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Abstract

A cortical model of object perception based on Bayesian net-
works and belief propagation.

Salvador Dura Bernal,

Evidence suggests that high-level feedback plays an important role in visual perception by shap-
ing the response in lower cortical levels (Sillito et al. 2006, Angelucci and Bullier 2003, Bullier
2001, Harrison et al. 2007). A notable example of this is reflected by the retinotopic activation
of V1 and V2 neurons in response 1o illusory contours, such as Kanizsa figures, which has been
reported in numerous studies (Maertens et al. 2008, Seghier and Vuilleurnier 2006, Halgren et al.
2003, Lee 2003, Lee and Nguyen 2001). The illusory contour activity emerges first in lateral
occipital cortex (LOC), then in V2 and finally in V1, strongly suggesting that the response is
driven by feedback connections. Generative models and Bayesian belief propagation have been
suggested to provide a theoretical framework that can account for feedback connectivity, ex-
plain psychophysical and physiological results, and map well onto the hierarchical distributed
cortical connectivity (Friston and Kiebel 2009, Dayan et al. 1995, Knill and Richards 1996,
Geisler and Kersten 2002, Yuille and Kersten 2006, Deneve 2008a, George and Hawkins 2009,
Lee and Mumford 2003, Rao 2006, Litvak and Ullman 2009, Steimer et al. 2009).

The present study explores the role of feedback in object perception, taking as a starting point
the HMAX model, a biologically inspired hierarchical model of object recognition (Riesen-
huber and Poggio 1999, Serre et al. 2007b), and extending it to include feedback connectiv-
ity. A Bayesian network that captures the structure and properties of the HMAX model is
developed, replacing the classical deterministic view with a probabilistic interpretation. The
proposed model approximates the selectivity and invariance operations of the HMAX model
using the belief propagation algorithm. Hence, the model not only achieves successful feedfor-
ward recognition invariant to position and size, but is also able to reproduce modulatory effects
of higher-level feedback, such as illusory contour completion, attention and mental imagery.
Overall, the model provides a biophysiologically plausible interpretation, based on state-of-the-
art probabilistic approaches and supported by current experimental evidence, of the interaction
between top-down global feedback and bottom-up local evidence in the context of hierarchical
object perception.
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1:1

Chapter 1

Introduction

Overview

Visual perception is a complex and largely unexplained process, which involves making sense of
two-dimensional ambiguous retinal images by taking into account contextual and prior know]-
edge about the world (Friston 2005, Hochstein and Ahissar 2002, Gilbert and Sigman 2007).
Although, traditionally, models of the visual system have focused on feedforward processes,
it is becoming increasingly clear these are limited in capturing the wide range of complexities
involved in visual perception. Recent reviews (Carandini et al. 2005, Olshausen and Field 2005)
suggest that approximately only 20% of the response of a V1 neuron is determined by conven-

tional feedforward pathways, while the rest arises from horizontal and feedback connectivity.

Anatomically, feedforward sensory pathways are paralleled by a greater number of top-down
connections, which provide lower areas with massive feedback from higher cortical areas (Felle-
man and Van Essen 1991). Feedback terminations in the primary visual cortex (V1) are func-
tionally organized and well-suited to centre-surround interactions, and unlike horizontal con-
nections, their spatial and temporal properties have been found to provide an explanation for
extra-classical distal surround effects (Angelucei and Bullier 2003). Experimental evidence
shows that feedback oniginating in higher-level areas, such as V4, inferotemporal (IT) cortex or
middle temporal (MT) cortex with bigger and more complex receptive fields, can modify and
shape V1 responses, accounting for contextual or extra-classical receptive field effects (Hupe
et al. 2001, Lee and Nguyen 2001, Murray et al. 2004, Sillito et al. 2006, Sterzer et al. 2006,

Huang et al. 2007).

A notable example is observed in V1/V2 activity in response to illusory contours with no direct
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retinal stimulation (e.g. Kanizsa figures), as reported in functional magentic resonance imaging
(fMRI]) (Maertens et al. 2008), electroencephalography (EEG) (Seghier and Vuillenmier 2006),
magnetoencephalography (MEG) (Halgren et al. 2003) and single-cell recording (Lee 2003, Lee
and Nguyen 2001) studies. The experiments show illusory contour-related activity emerging
first in Lateral Occipital Cortex (LOC), then in V2 and finally in V1, strongly suggesting that

the response 1s driven by feedback (Lee and Nguyen 2001, Murray et al. 2002).

While there is relative agreement that feedback connections play a role in integrating global
and local information from different cortical regions 1o generate an integrated percept (Bullier
2001, Lee 2003), several differing approaches have attempted to explain the underlying mech-
anisms. Generative models and the Bayesian brain hypothesis provide a framework that can
quantitatively model the interaction between prior knowledge and sensory evidence, in order to
represent the physical and statistical properties of the environment. This framework provides
an elegant interpretation of how bottom-up and top-down information across different cortical

regions can be combined to obtain an integrated percept.

Increasing evidence supports the proposal that Bayesian inference provides a theoretical frame-
work that maps well onto cortical connectivity, explains both psychophysical and neurophysio-
logical results, and can be used to build biologically plausible models of brain function (Friston
and Kiebel 2009, Dayan et al. 1995, Knill and Richards 1996, Geisler and Kersten 2002, Ko-
rding and Wolpert 2004, Yuille and Kersten 2006, Deneve 2008a). Within this framework,
Bayesian networks and belief propagation provide a rigorous mathematical implementation of
these principles. Belief propagation has been found to be particularly well-suited for neural im-
plementation, due to its hierarchical distributed organization and homogeneous internal struc-
ture and operations (George and Hawkins 2009, Lee and Mumford 2003, Rao 2006, Litvak and

Ullman 2009, Steimer et al. 2009).

The present study explores the role of feedback in object perception, taking as a starting point
the HMAX model, a biologically inspired hierarchical model of object recognition (Riesenhu-
ber and Poggio 1999, Serre et al. 2007b), and extending it to include feedback connectivity.

By replacing the classical deterministic view with a probabilistic interpretation, a Bayesian net-
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1.2. MAIN CONTRIBUTIONS

work that captures the structure and properties of the HMAX model is described. The propased
model also approximates the selectivity and invariance operations of the HMAX model using
the belief propagation algorithm. Hence, the model not only achieves successful feedforward
recognition invariant (o position and size, but is also able to reproduce modulatory effects of

higher-level feedback on lower-level activity, such as illusory contour completion.

The organization of this thesis is as follows. Chapter 2 reviews current evidence, theories and
computational models of object perception. A special emphasis is placed on those that suggest
moving from serial feedforward models towards more global and integrated approaches with

feedback-mediated interactions between cortical regions.

Chapter 3 introduces generative models and the Bayesian brain hypothesis, providing a signifi-
cant body of evidence that substantiates this approach. In the same chapter, Bayesian networks
and belief propagation are described in detail, including an illustrative example. Existing com-

putational models and plausible biological and cortical implementations are also reviewed.

Chapter 4 describes the methodology followed to develop the proposed model. This includes the
probabilistic interpretation of HMAX as a Bayesian network, the model architecture, learning
methods and feedforward and feedback functionality. Additionally, the chapter also describes
several approximations and sampling methods to deal with the large scale of the network, the

combination of information from multiple parents and the loops present in the network.

Chapter 5 presents the simulation results for feedforward invariant categorization and feedback

modulation, with a focus on illusory contour completion.

Chapter 6 provides a deeper analysis and discussion of the simulation results and of the use of
Bayesian networks to model object perception. Additionally, this chapter describes the model
in relation to experimental data and to previous computational models, and suggest future lines

of research,

Main contributions

The main contributions of this study are as follows:
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e A review and analysis of the literature regarding object perception, feedback connectiv-
ity, illusory contour completion, generative models, Bayesian networks and belief prop-
agation. This includes a detailed comprehensive explanation of belief propagation in

Bayesian networks with several novel and iffustrative examples.

o A Bayesian network implementing loopy belief propagation that captures the structure
and functionality of HMAX, a feedforward object recognition model, and extends it to

include dynamic recurrent feedback.

& Specific approximations and sampling methods that affow for the integration of informa-

tion in large-scale Bayesian networks with loops and nodes with multiple parents.

e Demonstration that the model can account for invariant object categorization, mimicking

the ventral path functionality.

¢ Demonstration that the model! can account qualitatively for iltusory contour formation

and other higher-level feedback effects such as priming, attention and mental imagery.
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Chapter 2

Object perception in the visual cortex

This chapter is intended to provide the necessary background knowledge and context to un-
derstand the motivation and methodological approach employed in the thesis, as well as the
relevance of the results and conclusions obtained. The work in this thesis extends an existing
feedforward model of object recognition to include feedback. Thus, Section 2.1 describes the
principles of object perception in the visual cortex, together with supporting experimental evi-
dence and existing computational models. Although object perception has been typically char-
acterized as a feedforward process, the crucial role of feedback connections in this process is
now widely accepted and strongly supported by experimental findings. Section 2.2 reviews ex-
perimental evidence and theoretical interpretations of the role of feedback in the visual system.
One of the most notable perceptual effects that has been attributed to feedback is the formation
of subjective contours, i.e. illusory and occluded contours. The model proposed in this thesis
offers a plausible explanation for this phenomenon and provides simulation results in support.

The basis of subjective contour formation is therefore thoroughly explored in Section 2.3.

Object recognition
2.1.1 Principles and experimental evidence

Object perception is an essential part of this thesis as it supplies the context and framework
which is used to investigate and try to find answers to the research questions. These questions
concern the functional role of feedback connections in the visual system, and, more precisely,
along the object perception pathways. However, it is impractical to provide a comprehensive
analysis of visual perception, as this is a vast area of research in itself, so this chapter is limited

to covering the relevant aspects for this thesis. Therefore in this section, we start by describing
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the principles underlying object recognition in the visual cortex, which can be understood as
the initial feedforward processing stage leading to fast object categorization and identification

(Serre et al. 2007b),

Note this section includes a general description of all the different areas involved in visual pro-
cessing and an overview of the interactions which lead to an integrated percept. However, the
section focuses on the feedforward processing strategies which lead to rapid object categoriza-
tion, while Section 2.2 below deals specifically with feedback and the integration of information

across the visual system.

2.1.1.1 Hierarchical distributed organization,

The visual system is capable of transforming light falling on the retina into neuronal electrical
signals, which give rise to subjective visual perception. This is usually achieved in time periods
measured in milliseconds, but requires complex information processing and encompasses sev-
eral stages ol analysis across many different regions. The macaque visual system, for example,
has been classified into 32 distinct areas interconnected via over 300 reciprocal anatomical path-
ways (Felleman and Van Essen 1991), shown in Figure 2.1a. These areas have a hierarchical
organization starting at the lateral geniculate nucleus (LGN), ascending through primary visual
cortex (V1) and finishing in higher cortical structures. Each of these areas is considered (o be
functionally specialized, and embodies in itself a set of subdivisions (e.g. 6-layer cortical struc-
ture). Two major parallel processing streams have been identified in the visual hierarchy: the
dorsal or where stream, and the ventral or what stream, schematically represented in Figure 2, 1b

(Van Essen and Gallant 1994,
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The dorsal stream originates in the magnocellular layers of the retina and LGN, then projects
onto magno-dominated regions of V1 and upwards into the thick regions of secondary visual
cortex (V2). A high incidence of cells selective for direction of motion have been found in
these regions, The subsequent extrastriate arcas involved are medial temporal (MT) cortex and
medial superior temporal (MST) cortex, considered to be responsible for several motion analysis
processes. These in turn project onto the posterior parietal (PP) cortex involved in higher level
functions such as analyzing spatial relations and controlling eye movements. Overall the dorsal,
or where pathway, which spreads along the parietal cortex, is mainly concerned with space,

movement and action (Van Essen and Gallant 1994),

On the other hand, the ventral stream, or what pathway, is mostly concerned with object identi-
fication and perception. It encompasses the blob-dominated (BD) and the interblob-dominated
(ID) parallel streams, both of which receive input mainly from parvocellular and koniocellular
neurons in subcortical regions. The BD stream, which mediates color perception, originates in
the blob compartments of V1 and feeds to the thin stripe regions of V2. The ID stream, respon-
sible for form perception, projects from inter-blob compartments of VI onto the inter-stripe
regions of V2. Both streams converge onto the extrastriate regions V4 and IT cortex, which are

associated with high-level functions of pattern recognition (Van Essen and Gallant 1994),

The complex interactions which exist between these two parallel processing pathways are still

not well understood (Van Essen and Gallant 1994, Nassi and Callaway 2009). To make things

!'Caption for Figure 2.1. a) Hierarchical structure of areas involved in visual processing in the macaque. The
diagram shows 32 different areas linked by 187 connections, the majority of which are reciprocal pathways. It high-
lights the complexity and intricate interdependency of regions in the visual system (Felleman and Van Essen 1991).
b) Functional schematic representation of the two hierarchical parallel visual processing streams (ventral/what and
dorsal/where) in the macaque. Boxes represent visual regions, while lines represent the main connection pathways
(usually bidirectional). lcons represent typical physiological and functional properties attributed to each region. The
where path originates in the magnocellular layers of the retina and LGN (gray), then projects onto magno-dominated
regions of VI and upwards into the thick regions of V2 (red). Cells in these regions typically show selectivity to
direction of motion. The subsequent exiraestriate areas involved are MT and PP (red), responsible for several mo-
tion analysis processes. These in turn project onto the PP cortex (orange) involved in higher level functions such as
analyzing spatial relations and controlling eye movements. The whar path encompasses the blob-dominated (BD)
(green ) and the interblob-dominated (ID) (blue) parallel streams, both of which receive input mainly from parvocel-
lular (P) (pink) and koniocellular (K (yellow) neurons in subcortical regions. The BD stream, which mediates color
perception, originates in the blob compartments of V1 and feeds to the thin stripe regions of V2. The 1D stream,
responsible for form perception, projects from inter-blob compartments of V1 onto inter-stripe regions of V2. Both
streams converge onto the extraestriate regions V4 and I'T cortex which are associated with high-level functions
of pattern recognition (Van Essen and Gallant 1994), Pathways are partly based on anatomical information from
Felleman and Van Essen (1991), represented in hgure a). Note colors in a) do not correspond with colors in b),
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even more complicated, there are also direct connections between regions separated by several
hierarchical levels, such as VI and MT (Felleman and Van Essen 1991). Further, each region
may perform different visual processing functions at different times, requiring an intricate flow
of information spanning multiple cortical areas (Bullier 2001, Lee et al. 1998). How this infor-
mation is combined (o generate a global percept, particularly for object perception, is discussed
in Section 2.2, and is one of the key elements of this thesis. Therefore it is vital to provide a

prior deeper analysis of the properties observed along the ventral processing stream.
2.1.1.2 Receptive field selectivity and invariance.

One of the main properties of the visual hierarchy concerns the selectivity of neurons at each
level. The receptive field, or the stimulus which elicits the maximum response of a neuron,

shows progressive increases in size and complexity as one ascends in the hierarchy (Figure 2.2).

Lateral geniculate nucleus (LLGN) cells, which receive retinal input, respond to stimuli within
relatively small concentric receptive fields with a center-surround organization. Within the vi-
sual system, LGN neurons are those whose response is better captured by existing models, even
when using complex stimuli. These models have progressively been extended to include both
linear and nonlinear components and gain-control mechanisms, as described later in this section,
However, although these manage to predict a number of nonlinear phenomena (Carandini et al.
2005), they still fail to capture response properties emerging as a consequence of contextual

modulation,

This is not surprising, firstly because even retinal cells, which project onto LGN and have
been conventionally treated as simple prefifters for visual images, appear to be engaged in more
complex computations, such as global motion detection (Gollisch and Meister 2010). Secondly.
most LGN models focus on these feedforward retinal connections, which only account for ap-
proximately 15 % of the LGN cell input, whereas feedback connections, presumably involved

in contextual processing, can account for over 30 % of their synaptic input.

V| presents a much wider and more complicated distribution of receptive fields than retina and

thalamus. Neurons in V1 can respond selectively to a variety of visual input attributes such as

fine orientation, direction of movement, contrast, vefocity, cofour, and spatial frequency. These
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properties arise from retinal ganglion cells and LGN cells, which also exhibit some selectivity
to contrast, velocity, colour and spatial frequency. V1 neurons with similar tuning properties
tend to group together, leading to the classical columnar organization of ocular dominance and

orientation preference in cortex (Hubel and Wiesel 1965).

Hubel and Wiesel (1965) were the first to propose the hierarchical organization of receptive
fields, such that VI simple cells are built from converging LGN cells aligned in space to pro-
duce the elongated on-off subregions observed. Additionally, the model provided the first clas-
sification of V1 cells, dividing them into simple and complex. Cells fell into the simple category
if their receptive fields could be separated into on and off subregions, which could be linearly
summated to predict the cell’s response to different artificial stimuli. The rest of the cells, which
did not have separate subregions, were categorized by exclusion as complex cells. However, the
majority of V1 cells fall into the complex category. As will be described further down, there are

also numerous variants within the simple and complex categories.

Several extensions improved the initial Hubel and Wiesel receptive field model of VI neurons.
Firstly, the linear filter was expanded to include a temporal dimension. Spatiotemporal receptive
fields not only take into account the spatial profile, but also the temporal course of the response,
and have proved to be crucial in understanding direction selectivity. This first filtering stage
was shown (o be weil approximated by 2-dimensional Gabor fifters (Jones and Paimer {987].
Secondly, a nonlinear stage was added, which described how the linear filter outputs were trans-
formed into an instantaneous firing rate via a nonlinear Poisson process. The two-stage model
was therefore called the linear-nonlinear (LLN) model and provided a much better prediction of
neuron responses than strictly linear filters, specially for retina and thalamic cells (Carandini

et al. 2005).

Nonetheless, the model still had significant limitations (Ringach 2004), [t was unable to account
for the dependence on contrast of several response properties, such as saturation and summation
size. For example, the greater the contrast of the stimulus, the smaller the degree of spatial

summation, and thus the receptive field size. Furthermore, the LN model could not explain

surround suppression, such as stimuli at an orthogonal orientation inhibiting the cells’ response.
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This led to an additional extension of the model to include gain control mechanisms, such that
the output of the linear filter is divided by the overall activity of a normalization pool. The
normalization pool typically includes cells in the near surround, but is not limited to those with
similar tuning profiles, thus providing a normalization mechanism, which solved many of the

previous limitations.

With respect to complex cells, the characterization of their receptive fields is less well under-
stood and is still a topic of debate. Most models are derived from the original Hubel and Wiesel
proposal and therefore assume complex receptive fields arise from combining the linear filters
of a group of converging simple cells tuned to the same orientation. The most widespread ex-
ample of this type of circuit is known as the energy model, which consists of two phase-shifted
linear filters, tuned for orientation and spatial frequency, arranged in quadrature. The output of
the filters is squared and then summed together to produce the response. Thus, the response witl

be high not only for images resembling the filters, but also for their inverses (Ringach 2004).

A recent study by Sasaki et al. (2010) analyzed the structure and and spatial relationship be-
tween the internal subunits and the overall receptive fields of complex cells. It concluded that
complex cell subunits cannot be considered equivalent to simple cells, suggesting that complex
cell receptive fields are constructed by a more a elaborate combination of linear filters than that
proposed by Hubel and Wiesel. Alternative and more successful models of complex ceil re-
sponse, such as the spike triggered covariance analysis, provide a more accurate prediction of
the cell’s response to orientation and direction. This model is able to identify the different sub-
units present in the complex cell receptive field and quantify their contribution to the response

of the cell (Carandini et al. 2005).

However, all existing models have been strongly influenced, and perhaps wrongly biased, by
the original hierarchy model with two distinct neuron categories. As an alternative, it has been
suggested that receptive fields in VI lie along a continuum spectrum, with simple and complex
cells at each end, allowing for additional cell types which would share properties of both simple
and complex categories (Ringach 2004). A recent study, still in a preliminary stage, further

challenges the classical model by suggesting cell response properties are a function of the type
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of input employed (Fregnac 2010). Results showed the same neuron could exhibit simple or

complex properties depending on whether the images presented dense or sparse noise.

It can easily be concluded that many crucial elements are still missing from current models of
V1 response. Estimates suggest only 35% of the vanance in natural images can be accounted
for (Olshausen and Field 2005). A general point of agreement indicates the necessity to move
beyond bottom-up filtering models to incorporate top-down feedback modulation as one of the
basic components in any model of visual perception (Lee 2003, Olshausen and Field 2005,
Carandini et al. 2005). This is not an easy task, as the response of neurons in higher visual

processing areas is still very poorly understood.

The response properties of neurons in V2, which receive projections from area V1, are not
nearly as well documented, and it is therefore uncertain what type of stimuli cause V2 neu-
rons to respond optimally. Nonetheless, Hegde and Van Essen (2007) studied the responses of
a population of V2 neurons to complex contour and grating stimuli. They found several V2
neurons responding maximally for features with angles, as well as for shapes such as intersec-
tions, tri-stars, fivepoint stars, circles, and arcs of varying length. Additionally, the receptive
field sizes of V2 cells are approximately twice the size of those of V1. For example, at a retinal
eccentricity of 2°, VI receptive field size is ~ 2° of visual angle, while V2 receptive field size
is ~ 4” (Angelucci et al. 2002). This is consistent with the hierarchical increase in the receptive
field size and complexity proposed at the beginning of this section. Crucially, the increase of
RF size implies a decrease in spatial resolution, which is a key aspect of the modelling study in

this thesis.

Our current understanding of response selectivity in V4 neurons is also congruent with the hier-
archical increase in size and complexity (Hegde and Van Essen 2007). However, at this level it is
more difficult to characterize the exact receptive field of neurons, as these exhibit a wider range
of preferred stimuli, and stronger invariance to stimulus transformations. Nevertheless, lesions
of V4 in the macaque have caused impairments in pattern discrimination tasks (Van Essen and
Gallant 1994). Further studies have shown V4 neurons can be tuned to shapes with specific

type of boundary conformation at a given position within the stimulus, e.g. concave curvature
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Figure 2.2: Idealized representation of the increase in receptive field size and complexity, from
low-level to high-level areas of the visual system. Top-left: schematic representa-
tion of the small receptive fields wned to simple features such as lines or edges,
characteristic of V1. Top-middle: representation of typical V4 receptive fields, big-
ger and exhibiting more complex spatial profiles than in V1. Top-right: Schematic
representation of large and invariant receptive fields in IT associated with objects,
such as faces.

at the right, while being insensitive to other parts of the shape (Pasupathy and Connor 2001).
Responses showed invariance to local transformations, such as small translations. Pasupathy
and Connor (2002) also demonstrated how complete shapes were characterized as aggregates
of boundary fragments represented by populations of V4 cells. This speaks for a representa-
tion of a complex stimulus in terms of its constituent parts. Therefore it can be argued that V4

response profiles roughly resemble shapes or small object parts of different complexities.

In the primate IT cortex neurons have been found to be selective to view-dependent repre-
sentation of complex two-dimensional visual patterns, or objects such as faces or body parts
(Logothetis et al. 1994, 1995). However, the way in which the objects are represented in IT
is still an active arca of research. Some results suggest objects are represented by a combina-
tion of cortical columns, each of which represents a visual feature, as depicted in Figure 2.3a.
Others indicate not all columns are associated with a particular feature. A simpler object can
sometimes be encoded by activating cortical columns that were not active for the more complex
one. This suggests instead that objects arise as a combination of active and inactive columns,
following sparse coding strategies (Tsunoda et al. 2001). Sparse coding refers to a type of neu-

ral code where each item is represented by the strong activation of a relatively small subset of
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Figure 2.3: a) Representation of complex objects in IT area, through the activation of cortical
columns. In this example, stmplified sttmuli (cat’s face sithouene) elicit only a
subset of the regions evoked by the complex stimuli (complete cat) Tsunoda et al.
(2001). b) Selectivity of cells in IT to different spatial arrangements of the parts
of an object image. This suggests the spatial arrangement of object parts is also
represented in 1T (Yamane et al. 2006).

neurons. This could be related to the hierarchical categorical representation of 1T populations,
demonstrated recently by Kiani et al. (2007). In this study, cluster analysis was employed to
show that IT populations’ responses reconstruct part of our intuitive category structure, such as
the global division into animate and inanimate objects, or faces which clustered into primate

and non-primate faces.

Interestingly, Yamane et al. (2006) found neurons were sensitive to a particular spatial arrange-
ment of the parts, which suggests an encoding of the spatial relationship between object parts
(Figure 2.3b). The counterpart of the primate’s IT in humans is thought to be the lateral occipi-
tal complex (LOC), which also exhibits a feature-based representation of the stimulus (Tanaka
1997). It has been associated with the representation of object parts (Hayworth and Biederman
2006), as well as with higher-level functions such as the perception of 3D volume from 2D

shapes (Moore and Engel 2001).

Invariance to certain transformations of the input image also appears 10 be a prominent prop-

14
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erty of higher-level neural responses. Population responses in I'T have been shown to provide
information about the identity and category of a novel object, generalizing over a range of posi-
tions and scales (Hung et al. 2005). Similar studies also show response invariance to the angle
of view, and to intra-category identity (Hoffman and Logothetis 2009). Recently, Rust and
DiCarlo (2010) demonstrated that both selectivity and invariance increased from V4 to IT, In
general, higher levels in the perceptual hierarchy achieve higher degrees of invariance, such as
view-invariant recognition of objects by interpolating between a number of stored views (Logo-
thetis et al. 1994). Strikingly, Quiroga et al. (2005) demonstrated how neurons in hippocampus
were able to respond selectively to more abstract concepts, such as “the actress Halle Berry'. A
particular neuron responded to drawings of her, herself dressed as Catwoman (a role she played
in a movie), and to her written name. However, invariance to these attributes demonstrates an

invariance beyond visual features.

2.1.2 Theoretical and computational models

Many computational models of object recognition exist in the literature. These can be divided
into two broad categories: object-based and view-based. In the first group of models, the recog-
nition process consists of extracting a view-invariant description of the object’s structure which
can then be compared to previously stored object descriptions. This can be done, for example,
by decomposing the object into basic geometrical shapes which allows the structure of the ob-
Jject to be extracted independently of the viewpoint. The second category of models assumes
objects are represented as a collection of view-specific features. The different views correspond
to different image-based appearances due, for example, to different viewpoints or ifluminations.
These models usually rely on higher visual areas interpolating between several view-tuned units

lo create a view-invariant or object tuned response,

In this section, only those models relevant to this thesis are outlined. In particular the focus
is placed on hierarchical view-based feedforward models constrained by the anatomical and
physiological properties of the ventral path. These models usually span several regions of the
visual cortex and therefore their biological realism is usually restricted to the network level of

description,
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2.1.2.1 HMAX /'The Standard Model’

In 1999, Riesenhuber and Poggio presented a landmark paper describing the fundamental ele-
ments of object recognition models in the visual system (Riesenhuber and Poggio 1999). These
principles were exemplified in a computational model, HMAX, also known as the standard
model. 1t was labelled standard as it atempts to consolidate in a single model many of the
widely accepted facts and observations in the primate visual system (more specifically, the ven-
tral path). It has subsequently been employed to simulate other phenomena such as attention
(Walther and Koch 2007), biological motion (Giese and Poggio 2003) and learning using spike-
time dependent plasticity (STDP) (Masquelier and Thorpe 2010). It is also the backbone of the
architecture used for the model in this thesis, and for that reason it will be described in greater

detail in this section.

The HMAX model attempts to reproduce activity and functionality observed along the ventral
visual pathway, comprising areas V1, V2, V4 and IT. The model is based upon widely accepted
basic principles such as the hierarchical arrangement of these areas, with a progressive increase
in receptive field size and complexity of preferred stimuli, as well as a gradual build-up of
invariance to position and scale as we move further up the hierarchy. These concepts have been

described in Section 2.1,

Several versions of the model have been published, although they all share the same underlying
structure. It usually comprises three different levels representing V1, V2/V4 and IT, which are
subdivided into two layers, simple and complex. Figure 2.4 shows a schemaltic representation
of the HMAX model including the different types of units and operations, and the mapping onto

the visual cortex.

Two operations are performed in alternating layers of the hierarchy: the invariance operation,
which occurs between layers of the same level (e.g. from S1 to C1): and the selectivity operation
implemented between layers of different levels (e.g. from CI to §2).

[nvariance is implemented by applying the max function over a set of afferents selective to the

same feature but with slightly different positions and sizes. Thus, the response of a complex
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Figure 2.4: Schematic representation of the HMAX model (right) with tentative mapping over
the ventral stream in the primate visual cortex (left). The model attempts to repro-
duce activity and functionality observed along the ventral visual pathway, com-
prising areas V1, V2, V4 and IT. The model is based upon widely accepted basic
principles such as the hierarchical arrangement of these areas, with a progressive
increase in receptive field size and complexity of preferred stimuli, as well as a
gradual build-up of invariance to position and scale as we move further up the hi-
erarchy. Two operations are performed in alternating layers of the hierarchy: the
invariance operation (the max function over a set ol afferents selective to the same
feature) which occurs between layers of the same level , e.g. from S| to C1 (dotted
circles and arrows); and the selectivity operation (a template-matching operation
over a set of afferents tuned 1o different features) implemented between layers of
different levels , e.g. from C1 10 S2 (plain circles and arrows). The main route to
IT is denoted with black arrows, and the bypass route is denoted with blue arrows,
Colours indicate the correspondence between model layers and cortical areas. The
table (right) provides a summary of the main properties of the units at the different
levels of the model (Serre et al, 2007b).
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unit will be equivalent 10 the response of the afferent simple unit with the highest value. If any
of the simple units within the complex unit’s spatial pooling range is activated, then the complex
unit will also emit an equivalent response. This means complex units achieve a certain degree

of invariance to spatial translation and scale.

Selectivity is generated by a template-matching operation over a set of afferents tuned to differ-
ent features, implemented as a Radial Basis Function network (Bishop 1995). First, a dictionary
of features or prototypes is learned. Each prototype represents a specific response configura-
tion of the afferent complex units from the level below, feeding into the simple unit in the level
above. Each simple unit is then tuned to a specific feature of the dictionary, eliciting the max-
imum response when the input stimuli in the spatial region covered by the unit matches the
learned feature. The response is determined by a Gaussian tuning function which provides a
similarity measure between the input and the prototype. The mathematical formulation for both

the selectivity and invariance operations is described in Section 4.4,

With respect to the implementation of the top level, in the first proposed model (Riesenhuber and
Poggio 1999) this was described as a set of view-tuned units connected to the output of the C2
layer. The weights were set so that the center of the Gaussian associated with each view-tuned
unit corresponded (o a specific view of an input image. More recent versions have employed
C2 features as the input to a linear support vector machine (Serre et al. 2005b, 2007c¢), or have
implemented an additional unsupervised S3/C3 level analogous to the intermediate level (Serre
et al. 2005a). In one particular implementation the model was extended 10 include an additional
supervised S4 level trained for a categorization task, possibly corresponding to categorization
units in prefrontal cortex (Serre et al. 2007b,a). A further extension, consisting of two extra
sublevels S2b and C2b, has enabled some of the models to account for bypass routes, such as

direct projections from V2 to I'T which bypass V4 (Serre et al. 20054, 2007b.a).

Learning in the model takes place at the top level in a supervised way, while at the intermediate
levels the feature prototypes are learned in an unsupervised manner. The model implements
developmental-like learning, such that units store the synaptic weights of the current pattern of

activity from its afferent inputs, in response to the part of image that falls within its receptive
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field. The model simulates the temporal variation in the input images (motion) during learning
by generalizing the selectivity of the unit (o units in the same feature map across scales and
positions. Furthermore, a recent study showed how spike-time dependent plasticity could be
used to generate the selectivity weights between layers C1 and S2 (Masquelier and Thorpe

2007).

On the other hand, learning is not explicitly implemented at the bottom level, as the filter re-
sponses are hard-wired. These were initially characterized as derivative of Gaussian functions
(Riesenhuber and Poggio 1999). In later versions (Serre et al. 2007¢,b,a, 2005a) they were re-
placed by Gabor functions and the receptive field size and pooling parameters of the fower and
intermediate levels were more closely tuned to anatomical and physiological data (Serre and

Riesenhuber 2004),

It is important to emphasize the relation between the HMAX model and neurophysiology. With
respect to the response of units at different levels, the Gabor filter has been shown to provide a
good fit with data from cat striate cortex (Jones and Palmer 1987). Moreover, the model param-
eters were adjusted so that the tuning profiles of S1 units match those of V1 parafoveal simple
cells in monkeys. Further adjustment of the pooling parameters resulted in the tuning proper-
ties of S1 and C| units being in good agreement with physiological data on simple and complex
cells. This provides realistic values for the receptive field size, spatial frequency and orienta-
tion bandwith of the lower level model units (Serre and Riesenhuber 2004), Nonetheless, it is
still a very simplified account of V1 neuron properties. For example, the model doesn’t make
any distinction between the parvocellular and magnocellular streams and ignores V1 neurons
concentrated in layer 4C beta which lack orientation specificity.

Similarly, the S2-C2 hierarchy was shown to produce both selectivity and invariance that matches
observed responses in V4 (Cadieu et al. 2007). Regarding the top-level units in the model, these
present bigger receptive ficlds and are tuned to complex composite invariant features, which are
consistent with the so-called view-tuned cells present in the higher levels of the ventral pathway,

such as the IT cortex (Hung et al. 2005, Serre et al. 2007a.c).

The two operations performed in the model, max for invariance and Gaussian-tuning for selec-

19




2.1. OBJECT RECOGNITION |

tivity, stem from the original Hubel and Wiesel proposal (Hubel and Wiesel 1965), and have
been supported by posterior physiological findings. Neurons in area V4 in the primate (Gawne
and Martin 2002) and complex cells in the cat visual cortex (Lampl et al. 2004) have both been
found to show responses that can be predicted relatively well by the max operation. In the latter
study, when optimal and non-optimal bars were presented simultaneously, the response of the
complex cells closely resembled the response when the optimal stimulus was presented alone.
A recent study (Masquelier et al. 2007) demonstrates the plausibility of this mechanism, by
learning complex cell invariance from natural videos. For the selectivity operation, a normal-
ized dot product operation followed by a sigmoid function has been suggested as a biologically

plausible implementation (Serre et al. 2005a, 2007¢).

Although HMAX is a relatively abstract model, several attempts have been made to show its
validity at a lower level of description. The max operation, which achieves invariance, has
been shown to be implementable by different biologically plausible circuits, the most likely
being the cortical microcircuits consisting of lateral and recurrent inhibition (Yu et al. 2002).
[nterestingly, a similar study (Kouh and Poggio 2008) extended the previous results showing
how the two distinet neural operations, selectivity and invariance, were approximated by the
same canonical circuit, involving divisive normalization and nonlinear operations. The circuit
was based on neurophysiological data suggesting the existence of a basic cortical structure
similar within and across different functional areas. At the biophysical level of description,
Knoblich et al. (2007) proposed a detailed model that could approximate the HMAX operations,
based on standard spiking and synaptic mechanisms found in the visual and barrel cortices.
Their model was shown to implement both the invariance and tuning operations, satisfying
the timing and accuracy constraints required to perform object recognition in a biologically
plausible manner.

Taken as a whole the HMAX model provides useful insights into how the selectivity and invari-
ance properties observed along the ventral path can be gradually built. It is grounded on widely
accepted neurophysiological principles, such as a hierarchical increase in receptive field size

and complexity. The model provides a relatively good fit to V1 cells” tuning parameters and
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shows high level responses that are consistent with our current knowledge of extrastriate cortex
functionality. These responses reproduce V4 shape selectivity distributions and predict human

performance during a rapid categorization task.

The model also has several serious limitations, Firstly, the framework relies entirely on a feed-
forward architecture, ignoring many connections which are known to exist along the visual
pathways. Both long-range horizontal and feedback connections are likely to play an important
role in modulating and integrating information across cortical regions. To what degree these
are involved in early stages of immediale object recognition is still an open question (Hochstein
and Ahissar 2002, Lee 2003). Secondly, at present the model only provides a static account
of the recognition process, i.e. each unit produces a single response for a given input image.
This clearly doesn't capture the complexity and dynamics of neural computations in cortex,
and omits challenging aspects, such as the temporal evolution of responses and the interplay
between excitation and inhibition to achieve stability. Thirdly, learning in the model occurs of-
fline during an initial training stage, and assumes a set of hard-wired features in the lowest level
(S1). The model could be improved by adding online learning and adaptation mechanismns,
such as Hebbian or spike-time-dependent plasticity, and possibly learning S| tuning profiles in

an unsupervised manner,
2.1.2.2 Neocognitron

Previous to HMAX, Fukushima had proposed the Neocognitron model (Fukushima [988) which,
due to its functional similarities, can be considered one of HMAX's predecessors. The model
consists of a hierarchical network that can be trained to perform object recognition based on the
similarity in shape between patterns. Recognition is not affected by deformation, changes in
size or shifts in the position, thus resembling the invariance properties captured by HMAX and
present in the visual system. Similarly, each level of the network consists of simple cells, which
extract the features; and a layer of complex cells, which allow for the invariance properties by

pooling over a group of simple cells.

The main attribute that differentiates the previous two models is the max operation introduced

in HMAX complex layers as a new pooling mechanism. This allows HMAX to isolate the
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response from the feature of interest from irrelevant background activity, increasing the recog-
nition robustness 1o translations, scaling and clutter. Furthermore, the Neocognitron places a
stronger focus on pattern recognition and less emphasis on capturing the anatomical and physi-

ological constraints imposed by the visual system.
2.1.2.3 Fragment-based hierarchies

Ullman (2007) proposes representing objects within a class as a hierarchy of common image
fragments. These fragments are extracted from a training set of images based on criteria which
maximize the mutual information of fragments, then used as building blocks for a variety of
objects belonging to a common class. The fragments are then divided into different types within
each class of object, e.g. eyes, nose, mouth ete. for face recognition. During classification, the
algorithm then selects the fragment of each type closest to the visual input following a bottom-
up approach. Evidence from all detected fragments is combined probabilistically to reach a
final decision. By using overlapping features with different sizes and spatial resolutions, the
model is able to achieve a certain degree of position invariance. Later versions of the model

also include top-down segmentation processes, which are beyond the scope of this chapter.

The fragment-based method introduces several novelties in relation to previous feature-based
approaches: object fragments are class specific, are organized into fragment types with vary-
ing degrees of complexity, and employ new learning methods to extract the most informative
fragments. However, the model is derived from computer vision approaches, hence relating
to the visual system only at a very abstract level. Some basic principles of hierarchical ob-
ject recognition are captured and the author puts forward psychophysical and physiological
evidence suggestive of class specific features emerging in the visual system during category
learning. Feature tuning is not based on physiological data (e.g. VI features are richer than the
standard model suggests), connectivity is nol derived from cortical anatomy but from the image

fragmentation process, and a biologically plausible implementation of the model operations has

not been demonstrated.
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2.1.2.4 Visnet

The model (Wallis and Rolls 1997, Rolls and Milward 2000) comprises a series of competitive
convergent networks organized in four hierarchical layers. The networks allows neurons to
learn combinations of features that occur in a given spatial arrangement. The feedforward
connections converging on a cell at a given layer originate from a small region of the preceding
layer, hence allowing an increase of the receptive field size through the layers. Most importantly,
a modified Hebb-like learning rule called the trace rule, allows neurons to achieve invariance to

several transformations, analogously to I'T cortex neurons.

The trace learning rule incorporates a decaying trace of each cell’s previous activity, hence
adapting synaptic weights according not only to current firing rates, but also to the firing rates
elicited by recently seen stimuli. By studying natural image statistics, it is easy to conclude
that slowly changing input over a short period of time is likely to belong to the same object.
Therefore, by presenting sequences of gradually transforming objects, the cells in the network

learn to respond similarly to all the natural transformations of an object.

In contrast to the Neocognitron and HMAX, which employ different mechanisms to attain in-
variance and selectivity, Visnet manages (o resolve both using an homogeneous architecture.
This is achieved by implementing the trace rule, a biologically plausible self-organizing com-

petitive learning method.

One of the main limitations of the model is that it has been trained and tested with relatively
few stimuli, compared to other models such as HMAX. The later version of the model, Visnet2
(Rolls and Milward 2000), increased the number of stimuli in the dataset, although it was still
limited to images of faces and only invariance to translation (faces at different locations) was

tested.
2.1.2.5 Slow Feature Analysis

This method, introduced by Wiskott, allows the model to extract a set of invariant or slow-
varying features from temporally varying signals. It can be used to build simple models of

object recognition in the visual cortex, by constructing a hierarchical network of these slow-
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feature analysis modules. Results show this type of network can learn invariance to translation,
size, rotation and contrast, achieving good generalization to new objects even using only a small

training dataset (Wiskott and Sejnowski 2002, Mathias et al. 2008).

The slow feature principle is closely related to the trace rule employed in the Visnet model
(Rolls and Milward 2000) previously described. In contrast, the main advantage of slow feature
analysis is that it is not limited to extracting a single invariant representation, i.e. object iden-
tity, but also maintains a structured representation of other parameters such as object position,

rotation angles and lighting direction.

High-level feedback

The previous section acts as an introduction to the visual system and in particular to object
recognition. This provides the context to discuss the role of high-level feedback in percep-
tion, exposing many of the phenomena which remain unexplained and challenging some of the
existing classical concepts. To avoid misinterpretation, we define feedback as activity origi-
nating in a high-level region targeting a lower-level region, which therefore excludes intralevel

interlaminar activity.
2.2.1 Experimental evidence
2.2.1.1 Anatomical perspective

Irrom the anatomical point of view, feedback connections extensively outnumber feedforward
sensory pathways (Felleman and Van Essen 1991, Macknik and Martinez-Conde 2007). The
great majority of connections between regions shown in Figure 2.1a are reciprocal, which pro-
vides lower arcas with massive leedback from higher cortical areas. For example, cat LGN
interneurons receive 25% of their mputs from the retina, while 37% come from cortex; for
LGN relay cells, the corresponding percentages are 12% and 58% (Montero 1991). The same is
true for thalamic relay nucleus (TRN), which mediates the transfer of information to the cortex,
where the largest anatomical projection is from connections of cortical feedback and not the
ascending collaterals of relay cells (Sillito and Jones 2008). For LGN relay cells it is generally

believed that feedback exerts a modulatory influence, whereas cortical feedback to TRN is more
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likely to drive cell responses. Synchronized feedback from layer 6 cells is likely to exert rapid
and very strong effects on TRN cell responses. Sillito and Jones (2008 argue this might be a
consequence of the greater proportion of AMPA receptors that are found on TRN cells vs. relay

cells.

In the primate area V1 it has been estimated that less than 2% of the synaptic input to layer 4Ca
originated from the magnocellular layers of the LGN, and between 4% and 9% of synaptic input
to layer 4Cb originated from the parvocellular layers of the LGN Peters et al. (1994). Despite
these astonishing facts, which suggest feedback must have an important role in cortical function,
feedback connections have been largely ignored, or considered 1o play a minor function, until

recent years.

It has been suggested that the massive feedback versus feedforward connectivity ratio does not
necessary imply feedback connections are functionally more relevant. Macknik and Martinez-
Conde (2007) argue that because higher visual areas are more selective than lower visual ar-
eas, they require larger connectivity to fill the entire lower-level feature space. Otherwise they
would impose higher-level receptive field properties on the lower level. For example, for each
unoriented thalamocortical feedforward projection, there must be many differently oriented cor-
ticothalamic feedback connections to represent the entire orientation space at each retinotopic
location, Otherwise, LGN receptive fields would show a substantial orientation bias. This
suggests the relative large number of feedback connections would be necessary even if their
functional role was limited in comparison to that of feedforward connections, e.g. if feedback

was limited to attentional modulation.

Macknik and Martinez-Conde (2009) further argue for a weaker and more modulatory role
for feedback connections than initially suggested by anatomical considerations, based on the
following three arguments. Firstly, whereas the thalamocortical feedforward connections may
be potentially active irrespective of stimulus orientation at a given time, only a small fraction
of the corticothalamic feedback connections (e.g. a specific orientation) will be functionally
active. Secondly, the no-strong-loops hypothesis states that neural networks can have feedback

connections that form loops, but they will only work if the excitatory feedback is not too strong.

]
n
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Thirdly, physiological findings, some of which are described further on in this section, indicate

feedback plays a modulatory rather than a driving role.

A number of clarifications and remarks on Macknik’s theory are now described. Firstly, it is
important to make clear that the feedforward projection from an unoriented LGN cell to several
V1 oriented neurons consists of a single axonal fibre which branches at the end to make the
different synaptic connections. However, each V| neuron requires an individual axonal fibre to

feedback 1o the original LGN neuron. Thus, although the number of feedforward and feedback

synaptic connections is equivalent, a larger number of feedback axonal fibres is required. The
explanatory diagram included in Figure 81.3 in Macknik and Martinez-Conde (2009) shows a
one-to-one relationship between feedforward and feedback connections (depicted as arrows),
which contrasts with the one-to-many relationship described in the text, and may lead to confu-
sion.

Furthermore, it is not clear whether Macknik’s principle generalizes to higher extrastriate areas,
presumably with a larger feature space at each location and consequently a more sparsely dis-
tributed connectivity pattern. For instance, it seems unlikely that a neuron coding for a specific

orientation in V1 receives feedback from all the complex features coded in V4 at that location.

Overall, Macknik's claims seem reasonable and provide an explanation for the large ratio of
feedback to feedforward projections in the visual system. Nonetheless, after taking into ac-
count this consideration, the effective connectivity ratio is still significant (one-to-one), thus
still constituting an argument for a potentially strong functional role for feedback connections.
With respect to the relatively weak modulatory effects attributed to feedback, it must be noted
that the modulatory strength might be dependent on the characteristics and context of the input
stimuli. For example, the weight of top-down feedback might be stronger for more ambiguous

images.
2.2.1.2 Physiological evidence

In line with the functional role of feedback suggested by anatomical considerations, from a
physiological perspective, there exists abundant evidence showing the modulatory effects of

high-fevel feedback on fower levels. The most simple example comes from cortical areas feed-
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ing back to LGN, which sharpens the synchronization of spikes driven by contours precisely
aligned over the LGN RF, leading to a sharpening of the orientation tuning curves of VI cells
(Andolina et al. 2007, Sillito et al. 2006). Similarly, feedback from area V2 modulating V1
has been extensively reported. For example, inactivation experiments of area V2 (Angelucci
et al. 2002, Angelucci and Bullier 2003) resulted in a decrease in V1 neurons’ response. In
general, inactivation of area V2 leads to a reduction of V1 response, although in some cases
enhancement has also been observed, specially in the regions surrounding the classical recep-
tive field (Macknik and Martinez-Conde 2009). The orientation selectivity and other functional

characteristics of most V1 neurons remained unaltered.

