing the HMAX model network on ihe left: I) <;'«;h 
node represents a specific location, band and layer of Ihe HMAX model; 2) the 
Slates of each node ropreseni the diflcreni features; 3) the probability distribution 
of each noderepresenis the sum-normalized response of the ^ HMAX units al that 
location; and 4) ihe conditional probabilily lahles linking nodes of ditfereni layers 
represent the weights of the HMAX selectivity operation, as well as serving to 
approxiinaie Ihe HMAX iiivariaiiee operation. The equivalences are summarized 
in the cenlral orange box and are labelled wiih orange numlx-'red circles over Ihe 
resulting Bayesian network. 
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lop-down messages to a node need to be divided by the output A message to obtain the corre­

sponding 7t message from the node above. This solution was proposed by Pearl (1988) and it 

avoids caJculaiing the specific n messages for each child node. Instead ii is more effective to 

simply feed back ihc belief and let each child node calculate its own input;: message. As will 

l>c described later on. in cases where the lolal number of incoming messages is relatively high, 

the 71 message can simply lie approximated by the belief. 
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Message to 
parents of X (U) 

Ax(U) 

Message from 
parents of X (U) 

Bel(U) 

NodeX 
n;<(U)=Bel(U)/Ax(U) 

AX(U)=I:MX)P(X|U) 

A{X) 

. nx(U) 

T T ( X ) ^ ^ T T , ( U ) - P ( X | U ) 

^M=n^c.(x) 

Ac.(X). . .Ac.(X) 

TT(X) 

Bei(X) = aA(X)TT(X) 

Message from 
children of X 

(CI , . . . ,CM) 

Bel(X) 

Message to 
children of X 
{C, C^) 

Figure 4.2: Inlemal structure ofa node implementing belief propagation inaBayesian network 
with a tree structure lone parent per node). Each node tombiiiL's the bmiom-up A 
messages from ehild nodes with the top-down Jt message troni the parent node to 
calculate the belief and the output A message to the parent node. Note that the lop-
down output messages of the node are made equivalent io the l>elief of ilie nude. 
Therefore, input top-down messages to a node need to be divided by the output A 
message to obtain the corresponding TT message from ihc node above (Pearl 19XK). 
The operations described correspond to a panicularizaiion of hquations (3.27) to 
(3.31) for the single parent case. For more details sec Section 3.3,3. 
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Message to 
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F/jjiiw J..J; Inienial structure of a node implemeniing belief propagation in a Bayesian network 
wilh a polyiree slruciure (more ihan one parent per node). F.acli node combines 
the bollom-up A messages from cfiild nodes willi itie top-down n messages from 
the parent nodes lo culcuJaie the teliet and the oulpui A messages to the parent 
nodes. Nole that the lop-down ouipui messages of the node are made equivalent 
lo the belief of the node. Therefore, inpul top-down messages to a ni>de need to 
he divided hy the output A message to ohlaiii the eorresponding n' message from 
the node above (Pearl 1988). The operations performed correspond to Equations 
(3.27) lo (3-31), and were described in detail in Section 3.3,3. 
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4.2 Architectures 

This section describes the specific structure parameters of the three different Baycsian networks 

employed. They are based on the parameters of two published versions of the HMAX mode 

(Serre et al. 2(X)7c,b). For simplicity I have used the same parameter notation employed in 

these papers. Note that these parameters can be used to build the HMAX network as well as the 

functionally equivalent Bayesian network, as they dehne the topology of the network, i.e. the 

structure and the interconnecliviiy between the different elements of the network. 

The first two layers of the network are equivalent in all three architectures and their parameters 

are summed up in Table 4.1. 

4.2.1 Three-level architecture 

The parameters for layers S2. C2 and S3 (Serre et al. 2007c) arc shown in Table 4.2 and the 

resulting Bayesian network is illustrated in Figure 4.4. The number of nodes at each layer and 

band depend on the size of the input image and the pooling (AN) and sampling (E) parameters. 

The figure shows the total number of nodes at each layer, assuming an input image of 160x160 

pixels and the parameters delined by Table 4.2. 

Due to inherent properties of Bayesian networks, each node in the graph can only have a fixed 

number of afferent nodes. For this reason, in order to obtain S2 nodes with features of different 

RF sizes, AN^ = 4,8.12,16, these are implemented using separate nodes. Therefore, all S2, 

C2 and S3 nodes are repeated four times, one for each of the RF sizes. This is not illustrated in 

Figure 4.4 because the structure of each of the four sets of nodes is equivalent (as a function of 

SI parameters 
RF size, ANsi 
SI types, Ksi 

7.9 11,13 15,17 19.21 23. 25 27,29 31,33 35,37 
4(0°;45'';90°;135°) 

CI parameters 
Scale band 
Grid si/e, ANa 
Sampling, ec\ 

Cltypes, Ka 

i 
8 
3 

2 
10 
5 

3 
12 
7 

i 

4 
14 
8 

5 
16 
10 

6 
18 
12 

7 
20 
13 

8 
22 
15 

{0";45'';90°;135") 

Table 4.1: Comparison between two implementations using spiking neurons of graphical mod­
els and belief propagation 
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S2 parameters 
Scale band 
RF size", AWs2 
S2 types, Kn 

1 
4 

2 
8 

3 
12 

4 
16 

1000 
C2 parameters 

Band pooling, &Sc2 
Grid site, ANc2 
C2 lypes, Kc7 

All bands: 1---8 
All S2 units 

1000 
S3 parameters 

RF si/c", A^s3 
S3 types, Ks2 

1 
60 

"52 protarype elements- {iN^i x AW]« x Kn (4 oriemations}. Same for all scale bands. 
''S3 proiuiype elememn &Ns?i x ANxi x Iic2 (1000 Italures). 

7a/)/e ^.2.- Parameters of the 3-layer archileciure. Based i»n Serre et al. l2007c). 

the corresponding paramelere), and the node.s of different S2 RF sizes do not interact with each 

other. 

The number of nodes in each S2 set is 2253 for ANs2 - 4.1572 for ANs2 = 8,1098 for AA's: = 12 

and 758 for ANsj — 16. Bigger ANsj imply less resulting S2 units as the number of S2 units is 

equal to the number of CI units divided by AA'.S-T. The numberof features of each RF size, A!̂  is 

setlothciotalnumberof features in layer S2 divided by four i.e. K'^ — Ksil^- 1000/4 = 250. 

Each node in the networli has an associated CPT which links it with its parent nodes. Similarly, 

each node performs the same internal operations, shown in I'igure 4.3, which correspond to the 

distributed implementation of belief propagation. 

4.2.2 Alternative three-level architecture based on Yamane et at. (2006) 

The parameters of this architecture are shown in Table 4.3 and the resulting Bayesian network 

is iilusiraled in Figure 4.5 (only from layer S2 above, as layers SI and CI are equivalent to 

the previous version). This architecture was introduced to try to improve the recognition of the 

iranslnteil dataset of input objects. It is a variation of the 3-level HMAX model (Serre et al. 

2007c). with a reduced pooling range (RF size) at the top layers C2 and S3, More specifically, 

C2 prototypes do not pool over the whole set of S2 units, but over a smaller range (50% of the S2 

map length), which leads to a 3-by-3 C2 grid of units. This then allows the S3 RF size to be set 
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Figure 4.4: Bayc^ian nelwurk reproducing ihe siruciure and funciioiialily t>f ihe 3-leve! 
HMAX model (Serre ei al. 2l)(l7c). The number ot ruujes ai each layer and band 
depend on [he size of ibe input image wnd ihe pooling (AN) and sampling |f) pa-
rameier.s. The (igure shows the loial number of m>des ai each layer, assuming an 
input image (if IfiOxIWlpixelsandiheparamelersdudnedby Table 4,2. Bach node 
in ihe network has an a.ssocijiled Cl'T which links it with ils parent node.s. .Simi­
larly, each node performs the same internal operations, shown in Figure 4.3, which 
correspond to the disirihuled impjeiiienialion of lielicf propaguiion. 
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S2 parameters 
Scale band 
RF size", AA'i-2 
S2 types, Ksi 

1 
4 

2 
8 

3 
12 

4 
16 

1000 

C2 parameters 
Band pooling, ^c2 
Grid size, ANc2 
Sampling, ec2 
C2 types, Kfi 

All bands: 1 8 
0.5 X total S2 units 

0.25 X total S2 units 
1000 

S3 parameters 
RF size^, ANsi 
S3 types, Ksi 

2 
2 x 2 x 6 0 = 240 

"83 protoiype elemeffls= ANs2 x ̂ f^si " f^C\ f* orienlalions). Same for all scale bands. 
''S3 proiolype elt;ments= AWss x AN̂ i x Kci (1000 feaiurra). 

Table 4.3: Parameters of the aliemativc .^-layer archlieciure based on Yamane ei al. (2006). 

to Just 2 X 2 C2 units, and lo learn 2 x 2 prototypes (one (breach location) per object category, 

which leads to greater position invariancc at the lop layer. As a consequence, the learned high-

level prototypes of objects contain some information about the spatial arrangement of Iheir 

constituent pans, in agreement with the results shown by Yamanc ct al. (2006). This was also 

discussed in Section 2.1.1 and illustrated in Figure 2.3b. 

Additionally, the smaller pooling ranges of each unit help to reduce the large fan-in of A mes­

sages and to increase the speciticity of feedback. All feedback results presented in the thesis are 

based on this architecture. 

4.2.3 Four-level architecture 

This architecture is based on the version of HMAX dcscril>ed in Scrre et al. (2(M)7b), and in­

cludes two extra layers. The parameters of this architeclure are shown in Table 4.4 and the 

resulting Bayesian network is illustrated in Figure 4.6 (only layers above S2, as layers SI and 

CI are equivalent those shown in Figure 4.4). The main advantage of this architecture is the 

further processing by the two extra layers with smaller pooling ranges which leads to greater 

position and scale invariance and can increase selectivity in highly detailed images. However, 

these two extra layers also lead to greater complexity and higher approximation errors when 

implementing the model as a Bayesian network. For this reason, the four-level architecture was 
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Figure 4.5: Bayesian network reprodueing the shaicture and functionality of a modified ver­
sion ol' the :Mevel HMAX model (Serre c1 al. 2()()7c), The variation consisis of a 
reduced pooling range (RF size) at the lop layers C2 and S3 and was introduced 
to try to improve the recognition of the translated set of inpui objects. Only ihosc 
layers a hove S 2 are shown, as layers SI and CM are equivalent to the previous ver­
sion. The numher of nodes at each layer and hand depends on the size of the input 
image and Ihe pooling (AN) and sampling (r) parameters. The figure shows ihe 
total numher of nodes at eaeli layer, assuming an input image ol 160x160 pixels 
and the parameters defined hy Table 4.:̂ . Fach nixle in Ihe network has an a-ssiKi-
aled CPT which links it wiih ii.s parent nodes. Similarly, each node perform.s the 
same internal operations, shown in Figure 4.^. which correspond to the distributed 
implementation of belief propagation. 
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S2 parameters 

RF size", ANfa 

S2 types, Ks2 

3 
2000 

C2 parameters 
Stale band 
Band pooling, AScz 

Grid size, ANci 

Sampling, eci 

C2 types, Kc2 

1 
1.2 
8 
3 

2 
3.4 
12 
7 

3 
5,6 
16 
10 

4 
7.8 
20 
13 

1000 

S3 parameters 
RF size*, ANsi 

S3 types, K^ 
3 

1000 

C\? parameters 
Rand pooling, ASa 

Grid size, AA'c3 

C3 types, Ka 

All bands: 1---4 
All S3 units 

iOOO 

S4 parameters 

RF sizes AAfs3 
S3 types, Ks^ 

1 
60 

"82 protorype elemenis= AA's2 x AW -̂; x ffc, (4 oriL-niations). Same for all scale bandB. 
''S? prniorype elemems= ANsi x AA'̂ i x Ar(T (KXKI features). 
' S4 pnitmype elements= &Nsi x ANs.\ " Kc\ {KWO features). 

Table 4.4: Paramelers of Ihe 4-layer archilcciure. Based on Sene ei al. t2007c) but wiih Ksi 
Ksi = 1000 features, instead i)f 2000. 

only used for comparison with the other architectures during ihe the feedlbrward recognition 

process. 
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Figure 4.(5; Bayesian nelwork reproducing Ihe structure and funclionality of the 4-level 
HMAX model (Serre ei al. 2007b). The number of nodes ai each layer and hand 
depend on the size of ihe input image and the pooling (AN) and sampling (C) pa­
rameters. The figure show.s the inial number of nodes ai each layer a.ssuming an 
inpui image of I6()xl6() pixels, and the parameters defined by Table 4.4. Hach 
node in the nelwork has an associated CPT which links it with its parent n(«les. 
Similarly, eacii node performs the same internal operations, shown in Figure 4.3. 
which correspond lo the dislribuicd implementation ot belief propagation. 
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4.3 Learning 

This section describes how to learn the conditional probability tables (CPTs) of each of the 

nodes in the Bayesian network in order to approximate the selectivity and invariance operations 

of the HMAX model. For this learning stage an important assumption is made in order to 

simplify the process. The network is assumed have a single parent per node (tree stracture 

with no loops) so that the feedforward A messages are not affected by the top-down feedback n 

messages. The bottom-up A message from a node with a single parent does not include evidence 

from that parent (see Section 3.3.3 for details). 

The reason for making this assumption is that the CPTs in the network are learned in an unsu­

pervised manner, starling from the bottom layer (following HMAX learning methcxls), based 

on the response obtained at each layer. In order to calculate the response of nodes with multiple 

parents, the messages from all parents need lo be combined using the CPTs thai relate the node 

lo its parents. However, these CPTs would still be unknown. This implie-s that, theoretically. 

in this type of network, all the CPTs would need to be learned at the same time. By assuming 

nodes with a single parent, the A messages, based solely on bottom-up evidence, can be used 

as a reference to learn the appropriate weights layer by layer. Similar assumptions are made in 

other related models (Hpshtein et al. 2008, George and Hawkins 2009. Hinton ct al. 2006). The 

learning process is now described one layer at a lime. 

4.3.1 Image-Si weights 

The input image is pre-processed with a battery of Gabor filters described by Equation (4.1) 

with the parameter range described in Table 4.1, i.e. at 4 different orientations and 8 sizes. Each 

of the lilters is applied at every location of the image. The filtered responses, normalized over 

the four orientations at each location and scale, are used as the output A messages of a set of 

dummy nodes that feed onto the SI nodes. As explained in Section 3.3.3. dummy nodes do not 

encode a variable or have a belief, but just generate k messages for the parent niRies. For this 

reason there is no need lo define the Cl^s between the dummy nodes and the SI nodes. 
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4.3.2 S1-C1 CRTs 

The belief propagalton operations between SI and CI need to approximate the max operation 

implemented in the original HMAX model. To do this wc propose increasing the number of 

states of the CI layer so that for each SI orienlalion there are Kcigmup states coding different 

spatial arrangements of SI units. In this way all the CI states corresponding to the same SI 

orienlalion can be grouped together and treated as a single state during the generation of the 

outpui A mcs-sage. The operation to compute the output A message implements the sum over 

all the stales of each CI group. In other words. CI nodes provide a dislribulion over SI features 

and locations, which after marginalizing (summing) over tlie locations during the gcneraiion of 

ihc outpui A message, provides an approximation to the max operation. 

However, ihe number of different possible spatial arrangements of SI units converging on a 

CI unit i.s given by the number of ^-combinations of the n-eiemenl set equal to the binomial 

coefficient, ("). where n — ANa • ANc\ • 2 bands and it is the number of active units (assuming 

binary values). For example, for n = 8 • 8 • 2 = 128 and k = .12, the number of possible spatial 

arrangements is ('̂ 2} ^ \(i^^. This is just a lower bound on Ihereal number of combinations, as 

we would need to sum over all the diffcrenl values of k, and ihe weight values at each location 

are not necessarily binary, but range from 0 to I. Creating a distribution for each CI node 

containing/Tc] =^51 -Kngroup — 4- lO" slates, is obviously intractable. 

Tor this reason, the value Kc\grouii is limited lo include only the most common arrangements 

of S1 units for each orientation. Figure 4.7 portrdys a toy example of this method where the 

numberofSI units is n —.3 '3 -9 . the number of SI stales is A'51 = 4 (orientations), the number 

of features per group is li(:\g„,up — 3 and the resulting number of C1 stales is Kci —4-3= 12. 

The equation to calculate A(C1), which combines the bottom-up evidence, and Ac](S2), which 

sends the bottom-up evidence lo S2, arc shown in the diagram. 

Noie that, as illusiraied in the toy example, the weights are learned for each lixed CI state-i a.s 

a function of the n afferent SI units and the j SI slates per node. This yields a weight matrix 

(shown ontheboliom left) for each of the CM f states. However, theCITsof a Bayesian network 

are defined as a function of the child and the parent stales, j and / respectively, for each rtxed 
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S\ii node. Therefore, ihe origintil weighl niiilrices are convened inio one CPT per SI node as 

shown al the bottom left of Figure 4.7. 

The implementation in the real model follows that described in the loy example. The method 

employed lo learn Ihe Kc\group mosi common arrangemcnls of SI units at each orientation feed­

ing to a CI unit is a clustering technique, namely the k-means algorithm (Bishop 1995). This 

method can be understood as a type of Expectation-Maximizalion algorithm. This clustering 

method is applied over a set of SI patches obtained from the training input images. To select 

and pre-process the set of patches to be clustered for the / SI state (orientation) or C1 group, 

the following steps are performed: 

1. Select the next patch, Pp„„;,r,at of size n = ANc\ •ANr\ -2 (bands) from each state of the 

SI nodes' A response, i.e. ^(51(^1,,.] - '),vjheTe {b,j:._v} represent the band and location 

of the S1 node and match the patch size, n; and / h a specific SI orientation or CI group. 

2. Keep patch Ppomuiai on'y i' iis maximum value is above a threshold 7;,„„, where T„,in is 

given as a function of the maximum overall value of X{S\b_i.v - ') Vi,A',y. Formally, if 

maxiPpate^iai) > T,„i„ ihcn l\,.iecied = Ppoicnimi- "^^CK T„„„ = a - maT(A (i'l,,,,-̂ ,. = ()), and 

a typical value for a would be 0.9. This ensures that the weight matrix is calculated based 

on significant A (SI) responses which are close to the overall maximum response elicited 

by SI nodes, and not based just on the local maximum of each patch. 

3. For each selected patch, PwUi-iedt keep only the values above Tmin and set all other values 

to 0. i.e. Pseiirii'd - fl<}0''{P»'iecied/T,„m)- This ensurcs the weaker responses do not affect 

the calculation of the weight matrix. 

'Caption I'or Figure 4.7. Toy example illustrating liow to approxirnale the max operation u.sing the CPTs between 
SI and CI nodes. The 12 slates of the CI node are organized in four groups each corresponding to one of the SI 
Slates or oriental ions. Each otihe Kcignmi) = 3 states within a CI gioup codes a different spatial arrangenieni I't the 
input SI nodes. The weights, between each of the CI slates and \\K SI nodes are shown in the hottom-left tables. 
These are then converted to the corresponding CPTs between each SI node and its parent CI node as shown in Ihe 
tables of the bottom-right. The belief propagation equations in the lop-righi square show how the CPT.s are used 
10 generate the output A messages from each SI mxle to its CI parent node. These messages are then combined 
multiplicatively by the C! likelihoiMl function A(C'I) and used lo generate the output A messages from each CI 
node to its S2 parent node. In summary. CI nodes provide a distribution over S1 features and loeaiions. such that 
margiiiali/ing (summing) over the locaiions during the generation of the ouipui A message to the parent S2 node, 
provides an approximation to the ma.iofeach SI feature over the pooling region. 
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The k-means clustering algorithm is then applied over the resulting selected patches. It works 

by generating initially Kngroup random clusters. Then each of the Pseieaed.i patches is assigned 

to the nearest cluster, and the value of the cluster is modified to reflect the mean value of all 

assigned patches. The resulting ^cî rou/) clusters for each orientation and CI band represent the 

weight matrices between a CI node and its n = ANc\ -^cx -2 S! afferent nodes. 

