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An integrated approach to assess impact of environmental stress in carp, 

Cyprinus carpio L.: Biochemical, genotoxic, histopathological and individual 

level effects 

SANAA A. MUSTAFA 

Abstract 

Studies were undertaken to determine toxicological effects in a model species, 

Cyprinus carpio L. following hypoxic exposure either alone or in combination with 

representative heavy metal (i.e. copper; Cu) via a dietary route, at different levels 

of biological organisation (viz. biochemical, histological and individual level effects). 

Initially, the validation study of biological responses using a range of 

concentrations of dietary Cu as a relevant environmental contaminant was carried 

out (Chapter 3). The results showed a range of biological responses in exposed 

fish including significant genotoxic response as determined by induction of DNA 

strand breaks (i.e. the Comet assay) with bacterial enzymes Fpg and Endo-III (for 

detection of oxidative DNA damage) and reduction in growth rate suggesting the 

robustness of selected biomarkers. Subsequently, this approach was used initially 

to determine the biological responses following chronic hypoxic and hyperoxic 

exposure (Chapter 4). The results suggested that both hypoxic and hyperoxic 

conditions lead to a range of comparable biological responses. Following relative 

evaluation of chronic hypoxic and hyperoxic exposures, experiments were carried 

out to elucidate potential interactive effect of hypoxia in combination with dietary 

Cu (Chapter 5). The combined exposure of hypoxia and Cu induced a significantly 

higher level of DNA damage suggesting that DNA damage in fish can serve as a 

sensitive biomarker for changes in water quality as well as presence of genotoxic 

chemicals. The final sets of experiment were carried out to determine the biological 

responses in C. carpio following exposure to chronic hypoxic stress and 

subsequent recovery in normoxic condition for 7 days. Real-time PCR (qPCR) 

technology was used to examine the hypoxia inducible Factor-1 α (HIF-1α) gene 

expression pattern (Chapter 6). The results suggested that the expression levels of 

HIF-1α in response to hypoxia were significantly higher compared to normoxic 

controls, a high level of oxidative DNA damage under hypoxia and re-exposure to 

normoxic condition (i.e. recovery period). This will shed lights for development of 

adaptive response in higher vertebrates, which could also have significant clinical 

implications in human health.  
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1. Introduction 

1.1 Environmental pollution 

The increasing pollution of aquatic ecosystems with thousands of anthropogenic 

and natural chemicals is becoming the major environmental threat facing human 

and environmental health (Schwarzenbach et al., 2006). In addition to 

anthropogenic chemicals and radionuclides, in recent years, significant attention 

has been paid to the problems of environment contamination by pathogenic 

microbes and organisms (bacteria, viruses, and parasites), harmful algal blooms, 

increased ultraviolet (UV) radiation, and nutrient enhancement or deprivation 

(Fleming et al., 2006). The major classes of toxic compounds of concern for 

aquatic ecosystems and in particular for fish are heavy metals, polycyclic aromatic 

hydrocarbons (PAHs), chlorine, cyanides, polychlorinated biphenyls (PCBs), 

petroleum products and domestic and industrial effluents, which might contain a 

range of different contaminants with potential detrimental impact on the health of 

humans and the biota (Walker et al., 2001). 

The contaminants in the natural environment however occur as complex mixture in 

all probable combinations (Jha, 2004). Most of the knowledge and understanding 

of the potential effects of pollutants however is based upon the effects of single 

compound assessed in the laboratory. Much less is known about the impacts of the 

complex environmental mixtures. Many of these contaminants, as a part of 

complex mixture, could occur at very low concentrations often below the detection 

level by available analytical techniques. However, potential synergistic or even 

additive interactive toxic effects can make such mixtures hazardous (Bickham et 
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al., 2000; Dixon et al., 2002; Novák et al., 2008; Schwarzenbach et al., 2006). For 

instance, Brian et al., (2005) showed that when five estrogenic compounds are 

mixed in concentrations all below levels at which their individual effects can be 

detected, their cumulative effect on fish was detrimental. Also exposure of aquatic 

organisms to environmental contamination often results in genotoxic insult, either 

via direct genotoxicity, or through the induction of cellular or oxidative stress 

(Klobučar et al., 2010). Furthermore, the carcinogenic and mutagenic compounds 

are the most dangerous as their effects may exert a damage beyond that of 

individual and could be active through several generations (Dixon et al., 2002). 

In addition, chronic, low level exposure of pollutants have detrimental effects on 

reproduction, behavior, resistance against diseases and other physiological 

problems such as immunosuppression (Kime, 1999). As a consequence, all of 

these pollutants have implications with human and animal activities. This could 

include direct interaction from toxic chemicals in drinking water and indirectly via 

the food chain (e.g. by consuming contaminated fish or seafood) (Li et al., 2006). 

The assessment of a wide range of xenobiotically- induced variations in cellular or 

biochemical components, processes, structures or functions (biomarkers) in 

sentinel organisms (bioindicators) is very important to detect the potential toxicity of 

pollutants. Considering, the importance of DNA in maintaining the homeostasis of 

all organisms and in the transfer of information to the next generation, an 

assessment of the integrity of DNA is essential when detecting pollution related 

stress in aquatic organisms (Bickham and Smolen, 1994; Klobučar et al., 2010). In 

order to sustain healthy life on this planet, detection of the effects of contaminants 

in aquatic ecosystems is an essential task requiring improved analytical and 
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modeling biomarkers to probe (toward) the bioavailability, distribution, and 

biological impacts of single compounds and of chemical mixtures (Schwarzenbach 

et al., 2006). 

 

1.2 Types of pollutants 

1.2.1 Organic pollutants 
Persistent organic pollutants (POPs) represent a threat to aquatic ecosystem 

because they are resistant to environmental degradation via biological, chemical, 

and photolytic mechanisms and also have ability to accumulate in sediments and 

bioaccumulate in human and animal adipose tissue and biomagnify in food chain. 

This group covers a wide range of products including: polyhalogenated, polycyclic 

aromatic hydrocarbons (PAHs), polychlorinated biophenyls (PCBs), and 

polybrominted diphenyl ethers (PBDEs). (Livingstone, 1998). Also, pseudo 

persistent xenobiotics (e.g. pharmaceuticals) have recently been recognized as an 

important class of organic pollutants due to their physical–chemical properties, 

which allow their persistence and bioaccumulation in the environment. Due to their 

high prescription rate, they are however continuously supplied to the aquatic 

ecosystem provoking harmful effects in aquatic environments in concentration 

down to a few nanograms per litter (Barceló and Petrovic, 2007; Trovó et al., 2008). 

Many of these contaminants are highly bioactive, most are polar, many are 

optically active and all (when present in the environment) usually occur at no more 

than trace concentrations such as pharmaceuticals which are relatively readily 

degradable (e.g. ibuprofen, diclofenac) (Trovó et al., 2008). 

 

http://en.wikipedia.org/wiki/Biodegradation
http://en.wikipedia.org/wiki/Chemical_decomposition
http://en.wikipedia.org/wiki/Photolysis
http://en.wikipedia.org/wiki/Bioaccumulate
http://en.wikipedia.org/wiki/Biological_tissue
http://en.wikipedia.org/wiki/Biomagnification
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Aquatic biota including fish species are frequently exposed to these pollutants 

during lifespan via direct contact to sediment as embryo and/or by consumption of 

contaminated invertebrates as food. In addition, the uptake of these contaminants 

by aquatic organisms could also occur via the suspended particulate matter and 

food sources. A proportion of these potentially toxic substances enter the aquatic 

environment where they are readily taken up into the tissue of fish and other biota 

causing adverse systemic disorders including: reproductive impairment, damage to 

the nervous system and disruption to the immune system (Li et al., 2006). More 

recently, these compounds, in the environment are known or suspected pro-

carcinogens that require metabolic activation to exert their genotoxicity (Perk, 

2006). The fate of the organic pollutants in an organism can comprise four phases: 

absorption, distribution, metabolism and excretion (i.e. ADME). Absorption of 

organic contaminants is dependent on the molecular properties of the compound 

(e.g. lipophilicity, polarity, size) and on the characteristics of the organism. In fish, 

the main absorption mechanism of the organic compound is the passive diffusion 

through the gills and skin. Distribution of organic compounds through tissues via 

circulatory system follows the same principles as absorption (Fig. 1.1). The toxicity 

of the compound depends on its degree of uptake (distribution) and metabolism 

(Walker et al., 2001), whereas the importance of biotransformation (metabolism) 

will be explained in detail as described in section 1.3. Foreign chemicals in teleost 

fish are primarily excreted via urine and bile. Xenobiotics and their metabolites 

excreted via urine are filtered in the glomerulus and/or secreted by tubular 

transport within the kidney. For many organic pollutants, the extent to which 

conjugates are formed is extremely important in determining the rate of excretion of 
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the pollutant. This is because most conjugates (glycosides, sulfates, amino acid 

conjugates, mercapturic acids) are organic anions which are readily water-soluble 

and are rapidly excreted by fish (and probably higher invertebrates) by a 

combination of glomerular filtration and tubular transport (Livingstone, 1998).  
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Fig. 1.1 Interaction of contaminants with environmental and biological system leading to 
responses at different levels of biological organisation.  
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1.2.2 Heavy metal 

1.2.2.1 Bioavailability of metals in water and the pathways of their uptake by 
fish 

There are three possible pathways by which heavy metals enter into the body of 

fish: The skin (body surface), gills, and the alimentary tract (Dallinger et al., 1987). 