Further evidence suggests the involvement of V2 in mediating end-stopping in V1, a phe-
nomenon whereby cells decrease their response when the stimulus size exceeds the classical
receptive field. The experiment showed how cells in the infragranular layers of V1 lose the
end-stopping property when the supragranular layer, which receives feedback from V2, is inac-
tivated (Bolz and Gilbert 1986). Similarly, the temporal evolution of illusory contour formation,
as well as other properties described in detail in Section 2.3, are suggestive of feedback from V2
being involved in illusory contour formation in V1 (Murray et al. 2002, Seghier and Vuilleumier

2006, Lee and Nguyen 2001).

Higher processing areas associated with object recognition, such as the postero-temporal visual
cortex in cats, were also reported to influence the response of VI neurons. Inactivation of
this high-level region (by cooling) generally reduced the response magnitnde of V1 newrons
(Figure 2.6a), and provoked substantial changes in their orientation tuning widths or direction
selectivity indices (Huang et al. 2007), Analogously, the lateral oceipital complex (LOC) region,
associated with object recognition in humans, was also found to have an effect on lower cortical
levels (Murray et al. 2004, Williams et al. 2008, Fang et al, 2008). Furthermore, during mental
imagery, natural object categories have been robustly readout from the LOC region (Reddy
et al. 2010) and retinotopically organized activations have been observed in early visual areas

(Slotnick et al. 2005). This suggests that during mental imagery, in the absence of bottom-up

input, cortical feedback projections can selectively activate patterns of neural activity (Reddy
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Figure 2.5: a) Stimuli with similar spatial properties but increasing organizational complex-
ity: random lines, 2D shape and 3D shape. b) fMRI percent signal change in V1
and LOC regions for the three conditions. Percent signal change 1s from the mean
activation across all three conditions. Although the stimulated inpul regions were
very similar, activity in V1 showed a reduction for the 2D shape and further re-
duction for the 3D shape stimulus. The LOC area exhibited the opposite pattern,
an increase in activity proportional to the complexity of the input figure. The au-
thor suggests activity in lower areas is reduced when a simpler explanation of the
stimulus can be represented in higher areas Murray et al. (2004).

et al. 2010, Ishai 2010).

An illustrative example comes from Murray et al. (2004), who recorded V1 and LOC fMRI
activity in response to three different stimuli: random lines, lines of similar length arranged
to form a 2D shape, and similar lines to form a 3D shape. Although the stimulated input
regions were very similar, activity in V1 showed a reduction when the 2D shape instead of the
random lines was presented, and further reduction when the 3D shape stimulus was employed.
Interestingly, the opposite pattern was observed in the LOC area, i.e. it exhibited an increase
in activity proportional to the complexity of the input figure (Figure 2.5). The author suggests
activity in lower areas is reduced when a simpler explanation of the stimulus can be represented
in higher areas (linked to perceptual grouping), which implies feedback modulatory effects

between LOC and V1.

Experiments involving feedback in the visual system have placed a strong focus on area MT,
believed to be involved in motion processing. Although it is not the focus of this thesis, it
serves to illustrate the ubiquitous presence of feedback effects in visual processing. Proof that
high-level motion processing modifies the lower level’s response has been shown by inacti-
vating MT (Hupe et al. 2001, Galuske et al, 2002); artificially stimulating MT (Sillito et al.

2006); statistical coupling of V1 and MT in the context of apparent motion (Sterzer et al. 2006);
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and comparing the local V1 response to coherent vs. incoherent global motion (Harrison et al.
2007). Figure 2.6b illustrates the differential results observed in V1 cells’ response during arti-
ficial stimulation of the reciprocally connected region MT. In general, V1 simple cells showed
an increase in response, while non-oriented cells exhibited a reduction in activity, suggesting
area MT can potentially shape the response properties of V1 cells (Sillito et al. 2006). More
recently, a revealing study showed how V1 cells’ response was reduced when their onset or
motion direction could be predicted by surrounding illusory motion (Alink et al. 2010). The
surrounding stimuli were well outside the classical receptive field, suggesting the involvement

of the visual motion area MT,

An important question to ask is whether horizontal connections, rather than feedback connec-
tions, could be responsible for the described contextual effects, Theoretically, since receptive
field size increases and magnification factor decreases with cortical distance from VI, feedback
connections from the extrastriate cortex can convey information to a V1 neuron from much
larger regions of visual field than the V1 neuron can access via horizontal connections. This
matter was addressed in studies by Angelucci and Bullier (2003) and Angelucci et al. (2002)
who compared the spatiotemporal properties of the two potential candidates: feedback and hor-
izontal connections (Figure 2.7). They used injections of sensitive bidirectional tracers in V1 to
estimalte the extent (measured in visual field degrees) of feedback connections from areas V2,
V3 and MT. Results confirmed that feedback spatial properties provided a substrate for all sur-
round modulations, including those originating from the distal surround (over 13”). Addition-
ally, feedback terminations in V1 are retinotopically and functionally organized, for example
according to orientation preference (Angelucci and Bullier 2003, Macknik and Martinez-Conde
2007). This makes them suitable for explaining the modulatory surround effects observed ex-
perimentally.

With respect to the temporal properties, experimental results have shown both feedback and
feedforward pathways are made of fast-conducting axons with a median velocity of 3.5 m/s
(Girard et al. 2001). The speed of connections refer to effects mediated via the dorsal path,

whereas effects mediated by the ventral/parvocellular path are likely to be slower. Nonetheless,
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Figure 2.6: a) Evidence showing the inactivation of postero-temporal visual (PTV) cortex re-

duces V1 response. The graph shows the peak response rates of the same cell
obtained for different orientations before cooling, during cooling and ~ 30 mins
after rewarming PTV cortex. Note that despite a dramatic reduction in the magni-
tude of responses during cooling, there is an excellent recovery of the magnitude
of responses after rewarming the PTV cartex (Huang et al. 2007). b) Enhancement
of MT modulates V1 response to visual stimulation. The visual response magni-
tude is enhanced in the MT cell (top graph) via a small iontophoretic current of the
GABAB receptor antagonist CGP. Enhancement of MT feedback evoked either an
increase (bottom-right graph) or decrease (bottom-left graph) of the response in
V1 cells to the same stimulus driving the MT cell. All graphs show the magnitude
for the control condition (black bar labeled Con), during MT stimulation (green
bar labeled MT) and after recovery (black bar labeled Rec) (Sillito et al. 2006).
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this suggests that, despite large differences in axonal lengths, initial processing stages can be
considered to act within a common temporal window. This is consistent with the fast decrease
of response observed (within the first 10 ms bin) on areas V1, V2, and V3 when inactivating

area MT (Hupe et ai. 2001 ).

Horizontal connections are intralaminar, although also usually reciprocal and linking cortical
points of similar functional properties. Typically they do not drive target neurons but elicit
subthreshold modulatory responses. However Angelucci and Bullier (2003) demonstrated that
the monosynaptic range of horizontal connections cannot account for surround effects extend-
ing beyond the classical receptive field (approx. 2°). Although polysynaptic circuits could in
principle underlie these long-distance effects, the slow conduction velocity of horizontal con-
nections makes it highly unlikely. Girard et al. (2001) showed horizontal connections have a
speed of approx. 0.1 to 0.2 m/s, which is more than ten times slower than feedback connections.
For example, the effects of surround stimuli located 137 away (equivalent to approx. | ¢m of
V1 cortical surface), at a speed of 0.1 m/s, would take over 100 ms to arrive. This is inconsistent

with long range effects observed during the very early stages of the response (Hupe et al. 2001),

Although this section is restricted to describing feedback within the visual cortex, there are
examples present in many other areas. These include higher-level areas related to decision-
making, expectations (Summerfield and Egner 2009}, emotions (Sabatinelli et al. 2009 and
motor-planning (Grossberg et al, 2007). One such example is the orbitofrontal cortex, which
has been found to feed back to the fusiform gyrus in the temporal cortex, providing top-down
facilitation during object recognition (Bar et al, 2006). Similarly, there 1s evidence suggesting
feedback is present in other hierarchical sensory processing areas, such as the auditory system,
where the superior temporal gyrus is believed to exert top-down modulating effects on the pri-
mary auditory cortex (Garrido et al. 2007). This strongly argues for considering feedback as a

fundamental element in cortical processing.
2.2.2 Theoretical implications

In the past few years a great effort has been made to try to understand the experimental results

relating to feedback. Recent reviews (Carandini et al. 2005, Olshausen and Field 2005) of our
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Figure 2.7: Comparison of the spatial extent of horizontal and feedback connections. The di-
agram schematically represents results obtained using injections of sensitive bidi-
rectional tracers in V1 to estimate the extent in visual field coordinates of feedback
connections from areas V2, V3 and MT. Note that the size of the receptive field
centre will depend on eccentricity. Results confirmed that feedback spatial proper-
ties provided a substrate for all surround modulations, including those originating
from the distal surround (red region). However, the monosynaptic range of hor-
izontal connections could only account for surround effects within the classical
receptive field (red region) and the proximal surround (yellow region) (Angelucei
and Bullier 2003). Note diagram is not to scale.
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understanding of the early visual system suggest only approximately 20% of the response of
a V1 neuron is determined by conventional feedforward pathways, while the rest arises from
horizontal and feedback connectivity. However, despite growing evidence, the way in which
feedback operates in the brain is still far from being understood. This was highlighted in Sec-
tion 2.2.1 by the lack of homogeneity and seemingly contradictory feedback effects observed
experimentally, which sometimes act to enhance and other times to suppress lower levels’™ ac-

tivity.

The problem is rooted in a wider issue, which lies at the core of neuroscience: understanding
the intricate relationship between all the different regions involved, and how all these different
sources of information are integrated over time and space. From this perspective, visual netral
responses not only depend on the interaction between stimulus and the surrounding context
(Schwartz et al. 2007), but can also be affected by other sensory modalities, attentional priors,
expectations, previous experience, emotional states, or task-oriented motor plans (Gilbert and
Sigman 2007, Sasaki et al. 2010). On top of this, neural responses may be involved in different
processing stages which evolve over time. Feedback undoubtably plays a major role in this

complex process.

Although, as has been pointed out, many factors can potentially modulate visual responses,
this section focuses only on the interactions between the different visual cortical regions. It
describes several theoretical approaches derived from experimental observation, dealing with
spatial contextual influences (extra-classical receptive field), time-evolving processing stages at
different regions, and distinct modes of processing dictated by high-level properties (Reverse
Hierarchy Theory). The section concludes by discussing a related significant aspect, namely

the relationship between feedback and the neural representation of conscious visual perception.
2.2.2.1 Extra-classical receptive field.

The experimental evidence presented in the previous section makes clear that V1 neurons are
not only specialized for extracting local features, such as orientation, but also respond to events
distant from the stimulation of their classical receptive field. One such experiment (Harrison

et al. 2007) clearly illustrates this by measuring whether V1 responses are sensitive to the global
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context of motion. Two different sets of stimuli were used, one moving coherently and one
incoherently. In each case the stimulus inter-element distance was at least 3" apart, so from
a local perspective they were all identical. We define local as being within the range of the

proximal surround field, which is about 2.3". Nevertheless, V1 responses were sensitive (o
the global context of motion, implying their receptive field comprises not only the proximal
surround field, but a further region which is known as the extra-classical receptive field. Another
remarkable study in support of this concept showed that the feedback-mediated response in the

foveal retinotopic cortex contains information about objects presented in the periphery, far away

from the fovea, even in the absence of foveal stimulation (Williams et al. 2008).

This shift in the traditional view of receptive field was reinforced by the study comparing hori-
zontal to feedback connections (Angelucci and Bullier 2003, Angelucci et al. 2002), described
in Section 2.2.1. Anatomical and physiological data indicated that the spatiotemporal proper-
ties of feedback connections from higher levels provided a plausible substrate for all observed
extra-classical receptive field effects. Horizontal connections could also be involved, but only

in center-surround interactions within the proximal surround range.
2.2.2.2 Integrated model of visual processing.

One main implication that can be derived from the existence of high-level feedback is that
information doesn’t necessarily have to be processed serially through successive cortical areas.
Instead, multiple areas can carry out simultaneous computations, which evolve over time as
successively higher cortical regions become involved in the process (Lee 2003, Lee et al. 1998).
For example, evidence shows that the early part of VI neuronal response is correlated with the
orientation of local features, while the later response is correlated with higher order contextual
processing. It has been suggested that V1 could potentially take an active part in all the different
processing stages usually attributed to higher levels, such as the representation of surface shapes
or object saliency (Hochstein and Ahissar 2002, Lee 2003, Bullier 2001, Lee et al. 1998).

This idea is consistent with conceptualizing V1 as an active blackboard (Bullier 2001) or high-

resolution buffer (Lee 2003). Higher cortical areas feed back global and contextual information

to complete or update the high-resolution detailed representation maintained at the lower levels,
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in congruence with the extra-classical receptive field idea. This information is then propagated
up the hierarchy again providing a new level of analysis which can be employed for the next
stage of computation. As time progresses, the activity in V1 should reflect the involvement
in increasingly complex computations resulting from recurrent feedback from higher cortical
areas. A representation of the suggested temporal evolution of the functions carried out by
the different areas involved is illustrated in Figure 2.8. This challenges the classical serial

feedforward model depicted in Section 2.1.1.
2.2.2.3 Reverse Hierarchy Theory (RHT).

This theory formulated by Hochstein and Ahissar (2002), proposes an interesting theoretical
point of view of the role of feedback connections in visual perception. Explicit visual per-

ception is hypothesized to occur for the first time at the higher cortical levels, after receiving
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detailed information from low-level areas. The initial bottom-up feedforward processing 1s
considered to be only implicit and not directly available to conscious perception. This type of
representation, denoted as vision at a glance, is obtained by generalizing low-level information
over space, size and viewpoint, feading to high-level neurons which indicate the presence of
basic categories or objects but not their precise parameters. Later, during vision with scrutiny,
feedback connections gradually incorporate the lower-level details into the explicit perceptual
representation. This includes features such as the precise location, retinal size, color, or compo-
nent motion, which are only available in the lower cortical areas with smaller receptive fields,
and were lost in the neurons with larger RFs. This concept is consonant with the high-resolution

buffer and integrated model of visual processing previously described.

Vision at a glance has been associated with a type of search called feature search, characterized
by the amazing ability in humans to rapidly capture object categories, Although low-level
areas were thought to be responsible for feature search, several arguments suggest this ability,
which has been related to fast pop-out mechanisms (approx. 100 ms from stimulus onset),
actually reflects high-level cortical activity. Feature search works for a vast range of spatial
scales, sizes and inter-element distances, including values which are greater than the small low-
level receptive field sizes. These parameters are consistent with the high-level large receptive
fields which reflect spread attention and lead to position and size invariant feature detection.
Furthermore, the fast pop-out effect observed is usually related to high-level features, such as
depth from shading, 3D shapes or facial expressions. An example is shown in Figure 2.9a
where the non-face object immediately pops-out from the rest of the similar line drawings.
Another example is depicted in Figure 2.9b where an incomplete square rapidly pops out while
an identical shape is interpreted as an occluded square due to amodal completion, a feature of

implicit high-level processing,.

On the other hand, vision with scrutiny is associated with serial or conjunction search. This is
illustrated by initial blindness to the details in a scene, which disappears after longer and re-
peated exposure. By focusing high-level mediated attention to different areas or objects, details

from the low-level cortical representation are serially introduced. The extra-classical recep-
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fa) (h)

Figure 2.9: ) Rapid high-level object categorization. The scrambled face rapidly pops oult,
whereas the noseless face requires a serial search, b) High-level implicit pro-
cessing. The incomplete square rapidly pops out whereas an identical shape is
interpreted as an occluded square (Hochstein and Ahissar 2002).

tive field approach accounts for feedback originating in high levels with large receptive fields
which targets specific low-level features. An example is shown in Figure 2.9a where, although
the non-facial object pops out immediately, a slower serial search mechanism is required to
identify the noseless face. A similar finding reported that subjects require less time to identify
target orientation than to accurately localize it. This is consistent with explicit perception later

accessing low-level detailed representations, such as those encoding spatial localization.

The Reverse Hierarchy Theory also points out the initial coherence and feature binding prop-
erties of visual perception. Even for images containing ambiguous interpretations, such as
illusions or bistable images, the initial explicit perception is typically of a complex coherent
scene, and not of an unlinked collection of lines and coloured regions. This phenomenon can be
considered a direct outcome of hierarchical perceptual organization (Ahissar et al. 2009) and the
resulting receptive field of high-level object-related neurons. It is coherent with the template
matching-like operation which assigns images to categories, implemented in the feedforward

object recognition models described in Section 2.1.2.

The temporal evolution of activity in low-level regions is also predicted by this theory. Initial
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activity generated by feedforward bottom-up implicit processing should be driven by stimuli,
localized and automatic. This will give rise to the first vision at a glance high-level percept
which might in turn activate serial search or vision with scrutiny mechanisms. As a consequence
fater activity in lower-levels will reflect feedback top-down effects such as those associated with

spatial and object attention, matching the functional temporal evolution proposed by Lee (2003).
2.2.24 Cortical representations of conscious visual perception.

It may be inappropriate to refer to consciousness, as it is a highly controversial concept which
is not well defined or understood. However, for the purpose of this section it will be interpreted
as referring to the explicit visual perception previously described, sometimes also denoted as
visual awareness. Which areas of the visual system are actually involved in representing the
explicit or conscious visual percept? The hypothesis of a distributed representation of explicit
perception is gradually gaining favour over the traditional strictly high-level cortical represen-
tation. For the authors of the RHT, explicit perception begins at high cortical levels and then
proceeds in a top-down fashion, strongly influenced by attention, to gradually incorporate more
detaifed information from lower levels, It seems a reasonable assumption given that we are able
to explicitly perceive high-resolution details which can only be accurately encoded by lower-

level regions.

Supporting this argument, experiments based on perceptual rivalry conclude that it would be
more appropriate to begin thinking of consciousness as "a characteristic of extended neural
circuits comprising several cortical levels throughout the brain” (Wilson 2003). Along the
same lines, several studies conclude unstimulated areas of VI can represent illusory contours
(Maertens et al. 2008), or the illusory perception of apparent motion (Sterzer et al. 2006), which
corroborates the notion that subjective perceptual activity can be closely related to neural ac-
tivity in V1. Overall, evidence seems to indicate an important role for feedback connections in

mediating explicit visual perception or awareness (Leopold and Logothetis 1996).
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2.2.3 Functional models of feedback

The previous sections review some of the expenimental evidence which indicates feedback con-
nections act to modulate lower levels’ response. This yields several theoretical conclusions
which shift the traditional bottom-up serial processing ideas towards a more integrative and dy-
namic approach to visual perception. It has become clear that information from different visual
cortical regions needs to be combined to achieve perception, but how this happens and the ex-
act function of feedback connections in this process is still unknown. This section describes
different approaches that provide a functional interpretation of the role of feedback. including
attention, biased competition, adaptive resonance, predictive coding and generative models. It
is important to note that the different interpretations are not mutually exclusive and commonly
have overlapping features, which means computational models often fall into more than one
category. Likewise, each functional interpretation described below is likely to be consistent

with a significant subset of the theoretical considerations described in the previous section.

2.2.3.1 Feedback as attention.

The visual system receives vast amounts of input information every second from light entering
the retina. Attention is aimed at reducing the associated computational cost by prioritizing and
consequently processing only a subset of the visual information. This subset would typically
correspond to that of highest relevance in achieving the organism’s goals (Summerfield and
Egner 2009). The function of feedback connections would be to modulate the visual input, by
enhancing or suppressing feedforward signals, in accordance with the attentional state. Atten-
tion can arise from high-level cognitive areas associated with task or motor-planning and be
directed towards specific objects or locations. On the other hand, attention can also be attracted
intrinsically by stimuli with strong visual salience, such as a sudden motion, which might be an

indicator of imminent danger.

Another disunction which is usually made relates 1o the way of deploying attention. It can be
broadly categorized into spatial attention, which acts as a kind of spotlight that enhances the
processing at a specific location of the visual field; and feature-based atiention, whereby the

processing of specific features is biased in a top-down fashion in order to achieve a specific
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task, such as visual search.

The different types of attention have been modelled extensively. Walther and Koch (2007) pro-
vide a comprehensive overview of existing models, and propose a unifying framework which
captures most of the attentional effects. By implementing modulation functions at each pro-
cessing level, their model is capable of reproducing spatial and feature based attention both in

a top-down and bottom-up fashion.

Additionally, the model is capable of simulating object-based attention, which can encompass
a variety of effects. These range from spatially focusing on an object to enhancing the rele-
vant features of the target object during a search task. This is achieved by making use of the
same complex features employed for feedforward recognition, during the top-down attention
process. The HMAX model (Serre et al. 2007¢) was extended to provide an example of feature-
based attention using this principle, and results showed an increased performance over a pure
bottom-up attention implementation (Walther and Koch 2007). The present thesis also pro-
vides a feedback extension of the HMAX model, which has many theoretical similarities to this

approach, including the sharing of features between object recognition and top-down attention.

It has been argued that attention by itself may explain the existence of cortical feedback connec-
tions (Macknik and Martinez-Conde 2007), without requiring further complex interpretations.
In fact, most of the approaches allude to some kind of attentional mechanism when describ-
ing the role of feedback. In most biased competition models, e.g. Deco and Rolls (2004),
attention is taken as a synonym for feedback. For adaptive resonance approaches (Grossberg
et al. 2007) attention is one of the multiple functions of feedback connections, which are also
involved in learning or perceptual grouping. In contrast, Lee and Mumford (2003) argue the
sophisticated machinery of feedback should not be limited to biased competition models of at-
tention, but instead should account for more complex perceptual inference processes. But even
in generative-oriented models such as Bayesian inference or predictive coding, the top-down
priors or high-level predictions are sometimes referred (o as a form of attentional modulation

(Spratling 2008a, Chikkerur et al. 2009),

The inconsistency and disparity between the various definitions of attention might reflect the
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lack of understanding of the role of top-down cortical feedback. Apparently divergent interpre-
tations might in fact be modelling a common phenomenon, but until this has been more thor-
oughly characterized by experimental evidence, several semantic definitions must be allowed to

co-exist.
2.2.3.2 Feedback in biased competition models,

The biased competition theory (Desimone and Duncan 1995) proposes that different visual
stimuli compete to be represented by cortical activity. Competition can occur at all levels in
the hierarchy and is influenced both by feedforward and feedback connections. The model is
consistent with an abundant body of experimental evidence (Hupe et al. 2001, Huang et al.
2007, Murray et al. 2004) which suggest feedback enhances activity consistent with the higher-
level percept (see Reynolds and Chelazzi (2004) for a recent review). At the same time biased
competition appears to disagree with evidence supporting the opposite effect, i.e. that the lower
level response is actually reduced when it can be predicted by higher levels (Harrison et al.
2007). A possible explanation comes from the fact that the decrease of inconsistent activity is
greater than the enhancement of consistent activity leading to an overall reduction in activity
(Murray et al. 2004). Further ways to reconcile biased competition with predictive coding are

discussed in Section 2.2.3.

Biased competition models have managed to successfully capture top-down attentional effects
including spatial and object based visual search, Deco and colleagues have proposed a model
of invariant visual object recognition consisting of a hierarchy of visual cortical regions with
convergent feedforward connectivity, reciprocal feedback connections and local competition
within each region (Deco and Rolls 2004). The model accounts for the increased attentional
modulation observed in higher cortical levels and the reduced receptive field size of IT neurons
in highly cluttered images.

Along the same lines, biased competition models have also been able to replicate attentional
effects in V4 and IT resulting from active visual search (Lanyon and Derham 2004), as well as
realistic search scan paths and saccade behaviours (LLanyon and Denham 2009). Other models

also account for motion disambiguation processes between MT and V1 (Bayerl and Neumann
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2004), and perceptual grouping mechanisms (Roelfsema 2006). Furthermore, some research
(Tiesinga and Buia 2009) has focused on the detailed circuitry required for biased competition
to emerge in V4, and concluded it can feasibly arise as a result of feedforward projections from

V1 and surround suppression mechanisms.
2.2.3.3 Feedback in Adaptive Resonance Theory (ART).

Although included in a different category, ART (Carpenter and Grossberg 1987, 1998) can be
considered a type of biased competition model as it has many similar properties. A central
feature in ART is the matching process that compares the bottom-up input with the stored pat-
tern. Unlike other networks, ART encodes only the matched or 'resonant” pattern and not the
actual input, as it suppresses all the portions which do not match the top-down expectation. A
parameter, which specifies the minimum fraction that must remain in the matched pattern for
resonance Lo occur, ensures that if the input is too novel or unexpected a new pattern code is

learned by the system.

The LAMINART model (Grossberg 2003, Grossberg et al. 2007, Raizada and Grossberg 2003)
implements the described ART mechanisms, mapping them over laminar visual cortical cir-
cuits. These mechanisms are hypothesized to occur in the neocortex to help stabilize cortical
development and learning. The model employs feedforward, feedback and horizontal interac-
tions to achieve the unification of several processes including development, learning, perceptual

grouping, attention and 3D vision.

A special emphasis has been placed on modelling the detailed laminar circuits of V1 and V2 in
order to achieve extra-classical receptive field effects such as perceptual grouping and attention.
The authors identify a list of requirements that any successful cortical model of visual percep-
tion should accomplish. Cortical models must allow perceptual grouping to generate activity in
a classical receptive field with no direct visual stimuli (as happens with illusory contours) but
must prevent top-down feedback from doing the same (i.e. producing above-threshold activity
on its own) in order to avoid hallucinations. However top-down feedback must be allowed to

provide modulatory subthreshold activity to enhance matching incoming sensory signals. This

is known as the preattentive-attentive interface problem.
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A solution to the problem is offered by Grossberg and colleagues (Raizada and Grossberg 2001,
Grossberg and Raizada 2000, Grossberg et al. 1997) which consists of distinguishing between
top-down intracortical interlaminar preattentive feedback (a positive reinforcement loop within
V1 layers) and top-down intercortical attentional feedback (from V2 to VI). Perceptual group-
ing starts at layer 2/3, guided by bottom-up input signals and horizontal intralaminar connec-
tions. Top-down attentional feedback and preattentive feedback cells in layer 2/3 interact by
reinforcing the same feedforward selection circuits. However, attentional feedback is forced to
pass through a modulatory laminar circuit before reaching layer 2/3, ensuring that it can only

provide subthreshold modulatory effects but never directly drive the cell.

A later model named ARTSCAN (Fazl et al. 2009, Bhatt et al. 2007) accounts for the interaction
between spatial and object attention in order to search 4 scene and learn the object categories
which are present. The model is based on the concept of an attentional shroud, a distribution
of spatial attention generated by the object’s surface filling-in process. Stronger shrouds can
inhibit weaker ones, leading to a winner shroud which will guide the category learning process

and the deployment of object attention.

The ART approach provides a detailed theory of how laminar cortical circuits implement a
wide range of learning and perception-related functions in the brain. Although it doesn’t place
a strong focus on high-level object categorization, the ARTSCAN model proposes a role for
feedback connections in the process of integrating bottom-up and top-down object-related in-
formation. It is based on the concept of attentional shrouds, includes interactions with the where

path, but has only been tested with relatively simple character recognition tasks.

For the purpose of this thesis, which uses relatively abstract models based on Bayesian ap-
proaches to explain object perception, the HMAX model seems a better starting point than ART,
for the following reasons. Firstly, HMAX is strongly oriented to object recognition and has been
tested successfully on natural images. Secondly, HMAX’s more abstract nature, which, for ex-
ample, does not deal with intricate laminar connections, makes it more suitable to implement

large-scale Bayesian computations. Thirdly, HMAX lacks feedback connectivity, which makes

it a perfect candidate (o test this new approach.
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However, this doesn't mean the ART model's interpretation of feedback is in disagreement
with Bayesian interpretations. Grossberg et al. (1997) suggests the ART approach clarifies the
current appeal of Bayesian approaches, but goes beyond this type of model. It is therefore likely
that many aspects of the more abstract interpretation of feedback connectivity proposed in this

thesis are compatible with Grossberg’s detailed circuitry.
2.2.3.4 Feedback as predictive coding

In predictive coding each level of the hierarchical structure attempts to predict the responses of
the next lower level via feedback connections. The difference between the predicted and actual
input is then transmitted to higher order areas via feedforward connections, and used to correct
the estimate. The predictions are made on progressively larger scale contexts, such that, if the
surround can predict the centre, little response is evoked by the error-detecting neurons. In
other words, when top-down predictions match incoming sensory information, the lower-level
cortical arcas are relatively inactive. However, when the central stimulus is isolated or difficult
to predict from the surrounding context, then the top-down predictions fail, and a large response

is elicited.

Although predictive coding is presented as an isolated theory in this section, it is related, to
a major or minor extent, to all the previous approaches. To start with, it is in fact a specific
example of a broader and more general theoretical approach termed hierarchical perceptual in-
ference in generative models (Friston 2003, 2005, Spratling 2010). This is described in detail in
Chapter 3. In fact, the Kalman filter, used to implement predictive coding in a hierarchical archi-
tecture, is a particularization of the Bayesian Belief Propagation algorithm (Kschischang et al.
2001), and is derived under the Bayesian framework by maximizing the posterior probability at

each layer (Rao 1999).

Furthermore, it has recently been shown that predictive coding can be interpreted as a form
of biased competition model (Spratling 2008b). Traditionally these two approaches have been
considered opposite to each other, as shown in Figure 2.10 (Murray et al. 2004). The discrep-

ancy is resolved, firstly, by taking into account the two distinct subpopulations, one encoding

the current prediction, or active representation of the stimuli; the other encoding the prediction
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Figure 2.10: Comparison of predictive coding (left) and sharpening (right) effects in mediating
response reduction in lower levels. In predictive coding, a high-level prediction
of the expected input is fed back and subtracted at the input level. What is sent
forward is the difference between the expected value and the actual input. With
sharpening (present in biased competition and adaptive resonance models). the
same high-level prediction is fed back but is instead used to enhance those aspects
of the input that are consistent with the high-level percept and reduce all other
aspects. The result, in both cases, can be a reduction in activity. (Murray et al.
2004),

error, While the error population will show reduction with high-level feedback, the prediction
population may show enhancement. Predictive coding theories can be misleading, as they place
a stronger focus on the error-detecting nodes and consequently under-emphasize or omit predic-
tion nodes. A second requisite 1o reconcile biased competition and predictive coding theories
regards the connectivity of feedback. In most biased competition models, nodes at each level
compelte by inhibiting the output of neighbouring nodes, while feedback in predictive coding
typically acts on the level below. Therefore, the biased competition model that was shown to
be mathematically equivalent to predictive coding (Spratling 2008b), required an alternative
implementation that suppressed the inputs of neighbouring nodes.

It is not therefore surprising that predictive coding models are also compatible with theories
of feedback as attention. Both Rao (2005), by extending his original model, and Spratling
(2008a), using the previously described architecture, demonstrated that predictive coding could

account for spatial and feature attentional effects. Furthermore, Spratling (2008a) hypothe-
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sizes that perceptual grouping results from collinear facilitation, and demonstrates this using a
detailed physiological model of the interaction between horizontal and feedback connections.
These interactions are proposed to occur in the dendritic trees of pyramidal cells (De Meyer and

Spratling 2009).

Nonetheless, as suggested by a recent study (Summerfield and Egner 2009), predictive cod-
ing might be more related to the effects of expectation, which facilitates visual perception by
constraining the interpretation space based on prior information, than to attention. Although be-
haviourally both attention and expectation can have similar effects, they might exert opposing
influences on the responses of the neural populations involved, i.e. expectation might reduce
the response while attention might enhance it. However, this distinction at the neural level is
only hypothetical and remains to be substantiated by further experimental and modelling work

on this research topic, which is still at a very early stage.

Independently of its relationship with other theoretical approaches, predictive coding has been
outstandingly successful in explaining feedback experimental results, It is also consistent with
the growing collection of evidence showing that lower level responses are inversely correlated
to stimulus predictability (Alink et al. 2010, Murray et al. 2004, Sterzer et al. 2006, Harrison
et al. 2007, Rao and Ballard 1999), Furthermore, existing computational models can account for
several well-known phenomena, such as repetition suppression (Friston et al. 2006), biphasic
responses in LGN (Jehee and Ballard 2009), object segmentation (Rao and Ballard 1997, 2005);
and a wide range of classical and extra-classical receptive field effects, including receptive
field tuning properties, surround suppression and facilitation (Spratling 2010), and end-stopping

effects (Rao and Ballard 1997, Rao 1999),

Note that predictive coding might appear incompatible with the observation that feedback acts
to enhance activity consistent with the high-level percept, supported by evidence showing the
response in V1 is reduced when higher areas are inactivated (e.g. by freezing MT) (Hupe et al.
2001, Huang et al. 2007, Galuske et al. 2002, Angelucci and Bullier 2003). However, as pre-
viously mentioned, this might be the result of over-emphasizing the error-detecting population

over the prediction population (Spratling 2008b, Friston 2005).
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2.2.3.5 Feedback as Bayesian inference in generative models

The perceptual inference framework (Lee and Mumford 2003, Friston and Kiebel 2009) pro-
vides an integrative approach that accommodates feedback as attention (Chikkerur et al. 2009),
biased competition (Spratling 2010) and predictive coding (Friston 2005). It constitutes the

focus of this thesis and is therefore described in detail in Chapter 3.
2.2.3.6 Key questions

Understanding the role of feedback connections in visual perception still poses many challenges
which need to be resolved. The following list includes several key questions which remain

unanswered.

e Is there evidence in cortex of two distinct populations, one coding for the prediction (or
active representation) and one coading the prediction error? In which case, does the former

account for feedback sharpening effects, and the latter for feedback response reduction

effects?

e What is the specific role of feedback during a) the learning stage and b) the subsequent

adaptation of visual features ?

e Can the different attentional effects be understood as part of a more integrative theory

such as biased competition or predictive coding?

e What are the neural mechanisms that allow the integration and adequate weighting of the
different sources of information (e.g. bottom-up stimuli, top-down feedback from several

regions, horizontal connections) 7

e Are feedback effects limited to a subthreshold modulatory role or can they be understood
in some cases as the driving signal? Given that Anderson and Martin (2006) demonstrates
both feedforward and feedback synaptic connections can be considered to have driving

properties, can the temporal dynamics account for the functional asymmetries observed?

e Does feedback allow VI to be progressively involved in more complex computations,
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typically attributed to high-level regions, as suggested by the active blackboard and high-

resolution buffer hypotheses?

e What are the neural correlates of explicit visual perception (or visual awareness) and
are these guided by feedback effects (for example when focusing on the high-resolution

details of an object) as suggested by the Reverse Hierarchy Theory?

e What effects does the inactivation of the different higher visual areas (V4, IT, MT) have
on lower level representations”? How do these compare under conditions of simple artifi-
cial stimuli (e.g. gratings), natural stimuli, and highly cluttered/illusory/occluded stimuli?
How do these correlate to subjective visual perception and the performance of vision-

related tasks?

2.3 lllusory and occluded contours

Despite living in a cluttered world where the majority ol objects we see are partially occluded,
we do not have the impression of constantly being surrounded by object fragments. Our visual
system appears to have developed the appropriate filling-in or completion mechanisms that cru-
cially allow us to perceive complete objects and make sense of the world. These mechanisms,
which compensate for missing or ambiguous information in the retinal image, can be divided

into two categories: modal and amodal completion,

Modal completion, the induced perception of contours and surfaces in empty regions, results
in perceptually salient effects, such as illusory contours. In contrast, amodal completion, the
continuation of contours and surfaces behind occluders, has no visually salient manifestation.
Although neither of them have a physical counterpart in the retina, they both show clear neural
correlates at different levels of the visual system. Both of these phenomena are closely re-
lated to other conspicuous aspects of visual processing, such as feature binding and perceptual
grouping. This section provides an overview of the existing experimental evidence for both
illusory and occluded contours. The different theoretical approaches and computational models

are discussed in the subsequent section,
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2.3.1 Experimental evidence
2.3.1.1  Nusory contours

The retinotopic activation of V1 and V2 neurons in response to illusory contours, such as
Kanizsa figures, has been reported in f{MRI (Maertens et al. 2008), EEG (Seghier and Vuilleu-
mier 2006), MEG (Halgren et al. 2003) and single-cell recording (Lee 2003, Lee and Nguyen
2001) studies. The illusory contour response is weaker, significantly delayed, and only arises in
a fraction of V1/V2 cells, in relation to that of real contours. Previous controversy as to whether
VI represents illusory contours seems to have been clarified by the results reported in the previ-
ously cited articles. Nonetheless, V1 tends to show a weaker response than V2 and sometimes
requires task-related attention to emerge (Lee 2003), Ramsden et al. (2001) also reported orien-
tation reversal between V2 and V1, such that the illusory contour orientation is de-emphasized
in V1, while the orthogonal orientation is enhanced. This was suggested to constitute a cortical
balancing process which could play an important role in illusory contour signaling, and was

later supported by psychophysical data (Dillenburger 2005).

The fact that the illusory contour response does not arise from ordinary feedforward pathways,
i.e. retina and LGN, and that it is delayed relative (o real contours, suggests the involvement
of lateral and feedback connections. Interestingly, the response in V1 emerges later than in V2
(Lee and Nguyen 2001, Halgren et al. 2003, Ramsden et al, 2001, Maertens et al. 2008, Dillen-
burger 2005) suggesting contour completion in V1 might arise as a consequence of feedback
connections from V2. The question arises as 1o why is it necessary to feed back information
to V1 if the illusory contour is already represented in V2. The most likely reason is that V1
neurons” smaller receptive field size provide higher spatial resolution to accurately represent
the illusory contour. Bigger receptive field sizes in V2 allow the system to integrate global
contextual information which is then fed back to V1 circuits. When required by environmental
demands, these circuits can then construct a more precise representation, which explains why
illusory contours in V1 sometimes emerge as a consequence of task-related attention (Lee and

Nguyen 2001).

Furthermore, a large number of studies have reported neural correlates of illusory contours in
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I1/LOC 1) Higher level abject-processing regions are first to
represent illusory contours, eliciting a response to the
completed surface of the object.

1 {Halgren et al. 2003, Maertens et al. 2008, Murray et al. 2002, Sary et al. 2008,
Seghier & Vuilleumier 2006, Yoshino et al. 2006; Stankey & Rubin 2003)

Q- —=>2) Response to illusory contours in lower-level regions, with
‘ ...... ' / no direct retinal stimulation. Delayed relative to real contours,

(Halgren et al. 2003; Lee & Nguyen 2001; Maertens et al 2008;
Seghier & Vullleurmer 2006; Lee 2003; Yoshino & al,, 2006)

Vi .

3) Response in V1 emerges approx. 35 ms later than in V2

’ . {[J|chnhurg|-r 2005; Halgren et al, 2003; Lee & Nguyen 2001,
Maeriens 1 2l 2008, Rarmsden #1 3). 2001)

[nput
. P Suggests contour completion
[mage ‘ . is driven by feedback

Figure 2.11: Neural correlate and timing of illusory contour emergence along the visual sys-
tem, with relevant references. Higher-level object processing regions are the first
to represent illusory contours after rapid object categorization, Retinotopic re-
sponses 1o illusory contours are then observed in lower level regions such as V1
and V2, which receive no direct retinal stimulation. The response in VI emerges
later than in V2. Overall, the evolution of illusory contour emergence suggests il
is driven by feedback connections from higher level regions.

higher level object processing regions such as monkey [T (Sary et ai. 2008) and the human
equivalent, the LOC region (Halgren et al. 2003, Maertens et al. 2008, Murray et al. 2002,
Seghier and Vuilleumier 2006, Yoshino et al. 20006, Stanley and Rubin 2003). A subset of these
point out that high-level activity generated by objects containing illusory contours (such as the
Kanizsa triangle) is notably similar to the activity of complete objects, despite presenting longer
latencies (Stanley and Rubin 2003, Maertens et al. 2008, Sary et al. 2008). IT cells with spe-
cific selectivity for illusory contour figures have been reported (Sary et al. 2008). It has been
suggested that the large non-retinotopic receptive fields in I'T/LOC, which receive bilateral stim-
ulation from massive regions of the visual field, present the best substrate to perform grouping

across large distances, such as that required for illusory contours.
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A number of key findings strongly substantiate the hypothesis that feedback from high-level ex-
trastriate areas is responsible for subjective contours emerging in lower levels (see Figure 2.11).
To begin with, Huxlin et al. (2000) found that monkeys with lesions of IT lost their ability to
detect illusory contours. The temporal sequence of events is also consistent with this hypoth-
esis, as LOC/IT regions are the first to signal the appearance of illusory contours, reporting
extremely fast response times, such as 90-100 ms (Murray et al. 2002) or 140 ms (Halgren et al.
2003). These studies also show how the visual responses later spread to lower regions includ-
ing V3, V2 and V1. This is consistent with the multiple processing stages reported by various
groups (Yoshino et al. 2006), which distingoish between initial region-based segmentation and
later boundary completion processes. In consonance with this finding, an fMRI study (Stan-
ley and Rubin 2003) showed that a Kanizsa figure with well-defined sharp contours and one
with blurred contours were represented equivalently in the LOC region. Psychophysical testing

demonstrated subjects were indeed able to perceive the sharp and well localized edges in the

first case but not in the second, suggesting some other region must be responsible for neurally

coding this information, most likely V1 and V2.

The above body of evidence is consistent with the high-resolution buffer hypothesis (Lee 2003).
the active blackboard concept (Bullier 2001) and the Reverse Hierarchy Theory (Hochstein
and Ahissar 2002) described in section 2.2.2. These approaches hypothesize that V1 might be
involved in more complex computations usually attributed to higher-level regions, by interacting

with these regions through teedback connections.

2.3.1.2 Occluded contours

It has been suggested amodal completion processes are carried out by the same cortical circuits
as illusory contour completion. In this section we will review expertmental evidence that indeed
highlights the striking similarities between them. These similarities suggest the same high-level
feedback mechanisms are being used. In Section 2.3.2 we will further substantiate this argument

from a more theoretical point of view,

Neural correlates of occluded contours in early visual areas such as V1 and V2 have been found

using fMRI (Weigelt et al, 2007, Rauschenberger et al. 2006), EEG (Johnson and Olshausen
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2005) and single-cell recording (Lee and Nguyen 2001, Lee 2003). Rauschenberger et al. (2006)
showed how the representation in early visual cortex of an occluded disc evolved from that of a
notched disc to one corresponding to a complete disc after approximately 250 ms. The amodal
completion process shows temporal properties similar to those of illusory contours, i.e. a delay
ol approximately 100-200 my with respect to real contours; although the response teads to be
significantly lower than for illusory contours (Lee 2003). This is consistent with the weaker,

non-visually salient, perceptual experience associated with occluded contours.

The representation of occluded objects in high-level object recognition areas, such as IT and
LOC, has also been repeatedly documented (Hegde et al. 2008, Murray et al. 2006, Weigelt
et al. 2007, Hulme et al. 2007). Consistent with this observation, abundant evidence sustains
the multistage model of object processing, and shows the temporal representation of occluded
contours occurs in a top-down fashion (Murray et al. 2006, Rauschenberger et al. 2006, Weigelt
et al. 2007). This is indicative of high-level feedback being responsible for amodal completion
in lower regions. However, two diverging interpretations exist as to what exactly is represented

by higher-fevel neurons.

The first interpretation rests upon evidence showing that high-level representations of occlusion
are invariant, and have similar time courses and magnitude to those of complete objects (Weigelt
et al. 2607, Hulme et al. 2007, Rauschenberger et ai. 2006). 1( therefore suggests that, afthough
the occluded-object and incomplete-object interpretations are both kept alive in lower visual
areas, in the higher levels only the occluded-object interpretation persists. This means the high-
level neurons represent just the completed object, which becomes the explicit percept. This is
consistent with the literature on bistable stimuli which indicates only the conscious percept is

represented in high-levels (Fang et al. 2008).

Contrastingly, an fMRI study (Hegde et al. 2008) reported regions in the LOC area which show
significantly stronger responses to occluded objects than to unoccluded objects. Along the same
lines, Murray et al. (2006) identified within the LOC region a specific object recognition stage
which included boundary completion processes. This would suggest the incomplete object 1s

also represented at some stage in this high-level region. The study pointed out that this does not
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exclude the involvement of early visual areas in the same contour completion process.
2.3.2 Theoretical and Computational Models
2.3.2.1 Identity hypothesis

Prior to describing the different theoretical approaches to contour completion, it is tmportant
to clarify the relation between illusory and occluded contours. Typically, illusory contours are
treated as a perceptual phenomenon, because they produce a clear sensorial experience. On the
other hand, occluded contours are usually categorized as cognitive phenomena, as they cannot

be directly seen, and are better described as being known or inferred.

However, both experimental evidence and theoretical approaches indicate that in fact the same
interpolation process is responsible for both seemingly different effects. This controversial
claim is known as the identity hypothesis (Kellman 2003). From a representational perspective
there shouldn't be any significant difference between a contour which is behind another surface,
and a contour which is in front. They cannot be divided into real, perceived and inferred con-
tours, as they all try to represent the reality of the outside world as accurately as possible. The

occluded contour is not any more or less real than the illusory contour.

The question then arises as to why such phenomenological differences exist between illusory
and occluded contours, if they are both a consequence of the same representational process. This
may be due to the fact that different aspects of a scene need to be neurally coded in different
ways. Whether a contour is in front of or behind another surface shouldn’t affect the process
of completing that object to make sense of the world. However, when coding the graspability
of a given surface, it is vital to clearly signal occluded non-reachable surfaces, and that may
be the role of the modal/amodal phenomenology. On these grounds, and for the purpose of
this section, we will treat illusory and occluded contours as stemming from the same contour

completion process.
2.3.2.2  Good continuation, relatability and the bipole
One of the Gestalt principles formulated in the early 20th century was the so-cailed good con-

tinuation principle. It describes the innate tendency to perceive lines as continuing in their
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established directions, and is considered one of the milestones of perceptual organization. A
similar concept, known as relatability, has been suggested as the guiding principle for contour
completion in the visual system, It is based on smoothness principles such as contours being

differentiable at least once, monotonic, and having bending angles below 90° (Kellman 2003).

An important tool to explain contour completion is the bipole (Neumann and Mingolla 2001,
Grossberg et al. 1997, Roelfsema 2006). Although it can have diverging definitions depending
on the author, most generally its function is te evaluate the effect a contour element at a given
location has on the likelihood of perceiving a contour at a second location. The bipole is typ-
ically represented by a characteristic figure-eight shape which describes the coupling strength
between the centre unit and surrounding units according to their relative position and orienta-
tion. A neural implementation of this concept gives rise Lo bipole cells, defined as nonlinear
grouping operators which receive input from real edges falling inside the bipole lobes (see Fig-
ure 2.12). It is strongly grounded on anatomical, psychophysical and physiological data (see
Neumann and Mingolla (2001) for a review), and provides a biologically grounded method of

implementing good continuation and relatability principles.