After all the clusters or weight matrices have been calculated, the minimum number of non-zero 

elements in the weight matrices across all CI groups is obtained. The number of non-zero ele­

ments of all weight matrices is set to this minimum, and the matrix elements are sum-normalized 

to one. This ensures th;it during the inference process the weights are balanced across the dif­

ferent CI groups.andtheresultof the computation depends on the X distribution. Otherwise if. 

for example, the Cl states corresponding to the horizontal orientation group had more non-zero 

elements, the A(C1) responses would be biased towards the horizontal orientation states. Note 

that an independent minimum value of non-zero elements is calculated for each scale band. 

For some of the feedback results the number of non-z-ero elements of the S2-C2 weight matrix 

was increased to improve the S2 response reconstmction from the C2 feedback. 

The resulting weight matrices, learned from the training dataset of 60 object silhouettes fol­

lowing the clustering procedure described, represent the Kc\group most common arrangements 

of SI units for each CI group and scale band. These are shown in Figure 4.8 for a value of 

l^c\group = Ĥ ' TTie weights obtained show very clear and selective patterns which match what 

would be expected statistically from natural images, i.e. the arrangement of the SI nodes tends 

to match the SI orientation of the unit, which speaks for a coherence between the local and 

more global patterns. Note that each Cl node receives input from the SI nodes at 2 scale bands, 

and these weights are represented adjacent to each other, e.g. weights for a CI node in scale 

band 1 receive input from SI nodes in scale bands 1 and 2, and are therefore shown as two 8 x 8 

adjacent matrices = 1 6 x 8 elements. 

The final step is to convert the weight matrices shown in Figure 4.8 to the corresponding CPTs 

of each SI node P{S\\C\). as was illustrated in the toy example in Figure 4.7. To confonn to 

probability niles, each column of this table must add up to 1. This ensures that, for example, 
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Figure 4.8: Weight matrices between a Cl node and its affereni SI nodes. These are learned 
from the training datusei of fiO object silhoueiies following the clustering proce­
dure described, and rejircseni the Ki-\f.,„up - 10 most common urrangemenl of SI 
nodes for each Cl group and scale band. Note, for each .scale band the pooling 
range, AiVfi. varies. The weights obtained show very clear and selective patterns 
which match what would be expected statistically from natural images, i.e. the 
arrangemenl of the SI nodes tends to match the SI orienlalion of the unit, which 
speaks for a coherence between the local and more global pallems. Note tliat each 
Cl node receives inpui from the S! nodes at 2 scale hands, and these weights are 
represented adjacent lo each other, e.g. weights for a Cl node in scale band 1 re­
ceive input from .SI ntxles in scale bands 1 and 2, and ;u'e therefore shown as two 
8 x 8 adjacent matrices = 1 6 x 8 elements. 
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when all afferent SI nodes have a flat A distribution, as in blank regionsof the image, the parent 

CI node will also show a flal distribution. 

In summary, the CI layer becomes an iniermediale step ihai converts combinations of SI fea­

tures and spatial arrangements into the stales of a single CI node. The max operation only oc­

curs during the generation of the output A messages lo the S2 layers, which groups these states 

via the learned weight matrices. This methixl also provides a way to feed back information from 

complex to simple layers, where each complex feature corresponds to a specific arrangement of 

simple features. The method is equivalent to that employed by Hierarchical Temporal Networks 

(George and Hawkins 2009). where features in each node are combined into temporal groups 

or Markov chains. The meihixl used here, however, preserves the Bayesian network simciure 

by implementing the grouping olT'eatures in the weights of the CPTs. 

4.3.3 C1-S2CPTS 

To learn the selectivity weights between layers CI and S2. the minimum distance algorithm is 

employed. This algorithm was also used to extract the most common spatial patterns (equiva­

lent to selectivity weights) in the Hierarchical Temporal Memory mixlel (George and Hawkins 

2009). In the HMAX model, the selectivity weights, or the prototypes which serve as centres for 

the Radial Basis Functions, were extracted at random from the CI maps generated by the train­

ing images. However, in our mtxlel. the minimum distance algorithm provides better results, as 

it ensures the extracted prototypes maximize the Euclidean distance between each other. The 

algorithm works as follows: 

I. All features, potential S2 prototypes Ppoieniiiih ^re extracted by sampling from all the 

locations and bands of the A (CI) response generated for each of the training images, i.e. 

A(Cli,_jy - () V h.x.y. The number of elements for each prototype is ANsi x AA'M X 

(Kci/Kc]group)< i.c- the S2 RF size times the number of CI states divided by the states 

per group. To learn the S2 prototypes, it is more eflicient to obtain a single value for 

each C1 group by summing over all the features belonging to that group, [n other words, 

although each CI node is composed of 40 stales, only 4 values, corresponding to the sum 

of each group, are used lo compute the S2 prototypes. 
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2. The list of selected prototypes. Fjc/rn.'̂ . will initially contain no prototypes. A parameter 

called the minimum distance, Dmin- '^^ initialized to a relatively high starting value. 

3. The algorithm loops through all die potential prototypes /*,,n,™„v,;. Prototypes are added to 

the selected prototype li,̂ t. l^^hried- if ihe Euclidean distance to all previously stored pro­

totypes is above the minimum distance, i.e. if d{Ppo,eni,ai.i- Pseimrdj) i l^mtn j ^ {\--N} 

then Psfierredjj+i — Pporeniiai.i' wHcrc N is the number of selected prototypes. 

4. Lower D,„,„ and repeat step .1 until N - K^i- The initial value of D,„i„ and the decreasing 

step size in each iteration dictate the dissimilarity between the final selection.'; of proto­

types, 

The S2 prototypes represent the weight matrix between a parent S2 node and all of its CI 

afferent nodes. The corresponding CI'T for each C1 node, i.e. the weight matrix between each 

n node and all of its S2 parents P{C\\S2). is calculated in an analogous way lo thai described 

for the Sl-Cl CRTs. Note that the CPT elements for the CI features within the same group 

are set to the same value. This is because the CPTs are derived from the weight matrices that 

contain a single value for each CI group. 

Figure 4,9 follows from the previous toy example where now the number of CI units is « = 

3 • 3 — 9, the number o!' CI slates is Kn = 12 and the number of S2 stales (prototypes) is 

Ks2 = 10. The equation to calculate Aci(52), which sends the bottom-up evidence to S2, and 

A (S2), which combines the botlom-up evidence, are shown in the diagram, 

The toy example illustrates how the weighls are learned for each fixed S2 state=( as a function 

of the n afferent CI ntMJes and the ./ CI .states per node. This yields a weight matrix (shown 

on the botlom left) for each of the S2 i states. However, the CPTs of a Bayesian network are 

defined as a function of the child and the parent states, j and i respectively, for each fixed CI 

*Capiiiin for Figure 4.9, Toy example illusirFiliiiy liow ID Lipprojiimaie ihe sekniiviiy operalion using Ihf CRTs 
tviweenC'l and S2 nodes. The weighis between eafh uf the S2 ilaie^ aiidlhe f l rwdts are shown in the boilom-lett 
tables. These are ihen eonverted in ihe conespimtlinp CF1\ l>eiween each CI node ami iis pureiil S2 node as shown 
in ihe tables of ihe bottom-right. The belief propagation equaiions ui ihe lop-lelt square show how the CÎ Ts are 
u.M'd io generate ilic output A messages from each CI node loiis S2 parem niKie. These messages are then combined 
muliiplicaiively by ihe S2 likcliho(xl runciion k{S2) ami used lo generate the output X me-ssases from each CI node 
10 its S2 ptireni node, .Note that the Cl'T elemenw for iho CI fcaiures within the same group are sei lu ihc same 
value, as only one value is learned per CI ptoup. 
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Figure 4.9: For caption see footnote^. 
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4.3. LEARNING 

node=«. Therefore, the original weight matrices are converted into one CPT per CI node as 

shown ai the boiiom left of Figure 4.9. 

Figure 4.10 shows a sample of .50 of the 250 S2 protolypes for each of the 4 RF sizes or ANsi 

values. These have been extracted through using the iiiinimum-diskmcc algorithm described in 

this section and are shown before being convened lo Ihc CI*Ts. These prototypes are common 

for all scale bands, liach prototype represents the weights for each of the four orientations in <i 

2-by-2 grid of adjacent images, where lop-left-0",lop-right=45°, bottom-left=90° and bottom-

right-135°. 
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AN. , = 4 A N „ = 8 

ANs2=12 AN„ = 16 *S2 

• i ^ I T * . i , * •'«. . * »*: - » - . 
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S2 RF size » AN^^ x ANgj (locations) x 4 (orientations or C1 groups) 

Figure 4.10.- Weight matrices between an S2 node and its afferent CI nodes. These are learned 
from the training dataset of 60 object silhoucites fiiMowtng the miiiimum-disiance 
algorilbin and ure shuwn before being converted to the CITs. The (ijiure shows a 
sample of 50 of the 250 S2 prototypes for each of the 4 RF sizes or A/V.n values. 
These prototypes are common for all scale bands. Bach prototype represents the 
weights for each of the four orientations in a 2-by-2 grid of adjacent images, 
where lop-leri=0°,top-right-45". bottom-leff-90" and botlom-rigbi^l35°. 
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4.3. LEARNING 

4.3.4 S2-C2CPTS 

The weights between each C2 node and its afferent S2 nodes are learned using the same 

methodology described for the SI -CI layers, i.e. k-means clustering to obtain the most com­

mon arrangements of S2 units. In this case the algorithm extracts Kci^roup clusters of size 

^ci 'X Nc2 X Niinndi for each C2 group or S2 state. The parameter Nj,a„ds represents the number 

of S2 bands being pooled from, and varies for the different architectures presented. 

The resulting weight matrices, learned from the training dalasel of 60 object silhouettes follow­

ing the clustering procedure are shown in Figure 4.11 for a value of Kc2gniup - 10- Note that 

each C2 node receives input from Ihe S2 nodes of up to 8 scale bands. 

The weight matrices shown in Figure 4,11 are converted to one CPT per each S2 node using an 

equivalent procedure to that described for the Sl-Cl CPTs. 

4.3.5 C2-S3CPTS 

The weights between each S3 node and its afferent C2 nodes are learned in a supervised manner 

for each of the KST, — 60 training images. For the 3-layer architecture, the A(C2) response 

for each training image becomes the prototype weight matrix. The CPT /'(C2|53) containing 

Kcii- 10000) X Ks•^{= 60) elements can be easily obtained in ihis manner, by normalizing the 

weight matrices for each prototype. In other words, the prototype of each input image is learned 

as a function of the X{C2) response and converted to a CPT relating C2 and S3, as shown in 

Figure 4.11. 

In the case of Ihe allemalive 3-layer architecture where there are 9 C2 nodes and 4 S3 nodes, the 

learning method is also supervised but the size and number of proiotypcs varies. The size of the 

S3 prototypes is now AA'ŷ  x A '̂s•.l — 2 x 2 C2 units; and these are learned from the 4 possible 

locations within the C2 units (see lop of Figure 4.5), leading lo Ks^ = 60 objects • 4 locations -

^Caption for Figure 4,11. Weighl matricej, bulween a C.2 node and its afferent S2 nodes. These are learned 
from the training datasei of 60 object silhuaeties following the clustering pnicedun; described, and represent the 
fCc2gniup = 10 mt>sl common arrangemeni of CI nodes for each C2 group and scale hand. Note that each C2 node 
receives inpui from the S2 niiden of up lo K scale bands, where, tor each scale band, the pooling range, ANcj. is 
differeni. .Similarly, the weighl matrices are divideU according Ui the S2 RF' sizes, as the S2 response maps for 
S2 Rl- siK, have differeni sizes and yield different S2-C2 wcighls. For purpio.ses of clarity, a single C2 feature is 
highlighted using a red dolled ellipse. 
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Figure 4.11: For caplion see footnote^. 
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Figure 4.12: Weighl malrix between C2 and S:i nodes for the 3-level architecture. Tlic weights 
Lire learned in a supervised manner from the C2 response lo each of ihe Wl training 
input imapes i>r objects, Hach object is thus tcpresenied us a weighted subset of 
the 1000 C2 groups. The CPT P(C2\sri containing Kcii-- 10000) x Ksi{= 60) 
elements is derived from this weight malrix by using Ihe same value for each of 
Ihe Kc2g,„up features per group and sum-normali/iiig the weight matrices for each 
prototype. 
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240 prototypes or S3 slates. This increases the invariance to position at the top level. 

The learning process for the 4-layer architecture is not described in detail as it is a trivial exten­

sion of the methodology employed for the 3-layer architecture. 

4.4 Feedforward processing 

4.4.1 Approximation to the selectivity and Invarlance operations 

For the feedforward recognition results presented in Chapter 4 we therefore assume that the 

network is a singly-connecied tree, so that the k messages can propagate to the root node 

without being affected by top-down messages (see Figure 3.9 in Section 3.3.3 for details). This 

is the same strategy used during the learning process. This facilitates the approximation to the 

HMAX operations and greatly reduces the computational costs to process each image. This is 

specially important when testing a large image datasei over a large parameter space. 

Note that even if the root nodes and 7i messages were initialized to a flat distribution, they would 

still modulate the hotlom-up A messages, as n messages are multiplied by the CPT before being 

combined with die A messages. In oUier words, as long as there is bottom-up evidence, it will be 

modulated by top-down messages even if the lalier exhibit flat distributions. This was illustrated 

in Figure 3.7. Several recognition simulations were also perftirmcd without this assumption, in 

other words, with flat top-down messages that modulaied the feedforward A messages, in order 

to compare results and establish ils validity. These revealed that a similar invariant recognition 

perforniunce can be obtained even when including the feedback K messages (using loopy belief 

propagation), but performing a detailed systematic test over the complete dataset and parameter 

space is infeasible due to the high computational resources required. 

The singly-connecled tree assumption allows the selectivity operation in HMA.X to be approxi­

mated as shown in liquation 4.9. Note thai the original Radial Basis lunction operation has l>een 

replaced by an approximately equivalent dot-product operation as proposed by Serre (2006). 

Serre et al. (2005a), and this dot-product operation is then approximated using the belief prop­

agation equation. More precisely, the weighted sum over SI locations and features is approx­

imated as a sum over the features and a product over the locations. This can be interpreted as 
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4.4. FEEDFORWARD PROCESSING 

(he simultaneous coincidence of the features in the afferent nodes, as proposed by George and 

Hawkins (2009). Finally, the weight matrix for each S2 prototype is approximated by the CPT 

p{a\s2). 

S2b>n^n^szJ'si=^^V {-P - ||C1{6„.„,.,1 - n « | | ^ ) 

fc,j,,.V, k, 

(4.9) 

where the indices are given by Equations (4.3) to (4.5), 

Similarly, the invariance operation in HMAX i.s approximated u.sing belief propagation as shown 

in liquation 4.9. The approximation to ihe max operation is emiwdded in the ^ i (52) output 

messages to S2 generated using the weights in the CPT P{C\\S2), which sum over the CI 

features of the same group. In order to make this possible, the most common SI states and 

locations have previously been combined in the CI node states through the CPT /^(Sl|Cl) (see 

r'igures 4.7 and 4.9). In this sense it can be argued that both the selectivity operation and 

the invariance operation are actually implemenled using the weights in P{C\\S2), whereas the 

weights in P(i'l |C1) implement a necessary pre-processing step. 

4.4.2 Dealing with large-scale Bayeslan networks 

Due to the large fan-in in the network and the large number of stales, calculating the A function 

of a node requires multiplying a high number of polL'ntially very low probability values. For 

example, a CI node in band 8 receives input from 96S (22 x 22 locations x 2 bands) SI nodes, 

meaning that it is necessary to obtain the product of 968 probability disiribuiions. The result 
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4.4. FEEDFORWARD PROCESSING 

of this computation is often outside the typical numeric boundaries in simulation environments 

(for Matlab these boundaries range from iO"-* '̂ to 10'-̂ '̂ '̂ ). I w this reason ii is necessary to 

malte several approximations during the belief propagalion calculation: 

• Given a node X with child nodes C],-- ,CM, the numlier of input A messages is re­

duced such (hat A(;c) ^ fl A(V(J;). where {jmax] C I..M. represents ihe indices of the 

I'^max ^ , W messages with highest variance, and Mma, < M. The maximum number of 

input messages, M„„t, is calculated as a function of the number of states of the messages. 

Kx, Matlab's maximum real value, R„,a, — 10'^^^, and Ihe minimium value allowed in 

probabilily distributions, Vm,n, as follows: 

'mm 

M ™ ^ - - — ^ (4.10) 

Thus, the likelihood function of each node is obtained by multiplying only the Mmax 

input A messages with higher variance, where !/„„, is set to ensure that the result of 

the computation never reaches Matlab's numeric upperbound. Probability distributions 

with higher variance are chosen as they are likely to carry more infonnation. In the 

majority of cases Mmnx > ^' so the resulting computation is equivalent to the original 

belief propagation formulation. 

To check how well this sampling procedure managed lo approximate Ihe exact likelihood 

functions the method was tested siatislically. Using randomly generated A messages 

from a normal distribution, the difference between the exact likelihood and the approx­

imated likelihood distribution obtained after sampling was measured, for different val­

ues of M^io^. The difference was measured using Ihe Ku 11 back-Lei bier (K-L) divergence 

which calculates the cross-correlation between an approximate distribution and the true 

distribution. This method cannol be considered a distance measure, as it is not symmet­

ric, but has been used extensively to measure the goodness of fil between two discrete 

probabilily distributions (Trislon and Kiebel 2009, Winn and Bishop 2005, Hinton el al. 

2006). 
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Figure 4.13 shows the K-L divergence between the true and approximate likelihood dis­

tributions, averaged over 500 trials, as a function of M^^y ^nd the total number of parenls 

TV. The likelihood distributions are assumed to have AT = 100 slates. For comparison, 

the K-L divergence between Ihe exact likelihood and a randomly generated likelihood 

distribution is also plotted. 

The results show that the coefficient M,„,i,//V increases as the goodness of fit between 

the approximation and the exact solution increases. Also, as the total number of input 

messages, N. increases, the goodness of fit decreases. The relative difference between 

the K-L divergence of the approximaie and the random distributions suggests that for 

values of M,„a:, above a given threshold the approximate distribution provides a good fit 

to the exact solution. It is important to note that in the real model data, the input A 

messages are correlated (due to the overlap in receptive fields) and are therefore likely to 

present more similarities between them than the randomly generated A messages of the 

statistical test. Additionally, a subset of Ihe discarded distributions ŵiM typically present 

near-llat distributions as they originate from blank regions of the image. Consequently, 

the approximation in the model will constitute a belter (it to the exact distribution than 

that suggested by this empirical test. 

• The messages (probabihly distributions) are sum-normalized to 1 and then re-weighted 

so thai the minimum value of the distribution is never below V™,,, — ]/{\0- Kx). All 

elements of the message that are below Vm,n are set to Vmin- The overall Increase in the 

sum of the elements of the resulting distribution is ihen compensated by proportionally 

decreasing Ihe remaining elements (those which were not set the to Vmin)- Consequently. 

ihe rcsuliing distribution will still be sum-normalized to I, while having a minimum value 

equal to V,„,„. The distribution will have a profile equivalent to that of the original one. 

except for those elements that were originally below P^,,,, which will now exhibit higher 

relative values. 