The routes of metals entering into aquatic organisms depend on specific features 

of water chemistry, sediments and on biological factors of the organisms. Among 

the biological characteristics affecting metal bioavailability, species specific 

differences such as feeding behavior (Baudin and Fritsch, 1989; Phillips and 

Rainbow, 1989; Van Campenhout et al., 2009; Van Hassel et al., 1980; Veltman et 

al., 2008) and habitat preferences can play an important role (Hendricks, 1994; 

Van Hassel et al., 1980). Moreover, these basic features are modified by 

physiological factors (bioaccumulation levels and the binding ability) in an animal. 

In addition, the bioavailability of metals could be modified by water quality criteria 

like salinity, temperature and pH (Angehrn-bettinazzia et al., 1989; Wang, 1987). 

Little is known about the entry of metals or other contaminants in fish via the skin. 

There are some indicators that mucous secretion may prevent heavy metals from 

entering fish body. However, body surface of fish is more or less impermeable to 

harmful agents in the aquatic environment (Eddy and Fraser, 1982; Tao et al., 

2000). Gills represent a highly specialized and exposed part of the body surface 

and also play an important pathway for uptake of essential and non-essential metal 

ions from the water (Ayse Bahar et al., 2010; Fenwick and So, 1974). For example, 

after exposure of fish to soluble hexavalent chromium or cadmium, these metals 

are found in the gills (Ayse Bahar et al., 2010; Kim and Kang, 2004). Many studies 
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have been shown that cadmium is taken up by perfused gill in aquatic organisms 

(Part and Svanberg, 1981; Pedersen and Bjerregaard, 2000), a marked uptake 

occurring immediately after exposure (Dang and Wang, 2009; de Conto Cinier et 

al., 1999). From gills, the observed metals are distributed throughout the whole 

body and accumulate to specific tissues. Heavy metals have been shown to evoke 

severe changes in gill morphology. Hence, the gill represents an important site for 

the soluble fractions of heavy metals in the aquatic organisms. (Arellano et al., 

1999; Evans, 1987; Martinez et al., 2004). 

Uptake of particulate metal fractions by aquatic organisms occurs, if at all, from 

contaminated suspended matter, sediments, and organisms such as invertebrates 

which act as food sources, the only possible route being the alimentary tract. In 

many aquatic systems pollution has lead to metal contamination of the food 

sources (including organisms) for various fish species (Dallinger et al., 1987; 

Mudre and Ney, 1986; Spehar et al., 1978; Van Hassel et al., 1980; Wang and 

Rainbow, 2008). 

1.2.2.2 The relative importance of food as a source of heavy metals 

Metal-containing food represents a much more highly contaminated source than 

water, in which the levels are lower, even at highly contaminated sites. Food or 

diets therefore could be an important and effective source of metal contamination 

in aquatic organisms. Though, most of the work supporting this observation is 

based on the laboratory experiments (Amiard and Amiard-Triquet, 1979; Dallinger 

et al., 1987; Hamdy and Prabhu, 1979) some studies have also suggested very 
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high level of accumulation of metals in invertebrates which serve as food source for 

fish (Rainbow et al., 2007). 

Aquatic organisms of higher trophic levels will have a diet enriched by these metals 

and may bioaccumulate, biomgnificate or biotransfer certain heavy metals to levels 

high enough to bring about harmful effects, especially by transferring the heavy 

metals up-the food chain (Dallinger et al., 1987). Generally, the uptake of heavy 

metals from food depends on various factors. Some studies indicate that significant 

absorption of a metal by fish takes place only, if the metal content in the food 

exceeds a minimum threshold concentration (Chan et al., 2003). Furthermore, 

expenditure rate, feeding frequency (Li et al., 2009), diet quality (Woodward et al., 

1994) and interactions with water borne metals may modify food related metal 

accumulation in fish (Dallinger et al., 1987). The extent of metal from water or food 

is reflected in increased levels in different organs. For instance, after contamination 

with copper or cadmium, high levels of metal are accumulated in liver and kidney 

(Kim and Kang, 2004; Malik et al., 2010), as these organs are targets for final 

accumulation of different heavy metals. The concentrations in both organs seem to 

be independent of the pathway of uptake. However, the contributions of water and 

food to metal uptake in fish are reflected by high levels in gills and gut tissues, 

respectively. For example, for mercury, a harmful metal for which most studies 

have involved the organic or methylated metal, Lock (1975) reported that in Salmo 

gairdneri the uptake rate of methyl mercury from water was higher compared to 

food. The percentage uptake of the metal was however higher from the food (5-10 

times higher). Table 1.1 summarises data comparing the levels of various tissues 

contaminated following both aqueous and food or dietary route. Soluble metal 
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fractions may accumulate preferentially via gills whereas particulate metal fractions 

via digestive tract (Dallinger and Kautzky, 1985). In fishes uptake of metal via 

water, the higher levels are generally found in gills than gut tissues. In contrast, 

fishes accumulating heavy metals via food, the higher concentration is in the gut 

and liver tissues compared to other tissues. Therefore, it appears that both gills 

and gut tissues are important pathways for metal uptake in fish.  
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Table 1.1 Comparison of metals levels in different tissues of fish following different routes of uptake (i.e. food and water). Metals, fish 
species, tissues are specified. The levels in organs are ranked in decreasing order.  

 

Heavy metal     Species Tissue ranked by concentration      Reference  

 

A: accumulation by food   

Cu  Sebastes schlegeli liver > intestine > kidney > gill  (Kim and Kang, 2004) 

Cd Terapon jarbua liver > digestive gland > gill  (Dang and Wang, 2009) 

Cd Pseudosciaena crocea R kidney > liver > gill > muscle (Li et al., 2009) 

Cu Cyprinus carpio L. liver > Intestine > kidney > gill    (Hashemi et al., 2007) 

Cd & Cu  Salmo salar liver > Intestine > kidney > gill    (Lundebye et al., 1999) 

Hg Cichlasoma facetem gut > liver > muscle > head (Hamdy and Prabhu, 1979) 

 

B: accumulation by water 

Cu Platichthys flesus gill > liver > kidney > plasma (Stagg and Shuttleworth, 1982) 

Cu & Pb Tilapia zillii gill > kidney > liver  (Ay et al., 1999) 

Cd Cyprinus carpio L. kidney > liver > muscle  (de Conto Cinier et al., 1999) 

Cd Pleuronectes platessa gill > kidney > liver > gut (Pentreath, 1977) 

Co-60 Cyprinus carpio L. gill > digestive tract 
(Amiard and Amiard-Triquet, 
1979) 

Cr Oreochromis niloticus liver >  gill > muscle   (Nuray et al., 2010) 
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1.2.2.3 Modifying factors affecting heavy metals toxicity 

As mentioned earlier, aquatic organisms living in contaminated environments tend 

to accumulate heavy metals in their organs. Generally, metal distribution in various 

tissues are related to their uptake, concentration, time of exposure, environmental 

factors (pH, water temperature, hardness, salinity, dissolved oxygen) and biological 

factors (feeding habits, fish age), resulting in structural lesions and impairment of 

functions (Jezierska and Witeska, 2001; Jezierska and Witeska, 2006). Different 

metals however show various affinities to fish tissues. Most of them accumulate 

mainly in liver, kidney and gills. Fish muscles, comparing to the other tissues, 

usually contain the lowest levels of metals (Dural et al., 2007; Karadede and Ünlü, 

2000). Metal accumulation in fish tissues usually follow the grading: Fe > Zn >Pb 

>Cu > Cd > Hg. Zn concentration may be very high over 300 µg g-1 d.w. Maximum 

levels of Cu and Pb are very lower and usually do not exceed 10 µg g-1 d.w. Cd 

and Hg accumulated in fish tissues in very low amount and is usually below 1 µg g-

1 d.w. (Jezierska and Witeska, 2006). 

The environmental conditions affect uptake and accumulation of metals in fish. 

Douben (1989) found that the rate of uptake and elimination of Cd by 

Neomacheilus barbatulus L. increased with water temperature on metal absorption 

than on elimination. According to Köck et al. (1996), Cd and Pb levels in Salvelinus 

alpinus kidney and liver indicate that higher uptake rate of both metals occur at 

high temperature during summer. The authors explained that this probably was 

due to increased metabolic rate.  
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Many studies indicate that water acidification affect metal uptake and 

accumulation. Çogun and KargIn, (2004) found that the accumulation of the Cu 

increased at lower pH. Also, data generated from different lakes indicate that the 

levels of Pb and Cd but not Zn are significantly increased in fish from acidified 

lakes (Grieb et al., 1990; Haines and Brumbaugh, 1994; Wiener et al., 1990). The 

authors explained that water acidification affects metals accumulation by direct way 

via damage to the epithelia which become more permeable to metals, and in 

addition, competitive uptake of H+ ions could inhibit metal absorption or by indirect 

route by changing the solubility of the metals rates in aquatic organisms.  