This section discusses existing approaches and models that show how these geometric concepts
can be implemented with neural mechanisms and how they relate to the physiology and anatomy

of the visual cortex.

2.3.2.3 Classification of theoretical models

Two broad theoretical categories for contour completion models have been considered. The first
one relies on feedforward processing, and is also known as base grouping. The second deals
with recursive modeis, placing the focus on fateral and feedback connections, and is also known

as incremental grouping (Roelfsema 2006, Neumann and Mingolla 2001).

An alternative, though compatible, classification focuses on the specific mechanisms involved
in contour completion, and proposes three broad classes: 1) contour interpolation, which in-
wardly extends two aligned line segments; 2) contour extrapolation, which outwardly extends
a segment of a single line segment; and 3) figural feedback, whereby a high-level representa-

tion feeds back to complete missing contours (Halko et al, 2008). The first two classes can
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Figure 2.12: The bipole applied to illusory contour formation. The bipole is used (o evaluate
the effect of a contour element at a given location on the likelihood of perceiving a
contour at a second location. It is typically represented by a characteristic figure-
eight shape which describes the coupling strength between the centre unit and
surrounding units according to their relative position and orientation. A neural
implementation of this concept gives rise to bipole cells, defined as nonlinear
grouping operators which receive input from real edges (e.g. contours of the
pacmen) falling inside the bipole lobes,

sometimes be considered equivalent, and are usually believed to occur as a consequence of
feedforward or lateral processing, while feedback connections are the obvious candidate for the
third class. As will be discussed further on, evidence suggests it is actually a combination of all
three mechanisms that is responsible for contour completion. Note that to avoid confusion we
use the term contour completion to refer to the general process of filling in missing contours,
while we reserve contour interpolation for the specific mechanism described above, responsible

for contour completion.

2.3.2.4 Feedforward models

This category refers to models based on the feedforward hierarchical architecture of neurons
with gradually increasing receptive fields sizes and a spatial overlap between them. Higher pro-
cessing stages, such as V2, receive converging input from partiafly activated V1 patches leading
to the activation of units with bigger receptive fields which span the gap. These integration units
are sometimes referred to as bipole cells, as they group the input from units within the bipole
figure-eight geomeltry, as shown in Figure 2.12. The cooperation stage in Grossberg’s model
(Grossberg et al. 1997) implements the bipole, although as described further on in this section,
it also combines aspects of horizontal processing. Another example of this type of feedforward

architecture is HMAX, which was described in Section 2.1.2, although it does not explicitly
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implement bipole units.

A similar model which also falls into the base-grouping category focuses on the feed-forward
integration of end-stopped responses (Heitger et al. 1998). This approach extends the classi-
cal simple and complex cell model to include end-stopped neurons, cells which decrease their
response when the stimulus size exceeds the classical receptive field. The response of the ori-
ented end-stopped cells is important as it is associated with figure-ground segregation. Evidence
shows that partial occlusion typically generates abrupt terminations at the side of the occluded
surface, which can be accounted for by figure-ground segregation mechanisms. Furthermore,
the model end-stopped neurons also distinguish and encode the direction of contrast between
figure and ground surfaces. It was found that neurons in V2 that respond to illusory contours
are sensitive to the direction of contrast, and that this usually matches the occlusion direc-
tion. Thus, the model performs contour interpolation of subjective contours by integrating over
the end-stopped cells according to the bipole weighting function, and taking into account the

contrast-direction selectivity of these cells.

This feedforward processing stage is sometimes referred o as the preatientive phase, and al-
though some highlight the exclusive involvement of feedforward as an advantage, the general
consensus is that feedforward processing by itself is insufficient to perform contour completion,
specially across large areas of the visual ield. For example, the size of receptive fields in lower
level regions, where contour completion effects are observed, is insufficient to cover the visual
field distance (> 10%) between the inducer line segments of large illusory figures (Angelucci and
Bullier 2003, Sterzer et al. 2006). However, as pointed out at the end of this section, preattentive
processing can also be understood as an important initial stage in the more global completion

process, which also involves recurrent processing.

Horizontal and feedback models A second category of models, also denoted as incremental
grouping models (Roelfsema 2006), take into account the context of the elements involved
by making use of horizontal and feedback connectivity. Under this network scheme, neurons

stimulated directly from luminance-defined contours provide facilitative interactions to neurons

which do not receive direct retinal stimulation. It is usually considered an attentive, and thus
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more time-consuming process, which gradually strengthens the responses of features which are

perceptually grouped together.

An important concept for these models is the local association field which formalizes the Gestalt
good continuation principle. [t states that contour elements which are well aligned will tend
to be grouped together, by mutually exciting and increasing each other’s saliency, while non-
collinear elements tend to inhibit each other. Several studies have shown the neural interactions
that represent contour elements in V1 and V2 are dictated by the selectivity of horizontal con-
nections which follow the local association field principle (Roelfsema 2006). The local associ-
ation field provides an alternative method of implementing the bipole principle, based on lateral

recurrent circuits (Li 2001) instead of strictly feedforward connections.

Grossberg and colleagues proposed the Boundary Contour System (BCS), one of the most
prominent models based on the above principles. The BCS is encompassed by the more general
Adaptive Resonance Theory (see Section 2.2.3), and comprises a number of stages that perform
detection, competition and cooperation of boundary segments. Later versions of the model
combine both feedback, lateral competition and feedforward integration of responses through
the so-called bipole cells 1o achieve contour completion (Grossberg et al. 2007). Here we fo-
cus on previous models (Grossberg et al. 1997, Raizada and Grossberg 2001) that show how
contour completion is achieved by implementing the bipole property using strictly horizortal

connections.

Bipole cells are activated only when both sides of their receptive field are sufficiently stimulated
as shown in the schematic diagram of Figure 2.13. Ovals represent pyramidal cells located in
layer 2/3 with collinear and co-oriented receptive fields. They are connected to each other via
excitatory long-range horizontal synapses. These connections also excite a pool of inhibitory
interneurons (black circles) connected via short range synapses to the pyramidal cefl. The

balance of excitation and inhibition accomplishes the desired bipole property.

When only one of a pair of pacmen is present, the excitation from the inducing pyramidal
cell to the target pyramidal cell is not enough to elicit the cell’s response. This is because the

excitation also targets the inhibitory neurons that balance out the excitation. On the other hand,
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Figure 2.13; Bipole implementation by Raizada and Grossberg (2001). Ovals represent pyra-
midal cells located in layer 2/3 with collinear and co-oriented receptive fields.
They are connected 1o each other via exciialory long-range horizonial synapses.
These connections also excite a pool of inhibitory interneurons (black circles)
connected via short range synapses to the pyramidal cell. a) Input from just one
side is insufficient 1o elicit a response in the target pyramidal cell. This is the
result of excitation also targeting the inhibitory neurons which balance out the
excitation. by When input arrives from collinearly aligned inducers on either
side, the bipole property arises due to the circuits’ excitatory/inhibitory balance,
leading to contour completion. The target neuron summates inducing excitation
arising from neurons at both sides. Additionally, this excitation falls onto the
shared pool of inhibitory interneurons, which also inhibit each other, normalizing
the total amount of inhibition sent to the target pyramidal neuron.
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when inducing excitation comes from neurons at both sides of the target neuron, it summates.
Additionally, this excitation falls onto the shared pool of inhibitory interneurons, which also
inhibit each other, normalizing the total amount of inhibition sent to the target pyramidal neuron.
The combination of summating excitation and normalized inhibition leads to neurons without

direct retinal stimulation, representing contours as a result of lateral connectivity.

The key mechanism to achieve contour completion in Grossberg’'s model is interpolation as
defined by the bipole property. Extrapolation is also present in a sense but only when supported
by the interpolation bipole mechanism. The model also supports the involvement of figural
feedback but is limited to enhancing contours already formed by lateral connections, in what
has been called the attentive stage (Halko et al. 2008). As explained in Section 2.1.2, during
the attentive stage feedback can only provide subthreshold modulatory effects but never directly
drive the cell. This is consistent with the idea that feedback connections from areas V2, V4 and

IT have a role in shaping the local association field (Roelfsema 2006).

A similar theoretical approach, which places a stronger emphasis on higural feedback, was pro-
posed by Lee (2003). It suggested illusory contours originated in higher levels with bigger
receptive fields which could take into account a greater contextual range. This spatially diffuse
activity can act as a top-down prior which feeds back 1o V1's high resolution buffer. The local
association field implemented via V1 horizontal connections can then retine the feedback to
construct spatially sharp and precise contours. Figure 2.14 summarizes the described contour

completion process resulting from the interaction between feedback and lateral connections.

Further evidence suggests that, although global feedback can interact with local boundary com-
pletion, these two processes are distinguishable and independent. Feedback, which emerges
after processing the available partial information during feedforward recognition, leads to im-
precise boundary completion unless guided by the appropriate local cues dictated by contour
relatability (Kellman et al. 2003). This was shown using the dot localization paradigm, whereby
an occluded image is presented, followed by a dot in front of the occluder which is rapidly
masked. Subjects need to judge whether the dot is perceived to appear inside or outside of the

occluder’s contour.
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Figure 2.14: Contour completion resulting from the interaction between global feedback and
local horizontal connections as proposed by Lee (2003). Left: A V2 neuron
receives leediorward connections from a set of V1 neurons of a particular ori
entation activated by real edges. Right: The V2 neuron projects feedback to the
same set of VI neurons. The excited V2 neuron broadcasts the possibility that
an extended coptowr exisis 1o all VI newrons, This disiributed feedback signal
introduces the global context that motivates the completion of contour by the V1

neurons based on local evidence precisely represented in V1
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Results showed the representation of boundaries was highly precise and accurate only when
the contour could be predicted by local relatability cues. However, when completion had to be
predicted from long-range contextual information, such as from global symmetry patterns, the
precision strongly diminished. This suggests feedback alone can provide widespread activity
indicating the presence of subjective contours, but is insufficient to perform accurate contour

completion.

Integration of multiple mechanisms Recent reviews of illusory contour formation suggest
that it results from the interaction between the different proposed mechanisms, i.e. extrapo-
lation, interpolation and figural feedback. Evidence suggests they all play a role in subjec-
tive contour perception, although the significance of their contribution may vary according to
the conditions of the stimuli. This addresses previous comflict between evidence in support of
bottom-up versus top-down processing. Feedforward and horizontal connections would be in-
volved in interpolation and extrapolation processes, which interact with the high-level figural
feedback, as supported by psychophysical, physiological and anatomical data. For a detailed

review see Halko et al. (2008),

This interaction of mechanisms is consistent with models where the input image is preatten-
tively segmented based on Gestalt principles and subsequently processed following high-level
focal attention (Grossberg and Raizada 2000, Marr 1982). Under this perspective the initial
feedforward base grouping would generate the high-level percept which would then attention-
ally guide, from coarse to fine scale, the local incremental grouping process that leads to illusory
contour formation. This could in turn provide more detailed representation, which could im-
prove higher level object recognition (Hochstein and Ahissar 2002). For example, the fact that
perceptual grouping does not occur during the inattentional blindness condition (inability to per-
ceive something that is within one's direct perceptual field as a result of a lack of attention) of
an image provides further support for this conclusion (Roelfsema 2006). Overall, the different
approaches described in this section can be integrated into a common global recurrent process
spanning several regions of the visual system, each of which interacts in parallel to achieve the

completion effect.
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To conclude, it is important to stress the significance of subjective contours not only for per-
ceptual purposes, but also for related functions such as action and other cognitive processes.
Contour completion incorporates missing information which leads to a more unfaithful repre-
sentation of the two-dimensional input image, but a more accurate and reliable representation
of the surrounding physical environment. From this perspective, they are not merely illusions
which should be discarded, but are in fact representations which bring our perceptual experience

closer to reality (Kellman 2003).
2.3.2.5 Key questions

Overall, the contour completion phenomenon poses an intriguing and exciting challenge to the
scientific community, with many open questions still to be resolved. Answering these ques-
tions about what appears to be one of the key elements in visual perception will undoubtedly

constitute an enormous contribution to our understanding of this and other related fields.

e Are modal (illusory) and amodal (occluded) completion effects mediated by common
neural mechanisms (identity hypothesis)? If so, how are the striking phenomenological

differences represented in cortex?

e Why do studies show contradictory evidence in relation to whether subjective contours
are represented in V1 or not? Are these inconsistencies a consequence of task/behaviour-
related demands (e.g. more visual precision is required for certain tasks) or internal

methodological differences?

e What are the neural mechanisms that mediate the integration of bottom-up, horizontal
and feedback information in order to generate subjective contours? Does the reliabil-
ity/unambiguity of each of the sources determine the weight of its contribution? If so,

how is the weighting process neurally coded?

e If feedback from high-level object-related areas is responsible for lower level contour
completion effects, does this feedback proceed in a serial sequence (e.g. IT-V4-V2-V1)

or via paraffef streams (e.g. IT-VI, V4-Vi, V2-VIi)7 In the latter case, a) how are the
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different feedback sources integrated? b) if one of the sources is inactivated (e.g. IT) are

the remaining regions sufficient to generate the subjective contour in V17

e Are illusory and occluded objects represented in high-level regions in a different way to
complete objects? If so, are they represented with their missing parts, or as complete

objects but with a watermark indicating they are occluded/illusory?

e For Kanizsa figures with ambiguously defined inducers, e.g. rounded corners, the illusory
contour is no longer perceived (based on psychophysical data). Is feedback equivalent
in Kanizsa figures with ambiguously vs. precisely defined inducers? Is the perceptual
difference due to the lack of local precise cues which prevents horizontal connections
from forming the illusory contour? If the rounded corners were gradually transformed
into straight corners, a) at what point would the illusory contour be perceived?, and b)

how would this correlate to the neural representation in V2 and V17

e What neural processes are being activated when a human observer decides to voluntarily
change the perception of a Kanizsa figure to that of individual pacmen? Is feedback

responsible for inhibiting the generation of the illusory contours?

2.4 Original contributions in this chapter

e Review evidence and identify key questions on the role of cortical high-level feedback in

object perception.

e Analyze and compare the different functional interpretations of feedback and identify

points of convergence between them.

e Review evidence and identify key questions on the representation in the visual system of

illusory and occluded contours.
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Chapter 3

Bayesian networks and belief propagation

As described in Chapter 2, the classical feedforward processing model fails to capture many
observed neurophysiological phenomena, and thus is gradually being replaced by a more global
and integrative approach which relies on feedback connections. However, theoretical and com-
putational models still strive to accommodate feedback connections and the different observed
contextual effects within a single general theoretical framework. The probabilistic inference
approach described in this chapter attempts to solve this problem. Results presented in this the-
sis are based on this methodological approach, and more specifically on belief propagation in
Bayesian networks. Thus, Section 3.1 offers an introduction to Generative models and Bayesian
inference, providing the theoretical background and roots of this approach. Section 3.2 reviews
evidence that supports this framework as being a good candidate for modelling the visual cor-
tex. Section 3.3 defines and formulates mathematically both Bayesian networks and the belief
propagation algorithm, and includes an illustrative example. Finally, existing theoretical and

computational models based on belief propagation are described in Section 3.4.

The Bayesian brain hypothesis

3.1.1 Generative models

It has long been appreciated that information falling on the retina cannot be mapped unambigu-
ously back onto the real-world; very different objects can give rise to similar retinal stimulation,
and the same object can give rise to very different retinal images. So how can the brain perceive
and understand the outside visual world based on these ambiguous two-dimensional retinal im-
ages? A possible explanation comes from the generative modelling approach, which has as

its goal the mapping of external causes to sensory inputs. By building internal models of the
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world the brain can generate predictions and explain observed inputs in terms of inferred causes.
Formulating perception as a process based on generative models which employs Bayesian prob-

ability theory to perform inference is known as the Bayesian brain hypothesis (Friston 2010).

From this perspective the brain acts as an inference machine that actively predicts and explains
its sensations. The basic idea is that making predictions is an effective strategy for discovering
what's out there, and for refining and verifying the accuracy of representations of the world,
in this way the world can act as its own check. Mismaiches between expected and actual
sensory experience allow us to identify the things that we don’t know about, and hence fail
to predict. This information can then be used in the creation and refinement or updating of

internal representations or models of the world, which in turn lead to better predictions.

A natural consequence of these ideas is that the processing architecture and sensitivities should
reflect the structure and statistics of natural sensory inputs. This suggests the visual cortex might
have evolved to reflect the hierarchical causal structure of the environment which generates the
sensory data (Friston and Kiebel 2009, Friston 2005, Friston et al. 2006, Friston 2010) and that
it can consequently employ processing analogous to hierarchical Bayesian inference to obtain

the causes of its sensations, as depicted in Figure 3.1
3.1.2 Bayesian inference

Making inferences about causes depends on a probabilistic representation of the different val-
ues the cause can take, i.e. a probability distribution over the causes. This suggests replacing
the classical deterministic view, where patterns are treated as encoding features (e.g. the orien-
tation of a contour), with a probabilistic approach where population activity patterns represent
uncertainty about stimuli (e.g. the probability distribution over possible contour orientations).
The Bayesian formulation provides the tools to combine probabilistic information, i.e. prior
knowledge and sensory data, to make inferences about the world.

According to the Bayesian formulation the generative model is decomposed into two terms: the
likelihood function or the probability that certain causes would generate the sensory input in
question; and the prior or unconditioned marginal probability of those causes. The likelihood

model, which maps causes to sensations, can be inverted using the Bayes theorem, yielding the
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Figure 3.1: Learned internal model in visual cortex reflects hierarchical causal structure of
the environment which generates the sensory input. The ambiguous information
provided by sensory inputs (e.g. 21 retinal image) 1s only a function of the internal
state of the world (e.g. 3D objects). The brain (observer) needs 1o inversely map
this function as precisely as possible to generale an accurale internal representation
of the world. The hierarchical organization of the brain suggests it has evolved to
reflect the inherent hierarchical structure of the world,
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posterior probability of the causes given the inputs (mapping from sensations to causes). This
can be written as:

P(I|C) - P(C)

P(I)

P(C|I) = (3.1)

where P(C|/) represents the posterior probability of the causes C given the input /, for example
the probability over the different physical causes given a particular retinal image: P(/|C) rep-
resents the likelihood of the input / given the causes C, for example the probability of a given
retinal image having been generated by one or another of the potential different physical causes;
P(C) represents the prior probability of the causes C, for example the different physical states

of the world; and P(/) simply represents a normalization factor.
3.1.3 Free-energy principle

The free-energy principle proposed by Friston (Friston and Kiebel 2009, Friston 2005, Friston
et al. 2006, Friston 2010) conceptualizes the brain as an adaptive system which tries to resist
a natural tendency to disorder, or entropy. Entropy can also be understood as a measure of
uncertainty or surprise, thus informally, the system needs to avoid surprises to ensure its state
remains within physiological bounds. One of the main characteristics of biological systems is
that they maintain their internal states within operational bounds, even with constantly changing

environments,

However, how can a system know if its sensations are surprising”? The free energy principle
provides a framework to do this as the free energy of a system is an upper bound on surprise.
Thus by minimizing free energy, the system is implicitly minimizing surprise. Importantly, free
energy can be evaluated because it depends on two probability densities which are available to
the system: the recognition density and the conditional or posterior density.

The recognition density, P(¥3|pt ), provides a probabilistic representation of the causes, 1, of a
particular stimulus, given a set of internal states, p. In the brain these internal states hypotheti-
cally correspond to neuronal activity and synaptic weights. The conditional density, P(§, 9 |m),

provides the joint probabilistic representation of causes, 1, and sensory signals, §. It is based

68




3.1. THE BAYESIAN BRAIN HYPOTHESIS

on a probabilistic generative model, m, which captures the dependencies between causes and
sensory data, and can thus generate sensory samples from given causes, and likewise obtain a
posterior distribution of causes given the sensory input. The generative model is hypothesized

to be implicitly imprinted in the hierarchical structure of the brain.

The theory accommodates several aspects of brain function in terms of optimizing the differ-
ent parameters in order (o minimize the free energy of the system. For example, perception is
understood as the process of minimizing free energy with respect to the neuronal activity (en-
coded as part of the internal state, pt), which entails maximizing the posterior probability of the
recognition density. The recognition density therefore becomes an approximation of the true
posterior density. This is equivalent to the Bayesian inference approach described previously
in this section. Similarly, learning or plasticity in the brain is explained as the optimization of
synaptic weights, also encoded by the internal state variable, p. These two processes minimize
free energy by changing the recognition density, which modifies the expectations about sensory

data, but without modifying sensory data itself.

On the other hand, action is understood as a process of active inference, aimed at modifying
sensory data so that it conforms to the predictions or expectations made by the recognition den-
sity, Increasing the accuracy of predictions also reduces the free energy of the system. Broadly
speaking, the prediction error (i.e. sensations minus predictions), and thus free energy, can be
minimized by either changing the sensory input through action, or changing the predictions
through perception and learning. For a comprehensive description of the mathematical formu-

lation of free energy minimization the reader is referred to Friston and Kiebel (2009).

The free energy formulation was originally developed to deal with the problem of obtaining
exact inferences in complex systems, It tackles the problem by converting it into an easier
optimization problem. The inversion of the likelihood function (based on the Bayes theorem)
to infer the posterior distribution over causes, thus becomes an optimization problem which
consists of minimizing the difference between the recognition and the posterior densities to
suppress free energy. This technique can be described as a type of variational Bayesian method

(Beal 2003, Friston and Kiebel 2009, Winn and Bishop 2005), also called ensemble learning.
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These methods provide an analytical approximation to the posterior probability of intractable

Bayesian inference problems,

In summary, the free energy principle provides a unifying framework for the Bayesian brain
and predictive coding approaches, which understand the brain as an inference machine trying to
optimize the probabilistic representation of what caused its sensory input. As stated by Friston
(2010), the theory can be implemented by many different schemes, most of which involve some

form of hierarchical message passing or belief propagation among regions of the brain.

The model proposed in this thesis describes such a hierarchical message passing scheme, and
thus is theoretically grounded on the free energy principle and the Bayesian brain hypothe-
sis. Particularly, the focus of this thesis is on Bayesian networks, a type of graphical model
which represents the causal dependencies present in generative models; and the Bayesian belief
propagation algorithm, which performs inference in this type of network. A more formal defi-
nition and the relevant mathematical formulation of Bayesian networks and belief propagation

is included in Section 3.3.

3.1.4 Origins

One of the first people to propose formulating perception in terms of a generative model was
Mumford, who based his ideas on Grenader’s pattern theory and earlier suggestions by Helmholtz
(Mumford 1996). Applied to visual perception, this theory states that what we perceive is not
the true sensory signal, but a rational reconstruction of what the signal should be. The am-
biguities present in the early stages of processing an image never become conscious because
the visual system finds an explanation for every peculiarity of the image. Pattern theory is
based on the idea that pattern analysis requires pattern synthesis, thereby adding to the previous
purely bottom-up or feedforward structure a top-down or feedback process in which the signal
or pattern is reconstructed.

The Helmholtz machine (Dayan et al. 1995) extended these ideas by implementing inferential
priors using feedback. Here, the generative and recognition models were both implemented
as structured networks whose parameters had 1o be learned. The connectivity of the system

is based on the hierarchical top-down and bottom-up connections in the cortex. This fayered
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hierarchical connectionist network provides a tractable implementation to computing the expo-
nential number of possible causes underlying each pattern, unlike other approaches such as the
Expectation-Maximization algorithm, which runs into prohibitive computational costs. The key
insight is to rely on using an explicit recognition model with its own parameters instead of using

the generative model paramelers (o perform recognition in an iterative process.

In recent years, the Bayesian brain hypothesis has become increasingly popular, and several
authors (Friston 2005, Dean 2006, Lee and Mumford 2003, Rao 2006, Deneve 2005, Litvak
and Ullman 2009, Steimer et al. 2009, Hinton et al. 2006) have elaborated and extended this
theory. Many of their contributions are described in this chapter. One of the main reasons for
the rising recognition of the Bayesian brain hypothesis is its ability to accommodate disparate
experimental results and existing models within a common framework, as will be illustrated in

the following sections.

Evidence from the brain

The Bayesian brain model maps well onto anatomical, physiological and psychophysical as-
pects of the brain. Visual cortices are organized hierarchically (Felleman and Van Lissen 1991)
in recurrent architectures using distinct forward and backward connections with functional
asymmetries. While feedforward connections are mainly driving, feedback connections are
mostly modulatory in their effects (Angelucci and Bullier 2003, Hupe et al. 2001). Evidence
shows that feedback originating in higher level areas such as V4, IT or MT, with bigger and
more complex receptive fields, can modify and shape V1 responses, accounting for contextual
or extra-classical receptive field effects (Guo et al. 2007, Harrison et al. 2007, Huang et al.
2007, Sillito et al. 2006). Chapter 2 describes these aspects in more detail. As we will see in
this section, hierarchical generative models are reminiscent of the described cortical architec-

ture, sharing many structural and connectivity properties.

[n terms of the neural mechanisms involved, although it is not yet practical to test the proposed
framework in detail, there are some relevant findings from functional magnetic resonance imag-
ing (fMRI) and electrophysiological recordings. Murray et al. (2004) showed that when local

information is perceptually organized into whole objects, activity in V1 decreases while activ-

71




3.2. EVIDENCE FROM THE BRAIN

ity in higher areas increases. They interpreted this in terms of high-level hypotheses or causes
explaining away the incoming sensory data. Further, Lee and Mumford (2003) studied the
temporal response of early visual areas to different visual illusions, concluding that there are in-
creasing levels of complexity in information processing within V1, and that low-level activity is
highly interactive with the rest of the visual system. Results of both experiments are consistent

with the generative modelling approach.

The generative model is also in agreement with evidence suggesting that the representations
activated along the ventral pathway that are activated during mental imagery and visual per-
ception are surprisingly similar (Reddy et al. 2010, Ishai 2010). In fact, Slotnick et al. (2005)
showed that visual mental imagery can evoke topographically organized activity in striate an ex-
trastriate cortex, suggesting the involvement of feedback connections from higher-level object-

representation regions (Reddy et al. 2010).

The model is also consistent with evidence showing feedback from higher levels acts to reduce
responses in lower levels (Alink et al. 2010, Murray et al. 2004, Sterzer et al. 2006, Harrison
et al. 2007, Rao and Ballard 1999). This is related to the predictive coding approach (Section
2.2.3), which is a particularization of hierarchical Bayesian inference in generative models. The
reduction in response can be explained either by the reduction in feedforward error-detection
populations, as a consequence of more accurate high-level predictions, or by a refinement of the
belief maintained at the different levels, due to the reduction of activity coding for features in-
consistent with high-level predictions. Furthermore. predictive coding models have been shown
to be successful in explaining several phenomena observed in cortex, such as repetition suppres-
sion (Friston et al. 20006), biphasic responses in LGN (Jehee and Ballard 2009), end-stopping
effects (Rao and Ballard 1997, Rao 1999) and a wide variety of V1 extra-classical receptive
field effects, including surround suppression and facilitation (Spratling 2010).

The model also accommodates evidence, such as the reduction of V1 activity when higher areas
are inactivated (Hupe et al. 2001, Huang et al. 2007, Galuske et al. 2002, Angelucci and Bullier

2003), which suggest that feedback acts to enhance lower level activity consistent with the

high-level percept. This is consistent with biased competition and attentional interpretations of
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feedback, which can also be accommodated within Bayesian inference theory (Chikkerur et al.
2009, Spratling 2008b, Friston 2010). These results are explained as an increase in the belief
or prediction populations, as a consequence of an enhancement of features consistent with the

global percept.

Moreover, the Bayesian framework is also compatible with basic synaptic physiology such as
Hebbian plasticity, which results from the optimization of the generative model parameters in
order to reduce prediction error (Friston et al. 2006). A recent study (Nessler et al. 2009)
further showed how a winner-take-all network of spiking neurons implementing a spike-timing-
dependent plasticity rule could be understood in terms of a hierarchical generative model which

discovered the causes of is input.

Research has also made progress in accommodating the probabilistic framework at a neuronal
processing level, describing how simple spiking neuron responses and population codes can
represent probability distributions and implement inference (Pouget et al. 2003, Zemel et al.
2004, Deneve 2008a,b, Ma et al. 2006, Wu and Amari 2001). A recent outstanding publication
(Soltani and Wang 2010) demonstrated how neuronal synaptic computations could underlie
probabilistic inference by integrating information from individual cues. The model, validated on
data from an experiment on a monkey performing a categorization task, showed how synapses,
based on reward-dependent plasticity, naturally encode the posterior probability over different

causes given the presentation of specific cues.

Our understanding of the psychophysics of action and perception has also strongly benefited
from Bayesian inference approaches. These have provided a unifying framework to model the
psychophysics of object perception (Kersten et al. 2004, Knill and Richards 1996, Yuille and
Kersten 2006), resolving its complexities and ambiguities by probabilistic integration of prior
object knowledge with image features. Interestingly, visual illusions, which are typically inter-
preted as errors of some imprecise neural mechanism, can in fact be seen as the optimal adap-
tation of a perceptual system obeying rules of Bayesian inference (Geisler and Kersten 2002).
Similarly, Weiss and Adelson (1998) presented a Bayesian model of motion perception which

predicted a wide range of psychophysical results, including a set of complex visual illusions, by
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combining information from different image regions with a probabilistic prior favouring slow
and smooth velocities. In further support of this view, Kording and Wolpert (2004) concluded
that the central nervous system also employs a Bayesian inferential approach during sensorimo-

tor learning.

Probabilistic models are currently widely used to successfully capture different aspects of brain
function, and provide a unifying perspective across a broad range of domains and levels of ab-
straction. They are not limited to modelling perception, and have been employed to explain
other cognitive functions such as psychological conditioning, semantic memory, and decision-
making (Chater et al. 2006). For example, a recent study employs a probabilistic inference
computational model, based on the neural representations in prefrontal cortex, 1o explain deci-

sion making during social interactions (Yoshida et al. 2010).

Definition and mathematical formulation

In this section we define and formulate the mathematical tools used to develop the model in
this thesis, namely Bayesian networks and belief propagation. These provide a specific imple-
mentation of the theoretical principles described in Section 3.1, i.e. the Bayesian inference and
generative model framework. A body of experimental evidence highlighting the similarities be-
tween this approach and a set of functional, anatomical, physiological and biological properties

of the brain has been presented in Section 3.2.

This section first introduces basic probability theory concepts, and then describes what a Bayesian
network is and how belief propagation works, with the aid of a practical example. Subsequent
subsections describe two challenging aspects of belief propagation: combining information
from multiple parents and dealing with loops in the network using approximate inference meth-

ods.

3.3.1 Probability theory

Before describing Bayesian networks in detail, and to facilitale understanding, this section in-

troduces some essential concepts and terminology from probability theory. Note capital letters

denote random variables, e.g. X, Y, while lower-case letters denote specific values of a random
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variable, e.g. P(x) is equivalent to P(X = x).

Joint probability Given a set of random variables X = {X;,....X,}, the joint probability
distribution P(X;,....X,) defines the probability of the events specified by the variable states

X = (x]....,xx) occurring together (in conjunction), and satisfies the following property,

Y P(xiyekn) = 1 (3.2)
o R 41

Marginal probability Given a joint probability distribution P(X,,.... X, ), the marginal prob-

ability for a subset of variables ¥ = {¥},....¥, } € X is given by

P(y1y.00¥n) = Z P{Xyy.i Xy ) (3.3)

1]y X JEY

The marginal probability for a given variable is therefore

P(x)) Y Plx.x) (3.4)

{1 GO, (L

The marginalization process, also called variable elimination, entails summing over all the
possible values of the variables we want to eliminate from the resulting marginal probability

distribution,

Conditional probability Given two disjunctive sets of variables X and Y, the conditional

probability of ¥ given X is defined as

}Jt '..
P(3)%) = _!'fi\ 1%} (3.5)

Conditional independence Two sets of variables X and Y are conditionally independent

given a third set Z if

P(¥)%.2) = P(5)2) (3.6)
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In this case it can be said that set Z separates sets X and ¥, written as X 1L ¥ |Z.

Factorization From the definition of conditional probability it follows that the joint probabil-
ity distribution of a set of hierarchically organized variables X can be factorized as follows (also

referred to as the chain rule),

PUX Ly X0 ) = PUX [X50i020) < P2 | X 30055 X0 ) v v Pfxg) = HPU-U: TS (RECEE 1) (3.7)

i

The different conditional probability terms can be simplified according to conditional indepen-

dence assumptions.

Bayes theorem  Given two sets X and ¥, the conditional probability of ¥ given X (also called

the posterior probability) satisfies the following equation,

P(7) - P(El§)

POIY) = —F5 x‘}

(3.8)

where the conditional probability P(x|y) is also called the likelihood; the marginal probability

P(y) is also called the prior; and the marginal probability P(X) acts as a normalization constant.

The marginalization and factorization of the joint probability distribution, together with the
application of the Bayes theorem, are the three key elements of the belief propagation algorithm

described in the following section,
3.3.2 Bayesian networks

A Bayesian network is a specific type of graphical model, more specifically a directed acyclic
graph, where each node in the network represents a random variable, and arrows establish a
causal dependency between nodes. Therefore, each arrow represents a conditional probability
distribution P(X|Iy) which relates node X with its parents ITy. Crucially, the network is de-
fined such that the probability of a node X being in a particular state depends only on the state
of its parents, ITy. Consequently, a Bayesian network of N random variables X; defines a joint

probability distribution which can be factorized as follows,
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P(X,... Xy) =[] P(xiT1x) (3.9)

Note for nodes without parents (root nodes), the conditional probability of X; is equal to its
prior probability, i.e. P(X;|Ilx ) = P(X;). Thus, defining the whole structure of a Bayesian net-
work requires specification of the conditional probability distribution of each node with parents,

P(X;|Iy, ), plus the prior probability distributions of all root nodes, P(X,, ).

More formally, a Bayesian network is a pair B = (G, P), where

e G=(V.A)isanacyclic directed graph with V = {X,,X5,.... X, }, a set of nodes (vertices);

and A =C V x V, a set of arcs defined over the nodes,
e P(V), a joint probability distribution over V, given by Equation (3.9).

An explanation of why the graph is denoted as acyclic and directed, and why these two prop-
erties are important, can be found further down in this section after introducing a clarifying

example.
3.3.2.1 Anillustrative example

Figure 3.2 shows a Bayesian network with six random variables representing a toy model sce-
nario which can be used to illustrate the above concepts. For simplicity we use discrete binary
variables, i.e. each variable can be in either of two states, true or false. However, in a real

scenario these variables are typically either continuous, or discrete with several states.

The scenario assumes the presence of big waves in the sea is a consequence of two causes: the
presence of gales, as strong winds are associated with large wind-generated waves; and whether
the moon is aligned with the sun or not. When the moon and the sun are aligned (which occurs
during full moon and new moon periods) their gravitational force is combined increasing the
amplitude of tidal waves. The presence of hig waves is represented by the variable Waves (W );
the presence of gales is represented by the variable Gales (G); and whether the moon is aligned

with the sun or not is represented by the variable Moon (M).
Because both Gales and Moon have no parent nodes, they are considered to be root nodes, and
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thus require a prior probability distribution. The prior distributions, P(G) and P(M), indicate
that, with no other information available, it is more likely that Gales are not present (0.8 vs.

0.2); while both states of the Moon are equally likely (0.5).

The model assumes when both high-level causes, Gales and Moon, are present (G = |.M =
1), the probability of Waves is higher than when either of the causes is present by itself e.g.
Gales but no Moon (G = | .M = 0). When presented exclusively, Gales is considered o have
a stronger effect over the generation of Waves than Moon. All this information is captured
by the conditional probability distribution, in this case a conditional probability table (CPT)
as variables are discrete, over the states of Waves given the states of Gales and Moon, i.c.

P(W|G.M).

Al the same time, Waves acts as the cause of the two lower level effects: the presence of fishing
activity, which is affected negatively by big waves, e¢.g.fishermen at a pier/beach or small fishing
boats; and the presence of surfing activity, a sport which strongly benefits from big waves. The
presence of fishing activity is denoted by the variable Fishing (F ), while the presence of surfing

activity is denoted by the variable Surfing (§).

Crucially, the state of the parent node, Waves, is a determinant factor for the state of both child
nodes, Fishing and Surfing. The causality dependency between the state of the node Fishing
with respect 10 the state of its parent node Waves is given by the CPT P(F|W). Analogously,
P(S|W) represents the conditional probability over the states of the node Surfing given the state

of the node Waves.

Using the more formal definition, the Bayesian network in Figure 3.2 can be described as B =

(G, P), where

e G =(V,A)is adirected acyclic graph with a set of vertices V = {G.M W F.S}.

and a set of arcs A = ((G.W),(M,W),(W.F).(W.S)}:

e /7 is the joint probability distribution over V' given by,

P(G,M,W,F,S) = P(S|W)-P(F|W)-P(W|G,M)-P(G) - P(W) (3.10)
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Figure 3.2 Toy model Bayesian network. The scenario assumes the presence of big waves in
the sea, Waves (W), is a consequence ol two causes: the presence of gales, Gales
(€7); and whether the moon is aligned with the sun or not, Meon (M). At the
same time, Waves acts as the cause for the two lower level effects: the presence of
fishing activity, Fishing (F'); and the presence of surfing activity, Surfing (S). The
prior distributions, P(G) and P(M), indicate that, without any other information
available, it is more likely that Gales are not present (0.8 vs. 0.2); while baoth
states of the Moon are equally likely (0.5). The conditional probability over the
states of Waves given the states of Gales and Moon is represented in the conditional
probability table P(W|G.M). The causality dependency between the state of the
node Fishing with respect to the state of its parent node Waves is given by the
CPT P(F|W). Analogously, P(S|W) represents the conditional probability over

the states of the node Surfing given the states of the node Waves,
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Note the example described is just @ toy scenario which does not accurately reflect the physical
factors affecting wave generation, or the effects waves may have on surfing and fishing acuvity.
Any real life situation is practically impossible to capiure using such a reduced number of
variables and states. However, the analogy with a real-world situation is useful to explain the

different mathematical constructs in this section,
3.3.2.2 Directional separation and explaining away

Graphical models can be divided into two categories: directed and undirected. Undirected
graphical models, also called Markov random fields, have a simple definition of independence.
Two sets of nodes A and B are conditionally independent given a third set, C, if all paths
between the nodes in A and B are separated by a node in C. By contrast, directed graphical
models (Bayesian networks), have a more complicated notion of independence, which takes
into account the directionality of the arcs. Directionality, however, has several advantages. The
most important is that causality is clearly defined, such that an arc from A — B indicates that
A causes B. This facilitates the construction of the graph structure, and the parameter learning
process or fitting to data. Not all causal relationships captured with directed graphical models
can be represented using undirected graphical models, and vice versa (Pearl 1988, Murphy

2002).

Before describing directional separation in Bayesian networks, it is important to define the
concept and the different types of evidence. An evidence function that assigns a zero probability
to all but one state is often said to provide hard evidence; otherwise, it is said to provide soft
evidence (e.g. 90% probability of being true and 10% probability of being false). Hard evidence
on a variable X is also often referred to as instantiation of X or to X being observed or known.
Note that, as soft evidence is a more general kind of evidence, hard evidence can be considered
a special type of soft evidence, If the distinction is unimportant we will leave out the hard or

soft qualifier, and simply talk about evidence.

Due to the directionality of arcs, there are three different types of connections in Bayesian

networks:
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e Serial connections: For example, the connection M — W — S in Figure 3.2. Node § is

conditionally dependent on node W, and node W is conditionally dependent on node M.
This means entering evidence at nodes M or § will update the probability distribution of
node W. However, entering hard evidence in node W blocks or directionally separates

(d-separates) nodes M and S.

In other words, nodes M and § are conditionally independent given hard evidence in node
W, also written as M 1L S | W. Thus, information may flow through serial connections
unless the state of the middle variable (W) is known. Intuitively speaking, given that we
already know the size of the waves (W), the moon alignment (M) does not affect the

presence of surfing activity (S).

Diverging connections: For example, the connection F' + W — S in Figure 3.2, Child
nodes F and § are conditionally dependent on parent node W, thus entering evidence on
W will modify the probability distribution in nodes F and S. However, knowing the state

of W blocks (d-separates) nodes Fand §.

Therefore, nodes F and § are conditionally independent given hard evidence at node W,
te. I 1L §| W. Hence, information may flow along diverging connections, unless the
state of the middle node W is known. Intuitively, if we don’t know the state of the waves
(W), the presence of fishing activity (F') could provide us some information about the
presence of surfing activity (S5). However, once we know the exact state of the waves
(W), the presence of fishing activity (/) does not affect the presence of surfing activity

(§) and vice versa.

Converging connections: For example, the connection G — W « M in Figure 3.2. Child
node W is conditionally dependent on parent nodes GG and M. Entering hard evidence at
node G will update node W but have no effect on node M. However, if some evidence
is already present in node W, then entering information in any of the parent nodes G or
M will update the other parent node. Here, soft or hard evidence in node W or any of its

descendants, d-connects nodes G and M.
Thus, it can be said that nodes G and M are conditionally dependent if evidence on W or
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its descendants is available. This rule tells us that if nothing is known about a common
effect of two (or more) causes, then the causes are independent. In other words Gales is
not an indicator of Moon, and vice versa. However, as soon as some evidence is available
on a common effect, the causes become dependent. If, for example, we receive some
information on the state of Waves, then Gales and Moon become competing explanations
for this effect. Thus, receiving information about one of the causes either confirms or
dismisses the other one as the cause of Waves. Note that even il the initial information

aboul the Waves is not reliable (soft evidence), Gales and Moon still become dependent.

The property of converging connections, where information about the state of a parent
node provides an explanation for an observed effect, and hence confirms or dismisses
another parent node as the cause of the effect, is often referred to as the explaining away
effect or as intercausal inference. For example, knowing Gales are present strongly sug-
gests these are responsible for the Waves, hence explaining away the Moon as the cause

of the Waves.

Critically, one of the fundamental properties of directed acyclic graphs (Bayesian networks) is
that for a given node X, the set of its parents, Iy, d-separates this node from all other subsets
¥ with no descendants of X, such that X 1L ¥ | I1x. In other words, each node in the network is
conditionally independent from its non-descendants, given its parents. This allows us to obtain
the factorization of the joint probability distribution shown in Equation (3.9), as the following

property is satisfied:

P(X;|Tly ,¥) = P(X;|T1y ) (3.11)

3.3.2.3 Cycles and acyclic graphs

A chain consists of a series of nodes where each successive node in the chain is connected to
the previous one by an edge. A path is a chain where each connection edge in the chain has the
same directionality, i.e. all are serial connections. For example, nodes M — W — S (Figure 3.2

form a path; while nodes A — W « G form a chain but not a path. A cyefe is a path that starts
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fal (b

Figure 3.3 Bayesian networks can have loops but not cycles. a) A cyele: a path that starts and
ends at the same node. b) A loop: a chain with no cycles, where at least one node
is visited more than once.

and ends at the same node (Figure 3.3a). A loop, however, is a chain where at least one node is

visited more than once (i.e. has two or more parents), but has no cycles (Figure 3.3b).
The distinction is important because Bayesian networks by definition have no cycles (acyclic),
but can have loops. Bayesian networks with no loops are usually called singly-connected net-

works, while those with loops are called multiply-connected networks.
3.3.3 Belief propagation

3.3.3.1 Inference

Given the structure of the network and the conditional probabilities defining the joint probability
distribution (Equation (3.9)), it is possible to analytically compute the marginal probability of
each node, in terms of sums over all the possible states of all other nodes in the system i.e.
using marginalization, as shown in Equation (3.4). For example, the marginal probability of the

variable W can be calculated from the joint probability given by Equation 3.10 as follows,

PW)=Y Y Y Y P(SIW)-P(F|W)-P(W|G,M)-P(G)-P(W) (3.12)
S FGM

As can be seen, this computation is impractical, specially for large networks, as the number of

terms 1n the sums grows exponentially with the number of vanables. Furthermore, there are
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many common intermediate terms in the expressions for the different marginal probabilities,
which implies a high redundancy and thus low efficiency in the calculations. Additionally, when
new evidence arrives into the network, the effects of the observed node modify the marginal
probabilities of all other nodes, requiring the whole marginalization process to be repeated for

each variable.

Belief propagation, a message-passing algorithm, manages to perform inference in a Bayesian
network in a way that grows only linearly with the number of nodes, as it exploits the common
intermediate terms that appear in the calculations. In belief propagation the effects of the obser-
vation are propagated throughout the network by passing messages between nodes. The final
belief, or posterior probability, is computed locally at each node by combining all incoming

messages, i.e. evidence from higher and lower levels.

The belief propagation algorithm is not restricted to solving inference problems in Bayesian net-
works. In fact, a generalized version of the algorithm, also called the sum-product algorithm,
can be shown to encompass a number of methods from different disciplines such as physics,
digital communications and artificial intelligence. Some of the methods that can be considered
particular cases of belief propagation are the forward-backward algorithm, the Viterbi algo-
rithm, decoding algorithms such as turbo-codes, the Kalman filter and the transfer-matrix in

physics (Yedidia et al. 2003, Kschischang et al. 2001).

To derive particular instantiations of the belief propagation algorithm it is necessary to consider
mathematical scenarios with very specific conditions in each case. For example, the Kalman fil-
ter is derived from applying the the generalized belief propagation algorithm to a set of Gaussian
random variables that follow certain discrete-time dynamical equations. It is useful to represent
the different problems using factor graphs, a graph-based language that allows us 10 represent a
set of variables, together with a generic set of functions which relates different subsets of these
variables (Yedidia et al. 2003). It has been shown that factor graphs can capture a wide range of
mathematical systems, including Markov random fields and Bayesian networks. 1t is therefore
possible to convert any arbitrary Bayesian network into a precisely mathematically equivalent

factor graph (and vice versa) and apply the generalized belief propagation algorithm to solve
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the inference problem defined by the network (Kschischang et al. 2001).

In this thesis however, I have used Pearl’s original belief propagation algorithm applied to
Bayesian networks (Pearl 1988). The rationale behind this choice is that, although factor graphs
can capture the same phenomena, Bayesian networks provide a more intuitive and explicit ac-
count of the causal relations between the variables. 1 believe this is crucial when modelling

hierarchical object recognition in the visual system from the the generative model perspective.
3.3.3.2 Combination of evidence and belief calculation
The aim of belief propagation is to calculate the marginal probabifity of a variable X given

some evidence e. The influence of evidence can propagate to node X either through its parent

or through its child nodes, thus evidence can be divided into two subsets such that,

e = e_,;, J €y (3.13)

ey Ney =0 (3.14)

where ey represents the evidence above node X, and ey represents the evidence below node X,

This is shown in Figure 3.4, Similarly, in this section we will use the symbol e,‘;“,{ to designate

the evidence above the link U; — X; while e, , refers to the evidence below the link U; — X.