This adjustment of the message probabilily distributions eliminales all values under V„i„, 

thus allowing multiplicative combination of a greater number of input messages, i.e. Mmat 
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true vs. random 
distributions (baseline) 

u 

I 

M,^/N 

Figure 4. J3: Kullback-Leibler divergence belween the true and Iheapproximale likelihood dis-
trihuiion for dilfereni values oi' M,,,,^. averaged over 5(X) trials. The Kullhack-
Leibler (K-l.) divergence, on the y-axis, measures the eross-correlation belween 
an approximale disirihuiion and the true disirihution. This method cannot be 
considered a distance measure, as ii is mil symmetric, bui has been used exten­
sively U) measure the goodness of fii between lw{) discrete probability distribu­
tions (Frislon and Kiebel 2009, Winn and Bishop 2005, Hinlon el al, 2006) The 
X-axis shows the coeflicieni Mm„,/A'. i.e. the percentage of A messages of the to­
tal that are used in the approximation. Three dilierenl values of N are shown: 20 
(blue lines), 50 (red lines) and 100 (green lines). The dotted horizontal line shows 
ihe K-L divergence between the true and a random distribution, which serves as 
a baseline to compare the goodness of fit of die approximate dislribufion. 
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is proportional lo V^i„. 

4.5 Feedback processing 

Section 4.4 describes how for the feedforward object recognition simulations the network was 

assumed lo he singly-connected and tree-structured during the initial boitom-up propagation of 

evidence. This wa-s done in order to simplify the computations and facilitate the approximation 

to the HMAX selectivity and invariance operations. 

For the feedback simulations the network is not restricted by this assumption, and is thu.s al­

lowed lo maintain its multiply connected structure (multiple parents with loops). Evidence 

propagates simultaneously in both directions (up and down), at all layers of the network. The 

combination of parent mes.sages is approximated using the weighted sum of compatible parental 

coijfifjuralions method. To deal with loops, belief propagalion becomes lotipy belief propaga­

tion, which provides an approximation to the exact beliefs after several iterations. Further 

details of the feedback implementation and the approximations required due lo the large dimen­

sions of the network are included in this section. 

4.5.1 Approximating n messages as beliefs 

As shown in Fquaiion 3.31, the outward it message generated at each node can be obtained as 

a function of its belief. The only difference is that the message from node X lo Cj, i.e. Ttĉ lA') 

includes ail incoming messages to X, except the one arriving from the destination node. i.e. 

Ac (X). This is done in order to avoid the circulation of duplicate information in the network. 

However, for the purpose of simplification and increased computational performance, and only 

when the number of incoming messages is high, the outgoing ^:j{X) message can be approx­

imated by the belief, Hel{X). This approximation implies Jk-,{X) also includes the evidence 

contained in h:^{X). However, ntj(-X) is calculated by combining messages from a total of 

N -j- M nodes (all parent and children nodes), so the overall effect of one single message on 

the final message is proportional to I /(A' -I- M). This justifies the approximation in the present 

model where the values of N and M are in the order of hundreds or thousands. The same ap­

proximation is employed by other similar belief propagation mcxiels (Litvak and Ullman 2{X)9. 

176 



4.5. FEEDBACK PROCESSING 

George and Hawkins 2009). 

4.5.2 Multiple parents 

As desciibed in Section 3.3.4 the number of elements of the CPT P{X\U],-- ,(/^) is exponen­

tial lo the number of parents, N, as it includes entries for all possible combinaiions of the states 

in node X and its parent mxles. e.g. given kx — ku — A.N = 8, the number of parameters in 

the CPT is 4 • 4** - 262,144, Additionally, the number of operations to compute the belief is 

also exponential lolhe number of parents, more precisely it requires ^ sums and N •k'^ product 

operations. The exponential growth to the number of parameters and operations resulting from 

the comhinalion of multiple parents is illustrated in Figure 4.14. 

4.5.2.1 Weighted .sum or compatible parental configurations 

To solve the problem of Ihe large number of entries in the CPT we implemeni the weighted 

sum of simpler CPTs based on the concept of compalihle parental configurations (Das 2004) 

described in Section 3.3,4, This method ohiains a kx x *(/ CPT. P[X\Ui), between node X and 

each of its N parent nodes, and assumes the rest of the parents. Vj, where j / i. are in compatible 

states. The hnal CPT F(X|(/i,--.(/AT) is oblained as a weighted sum of the A" P{X\JJi) CPTs. 

The total number of parameters required to be learned is therefore linear with the number of 

parents, more precisely, kx -k-N • N. Using llie values of the previous example, the number of 

elements is now 4 • 4 • 8 - 128, several orders of magnitude smaller than the previous result. 

This is illustrated in Figure 4.15. 

The Learning section (4.3) described 1) how to obtain the weight matrices between a parent 

node and its children, and 2) how to conven these weight matrices into individual CPTs for 

each of the child nodes. The resulting CT'T is precisely in the form required to implement ihe 

weighted sum method, i.e. for each child node X there are N CPTs of the form /'(X It/,), one for 

each of its parents. These can then be combined to form the [\nii\P{X\U\,--- ,UN). 

4.5.2.2 Sampling fnmi parent nodes 

To reduce the excessive number of operations required lo calculate the belief, only the î niiK 

states, with the highest values, from the NmoK ^ messages, with the higher variance, are used 
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n^ (U,) i^(U,) 

k„ stales 
i . i f i t ^w 
k,, states 

k,states 

I , ( U N ) 

i . . t i i , l tMW 

k„ states 

k , - number of child slates 
ku = number parent stales 
N - number of parent nodes 

• k, • kj^ CPT parameters to learn (cxponviitial) 

e.g. 4-4" 262,144 

• Belief ealculation performs kj^ sums and N • kj^ product operations {cxponetitial) 

Bei(x)=nv(x)i'''i:Vp(xiu u.)f'fr7T.(u,)' 
N ^ ^ r f 

Figure 4.14: I'roblL-ms associated wiih ihc exponential dependency on the number of par­
ent nodes. As described in Section 3..1.4, the number of elements of the CPT 
P\X^V\,--- ,UN) is exponential to the number of parents. N. as it includes en­
tries lor all possible combinations of the stales in node X and its parent nodes, 
e.g. given *x = i(7 = 4,W = 8, the number of paramelcrs in the CPT is 4 • 4* = 
262,144, Addilion;illy, Ihe number of operations tocompulc the belief is also ex-
poneniiyl to the number of purenis, more precisely, ii requires t;) sums and A'A^ 
product operations. 
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Tl.OJ,) n,m 'i.aJv) 

H 
i ll liii^jUMiif T,4i^HMm 

k,, states k„ states l<„ Hales 

k, = number of child stales 
k„ = number parent stales 
N = number of parent nodts 

• P(X I V„...,VfJ = weighted sum over CPTs 
ol' cumpaliblc pan-nlal configtiniliuns 

P(X| {CompaliblelU,)}) 1 

^ ^ 

^H 
Mi 

^H 
^H 
^H 

1 • • 
Ĥ B 

k, stata* 
N CPTs 

• CPT paranieteres to learn k, • k„ • N (linear) 

i;.H.4'4-8 - I2H 

ftgure4J5: Approximalion of the CIT between a mide and its multiple parents using ihe 
weighted sum of W simpler CPTs (one per parent). This approach is based on 
the concept of coinpcuibh' parental cunfigiiraiiaus (l)as 2004) described in Sec­
tion 3..1.4, ThemethodnhiainsaAx x^i/ CV^,P(X\V,), between nixleX and each 
of its N parenl nodes, and assumes Ihe rest of Ihe parents, t/j. where j 4-'. are 
m compalihie states, llie overall C]'T l'{X\V\.--- ,UN) is obtained as a weighted 
sum of the N P{X\U,) CPTs, Tbe lotal number ol parameters required to learn 
is no longer exponenlial, but linear wilh Ihe number of parents, more precisely 
equal lo kx Aw -N. Using the values of Ihe example in Figure 4.14, the number 
of elemenis is now 4 4 8 = 128, several orders of magnitude smaller Ihan Ihe 
previous result. 
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t.(VJ,) jixdJ,) ' ^ (UK) 

k,^ nuTnbur ofchild slates 
k„ = numbfi- a( paienl stales 
N - number of pareni nodes 

•Simii ^ sampleil number of parent stales (max values) 
N„,, sampled number iif pareni nodes (max variance) 

P(Xl {Compatlbl«(U,)» 1 p-
1 
1 
1 
1 1 
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^ 

1 

1 

P(X| {CompatiblttfUJ)) 
• - . . 

m [ 
^^^1 
F^ ^ 

• . 1 

f 

kj, BlBtes N CPTs 

Choose only the maximum k„„,„, values from the N„,„ parent nodes with highest variance 

• Reduces the number of operaliouK lo calculate Belief and messages 

Figure 4. It: Sunipling of iht parcni n messugcs lo reduce ihe number of operations required 
fur belief pnipagalinn. Only liie k„mni states, with the highesi values, from the 
JVfluu Jt messages, wiili the highesi variance, are used in the talculatioii, where 
Kim.\ < ku and A',na, < N. The states with the stronger response of the prnbabil-
iiy distribuiions wiih higher varianee are likely lo carry most of the inrormaiioii 
conleni of the parent JT messages. To ensure the belief calculations arc still valid 
it is necessary to select ihe appropriate columns of the CPTs, i.e. those Ihai cor­
respond to ihe sampled siuies of ihc n messages. This reduces the number of 
operations lo î ŷ î  sums and N^ax • ̂ S^^ product operations. 

in the calculation, where ku,nax < K and Nmax < /V. The states with the stronger response of 

the probability distributions with higher variance are likely to cany most of the information 

conleni of Ihe pareni n messages. To ensure the belief calculations are still valid it is necessary 

to select the appropriate columns of the CPTs. i.e. those that correspond to ihe sampled states of 

Ihe 7t messages. This reduces the number of operations lo tj)̂ ;̂̂ ', sums and /V™„ • it^™ product 

operations. Figure 4.16 illustrates the sampling process. Although in this section we refer only 

to the belief calculation, the same methtxl is applied to calculate the A messages, which also 

integrate information from the parent nodes. 

To check how well this sampling procedure managed to approximate the exact belief functions. 

the method was tested statistically. Using randomly generated CPTs P{K\V\.- • • ,UM) and like-
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4.5. FEEDBACK PROCESSING 

lihood functions A(x), the difference between the exact beliefs and the approximated beliefs 

obtained after sampling for different values of N^ax and kumax was measured. The difference 

was measured using the Kullback-Leibler (K-L) divergence. 

Figure 4.17 shows the K-L divergence between the real and approximate beliefs, averaged over 

50 trials, as a function oiN^ax and Kmax- ''or comparison, the K-L divergence between the exact 

belief and a randomly generated belief distribution is also plotted. The range over which these 

parameters are tested is limited by the computational cost associated with calculating the exact 

beliefs using CRTs of size exponential to the number of parents. Thus the chosen parameters 

are kx - 10. A,/ = 20,N = 6, A:„^^, - {I •• -19} and A/,„„. - {I - - -6}. 

The results show thai as A',^, and kumax increase, the goodness of hi between the approximation 

and the exact belief increases. Furthermore, the relative difference between the K-L divergence 

of the approximate and the random belief distributions suggests that even for relatively small 

values of vV„„, and jkumôr the approximate belief provides agood fit to the exact belief. The sam­

pling parameters have lo be chosen as a compromise between the accuracy of the approximation 

and the computational cost. 
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true vs. random 
distributions (baseline) 

-*-Nmfl)(=1 

-^l*nax = 3 
— Nmax = 4 
- ^ Nma" = 5 
- Nmai^e 

Random 

2D 

K Umax 

Figure4.!7: Kullback-l-eibler divergence between ihc true and the approximate prior func­
tion ;tfX) distribution for differeni values of kunmi and A',™,, averaged over 50 
trials. The Kullhack-l.eibler(K-l-) divergence, on ihcy-axis, measures the cross-
correlation hdiweun an approximult- disiribuliiin und the true dislribuiiuii, and is 
typically used as a goodness of fit between IwiMjiscreie probahilily distributions 
(Kri.ston and Kiehel 2()09, Winn and Bishop 2U()5, Hinton el al. 2()()f)). The x-
axis .shows the number of samples taken from the K messages. k,„iu- Kesults are 
ploiled for values of N„a.i ranging from I to 6 as indicated in Ihc colour legend. 
The dolled hori/.onia! tine shows the K-l. divergence between ihe true and a ran­
dom disirihuiion, which serves as a baseline to compare the goiHlness of lit of the 
approximate dislrihutions. 
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4.5. FEEDBACK PROCESSING 

4.5.3 Loops In the network 

4^.3.1 Dynamic etjuations 

Due to the overlap between the RF of nodes at all layers, the resulting Bayesian network has 

a large number of loops. As was described in Section ,1..1.5, in Bayesian networks without 

loops belief propagation ohiains the exacl marginal probability distributions of all nodes after 

a set number of iterations. However, if the network has loops, the original belief propagation 

algorithm is no longer valid and approximate methods have to be implemented. The melhtxl 

selected for this model is loopy belief propagation, which has been empirically demonstrated 

to obtain good approximations to the exact beliefs in pyramidal networks (similar to that of the 

model) once the approximate beliefs have converged after several iterations (Weiss 2000). 

The fact that belief propagation now requires several iterations means that a temporal dimension 

must be added to the original formulation. The resulting dynamical model is captured by the 

set of Equations 4.11. These also include the weighted sum method described in Section 3.3.4 

to approximate the combinalion of lop-down Jr messages. 

'̂"'w- n ,̂w 
J~-\..M 

HI UK 8 i=i..fj 

X U] uiv\u, k-t-NXi 

ui UN\U, \ S / k----\..N\i 

(4.11) 
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4.5. FEEDBACK PROCES.SING 

4.5.3.2 Dynamics of loopy belief pri>pa(>ulion 

Loopy belief propagation also requires all A and n messages to be initialized to a Hal disiri-

huiion. so that, even during the lirst iteration, all nodes of the network propagate upward and 

downward messages. Except for the A me.ssage.s from the dummy nodes, which will contain 

evidence from the image, and the n messages from the root nodes, which will propagate ihe 

prior, the rest of Ihe messages will propagate Hal distributions during Ihe first time step. During 

the following lime sleps the dummy nodes' evidence will propagate to ihe top layers, merging 

with Ihe downward prior informalion and being modulated al each layer by the inherent param­

eters of the network contained in the CPTs, The dynamics of loopy belief propagation in ihe 

propo.sed Bayesian network are illuslraled in Figure 4.18. 

The computational cost of updating the beliefs of nodes at all layers at every lime step is very 

high. An altemaiive approach to reduce this cost is to update only ihe belief of a given layer al 

each time step as in tree-structured networks. For the majority of results present in this thesis 

the model implemented an Hpwnrrf belief update as opposed to the complelc belief update. This 

is illustrated in Figure 4.19. For purposes of clarity each simulation step, z,,,,,,, thus consists of 

five loopy belief propagation steps. This simplification of loopy belief propagation is justified in 

the sense thai evidence arrives from the lower layer dummy nodes and thus only the belief of the 

nodes in ihe adjacen! layer will provide meaningful informalion. All the computation required 

to calculate the K messages and beliefs in the upper layers during the first time-steps shown 

in Figure 4.18 is now saved. Further, it means evidence propagated from the dummy nodes 

will only be modulated at each layer by the initial flat top-down K mes.sages, thus increasing 

the chance of a good recognition performance. The main disadvantage of this method is the 

asymmetry between bottom-up and top-down propagation of evidence, as a belief update or 

''Caption for Figure 4, |8, Dynamics of loopy bcliyt pnipagaiiun in ihc propo.sed nuxlel. Al 1=0 all messages 
are inilializcJ in a Hat diMribution (symbolized wiih a / in ihe figure) encepi for Ihe A message from the dummy 
nodes and the lup level Jr message or prior distrihuiion. Ai i^l, ouL-e the initial flat jz messages are multiplied by 
Ihe correiiponding node CtTs they generate non-flai beliefs and subsequent non-tlai JT and A messages (see Figure 
3.7 for a numeric example). The non-flat feedforward k messages, ^dumm\' *ill ^'so modulate Ihe belief at each 
node and subsequent A messages generated. However, the A message generated by nodes wiih an incoming flat A 
me.iisage will also generate Mat output A messagCfi, For this reason, il takes 4 time-steps (the diameter of the network) 
to propagate the lower level evidence, k^umn^. to ihe top node Tlie bottom right image symbolically illusirates the 
exisience of loops in the nelwork and how this leads to the recursive nature and doulile-counting of mes.sages in 
loopy belief propagation. 
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Figure 4.IH: For capiion see footnolc^. 
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4.5. FEEDBACK PROCESSING 

evidence in the top layer will lake four simulation time steps, ;.<;m. 'o reach SI, whereas evidence 

frtim SI reaches the S3 layer in one simulation time step. 

A third belief update method can be implemented, namely the up-down belief update method 

shown al the boiiom of Figure 4.19. Tliis method propagates botlom-up evidence and top-down 

evidence at the same rate, such that a single simulation time step, (,,„„ will update all beliefs 

in an up-down pass. However, it means that inlermediale nodes are updated more often than 

peripheral nodes and the longer simulation time steps makes il more difficult to analyze the re­

sults. For this reason, ihc upward belief update method was implemented in most of the model 

simiilalions. However, for comparison, an example of the results obtained using the complete 

and up-down belief update methods is provided. Although ideally the complete belief update 

melbod should be implemenicd, both the upward and up-down methods provide interesting and 

less compuialionally demanding aliematives, which, nonetheless, have corresponding disad­

vantages. 

4.5,3.3 Acrumulation of belier responses 

As staled before, the A message generated by mxies with an incoming flat A message will also 

generate fiat ouiput A messages, even though the belief of the node might be non-flat due lo the 

n messages (for an example see Figure 3.8). This is the reason why the A messages from nodes 

in Figure 4.18 show llai distributions until the evidence from the dummy node arrives. However. 

this also implies an important limitation as il means belief responses do not accumulate over 

time. In other words, regions with incoming flat A messages (e.g. missing contours in Kanizsa 

ligure) will generate Hat outgoing A messages even if the belief of the node shows a non-flat 

distribution (e.g. illusory contour). To overcome this problem, for some of the resuhs presented 

in Chapter 5, the A message equation was modified to be based on ihc current belief of the 

'Caption for Pigure 4.19, Comparison of ihree difiereni belief update melhods during loopy belief propagation. 
Top) The compleie belief update meihod. whifh is the moM rigounms approai-h lo obtain a good approximaiion of 
itie bciier.s, bill is very ciimputationally expensive. Miilillc The upwards beliii updale meihod, which npdaies the 
belief of the nodes in one layer at every time step, starting from ihe bottom layer where the evidence originates. The 
main disadvantage is thai evidence Irom S3 lakes four f„„ to reach SI, while evidence fromS) takes 1 f„m to reach 
Sjl, 'j'his meihod was employed lo obtain most of the resulls in the thesis. For clarity, a simulation lime step, /nm: is 
made equal to ^ loopy belief propagation time sleps. Huiiom) The up-down belief update method which manages to 
propagate bottom-up and top-down evidence m the same rate, alihough iniemiediafe layers are updated more <iften 
than peripheral layers. Sec main text for a mure detailed comparison between the methods. 
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Complete belief update 

t = 1 1=2 t = 3 t = 4 1 = 5 t = 6 t = 7 t = 8 

Upwards belief update 

1 = 1 1 = 2 1 = 3 t = 4 1=5 1=6 t = 7 1=8 

r j - Non-updated belief 

d ^ • Updated belief 

t.ln. = 1 
(Bimulatlon time step) 

W = 2 

Up-down belief update 

t = 1 1 = 2 1 = 3 1 = 4 1=5 t = 6 1=7 t = 8 

U,r, = 1 
(simulation time step) 

Figure 4.19: Kir t:aption see footnote^. 
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node instead of on the likelihood funciion, A(X). This allows Ihe A messages lo be modulated 

by top-down feedback even in regions that have initially flat distribulions, such as the missing 

contours in the Kanizsa figure. This modification is shown in Rqualion (4.! 2). 