Water hardness or alkalinity (particularly Ca concentration) significantly affects 

metals uptake of metals across gill epithelium. According to Comhaire et al., (1994) 

the effect of Ca concentrations on Co+2 uptake involve direct interactions with 

system involved in the translocation of Co+2 across the gill epithelium of the 

common carp. Data obtained by Baldisserotto et al. (2004) showed that enrichment 

of water with Ca+2 protect against both, dietary and waterborne uptake of cadmium. 

Pagenkopf (1983) reported that calcium might compete with other metals for 

binding sites in the gill surface.  

In common with hardness, salinity reduces the uptake and accumulation of metals 

by fish. Bugenyi and Lutalo (1990) showed that high concentrations of mineral salts 

in the water have the ability to reduce the effectiveness of copper ionic activity 

through adsorption, precipitation, and ionic interference. The high concentration of 

organic compounds in the water also complex and chelates Cu2+ ion. With 

dissolved oxygen (DO), it has been found that as DO decreases, toxicity of a given 

concentration of Cu increases. This may be partly due to increased ventilation, 
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which in turn increases with the amount of Cu presented to the absorptive gill 

surfaces (Llyod, 1961). Such relationship has been reviewed in details in Chapter 5 

(section 5.1). 

Intrinsic factors also affect metals uptake and accumulation. Different species of 

fish from the same water body may accumulate differing amounts of metals. 

Interspecies differences in metal accumulation could be related to living (i.e. 

physiology) and feeding habits. Kidwell et al. (1995) reported that predatory fish 

species accumulated more Hg but the benthivores contained more Cd and Zn. 

Higher levels of Hg in predatory fishes compared to non-predatory one was also 

reported by Voigt (2007). The data obtained by Yilmaz (2003) suggested that Cu, 

Ni, Cr and Pb levels were higher in benthic fish. 

The affinity of different metals to fish organs may differ. In general, accumulation of 

essential metals such as Cu, Zn, Fe, Mn or Co is organ specific, even at low 

environmental levels. For instance, Cu shows high affinity to the liver (Kim and 

Kang, 2004), while Zn shows distinct affinity to the gonads (Yilmaz et al., 2010). 

The gills are directly in contact with water and in general, concentration of metals in 

gills reflects their concentration in water where the fish lives, whereas the 

concentration in liver represent storage of metals in the water (Roméo et al., 1999). 

 Furthermore, the accumulation of metals in fish tissues is time dependent. 

Generally in the initial stage of exposure metal is accumulated at high level, and 

then the rate stabilizes when equilibrium of metal uptake and elimination rate is 

attained. Many data indicate that dynamics of metals concentrations in various 

organs during exposure and depuration may be different. At the beginning of 

waterborne exposure metals levels in the gills rapidly increase, and then usually 
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decrease. Whereas, at the end of exposure, metals are rapidly removed from gill 

(Hollis et al., 2001). In case of dietary exposure, metals levels in the gills and 

digestive tract are generally increased much lower and usually reach lower rates, 

while in the liver remain high until the end of the exposure (Ausseil et al., 2002; 

Kim and Kang, 2004).  

1.2.2.4 The importance of aquatic food chains in metal accumulation and 
toxicity in fish 

The transfer of the heavy metals through food chains remains an important issue in 

metal assimilation by fish. Most heavy metals are effective at very low 

concentrations, however the extent to which the food chain effect in fish could be 

influenced by ecological factors, two possible factors should be regarded: The first 

kind of influence is related to degree of contamination of the food supply which is 

reflected significantly by high concentrations of heavy metals in sediment, benthic 

animals and macrophytes than by elevated concentrations in water (Clearwater et 

al., 2000; Dallinger et al., 1987; Di Giulio and Scanlon, 1985). This model of 

distribution may occur with both low and high concentrations of contamination 

(Dallinger and Kautzky, 1985), depending on their habitat preferences or 

specialized food requirements. For example, bottom dwelling fish species 

accumulate heavy metals due to association with metal containing sediments (Ney 

and Van Hassel, 1983). Therefore, ingestion of sediments or sediments dwelling 

invertebrates may present an important source of metal uptake by fishes 

(Czarnezki, 1985; Prosi, 1989; Vogt and Quinitio, 1994). 

The secondary factor might be related to reduction in species diversity. Numerous 

reports indicate that heavy metal contamination may lead to elimination of 
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susceptible species (Roch et al., 1985). As a result, the food chain is shortened 

and predictor fish are forced to feed more on only one kind of metal tolerant 

organisms as food (Boyle et al., 2011). 

Metal tolerance of food organisms is based on two opposite effects: detoxification 

and accumulation of metals. Among metal detoxifying food organisms aquatic 

isopods, snails and sludge worms have ability for storing large amount of heavy 

metal (Bryan and Langston, 1992). At the same time, these organisms possess 

effective detoxification mechanisms by which the metals combine to metal binding 

proteins or stored in cellular structures like vacuoles and lysosomes (Brown, 1976; 

Maltby et al., 1987). In highly polluted (metals) aquatic environment, the opposite 

effect might be seen in which metal tolerant phytoplankton species may favor the 

growth and are characterized by a decreased uptake of heavy metal per unit of 

biomass (Gächter and Geiger, 1979). Therefore, the tolerance is achieved by the 

exclusion of heavy metals. This process may play an effective role in ecosystem by 

decreasing the bioavailability of metals for organisms belonging to higher trophic 

levels.    

 

1.2.2.5 Mode of action of heavy metal contamination 

Many industrial and agricultural activities have contributed to the pollution of fresh 

water system with various heavy metals, thereby bringing harmful effects on both 

aquatic biota and human health (Yang et al., 2009). This is particularly in less 

developed countries, compared to most developed countries where emissions 

have declined over the last 100 years (Jarup, 2003). Most of the heavy metal ions 
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induce toxicity via the formation of coordination complexes and clusters in the 

animal cells (Albinas et al., 2005). Low level of heavy metals may exhibit a chronic 

stress which may not kill the individual fish but cause reduction for the growth rate 

(Vosylienė et al., 2003), thus reducing their ability to compete for food and habitat. 

These metals cannot be destroyed via biological degradation and have the ability 

to bioaccumulate in the environment causing adverse effects to the aquatic 

environment and consequently to the human via aquatic products as a sources of 

food (Kalay et al., 1999). Thus, humans can be at great risk through contamination 

of the food chain (Cheraghalia et al., 2010). 

The main threats to human health from heavy metals are associated with exposure 

to lead, cadmium, mercury, chromium, nickel, copper, and arsenic which are 

considered the most important heavy metals that may cause health risks from 

consumption of contaminated foods. The effects of heavy metal toxicity studies 

confirm that heavy metals can directly influence behavior by impairing mental and 

neurological function, influencing neurotransmitter production and utilization, and 

changing several metabolic pathways. In biological systems toxic metals can 

induce impairment and dysfunction including the blood and cardiovascular, 

detoxification pathways (i.e. colon, liver, kidneys, skin), endocrine (hormonal), 

energy production pathways, enzymatic, gastrointestinal, immune, nervous 

(peripheral and central), reproductive, and urinary as reviewed by Mudgal et al., 

(2010). 

Mercury (Hg) is considered to be a global pollutant because it is the predominant 

form of atmospheric Hg and highly toxic metal for living organisms (Li et al., 2001; 
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Schroeder and Munthe, 1998). Even at very low concentration, Hg could be 

converted to methylmercury (Me-Hg) and accumulate in the food chain, posing a 

potential hazard to humans‘ health. The concern of Hg pollution arises from the 

health effects caused by Me-Hg through the consumption of fish (Clarkson, 1993). 

Poisoning by methyl mercury compounds have been observed in large-scale 

outbreaks in Japan, China, Iraq and various parts of the world (Horvat et al., 2003; 

Li et al., 2009). The profound capacity of soft acid (acceptor) CH3Hg+ to bind soft 

ligands explains the high toxicity of methyl mercury compounds than Hg (Pelletier 

and Larocque, 1987; Rabenstein, 1978).  

Cadmium (Cd) causes various toxic effects in the body. It can react with polythiol 

groups of cellular macromolecules such as lipids, glycogen and amino acids. Cd 

bioaccumulated in tissues can replace the essential element zinc present in the 

enzymes carboxypeptidase (Price and Morel, 1990) and metallothionein (Jensen et 

al., 1996). The metal causes oxidative damage by alteration of mitochondrial 

activity and to other biomolecules including DNA.  

In the environment, Chromium (Cr) exists mainly in the trivalent and hexavalent 

states, the latter being the predominant species in natural water. Cr in combination 

with nickel as trace metals function as potential health hazard that causes 

maldisfunction in gastrointestinal, hepatic and neurological activities. Hexavalent 

chromium generates reactive oxygen species (ROS), which increase risk for 

cellular and hepatic DNA damage, enhance intracellular oxidised states, and 

decrease cell viability with necrosis and programmed cell death (apoptosis) 

(Bagchi et al., 2002). 
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Nickel (Ni) salts considerably increase the level of lipid peroxidation and 

simultaneously decrease glutathione level and glutathione peroxidase activity in 

the liver (Das et al., 2001).  