The probability of a node X given some evidence e, i.e. P(xle), is usually referred to as the
posterior probability, P*(X ), or the belief, Bel(X ). Taking into account all the above, as well as

Bayes rule (Equation (3.8)), we can write,
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Figire 3.4: Message passing in belief propagation in a Bayesian network. Node X receives all
bottom-up messages Ac, (x), ..., ACy(x) from its children. and all top-down mes-
sages My (uy),..., My () from its parents. The belief can then be calculated by
combining all bottom-up evidence e, and top-down evidence ef. Node X gen-
erates outgoing messages Ay (4 ), .., Ay (uy) for its parent nodes, and messages
e (x), . Moy, (x) for its child nodes.

Bel(x) = P*(x) = P(x|e) = P(x|ey . ex) (3.15)
_ Pleyled) Plrley) -
P(ey ley)
= - P(ey|x)- P(x|ey) (3.17)
=a-Ax) w(x) (3.18)

where & = [P(ey ey )] !, represents a normalization constant; A(x) = P(e, [x), represents the
diagnostic or retrospective support that the assertion X = x receives from X's descendants; and
m(x) = P(x|ey ), represents the causal or predictive support that the assertion X = x receives
from all non-descendants of X, via X’s parents. Thus, the total strength of the belief X = x can

be obtained by combining or fusing the contribution of bottom-up diagnostic evidence, A (x),
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and top-down causal evidence, m(x), as shown in Equation (3.18). The A and 7 symbols (greek
letter for { and p) are chosen because the terms are derived from the likelihood and prior terms,

respectively, in the Bayes theorem (Equation (3.8)).

To understand how information from several descendants is combined at node X, we partition
the set ey into disjoint subsets, one for each child of X. For example, for the graph in Figure 3.4,
if X is not instantiated, we can write ey = ey, Uey. U...Uey. . yielding the following ex-

pression,

A(x) = Pleg |x)

= Ac,(x) (3.19)

where A¢ (x) = P(ey. |x), represents the support the assertion X = x receives from the set of
3 /

nodes below the link X — C,. In other words, it represents how well the cause x explains the

effects observed in the nodes under the C';. The A¢ (x) terms can be understood as messages that

node X receives from its children, which combined via the product rule yield the A (x) function.

Next T will describe how to obtain the z(x) function, firstly for a single parent, and secondly
for the case with multiple parents (polytrees). Assuming X has a single parent node / and

conditioning on the values of U, we get,
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n{x) = Plx|ey)

Z!’l.x|0_\'- yu) - Plujey )

nu

Z!’: xu) - Pluley )

): P(xlu) - my (u) (3.20)

1]

where P(x|u) is the conditional probability distribution stored on the link U — X' and 7ty (1) =
P(uley ), represents how probable the value u is, based on causal evidence above the link (7 — X.
7y (1) can be understood as a message that node X receives from its parent, which, multiplied

by the conditional probability function that relates both nodes, yields the 7(x) function,

In the more general case where multiple parents are present, we assume the evidence can be

partitioned such that ey = e/, y Le, U ... LUe) y (Figure 3.4). Therefore,

¢y )

n(x) = Plx
= !'{_x"u,'l_r_....e,'_.‘ v)

L P(x|uyy..oun) - Pluy...ounle) yoon€lx)

WY yoen MY

= Z Plx|uy,.o.ouy) - Pluy |'“'.‘_‘.-'|.x' Joooy Pluniep, x )
Wy

Z Plalug,coown) mmxluy) - mvluy)
Wy iy

- z P(xiuy. ... .uy) - n Ty (u,) (3.21)
Hy..o My

i=1.N

where P(x|uy.....uy ) represents the conditional probability distribution that relates node X to
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all of its parents; and 7y (u;) represents the support the assertion U; = u; receives from the
nodes above U;. my(u;) can also be understood as the message X receives from its parent
node U;, which combined with the messages from all other parent nodes, and multiplied by the

appropriate values of the conditional probability function, yields the z(x) function.

Therefore, as has been demonstrated, the generic node X in Figure 3.4 can calculate its own
belief if it receives the messages A¢ (x) from its children and my (u;) from its parents. In the rest
of this section we will consider how to generate these messages, which allow the evidence 1o

propagate across the network.
3.3.3.3 Bottom-up messages

Taking into account that all nodes in a Bayesian network perform the same operations, we will
consider the generic message Ax (), which node X must send to its parent node U, (Figure 3.4).
It is therefore convenient to treat all parents of X, except the one receiving the message, as a

common set V_ suchthat V. =U—-U, = {U),...U; . Upyy.....Uy} as shown in Figure 3.5.

The message Ay («;) must take into account all evidence under the link /; — X, which includes

evidence coming from all other parents of X (e, = |J "‘{_J.'—',\X ); and evidence arriving from
k= 1N\

the descendents of X (e, ). Given that X separates ey from e,,x and V separates ey, from U,

we can wrile,

Ax (ui) = Pleg y|ui) = Plefy, ex |u;)

[conditioning on x and v] = ZZ P(e}y, ey |ui,v,x) - P(v,x|u;)
.

X

=YY Plexx)- Plejy.v) - P(v,xlui)

- Plvle;
lapplying Bayes theorem] = ﬁZZP{:cg‘.r) - ~—(; {("%J “Plx|v,u) - P(v]u;)
LY i : v
[since P(v|u;) = P(v)] = [322!%&‘_“”\'} -P(v]eyy) - P(x|v.u;) (3.22)
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Pley' ey | 1) = Afu,) /D{V | €yx") = s Ty (L)

li"' T 4
Pley | x) = A(x)

€y

Figure 3.5: Bottom-up A messages explanatory diagram. The message Ay (u;) must take into
account all evidence under the link Uy — X, which includes evidence coming

from all other parents of X (e U ef x) and evidence arriving from the
k=1..N\i

descendents of X (ey). It is therefore convenient to treat all parents of X, ex-
ceplt the one receiving the message, as a common set V., such that V. =U — U
{U1y oo Ui, Uity - Un |
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After restoring the original meaning of V. such that P(x|v,u;) = P(x|uy....uy), and

Pvlejy)= [I Plulesx)= [T moe(us) (3.23)

k=1..N\i k=1..N\i

the final expression is

lx{u,]:—ﬁz Alx) ):’ P(x|uy,...un) H Ty (1) (3.24)
v k

TT AR T AT [BRUAY

where B is a normalizing constant, and A(x) is defined in Equation (3.24). Note, in the previous
derivation we assume nodes X and V themselves are not instantiated and are therefore not part

of the evidence sets e;, y and ey y, respectively.
3.3.3.4 Top-down messages

We now consider the generic message 7, (x) that node X sends to its child node €, as shown
in Figure 3.4. The body of evidence which must be sent in this message includes all evidence
available, except the evidence found in the subnetwork below the link X — ('), i.e. e,;,(,_

e —ey. . Therefore, ¢, (x) is equivalent to the belief of X (Equation (3.18)) when the evidence

€y 18 suppressed, which can be written as,
ot J.

n.(_'_ {1} — {';,{-.
Bel(x
PN i) (3.25)
}..('IIJ\\'}
=% H Ac,(x) - mlx) (3.26)
k=1.M\j

where @ is a normalizing constant, and m(x) is defined in Equation (3.20).
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3.3.3.5 Summary of belief propagation rules

Here we sum up the computations performed locally by a node in the generic section of a
hierarchical Bayesian network represented in Figure 3.5. Given a node X with parent nodes
Uy,...Uy, and a set of child nodes Cj...,Cy. the belief propagation algorithm can be performed

in three steps as follows:

1. Node X receives all bottom-up messages A¢, (x),....ACy(x) from its children, and all

top-down messages Ty (¥ ), ..., Ty (uy ) from its parents.

2. Given the fixed conditional probability distribution P(x|uy,...,uy) that relates node X to

its immediate parents Uy, ....Uy, node X can calculate its belief as

Bel(x) = ot-A(x)-m(x) (3.27)
Ax) =[] Ac () (3.28)
J=1L.M
(x) = Z Plxfup,...,uy ) My (u;) (3.29)
Wiy =1.N

where A (x) represents the combination of bottom-up evidence arriving at node X and

mt(x) represents the combination of top-down evidence arriving at node X.

3. Node X generates outgoing messages Ay (u)). . Ax(uy) for its parent nodes, and mes-

sages M, (x), .., e, (x) for its child nodes, given by the following equations:

A_y{'u,jzﬁz Alx) z Plx|uy,..uy) n oy () (3.30)
:

TR AN T k=1.N\i

. Bel(x)
Ay = c(x)em(x) =0 ——- (3.31)
e, (x) (IL-H{ ;A.(_I\[\) (x) 7o)
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Note the Ay(u,) message can be sent to node U; as soon as messages from all other
nodes, except node U, have been received. Analogously 7c (x) can be sent as soon as all

messages, excepl that arriving from node C;, have been received.

3.3.3.6 Boundary conditions and evidence nodes

There are four types of nodes that are considered special cases and need (o be initialized as

follows:

)

. Root nodes: For a node X without parents, 71(x) is set equal to the prior probability P(x).

Anticipatory nodes: For a node X without children, which has not been instantiated, A (x)

is set equal to a flat distribution (1,1,.... 1), so that Bel(x) is equal to m(x).

. Evidence nodes: For a node X that has been instantiated, such that the j-th value of X is

observed to be true, A (x) is set equal to (0,...,0,1,0,...0) with 1 at the j-th position. This

is usually referred to as hard evidence.

. Dummy nodes: A node X can receive virtual or judgmental evidence from a child dummy

node C. In this case the A(c) and 7(c) do not exist, but instead a A¢(x) message from
C to X is generated where Ac(x) = B - P(observation|x). The observation can consist of
any probability distribution over the states of node X, and is usually referred to as soft

evidence.

3.3.3.7 Example of belief propagation with diagnostic evidence

When evidence occurs in the child node and propagates to the parent node, from known effects

to unknown causes, this is denoted as diagnostic reasoning or bottom-up recognition. Figure 3.6

shows a scenario, based on the previously described toy example, where evidence about Surfing

propagates across the network, updating the beliefs in all other nodes.

Note that because variables are binary, the probability of X or the belief of X refer to the proba-

bility of variable X being in the true state,
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Figure 3.6: For caption see footnote'.
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We assume the following initial conditions: the two root nodes M and G take the value of their
prior probabilities; child node F acts as an anticipatory node, thus maintaining a flat distribution,
and node § is an evidence node with a distribution (0, 1), i.e. hard evidence indicating that
there is definitely Surfing activity, Given this information and the conditional probability tables
provided in Figure 3.6, all the nodes are ready to send messages to the intermediate node W.
The initial conditions, and the subsequent generated messages following Equations (3.30) and

(3.31), are shown below:

ICaption for Figure 3.6, Example of belief propagation with diagnostic evidence. The scenario, based on the
previously described toy example, shows how evidence about Surfing propagates across the network, updating the
beliefs in all other nodes. In the first step the two root nodes and the two leal nodes send messages to the intermediate
node W, which multiplies the combined top-down evidence, nt(w} and bottom-up evidence, A {w), to obtain its belief
Step two shows the outgoing messages from node W to its child and parent nodes. The key property here is that
the outgoing messages lake into account all evidence except that which originated from the destination node. For
example the message from W o G, Aw (g). doesn't take into account the prior information conveyed through the
incoming message Ty (g). The belief, or posterior probability, of both parent nodes is higher than their original prior
probability, Node F also updates its belief according to the new incoming message, showing a lower probability

Intuitively, evidence of surfing activity suggests the presence of big waves, which in turn suggests the presence of
gales and/or the moon as the generating causes. Al the same time, the presence of big waves suggests fishing activity
is less likely to be present. See the text for a detailed step by step description of the mathematical operations.
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A(f)=(1,1); Als)=(0.1); m(g)=(0.8.0.2); n(m)=(0.5.0.5)

Ae(w) =B - Y A(f) P(f]w)

;

B-(1-02+1-0.8,1-0.7+1-0.3)=(1,1)

As(w)=B-Y A(f) P(s|w)

(0-0.741:0.3,0:0.2+1-0.8)

B(0.3,0.8) = (0.27,0.73)

aw(g) = n(g) = (0.8,0.2)

w(m) = w(m) = (0.5.0.5)

Once node W has received all incoming messages, it can generate A(w), which combines all
bottom-up evidence, and m(w), which combines all top-down evidence (in this case the pri-
ors). The final beliel can be obtained by multiplying together these two factors, thus obtaining

the marginal probability of W given all the information available in the network. Following

Equations (3.27), (3.28) and (3.29), we obtain
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A(w) = Ap(w) - As(w)

=(1,1)-(0.27,0.73) = (0.27,0.73)

m(w) = Z[’{ wig.m) w(g) Tw(m)

£.m
w=0)=(Pw=0jg=0,m=0) aw(g=0) -ag(m=0)) +...
+(Pw=0lg=1m=0)-aw(g=1)mw(m=0))+...

)-ayle=0)-mw(im=1))+ ...

F(P(w=0|g=0.m
F(Pw=0lg=Im=1)aw(g=1)awim=1))

= (0.9-0.8-0.5)+(0.2-0.2-0.5)+ (0.3-0.8-0.5)4+(0.9-0.2-0.5) = 0.51
x(w=1)=(0.1-0.8-0.5)+(0.8-0.2-0.5)+(0.7-0.8-0.5) +(0.9-0.2-0.5) = 0.49

w(w)=(0.51,0.49)

Bel(w) = a-A(w)-mt(w)

= @(0.27,0.73) - (0.51,0.49) = a- (0.138,0.358)

= (0.278,0.722)

In this case, the evidence in Surfing yields a value of A(w) that suggests there is a high prob-
ability of Waves (0.73). The top-down prior information 7(w) is practically a flat distribution
(0.51,0.49), i.e. doesn’t add any information, thus the resulting beliel suggests there is a high

probability of Waves (0.722). This is shown graphically in the top diagram of Figure 3.6.

The next step is to generate the outgoing messages from node W to its child and parent nodes.
The key property here is that the outgoing messages take into account all evidence except that
which originated from the destination node. For example, the message from W to G, Aw(g),
doesn’t take into account the prior information conveyed through the incoming message 7y (g).

Given Equations (3.30) and (3.31), the resulting expressions are
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Aw(g)=p" z)l.{w] EP{ wlg.m) -y (m)

m

A.w(g - [}) = A.(w = 0).({1(w, iy

g=0m=0)-my(m=0)+..
+Pw=0g=0m=1)-apim=1))+ ...
+Aw=1)-(Plw=1lg=0m=0)-my(m=0)+ ...
FPw=1lg=0m=1) aw(m=1))
=0.27-(09-0.5+0.3:0.5)+0.73-(0.1-0.54+0.7-0.5) = 0.454
Aw(g=1)=027-(0.2:0.5+0.1-0.5)+0.73-(0.8-0.540.9-0.5) = 0.661

Aw(g) = B -(0.454,0.661) = (0.407,0.593)

Aw(m)=PB-Y A(w)Y P(wlg.m)-mw(g)

m

Aw(m=0)=027-(0.9-0.8+0.2-0.2)+0.73-(0.1-0.8+0.8.0.2) = 0.38
Aw(m=1)=0.27-(0.3-0.8+0.1-0.2)+0.73-(0.7-0.8+0.9-0.2) = 0.61

Aw(m) = P -(0.38,0.61) = (0.384,0.616)

mp(w) =B - Ag(w) - m(w)

= B:(0.27,0.73) - (0.51,0.49) = 3(0.138,0.358) = (0.278,0.722)

ns(w) =B Ap(w)-m(w)

=B-(1,1)-(0.51,0.49) = (0.51,0.49)

Note how the bottom-up messages, Aw (g) and Ay (m), take into account, not only the bottom-up
evidence, but also the prior probability conveyed by the parent node to which the message is not
destined, This is sometimes referred to as horizontal or sideways interactions between parent

nodes with a common successor, and results in the explaining away effect. Analogously, the top-
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down messages, 7 (w) and 7g(w), convey information about the top-down prior information
together with evidence arriving from the non-recipient child node. Once the above messages
reach their destination nodes, it is possible to calculate the Belief in each of the periphery nodes,

as shown in the bottom diagram of Figure 3.6,

Bel(g)=a-A(g) m(g) = -Aw(g)-7(g)

o-(0.407,0.593)-(0.8,0.2) = @(0.326,0.119) = (0.733,0.267)

Belm)=a-A(m) wt(m)= o Aw(m) -n(m)

a-(0.384,0.616)(0.5,0.5) = «(0.192,0.308) = (0.384,0.616)

Bel(f)

a-A(f)-n(f)=a-A(f) -):!‘(_Hu-a 7 (w)

«(1,1)-(0.2-0.278 +0.7-0.722.0.8 - 0.278 + 0.3 - 0.722)

(1,1)-(0.561,0.439) = (0.561,0.439)

Bel(s)=a-A(s) m(s)=o-A(s)- zP[.\'[W} S e (w)

=-(0,1)-(0.7-0.51 +0.2-0.49.0.3-0.51 +0.8-0.49)

= (0,1)-(0.455,0.545) = (0, 1)

Overall, the evidence in § has propagated across the network updating the beliefs of all other
variables. First, the evidence arrives at node W, increasing its belief. Node W then sends
messages (0 both parent nodes which show a higher belief, or posterior probability, than the

original prior probability. Node W also sends a message to node F, which decreases its belief

accordingly. Intuitively, evidence of surfing activity suggests the presence of big waves, which
in turn suggest the presence of gales and/or the moon as the generating causes. Al the same

time, the presence of big waves suggests fishing activity is less likely to be present.
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Note that node W also sends a message back to the evidence node S, but in this case the resulting
belief is equal to the initial evidence and is not affected by the message, i.e. Bel(s) = A(s) =
(0,1). This is because the type of evidence was hard evidence. If instead, soft evidence was
used (e.g. A(s] = (0.1,0.9])), the top-down message ms(w ] would be able to modify the belief
in §. This can be understood il we consider that soft evidence contains a certain degree ol
uncertainty, and is therefore susceptible to being modulated (confirmed or contradicted) by

other information in the network, while hard evidence is assumed to be irrefutable fact.

3.3.3.8  Example of belief propagation with diagnostic evidence and causal evidence (ex-

plaining away)

In this scenario there is both bottom-up and top-down evidence. When evidence is propagated
from a parent to a child node, from known causes to unknown effects, this is called causal
reasoning or top-down prediction, The main purpose of this scenario is to illustrate the explain-
ing away effect. For clarity, we omil the detailed numerical calculations for the beliefs and
messages, as the reader can easily follow the example using Figure 3.7, which shows all the
relevant resulting values. These have been obtained using the same Equations ((3.27)-(3.31))

and procedure described in the previous example.

In this example, the prior probability of Gales is set equal to hard evidence asserting the frue
state of the variable. Consequently, top-down evidence from the high-level cause Gales is com-
bined with bottom-up evidence from the low-level effect Surfing. This is sometimes referred to
as data fusion. The resulting belief in Waves is higher than in the previous scenario (0.87 vs.
(.722). This makes sense, as the variable Waves is now receiving positive evidence not only
from the child node Surfing, but also from the parent node Gales, providing further support for

the belief Waves=true.

This in turn also leads to an update in the belief of Fishing. indicating its value is now even
lower than for the previous scenario (0.365 vs. 0.439). This is a direct consequence of the
probability of Waves being higher due to the new evidence introduced in the variable Gales. In
other words, knowing that the moon is in a state which is likely to generate big waves reduces

the chances of fishing activity.
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However, the most interesting effect happens at the node Moon, where its belief shows a re-
duction with respect to the previous scenario (0.524 vs. 0616). This is a consequence of the
increased probability of Gales, which suggests it is the cause responsible of Waves, thus explain-
ing away the Moon cause. In other words, once there is an explanation for Waves, namely Gales,
the probability of alternative explanations, such as Moon, is reduced. Note the probability of
Moon is still relatively high, as according to the conditional probability table P(W|G. M), both
high-level causes can coexist, and in fact, when both are present, the conditional probability of

Waves is higher.

3.3.3.9 Example of belief propagation with no evidence

This example serves to illustrate how belief propagation operales when there is no evidence

available. Al the resulting beliefs and the flow of miessages are depicted in detait in Figure 3.8.

Strictly speaking the resulting beliefs are not the posterior probabilities, P(x|e), as there is no
evidence available, Instead they represent the marginal probabilities of the variables when the
network 1S in an initial equilibrium state before presenting any evidence. Therefore it is also

useful to compare the resulting beliefs in the network in equilibrium with those when there is

evidence, to obtain a better understanding of the effects of evidence propagation.

When all the bottom-up A messages received by a node show flat distributions (i.e. no evidence
below), inevitably all the A messages sent to its parents will also show flat distributions, regard-
less of the incoming 7 messages. This is the case of node W in Figure 3.8. The prior probability
(or evidence) at the top causal nodes G and M does not influence the other causal node, until

their common child W gathers some diagnostic evidence, This reflects the d-separation con-

Caption for Figure 3.7. Example of belief propagation with diagnostic evidence and causal evidence (explain
ing away). The prior probability of Gales is set equal to hard evidence asserting the rrue state of the variable
Consequently, top-down evidence from the high-level cause Gales is combined with bottom-up evidence from the
low-tevel effect Surfing. This is sometimes referred to as dara fusion. The resulting belief in Waves is higher than in
the previous scenario (0.87 vs. 0.722). This mukes sense, as the variable Waves is now receiving positive evidence
not only from the child node Surfing. but also from the parent node Gales, providing further suppont for the belief
Waves=true. This in turn also leads to an update in the belief of Fishing, indicating its value is now even lower
than for the previous scenario (0.365 vs. 0.439). This is a direct consequence of the probability of Waves being
higher due to the new evidence introduced in the variable Galfes. In other words, knowing that the moon is in a state
which is likely 1o generate big waves, reduces the chances of fishing activity, However, the most interesting effect
happens at the node Moon, where its belief shows a reduction with respect to the previous scenario (0,524 vs, 0616),
This is a consequence of the increased probability of Gales, which suggests it is the cause responsible of Waves,
thus explaining away the Moon cause. In other words, once there is an explanation for Waves, namely Gales, the
probability of alternative explanations, such as Moon, is reduced.
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Figure 3.7: For caption see footnote’.
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dition established by converging nodes, described in Section 3.3.2, and matches our intuition
regarding multiple causes. Without any information about the state of the Waves, data on the
state of Gales should not influence the state of Moon, as they are conditionally independent

Causes.

3.3.3.10 Example of belief propagation with tree structure

The previous examples are all based on a network with the same simple structure: a central node
with two parents and two children node. Although this type of structure serves to demonstrate
the main concepts behind belief propagation, it does not capture an interesting effect of tree-

structured networks, which is therefore described in this subsection,

In this case the network has three levels organized in a tree structure as shown in Figure 3.9. In
the first step, evidence propagates from two of the child nodes in the lower level, leading to the
update of the belief in the intermediate nodes. In the second step, the belief at the top level is

updated, together with the belief of the lower-lever child nodes that hadn’t been instantiated.

The crucial process occurs in step three when a message is sent downward from the top node.
Note this didn’t happen in the network of the previous examples, where the propagation ended
once the message reached the top nodes. The reason is that in this case the top node receives
messages from the two intermediate child nodes (the left and the right branches of the tree), and
therefore it must generate a top-down message for each node conveying the evidence collected
from the other node. In other words the evidence from the left branch must be propagated to the

nodes in the right branch and vice versa. This is depicted graphically in steps three and four.

In the original example, an equivalent flow of evidence would happen, for example, if node
Gales had a second child node, such as Fallen trees. Evidence originating in the node Surfing
would propagate up the node Waves to the root node Gales and back down the opposite branch,

‘Caption for Figure 3.8. Example of belief propagation with no evidence. When all the bottom-up 4 messages
received by a node show flat distributions, as is the case of node W, inevitably all the A messages sent to its parent
nodes will also show flat distributions, regardless of the incoming & messages. The prior probability (or evidence)
at the top causal nodes & and M does not influence the other causal node, until their common child W gathers
some diagnostic evidence. This reflects the d-separation condition established by converging nodes, described in
Section 3.3.2, and matches our intuition regarding multiple causes. Without any information about the state of the
Waves, dats on the state of Gales should not influence the state of Moon, as they are conditionally independent
causes.
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Figure 3.8: For caption see footnote?.
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Figure 3.9: Example of belief propagation in a tree-structured network. The network has three
levels organized in a tree structure. In the first step evidence propagates from
two of the child nodes in the lower level, leading to the update of the belief in
the intermediate nodes, In the second step, the belief at the 1op level is updated,
together with the belief at the lower-lever child nodes that hadn’t been instantiated.
The crucial process occurs in step three when a message is sent downward from
the top node. Note this didn't happen in the network of the previous examples,
where the propagation ended once the message reached the top nodes. The reason
is that in this case the top node receives messages from the two intermediate child
nodes (the left and the right branches of the tree), and therefore it must generate a
top-down message for each node conveying the evidence collected from the other

node. In other words the evidence from the left branch must be propagated to the
nodes in the right branch and vice versa. This is shown in steps three and four.

updating the belief of Fallen trees. Analogously, evidence originating from the node Fallen
trees would update the belief of all the nodes in the opposite branch, by flowing up to node

Gales and down through node Waves to nodes Surfing and Fishing.

We can therefore distinguish between three types of networks. The first two fall into the cat-
egory of singly-connected networks, those without loops, and the number of steps required to
obtain the exact beliefs of all nodes is proportional to the diameter of the network. In singly-
connected tree networks (no loops with one parent per node), evidence propagates from the leaf
nodes to the root node and back down again (Figure 3.9). This happens because outgoing A
messages do not take into account the 7 message received from the parent node. In singly-

connected polytrees (no loops with muftiple parents), there is a single bottom-up top-down
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pass for each branch, such that for every connecting arc in the network only one A and one 7

messages are required to effectively obtain the exact beliefs (e.g. Figure 3.6).

Note that for a singly-connected network to have nodes with multiple parents, these parents
must not be interconnected, otherwise it becomes the third type of network, i.e. a multiply-
connected network. In these networks the number of steps required is not fixed as messages
circulate indefinitely, Thus, messages from intermediate nodes are typically initialized to a
flat distribution and propagate upwards and downwards simultaneously from the first time-step

onwards. Feedback in multiply connected networks is described in more detail in Section 3.3.5.

In singly-connected networks, although messages from the root and intermediate nodes could be
initialized to a flat distribution and propagated from the first time step, these would just generate
temporal beliefs that would not affect the final exact belief. To avoid these extra calculations,
belief propagation dictates that nodes only generate output messages once they have received
all the required incoming messages. This means the o messages (red arrows) in steps | and
2 of Figure 3.9 are redundant, i.e. they don’t contribute to the final belief. For this reason,
in singly-connected networks, belief propagation can be argued 1o occur in a single bottom-up
and a top-down pass. Another important property of this type ol network is that the message
propagation scheme can be implemented asynchronously, in other words, it does not require

any particular order (o provide the correct befiefs.
3.3.4 Combining messages from multiple parents

In discrete Bayesian networks, the conditional probability table (CPT) which relates states of the
parent nodes to those of a child node includes entries for all possible combinations of the child
and parent node states. Given a node X with ky states, and its parent nodes U, , ..., Uy with kg
states each, the number of entries in the CPT is equal to ky Rf This means the number of entries
is exponential to the number of parents, such that even for relatively moderate dimensions

(ky = ky = 4,N = B), the size of the CPT becomes large and unmanageable (262,144 entries).

Not only does the storage space increase exponentially with the number of parents, but so does
the computation time required to compute the belief and the messages at node X. Additionally.

learning all the values of the CPT can be problematic as the training data may not include all
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combinations of parent node states, and even if it does, large quantities of data are required (o
avoid overfitting. If the Bayesian network is based on expert’s opinions, such as in medical

expert systems, it is also usnally infeasible to consider all parental state combinations.

[n this subsection I present two methods which try to solve this problem by generating CPTs
using a number of parameters that is linear to the number of parent nodes. For the model
presented in this thesis, these approximations to the CPTs are crucial as the number of parents

and states per node is very high.
3.3.4.1 The Noisy-OR gate

This method assumes each of the N parent nodes U/; is sufficient to cause X in absence of
other parent nodes, and their ability to cause X is independent of the presence of other causes.
For example, the presence of Gales by itsell is sufficient to cause Waves, independently of the
presence of the cause Moon. This is equivalent to saying that the exceptions or inhibitors which
may prevent the different parent nodes from causing the effect are independent of each other,
denoted as (exception independence), For example, an exception that might prevent Gales from
causing Waves is the wind direction (although it does not affect the Moon’s ability to cause
Waves); while an exception which might prevent Moon from causing Waves is shallow water
depth (although it does not affect the Gales's ability to cause Waves).

For binary variables this means the entire conditional probability distribution can be specified
with only N parameters py,.... py, Where p; represents the probability that effect X will be true
il the cause U; is present and all other causes Uj,i # j, are absent. The system can also be
described using the inhibitor probabilities gy, ...,qy, where g; denotes the probability that the

inhibitor or exception for cause Uj; is present. Therefore, we can write,

pi=1—gi=Pxluy =0,u3 =0,..,u;=1,...,uny—1y = 0,uy = 0) (3.32)

If 73 represents the indices of the parent nodes which contain TRUE values, Ty = i:u =1,

then we can derive the complete CPT of X given its predecessors Uy, ..., Uy as,
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Px=1juy,..ouy)=1=JJ=-p)=1-]]a (3.33)

et ety

For the example described in the Section 3.3.2, if we assume peares = 0.8 and ppgon = 0.7, the

CPT value for Waves=1 in the case when both causes are true can be obtained as follows,

Plw=1lg=1,m=1)=1—(1 - pgates) - (1 — PMoon) = 1 —0.2:0.3 =0.94

which yields a value consistent with the value that was intuitively generated for the CPT of
the original example. This serves to illustrate the concept behind the Noisy-OR gate, although
obviously in this case it does not make sense to use the method as the number of parent nodes

and states is very small.

The Noisy-OR method was originally described for binary variables (Pear] 1988), although
it was later extended to variables with multiple states (Srinivas 1993, Diez 1993). However,
the main limitation of this method is that it requires graded variables to work (Diez 1993),
variables whose states can be ordered from lower to higher. The speed of the wind is an example
of a graded variable. However, a variable whose states are different object categories is not.
The model has also been extended to include different weights for each of the parent links
(Kokkonen et al. 2005), such that the relative contribution of each of them can be modulated

according to some learned or hard-wired criteria.

The Noisy-OR model describes how causes interact disjunctively. Other canonical models de-
scribe different types of parental interaction, such as the Noisy-AND model which describes
the conjunctive interaction of causes. For more details on the Noisy-OR and other canonical

models see Pearl (1988) and Diez (1993).

3.3.4.2 Weighted sum based on compatible parental configurations

An alternative method to the Noisy-OR is that proposed by Das (2004), based on the concept
of compatible parental configurations. The rationale behind it is to facilitate the acquisition of

probabilistic knowledge, when this is obtained from human experts, by reducing the number
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of questions they need to answer. Instead of asking a question for each of the combinations of
parental states, the model assumes that for each state of each parent node, the rest of the parents

are in a compatible or most-likely state.

Previous models, such as the Noisy-OR, are constrained by the assumption that parents act
independently without synergy. This means parents individually influence the child and that
there are negligible cross-interactions between individual parent-to-child influences, such as in

the Waves example.

However, this method is derived for a different class of Bayesian networks in which there nec-
essarily exists a coherent frame of knowledge where the effect is a result of the interactions be-
tween the parents. An excellent example is provided by Das (2004), where the efficiency (E) of a
company is affected by three parent nodes: personnel morale (PM), personnel training (PT) and
managerial expertise (ME), with states very-low_ low,average high.very-high. Clearly these
causes are related, such that a possible compatible parental configuration when the personnel
morale is high is {Comp(PM = high)} = {PM = high.PT = high, ME = high}. This means
when the personnel morale is high, it is also likely that the personnel rraining and the manage-
rial expertise are high.

More formally, given a node X with a set of parents Uy, ...,Uy, the state U; = u; is compatible
with the state U/; = w;, if according to the expert’s mental model the state /; = u; is most
likely to coexist with the state U; = u;. Let {Comp(U; = u;)} denote the compatible parental
configuration where U is in the state u, and the rest of the parents are in states compatible with
Uy =uy.

For each compatible parental configuration it is now possible to calculate the conditional prob-

ability distribution over the states of the child node X in the form

P(X =0|{Comp(U; = u;)}), P(X = 1{Comp(U; = u;) }),.... P(X = ky {Comp(U; = u;) })

for i = 1..N and u; = 1..ky,, where ky is the number of states of X, and ky, is the number of

states of parent node ;.
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Therefore the link is defined using kg, + kg, + ... + kyy, probability distributions over X for
the different compatible parental configuration. Note these grow linearly with the number of
parents. Given a set of weights wy,...,wy, which quantify the relative strength of the parent
nodes’ influence on the child node, the entries of the CPT can be generated using the following

weighted sum expression,

P(x|uyy . iy) = 2 w; - P(x|{Comp(U; = u;) }) (3.34)
i=1.N

It is important to stress that {Comp(U; = w;) } is a parental configuration in the mental model
of the expert where he has chosen to focus on the state u; of parent U;, while the rest of the
states of the parents are perceived in his judgement to be in compatible states with u,. This
helps the expert to simplify his mental model in order to judge the possible effect. It does not
mean that compatible parental configurations are the only ones to be found in reality, but these

are assumed to be more common or nermal.

The method described here proposes combining the probability distributions of X given com-
patible parental configurations, to calculate the states of X given incompatible, or less common,
parental configurations, by using the weighted sum expression in Equation (3.34), This can
be understood as a kind of interpolation mechanism that exploits the known data points. Das
(2004) makes use of information geomeltry to demonstrate how these weighted sums capture
the experts’ judgemental strategy. The method is being employed to design strategic military

applications for the Australian Department of Defence.

Although the method was derived for populating CPTs using human experts, theoretically it
can be extended to systems that obtain their information using training data with supervised
learning methods. One such domain is hierarchical object recognition, where, due (o the great
overlap between receptive fields, parent nodes show contextual interdependency and can there-

fore exploit this technique. This is discussed further in Chapter 5, where a toy example is used

to illustrate the concept.
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3.3.5 Networks with loops and inference methods

A loop is a chain where at least one node is visited more than once, as described in Section 3.3.2
and itlustrated in Figure 3.3b. Loops are very common in Bayesian networks which try to model
real-world data. The beliel propagation equations described for singly connected networks are
not correct for multiply connected networks (those with loops). The reason is that the equations
are based on the assumption that all parents of a node X are mutually independent as long
as none of their common descendants are instantiated. This assumption is no longer valid in

networks with loops, where some of the parents of X will share a common ancestor,

Consider, for example, the network in 3.4, with nodes Surfing and Fishing having a common
child node Water pollution (which we assume can be caused by both fishing and surfing activ-
ity). The conditional independence of the parent nodes would not be satisfied, as they would
both share a common cause, i.e, Waves. To illustrate the recursiveness of the loop, consider the
mt message from Surfing to Water pollution. It would convey top-down evidence from Waves,

which in turn would include evidence from its descendants Fishing and Water pollution.

Several methods have been developed to deal with the problem of multiply-connected graphs.
ixact inference methods all have a complexity that is exponential to the width of the network.
Approximate inference methods are designed to reduce the processing complexity, although the
trade-off is reduced accuracy of the result. Most approximate inference methods yield message-
passing algorithms which can be implemented in a distributed manner, equivalent to the original
beliel propagation. Note these methods are used not only for networks with loops, but also for
networks with other type of complexities, such as high fan-in or a large number of layers.
3.3.5.1 Exact inference methods
e Clustering/junction tree algorithm: This method provides exact marginalization of multi-
ply connected Bayesian networks. It entails performing belief propagation on a modified
version of the Bayesian network called a junction tree. The junction tree is an undi-
rected graph in which groups of nodes are clustered together into single nodes in order (o

eliminate the cycles. The algorithm can be very computationally expensive, specially for
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large-scale networks (Jordan and Weiss 2002).

e Cuiser conditioning: This method, also called reasoning by assumption, also provides
the exact marginal probabilities. It involves breaking the loops by finding a small set of
variables which, if known (i.e. instantiated), would render the remaining graph singly
connected. For each value of these variables, belief propagation obtains the beliefs of the
nodes in the the singly connected network. The final value is obtained by averaging the

resulting beliefs with the appropriate weights obtained from the normalization constants.

3.3.5,2  Approximate inference methods

e Loopy belief propagation: This method implies naively applying the belief propagation
algorithm on a network despite it having loops. The formulation would be theoretically
incorrect, and the messages would circulate indefinitely through the network due to its
recursive nature. Nonetheless, empirical results in error-correcting networks, such as
the turbo code (Weiss 1997), demonstrate the method provides a good approximation
to the correct beliefs. The method has also been applied satisfactorily to other type of
network structures, such as the PYRAMID network, which resembles those used for image
processing (Murphy et al. 1999, Weiss 2000). The resulting beliefs in these networks

showed convergence, as opposed to oscillations, after a number of iterations.

e Sampling/Monte-Carlo algorithms: These methods rely on the fact that, while it might be
infeasible to compute the exact belief distribution, it may be possible to obtain samples
from i1, or from a closely-related distribution, such that the belief can be approximated
averaging over these samples. For large deep networks these methods can be very slow

(Hinton et al. 2006).

The Gibbs sampling and Metropolis-Hastings algorithm are both special cases of the
Markov Chain Monte Carlo algorithm. The first one involves selecting a variable, x,
for example, and computing a simplified version of its belief based only on the state of
its neighbours at time 1, such that Br!{_a‘i'lj = P(x)|x5,...,x,). The process is repeated

for all variables using always the latest (most recently updated) value for its neighbours,

112

i




3.4. EXISTING MODELS

e.g. Bel(X)'') = Plol¥"" 4. ...x,). The second algorithm provides a less computa-
tionally demanding alternative, by choosing a value at random for each variable of the
distribution and then calculating the acceptance probability of the new distribution. Both
methods applied (o graphical models yield a message-passing algorithm similar to befief

propagation.

In importance sampling (also called particle filtering), on the other hand, samples are
chosen from a similar but simpler distribution than the original joint probability distri-
bution. This simpler distribution can be obtained by simplifying the original graph, for

example, by deleting edges. The samples are then re-weighted appropriately.

e Variational approximation; Variational methods, such as the mean field approximation,
convert the probabilistic inference problem into an optimization problem. The basic ap-
proach is to choose from a family of approximate distributions by introducing a new
parameter for each node, called a variational parameter. These variational parameters
are updated iteratively as to minimize the variational free energy of the system, which is
equivalent to the cross-entropy (Kullback-Leibler divergence) between the approximate
and the true probability distributions. When the variational free energy is minimum, the
approximate and the true probability distributions are equivalent. More elaborate approx-
imations to the free energy, such as the Bethe free energy, provide better approximate
marginal probabilities (Jordan and Weiss 2002, Murphy 2001, Winn and Bishop 2005).
This method has become more popular in recent years due to the high computational
cost of sampling methods. It is currently being used by several research groups to model
complex systems such as the visual system (Friston and Kiebel 2009, Hinton et al. 2006).

Section 3.4.2 describes some of these models,

3.4 Existing models

Bayesian inference has been employed extensively to model different aspects of cortical pro-
cessing, from single neuron spikes (Deneve 2005) to higher-level functions, such as object per-

ception (Kersten et al. 2004) and decision making (Chater et al. 2006). In this section, the focus
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is on models that use Bayesian belief propagation or similar inference algorithms in the context
of hierarchical generative models. In particular, Section 3.4.1 describes several implementa-
tions of belief propagation using spiking neurons; Section 3.4.2 describes implementations of
belief propagation at a higher fevel of abstraction, specifically those attempting to mode! object
perception in the visual system; and Section 3.4.3 compares different speculative mappings of

the algorithm over the cortical laminar circuitry.
3.4.1 Biological models with spiking neurons

There have been several proposals for how spiking neurons can implement belief propagation
in graphical models such as Bayesian networks. Three of these models are described in this

subsection.
3.4.1.1 Single layer hidden Markov model

The first one, by Rao (2004, 2005, 2006), describes a single-layered recurrent network that is
able to perform a simple visual motion detection task. The input to the model is a | -dimensional
30 pixel image, with a moving pixel. The model contains 30 neurons, each one coding the 30
different states of a hidden Markov model. The states code a specific spatial location (15 lo-
cations with 2 pixel intervals), and the direction of motion (leftward or rightward). The firing
rate of each neuron encodes the log of the posterior probability (belief) of being in a specific
state, such that the neuron with the highest firing rate indicates the state of the world. To model
the likelihood function, equivalent to the bottom-up messages, the input image was filtered by
a set of feedforward weights (Gaussian functions), which represent the conditional probabil-
ity function. The prior, or top-down message, was approximated by multiplying the posterior
probability at the previous time-step by a set of recurrent weights which represent the transition
probabilities between states.

The model was later extended by adding a second layer of Bayesian decision-making neurons
that calculated a log-posterior ratio to perform the random-dot motion detection task. A similar
implementation using a simple two-level hierarchical network with two interconnected path-

ways for features and locations, modelling the ventral and dorsal paths, was used to simulate
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attention.

The main contribution of this model is that it managed to implement Bayesian inference us-
ing equations representing a recurrently connected network of spiking neurons. However, the
main limitation of the model is that it does not offer a general solution to implementing belief
propagation with spiking neurons, but rather very specific and simple examples with heuristic
implementations. The main model consists of just a single layer containing 30 neurons, which
does not capture the complexities of belief propagation, nor its many benefits, such as a local
and distributed implementation: furthermore, it does not capture the complexities inherent in
visual processing. Additionally, the implementation in the log domain requires the use of an
approximation to the conditional probability weights, which has not been proven to provide

accurate results when the system is scaled up.
3.4.1.2 Liquid state machine model

A more recent model of belief propagation in networks of spiking neurons was provided by
Steimer et al. (2009). The model approximates belief propagation in Forney factor graphs, a
type of graphical model that is considered more general than Bayesian networks, and therefore
can capture all of its properties. The model makes use of liquid state machines composed of
liquid pools of spiking neurons 10 represent the function nodes in the factor graph, similar to the
conditional probability functions in Bayesian networks. The internal dynamics of each pool of
neurons allows it to combine the incoming messages from the corresponding input nodes. Mes-
sages from one node to another are transmitted using readowr populations of neurons which
extract the output information from the liquid pools. The readout populations need to be cali-
brated and trained 10 map the input synaptic current with desired output message (probability
from 0 to 1), encoded using an average population rate, Figure 3.10 shows the neural imple-
mentation of belief propagation in a factor graph using the liquid and readout populations of a
liquid state machine.

The model was evaluated using two simple examples: a classical inference problem dealing
with the transmission of binary information in an unreliable channel, and a more biologically-

grounded example dealing with the integration of psychophysical information to elucidate the
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Frgure 110 Nearal implementation of beliel propagation in a Forney factor graph using the
liquid and readout neuronal populations of a liquid state machine. Lefr) Illustra-
tion of a Forney factor graph where the nodes represent factors fy, ..., fa (condi-
tional probability functions), and the edges represent variables X, ..., X7, Arrows
represent the messages exchanged during belief propagation. Righr) Neural im-
plementation of the Frney factor graph and belief propagation shown in the lefi.
The liquid pools (L) represent the factors of the graph and combine input mes-
sages from neighbouring nodes. The messages (and, implicitly, the variables)
are encoded by the population rate of readout pools (R) and are injected to the
corresponding liquid pools via the synaptic connections (Steimer et al. 2009),

shape and illumination of an object. The population rates of the readout pools, resulting from
the network dynamics, were in agreement with the direct numerical evaluation of belief propa-

gation.

Although both networks consisted of a very small number of binary variables (9 and 4 respec-
tively), the authors claim the model can be generalized to more large-scale and complex sce-
narios. Nonetheless, the number of neurons required to do this, both for the liquid and readout
populations, would be extremely high and thus very expensive from the computational perspec-
tive. According to the authors, a current line of research aims at increasing the coding efficiency
of the neuron pools by making use of a place-coding scheme. A further limitation of scaling
up is related to the accuracy of the resulis in networks with several hierarchical levels. It was
shown that messages deep in the network were less correlated to the exact numerical values,

than those near the input layer.
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3.4.1.3 Local inference circuits model

Concurrent to the publication of the previous model, Litvak and Ullman (2009) published an
alternative implementation of belief propagation using spiking neurons. The latter employs pop-
wlations of standard leaky integrate-and-fire neurons to implement the betief revision algorithim
in pairwise Markov random fields. Belief revision is analogous to belief propagation except
that it replaces the sum operation with the max operation, i.e. uses the max-product instead of
the sum-product algorithm, thus oblaining the maximum-a-posteriori estimate (also called the
most probable explanation) instead of the posterior marginal probability. Additionally, the algo-
rithm is implemented in the log domain, which leads to a final neuronal implementation based
on a max-sum scheme, called belief consolidation. Pairwise Markov random fields are a type
of undirected graphical model. which share many properties with directed graphical models

(Bayesian networks), but are not interchangeable (see Section 3.3.3),

To implement the beliel consolidation algorithm, the model pses building blocks called local
inference circuits (LINCs). Each neuronal LINC is connected to other LINCs according to the
graph structure, and propagates the same message to all neighbours. Each LINC roughly im-
plements the operations performed locally by each node in the graph using smaller elementary
circuits that approximate the two mathematical operations: a linear summation circuit and a
maximization circuit. The model uses populations of leaky integrate-and-fire neurons to im-
plement these computations. The synaptic weights between the different elementary circuits
define their specific functional properties. The mean rate of the neural populations during short
periods of time (few tens of milliseconds), represents the values of messages computed during

the inference process.

tach neuronal LINC uses N (number of neighbours) x § (number of states) weighted maxi-
mization circuits, which compute the maximum value for each state of the input nodes. Before
finding the maximum value, the circuit uses a linear summation element to add the correspond-
ing weight to each input message (in the log domain, weights are additive). The weighted
maximum results for each state are then combined in the N corresponding summation circuits.

The vector of single valued outputs of each summation circuit represents the output message of
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the node encoded by the LINC. In a final step, the output message is normalized via a normaliza-
tion circuit where the different values are recurrently inhibiting each other. This is achieved by
connecting the excitatory population of all summation units to a central inhibitory population.

A schematic representation of a neuronal LINC node is shown in Figure 3.11.