4''("/)-Pl 

4.6 Summary of model approximations to Bayesian belief propagation 

• l-'eedforward recognition results assume a singly-connected tree-structured network (no 

loops and one parent per node) so the HMAX operations can be approximated by the 

propagation of bottom-up X messages. Similar approaches have been used in other relaied 

models (Kpshtein et al. 2(X)8. tJcorge and Hawkins 20()'J, Hinlon ei ai. 2006). Preliminary 

results suggest a similar invariani recognilion performance can be obtained even when 

including the feedback K messages (loopy belief propagation), but the computational 

cost associated precludes a comprehensive systematic test over the complete dataset and 

parameter space. 

• The number of input Af,(-r) messages used to compute the hkelihood function X{x) is 

hmited to M^ai- in order to prevent the result of the product operalion from being outside 

of Matlab's numeric range. The method has been empirically demonstrated to provide a 

relatively good fit to the exact distribution given a moderate value of Mmax-

• The A and ;r messages are sum-normalized to 1 and then re-weighted so that the minimum 

value of the distribution is equal V„i„ — 1/(^/10). This prevents extremely low values 

leading to out of range solulions during the belief propagalion operations. The overall 

shape of the distribution remains identical, except for some of the elements with smaller 

values, which may now exhibit a relatively larger value. However. Ihe states with lowest 

values are less likely lo affect the final resuh in a significant way and many of ihem will 

be discarded anyway during the sampling methods implemented. 

• The Ji messages are approximated by the belief al each mxle. The same approach is 
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used by IJtvak and Ullmaii (2009). George and Hawkins (2009). This approximalion is 

justified when the total number of incoming messages to a node is relatively high, as is 

the case of the present model 

• The CPT P{X |t/i, • . Ufj) is approximated as the weighted sum of N CPTs of the form 

f'{X\Ui). The method has been justified geometrically as providing a good model of the 

combination of information from multiple experts {parent nodes) and has been success­

fully employed on other probabilistic models thai require reasoning under uncertainty 

(Das 2004). 

• For the calculation of the belief and the A messages, only ki„„ax highest-valued samples 

from ihc N,„a, ^ messages with the highest variance are employed. The method has been 

empirically demonstrated In provide a relatively good til to die exact distribution, given 

moderate values o( N„aj i"id ^umai-

• To avoid the excessive computational cost associated to updating the beliefs and output 

messages of the nodes in all layers, beliefs are for a single layer at each time step, starl­

ing from the bottom layer and moving upwards sequentially. The rationale behind this 

approximation to loopy belief propagation is that evidence arrives at Ihe network from 

dummy nodes connected to the bottom layer. 

4.7 Original contributions in tliis chapter 

• A Bayesian network that captures the structure of the HMAX model, a hierarchical object 

recognition model based on anatomical and physiological cortical data. 

• An approximalion to the selectivity and invariance operations of Ihe HMAX model using 

the belief propagation algorithm over ihe proposed Bayesian network. 

• An inherent extension of the static feedforward HMAX model to include dynamic and 

recursive feedback ba.sed on the loopy belief propagation algorithm. 

• A particularization of the CPT learning method proposed by Das (2004) to the hierarchi­

cal object recognition domain. The method simplifies the generation of the CPT parame-
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ters for Bayesian networks where nodes have multiple parents, 

• Solutions to ihc problems associated with the integration of information in large-scale 

Bayesian networks. These include sampling methods and the re-weighting of probability 

distributions to establish a minimum value. 
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Chapter 5 

Results 

5.1 Feedforward processing 

5.1.1 Layer by layer response 

This section provides details of the internal representation of ihe image maintained hy each 

of the layers. It serve.s to illustrate how the probahili.slic representation compares with the 

claiisical HMAX model representation and facilitates understanding of the Feedback results. All 

theresuUsin this section are for the first input image of the training data.set, namely the letter/I. 

Figure 5.1 shows the response of the battery of Gabor filters at four different orientations and 

If) different sizes (bands) applied to the input image. The bottom-up messages from Ihe layer 

of dummy nodes, A^ummvl̂ l), are made up of the responses to the four orientations at each 

location and scale band. 

Figure 5.2 shows the likelihtKxi response of the SI nodes. A(.^l), obtained by sum-normalizing 

the input Xdummy{S]) messages. The grey colour over the blank input regions indicates thai all 

four orientations are equally probable at that location, thus each one has a value of I /4. 

Figure 5.3 shows the likelihood response of the CI nodes. A (CI). The 2D maps represent the 

sum of the features in each CI group at each location. Figure 5.4 shows the response of the 

CI units in the original HMAX model, in other words, calculating the max over the SI afferent 

units, for the same parameter set. This allows one to compare the response between the CI 

nodes in the model proposed and die CI nodes in the original HMAX model. 

Figure 5.5 shows the likelihood response of the S2 nodes, X{S2). at all locations of a specific 

band and RF size. The figure also includes a reconstruction of the S2 interna! representation 
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using the CI features of the maxinimn S2 prototypes al each location. This graphical view of 

the S2 internal representation is limited in that it is based only on one of the 250 values of each 

distribution. 

Figure 5.6 shows the likelihood response of the C2 nodes, A(C2), at all locations and RF sizes. 

The figure also includes a reconstruction of the C2 interna] representation using the C' I features 

corresponding to the maximum C2 prototype at each location. This graphical view of the C2 

internal representation is iiinited in that it is based only on one of the 2500 values of each 

distribution. Also, due to the large size and great overlap between the Rf of the C2 nodes, 

the maximum feature is likely lo be the same for adjacent nodes. Note the C2 response is 

shown for the alternative 3-level architecture (based on Yamane eta!. (2006)), such that different 

architectures will exhibit different number of nodes, for instance the 3-level architecture has 

only one C2 node. 

Figure 5.7 shows the likelihood response of the S3 nodes, A(53), at all lixralions and RF sizes 

of the alternative 3-layer architecture. In this case the input image used was the 24th object of 

the dataset, which corresponds to S3 states 93 to 96 of the 240. To recap, in this architecture 

there are four S3 prototypes for each object, corresponding to four different possible locations 

of the object al theC2 level. Beside the maximum value of each distribution is shown an image 

which symbolically corresponds lo the S3 prototype of that S3 stale. Note that, in most cases, 

the winner element corresponds to a prototype of the input image, although in some cases there 

might exist some ambiguity and other similar object prototypes may exhibit relatively large 

values. 

For further details see the ligure captions. 
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Figure 5.1: Response of the Oabiir lilicrs used to generate Ihe X,ii,mm\{S\) messages. The 
input image (the letter A) is tillered by Gabor filters at four dilTerent orientations 
(0"',43""',9l), 135""' and 16 different sizes or scale hands (ranging fn>m 7 pixels 
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Figure 5.2: Likelihood response of the SI nodes, K(S]). Responses are shown as a 2D map 

over ihe loealions of ihe nodes lor each siute. The A.(iS' I) of a specific node is shown 
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thai all four orientations are equally probable al thai location, thus each one has a 
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Figure 5.5: Likelihood response of the S2 nixjes, A(52). 7(;/;) Tlie A(52) probahility dislribu-
lions for the S2 nodes wiih RF si/e=4x4 (W.v? 4) and hand=2 ai all ihc 21x21 
spatial locations. Boiiomj Reconsiniciion of the S2 internal representation using 
the CI features ihai make up each S2 prototype (.S2 feaiure). At each locaiion the 
S2 prototype (a group of spatially arranged CI leaiures) correspond in j ; lo the max 
S2 feature is shown. This provides a graphical view of the S2 internal representa­
tion. Note that there is much more information contained in all the other values of 
the distribution, which is not represented graphically. 
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Figure 5.6: Likelihood response orthcC2 nodes. A(C2), at all locations and S2 RF sizes. Be­
low each disfribution is shown the reconstruction of the C2 internal represenlation 
using the CI tealures correspoiiiiing lo the maximum C2 pimoiype at each loca­
tion. This graphical view of the C2 iniernal representation is limited in that it is 
basedonly on one of the 2500 values of each disiribulion. Out-lo the large size and 
greal overlap of the KF of liie C2 nodes, the maximum feature is likely to be the 
same for adjacent nodes. The C2 response shown here is for Ihe allernalive 3-level 
archiletlure (based on Yamane el al. (2006)). 
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Figure 5.7: Likelihood response of the S3 nodes, A (S3), at all locations and RF si/es of Ihe 
alternative 3-luyer archiwciiire. The input image used was the 24th ohject of the 
dataset, which corresponds to S3 stiiics 93 to 96 of the 24(1 slates. Kc[:all in this 
architeciurc there are fttur S3 prototypes for each ohjeci, corresponding to four 
dilfereni possible lot;ations of the ohject al the C2 level. An imagi; next to the 
maximum value of each dislrihution is .shown to symbolically represent the win­
ner S3 prototype. Note that in most cases the winner element corresponds to a 
prototype of the input image. However, in some cases there might exist some am­
biguity and oiher similar objeci prototypes may exhibit relatively large values. For 
example, for location (2,2) of KF size=4x4, the prototypes of the letters M and W 
also showed relatively high values. The bottom-left distribution shows the mean 
S3 likelihood response over the 2x2 locations and the four RF sizes. 
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5.1. FEEDFORWARD PROCESSING 

5.1.2 Object categorization 

This section describes the performance of the model during feedforward categorization, based 

on the feedforward processing conslraints defined in Section 4.4. The network waslrained using 

60 object silhouette images, shown in I'igure 5.^, from which the S2 and S3 prototypes were 

learned. The trained network was then tested on different transformations of the same images 

including occluded, translated and scaled versions. 

Throughout this section, I have used correct categorization to mean that the state with the 

maximum value of the model's lop layer response corresponds to the input image, for the 

3-level and 4-leve! architectun;s, the distributions of the four top layer nodes, corresponding 

to each of the four S2 RF sizes, are averaged, resulting in a single distribution with 60 states. 

Additionally, for the alternative 3-Ievel architecture, the values of the four prototypes learned 

for each object category are also averaged, leading again to a single dislribulion with 60 slates. 

The model's performance is measured as a percentage of correctly categorized images for each 

datasel of 60 images. 

For the occluded lest set an average of 30% of the image's black pixels are deleted using a 

reclangular while patch. The rectangle is placed in a position thai leaves the image identifiable 

to a human observer In the translated test-set. the object is moved to a new position within 

the available image frame of 160x160 pixels. The displacement will be near to the maximum 

permitted in both directions but will depend on the original object size, i.e. small objects allow 

for bigger displacements. Two different scale sets have been used; scale ±10%, where the 

image is scaled to either 90% or 110% of the original size and centred; and scale ±20%. where 

ihe image is scaled to either 80% or 120% of the original size and centred. An example of the 

different transformations for five arbitrary images is shown in Figure 5.9. 
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Figure 5.fi: Dataset nf 60 object silhouette images used to train and test the model. The .S2 
and S3 prototypes were learned from this set of images. The trained network was 
then tested on differeni transformations of the same images including occluded, 
translated and scaled versions. 
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Normal Occluded Scaled 10% Scaled 20% Translated 

,0^ ^ ^ ^ 
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Figure 5.9.- Bxamplcs of object transformations. The trained networlt was then tested on dif-
fereni iransformaiions of the training iniagtis inuluding occluded, translated and 
scaled versions. Kxainples of these transformations are shown here for five ob­
jects. 
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5.1. FEEDFORWARD PROCESSING 

5.1.2.1 CatcRorization as a function of (he number of states per group in complex layers 

Figure 5,10 shows the categori2ation performance as a function of the number of states per 

group in the CI layer. Kc\Kfoup' while Figure 5.11 shows the categorization performance as a 

function of the number of slates per group in the C2 layer. Kc2^„'iip- Results were obtained for 

the 3-level architecture and are plotted for the five test datasets as detailed in the figure legend. 

Cigroup -Normal 

-Occluded 

-Scaled 10% 

-Scaled 20% 

-Translated 

Figure 5J0: Categorization performance as a function of the number of slates per group 
CI layer, K(\gnuip- for the 3-level archilecturc. 

in the 
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Figure 5.11: Categorization performance as a funclinn ol'ihe number of states per gniup in the 
C2 layer, Kc7gr,iui<. for the 3-level archiieciure. 
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5.1.2.2 Categorization as a function of the number of nnn-zcro clemcnLs in the S2-C2 

weight matrix 

Figures 5.12. 5.13, 5.14 and 5.15 show the categorization peifomiance as a function oC the 

number of non-zero elements in the S2-C2 weigh! matrix (see Section 4.3 for details), for the 

four different S2 RF sizes. Results were obtained for the alicmative 3-leveI architecture using 

values of Kcigmup = licigmup - 10. and are plotted for the five diffcreni lesi dalasets as detailed 

in the figure legend. 
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Non-zero elements 
in S2-C2 weight matrix 

(S2 RF size = 4x4) 
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Figure 5.12: Caicgorization performance as a function (if ihe number of non-zero elements in 
the S2-C2 weight matrix far the alternative 3-levcl urLhiicciure. using S2 Rh' size 
= 4x4. 
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Figure 5. IJ: Calegorizaiion performance as a function of the numticr of non-zero elements in 
Ihe S2-C2 weight matrix for ihe aliL'rnaiive ?-ievel archileciure, using S2 Rh size 
= 8x8. 
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Figure 5.14: Caiegori/iition pcrftirniance as a funciion (if ihe number iif niin-zero eiemenis in 
Iht; S2-C2 weigtil nialrix tor llie allernalive :̂ -level arcliilecture, using S2 RF si/e 
= 12x12. 
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Figure 5.15: Caiegorizaiion pcrformanci; as u Turn;! ion of ihe numbtr olnnn-zerock-menis in 
[he S2-C2 weighl nialrix for thi: alicrnaiivu 3-levcl archiieciure, using S2 KK size 
= 16x16. 
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5.1.2.3 Categorization as a function of the S2 RF size 

Figure S.16 shows ihe categorization performance as a function of the S2 RF size, which takes 

the values 4x4, 8x8, 12x12 and 16x16, The results shown were obtained using the alternative 

3-!evel architecture and using values of Kngroup ~ Kc\gn>up — '** ̂ ^^ 'l"^ number of non-zero 

elements that maximized the performance for each S2 RF size: 1, 4. 8 and 8 respectively. 

Results are plotted lor the five different lesl dataseis as detailed in Ihe figure legend. 
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Figure 5.16: Caiegorizaiion performynce as a function of Ihe S2 RF si/.e for the alternative 
.l-ltvej archileciure. The r[;si of puriimeters were set as Tiillows: Kc\iiniup = 
f^c\gniup = If and the number of nun-zero elements = 1, 4, 8, 8, respectively. 
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5.1.2.4 Comparison of difTerent models 

Figure 5.17 compares the categorization pert'onnance of the three versions of the model pro­

posed, namely the 3-leve! architecture, the 4-level architecture and the allemalive 3-lcvel archi­

tecture, the HMAX model and an HTM network. 1-or the 4-level architecture only the results 

for the normal daiasei were calculated, as its poor performance suggested the results on the 

transformed datasets would be extremely low and dius not worth the computational cost. 

The HMAX-like model was implemented using Matlab and repticales Ihe model described in 

Serre et ai. (2007c). i.e. the 3-level HMAX iniplenienlalion. Following the original HMAX 

implementation, the S2 prototypes are selected at random from the training set, as opposed to 

employing the minimum-dislanre algorithm implemented in Ihe Bayseian network model (see 

Section 4.3). The HTM-like results were obtained using the Numenifi Vision Toolkit (George 

and Hawkins 2009), which allows one to train and test an HTM network. However, only 50 

categories are allowed, so 10 categories had to be eliminated from the training and testing 

datasets. 
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Normal Occluded Scaled 10% Scaled 20% Translated 

Object dataset 
-•-HMAX 

-*-BBP3-leveI 

-•-BBP 3-level Yamane 

-•~BBP4-level 

-•-HTM (Vision Toolkit) 

Rgure 5.17: Comparison of categorization perfomiunee hy the three versions ol the model 
proposed, namely the 3-level architecture, the 4-level architeciua' and Ihe alter­
native :i-level architect lire, the HMAX model and an HTM network. For Ihe 
4-lcvel architecture only the results for the nomiiil dalasel were ohtained. The 
HMAX-like model was implemented using Matlah and replicates the model de­
scribed in Serre ei a), (2007c), i.e. ilie .'i-level HMAX implemenlalion. Tlie 
HTM-like results were obtained using Ihe Nunienla Vision Toolkit (George and 
Hawkins 2(K)9) which allows one to train and test an HTM network. Note for this 
graph the dilfereni object daiaseis are ploiied ulonp the x-axis, while ihe different 
models are shown wiih independent line graphs us detailed in Ihe ligiire legend. 
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5.2. FEEDBACK-MEDIATED ILLUSORY CONTOUR COMPLETION 

5.2 Feedback-mediated Illusory contour completion 

This section describes the model responses after feedback modulation has taken effect. This 

illustrates the interaclion between the feedforward and feedback infonnation in the network, 

reflected in the evolution over time of the l>elief at the dilTerenl layers. The scenario chosen to 

illustrate these results consists of using the Kani/sa square as the inpul image and feeding back 

the representation of a square from higher layers. This section is structured lo show the effects 

of feedback arising from progressively higher layers. In other words, the first set of results 

illustrates the simplest case, when feedback originates in the CI layer, while (he final set shows 

results for feedback originating in the lop layer, S3, and iiu^geiing all inferior layers, including 

SI. All ihe results in this section were obtained using the alternative 3-level architecture, as this 

provided the best feedforward recognition results. 

5.2.1 Feedback from C1 to S1 

Figure 5.18 shows the SI model response to a Kanizsa square inpul image while the CI layer 

is clamped to a square representalion. Thus, the resuhs illustrate how the bniiom-up evidence 

from the inpul image, A(51), is combined with top-down infonnalion from the CI layer, ;r(51). 

5.2.2 Feedback rrom S2 to SI 

Figure 5.19 shows the SI and CI model responses to a Kanizsa square input image while the 

S2 layer is clamped lo a square representation. Thus, the results illustrate how the bottom-up 

evidence from the input image, A(6"l), is combined with top-down infonnalion from ihe S2 

layer, Bel{S2), and how the representation at the SI and C1 layers evolves over time. 

Figure 5.20 shows the temporal response of the S1 and C1 belief for the region corresponding 

to Uie top horizontal illusory contour of the Kanizsa figure for the setup depicted in Figure 5.19. 

Figure 5.21 compares the C1 belief responses as a function of the S2 RF size and the scale band 

for the setup shown in Figure 5.19. 