Lead (Pb) exposure produce adverse effect on the central nervous system as it is 

extremely toxic to most of the aquatic organisms (Jarup, 2003). The absorption of 

relatively small amounts of lead over a long period of time in the human body can 

lead to the malfunctioning of the organs (Admus et al., 2007). Children are mainly 

sensitive to lead exposure due to high gastrointestinal uptake and the permeable 

blood–brain barrier (WHO, 1995). Recent studies have indicated that lead could 

lead to neurotoxic effects at lower levels of exposure than previously anticipated 

(Jarop, 2003).  

Copper is an essential trace element to most aquatic organisms at very low 

concentrations (5-20 μg g-1) by humans, other mammals, fish and shellfish for 

carbohydrate metabolism and the functioning of more than 30 enzymes. It is also 

required for the formation of haemoglobin and haemocyanin, the oxygen-

transporting pigments in the blood of vertebrates and shellfish respectively. 

However, copper concentrations that exceed 20 μg g-1 can be toxic, as explained 

by Bradl (2005) and Wright and Welbourn (2002). The use of copper to control 

algae, fungi and molluscs demonstrates that it is highly toxic to aquatic organisms. 

The toxicity of copper depends on many water characteristics. Increased amounts 

of natural organic matter, carbonate, and higher pH levels may reduce the toxic 

effect of copper. The presence of dissolved organic carbon (DOC) in the water 

column provides some protection from the effects of copper on the gills because 

copper forms complexes with DOC and will therefore be less bioavailable. Copper 
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toxicity also depends on the organism considered. Some aquatic organisms are 

more susceptible to copper than others. The concentration required for killing 50% 

(LC50) of the marine mussel Mylitus edulis in 4, 10, 14, and 30 days is 200 to 300, 

90, 15, and 2 mg l-1 total copper respectively (Luoma and Carter, 1991).  

 The effects of copper on aquatic organisms can be directly or indirectly lethal. In 

fishes, the gill surfaces low affinity for metal allows greater entry of the metal to the 

intracellular compartment. Once there, more complex binding sites are present. 

Binding to these ligands causes one or more of the following toxic mechanisms: (a) 

blocking of the essential biological functional groups of biomolecules; (b) displacing 

the essential metal ion in molecules; or (c) modifying the active conformation of 

biomolecules. These mechanisms may account for the specific inhibition of ion 

transport from ionic copper (Cu+2) exposure (Luoma and Rainbow, 2005). Gills 

become frayed and lose their ability to regulate transport of salts such as NaCl and 

KCl into and out of fish. These salts are important for the normal functioning of the 

cardiovascular and nervous systems. When the salt balance is disrupted between 

the body of a copper-exposed fish and the surrounding water the death of the fish 

can result (Luoma and Rainbow, 2005). .  

Therefore, the presence of heavy metal at high concentrations in water or sediment 

does not involve direct toxicological risk to fish, especially in the absence of 

significant bioaccumulation. It is known that bioaccumulation is to a large extent 

mediated by biotic and biotic factors that influence metal uptake, due to the harmful 

effects of metals on aquatic ecosystems. In addition, metal interactions in the 

intestines of fish may affect the assimilation of essential and non-essential metals 

with possible toxicological consequences for fish (Boyle et al., 2011). It is 
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necessary to monitor their bioaccumulation in key species, because this will give 

an indication of the temporal and spatial extent of the process, as well as an 

assessment of the potential impact on organism‘s health (Zhou et al., 2008). 

Therefore, measures should be taken in order to minimize the risk of adverse 

health effects. 

 

1.2.2.6 Mechanism of acute and chronic copper toxicity in fish 

Cu is generally toxic to aquatic organisms particularly to fish, when ambient 

concentrations exceed physiological thresholds. The mechanisms of toxicity have 

been well elucidated for teleost fishes in the literature. In general, Cu exposure 

disturbs physiological functions in fish (Clear water et al., 2000). It accumulates in 

tissues and predominantly interferes with ionregulatory homeostasis both by 

decreasing branchial Na+/K+ adenosine triphosphate (ATPase) activity and by 

causing gill damage. Cu also affects energy metabolism, reduces swimming 

capacity and induces a corticosteroid stress response at lethal and sublethal 

concentrations (De Boeck et al., 2001). In addition, molecular data obtained 

indicated that intestinal Cu concentrations and 110mAg metal interactions in the 

intestines of fish may affect the assimilation of essential and non-essential metals 

with possible toxicological consequences for fish (Boyle et al., 2011). 

The mechanism of acute Cu toxicity to fish can be easily explained by direct target 

organ effects of Cu which results from the combined effects of a reduction in 

sodium (Na+) influx and an increase in Na+ efflux. The main target organ for 

waterborne exposure is the gill epithelium, which suffers an acute oedema and 

epithelial lifting during exposure (Taylor et al., 1999). This oedema perhaps 
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originates by Cu2+- dependent inhibition of the branchial Na+/K+-ATPase (Handy, 

2003 ). Reduced Na+ influx is thought to be associated with non-competitive 

binding of Cu ions to the basolateral Na+-pump, Na+/K+-ATPase, resulting in lower 

Na+ uptake rates into the blood (Nadella et al., 2007; Pelgrom et al., 1995; Li et al., 

2009). The result of this net loss of Na+ is a solute accumulation in the epithelial 

cells resulting osmotic influx of water into the cells. This initial disturbance is then 

followed by a general loss of ionoregulatory control by the gill, efflux of electrolytes 

from the blood over the gill epithelium, resulting cardiovascular failure and fish 

death (Pilgaard et al., 1994; Nussey et al., 1995). A moderate hypoxia due 

damaging gill could also contribute to the latter stages of toxicity (Sellers et al., 

1975).  

Chronic sub-lethal exposure to Cu causes a series of cellular and physiological 

changes in fish that enable the animal to survive. Cu is also an endocrine 

disrupting metal in the aquatic ecosystem, and has a number of normal neuro-

endocrine roles in vertebrates (reviewed by Handy, 3003). Similar to other heavy 

metals, Cu could be accumulated in fish tissues not only from the aqueous phase 

but also via the dietary route. Waterborne Cu accumulates in numerous tissues 

during chronic exposure including the gill, liver and kidney and to a lesser amount 

in the muscle (Grosell and Wood, 2002). Whilst these target tissues are broadly the 

same as acute exposures, during chronic exposure fish have more time to down-

regulate Cu uptake across the gills and re-distribute newly acquired Cu to the liver 

for excretion to minimise toxic effects (Grosell and Wood, 2002). As in mammals, 

the liver is the major homeostatic organ for controlling excretion and circulating Cu 

concentrations, and also biliary Cu excretion is elevated in situations of elevated 
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uptake (Grosell and Wood 2002; Kamunde et al., 2002). Whole body Cu status in 

fish is also a function of body size (as in humans, Linder, 1991).  Several studies 

have shown that adult fish are able to regulate tissue Cu levels to lower 

concentrations than smaller juvenile fish of the same species (e.g. intestine, Handy 

et al., 2002; muscle, Grosell et al., 1996). Therefore, both the temporal change of 

Cu distribution and excretion, and apparent body-mass dependence of these 

events suggest a well regulated physiological function in fish.  

 
1.3 Biotransformation reactions and enzymes 

All animal cells possess a suite of biotransformation enzymes, usually present in 

highest levels in the liver. In fish, the activity of these enzymes may be induced or 

inhibited upon exposure to contaminants (Bucheli and Kent, 1995). In general term, 

the major function of the biotransformation enzymes is the conversion of lipophilic 

xenobiotics to more hydrophilic, water- soluble excretable metabolites, to reduce 

half-life of the contaminants and to reduce the effect of exposure as well as to 

avoid the accumulation in the process of biotransformation (Gatlin and Wilson, 

1986). Three major phases of enzymes involved in xenobiotic biotransformation 

are distinguished as: phase I, phase II and phase III enzymes (Livingstone and 

Pipe, 1992). A summary of metabolic reactions is given in Table 1.2. The phase I 

of metabolism, adding reactive functional groups, includes oxidation, reduction or 

hydrolysis. For the most of the xenobiotic compounds the phase I reactions are 

catalyzed by microsomal monoxygenase (MO) enzymes, also known as the mixed-

function oxidase (MFO) system (i.e. cytochrome P450 [CYP450], cytochrome b5 

[CYb5], and NADPH cytochrome P450 reductase (Livingstone, 1998). The most 

important enzyme system catalyzing phase I metabolic reactions for environmental 
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contamination in fish is the induction of CYP450 1A (CYP1A) (Bucheli and Kent, 

1995; Goksøyr and Förlin, 1992). This enzyme system is also involved in the 

oxidative metabolism of xenobiotics in the liver (Stegeman, 1985). Several studies 

have established an increase in the hepatic CYP1A protein levels in different 

species of fish after exposure to organic trace contaminants. Particularly, PAHs, 

PCBs, PCDDs and PCDFs caused a significant or a higher increase (500% of 

control) in CYP1A content (Hahn et al., 1998; Klemz et al., 2010; Miller et al., 

2004). 