The model was tested using two sets of graphs, one with 12 hidden binary variables and one
with 6 hidden ternary variables. In each case 100 different random configurations of the node
weights and evidence values were tested and compared with the original analytical methods.
Results showed the neuronal circuit was able to effectively approximate the marginal distri-
butions, although the accuracy decreased when using ternary variables as compared to binary
variables. The inaccuracy of the model was shown to arise not only from the sub-circuit’s ap-
proximations (sum, max and normalization), but from inherent network phenomena such as the

evolving desynchronization in subpopulations.

With regard to the scalability, the model can map any arbitrary graph structure and discrete
variables with any number of states, with a linear relation between the number of neurons and
the number of nodes. However, for large-scale networks and variables with many states, the
number of neurons might be prohibitive (6 hidden variables each with 3 states require over
16,000 neurons). The speed of the computation provides a biologically realistic inference time
(=~ 400 ms) due to the highly distributed implementation. The model also attempts to map the

different algorithm operations onto the cortical laminar circuits, as described in Section 3.4.3.

A comparison between the most significant features of the previous two models is depicted in

Table 3.1, including a summary of the main advantages and drawbacks of each model.
3.4.1.4 Electronic implementation of networks of spiking neurons

An emerging and rapidly growing field of research is dedicated to the implementation of real-
istic spiking neural circuits in hybrid analog/digital very large scale integration (VLSI) devices.
Recent advances have allowed the implementation of winner-take-all networks in the VLSI de-
vices, which has lead to the development of simple state-dependent systems (Neftei et al. 2010).

Simple graphical models, such as factor graphs and belief propagation, can be approximated us-

ing winner-take-all networks with state-dependent processing. Examples of graphical models,
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Figure 3.11: Neuronal local inference circuit (LINC) implementing the operations of a node
in a Forney factor graph with 6 input nodes (¥;) and 6 hidden variables (Xj).
Each LINC is built from populations of leaky integrate-and-fire neurons (small
red, black and dashed rectangles). which implement the two basic operations:
weighted maximization circuits (max frames) and summation circuits (X frames).
The main black frame shows the neuronal LINC for the variable X, which re-
ceives input from neighbour nodes and Xs (although due to size limitations only
projections from nodes X; and X3 are shown). For each neighbour node, and for
cach of the three states of X, a maximizauoen node finds the maximum of the
weighted message values. Note a linear summation circuit adds the correspond-
ing weight (log domain) to each input message prior to the maximization step.
The set of weighted maximum results for each state are then combined in the
three corresponding summation circuits, The three sums are then normalized by
a normalization circuit (green dotted frame), which contains a recurrently con-
nected inhibitory population (black rectangle in the centre). The vector of single
valued outputs of each summation circuit represents the output message of X,
which will be propagated to all of its neighbours (Litvak and Ullman 2009).
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Table 3.1: Comparison of two implementations of graphical models and belief propagation
using spiking neurons,
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using two of the implementation methods described in this section (Litvak and Ullman 2009,
Steimer et al. 2009), have already been implemented using the state-dependent VLSI technol-

ogy (Emre Nefici, personal communication).

Although the technology is still at a very early stage and the scalability of the VLSI spiking neu-
ral networks is limited, it provides a starting point for the development neuromorphic hardware

capable of reproducing graphical models with cortical functionality.
3.4.2 Functional models of visual processing

This subsection focuses on models based on generative modelling approaches, which emptoy
Bayesian networks/belief propagation or similar implementation methods. Specifically, we de-
scribe models which deal with visual perception (recognition, reconstruction, etc.) and have
biologically grounded architectures. The literature in this area is very extensive so only models
most relevant (o this thesis are included. To facilitate comparison between models, they have
been grouped according to the inference method employed (exact inference, sampling approx-
imation, or variational approximation), although the classification i1s not strict as some models
share characteristics of several methods. A summary and comparison of the models is included

at the end of this subsection.
3.4.2.1 Models based on exact inference methods

The model proposed by Epshtein et al. (2008) extends a well-known feedforward object recog-
nition model, namely Ullman’s fragment-based hierarchical model described in Section 2.1.2.
A hierarchy of informative fragments and its corresponding smaller sub-fragments are learned
for each class of objects. This information is stored using a factor graph where each variable
represents an object fragment, which can take N different values/states indicating the position
of that fragment within the image (a value of 0 indicates the fragment is not present). The
relation (conditional probability function) between a sub-fragment and its parent fragments de-
pends on the coordinate difference between the locations of child and parent fragments, and not
on their absolute position. This allows the model to perform recognition with certain position

invariance.
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The model computes the similarity between each low-level feature and the image at N different
locations, which is used as input evidence for the network (similar to dummy nodes in Bayesian
networks). A simple bottom-up sweep of the belief propagation algorithm then obtains the
probability distribution for each variable (i.e. presence/location of each fragment), including
that of the root node, which represents the class. Note, unlike conventional feedforward meth-
ods, the model computes the relative likelihoods of all class sub-hierarchies given the stimuli
(i.e. there is a graph for each class of objects), leading to multiple alternatives at each level of
the model. Later, a top-down cycle obtains the optimal value for all the object parts given the
state/location of the root/class node, correcting most of the errors made during the bottom-up
pass. This provides not only object recognition, but a detailed interpretation of the image at
different scales and levels of detail. The model was tested a large number of natural images

belonging to three different object classes.

Unlike most related models (Riesenhuber and Poggio 1999, George and Hawkins 2009, Murray
and Kreutz-Delgado 2007, Lewicki and Sejnowski 1997), where nodes represent locations and
states represent features, the model by Epshtein et al. (2008) uses nodes to represent features and
states to represent locations, In essence, the network includes a fixed hierarchical representation
of all the possible combinations of features and subfeatures of a class of objects. The graph is a
singly connected tree (no loops and a single parent per node) which makes tractable the use of

belief propagation to perform exact inference.

However, the previous properties imply that features are not shared within the same object (each
feature can only be present at one given location), amongst different objects of the same class
(the graph for each class is singly connected), or within objects of different classes (there is an
independent network for each object class). This lack of overlap between features speaks for
an inefficient coding strategy, as low-level features of distinct objects are likely to be similar.
Additionally, the model is restricted to a set of informative learned fragments, which, for exam-
ple, limit its ability to explain retinotopic contour completion at an arbitrary (less informative)

object region.

A second model falling into this category is that proposed by Chikkerur et al. (2010). It uses
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the output of the standard HMAX model (Serre et al. 2007b), described in Section 2.1.2, as the
input to a Bayesian network which simulates the effects of spatial and feature-based attention
(modelling the prefrontal cortex and the lateral intraparietal regions). The network consists of
a node L, encoding the location and scale of the target object; a node O, encoding the identity
of the object; and a set of nodes X; that code the different features and their locations. The
feature nodes receive evidence from the HMAX-based preprocessing network, which extracts
a set of high-level features (roughly corresponding to V2/V4 receptive fields) from the image.
At the same time, they receive top-down feedback from the object location (L) and identity
(0), using conditional probability distribution P(X,|O, L). This distribution is constructed based
on whether the object contains a given feature (obtained from the HMAX parameters), and
whether the feature location matches the spatial attention location (Gaussian centred around

that location).

The model is successful at capturing several attentional effects such as the pop-out effect and
feature-based and spatial attention, and predicts eye fixations during free viewing and visual
search tasks. However, it cannot be considered a generative model of the visual system as it
cannot produce input images, i.e. the model relies on the HMAX framework to analyze and ex-
tract features. This means the effects of attention on lower visual areas cannot be modelled. The
Bayesian network is limited to a relatively abstract implementation of the high-level interactions
between the ventral and dorsal pathways. Exact inference can be performed using a single up
and down pass of the belief propagation algorithm due to the simplicity of the network, where

only the feature layer has more than one node.

Another interesting architecture, and one which takes into account temporal as well as spatial
information, is the Hierarchical Temporal Memory (HTM) proposed by George and Hawkins
(2009). The model assumes that images are generated by a hierarchy of causes, and that a
particular cause at one level unfolds into a sequence of causes at a lower level. An HTM can
be considered a special type of Bayesian network which contains a variable coding the spatial

patterns, and a second variable coding sequences of those spatial patterns (represented using a

Markov chain).




3.4. EXISTING MODELS

:’\'TI']

Tl lEI

c1=[0101]

c2=[1001]

ﬁﬂl.!

)."1

o @D<«O-~D
v QeEe6

y]‘] I ' ‘ |":-£3d|,1

€l o2 4 4 o5 o

e L

i Ly

. B
o (Q=l<«@D=D

yulf W B2

€l o 3 oA o5 b

e U

Figure 3.12: Toy example of beliel propagation in Hierarchical Temporal Networks (HTM).
The network segment shown includes two nodes at level 1 (N'! and N'%) and
one node at level 2. Each node at level one has six coincidence patterns (spa-
tial variable) and two Markov chains (temporal sequence variables), which are
illustrated qualitatively 1o correspond to visual patterns within the receptive field
of each level | node. The Markov chain g/ corresponds (o a corner moving left
and Markov chain g2 corresponds to a horizontal line moving upward. The dis-
tribution y'! represents the bottom-up likelihood of coincidence patterns in node
N given the evidence. The bottom-up message A represents the bottam-up
likelihood of Markov chains in node N''' given the evidence. Note A shows
a flat distribution reflecting the fact that the horizontal line pattern participates
in both Markov chains. The parent node N*' has only two coincidence patterns
in this toy world, corresponding to a concatenation of the lower level bottom-
up messages. The coincidence pattern likelihood vl indicates that pattern 2 is
more likely given the input messages. Even though child N'? receives bottom-up
ambiguous information about its Markov chains, integrating more global infor-
mation gives rise 1o a peaked top-down distribution, x'?. Note the distributions
shown are just qualitative examples and do not correspond to any real computa-
tion. From George and Hawkins (2009).
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During the learning stage, HTMs attempt to discaver the causes underlying the sensory data.
Each node makes use of a spatial pooler that learns the most common input spatial patterns, and
a temporal pooler that groups these patterns according to their temporal proximity and assigns
them a label, For example a set of comner lines at different positions (input spatial patterns),
could be grouped into a common temporal group labeled corner. Note the terms temporal

group, sequence and Markov chain represent the same concept in an HTM network.

The spatial pooler in the parent node combines the output of several lower-level nodes, which
takes the form of a probability distribution over the temporal groups of those nodes. This
allows it to find the most common co-occurring temporal groups below, which then become
the alphabet of spatial patterns in the parent node, e.g. features of a face (eyes, nose, mouth)
which always move together. The concept is similar to that of invariant features obtained by the

complex layers of the HMAX model (Serre et al. 2007¢).

The learning process is repeated throughout the hierarchy to obtain the causes at the highest
level. As a result, a tree structured Bayesian-like network is obtained, based on the spatio-
temporal characteristics of the inputs which reflect that high-level features vary more slowly
than low-level features. This strategy is similar to that employed by the trace rule in the Visnel
model (Deco and Rolls 2004) and slow-feature analysis (Wiskott and Sejnowski 2002) (see

Section 2.1.2).

During the inference stage, a variant of the belief propagation algorithm adapted to HTM net-
works propagates sensory evidence from multiple low-level regions (conveying competing hy-
potheses), which converge on a high-level cause, leading to recognition. Top-down feedback
then proceeds, analogously to Bayesian networks, disambiguating lower level patterns. The
process is illustrated in Figure 3.12, using a toy example with three HTM nodes in a two-level
hierarchy.

The algorithm is different from the original belief propagation in that it takes into account the
temporal information included in the Markov chains of each node to compute the beliel and

output messages. In standard Bayesian networks (Pearl 1988) each node represents a single

random variable. In addition, to solve the problem of nodes with multiple parents, the author
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proposes a trivial extension of the algorithm using the Noisy-OR gate. However, this method
is only valid for graded variables (see Section 3.3.4 and Pearl (1988)), which is not the case
for variables in HTM networks. Similarly, the problem of networks with loops is solved by
implementing loopy belief propagation, which is claimed to provide good results, although no

evidence is provided.

Model simulations shows succesful recognition (72%) of 48 line drawing objects (32 x 32 pix-
els) despite translations, distortions and clutter. When tested on the standard Caltech-101 bench-
mark of natural images, the performance decreased significantly (56%); although when using
their own 4-category testset of natural images, the accuracy was very high (92%). Preliminary
results also suggest top-down feedback in the model can account for segmentation, feature bind-
ing, attention and contour completion. Only the last phenomenon is explicitly demonstrated, by
firstly recognizing a Kanizsa square (input image) as a square (high-level cause), and later alow-
ing top-down feedback to increase the response of nodes coding the retinotopic location of the
illusory contours. Due to the significant similarities between HTMs and the model proposed in

this thesis, a more detailed comparison between them is included in Section A.

3.4.2.2 Models based on sampling approximation methods

The first model in this subsection was described in a landmark paper by Lee and Mumford
(2003). From a relatively abstract perspective, the belief propagation approach was proposed
to account for processing in the ventral visual pathway (VI, V2, V4 and IT). The visual cortex
was suggested to represent beliels or conditional probability distributions on feature values,
which are passed forward and backward between the areas to update each other’s distribution.
The authors extended this model, proposing an alternative way of implementing approximate
Bayesian inference by vsing a sampling method called particle filtering. This mathematical
tool approximates high-dimensional probability distributions using a set of sample points or
particles and an attached set of weights that represent their probabilities. The essential idea is
to compute for each area not only one hypothesis for the true value of its set of features, but
a moderate number of hypotheses. This allows multiple high-probability values to stay alive

until a larger number of feedback loops have had a chance to exert an influence. However, no
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Figure 3.13: Bayesian belief propagation architecture applied to the visual system. a) Initially,
bottom-up cues from the illuminated part of the face (B1) cause a face hypoth-
esis Lo become activated at the higher levels. Then information about the likely
features and proportions of a face is conveyed through top-down feedback (B2)
1o the lower-level high resolution buffer. Re-examination of the data results in a
reinterpretation of the faint edge in the shadowed area as an important part of the
face contour. b) Each area computes a set of beliefs, X;, based on hottom-up sen-
sory data (X;— 1) and top-down priors (P(X; /X, 4 ), which are integrated according
to the Bayesian inference equation. Beliefs are continually updated according to
changes in earlier and higher areas (o obtain the most probable distribution of
causes al each level. Adapted from Lee and Mumford (2003).

practical implementation of this theoretical approach was provided by the authors.

Nonetheless, this theoretical paper has strongly inspired and motivated the present thesis, and
provides an intuitive example which allows one to better understand the concept of how belief
propagation can be applied to visual processing. Consider the shadowed face example shown in
Figure 3.13. Initially, bottom-up cues from the illuminated part of the face cause a face hypoth-
esis to become activated at the higher levels. Then information about the likely features and
proportions of a face is conveyed through top-down feedback to the lower-level high resolution
buffer. Re-examination of the data results in a reinterpretation of the faint edge in the shadowed

area as an tmportant part of the face contour. This new detatled information can then be used
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by the higher levels to infer additional characteristics of the image, such as the precise identity

of the face.

Lewicki and Sejnowski (1997) demonstrate the efficiency of Gibbs sampling in learning higher
level parameters in Bayesian networks. A simple 3-level network of stochastic binary variables
with a 5x5 pixel input image is used to discover higher level motion patterns from the input
image correlations (the Shifter problem). Importantly, feedback from the third layer, containing
the global direction of motion, is used to disambiguate the local shift direction in layer two. The
combination of information from multiple parents/causes was approximated using the Noisy-

OR gate, previously described in Section 3.3.4.

Hinton et al. (2006) proposed a new type of network called a deep belief net which is composed
of a Bayesian network (directed acyclic graph) with two undirected associative memory layers
at the top. The motivation for this model is to ease the intractable unsupervised learning pro-
cess in hierarchical Bayesian networks, where, in order to learn the weights of the bottom layer
it is necessary to calculate the posterior probability which depends not only on the likelihood
(bottom-up data) but also on the prior (top-down data). In other words, as a result of the ex-
plaining away effect, the weights of all the higher layers are required. Iurther, it is necessary to
sum over all possible configurations of the higher variables in order to obtain the bottom layer

prior.

The authors introduce the concept of complementary priors, which are prior distributions that,
when multiplied by the corresponding likelihood function, yield a posterior distribution which
can be factorized. This implies eliminating the explaining-away effect, thus making each hid-
den layer independent of its parents’ weights. This yields a network which is equivalent to
a Restricted Boltzmann Machine, i.e. a network with an independent hidden layer of binary
variables with undirected symmetric connections (o a layer of observed nodes. Under these
conditions a fast learning algorithm is derived which obtains the approximate parameters of the
network layer by layer. First, a visible layer (input image) is used to train the bottom hidden
layer of the network. After learning the weights of the hidden layer, the activations of that

layer, given the input image, are used as the input data for the hidden layer above, thus always
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maintaining the 2-layer structure characteristic of Restricted Boltzmann Machines.

The above fearning method can be seen as a variational approximation wherein the constraint
is that the weights in the higher levels ensure the complementary priors condition, therefore
yielding a factorial posterior distribution. However, as weights in higher-levels are learned, the
priors for lower layers cease to be complementary, so the weights used during inference are
incarrect, Nonetheless, it can be shown that each time the weights of a layer are adapted, the
variational lower bound on the log probability of the training data is improved, consequently
improving the overall generative model. The weights of the model are then finely tuned in a
final stage by performing an up and down pass of a variant of the wake-sleep algorithm (Hinton
et al. 1995). Although the learning is unsupervised in the directed layers, the top two associative

layers can be used to learn labeled data.

Inference is achieved by a single up pass along the bottom directed layers, yielding the binary
states of the units in the lower associative memory layer. Further Gibbs sampling or free-
energy optimization activates the correct label unit at the top layer. The performance of the
model on the MNIST digit recognition task was superior to that of previous models, including
Support Vector Machines and back-propagation. This demonstrates that generative models can
learn many more parameters than discriminative models without overfitting. The model is still
limited in that top-down feedback during inference is restricted to the top associative layers.
Additionally, it does not deal systematically with perceptual invariances. Instead, invariance
arises as a consequence of the wide range of sample images that can be generated by the model

for each given category.
3.4.2.3 Models based on variational approximation methods

The free-energy model proposed by Friston (Friston 2003, 2005, Friston et al. 2006, Friston and
Stephan 2007, Friston and Kiebel 2009, Friston 2010) has already been described in some detail
in Section 3.1.3. It is based on a variational approximation and therefore converts the complex
inference problem into an optimization task which tries to minimize the free-energy between
the true posterior distribution and and the recognition distribution. By assuming a Gaussian ap-

proximation (Laplace assumption) to the recognition distribution, optimization becomes equiv-
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alent to finding the means of the unknown causes of sensory data given the generative model.
The specific form of the generative model is given by the equations of a hierarchical dynamic
mode] which impose structural and dynamical constraints on the inference process. Solving
these equations implies implementing a message-passing algorithm reminiscent of the predic-

tive coding scheme.

Friston (2005) then reviews anatomical and physiological data from the brain, suggesting the
proposed hierarchical dynamical system and message-passing scheme could be implemented by
the cortex. At the same time brain responses related to perception and action can be understood
in terms of the proposed model. However, the model remains in a relatively theoretical form
and is only applied practically to two simple scenarios: a birdsong recognition problem, and a
4-pixel image recognition. The second example, more relevant for this section, comprises a a
2-layer network which illustrates the dynamics of the free-energy model and how the prediction

error is reduced after the parameters are gradually learned.

A similar approach was previously implemented by Rao and Ballard (1999) using the Kalman
filter, which is derived from the Minimum Description Length principle, similar in flavour to
free-energy minimization. The model could have been included in this section as it employs a
variational approximation, but was previously described in Section 2.2.3, together with other

predictive coding models of the visual system.

The model by Murray and Kreutz-Delgado (2007) also attempts to solve several visual percep-
tual tasks such as recognition or reconstruction, formulating them as inference problems in a
stochastic generative model. The joint probability distribution is defined using the neighbour-
ing layer conditional probability (NLCP), which states that the nodes of a layer only depend
on the nodes of its immediate neighbouring layers (closely related to belief propagation in
Bayesian networks). The NLCPs can conveniently be formulated using Boltzmann-like distri-
butions. A variational approximation (factorial Bernoulli distribution) is employed to deal with
the intractable exact inference problem. This feads to the development of a simplified genera-

tive model which can be implemented using a hierarchical dynamic network with feedforward,

feedback and lateral connections. The model places a strong focus on overcomplete sparse
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representations (suggested by experimental evidence), which are enforced during the learning

stage, and improve recognition performance.

A four-layer network with a 64x64 pixel input image simulates object recognition in the vi-
sual system. The network managed to correctly recognize, segment and reconstruct occluded
versions of the trained images, although no invariance to position and size transformations is
achieved. The study illustrates some interesting properties, such as the possibility of simulat-
ing imagination by running the network generatively (i.e. top-down and not bottom-up input);
and expectation-driven segmentation, whereby the top-down input (e.g. prior expectations) im-
proves recognition in cluttered scenes, However, the model fails to provide mechanisms for
position and scale invariance during recognition. Furthermore, despite being based on a gener-
ative model, the resulting dynamic network derived from the simplified model is far from the

original belief propagation scheme.
3.4.2.4 Comparison and conclusions

This subsection has outlined some of the attempts to model visual perception in the brain using
the generative modelling approach, and in particular those employing algorithms similar to be-
lief propagation. Table 3.2 lists the models, comparing the type of network, inference algorithm

and results obtained in each case.

The complexity that emerges from the large-scale and intricate cortical connectivity means ex-
act inference methods are intractable, making it necessary o use approximate solutions such as
loopy beliel’ propagation (George and Hawkins 2009), sampling methods (Hinton et al. 2006,
Lee and Mumford 2003, Lewicki and Sejnowski 1997) or variational methods (Murray and
Kreutz-Delgado 2007, Rao and Ballard 1999, Friston 2010). Sampling methods typically main-
tain the probabilistic nature and structure of Bayesian networks, while variational approxima-
tion methods yield a hierarchical dynamic network which deals with the optimization problem
(minimizing the difference between the approximate and the true posterior distributions). Nev-
ertheless, in both cases the resulting dynamics lead to local, recursive message-passing schemes

reminiscent of belief propagation.
Exact inference is only passible when the generative model avoids physiological constraints,
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Table 3.2: Comparison between models of visual processing based on generative modelling
approaches, similar to Bayesian networks and beliel propagation.
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such as multiply-connected networks, and a shared dictionary of low-level features (Epshtein
et al. 2008); or models exclusively higher level phenomena such as attention, relying on non-

Bayesian object recognition models (Chikkerur et al. 2009).

The results of model simulations on real-world data are still limited. Some models remain
purely theoretical (Lee and Mumford 2003), or provide simple toy examples (Friston and Kiebel
2009, Lewicki and Sejnowski 1997, Hinton et al. 2006). Those that use bigger and more
complex input images fail to account for certain aspects of object perception, such as posi-
tion and scale invariance (Rao and Ballard 1997, Murray and Kreutz-Delgado 2007, Chikkerur
et al, 2009), or feedback reconstruction (e.g. illusory contour completion) (Hinton et al. 2006,
Epshtein et al. 2008); or are not implementing rigorous, theoretically-grounded generative mod-

els (George and Hawkins 2009).

Generative models have been described as the next generation of neural networks (Hinton et al.
2006). However, their application to visual perception using realistic data is still at a very early
stage. Much work needs to be done exploring the different approximate inference methods,
network structures, learning methods and scalability of these networks, which allow them o
deal with natural image statistics and capture the wide variety of perceptual phenomena, while

using realistic physiological parameters.
3.4.3 Cortical mapping of models

The homogeneous, local and distributed implementation of belief propagation in graphical mod-
els is reminiscent of the concept of a canonical local circuit that has been suggested to exist in
the mammalian cortex. These ubiquitious circuits, shared by many species and cortical areas,
are repeated within cortical columns of a few hundred microns, which contains neurons with
similar feature tuning properties. Several studies have focused on a theoretically precise map-
ping between the local structures of graphical models and the layered cortical structure within a
cortical column. These also describe the intercortical projections which lead to the larger scale

functionality.

Two of the cornerstone studies that have set the theoretical grounds for understanding cortical

computation within the hierarchical Bayesian inference framework (Lee and Mumford 2003,
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Friston et al. 2006) have sketched the role that some of the laminar connections may play. They
both suggest the bottom-up messages of belief propagation may be encoded in the activity of
pyramidal neurons in the superficial layers 2/3; while top-down messages might result from

activity in deep layer 5 pyramidal neurons.

Litvak and Ullman (2009) provide a more precise and comprehensive account of how the
anatomical and physiological aspects of the cortical local circuitry can be mapped onto the
elements of graphical models, more precisely those implementing their belief consolidation
(max-sum operations) model. Their study provides evidence for the existence of local func-
tional subnetworks which may represent the states of variables, and a higher-level organization
(possibly cortical columns) which groups several possible states into variables. According to
the authors, empirical data suggests these subnetworks or neuronal cliques are characterized by
having excitatory pyramidal neurons and inhibitory fast-spiking basket cells, which are strongly

interconnected, and receive input from a common source.

The maximization nodes in the model (see Section 3.4.2) are hypothesized to be implemented
in superficial cortical layers by independent minicolumns, small ensembles of neurons orga-
nized in vertical arrays, covering approximately 50 microns. Each minicolumn computes the
maximum of several weighted input messages, making use of several neural subnetworks with
central inhibition. Double-bouquet inhibitory cells reciprocally connected to all mputs drive
the nonlinear responses. Feedforward projections from the superficial neuronal subnetworks of
these minicolumns in a lower cortical area terminate on a neuronal subnetwork in layer 4 of
a higher cortical area. The dynamics between excitatory and inhibitory neurons in the target
subnetwork allow it to produce a linear response to the sum of its inputs, providing the cor-
responding cortical mapping to the linear summation circuits proposed in the model. Further
details and a thorough review of evidence in support of the proposed functional roles for cortical

microcircuits are included in Litvak and Ullman (2009).

George and Hawkins (2009) also provide a detailed description of the possible mapping between
cortical microcircuits and their beliel propagation model. The mapping is based on their specific

formulation of belief propagation adapted to the Hierarchical Temporal Memory networks (see
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Section 3.4.2). Similar to the previous mapping, cortical columns implement the different nodes
or variables (e.g. coding for a specific region of the input image), while minicolumns represent

the different possible states or features at that location (e.g. different orientations).

According to the authors, projections from lower cortical to layer 4 levels are responsible for
the storage and detection of coincidence patterns. The synaptic connections between these lay-
ers represent the co-ocurrence of patterns on its inputs. Layer 4 then projects onto layer 2/3
pyramidal cells which are assumed to behave as complex cells which respond to invariant fea-
tures or motion sequences. Thus, layer 2/3 is responsible for the calculation of the feedforward
Markov chains’ (groups or sequences) states as suggested by the high density of lateral con-
nections, At the same time, anatomical connections suggest these neurons project the Markov
chain information to higher cortical levels, and incorporate high-level information, received via
layer 1 projections, into the computation of the Markov chains. Layer 5 pyramidal neurons with
dendrites in layers 1, 3 and 4 are responsible for the Belief calculation. Finally. layer 6 neurons

with dendrites in layer 5 compute the feedback messages for lower regions.

Further inspection of the proposed mappings reveals several key similarities and differences
between them, which are summarized in Figure 3.14. Each variable or graph node is roughly
understood as a cortical functional column, containing smaller functional units or minicolumns,
which correspond to the different vanable states (George and Hawkins 2009, Litvak and Ullman
2009). Feedforward outgoing messages from a node are assumed to originate from pyramidal
cells in layer 2/3 (George and Hawkins 2009, Litvak and Ullman 2009, Lee and Mumford 2003,
Friston et al. 2006). Feedback outgoing messages originate from pyramidal cells in the infra-
granular layers (Friston et al. 2006), either layer 5 (Lee and Mumford 2003) or layer 6 (George
and Hawkins 2009). Feedforward incoming messages from lower cortical areas target layer 4

neurons (Friston et al. 2006, Litvak and Ullman 2009, George and Hawkins 2009).

However, there are two different neural populations that could potentially encode the incom-
ing feedback messages from higher-levels: neurons in supragranular layers (Litvak and Ullman
2009, Friston 2010), more precisely, in layer 1 according to George and Hawkins (2009); or

neurons in infragranular layer 6 (Litvak and Ullman 2009, Friston et al. 2006). Both of them
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Figure 3.14: Schematic comparison between several proposed mappings between belief prop-
agation and the cortical layers. Left) Local message-passing scheme dictated
by helief propagation in a Bayesian network. Right) Potential mapping of this
scheme on the laminar cortical structure according to four different key refer-
ences which are labelled in the top-right box. Arrows represent the origin or tar-
gel layer of the four different incoming/outgoing feedforward/feedback message
types, together with the relevant references which support this view. Addition-
ally, the diagram also compares the cortical layer hypothesized to implement the
belief calculation in two of the proposed mappings.

are major target of feedback connections. The mapping for the calculation of the belief (conver-
gence of feedforward and feedback information) is also a major point of disagreement. While
George and Hawkins (2009) suggests it occurs at layer 5, (Litvak and Ullman 2009) suggests
either the synapses between layer 6 and 4 neurons, or the strongly laterally connected layer
2/3 neurons, are responsible for the higher and lower information interaction. The discrepancy
might result from the ambiguous definition of belief, which can be considered equivalent to the

output messages in some of the specific algorithms (Friston 2010, Litvak and Ullman 2009, Lee

and Mumford 2003).

The mapping of belief propagation models to the cortical architecture is highly speculative and
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an over generalization and a simplification of the function of the different cortical layers. The
mapping is based on incomplete anatomical and physiological data regarding the standard six-
layered sensory cortex structure. The different belief propagation operations are mapped (o
specific cortical layers, ignoring the fact that these operations may be the result of complex in-
teractions involving several layers simultaneously. Furthermore, the proposed mappings ignore
vast amounts of known details, such as the different neuronal types and existing connections
(Thomson and Lamy 2007), and assumes a crystalline homogeneity across cortical regions
which are known to have substantial structural differences (e.g. VI and IT cortices - Tsun-
oda et al. (2001)). Nonetheless, the level of detail is enough to generate testable predictions
and guide future modelling and experimental work, while at the same time keeping the models
open to future modifications and improvements through the incorporation of further biological

details.

3.5 Original contributions in this chapter

® Review evidence suggesting the visual cortex can be understood in terms of a generative

model, Bayesian inference and belief propagation.

e Provide a clear explanation of belief propagation in Bayesian networks, including an
original illustrative toy network, with intuitive variables and causal relationships; and

numerical step-by-step examples of the different types of evidence propagation.

e Compare analytically the two spiking neuron models of belief propagation in graphical

models.

e Review and compare analytically the most relevant models of visual perception based on

generative modelling approaches similar to belief propagation in Bayesian networks.

e Compare analytically several tentative cortical mappings of graphical models, and extract

the main points of agreement and disagreement amongst them.
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Chapter 4

Methods

This chapter describes in detail a theoretical and computational model which employs the math-
ematical tools described in Chapter 3, namely Bayesian networks and belief propagation, (o
simulate some of the anatomical and physiological properties of the ventral visual pathway,
embodied in the HMAX model. Furthermore. the model tries to reproduce some of the ob-
served phenomena described in Chapter 2, such as feedback modulation and illusory contour

completion.

The chapter is organized as follows. Section 4.1 sums up the different layers and operations of
the HMAX model and describes a how this model can be formulated as a probabilistic Bayesian
Network implementing belief propagation. Section 4.2 specilies the exact network parameters
of three different HMAX architectures and describes the corresponding Bayesian network that
captures each set of parameters. Section 4.3 examines the learning methods used to generate the
conditional probability tables of the Bayesian network, and how these weights approximately
capture the original prototypes and operations of the HMAX model. Section 4.4 details how the
selectivity and invariance operation of the HMAX model are approximated using the Bayesian
belief propagation algorithm. Section 4.5 describes how feedback is implemented inherently
in the proposed Bayesian network through the belief propagation algorithm. Additionally, it
discusses the solutions implemented to deal with the problem of having multiple parents and
loops in the network. Finally, Section 4.6 recapitulates and justifies the different approximations

used by the model.
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4.1. HMAX AS A BAYESIAN NETWORK

HMAX as a Bayesian network
4.1.1 HMAX model summary

The HMAX model (Riesenhuber and Poggio 1999, Serre et al. 2007b), which captures the basic
principles of feedforward hierarchical object recognition in the visual system, has already been
described in some detail in Section 2.1.2. This model was chosen as a starting point, firstly
because it reproduces many anatomical, physiological and psychophysical data from regions
V1, V4 and IT. The second reason is that it has been repeatedly argued that the main imitation
of the HMAX model is that it does not account for the extensive feedback projections found
in the visual cortex (Serre 2006, Walther and Koch 2007). Our proposed methodology, namely
Bayesian networks and belief propagation, is ideal (o tackle this problem and provide such an
extension. Below is a brief technical outline of the different layers and operations in the original
HMAX model, which will facilitate understanding of the proposed model. Figure 2.4 provides

a graphical representation of the different layers in HMAX.

S1 layer - Units in this layer implement Gabor filters, which have been extensively used to
model simple cell receptive fields (RF), and have been shown to fit well the physiological data
from striate cortex (Jones and Palmer 1987), There are 64 types of units or filters, one for each
of the Ks; (= 4) orientations (07,457,907, 135%) x ANy (= 16) sizes or peak spatial frequencies
(ranging from 7x7 pixels to 37 x 37 pixels, in steps of 2 pixels). The four different orientations
and 16 different sizes, although an oversimplification, have been shown to be sufficient to pro-
vide rotation and size invariance at the higher levels. Phases are approximated by centring the
Gabor filters at all locations. The RF size range is consistent with primate visual cortex (0.2" to
17). The input image, a gray-valued image (160 x 160 pixels ~ 5°x5" of visual angle) is fillered

at every location by each of the 64 Gabor filters described by the following equation;

(cos 0+ ysin0)2 + ¥ (—xsin @ + ycos 0)2 .
(xcos ysin®) _‘(};( RSN ) Ras ) ) % COS (le[_.lcusﬂ--}- ysin@) + ﬁ-‘))

Gy, =exp| —
‘ p( A

(4.1)
The parameters in the equation, that is, the orientation 6, the aspect ratio v, the effective width
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o, the phase ¢ and the wavelength A, determine the spatial receptive field of the S1 units. These
parameters were adjusted so that the tuning profiles of S1 units match those of V1 parafoveal

simple cells in monkeys (Serre and Riesenhuber 2004).

C1 layer - Units in this layer correspond to cortical complex cells showing a bigger RF size and a
certain degree of position and size invariance. Each C1 unit receives input from a AN x AN
square array of retinotopically organized S1 units with the same orientation, thus preserving
feature specificity. C1 units are arranged in 8 scale bands, where units at each scale band pool
from two S1 RF sizes, e.g. Cl scale band 1 pools from S1 units with RF sizes 7 and 9. The
pooling gnd size, AN, ranges from 8 pixels to 22 pixels, in steps of 2 pixels, according to the
C1 scale band. The pooling operation used is the max operation, i.e. the activity of each CI unit
is determined by the strongest of its (AN x ANg positions x 2 RF sizes) afferent S| units.

This 1s shown in the following equation:

(-]M,I T Irm_ax (S1 “,f._h\‘.r#.ﬁ} (4.2)

where k represents the feature (in this case the filter orientation),
bey,xer, yer represents the band and location of the C1 unit,

{bi.xi, v} represents the band and location of the afferent S1 units, and are given, as a function

of the C1 unit’s band and location and the network parameters, by the following expressions:

b; € {Q-bm — 1, 2bey } (4.3)
X € {14 (xer— 1) -&q(bey), -+ 1+ (xey — 1) €01 (bey ) + ANey (bey ) ) (4.4)
yi € {1+ (ver —1)-€1(ber), -+ 1+ (ver — 1) -&c1(ber ) + ANei (ber ) } (4.5)

This means each C1 unit represents a Gabor-like feature of the same orientation as the S|

units that feed into it, but with a certain position and size invariance. Additionally, C1 units
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implement contrast invariance, mimicking complex cells in striate cortex, by taking the absolute
value of their S1 inputs. Therefore, at each C1 location there are 32 C1 units, one for each of the
Kci(=4) orientations x 8 scale bands. Note that, unlike S1 units, C1 units are not computed at
every possible location but are sampled every & pixels or S units, where &) ranges from 3

pixels to 15 pixels, in steps of 2 pixels, according to the C1 scale band.

Physiological data on simple and complex RF size, spatial frequency and orientation band-
width are in good agreement with the model S1 and C1 tuning properties, as well as with the
hypothesis of complex cells performing a max operation over simple cell afferents (Serre and

Riesenhuber 2004),

52 layer - The response of each S2 unit depends in a Gaussian-like way on the Euclidean dis-
tance between the input and previously learned prototypes. More specifically, it implements
a Radial Basis Function (RBF) network, where the prototypes are the RBF centres. Dur-
ing the training phase, K¢, prototypes are learned from the C1 layer, each one composed of
ANg % ANga % Koy (= 4) elements. In some HMAX versions (Serre et al. 2007¢) Kg» = 2000
and ANy, = 3, which yields 2000 prototypes with 3 x 3 x 4 = 36 elements; while other imple-
mentations (Serre et al. 2007b) use values of K¢ = 1000 and ANy, in the range {4.8,12,16}.

In summary, at each S2 location there are Kg» S2 units coding each of the learned prototypes.

During the recognition phase, the response of an S2 unit at a particular location and coding a
specific learned prototype or RBF centre is calculated as the distance between the input patch

of ANg; x ANs> C1 units, and the & stored prototype P, such that,

Ssze‘1.\'.'.-\'.\'2-5" = EXp (_ p H(‘] {Bixiv] — P ‘ ‘3) (4.6)

where f§ is the square of the inverse width of the RBIY and therefore defines the sharpness of the

wning curve,
bga, xs52,ys2 represents the band and location of the S2 unit,

{b;.x;,y;} represents the band and location of the afferent C1 units, and is given, as a function

of the 82 unit's band and location and the network parameters, by the following expressions:
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bi = Bs»
x; € {xs2,-+ X52 + ANg2 } (4.7)
X € {ys2,"**,ys2+ ANg2 } (4.8)

C2 layer - In the C2 layer, units perform the max operation pooling over a AN x AN square
lattice of S2 units tuned to the same preferred stimulus, i.e. the same learned prototype. C2
units are therefore selective to the same stimulus as their S2 input units but present an increased
position invariance. At each location, C2 units will code each of the K¢z = Ky learned pro-
totypes, which can now be considered position invariant prototypes. In some HMAX versions
(Serre et al. 2007¢c) AN is set such that a single C2 unit for each prototypes receives input from
§2 units at all locations and scale bands tuned to the same prototype. Other HMAX implemen-
tations (Serre et al. 2007b) employ values similar to those of the C1 layer, such that AN takes
the values {8,12,16,20}, and the shift between S2 units, & takes the values {3,7,10, 13}, for
cach of the 4 C2 scale bands. Analogously to the C1 layer, each C2 scale band pools from two
of the S2 scale bands, achieving size invariance in the C2 responses. It has been shown that
the S2-C2 hierarchy produces both selectivity and invariance parameters that match observed

responses in V4 (Cadieu et al. 2007).

S3 and C3 layers - For Serre et al. (2007¢), S3 constitutes the top layer of the model. However,
Serre et al. (2007b) implement two extra layers, C3 and S4. In this version of the model, the
response of S3 units 1s based on a Radial Basis Function operation which computes the distance
between patches of ANg3 x ANgy C2 units and the K3 previously stored prototypes of the same
dimensions, analogous to the computation performed by S2 units (see Equation (4.6)). Finally,
C3 units are obtained by performing the max operation over all S3 units tuned to the same
prototype at all of the different spatial positions and scale bands. This leads to K¢y = Kg3 C3

units, coding each of the feature prototypes but with larger spatial invariance, so that if the
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feature is present at any position in the input image, the corresponding C3 unit will elicit a

response.

The top layer, S4 in Serre et al. (2007b) and S3 in Serre et al. (2007¢), is implemented as a
support vector machine (SVM) that uses the K¢y or K¢ output features in each case, to learn, in
a supervised manner, the objects or input images. Using a training set of images, the weights of
the support vector machine are adjusted in order to classify the output C2/C3 features generated

by the input images into the different learned object categories.

Although the number of layers varies among previous versions of HMAX in all cases the top
layer tries to simulate the higher regions of the ventral path. Top level units present bigger RFs
and are tuned to complex composite invariant features, which are consistent with the so-called
view-tuned cells present in the higher levels of the ventral pathway, such as the infero-temporal

cortex (Serre et al. 2007b, Quiroga et al. 2005, Hung et al. 2005).

Note that learning occurs in a developmental-like manner, meaning that weights are obtained
from snapshots of activity patterns falling on the receptive field of units, which are then gener-
alized across scales and positions (Serre 2006, Masquelier et al. 2007, Masquelier and Thorpe

2010). This is described in more detail in Section 2.1.2.
4.1.2 Probabilistic interpretation of HMAX: conversion to a Bayesian network

Chapter 3 has illustrated how Bayesian networks can model a wide variety different scenarios
and facilitate probabilistic reasoning under conditions of uncertainty. The key to doing this is
to correctly capture the structural and causal relationships between the factors involved in the
target scenario to be modelled. The target scenario is object perception in the visual system,
and for that reason [ have developed a Bayesian network that captures the structural and causal
relationships in the HMAX model. It is important to draw a line between the previous subsec-
tion, which describes the properties of an existing object recognition model (HMAX), and the
rest of this chapter, which describes the methodology employed to develop a Bayesian network
(with beliel propagation) that reproduces the structure and functionality of the HMAX model,

and extends it to include feedback processing.
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The first step in this process is 1o define the equivalences between the HMAX model and the

proposed Bayesian network. These are summed up in Figure 4.1 and are as follows:

1. Each node of the Bayesian network represents a specific location, band and layer of the

HMAX model.

ra

. The discrete states of each node of the Bayesian network represent the different features
coded at that location, band and layer of the HMAX model. For example each Bayesian
node at layer S1 will have Ky (= 4) features, representing the four different filter orien-

tations of HMAX.

3. The discrete probability distribution over the states of each Bayesian node represents
the sum-normalized responses of the HMAX units coding the different features at that
location, band and layer, Therefore, the probability distribution of each node comprises

the response of K HMAX units, where K is the number of different features at that layer.

4. The conditional probability tables (CPTs) that link each node in the Bayesian network
with its parent nodes in the layer above represent the prototype weights used 1o imple-
ment selectivity in the HMAX model. Additionally, the CPTs are used to approximate
the max (invariance) operation between simple and complex layers of the HMAX model.
Learning the appropriate CPT parameters allows the model to approximate the HMAX
functionality during the inference stage (using belief propagation) of the Bayesian net-

work. This is described in further detail in Section 4.3,

Each node in the network implements the belief propagation algorithm, which has been de-

scribed in detail in Section 3.3.3. Figures 4.2 and 4.3 show the specific operations implemented

by each node, in the case of 4 single parent structure and a multiple parent structure, respec-
tively. The former corresponds to a particularization of the latter. The operations performed

correspond to Equations (3.27) to (3.31). The diagrams illustrate how to effectively implement

beliel propagation in a local and distributed manner. Note that to do this the top-down output

messages of the node are made equivalent to the belief of the node. Therefore, the incoming
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HMAX — Bayesian network

S3
/' Kg, states
A Ky, feature
woighted maps P(C2|S3)
sum
1. locations - nodes
c2
2. features -> states |
|
max * 3. response = probability
4. welghts <> conditional
82 ERmaytss |
/ﬂ K, feature
welghted + “rrlaps
sum— I
[ |
»
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S1
/):(,1 feature \ Kg, states 2
Locations maps N5dex »

Figure 4.1: Probabilistic interpretation of HMAX as a Bayesian network. Leff) Schematic
representation of the HMAX model. At each layer, the response of each unit codes
the presence of a specific feature at a given location. The invariance (max) and
selectivity (Weighted sum) operations are implemented in alternating layers. Right)
Bayesian network representing the HMAX model network on the left: 1) each
node represents a specific location, band and layer of the HMAX model: 2) the
states of each node represent the different features: 3) the probability distribution
of each node represents the sum-normalized response of the K HMAX units at that
location; and 4) the conditional probability tables linking nodes of different layers
represent the weights of the HMAX selectivity operation, as well as serving to
approximate the HMAX invariance operation. The equivalences are summarized
in the central orange box and are labelled with orange numbered circles over the
resulting Bayesian network.
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4.1. HMAX AS A BAYESIAN NETWORK

top-down messages to a node need to be divided by the output A message to obtain the corre-
sponding 7 message from the node above. This solution was proposed by Pearl (1988) and it
avoids calculating the specific @ messages for each child node. Instead it is more effective to
simply feed back the belief and let each child node calculate its own input 77 message. As will
be described later on, in cases where the total number of incoming messages is relatively high,

the m message can simply be approximated by the belief.
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Figure 4.2: Internal structure of a node implementing belief propagation in a Bayesian network
with a tree structure (one parent per node). Each node combines the bottom-up 4
messages from child nodes with the top-down & message from the parent node to
calculate the belief and the output A message to the parent node. Note that the top-
down output messages of the node are made equivalent 1o the belief of the node.
Therefore, input top-down messages 10 a node need to be divided by the output A
message to obtain the corresponding 7 message from the node above (Pearl 1988).
The operations described correspond to a particularization of Equations (3.27) to
(3.31) for the single parent case. For more details see Section 3.3.3.
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Internal structure of 4 node implementing belief propagation in a Bayesian netwark
with a polytree structure (more than one parent per node). Each node combines
the bottom-up A messages from child nodes with the top-down & messages from
the parent nodes 1o calculate the belief and the output A messages to the parent
nodes. Note that the top-down output messages of the node are made equivalent
(o the belief of the node. Therefore, inpul top-down messages (o a node need to
be divided by the output A message to obtain the corresponding 7 message from
the node above (Pearl 1988). The operations performed correspond to Equations
(3.27) 10 (3.31), and were described in detail in Section 3.3.3.
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4.2, AR(.ZH!'I‘I:*:CT URES

Architectures

This section describes the specific structure parameters of the three different Bayesian networks
employed. They are based on the parameters of two published versions of the HMAX mode
(Serre et al. 2007¢,b). For simplicity I have used the same parameter notation employed in
these papers. Note that these parameters can be used to build the HMAX network as well as the
functionally equivalent Bayesian network, as they define the topology of the network, i.e. the

structure and the interconnectivity between the different elements of the network.

The first two layers of the network are equivalent in all three architectures and their parameters

are summed up in Table 4.1.