Figure 5.22 compares the SI and CI model responses lo the occluded Kanizsa and blurred 

Kanizsa input images ai limes i-l and 1=4, for ihe setup depicted in I'igure 5.19. 
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Fi^wrf 5. /A,- SI model response to a Kani .̂sa square input image with feedback arising from 
Ihe CI layer containing a square representation. Tlie 2D SI maps represent the 
prohahility value for the horizontal state across all locations of scale band 2. Ar­
rows inditaie feedforward (green) and fcedhack (red) pri>paga!ion of evidence. 
The probability dislrihutiuns of an SI node in ihe illusory contour region are 
shown on the left, illustrating how the bollom-up evidence, ^(SI), and top-down 
information from the CI layer, ^(LS'I), are combined to fomi the belief, Bel(S\). 
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Bel(S2) 
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Figure 5.19: SI and CI model responses to a Kani/sa square input image with feedhack aris­
ing from Ihe S2 layer containing a square represenlaiion. The 2D Si and CI 
maps represent Ihe probability value for the horizonial state across all locations 
of scale band 2 and 1, respectively. The S2 representation corresponds to the 
CI rcconsiruciion using die CI features of the maximum S2 prototypes at each 
location, as described in Section 5.1. For each layer, ihe temporal evolution of 
the response from time t=l to 1-4 is shown, except for X{S]) and 7t(C]) whose 
response is fixed over time. Arrows indicate fcedforw;ird (green) and feedback 
(red| priipagalion of evidence. The probability distributions of an SI node in the 
illusory contour region at 1-1 undt-4 are shown at the botiom of die figure, illus-
Irating how the recurrent interuuiion between feedforward and feedback leads to 
an increase of ihe horizontal orientation belief. 
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Figure5.20: Temporal response of the SI and CI belief for the region corresponding lo the 
lop horizonial illusory coniimr of Ifie Kanizsa figure, FeedbaL'k originates from 
the square representation in layer S2, as illustrated in the setup of Figure 5.19. 
More preeisely, the response corresponds to SI nudes ai locations {x.y} = {25 : 
28,24; |[W}andCl nodes ai l(x;alions {jr,,v} = (7: 10,6 :-1(->| both averaged over 
the veniual dimension. The responses al times t=l lo t=6 are plotted in different 
colours as illustrated in the legend. 
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nf;ure 5.21: Comparison of ihi; C1 belief responses al t-4, as a function tif ihe S2 KF size 
and the scale hand. (i> a Kaiiizsa square inpui and feedhauk arising from a square 
represeniation in layer S2. The experimental setup for these results is shown in 
Figure 5.19. 
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Figure5.22: Comparison of the SI and CI model responses to ihe occluded Kani/,sa and 
blurred Kani/sa input images ai limes t=l and t-4. The experimental .setup for 
ibis expenmcni is depicied in Figure 5.19 and corresponds to feedback original-
ing from the square representation in layer S2, 
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5.2.3 Feedback from C2 to S2 

Figure 5.23 compares the feedback generated by a square representalion in the C2 layer as 

a function of the number of non-zero elements in the S2-C2 weighi matrix and the sampling 

parameters Nc2 and Kci- In order to objectively compare the qualily of the feedback recon-

stniction, we calculate the mean absolute difference between the CI reconstruction, 7i{C\), 

using the different S2-C2 weight matrices, and the ideal CI square representation. 

Figure 5.23 tests the influence of two factors on the model's capacity to perform feedback re­

construction: 1) the number of non-zero elements in the S2-C2 weight matrix during (eedback, 

and 2) the sampling parameters. In order to test the influence of ;i third factor, namely the 

number of non-zero elements in the S2-C2 weight matrix used to generate the inilia) C2 square 

representation, two different sets of results are shown. The C2 square representalion in Fig­

ure 5.23 was obtained using an S2-C2 weight matrix with one non-zero element, whereas the 

C2 square representation in Figure 5,24 was obtained using an S2-C2 weighi matrix with two 

non-zero elements. 
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Figure 5.2.^: Comparison beiween the feedback generated by a square representation in the 
C2 layer as a luticlion of the number i>l' non-zero elemenl.s (x-axis) in the S2-C2 
weight matrix and the sampling parameters Ncj and K^i (different line graphs 
as shown in lipure legend). The C2 represeniafion was obtained ufiing an S2-C2 
weight malrix with one non-zero element. The y-axis corresponds to the mean 
square difference bt'tween the C1 reeiinslruelion using the differcnl S2-C2 weight 
matrices and [he ideal C1 square representation Ibr all nodes ol CI, scale baiid I. 
The CI reconstruction, ;r(CI), is obtained exclusively from the 7t(52) response, 
such that no feedforward likelihood function is involved, using the fixed sampling 
parameters Nc\ 4 and Ki\ = 4. The ideal CI square represenlalion is shown 
underneath the y-axis label. Three i)f the CI reconstructions from S2-C2 weight 
matrices with different paramelers are also shown to visually illustrate that lower 
error values generally correspond Ui CI reconstructions closer to the ideal CI 
square. 
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Figure 5.24: C(HTiparison beiween the feedback generated by u square representation in Ihe 
C2 layer as a funciion of ilie number of non-/ero elements (x-axi.s) in the S2-C2 
weight matrix and Ihe sampling parameters ^('2 and Kcj Idifterem line graphs 
as shown in figure legend). The C2 representation was obtained using an S2-C2 
Weight matrix with iwo non-/,ero elemeni. The y-axi.'; corresponds to ihe mean 
square difference beiween the C1 recoastruetion using Ihe different S2-C2 weight 
mairiees and the ideal CI .square represenialion for all nodes of CI, scale hand 1. 
The CI reeonslruclidn, ff(Cl), is obtained exclusively from ihe 7i{S2) response, 
such thai no feedforward likelihood function is involved, using ihe lixed sampling 
parameters Nci = 4 aiic! Kfi - 4. Tlie ideal CI square representation is shown 
underneath the y-axis label. Three of Ihe CI reconstructions from S2-C2 weight 
matrices with different parameters are also shown to visually illustrate lhat lower 
error values generally correspond lo CI reconslruciions closer to the ideal CI 
square. 
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5.2.4 Feedback from C2 to SI 

Figure 5.25 shows the SI, CI and S2 model responses to a Kanizsa square input image while 

the top-down feedback from C2, 7t{S2), is clamped to a square representation. Thus, Ihe results 

illustrate how the bottom-up evidence from the input image, ^(51) are combined with lop-down 

information from the C2 layer. 7:{S2), and how ihe represenlalion at the SI, CI and S2 layers 

evolves over time. Note that in this case feedback does nol arise directly from the belief in the 

C2 layer, Bel{C2). because as illustrated in Ihe previous subseciion. it is difticuli lo obtain a 

good ;r(52) square reconstruction via the S2-C2 weight malrix. Instead, the jr(S2) is fixed to 

an ideal S2 square representation in order to test the capacity of the model to combine feedback 

information hypotheiically generated from the C2 layer. 

Figure 5.26 shows ihe temporal response of Ihe SI and CI belief for the region corresponding 

to the lop horizontal illusory contour of the Kanizsa figure. The responses shown are for the 

setup depicted in Figure 5.25, where the square rcpresenlation is fed back from n{S2). 

Figures 5.27 5.28 compares the SI and CI belief responses to the occluded Kanizsa, blurred 

Kanizsa and blank input images at times t=2 and t=8, for the setup depicted in Figure 5.19 

where the square rcpresenlation is fed back from n(S2). 

Figure 5.29 compares SI, CI and S2 model responses, using the setup of Figure 5.25, for the 

three different belief update methods illusiraied in !-'igure 4.19. 

Figure 5.30 shows the SI, CI and S2 model responses to a Kani/sa square input image while 

the C2 layer is damped to a square represenlation. Thus, the results illustrate how Ihe bottom-

up evidence from the input image, A (SI) are combined with infonnation from Ihe belief in Ihe 

C2 layer, Bel{C2), and how the representation ai the SI, CI and S2 layers evolves over lime. 

In this case feedback arises directly from the belief in the C2 layer, Bel{C2). using the S2-

C2 weight matrix with X non-zero elements and sampling parameters Nci = X and Kc2 — ̂ • 

These parameters were chosen lo maximize the simJlarily between the square CI feedback 

reconstruction from C2 and the ideal CI square representation as depicted in Figure 5,23. 
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Figure 5.25: S1. CI and .S2 model responses lo a Kanizsa square input image while the top-
down feedback from C2. Ti{S2]. is clamped to a square represeniaiion. The 2D 
SI and CI maps represent the prohabitity value for the hori/omal stale across all 
locations of scale band 2 and I. respectively. The S2 rcpresemauon corresponds 
to the CI reconsUTJciion using the CI features of the maximum S2 prototypes at 
each location, as described in Section 'i.l. For each layer, the temporal evolution 
of the response from lime t= I loi=4 is shown, excepl for A (.S'I) and Jl{S2), whose 
responses are fixed over lime. Arrows indicale feedforward (green) and feedback 
(red) propagation of evidence. Note that in this case feedback does not arise 
directly from the belief in the C2 layer, Bel{C2), because as illustrated in the 
previous subsection, it is difficult to obtain a good 7i{S2) square reconstruction 
via the S2-C2 weight mairix. Instead, the ;r(.V2) is fixed lo an ideal S2 square 
representation in order In lesl ibe capacity of the model lo combine feedback 
infomiaiion hypodteiically generated from the C2 layer. 
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5.2. FEEDBACK-MEDIATED ILLUSORY CONTOUR COMPLETION 

Figure 5.26: Temporal response of Ihe SI and CI belief for Ihe region corresponding tolhelop 
hori/onial illusory ^nnlour of ihe Kanizsa figure. Feedback originates from ihe 
square represenlalion fed back via ihe 7t(S2). as illustrated in Figure ^.25. More 
precisely, the response corresponds lo SI nodes at localions {x.y] = {2.'> :28,24: 
109} and CI nodes ai ItKaiions {x,y} = {7 : 10.6 : .16}. hnih averaged over the 
vertical dimension. The responses ai times l-l to t=fi are plotted in different 
colours, as illustrated in Ihc lej;end. 
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Figure 5.27: Comparison of the SI and C1 model responses lo ihe ixrcluded Kanizsa, blurred 
Kani/.sa and blank input images at limes 1=2 and t=8. The experimenla! seiup for 
this experiment is depicted in Figure 5.25 and corresponds lo feedback originat­
ing from ihc square represeniaiion in ii{S2). 
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Figure 5.28: Temporal response of the S1 and CI belief for the region corresponding to the 
lop hori/.onlal illusory contour of the Kunizsa ligure for the occluded Kanizsa, 
blurred Kanizsa and blank input images. Keedback originates from the square 
representation fed back via the Jr(S2) as illustrated in the setup of Higure .'i,25. 
More preci,sely the response corresponds to SI nodes at locations [x.y} = {25 : 
28,24 ; 11)9} and CI nodes ai locations \x.y] {7 ; 10,6 : ^f>}. Niib averaged 
over the vertical dimension. The response at limes t=2 (unbroken line) and t=8 
(dotted line) are plotted in different colours for the dil'fereni input images, as 
illustrated in the legend. 
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Figure 5.29: Comparison of SI, C] and S2modelresponses, using the setup of Figure 5,23, for 

the three different belief update methods illustrated in Figure 4.19. The complete 
method updates all layers at every time siep. The upwards melhod updates one 
layer per lime step in ascending order, ihus each sinmlalicin lime siep, /j,m- 'S 
equivalent lo three (the number of layers updated) original time sleps. The ii/>-
down method updates one layer per time siep in ascending order until il reaches 
the lop layer and later in descending order, thus each simulation step. /„„,, is 
equivalent to five {2 x number of layers -1) original time steps. 
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Figure5.30: SI, CI and S2 model responses t<i a Kani/.sa square input image while the C2 

layer is clamped to a square representation. These results illustrate how the 
bottom-up evidence from the input image, A{LS'1}, is combined with infonna-
tion from the belief in C2 layer, Bel(C2). and how the representation at the SI, 
CI and S2 layers evolves over lime. The square representation in the C2 layer, 
Be/(C2), is fed back using the S2-C2 weight matrix with 23 non-zero elements 
and sampling parameters Ni-2 4 and Kc^ 6. These paranie.iers were chosen to 
maximize the similarity between the square CI feedback reconstruction from C2 
and the ideal CI square represeniaiion as depicted in Figure 5.23. 
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5.2.5 Feedback from S3 to SI 

I'igure 5.31 shows Ihe SI. CI, S2 and C2 model responses to a Kanizsa square input image 

while the S3 layer is dumped to a square representation. Thus, the results illustrate how Ihe 

bottom-up evidence from the input image, A (51). is combined with infonnation from the belief 

in the S3 layer, Bel{S3), and how the representation at the SI. CI, S2 and C2 layers evolves 

over time. In this case the up-down belief update method was Implemented as it provided a 

cleaner response than the upwards method. This means the response is shown for two complete 

up and down cycles, starting and finishing m the S1 layer. Tor this reason the response for the 

SI laycronly shows three time steps, corresponding to the up pass, wheres layers CI. S2 andC2 

show four lime steps, corresponding to the up and down passes. The results correspond to two 

complete simulation time step.s. l^im =1 ,2 , plus the SI layer response for the third simulation 

time step, h'm = 3, as illustrated at the bottom of Figure4,I9. 

5.2.6 Object categorization with feedback 

Figure 5.32 compares the rantiing of the square prototype over the S3 layer belief distribution 

for different input images and model parameters. Results are shown for the fourdilTerent S2 RF 

sizes as well as for the mean response. These results were obtained using the alternative 3-level 

architecture. Note that these results represent the categorization response after the initial time 

step or bottom-up pass, assuming flat initial distributions in all layers. 

'Caption far Figure S.31. SI, CI, S2 and C2 model responses lo a Kanizsa square inpiil imagt while ihe S3 layer 
is clamped lo u square represcmatiiin. These resulls illu^lrate huw the biillom-up evidence fnim ihe input image. 
X{S]). iscomhnicd with infurmaiiLin from i he he lift iji S.̂  I;iyer, «(7(53j. and how Ihe ri'prtseniaiion ai ihe SI. CI, 
S2 and C2 layers evolves over lime. The square represemiiliun in ih:̂  S3 layer. Bi-t{S3). is fed back using ihe S2-C2 
weight matrix with 23 iion-zcru eleinenis and sampling parameters jVf-j = 4X and Ka ^ 6. These parameters were 
chosen lo maximize ihe similarity between the square CI leedback reconsiruction from C2 and the ideal CI square 
rep re sen tali on as depicted in F-'igure S,23. Also, the up-doHii tielief update melhiid was employed in order to reduce 
Ihe noise of the lower level responses. This means the response is shown for two complete up and down cycles, 
starting and finishing at the SI layer. 
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Figure 5.31: Kor caption see fotitnoie'. 
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Figure 5.32: Ranking position of the square prototype over the S3 layer belief distribution 
for differeiU inpui images and model parameiers. Kesulis are shown for ihe four 
different S2 RF sizes, as well as for the mean response. The input image is either a 
real square or a Kanizsa square. Each of them are compared for four coiidilions: 
1) all bands and no feedback, 2) all hands and die iipwimls updaie melhod, 3) 
only the lower hand and Ihe upwards update melhixl 4) only the lower hand and 
the tomptete upduie meihiwi are used. The S.'l belief distribution is .shown for 
three of the resulis. Nule, in Ihe aliernalive Yamane 3-level archileclure there 
are four prototypes or siales per objeei, and all of iliese are considered a correct 
maich when calculating ihe rank order, ImporianUy, the rank order is obtained by 
considering the stales of each S,l node separately (there are 2 by 2 S3 nodes, one 
for each coded location), such that states from different S3 nodes compete with 
each other 
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5.3 Feedback to S3: attention and priming 

Figure 5.33 shows Lhe model S3 belief response to an input image where a lamp occludes a 

dog. given two differeni S3 priors, 7r(53): an equiprobahle or ilal distribmion and a biased 

distribution where the prior probability of objects that are animals has been doubled. 

Prefrontal cortex, Fusiform gyrus, 
Posterior parietal cortex, Amygdala ? 

Flat prior Prior biased towards animals 
(priming, attention, etc.) 

TT(S3) 

BeKS3) 

Input image 

Figure 5.33: Comparison of S3 belief response lo an inpul image coniaining a lamp occluding 
a clog, given two differeni S3 priori, ;r(,V3j: an liquipmbahle or fla! disiribuiion 
and a biased distribution where the prior probability of objects thai are animals 
has been doubled. The S3 prior is hypoihcsi/ed to originate from regions outside 
of the ventral paihway. For ilie Ilal S3 prior ihe winner object in the .S3 belief 
is Ihe lamp, but for the biased prior where Ihe animal objects are favoured, ihe 
winner objeci is the dog. 
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5.4 Original contributions in this chapter 

• Simulation results illustrating the feedforward response of each of the layers in the pro­

posed model. 

• Simulation results of the model's ohjeet categori/.ation perfonnance as a function of dif­

ferent model parameters and in comparison with previous mtxlels. 

• Simulation results showing the effects of feedback arising from the different layers of the 

model and how this achieves illusory contour completion. The performance is compared 

for several model parameters ;md belief update meihtxls. 

• Simulation resulls showing the effect of modifying the top layer prior on the categoriza­

tion distribution. 

232 



Chapter 6 

Discussion and conclusions 

6.1 Analysis of results 

6.1.1 Feedforward processing 

6.1.1.1 Layer by layer response 

The filtered image constitutes the input lo the Bayesian network and is coded as the A messages 

of a set of dummy nodes at all localions and scales, as shown in l̂ 'igure 5.\. Bach SI node 

receives an input message from one of the dummy ntxies and obtains a normalised probability 

dislribulion, A(51), over the four states (orientations). Ciabor filters have been widely used to 

model the response properties of V1 simple cells, including the preprocessing that occurs at the 

retina and lateral geniculate nucleus. 

As illustrated in Figure 5.2, the SI response is equivalent to that of the dummy nodes except 

that, due to normalization, blank input regions now present an equiprobable distribution such 

that each orientation has a value of 0,25. This can be understotxl as the background activity 

observed in non-active neural populations (Deneve 2008a). Furthermore, lateral inhibitory con­

nections have been suggested to provide a normalizaiion-like operation within pools of func­

tionally similar neurons (Cirossberg 2003, Kouh and foggio 2008). Normalization ha.s been 

associated with homeostalic functions crucial for stability and to maintain activity within an 

appropriate working regime (Grossberg 2003). 

The CI model response (Figure 5,3) shows a tjualilalively similar pattern to the HMAX CI re­

sponse (Figure 5.4). The model response provides a lower resolution version of the input image, 

mimicking the max operation implemented in HMAX. The multiplicative combination of evi-
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dence and a further normali/iilion process in the model leads in a more radical representation of 

the orientations present at each location. While in HMAX the value of one orientation doesn't 

influence the values of the rest, the proposed model acts more like a winner-take-all network 

where a high valued state reduces the activity of the rest due to the sum-normalization operation. 

Further analysis is required lo determine whether this approach might have advantages over the 

original HMAX by providing a potentially more discriminative and less redundant representa­

tion. Crucially, this approach doesn't prevent the CI response from enccxling the presence of 

two orientations at the same location, such as the vertical and diagonal orientations at the sides 

of the letter A, shown in Figure 5.3. It would be interesting to study the effects of lowering 

the the contrast of one of the orientations has on the CI response. Given the normalization 

response across orientations, it is likely that the proportional response of the stronger to the 

weaker orientation is higher than thai dictated by the relative contrast levels. 

The S2 and C2 model representation (Figures 5.5 and 5.6) is moi^ difficult to compare to that ol 

the HMAX model because the number of prototypes is much higher (1000) and these have been 

learned from the distinct CI responses corresponding to each model. However, the parameters 

in the models are equivalent and the selectivity and invariance operations are implemented in 

an analogous way to the SI and CI layers, which have been shown to provide good approxi­

mations, Furthermore, a good measure of whether the S2 and C2 layers reproduce the HMAX 

functionality is given by the categorization performance of the S3 layer, which relies on the C2 

features. 