The phase II of metabolism involves a conjugation of the xenobiotic parent 

compound or its metabolites with an endogenous ligand. Conjugations are addition 

reactions in which large and often polar chemical groups or compounds such as 

sugars, glutathione and amino acids are covalently added to xenobiotic 

compounds thus facilitating transport and produce water- soluble molecules which 

is generally non-toxic, more easily excreted via biliary and renal route (Livingstone, 

1998). In mammals and fish, the organic anions formed by phase II reaction are 

frequently substrates for facilitated renal tubular transport and are therefore rapidly 

excreted in urine by a combination of glomerular filtration and tubular transport. 

Thus, depending on structure and the extent of phase one I biotransformation of a 

particular organic pollutant, the rate of excretion will be influenced by the extent to 

which the pollutant is conjugated. Pollutants that are rapidly excreted show no 

lasting toxicity (James, 1987). Phase III of metabolism includes catalysis by 

enzymes of the xenobiotic compounds which are also active in phase I and/or 

phase II reactions in which the xenobiotic conjugates may be further hydrolyzed or 

metabolized (Livingstone and Pipe, 1992).   
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Table 1.2 The principle reactions in the biotransformation of xenobiotics. 

* CYP = Cytochrome P-450, MFO = mixed function oxygenase system, NADPH = Nicotinamide adenine dinucleotide 

phosphate. 

 

   

 

    

 Reaction 

 

Enzyme 

 

Substrates 

 
Phase I 

 

 Oxidation 

 Reduction 

 Hydration 

 Hydrolysis 

 

 CYP* and MFO* 

 NADPH*-CYP reductase 

 Epoxide hydrolase 

 Esterases and amidases 

 

    Amins and many sulphur compounds  

 Quinones 

 Epoxides 

 Estrase & amides 

  

 
Phase  II 

 Glucuronide conjugation  

 Amino acid conjugation 

 Glutathione conjugation 

 Sulphation 

 UDP-glucuronosyltransferase 

 Amino acid N-acyltransferase 

 Glutathione –S- transferase 

 Sulphotransferases 

 Phenol, alcohols, amins & amide 

 Phenol, alcohols, amins, amide & thiols 

 Epoxide, haloakannes, nitroalkanes &   

alkenes 

 Phenol, alcohols, amins and thiols 

 
Phase  III 

  

 Oxidation 

 Hydrolysis 

 Deamination 

  

 MFO 

 Peptidases 

 Transaminases 

 

 Thioethers 

 Glutathion conjugates 

 Amino acid conjugates 

 

    

http://en.wikipedia.org/w/index.php?title=NADPH-cytochrome_P450_reductase&action=edit&redlink=1
http://en.wikipedia.org/wiki/Epoxide_hydrolase
http://en.wikipedia.org/wiki/Esterase
http://en.wikipedia.org/w/index.php?title=Amidases&action=edit&redlink=1
http://en.wikipedia.org/wiki/UDP-glucuronosyltransferase
http://en.wikipedia.org/wiki/Sulfotransferase
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1.4 Stress in aquaculture 

The term stress has been widely used and redefined by many biologists. Jha 

(2004) defined stress as: “situations where the fitness of individuals (or populations) 

is reduced because of changed environmental conditions”. Natural environmental 

stress factors that fish may encounter include change in season, temperature 

and salinity. Social stress (i.e. crowding and hierarchy) is also considered in the 

literature (Iwama, 1997). Furthermore, hypoxic areas, or ‗dead zones‘ which are 

also becoming an increasingly worldwide problem could have serious 

consequences on ecosystem functioning (Diaz and Rosenberg, 2008). As 

described earlier, anthropogenically induced stress factors include xenobiotics 

including metal contaminants. 

From an ecological or aquaculture point of view, severe cases of stress my 

result in high rates of mortality, sub lethal stress may result in disturbance in 

physiological and behavioural functions, immunosuppression and decreased 

disease resistance, decreased growth rates and adverse effects on health (Yin 

et al., 1995). Hence, the management of the stress including its dietary 

modulation is critical in running and maintaining a successful aquaculture 

system. 

1.5 Hypoxia and hyperoxia Induce oxidative stress in fish  

The oxygen demands of fish mainly depends on species, activity and fish size, 

and fish have to adapt to fluctuations in environmental factors, such as 

temperature, salinity and water quality, that affect oxygen concentration. 

Sensitivity to oxygen is very dependent on species. Thus, lethal concentration 

of oxygen in water varies from 0.5 to 3 mg l-1 depending on species and was 

estimated around 2-3 mg l-1 for salmonids (Landman et al., 2005). Hypoxic as 
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well as hyperoxic conditions are common in polluted and naturally eutrophic 

waters. Moreover, a rapid change from hypoxia to hyperoxia can occur within 

only a few hours as the result of photosynthetic oxygen production. Chronic 

hypoxic conditions prevailing in so called ‗dead zones‘ in different parts of the 

world, which is linked to anthropogenic activities, often leads to mass mortality 

of sensitive biota and could lead to overall reduction in biodiversity (Diaz and 

Rosenberg, 2008). Elevated oxygen concentration serves as an inductor for 

oxidative stress in aquatic animals and may lead to DNA damage (Halliwell and 

Aruoma, 1991).  Also, hypoxic conditions can lead to cell death and apoptotic 

DNA disintegration (Gorokhova et al., 2012).  

In fact, any kind of physiological stress response includes modification of ROS 

concentrations, which in certain states result in the development of oxidative 

stress. Oxygen availability is among the factors that critically affect cellular ROS 

levels and respectively induce oxidative stress (Lushchak and Bagnyukova, 

2006; Nikinmaa, 2002). It is generally established that reduced environmental 

oxygen concentration (termed hypoxia) or its full absence (termed anoxia) 

reduces ROS level, but normoxic recovery sharply increases ROS level 

resulting in oxidative stress (Halliwell and Gutteridge, 1999). Studies on 

anoxia/hypoxia effects on the common carp Cyprinus carpio generally fit the 

above. Hyperoxia clearly results in a transient oxidative stress in common carp 

tissues (Lushchak et al., 2005). 

1.6 Reactive oxygen species (ROS) and production of oxidative stress  

Reactive oxygen species (ROS) are constantly generated as undesirable bi- 

products of normal metabolic pathways and also by some specific sites under 

certain cellular control. At the same time, ROS are degraded through several 
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processes. Two different mechanisms; generation, degradation of ROS, 

generally under delicate cellular control are very low (<10-8 M) steady state 

ROS levels are controlled (Halliwell and Gutteridge, 2007). However, under 

some circumstances, the dynamic equilibrium can be disturbed leading to 

enhanced ROS level and damage to cellular constituents which is called 

"oxidative stress‖. Hence, oxidative stress is caused by an imbalance between 

the generation of intra- and extracellular ROS and the ability of the antioxidants 

to scavenge them (Livingstone, 2003; Lushchak, 2011).          

ROS containing one or more unpaired electrons, e.g., superoxide anion radical 

(O2
.-), hydroxyl radical (OH•), and non-radical species such as hydrogen 

peroxide (H2O2), as well as reactive nitrogen species such as nitric oxide (NO.), 

nitric dioxide (NO2
.), and peroxynitrite (ONOO-) (Livingstone, 2003). The 

generation of the different ROS can be inter-related, producing ultimately the 

potential damaging OH-Thus O2
.- can be reduced to H2O2 via dismutation. H2O2 

and O2
.- can react together to produce extremely reactive hydroxyl anion and 

hydroxyl radical via metal catalysed Harber Weiss reaction (Fig. 1.2). This leads 

to peroxidation of lipids, proteins, damage to cell structure (DNA, RNA) and 

apoptosis and programmed cell death (Di Giulio et al., 1989). 

The main endogenous site of ROS generation, in living organisms (usually over 

90%) is produced by electron transport chain in mitochondrial, endoplasmic 

reticulum, plasmatic and nuclear membranes, and photosynthetic system 

(Puddu et al., 2008). Additionally, minor ROS amounts are produced by various 

enzymatic oxidase reactions such as cytochrome P450 reductase, 

lipoxygenases, and xanthine oxidase (Chance et al., 1979). Many 

environmental pollutants are essentially exogenous sources of ROS in 
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biological systems. In particular, polycyclic aromatic hydrocarbons, 

organochlorine, polychlorinated biphenyl, heavy metals (including Cu and Fe) 

and other chemical toxic pollutants are capable of inducing oxidative stress in 

aquatic animals (Lackner, 1998). In addition to pollutants, ROS are linked to a 

variety of environmental factors such as ultraviolet radiation, which plays an 

important role in the mechanistic aspects of oxidative stress (Valavanidis et al., 

2006). Thus, oxidative stress is a pathological xenobiotic-induced mechanism 

related to overproduction of ROS in tissues, and is considered to be an 

essential factor in aging processes, DNA damage, and is closely associated 

with aging and a number of diseases including cancer, cardiovascular diseases, 

diabetes and diabetic complications in humans (Agarwal et al., 2008).  