4.2.1 Three-level architecture

The parameters for layers S2, C2 and S3 (Serre et al. 2007¢) are shown in Table 4.2 and the
resulting Bayesian network is illustrated in Figure 4.4. The number of nodes at each layer and
band depend on the size of the input image and the pooling (AN) and sampling (&) parameters.
The figure shows the total number of nodes at each layer, assuming an input image of 160x160

pixels and the parameters defined by Table 4.2.

Due to inherent properties of Bayesian networks, each node in the graph can only have a fixed
number of afferent nodes. For this reason, in order to obtain 82 nodes with features of different
RF sizes, ANs; = 4,8, 12,16, these are implemented using separate nodes. Therefore, all S2,
€2 and 83 nodes are repeated four times, one for each of the RF sizes. This is not illustrated in

Figure 4.4 because the structure of each of the four sets of nodes is equivalent (as a function of

- o SI parameters
RFsize, ANy, [ 7,0 [ 11,13 [ 15.17 | 19.21 | 23.25 [ 27,39 [ 31,33 | 35.37
SI types, K| 4 (0°45°,90°%; 135°)
: - CI parameters -
Scaleband |1 2 |3 [4 [5 6 |7 [8 |
Gridsize, AN (8 (10|12 |14 |16 |18 (20 |2 |
Sampling, e¢; | 3 5 7 8 10 12 13 15

| C2 types, K¢ 4(0°:45°:90°;135°)

Table 4.1: Comparison between two implementations using spiking neurons of graphical mod-
els and beliel propagation
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S2 parameters o __7

' Scale band 1 :LB - ‘ 5 T4 i
R, Ao 48 1o [ |
I &ypes{ K¢ - - - 1000 - o N
- - o Cmmmew? - - —
Band pooling, ASe T o All bands: | ---8 —J
" Grid size, A_N(l; ' - “All S2 units R -
C2wpes, Ko o |
i S—j’pammeﬂrs - _]
RF size’, ANsy | = Wl = — =
'ﬁtypcs. Kg3 o _ - 60 __ ‘{

4852 prototype elements= ANg; x ANy x K¢y (4 orientations ). Same for all scale bands,
bS3 prototype elements— ANgy x ANg3 x K¢ (1000 features).

Table 4.2: Parameters of the 3-layer architecture. Based on Serre et al. (2007¢).

the corresponding parameters), and the nodes of different S2 RF sizes do not interact with each

other.

The number of nodes in each S2 set is 2253 for ANg> = 4, 1572 for ANg> = 8, 1098 for ANg; = 12
and 758 for ANs> = 16. Bigger ANs, imply less resulting S2 units as the number of S2 units is
equal to the number of C1 units divided by ANg,. The number of features of each RF size, K, is

set to the total number of features in layer S2 divided by four i.e. K, = Ky /4 = 1000/4 = 250.

Each node in the network has an associated CPT which links it with its parent nodes. Similarly,
each node performs the same internal operations, shown in Figure 4.3, which correspond to the

distributed implementation of belief propagation.
4.2.2 Alternative three-level architecture based on Yamane et al. (2006)

The parameters of this architecture are shown in Table 4.3 and the resulting Bayesian network
is illustrated in Figure 4.5 (only from layer S2 above, as layers S1 and C1 are equivalent 1o
the previous version). This architecture was introduced to try (o improve the recognition of the
translated dataset of input objects. It is a variation of the 3-level HMAX model (Serre et al.
2007¢), with a reduced pooling range (RF size) at the top layers C2 and S3. More specifically,
C2 prototypes do not pool over the whole set of S2 units, but over a smaller range (50% of the §2

map length), which leads to a 3-by-3 C2 grid of units. This then allows the S3 RF size to be set
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Figure 4.4: Bayesian network reproducing the structure and functionality of the 3-level
HMAX model (Serre et al. 2007¢). The number of nodes at each layer and band
depend on the size of the input image and the pooling (AN) and sampling (£) pa-
rameters. The figure shows the total number of nodes at each layer, assuming an
input image of 160x 160 pixels and the parameters defined by Table 4.2. Each node
in the network has an associated CPT which links it with its parent nodes. Simi-
larly, each node performs the same internal operations, shown in Figure 4.3, which
correspond to the distributed implementation of belief propagation.
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82 p&;zmera

' Scaleband |1 2 [3 14 |
| RF size”, ANs; 4 |8 -z e |"
(S2types, Ko | oo
l 2 palm(.'fﬂE N ' a ‘
' Band poﬁing, ASc [ All bands: 1---8 o
! Grid size, AN» # . (}.5_3. |Ulll|_£2 uuiE __ ‘
Sampling, £ 0.25x total 82 units _
| C2types, Koo | ) 10 _ |
T o a 83 parameters = o : |
‘- lilsize"ﬂ%-_-, - - __ 3 - __
S3 types, Ky T 2% 2x60 = 240 |

482 prototype elements= ANy x ANy, = Koy (4 orientations). Same for all scale bands.
hg3 prototype elements— ANgy x ANgy = Koo (1000 features).

Table 4.3: Parameters of the alternative 3-layer architecture based on Yamane et al, (2006).

1o just 2 x 2 C2 units, and to learn 2 x 2 prototypes (one for each location) per object category,
which leads to greater position invariance at the top layer. As a consequence, the learned high-
level prototypes of objects contain some information about the spatial arrangement of their
constituent parts, in agreement with the results shown by Yamane et al. (2006). This was also

discussed in Section 2.1.1 and illustrated in Figure 2.3b.

Additionally, the smaller pooling ranges of each unit help to reduce the large fan-in of A mes-
sages and to increase the specificity of feedback. All feedback results presented in the thesis are

based on this architecture.

4.2.3 Four-level architecture

This architecture is based on the version of HMAX described in Serre et al. (2007b), and in-
cludes two extra layers. The parameters of this architecture are shown in Table 4.4 and the
resulting Bayesian network is illustrated in Figure 4.6 (only layers above S2, as layers S1 and
Cl are equivalent those shown in Figure 4.4). The main advantage of this architecture is the
further processing by the two extra layers with smaller pooling ranges which leads to greater
position and scale invariance and can increase selectivity in highly detailed images. However,
these two extra layers also lead to greater complexity and higher approximation errors when

implementing the model as a Bayesian network. For this reason, the four-level architecture was
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Figure 4.5 Bayesian network reproducing the structure and functionality of a modified ver-
sion of the 3-level HMAX model (Serre et al. 2007¢). The variation consists of a
reduced pooling range (RF size) at the top layers C2 and 53 and was introduced
to try to improve the recognition of the translated set of input ohjects. Only those
layers above 82 are shown, as layers S1 and C| are equivalent to the previous ver-
sion. The number of nodes at each layer and band depends on the size of the input
image and the pooling (AN) and sampling (£) parameters. The figure shows the
total number of nodes at each layer, assuming an input image ol 160x 160 pixels
and the parameters defined by Table 4.3, Each node in the network has an associ-
ated CPT which links it with its parent nodes. Similarly, each node performs the
same internal operations, shown in Figure 4.3, which correspond to the distributed
implementation of belief propagation.
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| RF size?, ANg

S2 types, Ks»

Scale band

Band pooling, AS¢
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Sampling, £
C2 types, K

RF size”, AN
| S3 types, K3

Grid size, AN

Band pooling, AS

S3 types, K3

482 prototype elements= ANy,

Citypes, Ky

RF size’, ANy,

52 parana’terx

3
2000
C2 parameters
2 3
34 5,6
12 16
7 10
1000
53 parameters
3
- 1000

('3 parameters

All bands: 1---4
All §3 units

1000

S4 parameters
I
60

x ANg1 % Key (4 orientations). Same for all scale bands.

493 prototype elements= ANg3 x ANgy % K¢ (1000 features).

84 prototype elements= ANy,

Table 4.4: Parameters of the 4-layer architecture. Based on Serre et al. (2007¢) but with Ky =

< ANgy % K-y (1000 features).

Ky = 1000 features, instead of 2000.

only used for comparison with the other architectures during the the feedforward recognition

Process.
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Figure 4.6; Bayesian network reproducing the structure and functionality of the 4-level
HMAX model (Serre et al, 2007b). The number of nodes at each layer and band
depend on the size of the input image and the pooling (AN) and sampling (£) pa-
rameters. The figure shows the total number of nodes at each layer assuming an
input image of 160x160 pixels, and the parameters defined by Table 4.4, Each
node in the network has an associated CPT which links it with its parent nodes.
Similarly, each node performs the same internal operations, shown in Figure 4.3,
which correspond to the distributed implementation of belief propagation.
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4.3. LEARNING

Learning

This section describes how to learn the conditional probability tables (CPTs) of each of the
nodes in the Bayesian network in order to approximate the selectivity and invariance operations
of the HMAX model. For this learning stage an important assumption is made in order to
simplify the process. The network is assumed have a single parent per node (tree structure
with no loops) so that the feedforward A messages are not affected by the top-down feedback 7
messages. The bottom-up A message from a node with a single parent does not include evidence

from that parent (see Section 3.3.3 for details).

The reason for making this assumption is that the CPTs in the network are learned in an unsu-
pervised manner, starting from the bottom layer (following HMAX learning methods), based
on the response obtained at each layer. In order to calculate the response of nodes with multiple
parents, the messages from all parents need to be combined using the CPTs that relate the node
to its parents. However, these CPTs would still be unknown. This implies that, theoretically,
in this type of network, all the CPTs would need to be learned at the same time. By assuming
nodes with a single parent, the A messages, based solely on bottom-up evidence, can be used
as a reference to learn the appropriate weights layer by layer. Similar assumptions are made in
other related models (Epshtein et al. 2008, George and Hawkins 2009, Hinton et al. 2006). The

learning process is now described one layer at a time.
4.3.1 Image-S1 weights

The input image is pre-processed with a battery of Gabor filters described by Equation (4.1)
with the parameter range described in Table 4.1, i.e. at 4 different orientations and 8 sizes. Each
of the filters is applied at every location of the image. The filtered responses, normalized over
the four orientations at each location and scale, are used as the output A messages of a set of
dummy nodes that feed onto the S1 nodes. As explained in Section 3.3.3, dummy nodes do not
encode a variable or have a belief, but just generate A messages for the parent nodes. For this

reason there is no need to define the CPTs between the dummy nodes and the S1 nodes.
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4.3.2 S$1-C1CPTs

The belief propagation operations between S| and C1 need to approximate the max operation
implemented in the original HMAX model. To do this we propose increasing the number of
states of the C1 layer so that for each S1 orientation there are Kejgrou, states coding different
spatial arrangements of S| units. In this way all the C1 states corresponding to the same S1
orientation can be grouped together and treated as a single state during the generation of the
output A message. The operation to compute the output A message implements the sum over
all the states of each C1 group. In other words, C1 nodes provide a distribution over S1 features
and locations, which after marginalizing (summing) over the locations during the generation of

the output A message, provides an approximation to the max operation.

However, the number of different possible spatial arrangements of S1 units converging on a
C1 unit is given by the number of k-combinations of the n-element set equal to the binomial
coeflficient, (L’) where n = AN - ANg, -2 bands and k is the number of active units (assuming
binary values). For example, forn = 8.8 -2 = 128 and k = 32, the number of possible spatial
arrangements is ('2)') &~ 10%2. This is just a lower bound on the real number of combinations, as
we would need to sum over all the different values of k, and the weight values at each location

are not necessarily binary, but range from 0 to 1. Creating a distribution for each C1 node

containing Ky = Ksy - Ketgroup = 4 1072 states, is obviously intractable.

For this reason, the value Kejgroup 18 limited to include only the most common arrangements
of S| units for each orientation. Figure 4.7 portrays a toy example of this method where the
number of S1 units is n = 3-3 = 9, the number of S1 states is Kg; = 4 (orientations), the number
of features per group is K¢ jg0up = 3 @nd the resulting number of C1 states is Koy =4-3 = 12
The equation to calculate A(C1), which combines the bottom-up evidence, and A¢;(S2), which
sends the bottom-up evidence to S2, are shown in the diagram.

Note that, as illustrated in the toy example, the weights are learned for each fixed C1 state=i as
a function of the n afferent S1 units and the j S1 states per node. This yields a weight matrix
(shown on the bottom left) for each of the C1 i states. However, the CPTs of a Bayesian network

are defined as a function of the child and the parent states, j and i respectively, for each fixed
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81, node. Therefore, the original weight matrices are converted into one CPT per S1 node as

shown at the bottom left of Figure 4.7.

The implementation in the real model follows that described in the toy example. The method
employed to learn the K¢ group most common arrangements of S1 units at each orientation feed-
ing to a C1 unit is a clustering technique, namely the k-means algorithm (Bishop 1995). This
method can be understood as a type of Expectation-Maximization algorithm. This clustering
method is applied over a set of S1 patches obtained from the training input images. To select
and pre-process the set of patches to be clustered for the ¢ S1 state (orientation) or C1 group,

the following steps are performed:

L. Select the next patch, Ppyeniar of size n = ANg) - AN¢j - 2 (bands) from each state of the
S1 nodes’ A response, i.e. A(S1y, ., = i), where {b,x,y} represent the band and location

of the S1 node and match the patch size, n; and i is a specific S1 orientation or C1 group.

o

Keep patch Pyoopiar only it its maximum value is above a threshold 7,,,,, where T, is
given as a function of the maximum overall value of A(S1, ., = i) ¥ b, x,y. Formally, if
max(Ppoential) = Tiin then Pyyporred = Pporential, Where Ty = 08 - max(A (814 = i)), and
a typical value for e would be 0.9. This ensures that the weight matrix is calculated based
on significant A (S1) responses which are close to the overall maximum response elicited

by S1 nodes, and not based just on the local maximum of each patch.

3. For each selected patch, P.j.04, keep only the values above 7, and set all other values
100, 1.e. Poyjecred = floor(Pyjecred / Tmin). This ensures the weaker responses do not affect

the calculation of the weight matrix.

' Caption for Figure 4.7. ‘Toy example illustrating how 1o approximate the may operation using the CPTs between
S1 and Cl nodes. The 12 states of the Cl node are organized in four groups each corresponding to one of the S1
states or onentations. Each of the K¢y pp = 3 states withina Cl group codes a different spatial arrangement of the
input S1 nodes. The weights between each of the C1 states and the §1 nodes are shown in the bottom-left tables.
These are then converted 1o the corresponding CPTs between each S1 node and its parent C1 node as shown in the
tables of the bottom-right. The belief propagation equations in the top-right square show how the CPTs are used
to generate the output A messages from each S1 node o its C1 parent node. These messages are then combined
multiplicatively by the C1 likelihood function A(C1) and used to generate the output A messages from each C1
node to its S2 parent node. In summary, C1 nodes provide a distribution over S1 features and locations, such that
marginalizing (summing ) over the locations during (he generation of the output A message (o the parent S2 node,
provides an approximation to the max of each S1 feature over the pooling region.
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Figure 4.7: For caption see footnote' .
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The k-means clustering algorithm is then applied over the resulting selected patches. It works
by generating initially K¢ g,0up random clusters. Then each of the Py q0q ¢ patches is assigned
to the nearest cluster, and the value of the cluster is modified to reflect the mean value of all
assigned patches. The resulting Kcigroup clusters for each orientation and C1 band represent the

weight matrices between a C1 node and its n = AN - ANgy -2 S1 afferent nodes.

After all the clusters or weight matrices have been calculated, the minimum number of non-zero
elements in the weight matrices across all C1 groups is obtained. The number of non-zero ele-
ments of all weight matrices is set to this minimum, and the matrix elements are sum-normalized
10 one. This ensures that during the inference process the weights are balanced across the dif-
ferent C1 groups, and the result of the computation depends on the A distribution. Otherwise if,
for example, the C1 states corresponding to the horizontal orientation group had more non-zero
elements, the A(C1) responses would be biased towards the horizontal orientation states. Note

that an independent minimum value of non-zero elements is calculated for each scale band.

For some of the feedback results the number of non-zero elements of the S2-C2 weight matrix

was increased to improve the S2 response reconstruction from the (2 feedback.

The resulting weight matrices, learned from the training dataset of 60 object silhouettes fol-
lowing the clustering procedure described, represent the Kejgroup most common arrangements
of S1 units for each C1 group and scale band. These are shown in Figure 4.8 for a value of
Kcigroup = 10. The weights obtained show very clear and selective patterns which match what
would be expected statistically from natural images, i.e. the arrangement of the S1 nodes tends
to match the S1 orientation of the unit, which speaks for a coherence between the local and
more global patterns. Note that each C1 node receives input from the S1 nodes at 2 scale bands,
and these weights are represented adjacent to each other, e.g. weights for a C1 node in scale
band 1 receive input from S1 nodes in scale bands | and 2, and are therefore shown as two 8 x 8

adjacent matrices = 16 x 8 elements.

The final step is to convert the weight matrices shown in Figure 4.8 to the corresponding CPTs
of each S1 node P(S1]/C1), as was illustrated in the toy example in Figure 4.7. To conform 1o

probability rules, each column of this table must add vp to 1. This ensures that, for example,
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Figure 4.8: Weight matrices between a C1 node and its afferent S1 nodes. These are learned
from the training dataset of 60 object silhouettes following the clustering proce-
dure described, and represent the K¢y gpoup -
nodes for each C1 group and scale band. Note, for each scale band the pooling
range, ANgy, varies. The weights obtained show very clear and selective patterns
which match what would be expected statistically from natural images. i.e.
arrangement of the S1 nodes tends to match the S1 orientation of the unit, which
speaks for a coherence between the local and more global patterns. Note that each
C1 node receives inpul from the S1 nodes at 2 scale bands, and these weights are
represented adjacent to each other, e.g. weights for a C1 node in scale band 1 re-
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when all afferent S1 nodes have a flat A distribution, as in blank regions of the image, the parent

C1 node will also show a flat distribution.

In summary, the C1 layer becomes an intermediate step that converts combinations of S1 fea-
tures and spatial arrangements into the states of a single C1 node. The max operation only oc-
curs during the generation of the output A messages to the 82 layers, which groups these states
via the fearned weight matrices. This method also provides a way to feed back information from
complex to simple layers, where each complex feature corresponds to a specific arrangement of
simple features. The method is equivalent to that employed by Hierarchical Temporal Networks
(George and Hawkins 2009), where features in each node are combined into temporal groups
or Markov chains. The method used here, however, preserves the Bayesian network structure

by implementing the grouping of features in the weights of the CPTs.
4.3.3 C1-52 CPTs

To learn the selectivity weights between layers C1 and S2, the minimum distance algorithm is
employed. This algorithm was also used to extract the most common spatial patterns (equiva-
lent to selectivity weights) in the Hierarchical Temporal Memory model (George and Hawkins
2009). In the HMAX model, the selectivity weights, or the prototypes which serve as centres for
the Radial Basis Functions, were extracted at random from the C1 maps generated by the train-
ing images. However, in our model, the minimum distance algorithm provides better results, as
it ensures the extracted prototypes maximize the Euclidean distance between each other. The

algorithm works as follows:

I. All features, potential S2 prototypes Ppoennial, are extracted by sampling from all the
locations and bands of the A(C1) response generated for each of the training images, i.e.
A(Cly,y = i) ¥ b.x.y. The number of elements for each prototype is ANgs; x ANgy x
(Key /K(-mm“p J, 1.e. the S2 RF size times the number of C1 states divided by the states
per group. To learn the S2 prototypes, it is more efficient to obtain a single value for
each C1 group by summing over all the features belonging to that group. In other words,
although each C1 node is composed of 40 states, only 4 values, corresponding to the sum

of each group, are used to compute the S2 prototypes.
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2. The list of selected prototypes, Piojecred, Will initially contain no prototypes. A parameter

called the minimum distance, Dy, is initialized 10 a relatively high starting value.

3. The algorithm loops through all the potential prototypes Ppyeniar. Prototypes are added to
the selected prototype hst, Pyjeceq, i the Euclidean distance to all previously stored pro-
totypes is above the minimum distance, i.e. \f d(Pporentiat i Psetected,j) = Dmin J € {1..N}

then Poecred N+ 1 = Ppotensiari» Where N is the number of selected prototypes.

4. Lower D,,;, and repeat step 3 until N = Ky,. The initial value of Dy,;, and the decreasing
step size in each iteration dictate the dissimilarity between the final selections of proto-

types.

The S2 prototypes represent the weight matrix between a parent S2 node and all of its C1
afferent nodes. The corresponding CPT for each C1 node, i.e, the weight matrix between each
C1 node and all of its S2 parents P(C1]52). is calculated in an analogous way to that described
for the S1-C1 CPTs. Note that the CPT elements for the C1 features within the same group
are set 1o the same value. This is because the CPTs are derived from the weight matrices that

contain a single value for each CI group.

Figure 4.9 follows from the previous toy example where now the number of C1 units is n =
3-3 =9, the number of CI states is K¢y = 12 and the number of S2 states (prototypes) is
K¢z = 10. The equation to calculate Aci(52), which sends the bottom-up evidence to S2, and

A(82), which combines the bottom-up evidence, are shown in the diagram,

The toy example illustrates how the weights are learned for each fixed S2 state=i as a function
of the n afferent CI nodes and the j C1 states per node. This yields a weight matrix (shown
on the bottom left) for each of the S2 i states. However, the CPTs of a Bayesian network are

defined as a function of the child and the parent states, j and i respectively, for each fixed C1

-'(_‘aprinﬁ tor Figure 4.9, Toy example itlustrating how (o approximate the sefeciviey operation using the CPTs
between C'l and $2 nodes. The weights between each of the S2 states and the C1 nodes are shown in the bottom-left
tables. These are then converted to the corresponding CPTs between each Cl node and its parent S2 node as shown
in the tables of the bottom-right. The belief propagation equations at the top-left square show how the CPTs are
used to generate the output A messages from each C1 node to its S2 parent node. These messages are then combined
multiplicatively by the 82 likelihood function A{82) and used 1o generate the output A messages from each C1 node
to its S2 parent node. Note that the CPT elements for the C1 features within the same group are set to the same
value, as only one value is leamned per C1 group.
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Figure 4.9: For caption see footnote?.
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node=n. Therefore, the original weight matrices are converted into one CPT per C1 node as
shown at the bottom left of Figure 4.9.

Figure 4.10 shows a sample of 50 of the 250 82 prototypes for each of the 4 R sizes or ANy
values. These have been extracted through using the minimum-distance algorithm described in
this section and are shown before being converted to the CPTs. These prototypes are common
for all scale bands. Each prototype represents the weights for each of the four orientations in a
2-by-2 grid of adjacent images, where top-left=0"top-right=45", bottom-left=90° and bottom-

right=135°.
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Figure 4.10: Weight matrices between an 82 node and its afferent C1 nodes. These are learned
from the training dataset of 60 object silhouettes following the minimum-distance
algorithm and are shown before being converted to the CPTs. The figure shows a
sample of 50 of the 250 §2 prototypes for each of the 4 RF sizes or ANy, values.
These prototypes are common for all scale bands. Each prototype represents the

weights for each of the four orientations in a 2-by-2
where top-lefi=0° top-right=45"

, bottom-left=90" and bottom-right=135°.
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43.4 S2-C2CPTs

The weights between each C2 node and its afferent S2 nodes are learned using the same
methodology described for the S1-C1 layers, i.e. k-means clustering to obtain the most com-
mon arrangements of S2 units. In this case the algorithm extracts Kezgroup clusters of size
Nea % Neo % Njanay Tor each C2 group or 82 state. The parameter Njanqs represents the number

of S2 bands being pooled from, and varies for the different architectures presented.

The resulting weight matrices, learned from the training dataset of 60 object silhouettes follow-
ing the clustering procedure are shown in Figure 4.11 for a value of Keagroup = 10. Note that
each C2 node receives input from the S2 nodes of up to 8 scale bands.

The weight matrices shown in Figure 4.11 are converted to one CPT per each 82 node using an

equivalent procedure to that described for the S1-C1 CPTs.
43.5 C2-S3CPTs

The weights between each S3 node and its afferent C2 nodes are learned in a supervised manner
2 I

for each of the Kg3 = 60 training images. For the 3-layer architecture, the A(C2) response

for each training image becomes the prototype weight matrix. The CPT P(C2[S53) containing

Kea(= 10000) x Kgi(= 60) elements can be easily obtained in this manner, by normalizing the
weight matrices for each prototype. In other words, the prototype of each input image is learned

as a function of the A(C2) response and converted to a CPT relating C2 and S3, as shown in

Figure 4.11.

In the case of the alternative 3-layer architecture where there are 9 C2 nodes and 4 S3 nodes, the
learning method is also supervised but the size and number of prototypes varies. The size of the
83 prototypes is now ANgy x ANgy = 2 x 2 C2 units; and these are learned from the 4 possible

locations within the C2 units (see top of Figure 4.5), leading to Kg3 = 60 objects - 4 locations =

ICaption for Figure 4.11. Weight matrices between a C2 node and its afferent S2 nodes. These are learned
from the training datasetr of 60 object silhouettes following the clustering procedure described, and represent the
Kea2group = 10 most common arrangement of C1 nodes for each C2 group and scale band. Note that each C2 node
receives input from the S2 nodes of up to 8 scale bands, where, for each scale band, the pooling range, AN, is
different. Similarly, the weight matrices are divided according to the §2 RF sizes, as the S2 response maps for
52 RF size, have different sizes and yield different §2-.C2 weights. For purposes of clarity, a single C2 feature is
highlighted using a red dotted ellipse.
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Figure 4.12: Weight matrix between C2 and S3 nodes for the 3-level architecture. The weights
are learned in a supervised manner from the C2 response to each of the 60 training
input images or objects. Each object is thus represented as a weighted subset of
the 1000 C2 groups. The CPT P(C2[83) containing Keo (= 10000) » Ky3(= 60)
elements is derived from this weight matrix by using the same value for each of
the Keagroup Teatures per group and sum-normalizing the weight matrices for each
prototype.

170




4.4

4.4, FEEDFORWARD PROCESSING

240 prototypes or S3 states. This increases the invariance to position at the top level.

The learning process for the 4-layer architecture is not described in detail as it is a trivial exten-

sion of the methodology employed for the 3-layer architecture.

Feedforward processing
4.41 Approximation to the selectivity and invariance operations

For the feedforward recognition results presented in Chapter 4 we therefore assume that the
network is a singly-connected tree, so that the A messages can propagate to the root node
without being affected by top-down messages (see Figure 3.9 in Section 3.3.3 for details). This
is the same strategy used during the learning process. This facilitates the approximation Lo the
HMAX operations and greatly reduces the computational costs to process each image. This is

specially important when testing a large image dataset over a large parameter space.

Note that even if the root nodes and & messages were initialized to a flat distribution, they would
still modulate the bottom-up A messages, as & messages are multiplied by the CPT before being
combined with the A messages. In other words, as long as there is bottom-up evidence, it will be
modulated by top-down messages even if the latter exhibit flat distributions. This was illustrated
in Figure 3.7. Several recognition simulations were also performed without this assumption, in
other words, with flat top-down messages that modulated the feedforward A messages, in order
to compare results and establish its validity. These revealed that a similar invariant recognition
performance can be obtained even when including the feedback 7 messages (using loopy belief
propagation), but performing a detailed systematic test over the complete dataset and parameter

space is infeasible due to the high computational resources required.

The singly-connected tree assumption allows the selectivity operation in HMAX to be approxi-
mated as shown in Equation 4.9. Note that the original Radial Basis Function operation has been
replaced by an approximately equivalent dot-product operation as proposed by Serre (2006),
Serre et al. (2005a), and this dot-product operation is then approximated using the belief” prop-
agation equation. More precisely, the weighted sum over S1 locations and features is approx-

imated as a sum over the features and a product over the locations. This can be interpreted as
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the simultaneous coincidence of the features in the afferent nodes, as proposed by George and
Hawkins (2009). Finally, the weight matrix for each S2 prototype is approximated by the CPT

P(C1

$2).
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(4.9)

where the indices are given by Equations (4.3) to (4.5).

Similarly, the invariance operation in HMAX is approximated using belief propagation as shown
in Equation 4.9. The approximation to the max operation is embedded in the A¢)(S2) output
messages 1o 82 generated using the weights in the CPT P(C1(52), which sum over the Cl
features of the same group. In order to make this possible, the most common S1 states and
locations have previously been combined in the C1 node states through the CPT P(S1[C1) (see
Figures 4.7 and 4.9). In this sense it can be argued that both the selectivity operation and
the invariance operation are actually implemented using the weights in P(C1]52), whereas the
weights in P(S1]C1) implement a necessary pre-processing step.

4.4.2 Dealing with large-scale Bayesian networks

Due to the large fan-in in the network and the large number of states, calculating the A function
of a node requires multiplying a high number of potentially very low probability values. For

example, a C1 node in band 8 receives input from 968 (22 x 22 locations x 2 bands) S| nodes,

meaning that it is necessary to obtain the product of 968 probability distributions. The result
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of this computation is often outside the typical numeric boundaries in simulation environments
. ~173 4 ; . i
(for Matlab these boundaries range from 107*** 1o 10°3%). For this reason it is necessary to

make several approximations during the belief propagation calculation:

e Given a node X with chiid nodes Cj,---,Cy, the number of input A messages is re-

ducedsuch that A (x) = [1 Ac,(x). where {juu} C 1..M, represents the indices of the
L
JE mac )
M nax A(»J (x) messages with highest variance, and My, < M. The maximum number of

input messages, M,,,,, is calculated as a function of the number of states of the messages,

308

Ky, Matlab’s maximum real value, Ry = 107°7%, and the minimium value allowed in

probability distributions, V,,;,,, as follows:

log( Rf‘;“ )
Mipax = = {IT
log(SL)

7
Virn

(4.10)

Thus, the likelihood function of each node is obtained by multiplying only the M4,
input A messages with higher variance, where M,,,, is set to ensure that the result of
the computation never reaches Matlab’s numeric upperbound. Probability distributions
with higher variance are chosen as they are likely to carry more information. In the
majority of cases M,,,, = M, so the resulting computation is equivalent to the original

belief propagation formulation.

To check how well this sampling procedure managed to approximate the exact likelihood
functions the method was tested statistically. Using randomly generated A messages
from a normal distribution, the difference between the exact likelihood and the approx-
imated likelihood distribution obtained after sampling was measured, for different val-
ues of M., The difference was measured using the Kullback-Leibler (K-L) divergence
which calculates the cross-correlation between an approximate distribution and the true
distribution. This method cannot be considered a distance measure, as it is not symmet-
ric, but has been used extensively to measure the goodness of fit between two discrete
probability distributions (Friston and Kiebel 2009, Winn and Bishop 2005, Hinton et al.

2006).
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Figure 4.13 shows the K-L divergence between the true and approximate likelihood dis-
tributions, averaged over 500 trials, as a function of M,,,, and the total number of parents
N. The likelihood distributions are assumed to have K = 100 states. For comparison,
the K-L divergence between the exact likelihood and a randomly generated likelihood

distribution is also plotted.

The results show that the coefficient M, /N increases as the goodness of fit between
the approximation and the exact solution increases. Also, as the total number of input
messages, N, increases, the goodness of fit decreases. The relative difference between
the K-L divergence of the approximate and the random distributions suggests that for
values of M. above a given threshold the approximate distribution provides a good fit
to the exact solution. It is important to note that in the real model data, the input A
messages are correlated (due to the overlap in receptive fields) and are therefore likely to
present more similarities between them than the randomly generated A messages of the
statistical test. Additionally, a subset of the discarded distributions will typically present
near-flat distributions as they originate from blank regions of the image. Consequently,
the approximation in the model will constitute a better fit to the exact distribution than

that suggested by this empirical test.

e The messages (probability distributions) are sum-normalized to | and then re-weighted
so that the minimum value of the distribution is never below V,,;,, = 1/(10-Kx). All
elements of the message that are below Vi, are set 1o V. The overall increase in the
sum of the elements of the resulting distribution 1s then compensated by proportionally
decreasing the remaining elements (those which were not set the to Vi, ). Consequently,
the resulting distribution will still be sum-normalized 1o 1, while having a minimum value
equal to V. The distribution will have a profile equivalent to that of the original one,
except for those elements that were originally below P, which will now exhibit higher

relative values.

This adjustment of the message probability distributions eliminates all values under V,,;,,

thus allowing multiplicative combination of a greater number of input messages, i.¢, M.,
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Figure 4.13: Kullback-Leibler divergence between the true and the approximate likelihood dis-
tribution for different values of M, averaged over 500 trals. The Kullback-
Leibler (K-L) divergence, on the y-axis, measures the cross-correlation between
an approximate distribution and the true distribution.  This method cannot be
considered a distance measure, as it is not symmetric, but has been used exien-
sively 1o measure the goodness of fit between (wo discrete probability distribu-
tions (Friston and Kiebel 2009, Wina and Bishop 2005, Hinton et al. 2006). The
x-axis shows the coefficient M, /N, i.e. the percentage of A messages of the to-
tal that are used in the approximation. Three different values of N are shown: 20
{blue lines), 50 (red lines) and 100 (green lines). The dotted horizontal line shows
the K-L divergence between the true and a random distribution, which serves as
a baseline to compare the goodness of fit of the approximate distribution.
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is proportional o V.

4.5 Feedback processing

Section 4.4 describes how for the feedforward object recognition simulations the network was
assumed to be singly-connected and tree-structured during the initial bottom-up propagation of
evidence. This was done in order to simplify the computations and facilitate the approximation

to the HMAX selectivity and invariance operations.

For the feedback simulations the network is not restricted by this assumption, and is thus al-
lowed to maintain its multiply connected structure (multiple parents with loops). Evidence
propagates simultaneously in both directions (up and down), at all layers of the network. The
combination of parent messages is approximated using the weighted sum of compatible parental
configurations method. To deal with loops, belief propagation becomes loopy belief propaga-
tion, which provides an approximation to the exact beliefs after several iterations. Further
details of the feedback implementation and the approximations required due to the large dimen-

sions of the network are included in this section,
4.5.1 Approximating 7 messages as beliefs

As shown in Equation 3.31, the outward 7 message generated at each node can be obtained as
a function of its belief. The only difference is that the message from node X to Cj, i.e. e (X)
includes all incoming messages to X, except the one arriving from the destination node, i.e.

%f{X ). This is done in order to avoid the circulation of duplicate information in the network.

However, for the purpose of simplification and increased computational performance, and only
when the number of incoming messages 1s high, the outgoing m¢ (X ) message can be approx-
imated by the belief, Bel(X). This approximation implies 7 (X) also includes the evidence
contained in A¢,(X). However, me (X) is calculated by combining messages from a total of
N + M nodes (all parent and children nodes), so the overall effect of one single message on
the final message is proportional to | /(N + M). This justifies the approximation in the present
model where the values of N and M are in the order of hundreds or thousands. The same ap-

proximation is employed by other similar belief propagation models (Litvak and Ullman 2009,
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George and Hawkins 2009).

4.5.2 Multiple parents

As described in Section 3.3.4 the number of elements of the CPT P(X|U,, -+ Uy) is exponen-
tial to the number of parents, N, as it includes entries for all possible combinations of the states
in node X and its parent nodes, e.g. given ky = kpy = 4.N = 8, the number of parameters in
the CPT is 4 -4% = 262, 144. Additionally, the number of operations to compute the belief is
also exponential to the number of parents, more precisely it requires kY sums and N - kN product
operations. The exponential growth to the number of parameters and operations resulting from

the combination of multiple parents is tllustrated in Figure 4.14.

4.5.2.1 Weighted sum of compatible parental configurations

To solve the problem of the large number of entries in the CPT we implement the weighted
sum of simpler CPTs based on the concept of compatible parental configurations (Das 2004)
described in Section 3.3.4, This method obtaing a ky = kg CPT, P(X|U;), between node X and
each of its N parent nodes, and assumes the rest of the parents, [/;, where j # i, are in compatible
states. The final CPT P(X |y, - . Uy) is obtained as a weighted sum of the N P(X|U;) CPTs.
The total number of parameters required 1o be learned is therefore linear with the number of
parents, more precisely, ky - ky - N. Using the values of the previous example, the number of
elements is now 4 -4 -8 = |28, several orders of magnitude smaller than the previous result.

This is illustrated in Figure 4. 15,

The Learning section (4.3) described 1) how o obtain the weight matrices between a parent
node and its children, and 2) how to convert these weight matrices into individual CPTs for
each of the child nodes. The resulting CPT is precisely in the form required to implement the
weighted sum method, i.e. for each child node X there are N CPTy of the form P(X |U;), one for

each of its parents. These can then be combined to form the final P(X|Uy, -+ Uy).

4.5.2.2 Sampling from parent nodes

To reduce the excessive number of operations required 1o calculate the belief, only the &,

states, with the highest values, from the N, & messages, with the higher variance, are used
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n(U,)
= k, = number of child states
& ’ k,, = number parent states
5 N = number of parent nodes
k,states k, states k, states

P(X] Uy,....Uy)

Ugeenilly =
{1,...,1}

* k,* k,N CPT parameters to learn (exponential)

k, states

c.g 4 4% 262,144

* Belief calculation perlhrms}n” sums and N+ kN product operations (exponential)

Bel(X)=] ] A, (x)f"i“{ P(X|U,,..U. ) TTor. (U )]
K Uy byt \\|=~1’rf

L -

Figure 4.14: Problems associated with the exponential dependency on the number of par-
ent nodes.  As described in Section 3.3.4, the number of elements of the CPT
P(X|Uy.-- -, Uy) 1s exponential to the number of parents, N, as it includes en-
tries for all possible combinations of the states in node X and its parent nodes,
e.g. given ky = ky = 4N = 8, the number of parameters in the CPT is 4-4% -
262, 144, Additionally, the number of operations to compute the belief is also ex-
ponential to the number of parents, more precisely, it requires &) sums and N -k,
product operations.
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K, = number of child states
k, = number parent states
N = number of parent nodes

* P(X| U,,...,Uy = weighted sum over CPTs
of compatible parental configurations

P(X| {Compatible(U,)})

v . U
ETE

P(X| {Compatible(Uy)})
uN=k|1

F __

NCPls

k, states
* CPT parameteres 10 learn = k- k, * N (linear)

cp.d4-4-8- 128

Figure 4.15: Approximation of the CPT between a node and its muitiple parents using the
weighted sum of N simpler CPTs (one per parent). This approach is based on
the concept of compatible parental configurations (Das 2004) described in Sec-
tion 3.3.4, The method obtains a ky x kyy CPT, P(X|U/;), between node X and each
of its N parent nodes, and assumes the rest of the parents, U,, where j # 1. are
in compatible states. The overall CPT P(X|U; ... ,Uy) is obtained as a weighted
sum of the N P(X|U;) CPTs. The total number of parameters required to learn
is no longer exponential, but linear with the number of parents, more precisely
equal to ky - ky - N. Using the values of the example in Figure 4,14, the number
of elernents is now 4-4.8 = 128, several orders of magnitude smaller than the
previous result.
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(L)) a (L) n(Uy)
: :?'\l - | _ ! Ir(\n_ k, = number of child states
2 il - = il k, = number of parent states
e i fnanss saaie it Al N = number of parent nodes

Kymas = Stmpled number of parent states (max values)
N sampled number of parent nodes (max variance)

P(X| {Compatible(U,)})

|
X=1

k, states

P(X| {Compatible(U,)})

o o ———

v

N CPTs

* Choose only the maximum k,,,,, values from the N, . parent nodes with highest variance

* Reduces the number of operations to calculate Belief and messages

Figure 4.16: Sampling of the parent T messages 1o reduce the number of operations required
for belief propagation. Only the kymq States, with the highest vaiues, from the
Npay ® messages, with the highest variance, are used in the calculation, where
kwnayr < ky and Nypgy < N, The states with the stronger response of the probabil-

ity distributions with higher variance are likely 1o carry most of the information
content of the parent 7 messages. To ensure the belief calculations are still valid
it is necessary 10 select the appropriate columns of the CPTs, i.e. those that cor-
respond to the sampled states of the & messages. This reduces the number of
operations 1o klne sums and Ny, - kiyne: product operations.

Lmax

in the calculation, where ko < k, and N, < N. The states with the stronger response of
the probability distributions with higher variance are likely to carry most of the information
content of the parent 7 messages. To ensure the belief calculations are still valid it is necessary
to select the appropriate columns of the CPTs, i.e. those that correspond to the sampled states of

the 7 messages. This reduces the number of operations t0 kM sums and Ny, - kKNma product

umax
operations. Figure 4.16 illustrates the sampling process. Although in this section we refer only
to the belief calculation, the same method is applied to calculate the 4 messages, which also

integrate information from the parent nodes.

To check how well this sampling procedure managed to approximate the exact belief functions,

the method was tested statistically. Using randomly generated CPTs P(X|U;.--- ,Uy) and like-
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lihood functions A (x), the difference between the exact beliefs and the approximated beliefs
obtained after sampling for different values of N,y and k., was measured. The difference

was measured using the Kullback-Leibler (K-L) divergence.

Figure 4.17 shows the K-L divergence between the real and approximate beliefs, averaged over
50 trials, as a function of Ny, and kynae. For comparison, the K-L divergence between the exact
belief and a randomly generated belief distribution is also plotted. The range over which these
parameters are tested is limited by the computational cost associated with calculating the exact
beliefs using CPTs of size exponential to the number of parents. Thus the chosen parameters

are ky = 10.kyy = 20.N = 6, Kyppax = {1+--19} and Nyppy = {1-+-6}.

The results show that as Ny, and kyma, increase, the goodness of fit between the approximation
and the exact belief increases. Furthermore, the relative difference between the K-1. divergence
of the approximate and the random belief distributions suggests that even for relatively small
values of Ny, and kyyqy the approximate belief provides a good fit to the exact belief. The sam-
pling parameters have to be chosen as a compromise between the accuracy of the approximation

and the computational cost.
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Figure 4.17: Kullback-Leibler divergence between the true and the approximate prior func-
tion w(X) distribution for different values of Ky and Npqy, averaged over 50
trials, The Kullback-Leibler (K-L) divergence, on the y-axis, measures the cross-
correlation between an approximate distribution and the true distribution, and is
typically used as a goodness of fit between two discrete probability distributions
(Friston and Kiebel 2009, Winn and Bishop 2005, Hinton et al. 2006), The x-
axis shows the number of samples taken from the & messages, kya,. Results are
plotted for values of Ny, ranging from 1 to 6 as indicated in the colour legend.
The dotted horizontal line shows the K-L divergence between the true and a ran-
dom distribution, which serves as a baseline to compare the goodness of fit of the
approximate distributions.
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4.5.3 Loops in the network
4.5.3.1 Dynamic equations

Due to the overlap between the RF of nodes at all layers, the resulting Bayesian network has
a large number of loops. As was described in Section 3.3.5, in Bayesian networks without
loops belief propagation obtains the exact marginal probability distributions of all nodes after
a set number of iterations. However, if the network has loops, the original belief propagation
algorithm is no longer valid and approximate methods have to be implemented. The method
selected for this model is loopy beliel propagation, which has been empirically demonstrated
to obtain good approximations to the exact beliefs in pyramidal networks (similar to that of the

model) once the approximate beliefs have converged after several iterations (Weiss 2000).

The fact that belief propagation now requires several iterations means that a temporal dimension
must be added to the original formulation. The resulting dynamical model is captured by the
set of Equations 4.1 1. These also include the weighted sum method described in Section 3.3.4

to approximate the combination of top-down 7 messages.

Bel ' (x) =a- A" (x) - 2t (x)

AN = I AW

J=1.M
i (x) = z P(xluy,.... Uy - H i (u;)
MYy N =1.N
= z Zn-g-}’{_x‘m_k.]- H 7y (u;)
Wy N 82 i=1.N
l,r'lilhl = 52 At (x)- Z P(x|uy,...un) n my (ug)
A 0] oty LG k=1 A%

=BY |2 (x) Y [ XowePlxlug) |- [T k()
X 2

My My iy k=1..N\i

) =0 Aox) wx)y=a-——
' k ﬂr, Aqh‘]

Bel'*! (x
el %) . Bel (3)

(4.11)
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4.5.3.2 Dynamics of loopy belief propagation

Loopy belief propagation also requires all A and 7 messages to be initialized to a flat distri-
bution, so that, even during the first iteration, all nodes of the network propagate upward and
downward messages. Except for the A messages from the dummy nodes, which will contain
evidence from the image, and the 7 messages from the root nodes, which will propagate the
prior, the rest of the messages will propagate flat distributions during the first time step. During
the following time steps the dummy nodes’ evidence will propagate to the top layers, merging
with the downward prior information and being modulated at each layer by the inherent param-
eters of the network contained in the CPTs. The dynamics of loopy belief propagation in the

proposed Bayesian network are illustrated in Figure 4.18.

The computational cost of updating the beliefs of nodes at all layers at every time step is very
high. An alternative approach to reduce this cost is to update only the belief of a given layer at
each time step as in tree-structured networks. For the majority of results present in this thesis
the model implemented an upward belief update as opposed (o the complete belief update. This
1§ illustrated in Figure 4.19. For purposes of clarity each simulation step, £, thus consists of
five loopy belief propagation steps. This simplification of loopy belief propagation is justified in
the sense that evidence arrives from the lower layer dummy nodes and thus only the belief of the
nodes in the adjacent fayer will provide meaningfuf information. All the computation required
to calculate the 7 messages and beliefs in the upper layers during the first time-steps shown
in Figure 4.18 is now saved. Further, it means evidence propagated from the dummy nodes
will only be modulated at each layer by the initial flat top-down 7 messages, thus increasing
the chance of a good recognition performance. The main disadvantage of this method is the

asymmetry between bottom-up and top-down propagation of evidence, as a belief update or

*Caption for Figure 4,18. Dynamics of loopy belief propagation in the proposed model. At 1=0 all messages
are initialized to a flat distribution (symbolized with a / in the figure) except for the A message from the dummy
nodes and the top level T message or prior distribution. At t=1, once the initial flat 7 messages are multiplied by
the corresponding node CPTs they generate non-flat beliefs and subsequent non-flat  and A messages (see Figure
3.7 for a numeric example). The non-flat feedforward 4 messages, Ay, . will also modulate the belief at each
node and subsequent A messages generated. However, the A message generated by nodes with an incoming flat 4
message will also generate flat output A messages. For this reason, it takes 4 time-steps (the diameter of the network)
to propagate the lower level evidence, Aymmy. 10 the top node. The bottom-right image symbolically illustrates the
existence of loops in the network and how this leads o the recursive nature and double-counting of messages in
loopy belief propagation.
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Figure 4.18: For caption see footnote”.
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evidence in the top layer will take four simulation time steps, f,, to reach S1, whereas evidence

from S1 reaches the S3 layer in one simulation time step.