The model S3 layer, shown in Figure 5.7, differs from the HMAX top layer in that it i.s integrated 

in the Bayesian network and implements ihe same selectivity operation as lower layers, whereas 

in HMAX the top layer is implemented as a separate support vector machine (SVM). The input 

to the SVM classifier consists of all the C2 features of the four different S2 RF sizes. In the 

proposed model, the features with different S2 RFs are processed along four parallel routes, 

each providing an S3 categorization response that is averaged to yield the overall response. This 

allows one lo compare the categorization performance of the model for each of the individual 

S2 RF sizes, as well as for all of them combined. 
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Another p;inicuhiriiy of the proposed mode! is ihe use of S3 nodes at four ttiffereni locations, 

each coniaining four different prototypes for each object. Hacb prototype corresponds to the 

object positioned al one of the four potential locations as illustrated in Figure 5,7. Il is straight 

forward to see why this approach leads lo an improvement in the translated test-sei categoriza-

lion results. An image is correctly categorized if the average value over the four positions and 

four prototypes of the corresponding object is the highest. Although the averaging prt>cedure is 

not explicitly included in the Bayesian network, it can be trivially implemented using the output 

of the S3 layer as the input to a simple linear classifier. 

6.1.1.2 Object categorization 

The set of objects shown in Figure 5.8 was chosen to have similar characteristics to the square 

shape, which was the key object required lo demonstrate the Kanizsa ligure contour completion 

etTect. This was chosen over a standard object recognition lost bench as the model focuses on 

the integration of information to achieve perception and not on improving the categorization 

performance of previous mixJels, Despite not being a standard test bench, the same training 

and testing datasets (see Figure 5.9) were used when comparing the results to those of previous 

models such as HMAX and HTM. F'uture comparisons using standard test benches arc possible. 

as the model can be tested with any arbitrary set of images simply by learning the weights from 

the corresponding training set. 

It is important to note that although ihc objects present relatively simple forms, the fact that they 

are silhouettes increases the categorization difficulty as there is no gray-scale information within 

the object. Moreover, a previous model that was tested using the same 60 silhouette objects, as 

well as using gray-scale natural images, produced a similar categorization performance for both 

daiasets (Dura-Bemal et al, 2010), 

The first set of categorization results shows the effect of the C1 and C2 stales per group. The 

concept of grouped slates is introduced in order to approximate the invariance operation, as 

described in Sections 4.3 and 4.4. For each C1 group a set number of features (states) is learned 

from the image statistics, liach CI slate represents die product of the response of several SI 

mxles to the same feature. 
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The graph in Figure 5.10 suggests that the optimum v;iluc for Kc\groi.p is approximately 10. 

while the graph in Figure 5.\ 1 suggests [hat the optimum value for Kcigroup 's approximately 

15. If there are not enough CI features per group, some inpul spalia] arrangements of SI nodes 

will not be captured, decreasing Ihe categorization performance. Similarly, if there are too 

many C \ features per group, it is more likely that high values will be obtained in all the groups, 

thus reducing the informative value of the node. The number of features per group is therefore 

crucial for the feedforward recognition process and should provide a compromise between the 

two opposed effects described above. 

Another factor that has proven crucial for successful categorization is the number of non-zero 

elements in the S2-C2 weight matrix, which can be considered equivalent to the sparseness of 

the matrix. There is evidence suggesting synaptic connectivity is sparse in feedforward conical 

circuits and thai firing patterns of cortical neurons exhibit sparse distrihuled representations, in 

which only a few of a large population of neurons are active (Quiroga et al. 2005, Murray and 

Kreutz-Delgado 2007, Karklin and Lewicki 200.1. Olshausen 2(H)3). Sparse coding strategies 

have proven to be essential to make eflicient use of overcomplete representations, such as those 

found in VI, making it easier to lind higher order correlations, increasing the signal-to-noise 

ratio and increasing the storage capacity of associative memories (Murray and Kreutz-Delgado 

2007). Furthermore, they can improve pattern matching, since they lower the probability of 

false matches among elements of a pattern (Oishausen 2003). 

The model results shown in Figures 5.12, 5.13. 5.14 and 5.15 indicate that sparse S2-C2 weight 

matrices, with < 10% of active connections, improve feedforward categorization. An example 

of one such sparse connectivity matrix is shown in Figure 4.11. As ex]>ected. the optimum 

number of non-zero elements is proportional to the S2 RF size, l-or S2 RF size=4x4, the op­

timum value of non-zero elements is one. while for higher S2 RF sizes the value lies between 

four and eight. As previously staled, sparse coding strategies account for this phenomenon, as 

more sparse S2-C2 connections make it less hkely for two different objects to yield the same 

C2 response pattern (false positive), thus increasing selectivity. However, when the number of 

non-zero elements is too low, the distorted versions of the same object might be categorized as 
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different objects (false negative), leading to reduced invariance. 

The graph in Figure 5.16 indicates that the S2 RF size also affects recognition performance but 

has different effects for each of the distorted test sets. The occluded test set works best with the 

smallest S2 RF size, probably because it better captures ihe non-occluded parts of the object, 

whereas the bigger RF sizes tend to include more occluded sections. Bigger RF sizes show a 

slight advantage when recognizing scaled objects, as the difference in size is less accentuated 

within large RFs, while it may lead to radically different smaller-sized features. Overall, it is 

clear that the best results are obtained by averaging over the four different S2 RF sizes, as one 

size's shortcomings are compensated for by another one's strengths. 

Finally, a comparison between different models is shown in Figure 5.17, demonstrating that 

the proposed Bayesian network can achieve similar feedforward categorization results to the 

original HMAX model. Note that the comparison is only rigorously valid between the HMAX 

model and the Bayesian Belief Propagation (BBP) 3-level model, as these have equivalcnl num­

bers of layers, nodes and features per layer. The alternative BBP 3-level Yamane version was 

specitically modilied. by reducing the pooling region and increasing the number of nodes ol" the 

lop layers, to improve the categorization of the translated lest set. Implementing the same mod­

ifications in the original HMAX miKlel would, presumably, yield belter results itian the BBP 

version, in the same way that the original 3-level HMAX version produces better results than 

the 3-level BBP model. 

The superior results of HMAX are, however, not surprising as it was specitically designed 

to perform feedforward categorization and employs more exact and sophisticated operations, 

namely the max and the Radial Basis function, than the BBP model. In fact, it is remarkable that 

the BBP miKlel can achieve comparable categorization results using the local belitfpropagation 

operations, namely a weighted product operation for selectivity and a weighted sum operation 

for invariance. Crucially, using the same algorithm and structure, the BBP model also achieves 

recursive feedback modulation, which has been pinpointed as the major limitation of HMAX 

(Serre et al. 200.*ia). 

With respect to the HTMIike model, as was previously noted, the Numenta Vision Toolkit was 
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used 10 compare the results, which ;illows for a maximum of 50 object calegories. Ahhough 

this means the lesl sets were different from those used for the rest of models, theoretically it 

confers an advantage lo the HTM model as fewer categories facilitates the categorization task. 

Nonetheless, the relatively low performance of the mode! might be a consequence of noi hav­

ing enough training images per category, as the Numenla Vision Toolkit recommends having at 

least 20 training images per categor)', I^urthcnnore. the iniemal struclure of the HTM network 

is unknown, which means it is possible that this was no! optimized for the type of images or 

categorization task employed, and alternative HTM networks could improve the results. De­

spite this, the results are intended to illustrate dial it is not trivial ihal the task of feedforward 

categorization has been performed by belief propagation models that incorporate feedback func­

tionality. 

6.1.2 Feedback modulation and illusory contour completion 

To test the effects of feedback in the network, the illusory contour completion paradigm was 

chosen. Experimental evidence strongly suppons the involvement of high-level feedback in 

lower-level illusory contour development (Halgren etal. 2003, Lee and Nguyen 2001, Maertens 

et al. 2008). To try lo reproduce this phenomenon, the setup was typically chosen to be a 

Kanizsa square as the inpul image lo Ihe network and the representaiion of a square fixed at some 

higher layer. The square representaiion was fed back from increasingly higher layers, ranging 

from CI to S3, This was done in order to study the effects of feedback systematically and 

understand the particularities of each layer, although in las! instance feedback should arise from 

the lop layer after the Kani/.sa image has been categorized as a square. Results are structured in 

the same way. providing a progressive account of the network's recurrent dynamics. 

6.1.2.1 Feedback from CI to SI 

The first and most simple case (Figure 5.18) is that of feedback originating from the CI layer. 

This example serves to clearly illustrate how boitom-up (A (SI)) and top-down (Jt(Sl)) evidence 

are multiplicatively combined in the SI layer belief. Furthermore, it clarifies the correspondence 

between ihe probability distributions of Ihe Bayesian nodes and the 2D graphical representations 

used throughout the Results chapter. Note that only the lower scale band of each layer is plotted, 
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as this contains ihe highesi resolution representation. Layer SI constitutes an exception where 

band 2 instead of 1 is shown, as the feedback weights from C1 layer band I fall predominanlly 

in this band (see Figure 4.8). Although the infoniialinn in higher bands might also contain 

relevant infonnation and play an important role in perception, given Ihe large scale of the model 

il was vital to focus Ihe analysis on certain model responses in order to obtain a comprehensive 

understanding of them. Similarly, only the hori/.onlal orienlaiion slate is shown, but due to the 

symmetry of the square, it is easy lo inlcrprel by extrapolation the response to the vertically 

oriented contours. 

6.1.2.2 Feedback from S2 In .S1 

Figure 5.19 shows the setup and results of the case where the square feedback originates from 

the S2 layer. In contrast lo the CI feedback example, the CI and SI square reconstructions are 

now slightly more blurred, but still very clearly defined. It is possible to observe the gradual 

transformation from the Kanizsa figure lo the square al all layers of the model, not only in the 

belief but in the A and n messages. Note how it takes one time step for the square feedback to 

reach the CI layer, but two time steps lo reach S1. In boih cases the illusory contour strength 

increases gradually over lime, as depicted more clearly in Figure 5.20. This is a consequence 

of ihe modification introduced in the outward A messages described in Section 4.5.3.3, which 

allows for the accumulation of belief responses, otherwise the response would remain identical 

after Ihe second lime step. 

Note that CI and SI reconsiruclions show pallerns of noise that repeat periodically. This is 

because the CPTs are derived from the prtjtotype weight matrices, which are independent of 

position, and then particularized for the the set of nodes al each location. Even for flal parent 

distribution, ihe unbalanced CPTs lead lo child nodes with non-flai dislribulions, as illustrated 

by the lower nodes of the example shown in Figure 3.8. 

As staled before, it is necessary lo focus on a subset of the model's responses, thus the results 

shown were obtained from the S2 nodes with RF size=4x4. However, Figure 5.21 demonstrates 

that ihe illusory contour develops lor all S2 RF sizes, although the 4x4 size shows the most 

precise and lea.st noisy reconstruction. Also, the ligure illustrates how as the band size increases, 
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the image resolution decreases to ii point where the square ligure is unrecogniziiblc. which 

jusiilies focusing on only the simulations on the lowest scale baud. The original HMAX model 

was designed lo process large natural images where the lower resolution of the higher bands 

might play a more important role. 

6.1.2.3 Feedback from C2 to S2 

The square reconstructions from feedback originating at layers CI and S2 show a relatively 

good lit to the ideal square representation, even when iisinn feedback weights equivalent to the 

feedforward weights. However, the loss of infonnation between the S2 and C2 layer is much 

higher as it is mapping over 2000 nixies into 9 nodes. This is a general problem of modelling 

feedback connections in mtxJcls that implement an invariance operation, such as the max func­

tion, which cannot be mapped backwards. For this reason, and because the feedforward weights 

proved lo be inappropriale, u more systematic study was performed to elucidate what the key 

factors to obtain meaningful feedback from the C2 layer are. 

Figures 5.23 and 5.24 show the results of testing three factors. The first one is the number of 

non-zero elements, or the inverse of sparseness, of the S2-C2 feedback weight matrix, which 

shows an almost linear, positive correlation with the ability of feedback to reconslnicl an ideal 

CI square representation. The second factor tested was the sampling parameters Nc2 and '^cz. 

which, within the limited range of values tested due to the high computational cost, showed a 

very clear positive correlation with feedback's reconstniction capacity. The last factor studied 

was the number of non-zero elements in the S2-C2 feedforward weight matrix used to generate 

the C2 square representation, from where feedback originated. Although only two different 

values were tested, comparison between Figures 5.23 and 5.24 suggests that C2 representations 

generated using more non-zero elements in the feedforward weight matrices (less sparse) are 

better for feedback reconstruction. 

It is important lo note that the pixel-wise mean absolute error is not a perfect measure of the 

goodness of fit between the C1 feedback reconstruction and the idea! CI square. For example. 

CI reconstructions using a less sparse matrices tend to show a higher level of background noise 

or overall activity, which might lead to a lower error as they cover greater area of the ideal 
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square. Reconstnictions using more sparse weight matrices may not cover as much area of the 

square hut might be cleaner and more precise. Despile this, the mean absolute error provides an 

objective indicator of the goodness of lit between the reconstructions and can be used to guide 

the broad initial parameter search. This can be later refined for a smaller target parameter space 

using a more accurate measure. 

Although a more exhaustive parameter search is required, the preliminary results obtained 

strongly suggest that asymmetric weight matrices are required: feedforward weights should 

be relatively sparse, leading to more selective higher-level representations; while feedback con­

nection matrices and high-level representations require a higher densily in order io increase 

the amouni of information available lo reconstruct the lower levels. This is consistent with 

evidence from cortex showing that feedforward connections tend to have sparse axonat bifur­

cation whereas backward connections have abundant axonal bifurcation, [•unhermore, it agrees 

with the theoretical perspective thai argues that a cell is likely to have few feedforward driving 

connections and many modulalory conneelions {Friston 2003), 

Anolher parameter ihat is also likely to influence the feedback reconslruclion is the number of 

features per group in the complex layers. Given the current implemenlution, where feedback 

to complex layers affects eijually all ihe I'eatures belonging to a group, increasing ihc number 

of features per group will increase the overall amouni of, slill relatively diffuse, feedback. One 

important extension for the model would be to achieve heterogeneous feedback modulation of 

the features within a group, This can be done, for example, by allowing features to belong to 

different groups, such as in the HTM model (George and Hawkins 2009). The learning method 

in HTM automatically does this, whereas in the proposed model this could be achieved by 

finding correlations between features in different groups and ihen combining them into a single 

new group. A more comprehensive study of how [his factor can aid the feedback disambiguation 

process is left as future work, 

6.1.2.4 Feedback from C2 to SI 

As discussed above, it is difficult to generate accurate feedback from the C2 square represen­

tation, so an alternative is to clamp the 7z{S2) to the ideal S2 square representalion as if the 
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feedback was really generaied from C2. This allows observation of Ihe temporal response in 

lower layers, including S2 itself, licure 5.25 demonstrates that feedback originating in 7z{S2) 

also leads to a very robust illusory contour completion effect in lower levels. Consistent with 

the hierarchical distance of the layers, the effect is now observed at [-2 in CI and t=3 in S2. 

Figure 5.26 shows a more gradual development of the contour, compared to thai shown in Fig­

ure 5.20 (feedback from fic/{52)), due to the longer reciprocal inlcraclions that now include the 

S2 layer. 

An important aspect to study is how feedback from higher level.'; is refined as it interacts with 

bottom-up evidence, l-'or this purpose, the model's response to different input images, given 

the same high level feedback, was compared in Figures 5.22 and 5.27, Both Ihe SI and CI 

responses lo the occluded Kanizsa square, blurred Kanizsa and lo an ciiipiy input image, show 

only minor differences between them. The differences are observed around the real contours 

of the Kaniz.sa figures. For example, for the occluded Kanizsa figure, the vertical real contour 

of the occluding circle clearly stands out over the horizoniiil illusory contour. These small 

modulations of feedback become more apparent in Figure 5.27, specially when comparing the 

SI response lo the Kanizsa square versus the empty input image. These differences are shown 

in more detail in Figure 5.28. 

This type of refinement would be expected to happen from complex to simple layers where 

the diffuse, low resolution feedback is sharpened based on existing low-level information that 

provides local cues to guide the disambiguation process (Halko et al. 2008, Lee 2003). Pre­

vious attempts lo incorporate feedback connectivity into the HMAX mtxici have encountered 

the same theoretical barrier, which basically deals with how lo obtain spatial precision from 

invanani high-level abstract object representations (Dura-Bernal et al. 2010), The solution pro­

posed previously was to implement a feedback disambiguation algorilhm based on collinearity, 

co-orientation and gtxKi continuation principles, theoretically reproducing lateral connection 

functionality. In principle, this method illustrated well the feedforward-feedback interactions, 

however the algorithm was designed heuristically and worked exclusively with simple square­

like tigures. 
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The bclier propagation algorithm in Bayesian networks is. theoretically, well-suited to imple­

ment these horizontal interactions. Pearl (1988), the HrsI to lormulate belief propagation in 

Bayesian networks, refers to them as sideways Interactions (see Section 3.3.3). Although there 

are no explicit lateral connections, these are implemented implicitly by the bottom-up messages 

and top-down messages, both of which take into account evidence from nodes adjacent to the 

target. There are several possible reasons why, despite this, ihu results in Figure 5.25 (clamp­

ing of K{S2) to square representation) don't show signilicant contextual lateral interactions and 

feedback disambiguation: 

1. A number of approximations to the exact implementation of belief propagation have been 

made (see Section 4,6). These include sampling methods that limit the messages to rel­

atively few samples which contain the highest information content. However, all the in­

formation that is lost due to the sampling and approximations might actually be required 

for precise feedback disambiguation, hor example, features that present relatively low 

probabilities and could potentially be enhanced by feedback might be initially discarded 

during sampling, 

2, All features belonging to the same group in complex layers are modulated equivalcntly 

by feedback. Features within groups contain the precise and high resolution information 

that could lead to belief refinement. As previously argued, allowing feedback to modulate 

features within a group disparalely would lead to the enhancement of specific SI spatial 

arrangements. This could be done by learning distinct weights for each feature or by 

allowing features to belong lo different groups, both of which methods are implemented 

in the HTM mode (George and Hawkins 2009). 

i. Loopy belief propagation might require more time steps to converge to a good approxi­

mation of the exact belief. Current simulations run for a limited number of time steps due 

to the high computational cost. Although beliefs tend lo show a relatively high degree of 

convergence, it is possible that they are settling on local minima. 

4, Beliefs are likely to evolve and be relined as a consequence of the hierarchical interactions 
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over lime. The fact the both the bottom and lop layers are clamped means that beliefs can 

only evolve freely along Ihe intermediate layers, as the belief in peripheral layers will he 

dominated by the clamped representations. The present results suggest that if only ihe 

input image is clamped and beliefs allowed to evolve across [he whole network, these 

show greater contextual modulation through lateral interactions. This is illustrated in 

Figure 5.31 and discussed below in Section 6.1.2.5, 

It is also possible that the structure and parameters of the network, derived from the HMAX 

model and mimicking the venlral path, are not suflicient for the precise spalial refinement of 

feedback. Indeed the dorsal path, which has been shown to be tightly interlinked with the ventral 

path at many levels, may play a crucial role by providing spatial and motion related information 

which could guide the feedback disambiguation process (Fa/,letal, 2009. Chikkeruretal, 2010. 

Grossberg el al. 2007). In this sense even for static images, such as those employed in this 

model, the continuous microsaccadic movements of the eye might be providing crucial infor­

mation for perceptual completion processes (?). In this same line, George and Hawkins (2009) 

demonstrated that simulating saccadic movemenls in ihe input image improved the feedback 

reconstruction performance of the model. A more complete model of visual perception could 

therefore be accomplished by implementing a parallel interconnected Bayesian network thai 

modelled the dorsal path and provided the additional information required. 