Recently contaminant- stimulated ROS formation and resultant oxidative 

damage has been considered to be a significant mechanism of toxicity in 

aquatic organisms exposed to pollution. Oxidative stress can also be produced 

from other sources, including: hypoxia, hyperoxia and the use of the ozonisation 

in aquaculture (Livingstone, 2003; Luschack, 2011). Dirmeier et al. (2002) also 

reported that oxidative stress results from hypoxic conditions. Moreover, high 

oxygen solubility at cold-water temperatures is considered to be responsible for 

elevated levels of ROS and antioxidant concentrations in polar marine 

invertebrates and fish (Abele and Puntarulo, 2004). In addition, several 

investigators have observed ROS production after exposure to hyperoxic event, 

and have investigated that these ROS act as upstream signaling molecules that 

induce oxidative damage (Buccellato et al., 2004).  

Aniagu et al. (2006) demonstrated that polluted waterways and acute extreme 

exercise could result in DNA damage associated with oxidative stress. Little is 
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known of the relationships between the oxidative stress, disease and fitness in 

aquatic organisms. Functional and pathological alterations have been seen with 

exposure to pollutants, including altered in intracellular Ca+2 concentrations in 

O. mykiss with exposure to lindane. At the whole organism level, reduced 

growth rates were seen in several fish species with exposure to Fe, PCBs and 

binary mixtures of dichloraniline and lindane (Livingstone, 2001, 2003).  
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Fig. 1.2 Different ways of oxygen reduction in biological systems with cellular 
generation of reactive oxygen species (ROS) and their interrelationships with the 
sequence of major cellular effects. 
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1.7 Biomarkers 

Numerous definitions have been specified for the term ‗biomarker‘, which is 

generally used in a broad sense to involve almost any measurement reflecting a 

relation between a biological system and a potential threat, which could be, 

physical, chemical or biological (Decaprio, 1997). A ‗biomarker‘ is defined by 

(McCarthy and Shugart, 1990) “measurements of body fluid, cells or tissues that 

indicate in biochemical or cellular terms the presence of contaminants or the magnitude 

of the host response”            

Peakall and Walker, (1994) redefined the term ‗biomarker‘ “as a change in a 

biological response (ranging from molecular through cellular and physiological 

responses to behavioral changes) which can be related to exposure to or toxic effects of 

environmental chemicals” In the past 25 years, several biomarkers have been 

developed with the objective to apply them to evaluate the impact of pollution on 

organisms. More recently, the Water Framework Directive (WFD) of the 

European Union adopted monitoring programs required to allow accidental 

pollution assessment for all water bodies by 2015 (Sanchez and Porcher, 

2009). Hence, biomarkers have the potential to play vital role in environmental 

assessment because they can provide information on the impact of 

contaminants rather than mere quantification of the levels present, as well as, 

can detect the early biological events, biochemical or physiological change 

resulting from given exposure that can predict the onset of adverse health 

effects (Peakall and Walker, 1994).  

 The biomarkers include several ranges of measurements to assess the level of 

exposure to toxicants and also the consequences for the organisms. Organisms 

may elicit responses at all levels of biological organisation from molecular level 

to the individual level (Decaprio, 1997). Certain biomarkers can be used in vitro, 
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as well as in vivo, some of them are specific to mammals or other organisms, 

whereas others are applicable to all organisms (Timbrell, 1998). According to 

WHO, (1995) ecotoxicological biomarkers can be classified into three categories 

(see next sections).  

1.7.1 Biomarkers of exposure 

 These biomarkers are including the detection and assessment of an 

exogenous compound or its metabolite or the product of an interaction between 

a xenobiotic agent and some target molecule or cell that is measured in a 

compartment within an organism. Biomarkers of exposure are divided into three 

classes of biomarkers: 

 Biomarkers of internal dose: these markers indicate exposure to a particular 

compound takes place by measuring the compound or its metabolites in body 

fluids. Measuring the specific metabolites such as mercapturic acids or the 

measurement the of GSH conjugation are used as a biomarkers for internal 

dose but need prior information about the structure of the compound. 

 Biomarkers of effective dose: these biomarkers indicate that the exposure to 

a particular compound has resulted in the compound or its metabolites, 

reaching a toxicological significant target. Due to differences in the rate and 

route of metabolism, DNA or protein adducts which could be quantified and 

can potentially considered to be a biomarker of exposure to chemical 

carcinogen such as aflatoxin B1 (AFB1),  which may be present in the diet, 

and may lead to mutation and hence development of cancer (Groopman et 

al., 1994). Another biomarker is urinary 8-hydroxy-2-deoxygunanosine, which 

is considered to be a biomarker of oxidative damage (Li et al., 2005). 
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1.7.2 Biomarkers of response or effect  

These biomarkers range from simple biomarkers (e.g. measuring the body 

weight and population changes) to the complex biomarkers (e.g. detection of 

specific isoenzymes by using immunochemical test, chromosomal aberrations, 

histopathological lesions etc.). Generally, biomarkers can be classified into 

invasive biomarkers which include. Invasive markers in tissues cover an array 

of pathological methods, including gross pathology and histopathology (using 

either light or electron microscopy) and biochemical changes. Non-invasive 

biomarkers extensively used in the aquatic organisms, which is based on 

physical parameters in order to assess body function in health and disease 

when no break in the skin is created and there is no contact with the mucosa, 

such as body weight, micronucleus induction in the blood cells (Van 

Campenhout et al., 2004). 

1.7.3 Biomarkers of susceptibility 

These biomarkers deal with ability of an organism to respond to the challenge of 

exposure to a specific xenobiotic compound, including genetic factors, DNA 

repair capacities, immune response and changes in receptors which alter the 

susceptibility of an organism to that exposure. The activities of enzyme systems 

such as glutathione–S-transferase (GST), cytocrome P-450 and N-

acetyltransferase (NAT) represent a better biomarker of susceptibility markers. 

 

1.8 Applications of biomarkers 

1.8.1 Lipid peroxidation    

Oxidative stress can damage any biological molecules; indeed, proteins and 

DNA are more significant target of injury than lipids, whereas lipid peroxidation 

often occurs late in the injury processes. Lipid peroxidation is the most 
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commonly used approach in free radical research field since many species 

especially aquatic organisms; contain high amounts of lipids with 

polyunsaturated fatty acids residues, a substrate for oxidation. Lipid 

peroxidation usually begins with the abstraction of a hydrogen atom from an 

unsaturated fatty acid. Polyunsaturated fatty acids (PUFA) (especially 

arachidonate) and those incorporated into lipids are readily attacked by free 

radicals due to its double bonds between carbon atoms. By contrast, both 

monounsaturated and saturated fatty acids are more resistant to free-radical 

attacks. Biological membranes are often rich in unsaturated fatty acids and 

bathed in an oxygen-rich, metal-containing fluid. Therefore, it is not surprising 

that membranelipids are susceptible to peroxidative attack. The occurrence of 

lipid peroxidation in biological membranes causes impairment of membrane 

functioning, changes in fluidity, inactivation of membrane –bound receptors and 

enzymes, and increased nonspecific permeability to ions such as Ca+2. For 

example, deformation of red blood cells after exposure to peroxides causes 

them to become leaky to K+ ions (Halliwell and Chirico, 1993). 

One of the most commonly applied assays for measuring lipid peroxidation is 

the thiobarbituric acid reactive substances (TBARS) test. The TBARS method is 

based on the measuring end products of lipid peroxidation primarily 

melanodialaldehyde (MDA) formed in peroxiding lipid systems under acidic 

condition, it involves reaction of MDA (or malonaldehyde–type products 

including unsaturated carbonyls) with TBA to yield a colored compound that is 

measured spectrophotometrically (Gutteridge, 1986). 
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1.8.2 DNA strand breaks (as a genotoxic biomarker) 

Significance of DNA strand breaks has been highlighted by Jha (2004). This 

could be easily measured by single cell gel electrophoresis or the Comet assay, 

which is commonly used for evaluating impact of genotoxicants in the 

environment (Collins, 2009; Frenzilli et al., 2008; Jha, 2008; Mitchelmore and 

Chipman, 1998). Ostling and Johanson (1984) were the first to develop a new 

sensitive technique of microgel electrophoresis for measuring DNA damage. 

This technique was later modified by Singh et al (1988) to become the alkaline 

Comet assay for detecting DNA damage in single cells via both in vivo and in 

vitro exposures. Since its initial development 28 years ago, Comet assay has 

become most popular test in aquatic toxicology to investigate the exposure to 

environmental contaminants (Ohe et al., 2004), with wide range of applications 

in genotoxicity, molecular epidemiology and human health risk (Collins et al., 

1997; Jha, 2008). In addition it has been used to study apoptosis as well as to 

detect physical stress agents like sunlight, radioactivity and nutritional 

toxicology (Olive, 1999; Roser et al., 2001).  