A third belief update method can be implemented, namely the up-down belief update method
shown at the bottom of Figure 4.19. This method propagates bottom-up evidence and top-down
evidence at the same rate, such that a single simulation time step, ty,,, will update all beliefs
in an up-down pass. However, it means that intermediate nodes are updated more often than
peripheral nodes and the longer simulation time steps makes it more difficult to analyze the re-
sults, For this reason, the upward belief update method was implemented in most of the model
simulations. However, for comparison, an example of the results obtained using the complete
and up-down belief update methods is provided. Although ideally the complete belief update
method should be implemented, both the upward and up-down methods provide interesting and
less computationally demanding alternatives, which, nonetheless, have corresponding disad-

vantages.
4.53.3 Accumulation of belief responses

As stated before, the A message generated by nodes with an incoming flat A message will also
generate flat output A messages, even though the belief of the node might be non-flat due to the
7 messages (for an example see Figure 3.8). This is the reason why the A messages from nodes
in Figure 4.18 show flat distributions until the evidence from the dummy node arrives. However,
this also implies an important limitation as it means belief responses do not accumulate over
time. In other words, regions with incoming flat A messages (e.g. missing contours in Kanizsa
figure) will generate flat outgoing A messages even if the belief of the node shows a non-flat
distribution (e.g. illusory contour). To overcome this problem, for some of the results presented

in Chapter 5, the A message equation was modified 10 be based on the current belief of the

5('upliun for Figure 4.19, Comparison of three different belief update methods during loopy belief propagation.
Top) The complete belief update method, which is the most rigourous approach to obtain a good approximation of
the beliefs, but is very computationally expensive. Middle The upwards beliel update method, which updates the
belief of the nodes in one layer at every time step, starting from the bottom layer where the evidence originates. The
main disadvantage is that evidence from S3 takes four fy,, to reach S1, while evidence from S| takes 1 ty, t0 reach
S3. This method was employed to obtain most of the results in the thesis. For clarity, a simulation time step, £y, 18
made equal to 5 loopy belief propagation time steps. Bottom) The up-down beliel update method which manages to
propagate bottom-up and top-down evidence at the same rate, although intermediate layers are updated more often
than peripheral layers. See main text for a more detailed comparison between the methods.
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Figure 4.19: For caption see footnote”,
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node instead of on the likelihood function, A (X ). This allows the A messages to be modulated
by top-down feedback even in regions that have initially flat distributions, such as the missing

contours in the Kanizsa figure. This modification is shown in Equation (4.12).

Ad W u)=BY |Bel™ ' (x)- )

Wy tin \ k=1 .N\i

(Zu'g-P(,ﬂux} : n T (uy) (4.12)
g

4.6 Summary of model approximations to Bayesian belief propagation

e Feedforward recognition results assume a singly-connected tree-structured network (no
loops and one parent per node) so the HMAX operations can be approximated by the
propagation of bottom-up A messages. Similar approaches have been used in other related
models (Epshtein et al. 2008, George and Hawkins 2009, Hinton et al. 2006). Preliminary
results suggest a similar invariant recognition performance can be obtained even when
including the feedback m messages (loopy belief propagation), but the computational
cost associated precludes a comprehensive systematic test over the complete dataset and

parametler space.

o The number of input A¢ (x) messages used to compute the likelihood function 4 (x) is
limited to M,y,4,, in order to prevent the result of the product operation from being outside
of Matlab’s numeric range. The method has been empirically demonstrated to provide a

relatively good fit to the exact distribution given a moderate value of M.

e The A and m messages are sum-normalized to 1 and then re-weighted so that the minimum
value of the distribution is equal V,,;, = 1/(K/10). This prevents extremely low values
leading to out of range solutions during the belief propagation operations. The overall
shape of the distribution remains identical, except for some of the elements with smaller
values, which may now exhibit a relatively larger value. However, the states with lowest
values are less likely to affect the final result in a significant way and many of them will

be discarded anyway during the sampling methods implemented.

e The m messages are approximated by the belief at each node. The same approach is
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used by Litvak and Ullman (2009), George and Hawkins (2009). This approximation is
justified when the total number of incoming messages to a node is relatively high, as is

the case of the present model

e The CPT P(X|U,, - ,Uy) is approximated as the weighted sum of N CPTs of the form
P(X|U;). The method has been justified geometrically as providing a good model of the
combination of information from multiple experts (parent nodes) and has been success-
fully employed on other probabilistic models that require reasoning under uncertainty

(Das 2004).

e For the calculation of the belief and the 4 messages, only k., highest-valued samples
from the N, ™ messages with the highest variance are employed. The method has been
empirically demonstrated to provide a relatively good fit to the exact distribution, given

moderate values of N, and ko

e To avoid the excessive computational cost associated to updating the beliefs and output
messages of the nodes in all layers, beliefs are for a single layer at each time step, start-
ing from the bottom layer and moving upwards sequentially. The rationale behind this
approximation to loopy belief propagation is that evidence arrives at the network from

dummy nodes connected to the bottom layer.

4.7 Original contributions in this chapter
e A Bayesian network that captures the structure of the HMAX model. a hierarchical object

recognition model based on anatomical and physiological cortical data.

¢ An approximation to the selectivity and invariance operations of the HMAX model using

the beliel propagation algorithm over the proposed Bayesian network.

e An inherent extension of the static feedforward HMAX model to include dynamic and

recursive feedback based on the loopy belief propagation algorithm.

e A particularization of the CPT learning method proposed by Das (2004) to the hierarchi-

cal object recognition domain. The method simplifies the generation of the CPT parame-
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ters for Bayesian networks where nodes have multiple parents.

e Solutions to the problems associated with the integration of information in large-scale
Bayesian networks. These include sampling methods and the re-weighting of probability

distributions to establish a minimum value.
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Chapter 5

Results

Feedforward processing

5.1.1 Layer by layer response

This section provides details of the internal representation of the image maintained by cach
of the layers. It serves to illustrate how the probabilistic representation compares with the
classical HMAX model representation and facilitates understanding of the feedback results. All

the results in this section are for the first input image of the training dataset, namely the letter A.

Figure 5.1 shows the response of the battery of Gabor filters at four different orientations and
16 different sizes (bands) applied to the input image. The bottom-up messages from the layer
of dummy nodes, Aj,mm,(S1), are made up of the responses to the four orientations at each

location and scale band.

Figure 5.2 shows the likelihood response of the S1 nodes, A(S1), obtained by sum-normalizing
the input Agymmy (S1) messages. The grey colour over the blank input regions indicates that all

four orientations are equally probable at that location, thus each one has a value of 1 /4.

Figure 5.3 shows the likelihood response of the C1 nodes, A(C1). The 2D maps represent the
sum of the features in each C1 group at each location. Figure 5.4 shows the response of the
C1 units in the original HMAX model, in other words, calculating the max over the S1 afferent
units, for the same parameter set. This allows one to compare the response between the Cl

nodes in the model proposed and the C1 nodes in the original HMAX model.

Figure 5.5 shows the likelihood response of the 82 nodes, A(852), at all locations of a specific

band and RF size. The figure also includes a reconstruction of the S2 internal representation
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using the C1 features of the maximum S2 prototypes at each location. This graphical view of
the S2 internal representation is limited in that it is based only on one of the 250 values of each

distribution.

Figure 5.6 shows the likelihood response of the C2 nodes, A(C2), at all locations and RF sizes.
The figure also includes a reconstruction of the C2 internal representation using the C1 features
corresponding to the maximum C2 prototype at each location. This graphical view of the C2
internal representation is limited in that it is based only on one of the 2500 values of each
distribution. Also, due to the large size and great overlap between the RF of the C2 nodes,
the maximum feature is likely to be the same for adjacent nodes. Note the C2 response is
shown for the alternative 3-level architecture (based on Yamane et al. (2006)), such that different
architectures will exhibit different number of nodes, for instance the 3-level architecture has

only one C2 node.

Figure 5.7 shows the likelihood response of the S3 nodes, A(53), at all locations and RF sizes
of the alternative 3-layer architecture. In this case the input image used was the 24th object of
the dataset, which corresponds to S3 states 93 to 96 of the 240. To recap, in this architecture
there are four S3 prototypes for each object, corresponding to four different possible locations
of the object at the C2 level. Beside the maximum value of each distribution is shown an image
which symbolically corresponds to the S3 prototype of that §3 state. Note that, in most cases,
the winner element corresponds to a prototype of the input image, although in some cases there
might exist some ambiguity and other similar object prototypes may exhibit relatively large

vilues.

For further details see the figure captions.
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Figure 5.1: Response of the Gabor filters used to generate the Agymm,(S1) messages. The
input image (the letter A) is fillered by Gabor filters at four different orientations
(07,457 90, 135 and 16 different sizes or scale bands (ranging from 7 pixels
to 37 pixels in steps of two pixels). The Agyun, (S1) messages are made up from
the responses to the four orientations at each location and scale band.
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Figure 5.2: Likelihood response of the S1 nodes, A(S1). Responses are shown as a 2D map
over the locations of the nodes for each state. The A (S1) of a specific node is shown
in the centre of the image, the red dotted arrows indicate from where in the 2D
maps the values come. The A(S1) distribution is obtained by sum-normalizing the
input Agymm, (S1) messages. The grey colour over the blank input regions indicates
that all four orientations are equally probable at that location, thus each one has a
value of 1/4.
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Likelihood response of the C1 nodes, A (C1). Responses are shown as a 2D map
over the locations of the nodes for each group of states. Each C1 group corresponds
to one of the S1 states or filter orientations. The A(C'1) of a specific node is shown
in the centre of the image, the red dotted arrows indicate from where in the 21D
maps the values come from.
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Figure 5.4: Response of the C1 units in the oniginal HMAX model. The response is calculated

as the max over the S| afferent units, The input image and parameters are equiva-
lent to those used to obtain the A(C'1) in Figure 5.3, This enableg the comparison
between the response of the C1 nodes in the model proposed and the C1 nodes in
the original HMAX model.
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Figure 5,5 Likelihood response of the S2 nodes, 4(52). Top) The A(S52) probability distribu-
tions for the S2 nodes with RF size=4x4 (Ny» — 4) and band=2 at all the 21x21
spatial locations, Bortom) Reconstruction of the S2 internal representation using
the C) features thal make up each S2 prototype (S2 feature). At each location the
S2 prototype (a group of spatially arranged C1 features) corresponding (o the max
S2 feature is shown. This provides a graphical view of the S2 internal representa-
tion. Note that there is much more information contained in all the other values of
the distribution, which is not represented graphically.
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Figure 5.6: Likelihood response of the C2 nodes, A(C2), at all locations and S2 RF sizes. Be-
low each distribution is shown the reconstruction of the C2 internal representation
using the C1 features corresponding to the maximum C2 prototype at each loca-
tion. This graphical view of the C2 internal representation is limited in that it is
hased only on one of the 2500 values of each distribution, Due to the large size and
great overlap of the RF of the C2 nodes, the maximum feature is likely to be the
same for adjacent nodes. The C2 response shown here is for the alternative 3-level

architecture (based on Yamane et al. (2006)).
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Figure 5.7: Likelihood response of the S3 nodes, A(83), at all locations and RF sizes of the

alternative 3-layer architecture. The input image used was the 24th object of the
dataset, which corresponds to 83 states 93 to 96 of the 240 states. Recall in this
architecture there are four S3 prototypes for each object, corresponding to four
different possible locations of the object at the C2 level. An image next 1o the
maximum value of each distribution is shown to symbolically represent the win-
ner S3 prototype. Note that in most cases the winner ¢lement corresponds to a
prototype of the input image. However, in some cases there might exist some am-
biguity and other similar object prototypes may exhibit relatively large values. For
example, for location (2,2) of RF size=4x4, the prototypes of the letters M and W
also showed relatively high values, The botiom-left distribution shows the mean
§3 likelihood response over the 2x2 locations and the four RF sizes.
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5.1.2 Object categorization

This section describes the performance of the model during feedforward categorization, based
on the feedforward processing constraints defined in Section 4.4. The network was trained using
60 object silhouette images, shown in Figure 5.8, from which the S2 and S3 prototypes were
learned. The trained network was then tested on different transformations of the same images

including occluded, translated and scaled versions.

Throughout this section, | have used correct categorization to mean that the state with the
maximum value of the model’s top layer response corresponds fo the input image. Tor the
3-level and 4-level architectures, the distributions of the four top layer nodes, corresponding
to each of the four S2 RF sizes, are averaged, resulting in a single distribution with 60 states.
Additionally, for the alternative 3-level architecture, the values of the four prototypes learned
for each object category are also averaged, leading again to a single distribution with 60 states.
The model’s performance is measured as a percentage of correctly categorized images for each

dataset of 60 images.

For the occluded test set an average of 30% of the image’s black pixels are deleted using a
rectangular white patch. The rectangle is placed in a position that leaves the image identifiable
to a human observer. In the translated test-set, the object is moved to a new position within
the available image frame of 160x160 pixels. The displacement will be near to the maximum
permitted in both directions but will depend on the original object size, i.e. small objects allow
for bigger displacements. Two different scale sets have been used: scale £10%, where the
image is scaled to either 90% or | 10% of the original size and centred; and scale +20%, where

the image is scaled to either 80% or 120% of the original size and centred. An example of the

different transformations for five arbitrary images is shown in Figure 5.9.
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Figure 5.8: Dataset of 60 object silhouette images used to train and test the model, The S2
and 83 prototypes were fearned from this set of images. The trained network was
then tested on different transformations of the same images including occluded,

translated and scaled versions.
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Figure 5.9: Examples of object transformations. The trained network was then tested on dif-
ferent transformations of the training images including occluded, translated and

scaled versions. Examples of these transformations are shown here for five ob-

jects.
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5.1.2.1 Categorization as a function of the number of states per group in complex layers

Figure 5.10 shows the categorization performance as a function of the number of states per
group in the C1 layer, K¢ grop. While Figure 5.11 shows the categorization performance as a
function of the number of states per group in the C2 layer, Keogroup- Results were obtained for

the 3-level architecture and are plotted for the five test datasets as detailed in the figure legend.
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Figure 5.10: Categorization performance as a function of the number of states per group in the
C1 layer, K¢ group. for the 3-level architecture.
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Figure 5.11; Categorization performance as a function of the number of states per group in the
C2 layer, Kezgroup, for the 3-level architecture.
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5.1.2.2 Categorization as a function of the number of non-zero elements in the S2-C2

weight matrix

Figures 5.12, 5.13, 5.14 and 5.15 show the categorization performance as a function of the
number of non-zero elements in the S2-C2 weight matrix (see Section 4.3 for details), for the
four different S2 RF sizes. Results were obtained for the alternative 3-level architecture using
values of K¢'1group = Kergroup = 10, and are plotted for the five different test datasets as detailed

in the figure legend.
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Figure 5.12: Categorization performance as a function of the number of non-zero elements in
the S2-C2 weight matrix for the alternative 3-level architecture, using S2 RF size
= 4x4.
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Figure 5.13: Categorization performance as a function of the number of non-zero elements in
the $2-C2 weight matrix for the alternative 3-level architecture, using S2 RF size
= Bx8.
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Figure 5.14: Categorization performance as a function of the number of non-zero elements in
the §2-C2 weight matrix for the alternative 3-level architecture, using S2 RF size
= 12x12.
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Figure 5.15; Categorization performance as a function of the number of non-zero elements in
the S2-C2 weight matrix for the alternative 3-level architecture, using S2 RF size
= 16x16.
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5.1.2.3 Categorization as a function of the S2 RF size

Figure 5.16 shows the categorization performance as a function of the S2 RF size, which takes
the values 4x4, 8x8, 12x12 and 16x16. The results shown were obtained using the alternative
3-level architecture and using values of K¢ygroup = Kcigroup = 10 and the number of non-zero
elements that maximized the performance for each S2 RF size: 1, 4, 8 and 8 respectively.

Results are plotted for the five different test datasets as detailed in the figure legend.

*

100 — 0\.__}— + 4

% Correct categorization

20 i = —— ——
10 — — —
0 . _ — S—
4x4 8x8 12x12 16x16  ALL (mean)
S2 RF size ~+—Normal

=& Occluded
~@-Scaled 10%
~&—Scaled 20%
—&— Translated

Figure 5.16: Calegorization performance as a function of the S2 RF size for the alternative
3-level architecture.  The rest of parameters were set as follows: Kej oo
K1 group = 10 and the number of non-zero elements = 1, 4, 8, 8, respectively.
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5.1.2.4 Comparison of different models

Figure 5.17 compares the categorization performance of the three versions of the model pro-
posed, namely the 3-level architecture, the 4-level architecture and the alternative 3-level archi-
tecture, the HMAX model and an HTM network. For the 4-level architecture only the results
for the normal dataset were calculated, as its poor performance suggested the results on the

transformed datasets would be extremely low and thus not worth the computational cost.

The HMAX-like model was implemented using Matlab and replicates the model described in
Serre et al. (2007¢), i.e. the 3-level HMAX implementation. Following the original HMAX
implementation, the S2 prototypes are selected at random from the training set, as opposed to
employing the minimum-distance algorithm implemented in the Bayseian network model (see
Section 4.3). The HTM-like results were obtained using the Numenta Vision Toolkit (George
and Hawkins 2009), which allows one to train and test an HTM network. However, only 50
categories are allowed, so 10 categories had 1o be eliminated from the training and testing

datasets,
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Figure 5.17: Comparison of categorization performance by the three versions of the model
proposed, namely the 3-level architecture, the 4-level architecture and the alter-
native 3-level architecture, the HMAX model and an HTM network. For the
4-level architecture only the results for the normal dataset were obtained. The
HMAX-like model was implemented using Matlab and replicates the model de-
scribed in Serre et al. (2007¢), e, the 3-level HMAX implementation. The
HTM-like results were obtained using the Numenta Vision Toolkit (George and
Hawkins 2009) which allows one to train and test an HTM network. Note for this
graph the different object datasets are plotted along the x-axis, while the different
maodels are shown with independent line graphs as detailed in the figure legend.
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5.2, FEEDBACK-MEDIATED ILLUSORY CONTOUR COMPLETION

Feedback-mediated illusory contour completion

This section describes the model responses after feedback modulation has taken effect. This
illustrates the interaction between the feedforward and feedback information in the network,
reflected in the evolution over time of the belief at the different layers. The scenario chosen to
illustrate these results consists of using the Kanizsa square as the input image and feeding back
the representation of a square from higher layers. This section is structured to show the effects
of feedback arising from progressively higher layers. In other words, the first set of results
illustrates the simplest case, when feedback originates in the C1 layer, while the final set shows
results for feedback originating in the top layer, S3, and targeting all inferior layers, including
S1. All the results in this section were obtained using the alternative 3-level architecture, as this

provided the best feedforward recognition results.
5.2.1 Feedback from C1 to S1

Figure 5.18 shows the S1 model response to a Kanizsa square input image while the C1 layer
is clamped o a square representation. Thus, the results illustrate how the bottom-up evidence

from the input image, A(S1), is combined with top-down information from the C1 layer, 7(§1).

5.2.2 Feedback from S2 to S1

Figure 5.19 shows the S1 and C1 model responses to a Kanizsa square input image while the
S2 layer is clamped to a square representation. Thus, the results illustrate how the bottom-up
evidence from the input image, A(S1), is combined with top-down information from the S2

layer, Bel(S2), and how the representation at the S1 and C1 layers evolves over time.
Figure 5.20 shows the temporal response of the S| and C1 belief for the region corresponding
to the top horizontal illusory contour of the Kanizsa figure for the setup depicted in Figure 5,19.

Figure 5.21 compares the C| belief responses as a function of the S2 RF size and the scale band

for the setup shown in Figure 5.19.

Figure 5.22 compares the S| and C1 model responses to the occluded Kanizsa and blurred

Kanizsa input images at times (=1 and t=4, for the setup depicted in Figure 5.19.
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Bel(C1) -

Figure 5.18:

(ST (=70, y=27)

/; \‘ Bel (S1y,.5 179, y-27)

%

image

Input e ,
¢ Jd

S| model response to a Kanizsa square input image with feedback arising from
the C1 layer containing a square representation. The 2D ST maps represent the
probability value for the horizontal state across all locations of scale band 2. Ar-
rows indicate feedforward (green) and feedback (red) propagation of evidence.
The probability distributions of an S1 node in the illusory contour region are
shown on the left, illustrating how the bottom-up evidence, A(S1), and top-down
information from the C1 layer, 2(S1), are combined to form the belief, Bel(S51).
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Figure 5,19: S1 and C1 model responses to a Kanizsa square input image with feedback aris-
ing from the S2 layer containing a square representation. The 2D S1 and C1
maps represent the probability value for the horizontal state across all locations
of scale band 2 and 1, respectively. The S2 representation corresponds to the
C1 reconstruction using the C1 features of the maximum S2 prototypes at each
location, as described in Section 5.1. For each layer, the temporal evolution of
the response from time =1 to t=4 is shown, except for A(S1) and 2(C1) whose
response is fixed over time. Arrows indicate feedforward (green) and feedback
(red) propagation of evidence. The probability distributions of an S1 node in the
illusory contour region at 1=1 and (=4 are shown at the bottom of the figure, illus-
trating how the recurrent interaction between feedforward and feedback leads 1o
an increase of the horizontal orientation belief.
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Figure 5.20: Temporal response of the S and C) belief for the region corresponding 1o the
top horizontal illusory contour of the Kanizsa figure. Feedback originates from
the square representation in layer S2, as illustrated in the setup of Figure 5.19.
More precisely, the response corresponds to S1 nodes at locations {x,y} = {25
28,24: 109} and C 1 nodes at locations {x.y} = {7: 10,6 : 36} both averaged over
the vertical dimension. The responses at times (=1 to =6 are plotted in different
colours as illustrated in the legend.
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Figure 5.21: Comparison of the C1 belief responses at (=4, as a function of the S2 RF size

and the scale band, 10 a Kanizsa square input and feedback arising from a square
representation in layer S2. The expernimental setup for these results is shown in
Figure 5,19,

216




5.2. FEEDBACK-MEDIATED ILLUSORY CONTOUR COMPLETION

Bel(C1)

Occluded Kanizsa Blurred Kanizsa

e L
GO | U )|

AC1)

n(S1)

R O T Y
SO EiITEE E O
L I m s o =, oY

“-' - »|- -| -‘ :l .‘"; :I

; I 4'.‘ - JP - u ! ~in. !
AL :‘ﬂ_ | < | | 8 e, ., v
"*.L. . _.:--;I :' i- ‘:L - —‘ -:* '| -.- » ‘:-J

Figure 5,22
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Comparison of the S1 and C1 model responses to the occluded Kanizsa and
blurred Kanizsa input images at times (=1 and t=4. The experimental setup for
this experiment is depicted in Figure 5.19 and corresponds to feedback originat-
ing from the square representation in layer S2.
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5.2.3 Feedback from C2 to S2

Figure 5.23 compares the feedback generated by a square representation in the C2 layer as
a function of the number of non-zero elements in the S2-C2 weight matrix and the sampling
parameters Ne» and Kep. In order to objectively compare the quality of the feedback recon-
struction, we calculate the mean absolute difference between the Cl reconstruction, m(C1),

using the different S2-C2 weight matrices, and the ideal C1 square representation.

Figure 5.23 tests the influence of two factors on the model’s capacity to perform feedback re-
construction: 1) the number of non-zero elements in the S2-C2 weight matrix during feedback,
and 2) the sampling paramelers. In order fo test the influence of a third factor, namely the
number of non-zero elements in the S2-C2 weight matrix used to generate the initial C2 square
representation, two different sets of results are shown. The C2 square representation in Fig-
ure 5.23 was obtained using an S2-C2 weight matrix with one non-zero element, whereas the
C2 square representation in Figure 5.24 was obtained using an S2-C2 weight matrix with two

non-zero elements.
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Figure 5.23: Comparison between the feedback generated by a square representation in the
C2 layer as a function of the number of non-zero elements (x-axis) in the §2-C2
weight matrix and the sampling parameters Ne; and Koo (different line graphs
as shown in figure legend). The C2 representation was obtained using an §2-C2
weight matrix with one non-zero element. The y-axis corresponds to the mean
square difference between the C1 reconstruction using the different S2-C2 weight
matrices and the ideal C1 square representation for all nodes of C1, scale band 1.
The C1 reconstruction, 7£(C1), is obtained exclusively from the m(S2) response,
such that no feedforward likelihood function is involved, using the fixed sampling
parameters N¢y — 4 and K¢y = 4. The ideal C1 square representation is shown
underneath the y-axis label. Three of the C1 reconstructions from S2-C2 weight
matrices with different parameters are also shown to visually illustrate that lower
error values generally correspond to C1 reconstructions closer 1o the ideal C1
square.
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Figure 5.24: Comparison between the feedback generated by a square representation in the
C2 layer as a function of the number of non-zero elements (x-axis) in the §2-C2
weight matrix and the sampling parameters N and Ko (different line graphs
as shown in figure legend), The C2 representation was obtained using an $2-C2
weight matrix with two non-zero element. The y-axis corresponds to the mean
square difference between the C1 reconstruction using the different S2-C2 weight
matrices and the ideal C1 square representation for all nodes of C1, scale band 1.
The C1 reconstruction, (C1), is obtained exclusively from the m(S2) response,
such that no feedforward likelihood function is involved, using the fixed sampling
parameters Nep = 4 and Koy — 4. The ideal C1 square representation is shown
underneath the y-axis label. Three of the C1 reconstructions from S§2-C2 weight
matrices with different parameters are also shown to visually illustrate that lower
error values generally correspond to C1 reconstructions closer to the ideal Cl
square.
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5.2.4 Feedback from C2 to S1

Figure 5.25 shows the S1, C1 and S2 model responses to a Kanizsa square input image while
the top-down feedback from C2, 7(52), is clamped (o a square representation. Thus, the results
illustrate how the bottom-up evidence from the input image, A (S1) are combined with top-down
information from the C2 layer, 7(52), and how the representation at the S1, C1 and S2 layers
evolves over time. Note that in this case feedback does not arise directly from the belief in the
(2 layer, Bel(C2), because as illustrated in the previous subsection, it is difficult to obtain a
good m(S2) square reconstruction via the S2-C2 weight matrix. Instead, the x(52) is fixed to
an ideal S2 square representation in order to test the capacity of the model to combine feedback

information hypothetically generated from the C2 layer.

Figure 5.26 shows the temporal response of the S1 and C1 belief for the region corresponding
to the top horizontal illusory contour of the Kanizsa figure. The responses shown are for the

setup depicted in Figure 5.25, where the square representation is fed back from 7(52).

Figures 5.27 5.28 compares the S1 and CI belief responses to the occluded Kanizsa, blurred
Kanizsa and blank input images at times (=2 and (=8, for the setup depicted in Figure 5.19

where the square representation is fed back from 7(52).

Figure 5.29 compares S1, C1 and S2 model responses, using the setup of Figure 5.25, for the

three different belief update methods illustrated in Figure 4.19.

Figure 5.30 shows the S1, C1 and S2 model responses to a Kanizsa square input image while
the C2 layer is clamped 1o a square representation. Thus, the results illustrate how the bottom-
up evidence from the input image, A(S1) are combined with information from the belief in the
C2 layer, Bel(C2), and how the representation at the S1, C1 and S2 layers evolves over time.
In this case feedback arises directly from the belief in the C2 layer, Bel(C2), using the S2-
C2 weight matrix with X non-zero elements and sampling parameters Nea = X and Koy = X.
These parameters were chosen 1o maximize the similarity between the square C1 feedback

reconstruction from C2 and the ideal C1 square representation as depicted in Figure 5.23.

221




5.2. FEEDBACK-MEDIATED ILLUSORY CONTOUR COMPLETION

B , B ‘ { o N
el(S2) I iil :
I
L ST ' | F—
% %, :‘=~u;.m4‘.'w((f“
: g | — | —, | g—
__; Wos o -
Bel((‘l) JIIL‘ Jyl np }\n[ ay : J :

1
acn W WS 2 a e B Pl iy
RS PN (NS D PN ST I | e | v e
__7 0w T 0 - » s e " :‘hln
1

i AR AR S gruufl

BISY) (i £ ol ] e

'—)

1

AS1) -
Input B
image

Figure 5.25: 81, C1 and 82 model responses ta a Kanizsa square input image while the top-
down feedback from C2, m(82), is clamped 10 a square representation. The 2D
S1and C1 maps represent the probability value for the horizontal state across all
locations of scale band 2 and 1, respectively. The S2 representation corresponds
to the C1 reconstruction using the C1 features of the maximum S2 prototypes at
each location, as described in Section 5. 1. For each layer, the temporal evolution
of the response from time (=1 10 1=4 is shown, except for A(S1) and 7(52), whose
responses are fixed over time. Arrows indicate feedforward (green) and feedback
(red} propagation of evidence. Note that in this case feedback does not arise
directly from the belief in the C2 layer, Bel(C2), because as illustrated in the
previous subsection, it is difficult to obtain a good 7(52) square reconstruction
via the §2-C2 weight matrix. Instead, the m(52) is fixed 1o an ideal 52 square
representation in order to test the capacity of the model to combine feedback
information hypothetically generated from the C2 layer.




5.2. FEEDBACK-MEDIATED ILLUSORY CONTOUR COMPLETION

Bel{(C1) =
| |——tn2
| . |—"- t=3
o = w4
| ——i=f |
| =6
0.7
0.l|
0.5 .l
o4 ‘
0.3 i
0.2 ‘
0.
|
o 1 |
L] 5 10 15 20 25 a5

Figure 5.26: Temporal response of the ST and C1 belief for the region corresponding 1o the top
horizontal illusory contour of the Kanizsa figure. Feedback originates from the
square representation fed back via the 7(S2), as illustrated in Figure 5.25. More
precisely, the response corresponds to S1 nodes at locations {x,y} = {25:28,24:
109} and C1 nodes at locations {x,y} = {7 : 10,6 : 36}, both averaged over the
vertical dimension. The responses at times t=1 to (=6 are plotted in different
colours, as Nustrated in the legend.
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Figure 5.27: Comparison of the S1 and C1 model responses to the occluded Kanizsa, blurred
Kanizsa and blank input images at times (=2 and (=8, The experimental setup for
this experiment is depicted in Figure 5.25 and corresponds to feedback originat-
ing from the square representation in 7(82).
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Figure 5.28: Temporal response ol the S1 and C1 belief for the region corresponding (o the
top horizontal illusory contour of the Kanizsa figure for the occluded Kanizsa,
blurred Kanizsa and blank input images. Feedback originates from the square
representation fed back via the m(S2) as illustrated in the setup of Figure 5.25,
More precisely the response corresponds to S1 nodes al locations {x,y} = {25
28,24 : 109} and CI nodes at locations {x,y} — {7 : 10,6 : 36}, both averaged
over the vertical dimension. The response at times =2 (unbroken line) and (=8
(dotted linej are plotted in different cofours for the different input images, as
illustrated in the legend.
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Figure 5.29; Comparison of §1, C1 and S2 model responses, using the setup of Figure 5.25, for
the three different belief update methods illustrated in Figure 4.19. The complete
method updates all layers at every time step. The upwards method updates one
layer per time step in ascending order, thus each simulation time step, Ly, 18
equivalent to three (the number of layers updated) original ume steps. The up-
down method updates one layer per time step in ascending order until it reaches
the top layer and later in descending order, thus each simulation step, fom, 15
equivalent to five (2 x number of layers — 1) original time steps.
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Figure 5.30: S1, C1 and S2 model responses to a Kanizsa square input image while the C2
layer is clamped to a square representation. These results illustrate how the
bottom-up evidence from the mput image, A(S1), is combined with informa-
tion from the belief in C2 layer, Bel(C2), and how the representation at the S1,
C1 and 82 layers evolves over time. The square representation in the C2 layer,
Bel(C2), is fed back using the S2-C2 weight matrix with 23 non-zero elements
and sampling parameters N = 4 and Ky — 6. These parameters were chosen to
maximize the similarity between the square C1 feedback reconstruction from C2
and the ideal C1 square representation as depicted in Figure 5.23.
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5.2.5 Feedback from S3 to S1

Figure 5.31 shows the S1, Cl1, S2 and C2 model responses to a Kanizsa square input image
while the S3 layer is clamped to a square representation. Thus, the results illustrate how the
bottom-up evidence from the input image, A(S1), is combined with information from the belief
in the 83 layer, Bel(83), and how the representation at the S1, C1, S2 and C2 layers evolves
over time. In this case the up-down beliel update method was implemented as it provided a
cleaner response than the upwards method. This means the response is shown for two complete
up and down cycles, starting and finishing at the S1 layer. For this reason the response for the
S1 layer only shows three time steps, corresponding to the up pass, wheres layers C1, S2 and C2
show four time steps, corresponding to the up and down passes. The results correspond to two
complete simulation time steps, fy, = 1,2, plus the S| layer response for the third simulation

time step, fyim = 3, as illustrated at the bottom of Figure4.19,

5.2.6 Object categorization with feedback

Figure 5.32 compares the ranking of the square prototype over the S3 layer belief distribution
for different input images and model parameters, Results are shown for the four different S2 RF
sizes as well as for the mean response. These results were obtained using the alternative 3-level
architecture. Note that these results represent the categorization response after the initial time

step or bottom-up pass, assuming flat initial distributions in all layers.

I'Caption for Figure §.31. S1, C1, 82 and C2 mode! responses 1o 4 Kanizsa square input image while the S3 layer
is clamped 10 a square representation, These results illustrate how the bottom-up evidence from the input image,
A(S1), is combined with information from the belief in 83 layer, Bel(S53), and how the representation at the S1, C1,
S2 and C2 layers evolves over time. The square representation in the 83 layer, Bel(53), is fed back using the §2-C2
weight matrix with 23 non-zero elements and sampling parameters Ne» = 4X and K¢z = 6. These parameters were
chosen 1o maximize the similarity between the square C1 feedback reconstruction from C2 and the ideal C1 square
representation as depicted in Figure 5.23. Also, the up-down belief update method was employed in order to reduce
the noise of the lower level responses. This means the response is shown for two complete up and down cycles,
starting and finishing at the S1 layer,
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Figure 5.32: Ranking position of the square prototype over the S3 layer belief distribution
for different input images and model parameters. Results are shown for the four
different S2 RF sizes, as well as for the mean response. The input image is either a
real square or a Kanizsa square. Each of them are compared for four conditipns:
1) all bands and no feedback, 2) all bands and the upwards update method, 3)
only the lower band and the upwards update method 4) only the lower band and
the complete update method are used, The S3 belief distribution 1s shown for
three of the results. Note, in the alternative Yamane 3-level architecture there
are four prototypes or states per object, and all of these are considered a correct
match when calculating the rank order, Importantly, the rank order is obtained by
considering the states of each 83 node separately (there are 2 by 2 S3 nodes, one
for each coded location), such that states from different 83 nodes compete with
each other.
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5.3 Feedback to S3: attention and priming

Figure 5.33 shows the model S3 belief response to an input image where a lamp occludes a
dog, given two different S3 priors, 7(S3): an equiprobable or flat distribution and a biased

distribution where the prior probability of objects that are animals has been doubled.

Prefrontal cortex, Fusiform gyrus,
Posterior parietal cortex, Amygdala ?

Prior biased towards animals
(priming, attention, etc.)

Flat prior

Bel(S3)

Input image

Figure 5.33: Comparison of §3 belief response 1o an input image containing a lamp occluding
a dog, given two different 83 priors, 7(53): an equiprobable or flat distribution
and 4 biased distribution where the prior probabifity of obhjects that are animals
has been doubled. The S3 prior is hypothesized to originate from regions outside
of the ventral pathway. For the flat 83 prior the winner object in the S3 belief
is the lamp. but for the biased prior where the animal ohjects are favoured, the
winner object is the dog.
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5.4. ORIGINAL CONTRIBUTIONS IN THIS CHAPTER

5.4 Original contributions in this chapter

e Simulation results illustrating the feedforward response of each of the layers in the pro-

posed model.

e Simulation results of the model’s object categorization performance as a function of dif-

ferent model parameters and in comparison with previous models.

e Simulation results showing the effects of feedback arising from the different layers of the
model and how this achieves illusory contour completion. The performance is compared

for several model parameters and belief update methods.

e Simulation results showing the effect of modifying the top layer prior on the calegoriza-

ton distribution.
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6.1

Chapter 6

Discussion and conclusions

Analysis of results
6.1.1 Feedforward processing
6.1.1.1 Layer by layer response

The filtered image constitutes the input to the Bayesian network and is coded as the A messages
of a set of dummy nodes at all locations and scales, as shown in Figure 5.1. Fach S| node
receives an input message from one of the dummy nodes and obtains a normalized probability
distribution, A(S1), over the four states (orientations). Gabor filters have been widely used to
model the response properties of VI simple cells, including the preprocessing that occurs at the

retina and lateral geniculate nucleus.

As illustrated in Figure 5.2, the S1 response is equivalent to that of the dummy nodes except
that, due to normalization, blank input regions now present an equiprobable distribution such
that each orientation has a value of 0,25, This can be understood as the background activity
observed in non-active neural populations (Deneve 20084a). Furthermore, lateral inhibitory con-
nections have been suggested to provide a normalization-like operation within pools of func-
tionally similar neurons (Grossberg 2003, Kouh and Poggio 2008). Normalization has been
associated with homeostatic functions crucial for stability and to maintain activity within an

appropriate working regime (Grossberg 2003).

The C1 model response (Figure 5.3) shows a qualitatively similar pattern to the HMAX C1 re-
sponse (Figure 5.4). The model response provides a lower resolution version of the input image,

mimicking the max operation implemented in HMAX. The multiplicative combination of evi-
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dence and a further normalization process in the model leads to a more radical representation of
the orientations present at each location. While in HMAX the value of one orientation doesn’t
influence the values of the rest, the proposed model acts more like a winner-take-all network
where a high valued state reduces the activity of the rest due to the sum-normalization operation.
Further analysis is required to determine whether this approach might have advantages over the
original HMAX by providing a potentially more discriminative and less redundant representa-
tion. Crucially, this approach doesn’t prevent the C1 response from encoding the presence of
two orientations at the same location, such as the vertical and diagonal orientations at the sides
of the letter A, shown in Figure 5.3. It would be interesting to study the effects of lowering
the the contrast of one of the orientations has on the C1 response. Given the normalization
response across orientations, it is likely that the proportional response of the stronger to the

weaker orientation is higher than that dictated by the relative contrast levels.

The S2 and C2 model representation (Figures 5.5 and 5.6) is more difficult to compare to that of
the HMAX model because the number of prototypes is much higher (1000) and these have been
learned from the distinet C1 responses corresponding to each model. However, the parameters
in the models are equivalent and the selectivity and invariance operations are implemented in
an analogous way to the S| and CI layers, which have been shown to provide good approxi-
mations. Furthermore, a good measure of whether the S2 and C2 layers reproduce the HMAX
functionality is given by the categorization performance of the S3 layer, which relies on the C2

features,

The model S3 layer, shown in Figure 5.7, differs from the HMAX top layer in that it is integrated
in the Bayesian network and implements the same selectivity operation as lower layers, whereas
in HMAX the top layer is implemented as a separate support vector machine (SVM). The input
to the SVM classifier consists of all the C2 features of the four different S2 RF sizes. In the
proposed model, the features with different S2 RFs are processed along four parallel routes,
each providing an S3 categorization response that is averaged to yield the overall response. This
allows one to compare the categorization performance of the model for each of the individual

S2 RF sizes, as well as for all of them combined.
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Another particularity of the proposed model is the use of S3 nodes at four different locations,
each containing four different prototypes for each object. Each prototype corresponds to the
object positioned at one of the four potential locations as illustrated in Figure 5.7. It is straight
forward to see why this approach leads to an improvement in the translated test-set categoriza-
tion results. An image is correctly categorized if the average value over the four positions and
four prototypes of the corresponding object is the highest. Although the averaging procedure is
not explicitly included in the Bayesian network, it can be trivially implemented using the output

of the S3 layer as the input to a simple linear classifier.

6.1,1.2  Object categorization

The set of objects shown in Figure 5.8 was chosen to have similar characteristics to the square
shape, which was the key object required to demonstrate the Kanizsa figure contour completion
effect. This was chosen over a standard object recognition test bench as the model focuses on
the integration of information to achieve perception and not on improving the categorization
performance of previous models. Despite not being a standard test bench, the same training
and testing datasets (see Figure 5.9) were used when comparing the results to those of previous
models such as HMAX and HTM. Future comparisons using standard test benches are possible,
as the model can be tested with any arbitrary set of images simply by learning the weights from

the corresponding training set.

It 15 important to note that although the objects present relatively simple forms, the fact that they
are silhouettes increases the categorization difficulty as there is no gray-scale information within
the object. Moreover, a previous model that was tested using the same 60 silhouette objects, as
well as using gray-scale natural images, produced a similar categorization performance for both

datasets (Dura-Bernal et al. 2010).

The first set of categorization results shows the effect of the C1 and C2 states per group. The
concept of grouped states is introduced in order to approximate the invariance operation, as
described in Sections 4.3 and 4.4. For each C1 group a set number of features (states) is learned
from the image statistics. Each C1 state represents the product of the response of several S|

nodes to the same feature.

235




6.1. ANALYSIS OF RESULTS

The graph in Figure 5.10 suggests that the optimum value for K¢ g,p is approximately 10,
while the graph in Figure 5.11 suggests that the optimum value for Keogroup 1S approximately
15. If there are not enough C1 features per group, some input spatial arrangements of S1 nodes
will not be captured, decreasing the categorization performance. Similarly, il there are too
many C1 features per group, it is more likely that high values will be obtained in all the groups,
thus reducing the informative value of the node. The number of features per group is therefore
crucial for the feedforward recognition process and should provide a compromise between the

two opposed effects described above.

Another factor that has proven crucial for successful categorization is the number of non-zero
elements in the S2-C2 weight matrix, which can be considered equivalent to the sparseness of
the matrix. There is evidence suggesting synaptic connectivity is sparse in feedforward cortical
circuits and that firing patterns of cortical neurons exhibit sparse distributed representations, in
which only a few of a large population of neurons are active (Quiroga et al. 2005, Murray and
Kreutz-Delgado 2007, Karklin and Lewicki 2003, Olshausen 2003). Sparse coding strategies
have proven to be essential to make efficient use of overcomplete representations, such as those
found in V1, making it easier to find higher order correlations, increasing the signal-to-noise
ratio and increasing the storage capacity of associative memories (Murray and Kreutz-Delgado
2007). Furthermore, they can improve pattern matching, since they lower the probability of

false matches among elements of a pattern (Olshausen 2003).

The model results shown in Figures 5.12, 5.13, 5.14 and 5.15 indicate that sparse S2-C2 weight
matrices, with < 10% of active connections, improve feedforward categorization. An example
of one such sparse connectivity matrix is shown in Figure 4.11, As expected, the optimum
number of non-zero elements is proportional to the S2 RF size. For S2 RF size=4x4, the op-
timum value of non-zero elements is one, while for higher S2 RI sizes the value lies between
four and eight. As previously stated, sparse coding strategies account for this phenomenon, as
more sparse S2-C2 connections make it less likely for two different objects to yield the same

(2 response pattern (false positive), thus increasing selectivity. However, when the number of

non-zero elements 1s 0o low, the distorted versions of the same object might be categorized as
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different objects (false negative), leading to reduced invariance.

The graph in Figure 5.16 indicates that the S2 RF size also affects recognition performance but
has different effects for each of the distorted test sets. The occluded test set works best with the
smallest S2 RF size, probably because it better captures the non-occluded parts of the object,
whereas the bigger RF sizes tend to include more occluded sections. Bigger RF sizes show a
slight advantage when recognizing scaled objects, as the difference in size is less accentuated
within large RFs, while it may lead to radically different smaller-sized features. Overall, 1t 1s
clear that the best results are obtained by averaging over the four different S2 RF sizes, as one

size's shortcomings are compensated for by another one’s strengths.

Finally, a comparison between different models is shown in Figure 5.17, demonstrating that
the proposed Bayesian network can achieve similar feedforward categorization results to the
original HMAX model. Note that the comparison is only rigorously valid between the HMAX
model and the Bayesian Belief Propagation (BBP) 3-level model, as these have equivalent num-
bers of layers, nodes and features per layer. The alternative BBP 3-level Yamane version was
specifically modified, by reducing the pooling region and increasing the number of nodes of the
top layers, to improve the categorization of the translated test set. Implementing the same mod-
ifications in the original HMAX model would, presumably, yield better results than the BBP
version, in the same way that the original 3-level HMAX version produces better results than

the 3-level BBP model.

The superior results of HMAX are, however, not surprising as it was specifically designed
to perform feedforward categorization and employs more exact and sophisticated operations,
namely the max and the Radial Basis function, than the BBP model. In fact, it is remarkable that
the BBP model can achieve comparable categorization results using the local belief propagation
operations, namely a weighted product operation for selectivity and a weighted sum operation
for invariance. Crucially, using the same algorithm and structure, the BBP model also achieves
recursive feedback modulation, which has been pinpointed as the major limitation of HMAX

(Serre et al, 2005a).

With respect to the HTM-like model, as was previously noted, the Numenta Vision Toolkit was

237




6.1. ANALYSIS OF RESULTS

used to compare the results, which allows for a maximum of 50 object categories. Although
this means the test sets were different from those used for the rest of models, theoretically it
confers an advantage to the HTM model as fewer categories facilitates the categorization task.
Nonetheless, the relatively low performance of the model might be a consequence of not hav-
ing enough training images per category, as the Numenta Vision Toolkit recommends having at
least 20 training images per category, Furthermore, the internal structure of the HTM network
is unknown, which means it is possible that this was not optimized for the type of images or
categorization task employed, and alternative HTM networks could improve the results. De-
spite this, the results are intended to illustrate that it is not trivial that the task of feedforward
categorization has been performed by belief propagation models that incorporate feedback func-

tionality.
6.1.2 Feedback modulation and illusory contour completion

To test the effects of feedback in the network, the illusory contour completion paradigm was
chosen. Experimental evidence strongly supports the involvement of high-level feedback in
lower-level illusory contour development (Halgren et al. 2003, Lee and Nguyen 2001, Maertens
et al. 2008). To try to reproduce this phenomenon, the setup was typically chosen to be a
Kanizsa square as the input image to the network and the representation of a square fixed at some
higher layer. The square representation was fed back from increasingly higher layers, ranging
from C1 to 83, This was done in order to study the effects of feedback systematically and
understand the particularities of each layer, although in last instance feedback should arise from
the top layer after the Kanizsa image has been categorized as a square. Resulls are structured in

the same way, providing a progressive account of the network’s recurrent dynamics.
6.1.2.1 Feedback from C1 to S1

The first and most simple case (Figure 5.18) is that of feedback originating from the C1 layer.
This example serves to clearly illustrate how bottom-up (A (S1)) and top-down (7(S1)) evidence
are multiplicatively combined in the S| layer belief. Furthermore, it clarifies the correspondence
between the probability distributions of the Bayesian nodes and the 2D graphical representations

used throughout the Results chapter. Note that only the lower scale band of each layer is plotted,
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as this contains the highest resolution representation. Layer S| constitutes an exception where
band 2 instead of 1 is shown, as the feedback weights from C1 layer band 1 fall predominantly
in this band (see Figure 4.8). Although the information in higher bands might also contain
relevant information and play an important role in perception, given the large scale of the model
it was vital to focus the analysis on certain model responses in order to obtain a comprehensive
understanding of them. Similarly, only the horizontal orientation state is shown, but due to the
symmetry of the square, it is easy Lo interpret by extrapolation the response to the vertically

oriented contours.