Nonetheless, the results in Figure 5.28 demonstrate the ability of the model to feed back high-

level information to lower levels, even in the absence of boitom-up input, consistent with evi­

dence on mental imagery. Evidence has consistently shown ihat the regions and cortical repre­

sentations of mental imagery are surprisingly similar to those of visual perception, suggesting 

boih modalities share a common substrate (Ishai 2010). Slotnick et al. (2005) showed that vi­

sual mental imagery can evoke relinolopic activations in early visual regions, in agreemeni with 

generative modelling approaches. Recently. Reddy el al. (2010) obtained results suggesting 

the same pauems on neural activity generated during visual perception get reaclivaled during 

mental imagery, mediated by feedback connections from high-level object recognition layers. 

The setup where feedback originates from ;r(52) was also used to explore the different belief 
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update methods during loopy belief propagation as shown in Figure 5,2^. The different methods 

were explained in detail in Section 4.5.3. An initial tirsl observation is that both the upwards 

method, used to obtain most of the results, and the up-down method provide similar results to 

that of the rigorously correct, but computationally expensive, compti-ie update method. This 

argues for the validity of these methods, suggesting that computing the beliefs of layers where 

no new evidence information has arrived might be redundant and not provide any significant 

contribution to the linal belief. However, it is likely that the differences between methods is 

accenluated as feedback originates from higher layers, leading lo longer internal loops. Further 

and more systematic research is required lo confirm the validity of these update methods. 

Other interesting elTects can be observed in Figure 5.29. To start with, the SI belief seems 

to show an oscillatory effect where the illusory contour gels narrower and wider. It would be 

interesting lo study in more detail whether the narrowing is a consequence of feedback disam­

biguation guided by the real contours of the inpul image or an epiphenomenon derived from 

some other cause. Also, the up-down method S1 belief shows the cleanest response, which is 

consistent with the fact that it is updating the layers in Ihe expected sequence of propagation, 

minimizing the propagation of noisy information. According to this account, the illusory con­

tour from the upwards method should be cleaner than that of the complete method, but is not. 

This might be a consequence of the a.symmclry of the upwards method, which gives preference 

lo the bollom-up evidence, as compared with the other two methods, where bottom-up and top-

down evidence propagate at Ihe same rate. Again, these are jusl speculative ideas ba.sed on the 

limited preliminary results obtained. 

The results shown in Figure 5.30 demonstrate Ihe ability of the model lo feed back informaiion 

from the C2 layer. Using the infonnalion from Figure 5,23. an S2-C2 weight matrix was chosen 

to try to obtain the best reconstruction possible, although this was still I'ar from an ideal square 

representation. Nonetheless, the SI and Ci layer still develop activity close to the illusory 

contour region. 
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6.1.2.5 Feedback fnim S3 to SI 

Feedback emerging from the S3 layer was also able to generate the illusory contours in the lower 

layers as illustrated in Figure 5.31. This demonsiraies ihai Teedback is able to reconstruct the 

C2 square representation from the S3 layer inl'ormation. In this case the up-down instead of the 

upwards belief update method was implemented as ii pnxluces a cleaner lower level response 

by reducing the accumulated noise from Jt messages. Importantly, this setup can be understood 

a-s a hypothetical scenario whei^ the Kanizsa figure is correctly categorized as a square and due 

to some higher level mechanism, such as f{K;uscd attention (Gilbert and Sigman 2007, Reynolds 

and Chelazzi 2004). only the square prototype is fed back, similitr lo a winner-take-all network. 

Another important property, which was present in previous results but is more obvious here, is 

that the similarity of the internal representation of each layer lo any lixed evidence (e.g. input 

image or high-level square representation) is proportional to the distance to the layer containing 

the evidence. In other words, lower layers show an inlernal representation close to the Kanizsa 

ligure, whereas the representation in higher layers is closer to that of a square.This observation 

is consistent with evidence suggesting high-level activity generated by objects containing illu­

sory contours is notably similar lo the activity of complete objects (Stanley and Rubin 2003, 

Maertens el al. 2008. Sary et al. 200K). Furlhermore, il is also in consonance with evidence 

showing the illusory contour response is weaker and only appears in a fraction of V1/V2 cells, 

in relation to that of real contours, and thai VI lends lo show an even weaker illusory contour 

response than V2 (Lee 2003, Maertens el al. 2008. Seghier and Vuilleumier 2006, Halgren et al. 

2003). 

The temporal sequence of illusory contour fonnalion in the model is also substantiated by ex­

perimental evidence showing that the l.OC/IT region is the first lo signal the appearance of the 

illusory contour, which then gradually spreads lo lower regions (Murray et al. 2002, Halgren 

ei al. 2003). 

With respect to the mechanisms responsible for contour completion, Haiko et al. (2008) af­

firmed in a receni review that illusory contours result from the interaction between high-level 

figural feedback and interpolation/extrapolation processes related to lateral connections. Figu-
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ral feedback is clearly captured by the proposed model as the square representation is fed back 

exclusively from the top layer while the rest of the layers contain flat initial distributions. Inter­

estingly, as shown in Figure 5.31. the feedback square reconstruction from higher layers, Ji{S2). 

is significantly blurred and poorly defined. This is due to the previously described problems with 

feedback between the C2 and S2 layers. However, as time goes on, the square representation at 

both the S2 and CI layers significantly improves. This suggests that feedback is interacting and 

being relined. or contextually mixJulated, by [he lower layer activity (the Kanizsa iigure). In 

other words, the square illusory contours emerge as a consequence of the reciprocal interaction 

over time of the Kanizsa figure inducers and the higher level abstract square representation, as 

suggested by experimental evidence (Halko et al. 2008). 

The results in Figure 3.23 substantiate the contextual interaction claim by showing the more 

blurred CI square representations that resull from C2 feedback. This suggests thai feedback by 

itself is insuflicieni to generate the more precise CI square representations that emerge when 

using the Kaniza figure input image at the same lime ([•'igure 5.31). 

6.1.2.6 Object caluRorizatkin wilh feedbiifk 

As described in Section 4.4, the categorization results are obia.Lned by assuming ihc network has 

a singly-connected tree structure in order to avoid feedback modulation. Note that this refers 

strictly lo the initial bottom-up pass where higher levels are assumed to contain (lal distributions 

such that feedback would not provide any meaningful information. Evidence supports the theo­

retical view that the initial recognition process is indeed strictly a fast feedforward process witti 

no feedback involvement (Masquelier and Thorpe 2007. lipshtein et al. 2008, Riesenhuber and 

Poggio 1999, Serre et al. 2007b). However, evidence also suggests that more cognitive priors, 

such as task-related alienlion, might have a fa.st effect on the local microcircuitry and modify 

the initial categorization performance (Lee and Nguyen 2001, Gilbert and Sigman 2007). I w 

this reason, it was interesting to test whether similar categorization results could be obtained 

without any constraints on the network. 

The preliminary results shown in ^"igure 5.32 conhmi that the square object was correctly cate­

gorized using the upwards belief update melhtxi, which combines feedback information al each 
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step. Although feedback originates from empty high-level representations, it becomes non-flat 

as it is modulated by the conditional probability Sables (CPTs) weights (see Section 4.5 for de­

tails), which explains why the resulting S3 distribution has more noise than the one with no 

feedback. Even the most extreme case which processed only the lowest band and implemented 

the complete belief update method (stronger feedback effects), situated the square prototype in 

founh place, a surprisingly good result considering the limitations. 

The Kanizsa square, which can be considered a strongly occluded square, was correctly catego­

rized with no feedback and obtained significantly high positions for the upward update method 

with loopy feedback (first for the 4x4 S2 RF size and third for the averaged response). Even 

when reducing the number of bands to one and using the complete update method, the Kanizsa 

square still showed consistently good results. Overall, these results suggest that a similar cate­

gorization performance can be achieved by the model even when including the feedback loop 

during the initial botlom-up pass. However, further research is required to prove this hypothesis 

and to obtain a belter understanding of the factors affecting feedforward categorization in loopy 

Bayesian networks. 

The categorization of Kanizsa input images as squares is critical in order to simulate illusory 

contour completion without the need to clamp any high-level square representation. Instead the 

model should recognize the input Kanizsa figure as a square and feed back the corresponding 

information. The current categorization results using feedback do not provide an appropriate 

square representation, as the square stale does not show the highest value or, if it does, the over­

all distribution is extremely noisy. This can be solved in the future by improving the feedforward 

categorization performance so that the Kanizsa figure elicits a clear square representation and 

by improving the feedback reconstruction from C2 to S2. This should allow lo obtain an au­

tomatic illusory contour response just by feeding in the Kanizsa input image lo the network. 

Current results using an idealized S3 square representation (Figure 5.31) are encouraging and 

support this claim as they manages to elicit the illusory contour in lower regions. 

An interesting control test to perform would be to systematically rotate the Kanizsa pacmen 

by varying degrees. The categorization of the Kanizsa figure should be affected such that for 
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strong rotations the winner S3 prototype should no longer be a square object. Additionally, 

non-aligned inducers .should prevent or reduce the strength of the illusory contours. 

A dilVerent question to ihe one addressed in this section, is whether the feedback loop can 

improve categorization over time. Again, this can only be tested once the feedback reconstruc­

tion provided by higher layers is improved. As previously argued, (he results shown in Figure 

5.31 suggest that feedback may indeed improve calegori/alion, based on how the CI and S2 

responses are gradually modulated towards a sharper square representation, 

6.1.2.7 Feedback to S3 

The example shown in Figure 5.33, despite depicting a very trivial problem, serves to illustrate 

the capacity of the model to simulate feedback effects, such as priming or expectation, which 

arise from areas outside the ventral pathway such as Ihe prefrontal cortex, fusiform gyrus, pos­

terior parietal cortex or the amygdala (Sutnmerlield and Egner 2009, Bar et al. 2006, Grossberg 

et al. 2007, vSabatinelli et al. 200'), Gilbert and Sigman 2007). Furthermore, die model allows to 

simulate the activation of high-level object-selective regions due to mental imagery which has 

been suggested to be mediated by feedback connections from prefrontal cortex (Ishai 2010). 

Importantly, these effects are accommodated as part of the Bayesian network parameters (S3 

prior distribution), without the need to include any external artifacts. The example can also be 

interpreted as implementing feature attention (enhancing only slates corresponding to animals 

in the S3 prior distribudon) and could similarly implement spatial attention by defining a prior 

distribution that favours certain locations, specially when processing larger images with several 

objects. The Bayesian implementation of attention resembles that proposed by Chikkerur et al. 

(2010). 

6.1.3 Benefits and limitations of Bayesian networks 

Bayesian networks and belief propagation provide a rigorous mathematical framework, grounded 

in probability theory, that allows the feedforward and feedback interactions of a system to be 

modelled. One of its most attractive and arguably elegant features is its distributed implemen­

tation, wherein all the nodes have an homogeneous internal structure and carry out the same 
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operations. Specific functions can then lie implemented by defining the appropriate structure 

and weights. Ii has been argued thai this and other properties map well onto cortical connectiv­

ity and account for experimenla! evidence as described in Sections 3.1 and 3.2. Additionally, 

the mtKlel is well-suited for large-scale parallel implemenlation using asynchronous message-

passing, such as that offered by multicore computers or hardware implementation (Jin et al, 

2010, Neftcictal. 2010). 

The model is, nonetheless, still a Bayesian network and thus cannot be considered biologically 

realistic. The model can only be argued lo be realistic al a network or systems level of abstrac­

tion, which is closer lo cognitive functionality than lo biology. At this level of abstraction the 

network reproduces the same properties as ihe HMAX model, such as the hierarchical cortical 

.structure and the tuning and invariance profiles of neurons at VI, V4 and inferoiemporal (IT) 

cortex. This, of course, is slill a strong simplification of the visual system. For example, direct 

reciprocal connections can be found between distant areas such as VI and higher-level object-

processing regions (Huang et al. 2007), which are not included in the model. Furthermore, 

the Gabor fillers used to model VI neurons RF' and ihe distinction between simple and com­

plex cells are an oversimplilicalion of ihe wide spectrum of V1 neurons functionality (Ringach 

2004). In addition, the response of neurons in higher cortical levels is still not well understood 

and thus, any aiiempt lo mtKlel them is likely to be oversimplified and inaccurate (see Section 

2.1.1 for further details). 

Some of these effects could be accommodated by future versions of the model. For example, 

direcl connections between the top and bottom layers of the model could be included by learning 

the appropriate weights, similar lo one of ihe implemented version of HMAX (Serre et al. 

2007 b). 

Regarding the complexity of neural responses, the proposed model has an advantage over 

HMAX in the sense thai responses are modulated over time by the interaction between feed­

forward and feedback connections. This accounts for extra-classical RF propenies of neurons 

{Angelucci and Bullier 2003) and adds a large time-scale temporal dimension lo the model 

responses (Kiebel ei al. 2008) opposed lo the static HMAX responses. 
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However, both models fail lo capture any details at the neuronal level of description, such as 

the complex balance between exciialory and inhibitory connections or spike decoding including 

learning and adaptation mechanisms such as spike-timing dependent plasticity. Nevertheless, 

detailed biological implementations have been proposed boih for ihc HMAX (Kouh and Poggio 

20()8, Yu et al. 2002. Knoblich et al, 2007) and the belief propagation operations (George and 

Hawkins 2009, Litvak and Ullnian 2009. Sieimer el al. 2(K)9). which could theoretically allow 

the model to be implemented using spiking neurons. Importantly, given the large scale of the 

model, which spans three different cortical regions and has over two hundred thousand nodes, it 

seems reasonable to limit the level of detail until the principles tested have been shown lo work. 

Implementations of belief propagation, in general, assume each node corresponds to the com­

putations perfomied by the microcircuits within a cortical column. Another interesting possi­

bility is that single neurons act as mxjes and approximate a simpler version of the algorithm. 

as proposed by Rao (2004) and Dcncve (2008a). This approach has yielded some interesting 

results relating generative models to spike-time dependent plasticity (Nesslerel al. 2009). Neu­

ral implementations of message-passing algorithms in graphical models are the current focus of 

research for several prestigious research centres, such as the Gaisby Institute in London and the 

Institute of Ncuroinformatics in Zurich. 

Importantly, the model might not be suitable for neural implementation in the present state 

due lo the high redundancy in the information represented by the likelihood, belief and prior 

functions. A reformulation of the equations towards predictive coding approaches, wherein 

feedforward messages convey the prediction errors, could lead to more eflicient implementa­

tions, in consonance with experimental evidence (Friston et al, 2006). Critically, predictive 

ccxling can be derived from belief propagation, which speaks for formal similarities between 

both approaches (Friston and Kiebel 2009. Kschischang et al, 2001. Yedidia et al. 2003). 

The Bayesian network was d&signed based on the HMAX model, as this was a well-established 

mode! of the ventral path at the appropriate level of description. However, the HMAX struc­

ture might not be the ideal one for modelling visual perception using Bayesian networks, as 

it was designed exclusively for feedforward processing. For example, the Bayesian network 
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model could benefit from greater interactions among the lower level scale hands, which are 

currently processed in parallel. Purthennore, the HMAX design doesn't take into account the 

constraints of Bayesian networks, which may perform more efficiently using, for example, a 

smaller number of stales per node. 

Bayesian methods, such as the Expectation-Maximization algorithm, allow the optimum struc­

ture and parameters of a Bayesian network to he learned, given some data (Jordan and Weiss 

2002. Lewicki and Sejnowski 1997, Murphy 2001), Although applying these methods from 

scratch to such large scale mtxlels might be computationally inlraclable, these can be used to 

shape the network given some initial structural constraints. The proposed model could poten­

tially be formulated in a more generic format, similar to the HTM model (George and Hawkins 

2009), which could then be panicularized to specific scenarios with the aid of these Bayesian 

learning methcxls. The proposed model can be understood as a particularization of the more 

general model to the visual perception domain. However, the same generic model could be 

particularized to other similarly structured domains such as the auditory system. 

For example, one of the main properties embodied by the generic model would be the simple 

and complex layer structure with complex layers grouping states in order to achieve invariance. 

Many of the potential generic principles have been described in Chapter 4. but a more detailed 

account and mathematical formulation of the generic framework is left as future work. 

Several approximations and sampling methods, summarized in Section 4.6, have been imple­

mented to deal with the large number of nodes and connections in the model. These offer 

solutions to the problem of multiplicativcly combining a large number of discrete probability 

distributions with many stales. Previous models have proposed performing calculations in the 

log domain to convert products into sums (Rao 2004, Lilvak and Ullman 2009). Here I propose 

re-weighting distributions to establish a minimum value and sampling methods to keep only the 

highest values of the distributions with highest variance. 

A further novelty of the model is to use the weighted sum model proposed by Das (2004) to 

approximate the CPT of nodes with multiple parents. Bayesian networks that try to model the 

visual cortex will irremediably require multiple parent interactions as this arise as a consequence 
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of overlapping receptive fields. Several melhods have been proposed lo approximate the expo­

nential number of paramelers of mulliple-parenl CPTs, the most common being the Noisy-OR 

gate (Peari 1988, Diez 1993, Srinivas 1993, Onisko el al. 2001). This method however cannot 

be applied to variables that are not graded, such as those coding ihe different features as states 

of the variable, lor this reason, Ihe proposal by Das (2004). which has been justified from a 

geometrical perspeciive and is not constrained to graded variables, offers a valuable allemative. 

The model also deals with loops in the nclwork by implementing loopy belief propagation, a 

mcihixl thai has only been proven to work empirically and conslitules an active field of research 

in itself (Murphy et al. 1999. Weiss 2000). The proposed model explores different belief up­

dating methods and provides a comparison of the effects the,se have on the diffcrenl layers over 

time. Additionally, to the best of my knowledge, this is the largest Bayesian network Chat imple­

ments loopy belief propagation and thus tests the limits and applicability of this approach. An 

alternative and potentially more efficient belief update method, which could be tested in future 

versions of the model, is asynchronous message-passing triggered by changes in the input to a 

node. 

All of the above proposed meth(Hls an: likely to be useful in the future for researchers modelling 

similar large-scale scen;u-ios using Bayesian networks and belief propagation. However, it is 

difficult lo evaluate the validity of these methods and their ability to approximale the exact 

beliefs of ihe network. The only way to obtain the exact marginal probabilities in networks with 

loops is lo apply the junction-tree algorithm (Murphy etal. 1999), which would incur prohibitive 

computational costs. Thus, while these melhods remain to be tested more systematically, the 

categorization performance and the feedback reconstruction capabilities of ihe model suggest 

Ihe proposed melhods point in the right direction. Furthermore, resulls from the setup where the 

square representation is fed from the top layer suggest lateral contextual interactions between 

the boltom-up input and feedback activity are present in Ihe model. 

On ihe other hand, ihe fact thai these contexlual lateral interactions are not clcariy showing up 

in the results where feedback originates from S2 and C2, could suggest that the approxima­

tions and sampling methods used are discarding necessary infonnation. as previously argued. 
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Alternatively, this could be a conseqiienee of the model requiring inleraciions from the dorsal 

path in order to obtain spatial precision. A third option could be that invariance needs to be 

implemented in a different way, such as exploiting the inherent variability in the generative 

model reconstructions, instead of approximating the moji: operation in alternating layers. Small 

differences in the higher layer representation would lead to the repertoire of possible lower-

level representalions of a given object. However, this method has only been demonstrated for 

28x28 pixel input images and using much smaller and constrained networks of binary nodes 

that replace the top layer with an associative memory (Hinton et al. 2006). 