Several studies on fish recognized the Comet assay as one of the most 

sensitive methods available for measuring DNA strand breaks in contrast to 

other biomarkers widely used in genetic ecotoxicology, such as the 

micronucleus test and sister chromatid exchanges (Buschini et al., 2004; Cavas 

and Konen, 2007; Kim and Hyun, 2006). The main advantages of the Comet 

assay are: flexibility, ease in application, low costs, only a small number of 

sample cells are required, and it is capable of measuring DNA strand damage 

and repair at single cell level following genotoxic exposure (Lee and Steinert, 

2003; Mitchelmore and Chipman, 1998).  
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The overall principle of this assay is that DNA strand breaks create fragments or 

supercolid DNA-loops that, when embedded in an agarose gel, migrate in an 

electric field. In 1999 an expert panel at an International Workshop on 

Genotoxicity Test Procedures (IWGTP), held in Washington, identified 

guidelines and methodological steps for this assay under in vivo and in vitro 

conditions. The methodological of this assay include slide preparations with 

agarose gel embedded with single cells, lyses of cell membranes alkaline 

unwinding, electrophoresis (pH >13), neutralization, staining and cell scoring 

(visual scoring) under fluorescence microscope. There are also some 

modifications in the standard protocol of the alkaline version of the Comet assay 

enabling the detection of specific classes of DNA damage. One of these 

alternative procedures have been used to detect oxidative base damage, using 

lesion-specific repair enzymes from Escherichia coli to convert the oxidative 

damage into single strand breaks (Collins et al., 1997; Collins, 2004; Collins, 

2009; Collins et al., 1993). The formamido pyrimidine glycosylase (Fpg) protein 

is recommended for the detection of oxidised purines, in particular, 8-

oxoguanine (Albertini et al., 2000; Tice et al., 2000) and endonuclease III 

(Endo-III) is recommended for the detection of oxidised pyrimidines (Albertini et 

al., 2000). 

Various measurements are used to assess the DNA damage but the most 

common parameters are the tail extent moment, the olive tail moment (OTM), 

and the percentage of DNA in the tail (%tail DNA) (Kumaravel and Jha, 2006). 

The shape, size, and amount of DNA within the comet, plays vital roles in the 

determination the level of damage (Kumaravel et al., 2009).  Among all the 
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parameters provided by the software, Tail DNA (%) is considered to be most 

reliable (Kumararvel and Jha, 2006). 

1.8.3 Histopathologic biomarkers  

Histopathological alterations in fish tissues are biomarkers that signal effects 

resulting from exposure to environmental stressors. This category of biomarkers 

has the advantage of allowing one to examine specific target tissues and cells 

as they affected under both in vivo and in vitro conditions (Bernet et al., 1999). 

In addition, for field assessment, histopathology is the most rapid tool of 

detecting adverse sub- lethal and chronic impacts of exposure in different 

organs and tissues including individual finfish or shellfish (Admas et al., 1989). 

During the last two decades, a variety of histological changes in fish and 

mussels have been  used as indicators for pollution monitoring, and many of 

these have been adopted in major national monitoring programmes which are 

designed to assess the effects of environmental pollution on histopathological 

features in fish (Admas et al., 1989; Au, 2004). 

Furthermore, histopathological analysis provides a possibility of allowing 

investigators to directly examine the specific tissues and cells affected by 

exposure to environmental pollutants (Bernet et al., 1999). Therefore, 

histopathological biomarkers are higher level responses occurring in some toxic 

conditions following chemical and cellular interaction and often signify prior 

metabolism and macromolecular binding (Au, 2004). Most toxicants which are 

potentially genotoxic require metabolic activation to an ultimate from that binds 

covalently, forming DNA adducts. If the adduct persists and is not repaired, 

subsequent changes could result in an acute toxicity (cell death) or could 

possibly abnormal growth and tumour formation (Hinton et al., 1992). Similarly, 
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exposure to environmental chemicals can increase or decrease hepatic enzyme 

activities, resulting to an increase in cellular detoxification mechanisms, and 

leading to cellular toxicity and death, which is subsequently detected as a tissue 

necrosis or apoptosis (Au, 2004). Histopathological biomarkers also may reflect 

prior contaminant induced reduction in host defences. For example, xenobiotic 

exposure may reduce immune response, leading to infections disease, perhaps 

neoplasia or death (Hinton et al., 1992). 

Biomarker responses may include all levels of biological organisation with an 

integrator of biochemical and physiologic changes. The changes may be noted 

in the distribution of molecules, such as glycoproteins on cell surfaces, 

organelle number, volume, morphology or distribution; cell number, or 

distribution; and relative weight (Hinton et al., 1992). Histopathological changes 

and increase in size have been reported in the liver, kidney and gills of many 

fish as a result of exposure to different toxicants (Camargo and Martinez, 2007; 

Figueiredo-Fernandes et al., 2007; Handy et al., 2002; Mohamed, 2009). 

Several pathological alterations have been reported in the kidney of Cyprinus 

carpio exposed to sewage (Kakuta and Murachi, 1997), Lates calcarifer 

exposed to cadmium (Thophon et al., 2003), Channa punctatus exposed to zinc 

(Gupta and Neera, 2006), Solea senegalensis exposed to copper (Arellano et 

al., 1999). Following chronic exposure of rainbow trout to high concentrations of 

naphthenic acids, gill and liver cells showed a reduction in cell membrane 

integrity, mitochondrial activity and lysosomal function (Nero et al., 2006). Active 

fish with high oxygen requirements (hyperoxic condition) show larger gill surface 

areas than slow moving benthic fish (De Jager and Dekkers, 1974). Moreover, 

species known to live and tolerate hypoxic events have also been reported to 
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have increased gill surface area (Matey et al., 2008; Saroglia et al., 2002; 

Timmerman and Chapman, 2004; Wells et al., 1989). 

1.9 Fish as a model organism to assess the impact of environmental 
contaminants 

Fish models have attracted wide interest among non-mammalian species in 

toxicological studies. This is particularly for the pollutants which are likely to 

exert their effects on environment. Two common fish species, zebrafish (Danio 

rerio) medaka (Oryziaslatipes) and have attracted wide attention as an 

experimental model for laboratory-based experimental studies. Fish models 

have also been developed for diseases such as neurodegenerative disease, 

diabetes and muscular dystrophy in addition to determining the molecular 

mechanisms of mutagenesis and carcinogenesis following exposure to 

environmental contaminants (Teather and Parrott, 2006). For instance, 

zebrafish (Danio rerio) have been used as a prime model for the cancer studies 

for many years (Raisuddin and Seong Lee, 2008). Furthermore, physiological 

processes have also been elucidated in fish to study aging process (Gerhard, 

2007). Such studies are not only enhancing our knowledge of disease 

mechanisms but also for the development of drugs for a range of diseases. 

Furthermore, fish are considered as common model species to evaluate the 

health of aquatic ecosystems because pollutants build up in the food chain and 

are responsible for adverse effects including death in the aquatic systems 

(Farkas et al., 2002). For example, endocrine disrupting chemicals (EDCs) have 

been regarded as a major environmental concern (Hecker and Hollert, 2011; 

Jenssen, 2006). EDCs could not only disrupt the natural population but also the 

human health. Moreover, EDCs may potentially induce genetic damage and can 

modify carcinogenic responses of chemicals (Jha, 2004; Jha et al., 2000a, 
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2000b; Taylor and Harrison, 1999). However, there is limited information 

available pertaining to potential likely effects of their exposure on environmental 

carcinogenicity although many EDCs are linked with development of cancer 

(Jha et al., 2000a). Additionally, there is no specific experimental model to 

assess the impact of potential of EDCs on aquatic species. In this regard, fish 

could represent a suitable model in its natural habitats since they are exposed 

to a wide range of toxic compounds and a considerable proportion of these 

compounds are known carcinogens (Zhou et al., 2009). 

In contrast to the potential nutritional benefits of dietary intake, an issue of 

concern related with frequent fish consumption is the risk derived from exposure 

to chemical pollutants accumulated in fish and shellfish (Dallinger et al., 1987; 

Handy, 2003). Until recently, methylmercury and polychlorinated biphenyls 

(PCBs) were the chemical contaminants to which great attention was paid 

(Mozaffarian and Rimm, 2006). However, a number of recent studies have 

shown that fish can also be a potential cause of human exposure to other 

known toxic contaminants such as polychlorinated dibenzo-p-dioxins and 

dibenzofurans (PCDD/Fs) and polycyclic aromatic hydrocarbons (PAHs), or 

pollutants such as polybrominateddiphenyl ethers (PBDEs), polychlorinated 

diphenyl ethers (PCDEs), and polychlorinated naphthalenes (PCNs) (Albert et 

al., 1998; Hu et al., 2002; Mozaffarian and Rimm, 2006). Consumption of fish 

contaminated with environmental pollutants are known to pose threat to human 

health (Tomasallo et al., 2010; Urban et al., 2009). Therefore, fish can be used 

as a prime model for assessing the impacts of various environmental pollutants 

on human and environmental health. 
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1.9.1 Cyprinus carpio as a model species for assessing the toxicological 
potential of environmental contaminants 