6.1.2.2 Feedback from S2 to S1

Figure 5.19 shows the setup and results of the case where the square feedback originates from
the S2 layer. In contrast to the C1 feedback example, the C1 and S| square reconstructions are
now slightly more blurred, but still very clearly defined. It is possible to observe the gradual
transformation from the Kanizsa figure to the square at all layers of the model, not only in the
belief but in the 4 and & messages. Note how it takes one time step for the square feedback to
reach the C1 layer, but two time steps to reach S1. In both cases the illusory contour strength
increases gradually over time, as depicted more clearly in Figure 5.20. This is a consequence
of the modification introduced in the outward A messages described in Section 4.5.3.3, which
allows for the accumulation of belief responses, otherwise the response would remain identical

after the second time step.

Note that C1 and S1 reconstructions show patterns ol noise that repeat periodically. This is
because the CPTs are derived from the prototype weight matrices, which are independent of
position, and then particularized for the the set of nodes at each location. Even for flat parent
distribution, the unbalanced CPTs lead to child nodes with non-flat distributions, as illustrated

by the lower nodes of the example shown in Figure 3.8.

As stated before, it is necessary to focus on a subset of the model’s responses, thus the results
shown were obtained from the 82 nodes with RF size=4x4. However, Figure 5.21 demonstrates
that the illusory contour develops for all S2 RF sizes, although the 4x4 size shows the most

precise and least noisy reconstruction. Also, the figure illustrates how as the band size increases,
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the image resolution decreases to a point where the square figure is unrecognizable, which
justifies focusing on only the simulations on the lowest scale band. The original HMAX model
was designed to process large natural images where the lower resolution of the higher bands

might play a more important role.
6.1.2.3 Feedback from C2 to S2

The square reconstructions from feedback originating at layers C1 and S2 show a relatively
good fit to the ideal square representation, even when using feedback weights equivalent to the
feedforward weights. However, the loss of information between the S2 and C2 layer is much
higher as it is mapping over 2000 nodes into 9 nodes. This is a general problem of modelling
feedback connections in models that implement an invariance operation, such as the max func-
tion, which cannot be mapped backwards. For this reason, and because the feedforward weights
proved to be inappropriate, a more systematic study was performed to elucidate what the key

factors to obtain meaningful feedback from the C2 layer are.

Figures 5.23 and 5.24 show the results of testing three factors. The first one is the number of
non-zero elements, or the inverse of sparseness, of the $2-C2 feedback weight matrix, which
shows an almost linear, positive correlation with the ability of feedback to reconstruct an ideal
C1 square representation. The second factor tested was the sampling parameters Neo and Kea,
which, within the limited range of values tested due to the high computational cost, showed a
very clear positive correlation with feedback’s reconstruction capacity. The last factor studied
was the number of non-zero elements in the S2-C2 feedforward weight matrix used to generate
the C2 square representation, from where feedback originated. Although only two different
values were lested, comparison between Figures 5.23 and 5.24 suggests that C2 representations
generated using more non-zero elements in the feedforward weight matrices (less sparse) are

better for feedback reconstruction.

It is important to note that the pixel-wise mean absolute error is not a perfect measure of the
goodness of fit between the C1 feedback reconstruction and the ideal C1 square. For example,
C reconstructions using a Jess sparse matrices tend 1o show a higher level of background noise

or overall activity, which might lead to a lower error as they cover greater area of the ideal
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square, Reconstructions using more sparse weight matrices may not cover as much area of the
square but might be cleaner and more precise. Despite this, the mean absolute error provides an
objective indicator of the goodness of fit between the reconstructions and can be used to guide
the broad initial parameter search. This can be later refined for a smaller target parameter space

using a more accurale measure.

Although a more exhaustive parameter search is required, the preliminary results obtained
strongly suggest that asymmetric weight matrices are required: feedforward weights should
be relatively sparse, leading to more selective higher-level representations; while feedback con-
nection matrices and high-level representations require a higher density in order to increase
the amount of information available to reconstruct the lower levels. This is consistent with
evidence from cortex showing that feedforward connections tend to have sparse axonal bifur-
cation whereas backward connections have abundant axonal bifurcation. Furthermore, it agrees
with the theoretical perspective that argues that a cell is likely to have few feedforward driving

connections and many modulatory connections (Friston 2003).

Another parameter that is also likely to influence the feedback reconstruction is the number of
features per group in the complex layers. Given the current implementation, where feedback
to complex layers affects equally all the features belonging to a group, increasing the number
of features per group will increase the overall amount of, still relatively diffuse, feedback. One
important extension for the model would be to achieve heterogeneous feedback modulation of
the features within a group. This can be done, for example, by allowing features to belong to
different groups, such as in the HTM model (George and Hawkins 2009). The learning method
in HTM automatically does this, whereas in the proposed model this could be achieved by
finding correlations between features in different groups and then combining them into a single
new group. A more comprehensive study of how this factor can aid the feedback disambiguation

process is left as future work.
6.1.2.4 Feedback from C2 to S1

As discussed above, it is difficult to generate accurate feedback from the C2 square represen-

tation, so an alternative is to clamp the 7(52) to the ideal S2 square representation as if the
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feedback was really generated from C2. This allows observation of the temporal response in
lower layers, including S2 itself. Figure 5.25 demonstrates that feedback originating in 7(52)
also leads 1o a very robust illusory contour completion effect in lower levels. Consistent with
the hierarchical distance of the layers, the effect is now observed at t=2 in C1 and =3 in S2.
Figure 5.26 shows a more gradual development of the contour, compared to that shown in Fig-
ure 5.20 (feedback from Bel(S2)), due to the longer reciprocal interactions that now include the

52 layer.

An important aspect to study is how feedback from higher levels is refined as it interacts with
bottom-up evidence, For this purpose, the model’s response to different input images, given
the same high level feedback, was compared in Figures 5.22 and 5.27. Both the S1 and CI
responses 1o the occluded Kanizsa square, blurred Kanizsa and to an empty input image, show
only minor differences between them. The differences are observed around the real contours
of the Kanizsa figures. For example, for the occluded Kanizsa figure, the vertical real contour
of the occluding circle clearly stands out over the horizontal illusory contour. These small
modulations of feedback become more apparent in Figure 5.27, specially when comparing the
S1 response to the Kanizsa square versus the empty input image. These differences are shown

in more detail in Figure 5.28.

This type of refinement would be expected to happen from complex to simple layers where
the diffuse, low resolution feedback is sharpened based on existing low-level information that
provides local cues to guide the disambiguation process (Halko et al. 2008, Lee 2003). Pre-
vious attempts to incorporate feedback connectivity into the HMAX model have encountered
the same theoretical barrier, which basically deals with how to obtain spatial precision from
invariant high-level abstract object representations (Dura-Bernal et al. 2010). The solution pro-
posed previously was to implement a feedback disambiguation algorithm based on collinearity,
co-orientation and good continuation principles, theoretically reproducing lateral connection
functionality. In principle, this method illustrated well the feedforward-feedback interactions,
however the algorithm was designed heuristically and worked exclusively with simple square-

like figures.
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The belief propagation algorithm in Bayesian networks is, theoretically, well-suited to imple-

ment these horizontal interactions. Pearl (1988), the first to formulate belief propagation in

Bayesian networks, refers to them as sideways interactions (see Section 3.3.3). Although there

are no explicit lateral connections, these are implemented implicitly by the bottom-up messages

and top-down messages, both of which take into account evidence from nodes adjacent to the

target. There are several possible reasons why, despite this, the results in Figure 5.25 (clamp-

ing of 71(S2) to square representation) don’t show significant contextual lateral interactions and

feedback disambiguation:

e

. A number of approximations to the exact implementation of belief propagation have been

made (see Section 4.6). These include sampling methods that limit the messages Lo rel-
atively few samples which contain the highest information content. However, all the in-
formation that is lost due to the sampling and approximations might actually be required
for precise feedback disambiguation. For example, features that present relatively low
probabilities and could potentially be enhanced by feedback might be initially discarded

during sampling.

. All features belonging to the same group in complex layers are modulated equivalently

by feedback. Features within groups contain the precise and high resolution information
that could lead to belief refinement. As previously argued, allowing feedback to modulate
features within a group disparately would lead to the enhancement of specific S1 spatial
arrangements, This could be done by learning distinct weights for each feature or by
allowing features to belong to different groups, both of which methods are implemented

in the HTM mode (George and Hawkins 2009).

. Loopy belief propagation might require more time steps to converge to a good approxi-

mation of the exact belief. Current simulations run for a limited number of time steps due
to the high computational cost, Although beliefs tend to show a relatively high degree of

convergence, it is possible that they are settling on local minima.

. Beliefs are likely to evolve and be refined as a consequence of the hierarchical interactions
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over time. The fact the both the bottom and top layers are clamped means that beliefs can
only evolve freely along the intermediate layers, as the belief in peripheral layers will be
dominated by the clamped representations. The present results suggest that if only the
input image is clamped and beliefs allowed to evolve across the whole network, these
show greater comtextual modulation through lateral interactions. This is llustrated in

Figure 5.31 and discussed below in Section 6.1.2.5.

It is also possible that the structure and parameters of the network, derived from the HMAX
model and mimicking the ventral path, are not sufficient for the precise spatial refinement of
feedback. Indeed the dorsal path, which has been shown to be tightly interlinked with the ventral
path at many levels, may play a crucial role by providing spatial and motion related information
which could guide the feedback disambiguation process (Fazl et al. 2009, Chikkerur et al. 2010,
Grossberg et al. 2007). In this sense even for static images, such as those employed in this
model, the continuous microsaccadic movements of the eye might be providing crucial infor-
mation for perceptual completion processes (?). In this same line, George and Hawkins (2009)
demonstrated that simulating saccadic movements in the input image improved the feedback
reconstruction performance of the model. A more complete model of visual perception could
therefore be accomplished by implementing a parallel interconnected Bayesian network that

modelled the dorsal path and provided the additional information required.

Nonetheless, the results in Figure 5,28 demonstrate the ability of the model to feed back high-
level information to lower levels, even in the absence of bottom-up input, consistent with evi-
dence on mental imagery. Evidence has consistently shown that the regions and cortical repre-
sentations of mental imagery are surprisingly similar to those of visual perception. suggesting
both modalities share a common substrate (Ishai 2010). Slotnick et al. (2005) showed that vi-
sual mental imagery can evoke retinotopic activations in early visual regions, in agreement with
generative modelling approaches. Recently, Reddy et al. (2010) obtained results suggesting
the same patterns on neural activity generated during visual perception get reactivated during

mental imagery, mediated by feedback connections from high-level object recognition layers.
The setup where feedback originates from 7(52) was also used to explore the different belief
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update methods during loopy belief propagation as shown in Figure 5.29. The different methods
were explained in detail in Section 4.5,3. An initial first observation is that both the upwards
method, used to obtain most of the results, and the up-down method provide similar results to
that of the rigorously correct, but computationally expensive, complete update method. This
argues for the validity of these methods, suggesting that computing the beliefs of layers where
no new evidence information has arrived might be redundant and not provide any significant
contribution to the final belief. However, it is likely that the differences between methods is
accentuated as feedback originates from higher layers, leading to longer internal loops. Further

and more systematic research is required to confirm the validity of these update methods.

Other interesting effects can be observed in Figure 5.29. To start with, the S1 belief seems
to show an oscillatory effect where the illusory contour gets narrower and wider. It would be
interesting to study in more detail whether the narrowing is a consequence of feedback disam-
biguation guided by the real contours of the input image or an epiphenomenon derived from
some other cause. Also, the up-down method S1 belief shows the cleanest response, which is
consistent with the fact that it is updating the layers in the expected sequence of propagation,
minimizing the propagation of noisy information. According to this account, the illusory con-
tour from the upwards method should be cleaner than that of the complete method, but is not.
This might be a consequence of the asymmetry of the upwards method, which gives preference
to the bottom-up evidence, as compared with the other two methods, where bottom-up and top-
down evidence propagate at the same rate. Again, these are just speculative ideas based on the

limited preliminary results obtained.

The results shown in Figure 5.30 demonstrate the ability of the model to feed back information
from the C2 layer. Using the information from Figure 5.23, an S2-C2 weight matrix was chosen
to try to obtain the best reconstruction possible, although this was still far from an ideal square
representation, Nonetheless, the S1 and C1 layer still develop activity close to the illusory

contour region.
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6.1.2.5 Feedback from 83 to S1

Feedback emerging from the S3 layer was also able to generate the illusory contours in the lower
layers as illustrated in Figure 5.31. This demonstrates that feedback is able to reconstruct the
C2 square representation from the S3 layer information. In this case the up-down instead of the
upwards belief update method was implemented as it produces a cleaner lower level response
by reducing the accumulated noise from 7 messages. Importantly, this setup can be understood
as a hypothetical scenario where the Kanizsa figure is correctly categorized as a square and due
to some higher level mechanism, such as focused attention (Gilbert and Sigman 2007, Reynolds

and Chelazzi 2004), only the square prototype is fed back, similar to a winner-take-all network.

Another important property, which was present in previous results but is more obvious here, is
that the similarity of the internal representation of each layer to any fixed evidence (e.g. input
image or high-level square representation) is proportional to the distance to the layer containing
the evidence. In other words, lower layers show an internal representation close to the Kanizsa
figure, whereas the representation in higher layers is closer to that of a square.This observation
is consistent with evidence suggesting high-level activity generated by objects containing illu-
sory contours is notably similar to the activity of complete objects (Stanley and Rubin 2003,
Maertens et al. 2008, Sary et al. 2008). Furthermore, it is also in consonance with evidence
showing the illusory contour response is weaker and only appears in a fraction of V1/V2 cells,
in relation to that of real contours, and that V1 tends to show an even weaker illusory contour
response than V2 (Lee 2003, Maertens et al. 2008, Seghier and Vuilleumier 2006, Halgren et al.

2003).

The temporal sequence of illusory contour formation in the model is also substantiated by ex-
perimental evidence showing that the LOC/IT region is the first 1o signal the appearance of the
illusory contour, which then gradually spreads to lower regions (Murray et al. 2002, Halgren

et al. 2003).

With respect to the mechanisms responsible for contour completion. Halko et al. (2008) af-
firmed in a recent review that illusory contours result from the interaction between high-level

figural feedback and interpolation/extrapolation processes related to lateral connections. Figu-
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ral feedback is clearly captured by the proposed model as the square representation is fed back
exclusively from the top layer while the rest of the layers contain flat initial distributions. Inter-
estingly, as shown in Figure 5,31, the feedback square reconstruction from higher layers, 7(52),
is significantly blurred and poorly defined. This is due to the previously described problems with
feedback between the C2 and S2 layers. However, as time goes on, the square representation at
both the S2 and C1 layers significantly improves. This suggests that feedback is interacting and
being refined, or contextually modulated, by the lower layer activity (the Kanizsa figure). In
other words, the square illusory contours emerge as a consequence of the reciprocal interaction
over time of the Kanizsa figure inducers and the higher level abstract square representation, as

suggested by experimental evidence (Halko et al. 2008).

The results in Figure 5.23 substantiate the contextual interaction claim by showing the more
blurred C1 square representations that result from C2 feedback. This suggests that feedback by
itself is insufficient to generate the more precise Cl square representations that emerge when

using the Kaniza figure input image at the same time (Figure 5.31).
6.1.2.6 Object categorization with feedback

As described in Section 4.4, the categorization results are obtained by assuming the network has
a singly-connected tree structure in order to avoid feedback modulation. Note that this refers
strictly to the initial bottom-up pass where higher levels are assumed to contain flat distributions
such that feedback would not provide any meaningful information. Evidence supports the theo-
retical view that the initial recognition process is indeed strictly a fast feedforward process with
no feedback involvement (Masquelier and Thorpe 2007, Epshtein et al. 2008, Riesenhuber and
Poggio 1999, Serre et al. 2007b). However, evidence also suggests that more cognitive priors,
such as task-related attention, might have a fast effect on the local microcircuitry and modify
the initial categerization performance (Lee and Ngayen 2001, Gilbert and Sigman 2007). For
this reason, it was interesting to test whether similar categorization results could be obtained

without any constraints on the network.

The preliminary results shown in Figure 5.32 confirm that the square object was correctly cate-

gorized using the upwards belief update method, which combines feedback information at each
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step. Although feedback originates from empty high-level representations, it becomes non-flat
as it is modulated by the conditional probability tables (CPTs) weights (see Section 4.5 for de-
tails), which explains why the resulting S3 distribution has more noise than the one with no
feedback. Even the most extreme case which processed only the lowest band and implemented
the complete belief update method (stronger feedback effects), situated the square prototype in

fourth place, a surprisingly good result considering the limitations.

The Kanizsa square, which can be considered a strongly occluded square, was correctly catego-
rized with no feedback and obtained significantly high positions for the upward update method
with loopy feedback (first for the 4x4 S2 RF size and third for the averaged response). Even
when reducing the number of bands to one and using the complete update method, the Kanizsa
square still showed consistently good results. Overall, these results suggest that a similar cate-
gorization performance can be achieved by the model even when including the feedback loop
during the initial bottom-up pass. However, further research is required to prove this hypothesis
and to obtain a better understanding of the factors affecting feedforward categorization in loopy

Bayesian networks.

The categorization of Kanizsa input images as squares is critical in order to simulate illusory
contour completion without the need to clamp any high-level square representation. Instead the
model should recognize the input Kanizsa figure as a square and feed back the corresponding
information. The current categorization results using feedback do not provide an appropriate
square representation, as the square state does not show the highest value or, if it does, the over-
all distribution is extremely noisy. This can be solved in the future by improving the feedforward
categorization performance so that the Kanizsa figure elicits a clear square representation and
by improving the feedback reconstruction from C2 to S2. This should allow to obtain an au-
tomatic illusory contour response just by feeding in the Kanizsa input image to the network.
Current results using an idealized S3 square representation (Figure 5.31) are encouraging and

support this claim as they manages to elicit the illusory contour in lower regions.

An interesting control test to perform would be to systematically rotate the Kanizsa pacmen

by varying degrees. The categorization of the Kanizsa figure should be affected such that for
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strong rotations the winner S3 prototype should no longer be a square object. Additionally,

non-aligned inducers should prevent or reduce the strength of the illusory contours.

A different question to the one addressed in this section, is whether the feedback loop can
improve categorization over time. Again, this can only be tested once the feedback reconstruc-
tion provided by higher layers is improved. As previously argued, the results shown in Figure
5.31 suggest that feedback may indeed improve categorization, based on how the C1 and 52

responses are gradually modulated towards a sharper square representation.
6.1.2.7 Feedback to S3

The example shown in Figure 5.33, despite depicting a very trivial problem, serves to illustrate
the capacity of the model to simulate feedback effects, such as priming or expectation, which
arise from areas outside the ventral pathway such as the prefrontal cortex, fusiform gyrus, pos-
terior parietal cortex or the amygdala (Summerfield and Egner 2009, Bar et al. 2006, Grossberg
et al. 2007, Sabatneiti et al. 2609, Gitbert and Sigman 2007). Furthermore, the mode! attows (o
simulate the activation of high-level object-selective regions due to mental imagery which has

been suggested to be mediated by feedback connections from prefrontal cortex (Ishai 2010).

Importantly, these effects are accommodated as part of the Bayesian network parameters (S3
prior distribution), without the need to include any external artifacts. The example can also be
interpreted as implementing feature attention (enhancing only states corresponding to animals
in the S3 prior distribution) and could similarly implement spatial attention by defining a prior
distribution that favours certain locations, specially when processing larger images with several
objects. The Bayesian implementation of attention resembles that proposed by Chikkerur et al.

(2010).

6.1.3 Benefits and limitations of Bayesian networks

Bayesian networks and belief propagation provide a rigorous mathematical framework, grounded
in probability theory, that allows the feedforward and feedback interactions of a system to be
modelled. One of its most attractive and arguably elegant features is its distributed implemen-

tation, wherein all the nodes have an homogeneous internal structure and carry out the same
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operations. Specific functions can then be implemented by defining the appropriate structure
and weights. It has been argued that this and other properties map well onto cortical connectiv-
ity and account for experimental evidence as described in Sections 3.1 and 3.2. Additionally,
the model is well-suited for large-scale parallel implementation using asynchronous message-
passing, such as that offered by multicore computers or hardware implementation (Jin et al.

2010, Neftci et al. 2010).

The model is, nonetheless, still a Bayesian network and thus cannot be considered biologically
realistic. The model can only be argued to be realistic at a network or systems level of abstrac-
tion, which is closer to cognitive functionality than to biology. At this level of abstraction the
network reproduces the same properties as the HMAX model, such as the hierarchical cortical
structure and the tuning and invariance profiles of neurons at V1, V4 and inferotemporal (1T)
cortex. This, of course, is still a strong simplification of the visual system. For example, direct
reciprocal connections can be found between distant areas such as VI and higher-level object-
processing regions (Huang et al. 2007), which are not included in the model. Furthermore,
the Gabor filters used to model V1 neurons RE and the distinetion between simple and com-
plex cells are an oversimplification of the wide spectrum of V1 neurons functionality (Ringach
2004). In addition, the response of neurons in higher cortical levels is still not well understood
and thus, any attempt to model them is likely to be oversimplified and inaccurate (see Section

2.1.1 for further details).

Some of these effects could be accommodated by future versions of the model. For example,
direct connections between the top and bottom layers of the model could be included by learning
the appropriate weights, similar to one of the implemented version of HMAX (Serre et al.

2007b).

Regarding the complexity of neural responses, the proposed model has an advantage over
HMAX in the sense that responses are modulated over time by the interaction between feed-
forward and feedback connections. This accounts for extra-classical RF properties of neurons
(Angelucci and Bullier 2003) and adds a large time-scale temporal dimension to the model

responses (Kiebel et al. 2008) opposed to the static HMAX responses.
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However, both models fail to capture any details at the neuronal level of description, such as
the complex balance between excitatory and inhibitory connections or spike decoding including
learning and adaptation mechanisms such as spike-timing dependent plasticity. Nevertheless,
detailed biological implementations have been proposed both for the HMAX (Kouh and Poggio
2008, Yu et al. 2002, Knoblich et al. 2007) and the belief propagation operations (George and
Hawkins 2009, Litvak and Ullman 2009, Steimer et al. 2009), which could theoretically allow
the model to be implemented using spiking neurons. Importantly, given the large scale of the
model, which spans three different cortical regions and has over two hundred thousand nodes, it

seems reasonable to limit the level of detail until the principles tested have been shown to work.

Implementations of belief propagation, in general, assume each node corresponds to the com-
putations performed by the microcircuits within a cortical column. Another interesting possi-
bility is that single neurons act as nodes and approximate a simpler version of the algorithm,
as proposed by Rao (2004) and Deneve (2008a). This approach has yielded some interesting
results relating generative models to spike-time dependent plasticity (Nessler et al. 2009). Neu-
ral implementations of message-passing algorithms in graphical models are the current focus of
research for several prestigious research centres, such as the Gatsby Institute in London and the

Institute of Neuroinformatics in Zurich.

Importantly, the model might not be suitable for neural implementation in the present state
due to the high redundancy in the information represented by the likelihood, belief and prior
functions. A reformulation of the equations towards predictive coding approaches, wherein
feedforward messages convey the prediction errors, could lead to more efficient implementa-
tions, in consonance with experimental evidence (Friston et al. 2006). Critically, predictive
coding can be derived from belief propagation, which speaks for formal similarities between

both approaches (Friston and Kiebel 2009, Kschischang et al. 2001, Yedidia et al. 2003).

The Bayesian network was designed based on the HMAX model, as this was a well-established
model of the ventral path at the appropriate level of description, However, the HMAX struc-
ture might not be the ideal one for modelling visual perception using Bayesian networks, as
it was designed exclusively for feedforward processing, For example, the Bayesian network
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model could benefit from greater interactions among the lower level scale bands, which are
currently processed in parallel. Furthermore, the HMAX design doesn’t take into account the
constraints of Bayesian networks, which may perform more efficiently using, for example, a

smaller number of states per node.

Bayesian methods, such as the Expectation-Maximization algorithm, allow the optimum struc-
ture and parameters of a Bayesian network to be learned, given some data (Jordan and Weiss
2002, Lewicki and Sejnowski 1997, Murphy 2001). Although applying these methods from
scratch to such large scale models might be computationally intractable, these can be used to
shape the network given some initial structural constraints. The proposed model could poten-
tially be formulated in a more generic format, similar to the HTM model (George and Hawkins
2009), which could then be particularized to specific scenarios with the aid of these Bayesian
learning methods. The proposed model can be understood as a particularization of the more
general model to the visual perception domain. However, the same generic model could be

particularized to other similarly structured domains such as the auditory system.

For example, one of the main properties embodied by the generic model would be the simple
and complex layer structure with complex layers grouping states in order to achieve invariance.
Many of the potential generic principles have been described in Chapter 4, but a more detailed

account and mathematical formulation of the generic framework is left as future work.

Several approximations and sampling methods, summarized in Section 4.6, have been imple-
mented to deal with the large number of nodes and connections in the model. These offer
solutions to the problem of multiplicatively combining a large number of discrete probability
distributions with many states. Previous models have proposed performing calculations in the
log domain to convert products into sums (Rao 2004, Litvak and Ullman 2009). Here I propose
re-weighting distributions to establish a minimum value and sampling methods to keep only the

highest values of the distributions with highest variance.

A further novelty of the model is to use the weighted sum model proposed by Das (2004) to
approximate the CPT of nodes with multiple parents. Bayesian networks that try to model the

visnal cortex will irremediably require multiple parent interactions as this arise as a consequence
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of overlapping receptive fields. Several methods have been proposed to approximate the expo-
nential number of parameters of multiple-parent CPTs, the most common being the Noisy-OR
gate (Pearl 1988, Diez 1993, Srinivas 1993, Onisko et al. 2001). This method however cannot
be applied to variables that are not graded, such as those coding the different features as states
of the vartable. For this reason, the proposal by Das (2004), which has been justified from a

geometrical perspective and is not constrained to graded variables, offers a valuable alternative.

The model also deals with loops in the network by implementing loopy belief propagation, a
method that has only been proven to work empirically and constitutes an active field of research
in itself (Murphy et al. 1999, Weiss 2000). The proposed model explores different belief up-
dating methods and provides a comparison of the effects these have on the different layers over
time. Additionally, to the best of my knowledge, this is the largest Bayesian network that imple-
ments loopy belief propagation and thus tests the limits and applicability of this approach. An
alternative and potentiully more efficient belief update method, which could be tested in future
versions of the model, is asynchronous message-passing triggered by changes in the input to a

node.

All of the above proposed methods are likely to be useful in the future for researchers modelling
similar large-scale scenarios using Bayesian networks and belief propagation. However, it is
difficult to evaluate the validity of these methods and their ability to approximate the exact
beliefs of the network. The only way to obtain the exact marginal probabilities in networks with
loops is to apply the junction-tree algorithm (Murphy et al. 1999), which would incur prohibitive
computational costs, Thus, while these methods remain to be tested more systematically, the
categorization performance and the feedback reconstruction capabilities of the model suggest
the proposed methods point in the right direction. Furthermore, results from the setup where the
square representation is fed from the top layer suggest lateral contextual interactions between

the bottom-up input and feedback activity are present in the model.

On the other hand, the fact that these contextual lateral interactions are not clearly showing up
in the results where feedback originates from S2 and C2, could suggest that the approxima-

tions and sampling methods used are discarding necessary information, as previously argued.
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Alternatively, this could be a consequence of the model requiring interactions from the dorsal
path in order to obtain spatial precision. A third option could be that invariance needs to be
implemented in a different way, such as exploiting the inherent variability in the generative
model reconstructions, instead of approximating the max operation in alternating layers. Small
differences in the higher layer representation would lead to the repertoire of possible lower-
level representations of a given object. However, this method has only been demonstrated for
28x28 pixel input images and using much smaller and constrained networks of binary nodes

that replace the top layer with an associative memory (Hinton et al. 2006).

Current results support the inherent difficulty in developing a model that can achieve feedfor-
ward invariant object categorization, where position and scale information are lost, while at the
same time achieving spatially precise feedback modulation. This limitation is present in previ-
ous similar models (Epshtein et al. 2008, Murray and Kreutz-Delgado 2007) and has only been
partially solved by introducing temporal information (George and Hawkins 2009), spatial in-
formation from the where path (Chikkerur et al. 2009) or using heuristically defined algorithms

for lateral interactions (Dura-Bernal et al. 2010),

Finally, it is important to point out that one of the main limitations of the model, despite the ap-
proximations and sampling methods implemented, is the considerable simulation time required.
Using moderate sampling parameters, four time steps of the upward update method for layers
S1 to 83 took over 60 hours. Depending on the parameter choice this value could vary between

5 hours and more than 100 hours. Several solutions are possible:

e Optimizing the MATLLAB code by finding more efficient and faster implementations of

the proposed algorithms.

e Implementing the model using a faster language such as C. The belief propagation algo-
rithm for each node was implemented in C, which reduced the simulation time of each
individual node to 50%; but the overall simulation time of the model was reduced to only
94%. This suggests much of the computation time is spent in routing the messages (o the

corresponding nodes.
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e A real-time hardware implementation using large field-programmable gate arrays (FP-
GAs) or other parallel-computing systems such as the SpiNNaker (Jin et al. 2010). The
proposed model is well suited to parallel distributed implementations such as those of-

fered by hardware chips.

Reducing the simulation time would allow one to systematically explore the different param-
eters of the model and gain deeper insights into the approximations, sampling methods and

results obtained by the simulations,

Comparison with experimental evidence

The proposed model is consistent with experimental evidence ranging from neuron physiology
to anatomical data, and with several experimentally-grounded cortical theories. These are listed

below:

e Widely accepted principles of object recognition in the ventral path, as supported by
anatomical, biological, physiological and psychophysical data (Cadieu et al. 2007, Hung
et al. 2005, Knoblich et al. 2007, Kouh and Poggio 2008, Masquelier et al. 2007, Riesen-
huber and Poggio 1999, Serre et al. 2005a, 2007b, Serre and Riesenhuber 2004, Walther
and Koch 2007, Yu et al. 2002), The Bayesian network reproduces the HMAX model op-
erations and structure, which have been shown 1o capture these principles, and achieves

invariant object categorization. See Section 2.1.2 for further details.

e The parallel, distributed and hierarchical architecture of the cortex is also reproduced
by the inherent structure of Bayesian networks and belief propagation (Pearl 1988, Rao
2004, Lee and Mumford 2003, George and Hawkins 2009). Similarly, the homogeneous
internal structure of cortical columns (the canonical microcircuit) is comparable to the
homogeneous internal operations (beliel propagation) of each Bayesian node (Friston
and Kiebel 2009, George and Hawkins 2009, Steimer et al. 2009, Litvak and Ullman
2009). Possible cortical mappings of belief propagation and biologically plausible imple-
mentations have been thoroughly reviewed in Sections 3.4.1 and 3.4.3. Furthermore, an

abundant body of evidence arguing for the, more general, Bayesian brain hypothesis was
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presented in Section 3.2.

o The convergence of feedforward connections and the divergence of feedback connections
(Friston 2003). The same pattern is found in the model where the number of parents of
a node is always less than the number of children. The higher divergence of feedback
connections accounts for contextual or extra-classical RF effects (Angelucci and Bullier

2003).

e The patchy axonal terminations of feedback connections and their functional specificity
(Angelucci and Bullier 2003). Although feedback terminations have been commonly con-
sidered to be more diffuse and non-topographic (Friston 2003), recent findings show they
have a very similar shape and density to those of feedforward connections, both for the
V1-V2 (Anderson and Martin 2009) and V2-V4 (Anderson and Martin 2006) pathways.
In the Bayesian network proposed, both the feedforward single CPTs and the feedback
multiple parent CPTs are derived from the same weight matrices and thus exhibit similar
connectivity properties. Nonetheless, further study of the S2-C2 weight matrix revealed
that feedback requires a denser connectivity than feedforward processing. This would
contradict Andersen’s evidence, but be in agreement with the asymmetric connections
theory and evidence showing the more sparse axonal bifurcation of feedforward versus

feedback connections (Friston 2003 ).

e The illusory contour completion temporal response observed in the ventral system. As
detailed in Section 2.3.1, the Kanizsa figure is represented as a complete figure in the
higher levels and, as time progresses, an increasingly weaker representation can be ob-
served in lower levels (Halgren et al. 2003, Maertens et al. 2008, Murray et al, 2002, Sary
et al. 2008, Seghier and Vuilleumier 2006, Yoshino et al. 2006, Stanley and Rubin 2003,
Lee and Nguyen 2001, Lee 2003). The model is shown to be consistent with the mech-
anisms proposed to be responsible for contour completion, namely, figural feedback and
lateral interactions. Contextual lateral interactions were only observed when feedback
originated from the top layer and was allowed 1o interact with bottom-up evidence form-

ing recurrent Joops across four layers. Possible reasons why these lateral interactions did
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not clearly emerge when feedback originated from lower layers have been discussed in

Section 6.1.2.

e Feedback effects that modulate the inferotemporal cortex arriving from the prefrontal
cortex (object priming, expectation, etc.), the posterior parietal cortex (spatial attention),
amygdala (emotional stimuli such as faces) and others (Bar et al. 2006, Grossberg et al.
2007, Summerfield and Egner 2009, Sabatinelli et al. 2009, Gilbert and Sigman 2007).
These can be modelled by modifying the model S3 prior, 7(53), to reflect the appropriate

bius towards certain objects or locations.

e Feedback effects resulting exclusively from mental imagery with no bottom-up input.
Evidence suggests that the same visual pathways are shared for visual perception and
mental imagery resulting in similar cortical activations (Ishai 2010). Mental imagery is
suggested to originate in prefrontal cortex, which feeds back to higher-level object recog-
nition areas (Ishai 2010, Reddy et al. 2010). Further evidence has shown how mental
imagery may lead to retinotopic activations in lower level visual regions (Slotnick et al.
2005). The proposed generative model can capture the feedback effects of mental im-
agery by modifying the S3 prior to simulate the mental image (feedback from prefrontal

to inferotemporal cortex) and then allowing this to propagate to lower regions,

e The active blackboard hypothesis (Bullier 2001), high-resolution buffer (Lee 2003) and
integrated model of visual perception (Lee et al. 1998), which argue for the parallel in-
volvement of the ventral path in all stages of computation, rather than the classical feed-

forward cascade (see Section 2.2.2). The model updates all layers during each simulation

time step reflecting the bottom-up and top-down interactions proposed in Figure 2.8.

¢ The Reverse Hierarchy Theory (Hochstein and Ahissar 2002), which states that explicit
perception emerges first at the top level and then proceeds in a top-down fashion. The
generative modelling approach implemented here is reminiscent of this theory, given that

high level causes (objects) in the model unfold a series of lower level effects (features).
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Comparison with previous models

The proposed model shares many structural and functional similarities with the Hierarchical
Temporal Memory (HTM) model proposed by George and Hawkins (2009). They both employ
the belief propagation equations to approximate selectivity and invariance in alternating hierar-
chical layers. The main difference is that the HTM nodes embody both the simple and complex
features, which are called coincidence patterns and groups (Markov chains), respectively. The
inclusion of a Markov chain within the node makes HTM qualitatively different from a Bayesian
network. Consequently, belief propagation also becomes a qualitatively different algorithm that
can be applied exclusively to HTM nodes. By combining simple and complex features within
the same node, the authors avoid much of the complexity, and possibly benefits, inherent in a

rigorous implementation of belief propagation, such as loops and multiple parents.

The proposed model implements the same feature grouping mechanism present in HTMs (ex-
cept for the temporal correlation of Markov chains) by exploiting the weights of the CPTs be-
tween simple and complex layers. Figure A.1 in the Appendix Section A provides a schematic
representation of an HTM network that implements the 3-level HMAX model (Serre et al.
2007¢) used for this thesis. The HTM network is formulated using the original HTM notation
(George and Hawkins 2009) combined with the original HMAX parameter notation (Serre et al.
2007c¢). The resulting HTM network can be compared to the Bayesian network that implements
the same 3-level HMAX model (Figure 4.4) in order 1o obtain a better understanding of the

differences between HTM and the proposed model.

The proposed model employs loopy belief propagation to perform approximate inference, sim-
ilar to the HTM model (George and Hawkins 2009). Other models implementing approximate
perceptual inference have employed message-passing algorithms derived from sampling meth-
ods (Hinton et al. 2006, Lee and Mumford 2003, Lewicki and Sejnowski 1997) or variational

methods (Murray and Kreutz-Delgado 2007, Rao and Ballard 1999, Friston and Kiebel 2009),

The model by Epshtein et al. (2008) implements exact inference using belief propagation. How-
ever, it is employed over simplified networks with no loops and is qualitatively different from

the proposed model in that nodes correspond to features and states to locations. The mode)
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by Chikkerur et al. (2009) also implements exact inference on a Bayesian network but models
exclusively high-level attention, such that the lower half of the network is non-Bayesian and

strictly feedforward.

The type of input image used by the model is more complex and detailed than that of previous
ones that were purely theoretical (Lee and Mumford 2003) or employed simplistic toy exam-
ples (Friston and Kiebel 2009, Lewicki and Sejnowski 1997, Hinton et al. 2006). Those with
comparable input images fail to account for other properties that have been implemented by
the proposed model, such as position and scale invariance (Rao and Ballard 1997, Murray and
Kreutz-Delgado 2007, Chikkerur et al. 2009) or illusory contour completion (Hinton et al. 2000,

Epshtein et al. 2008).

Future work

A number of potential improvements and extensions to the proposed model are listed below:

e Run simulations with Kanizsa figure controls that fully test the hypothesis that the model
performs illusory contour completion. At the moment, the control data give an ambiguous

answer to the model's performance.

e Perform a systematic analysis of the model parameters for both feedforward and feedback
processing. Some of the key parameters to study are the number of features per group,

the sparseness of the connectivity matrices and the sampling parameters.

o Learn heterogeneous feedback weights for features within a group and allow features to
belong to different groups. This should improve the feedback disambiguation capacity

and could lead to improved contextual modulation through lateral interactions.

e Improve the categorization of Kanizsa figures and the feedback C2-S2 reconstruction
to allow automatic illusory contour completion without clamping feedback. This could
also lead to an improvement of the categorization performance over time as a result of

feedback modulation.

e [nclude adaptation mechanisms that could lead naturally to phenomena such as sensitivity
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to temporal context and bistability (Mamassian and Goutcher 2005).

o Include the lateral peniculate nucleus (1.GN) as the bottom layer of the Bayesian network.
This would allow the corticothalamic feedback loop to be included within the same per-
ceptual inference framework and compare model results with the detailed experimental

data (Sillito et al. 2006).

o Increase the size of the input image to allow the simulation of multiple object detection,
spatial attention and automatic attention-shifting (e.g. occluder vs. occluded object)
(Walther and Koch 2007, Chikkerur et al. 2009). Additionally, natural images instead of
silhouettes can be used. Thanks to the parametrized model implementation, no additional
extension, apart from learning new weights, is required to test input images of different

sizes and characteristics.

e Test the model using input images that change over time (movies). The hiearchical struc-
ture of the generative model should naturally lead to a hierarchy of time-scales similar to

slow-feature analysis (Wiskott and Sejnowski 2002, Kiebel et al. 2008).

e Extend the model to include the where path containing spatial and motion information.
This could be modelled as a parallel Bayesian network with cross-interactions with the

what path at different levels.

e Formulate the model in a more generic way that can then be applied to different visual
scenartos or aother domains, such as auditory perception. The generic formulation should
specify certain principles and constraints, describing how Bayesian networks and belief
propagation can be applied to perceptual inference processes where selectivity and invari-
ance are desired properties. The specific structure and parameters can then be partially

learned using Bayesian learning methods.

e Real-time hardware implementation of the model using large parallel distributed systems,

such as SpiNNaker (Jin et al. 2010),

260



http://lncrea.se

6.5

6.5. CONCLUSIONS AND SUMMARY OF CONTRIBUTIONS

Conclusions and summary of contributions

It is important to highlight that the claim made in this thesis is not that the visual cortex works
exactly as a Bayesian network with belief propagation. However, the substantial body of evi-
dence presented and the model results suggest that, at a functional and structural level of de-

scription, there exist significant similarities between the visual cortex and the proposed model.

Therefore, this thesis supports the notion that the role for feedback is not limited to attentional
mechanisms, but provides a substrate for the exchange of information across the visual system
leading to hierarchical perceptual inference. This thesis provides an explicit demonstration that
Bayesian networks and belief propagation can be used as tools to model large-scale perceptual
processes in the visual system. In this sense, it complements previous theoretical studies that
argued for this approach (Lee 2003, Friston 2010) but did not provide an explicit implementa-
tion. At the same time, it complements small-scale biologically plausible implementations of
belief propagation (Litvak and Ullman 2009, Steimer et al. 2009), by providing them with a
large-scale functional model which they can attempt to reproduce. The proposed model can be
used as a template to guide the design of large-scale biologically plausible implementations of

belief propagation that capture the ventral path functionality.

A list of the contributions of this thesis is included below:

o A review and analysis of the experimental evidence, theories and computational models
of the role of cortical high-level feedback in object perception, including the illusory and

occluded contours.

e A review and analysis of the experimental evidence, theories and computational models
suggesting the visual cortex can be understood in terms of a generative model, Bayesian
networks and belief” propagation. This includes a detailed comparison of existing func-

tional models, biologically plausible implementations and possible cortical mappings.

e A comprehensive and mathematically rigorous explanation of belief propagation in Bayesian
networks, including a novel, intuitive and illustrative example with numerical step-by-

step demonstrations of the different types of evidence propagation.
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e A Bayesian network that provides a probabilistic interpretation of the HMAX model and
reproduces its structure; and an approximation to the selectivity and invariance operations
of the HMAX model using the belief propagation algorithm over the proposed Bayesian

network.

e An extension of the static feedforward HMAX model to include dynamic and recursive
feedback based on the loopy belief propagation algorithm in the proposed Bayesian net-

work.

e A particularization of the CPT learning method proposed by Das (2064} to the hierarchi-
cal object recognition domain. The method simplifies the generation of the CPT parame-

ters for Bayesian networks where nodes have multiple parents.

e Solutions to the problems associated with the integration of information in large-scale
Bayesian networks. These include sampling methods and the re-weighting of probability

distributions to establish a minimum value.

e Simulation results and analysis demonstrating the model s consistent with anatomical,
physiological and psychophysical data of the ventral path, including object categorization
with invariance to occlusions, position and scale. Results also suggest categorization
performance could improve over time by including the feedback loop, but further research

is required to prove this hypothesis.

e Simulation results and analysis demonstrating the model is able to reproduce the phe-
nomena of illusory contour formation, including the qualitative response pattern observed
across layers, the temporal sequence of events and the mechanisms involved. An addi-
tional proof-of-concept example also demonstrates the model can account for higher-
level feedback effects such as priming, attention and mental imagery. These results and
the model implementation are shown to be consistent with a number of theoretical view-
points such as the Reverse Hierarchy Theory, the high-resolution buffer hypothesis and

the integrated model of visual perception.

e Analysis of the benefits and limitations of this model and, more generally, of using
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Bayesian networks and belief propagation to model cortical object perception.

e A list of potential model extensions and improvements, and future lines of research in

this field.
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Appendix A

HMAX as a Hierarchical Temporal Memory net-
work

A Hierarchical Temporal Memory (HTM) network can be specified mathematically as a gener-

ative model and is defined by the following parameters:

e HTM nodes N, where L. = level of the hierarchy, and i = index of the node within that

level.

e [iach node contains a set of patterns ¢y, ..., ¢y and a set of groups/Markov chains gy, ..., gn.

each of which is defined over a subset of the coincidence patterns in that node.

e Connectivity between child and parent nodes which defines the structure bottom-up mes-

sages A and top-down messages 7 of each node during belief propagation.

Figure A.1 provides a schematic representation of how an HTM network could implement the
3-level HMAX model (Serre et al. 2007¢). The diagram defines all the above parameters for an
HTM network that captures the structure and connectivity of the 3-level HMAX implementa-
tion. The parameters of the HTM network are described as a function of the parameters of the

HMAX model, using the same notation as in Table 4.2. To summarize:

e Lach HTM node corresponds to all the HMAX complex units at a specific location, and

all of its afferent simple units.

e The HTM groups correspond 1o each of the features coded by the HMAX complex units

at that location.
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e The HTM patterns correspond to the features coded HMAX simple units. We assume
simple units with a different relative location to the complex unit, represent a different

HTM pattern.

Thus, HTM nodes embody both the simple and complex features, which are called coincidence
patterns and groups (Markov chains), respectively. The inclusion of the groups within the node
makes HTM qualitatively different from a Bayesian network. Consequently, belief propagation
also becomes a qualitatively different algorithm that can be applied exclusively to HTM nodes,
By combining simple and complex features within the same node, the authors avoid much of
the complexity inherent in a rigorous implementation of belief propagation, such as loops and
multiple parents. The resulting HTM network can be compared (o the Bayesian network that
implements the same 3-level HMAX model (Figure 4.4) in order 1o obtain a betier understand-

ing of the differences between HTM and the proposed model.
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Figure A.1: Schematic representation of how an Hierarchical Temporal Memory (HTM) net-
work could implement the 3-level HMAX model {Serre et al. 2007¢). HTM nodes
embody both the simple and complex features, which are called coincidence pat-
terns and groups (Markov chains), respectively. The HTM network is formulated
using the original HTM notation (George and Hawkins 2009) combined with the
original HMAX parameter notation (Serre et al, 2007¢). See text for details,
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Glossary.

A(x) Likelihood function, which combines all bottom-up evidence of node X
Ac(x) Bottom-up message from node C to node X

m(x)  Prior function, which combines all top-down evidence of node X

7y (1) Top-down message from node U to node X

Bel(x) Belief, or posterior probability of node X

ART  Adaptive Resonance Theory

CPT  Conditional probability table, equivalent to the connectivity matrix between Bayesian

nodes
EEG  Electroencephalography
fMRI  functional magentic resonance imaging
I'T Inferotemporal cortex
LGN Lateral geniculate nucleus
LOC  Lateral occipital complex
MEG  magnetoencephalography
MST  Medial superior temporal cortex
MT  Middle temporal cortex
PP Posterior parietal cortex
RHT Reverse Hierarch Theory
STDP Spike-time dependent plasticity
Vi Primary visual cortex

V2 Secondary visual cortex
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