Current results support the inherent difficulty in developing a model that can achieve feedfor­

ward invariant object categorization, where position and scale information are lost, while at the 

same time achieving spatially precise feedback modulation. This limitation is present in previ­

ous similar models (Epshlein el al. 2008, Murray and Kreui/.-Delgado 2007) and has only been 

partially solved by introducing temporal information (George and Hawkins 2009), spatial in­

formation from Ihc where path (Chikkenir et al. 2009) or using heurislically defined algorithms 

for lateral interactions (Dura-Bemal et al. 2010). 

Finally, it is important to point out that one of the main limitations of the model, despite the ap­

proximations and sampling methods implemented, is the considerable simulation time required. 

Using moderate sampling parameters, four time steps of the upward ujxiate method for layers 

SI to S3 took over 60 hours. Depending on the parameter choice this value could vary between 

5 hours and more than 100 hours. Several solutions are possible: 

• Optimizing the MATl-AB code by finding more efficient and faster implementations of 

the proposed algorithms. 

• Implementing the model using a faster language such as C. The belief propagation algo­

rithm for each node was implemented in C, which reduced the simulation time of each 

individual node to.'i0%, but the overall simulation time of the model was reduced to only 

94%. This suggests much of the computation lime is spent in routing the messages lo the 

corresponding mxles, 
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• A real-time hardware implementation using large field-programmable gate arrays (FP-

GAs) or other parallel-compuling systems such as the SpiNNaker (Jin et al, 2010). The 

proposed model is well suited to parallel distributed implementations such as those of­

fered by hardware chips. 

Reducing the simulation time would allow one to systematically explore the different param­

eters of the model and gain deeper insights into the approximations, sampling methods and 

results obtained by the simulations. 

6.2 Comparison with experimental evidence 

The proposed model is consistent with experimental evidence ranging from neuron physiology 

to anatomical data, and with several experimenlally-grounded cortical theories. These are listed 

below: 

• Widely accepted principles of object recognition in the ventral path, as supported by 

anatomical, biological, physiological and psychophysical data (Cadieu el al. 2007, Hung 

el al. 2005, Knoblich et al. 2007, Kouh and Poggio 2008, Masquelier et al. 2007, Riesen-

huber and Poggio 1999, Serre et al. 2005a, 2007b, Serre and Rlesenhuber 2004, Walther 

and Ktx:h 2(M)7, Yu ei al. 20O2). The Bayesian network reproduces the UMAX model op­

erations and structure, which have been shown to capture these principles, and achieves 

invariant object categorization. See Section 2.1.2 for further details. 

• The parallel, distributed and hierarchical architecture of the cortex is also reproduced 

by the inherent structure of Bayesian networks and belief propagation (Pearl 1988, Rao 

2004, Lee and Mumford 2(X)3, George and Hawkins 2009). Similarly, ihe homogeneous 

internal structure of cortical columns (Ihe canonical microcircuit) is comparable to the 

homogeneous internal operations (belief propagation) of each Bayesian node (Fri.ston 

and Kiebel 2009, George and Hawkins 2009. Steimer et al. 2009, Lilvak and Ullmaii 

2009). Possible cortical mappings of belief propagation and biologically plausible imple­

mentations have been thoroughly reviewed in Sections 3.4,1 and 3.4.3. Furthermore, an 

abundant body of evidence arguing forlhe. more general. Bayesian brain hypothesis was 
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presented in Section 3,2. 

• The convergence of feedforward connections and the divergence of feedback connections 

(Friston 2003). The same pattern is found in the model where the number of parents of 

a node is always less than the number of children. The higher divergence of feedback 

connections accounts for contextual or extra-classical RF effects (Angelucci and Bullier 

2003). 

• The patchy axonal terminations of feedback connections and their functional specificity 

(Angelucci and Bullier 2003). Although feedback terminations have been commonly con­

sidered to be more diffuse and non-topographic (Friston 2003). recent findings show they 

have a very similar shape and density to those of feedforward connections, both for the 

VI-V2 (Anderson and Martin 2009) and V2-V4 (Anderson and Martin 2006) pathways. 

In the Bayesian network proposed, both the feedforward single CPTs and the feedback 

multiple parent CPTs are derived from the same weight matrices and thus exhibit similar 

connectivity properties. Nonetheless, further study of the S2-C2 weight matrix revealed 

that feedback requires a denser connectivity than feedforward processing. This would 

contradict Andersen's evidence, but be in agreement with the asymmetric connections 

theory and evidence showing the more sparse axonal bifurcation of feedforward versus 

feedback connections (Friston 2003). 

• The illusory conlour completion temporal response observed in the ventral system. As 

detailed in Section 2.3.1, the Kanizsa figure is represented as a complete ligure in the 

higher levels and, as time progresses, an increasingly weaker representation can be ob­

served in lower levels (Halgrcn el al. 2(X)3, Maertens et al, 2008. Murray et al. 2002, Sary 

et al. 2008. Seghier and Vuilleumier 2006. Yoshino et al. 2006, Stanley and Rubin 2003, 

Lee and Nguyen 2001. Lee 2003), The model is shown to be consistent with the mech­

anisms proposed to be responsible for contour completion, namely, ligural feedback and 

lateral interactions. Contextual lateral interactions were only observed when feedback 

originated from the top layer and was allowed lo interact with bottom-up evidence fonn-

ing recurrent loops across four layers. Possible reasons why these lateral interactions did 
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not clearly emerge when feedback originated from lower layers have been discussed in 

Section 6.1.2. 

• Feedback effects thai modulate the inferolemporal cortex arriving from the prefrontal 

cortex (object priming, expedation, etc.), the posterior parietal cortex (spatial attention), 

amygdala (emotional stimuli such as faces) and others (Bar el al. 2(K)6, Grossberg et al. 

2007. Summerfield and Egner 2009. Sabatinelli ei id. 2009, Gilbert and Sigman 2007). 

These can be modelled by modifying ihe mixiel S3 prior, ;t(S3}. to reflect the appropriate 

bias towards certain objects or locations, 

• Feedback effects resulting exclusively from mental imagery with no bollom-up input. 

Evidence suggests thai the same visual pathways are shared for visual perception and 

mental imagery resulting in similar cortical activations (Ishai 2010). Mental imagery is 

suggested lo originate in prefrontal cortex, which feeds back to higher-level object recog-

nilion areas (ishai 2010, Reddy ei a). 20iO), Further evidence has shown how mental 

imagery may lead to relinoiopic activations in lower level visual regions (Slotnick et al. 

2005). The proposed generative model can capture the feedback effects of mental im­

agery by modifying the S3 prior to simulate Ihe mental image (feedback from prefrontal 

to inferolcmporal cortex) and then allowing this to propagate lo lower regions. 

• The active blackboard hypoihesis (BulUer 2001), high-resolution buffer (Lee 2003) and 

integrated model of visnal perception (Lee et al. 1998), which argue for the parallel in­

volvement of the ventral path in all stages of compulation, rather than the classical feed­

forward cascade (see Section 2.2.2). The model updates all layers during each simulation 

time step reflecting the bottom-up and top-down inleractions proposed in Figure 2,8. 

• The Reverse Hierarchy Theory (Hochstein and Ahissar 2002), which states thai explicii 

perception emerges first at the lop level and dien proceeds in a top-down fashion. The 

generative modelling approach implemented here is reminiscent of this theory, given that 

high level causes (objects) in the model unfold a series of lower level effects (features). 
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6.3 Comparison with previous models 

The proposed model shares many structural and functional similarities with the Hierarchical 

Temporal Memory (HTM) model proposed by George and Hawkins (2009). They both employ 

the belief propagation equations to approximate selectivity and invariance in alternating hierar­

chical layers. The main difference is that the HTM nodes embody both the simple and complex 

features, which are called coincidence patlems and groups (Markov chains), respectively. The 

inclusion of a Markov chain within the node makes HTM tjualiiatively different from a Bayesian 

network. Consequently, belief propagation also becomes a qualitatively diffcren! algnriihm that 

can be applied exclusively to HTM nodes. By combining simple and complex features within 

the same node, the authors avoid much of the complexity, and possibly benefits, inherent in a 

rigorous implementation of belief propagation, such as lotjps and multiple parents. 

The proposed model implements the same feature grouping mechanism present in HTMs (ex­

cept for the temporal correlation of Markov chains) by exploiting the weights of the CI*Ts be­

tween simple and complex layers. Figure A.l in the Appendix Section A provides a schematic 

representation of an HTM network that implements the 3-level HMAX model (Serre et al, 

2007c) used for this thesis. The HTM network is formulated using the original HTM nutation 

(George and Hawkin.s 20()9) combined with the original HMAX parameter notation (Serre et al. 

2007c). The resulling HTM network can be compared to the Bayesian network thai implements 

the same 3-level HMAX mode! (Figure 4.4) in order to obtain a better understanding of the 

differences between HTM and the proposed model. 

The proposed mtxlel employs loopy IxMief propagation to perform approximate inference, sim­

ilar to the HTM model (George and Hawkins 2009). Other models implementing approximate 

perceptual inference have employed message-passing algorithms derived from sampling meth­

ods (Hinton et al. 2006, Lee and Mumford 2003, Lewicki and ,Sejnowski 1997) or variiilional 

methods (Murray and Kreutz-Delgado 2007, Rao and Ballard 1999. Friston and Kiebel 2009), 

The nuKiel by Epshiein el al. (2008) implements exact inference using belief propagation. How­

ever, it is employed over simplified networks with no ItKips and is qiialilatively different from 

the proposed model in that nodes correspond to features and .states to locations. The model 
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by Chikkerur et al. (2009) also implements exact inference on a Bayesian network but models 

exclusively high-level atteniion, such that the lower half of the network is non-Bayesian and 

strictly feedforward. 

The type of input image used by the mtxlel is more complex and detailed than that of previous 

ones that were purely theoretical (Lee and Mumford 2003) or employed simplistic toy exam­

ples ((•riston and Kiebel 2(H)9. Lewicki and Scjnowski 1997. Hinton et al. 2006), Those with 

comparable input images fail to account for other properties that have been implemented by 

the proposed model, such as position and scale invariance (Rao and Ballard 1997, Murray and 

Kreutz-Delgado 2007, Chikkerur et al. 2009) or illusory contour completion (Hinlon et al. 2006, 

Epshtein et al. 2008). 

6.4 Future work 

A number of potential improvements and extensions to the proposed model are listed below: 

• Run simulations with Kanizsa tij;ure controls that fully lest the hypothesis that the model 

performs illusory contour completion. Althe moment, the control data give an ambiguous 

answer to the model's performance. 

• Perform a systematic analysis of the model parameters for both feedforward and feedback 

processing. Some of the key parameters to study arc the number of features per group. 

Ihe sparseness of the connectivity matrices and the sampling parameters. 

• lj;am heterogeneous feedback weights for features within a group and allow features to 

belong to different groups. This should improve the feedback disambiguation capacity 

and could lead to improved contextual modulation through lateral interactions. 

• Improve the categorization of Kanizsa figures and the feedback C2-S2 reconstruction 

to allow automatic illusory contour completion without clamping feedback. This could 

also lead to an improvement of the categorization performance over time as a result of 

feedback modulation. 

• Include adaptation mechanisms that could lead naturally to phenomena such as sensitivity 
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to temporal context and bisiability (Mamassian and Clouicher 2005)-

• Include the lateral geniculale nucleus (LGN) as the bottom layer of the Bayesian network. 

This would allow the conieothalamic feedback loop to be included within the same per­

ceptual inference framework and compare model results with the detailed experimental 

data (Simioeial. 2006). 

• lncrea.se the size of the input image to allow the simulation of multiple object detection, 

spatial attention and aulomaiic aiteni ion-shifting (e.g. occluder vs. occluded object) 

(Wallher and Koch 2007, Chikkerur el al. 2009). Additionally, natural images instead of 

silhouettes can be used. Thanks to the parametrized model implementation, no additional 

extension, apart from learning new weights, is required lo test input images of different 

sizes and characteristics. 

• Test the model using input images that change over lime (movies). The hiearchical struc­

ture of the generative model should naturally lead to a hierarchy of time-scales similar to 

slow-feature analysis (Wiskoii and Sejnowski 2002. Kiebel et al. 2008). 

• Extend the model to include the where path containing spatial and motion information. 

This could be modelled as a parallel Bayesian network wilh cross-inleraciions with the 

what path at different levels. 

• Formulate the model in a more generic way that can then be applied to diffcrenl visual 

.scenarios or oilier domains, such as auditory perception. The generic formulation should 

specify certain principles and constraints, describing how Bayesian networks and belief 

propagation can be applied to perceptual inference processes where selectivity and invari-

ance are desired properties. The specific structure and parameters can then be panially 

learned using Bayesian learning methods. 

• Real-time hardware implemenlationof the model using large parallel distributed .systems, 

such as SpiNNaker (Jin et al. 2010). 
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6.5 Conclusions and summary of contributions 

It is important to highlight that ihe claim made in this thesis is not that the visual cortex works 

exactly as a Bayesian network with belief propagation. However, ihe substantial body of evi­

dence presented and the model result.s suggest that, at a functional and structural level of de­

scription, there exist significant similarities between the visual cortex and Ihe proposed model. 

Therefore, this thesis supports the notion that the role for feedback is not limited to attentional 

mechanisms, but provides a substrate for the exchange of information across the visual system 

leading to hierarchical perceptual inference. This thesis provides an explicit demonstration that 

Bayesian networks and belief propagation can be used as tools to model large-scale perceptual 

processes in the visual system. In this sense, it complements previous theoretical studies that 

argued for this approach (Lee 2003, I'riston 2010) but did not provide an explicit implementa­

tion. Al the same lime, ii complements small-scale biologically plausible implementations of 

belief propagation (Lilvak and Ullman 2009. Sleimer et al. 2009), by providing them with a 

large-scale functional model which they can allempi to reproduce. The proposed model can be 

used as a template to guide the design of large-scale biologically plausible implementations of 

belief propagation that capture the venlral path functionality. 

A list of the contributions of this thesis is included below; 

• A review and analysis of the experimental evidence, theories and computational models 

of the role of cortical high-level feedback in object perception, including the illusory and 

occluded contours. 

• A review and analysis of the experimental evidence, theories and computationaJ models 

suggesting the visual cortex can be understood in terms of a generative model, Bayesian 

networks and belief propagation, This includes a detailed comparison of existing func­

tional models, biologically plausible implementations and possible cortical mappings. 

• A comprehensive and mathematically rigorous explanation of belief propagation in Bayesian 

networks, including a novel, intuitive and illustrative example with numerical slep-hy-

step demonstrations of the different types of evidence propagation. 
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• A Bayesian network that provides a probabilistic interpretation of the HMAX model and 

reproduces its siruclure; and an approximation to the selectivity and invariance operations 

of the HMAX model using the belief propagation algorithm over the proposed Bayesian 

network. 

• An extension of the static feedforward HMAX model lo include dynamic and recursive 

feedback based on the loopy belief propagation algorithm in the proposed Bayesian net­

work. 

• A particularization of the CPT learning method proposed by Das {2004) lo the hierarchi­

cal object recognition domain. The method simplifies ihc generation of the CPT parame­

ters for Bayesian networks where nodes have multiple parents. 

• Solulions to the problems associuted with the integration of information in large-scale 

Bayesian networks. These include sampling methods and the re-weighting of probability 

distributions to establish a minimum value. 

• Simulation results and analysis demonstrating the model is consistent with anatomical, 

physiological and psychophysical data of the ventral path, including object categorization 

with invariance to (xrclusions. position and scale. Results also suggest categorization 

[wrformance could improve over lime by including the feedback loop, but further research 

is required lo prove this hypothesis. 

• Simulation results and analysis demonstrating the model is able to reproduce the phc* 

nomena of illusory contour formation, including the qualitative response paltem observed 

across layers, the temporal sequence of events and the mechanisms involved. An addi­

tional proof-of-concept example also demonstrates the mode! can account for higher-

level feedback effects such as priming, attention and mental imagery. These results and 

the model implementation are shown to be consistent with a number of theoretical view­

points such as the Reverse Hierarchy Theory, the high-resolution hujfer hypothesis and 

the integrated model of visual perception. 

• Analysis of ihe benefits and limilations of this model and. more generally, of using 

262 



6.5. CONCLUSIONS AND SUMMARY OF CONTRIBUTIONS 

Bayesian networks and belief propagation lo model cortical object perception. 

A list of potential model extensions and improvements, and future lines of research in 

this field. 
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Appendix A 

HMAX as a Hierarchical Temporal Memory net­

work 

A Hierarchical Temporal Memory (HTM) network can be specirted mathemalically as a gener­

ative model and is dchned by llie following parameters: 

• HTM n(xies N'-'. where L = level of the hierarchy, and i - index of the node within ihal 

level. 

• Each node contains a set of patterns C],...,CM and a set of groups/Markov chains gi, ...,gA', 

each of which is defined over a subset of the coincidence patterns in that node. 

• Connectivity between child and parent nodes which defines the structure boiiom-up mes­

sages A and top-down messages 7C of each node during belief propagation. 

Figure A.l provides a schematic representation of how an HTM network could impiemenl the 

3-level HMAX model (Serre el al. 2007c). The diagram define,s all the above parameters for an 

HTM network that captures the structure and connectivity of the 3-level HMAX implemenia-

lion. The parameters of the HTM network are described as a function of the paramelers of the 

HMAX model, using the same noialion as in Table 4.2. To summarize: 

• Each HTM node corresponds to all the HMAX complex units at a specific location, and 

all of its afferent simple units. 

• The HTM groups correspond to each of the features coded by the HMAX complex units 

al that location. 
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• The HTM paliems correspond lo the features coded HMAX simple units. We assume 

simple units with a different relative location to the complex unit, represcnl a different 

HTM pattern. 

Thus, HTM nodes embody both the simple and complex features, which are called coincidence 

patterns and groups (Markov chains), respectively. The inclusion of the groups within the node 

makes HTM qualitatively different from a Bayesian network. Consequently, belief propagation 

also becomes a qualitatively different algorithm that can be applied exclusively lo HTM nodes. 

By combining simple and complex features within the same node, the authors avoid much of 

the complexity inherent in a rigorous implementation of belief propagation, such as loops and 

muliiple parents. The resulting HTM network can be compared lo the Bayesian network that 

implements the same 3-level HMAX model (Figure 4.4) in order to obtain a better understand­

ing of the differences between HTM and the proposed model. 
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Figure A.i: Schemaiic represeniation of how an Hierarchical Temporal Memory (HTM) nct-
wiirk could implcniL-nl (he 3-level HMAX model (Serre el al. 2007c), HTM nodes 
embody both the simple and complex features, which are called coincidence pat­
terns and groups (Markov chains), respectively. The EiTM network is formulated 
usin(> the original HTM notation (George and Hawkins 2(HW] combined wiih tht 
original HMAX parameter notation (Serre et al. 2(X)7c), See text for details. 
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Glossary. 

Xix) Likelihood function, which combines all bottom-up evidence of node X 

^(jc) Bottom-up message from node C to node X 

K{X) Prior function, which combines all top-down evidence of node X 

Jtx (M) Top-down message from node U to node X 

Bel{x) Belief, or posterior probability of node X 

ART Adajilivc Resonance Theory 

CPT Conditional probability table, equivalent to the connectivity matrix between Bayesian 

nodes 

EEC Electroencephalography 

fMRl functional magentic resonance imaging 

IT inferolemporal cortex 

LGN Lateral geniculate nucleus 

LOC I^ateral occipital complex 

MEG magnetocnccphalography 

MST Medial superior temporal cortex 

MT Middle temporal cortex 

PP Posterior parietal cortex 

RHT Reverse Hierarch Theory 

STDP Spike-lime dependent plasticity 

VI Primary visual cortex 

V2 Secondary visual cortex 
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