Common carp (Cyprinus carpio Linnaeus, 1758.) have been largely employed in 

ecotoxicology assessment, as they can serve as bioindicators of environmental 

contamination (Alinnor, 2005; Dabrowski et al., 2004). A number of unique 

features have contributed for its attraction as a prime model in our study, such 

as rapid growth, easy maintenance in the aquarium. Also, carp can tolerate 4 

weeks exposure to pollutants with minimal stress handling (Oikari, 2006; van 

der Oost et al., 1998). Other reasons attributed to common carp include high 

ability to endure at low oxygen levels, pollutants and turbidity compared to most 

native fish (Koehn, 2004). They also have species-specific biochemical 

strategies to allow long-term survival at low oxygen levels (Hochachka and Lutz, 

2001). Therefore it has become one of the most popular model organisms for 

studying responses to various environmental pollutants (van der Oost et al., 

1998). Moreover, common carp have previously been successfully used for 

assessing the quality of the aquatic ecosystems and also the genotoxicity 

studies. Given so many attributes mentioned above, this has also been 

recommended as an Organisation of Economic Cooperation and Development 

(OECD) test species (Klobučar et al., 2010). In contrast to some of the model 

species (e.g. zebra fish, 3 spined stickleback, Gasterosteus aculeatus; 

European flounder, Platichthys flesus), not enough progress has been made to 

characterise the genome of this important fish species. It is hoped that 

characterisation of the genome of this species will further enhance its 

usefulness in toxicological work. 
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1.10 Hypothesis 

Overall, the thesis aimed to probe the following hypotheses:  

(a) Elevated dietary copper induce responses at different levels of biological 

organisation in a representative carp species, Cyprinus carpio. (Chapter 

3). 

(b) Chronic hypoxia (i.e. low level of dissolved oxygen) and hyperoxia (i.e. 

elevated level of dissolved oxygen) induce responses at different levels 

of biological organisation (i.e. biochemical, DNA, histopathological and 

growth effect at individual level). These stresses, manifest in varieties of 

way and could be correlated. (Chapter 4). 

(c) Chronic hypoxia modifies the responses of dietary copper exposure at 

different levels of biological organisation (i.e. biochemical, oxidative DNA 

damage, histopathological and growth effect at individual level). (Chapter 

5). 

(d) Chronic hypoxia and transition back to normoxia induce biological 

stresses or responses (including oxidative stress) and modify expression 

of hypoxia related gene in C. carpio L. (Chapter 6).           

1.11 Aims and objectives 

The overall aim of the thesis is to assess the biological responses at different 

levels of organisation (i.e. biochemical, DNA, tissue and individual level 

responses) caused by exposure to hypoxic condition either alone or in 

combination with dietary copper in Cyprinus carpio L. The study used carp fish, 

C. carpio L. as a model organism which is also recommended as a regulatory 

fish species, and used the copper as a representative toxic metal. Copper was 

chosen and tested on fish at different levels because it is widely used to control 

pathogens in fish culture ponds (Carvalho and Fernandes, 2006) and its 
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concentration in the aquatic environment is likely to increase due to 

anthropogenic activities (Al-Subiai et al., 2011).  

The specific objectives of this research were:  

(i) Assess the biological responses following chronic exposure (i.e. 10 

weeks) to different concentrations of dietary copper (250, 500 and 

1000 mg kg-1) in C. carpio. Another objective was to detect the highly 

toxic level of Cu on fish (see Chapter 3 for details). 

(ii) Determine the biological responses at different levels of organisation 

in C. carpio following long term exposure to both hypoxic and 

hyperoxic (1.8, 12.3 mg l-1 respectively) compared to normoxic 

condition. Also the study aimed to assess the correlations between 

DNA damage with other biomarkers and specific growth rate (SGR) of 

the fish (see Chapter 4 for details). 

(iii)  Investigate whether the impact of hypoxia either alone or in 

combination with dietary copper will be greater than hypoxia or Cu 

alone. Also to assess the effects of this combination could enhance 

the sublethal toxicity at different level of biological functions (see 

Chapter 5 for details). 

(iv)  Determine whether tissue specific accumulation of Cu is influenced 

by Cu and oxygen level (Chapter 5). 

(v)   Measure the hypoxia inducible factor (HIF-1α) gene expression 

following chronic exposure (i.e. 21 days) to hypoxia and after 

recovery in normoxia for 7 days in addition to assess the oxidative 

DNA damage, lipid peroxidation and gill morphology (see Chapter 6 

for details). 
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GENERAL METHODOLIGIES 

2.1 Overview 
A range of procedures and analytical techniques were fundamental to the 

experimental design to probe the hypothesis undertaken in the present study. 

Other unique methods to particular trials (including diet formulation) are 

described in the relevant experimental chapters. Unless otherwise stated, all 

materials, chemicals and reagents were purchased from Sigma-Aldrich Ltd. 

(Poole, Dorset, UK) and Fisher Scientific Ltd. (Loughborough, Leicestershire, 

UK). All experimental work involving fish was conducted under the UK Home 

Office project licence (PPL 20/2644) and personal licence P/L 30/8250 in 

accordance with the Animals (Scientific Procedures) Act 1986.  

2.2 Rearing facilities and maintenance of water quality 
All experimental trials were conducted within a freshwater recirculation system 

(RS), number ‗D‘, at the Plymouth University‘s Aquaculture and Fish Nutrition 

Research Aquarium (see Plate 2.1). Recirculation systems are widely used in 

fisheries research to increase fish production. Recirculation system‘s filters are 

used in a way that clean water can be recycled. These have several other 

advantages including reduced water requirements and space, often in close 

proximity to markets, and with a high degree of environmental control which is 

particulary advantageous to researchers. In order to provide an appropriate 

environment for the rearing of fish, water quality parameters in a RS were 

effectively managed to keep within certain limits for conservation of natural 

resources.   
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The facility used was a closed RS with a total water volume of~2250 I. 12 

experimental 80 L fibreglass tanks, each received water at rate of ~600 l h-1. An 

automated 12 h dark / light system was maintained throughout all experimental 

trials. The biology and function of the RS used in the present study is common 

to many RS. The description of the RS is as follows: an activated carbon filter 

(Commandomatic TCF, Waterco Ltd., Sittingbourne, Kent, UK) removed 

chlorine and organic compounds from the incoming water. As a by-product of 

the breakdown of proteins, fish excrete ammonia ions (NH3) through the gills, 

which is very toxic to fish. Ammonium (NH4
+) is relatively nontoxic to fish and is 

present in rates relative to water pH. NH3 is removed from re-circulated water 

by a submerged biological filter of nitrifying bacteria in two stage processes: the 

biological oxidation of NH3 to relatively less toxic nitrite (NO2
-) by the 

Nitrosmonas bacteria which is subsequently converted to nitrate by the 

Plate 2.1 Recirculation system ‗D‘ located at Plymouth University. White arrow shows 
the direction of water over flow to experimental tanks from the drum filter through the 
biological filter (not visible). 
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Nitrobater species. Nitrogenous compound were monitored on a weekly basis 

using an AQ2- Automated Discrete Analyser (Seal Analytical Ltd. Sussex, UK). 

The following levels of nitrogenous compound were considered acceptable: 

ammonia (unionized) <0.1mg l-1, nitrate <50mg l-1 and nitrite <1.0 mg l-1. If 

required nitrogenous compounds were controlled by a partial water exchange. 

Saturation oxygen needs to be maintained above 80% and was maintained by a 

side supply of compressed air (compressor; Rietschle, UK) delivered via air 

stones and a perforated pipe to each tank and sump water respectively. 

Temperature was maintained at 23 ± 1°C with a thermostatically controlled 

heater (Optipac R407C, PSA, Saint Barthelemy,D‘ Anjou, France). The pH of 

the water system was maintained between 7-8 using alkaline buffer sodium 

bicarbonate (NaHCO3) as necessary. Oxygen saturation, temperature and pH 

were monitored daily with an electronic meter (Hach HQ40d- Multi Parameter, 

Loveland, USA).      

2.3. Collection and maintenance of experimental fish (Cyprinus carpio L.) 
Mirror carp (Cyprinus carpio L.) obtained from Bowlake fish farm carp 

hatcheries (Hampshire, UK) were used for all experimental trials. Fish were 

transported directly from the hatchery to the aquarium facility in a 1000 l tank 

supplied with pure oxygen (BOC, UK); transport time was ~4 h. Depending on 

the requirements, fish were procured in different months of the year, throughout 

the study. Fish were gradually acclimated to the temperature of the aquarium 

facility over a period of 2 h. All fish were checked on arrival, monitored daily and 

fed a standard commercial diet of 2% body weight (Ewos, Micro 20 p, Ewos 

Ltd., Westfield, Bathgate West Lothian, UK). A period of at least three weeks 

was given until fish were randomly allocated into experimental tanks prior to 
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experimental trials. Anaesthetisation of fish was carried out ethically according 

to Home Office procedures with tricainemethanesulphonate (MS-222; Pharmaq, 

Ltd. Fordingbridge, Hampshire, UK) at a dose rate of (100 mg l-1). 

2.3.1 External features of the carp  

Mirror carp is a large, soft-finned freshwater fish which has a more rounded 

shape. Mirror carp can be recognised with a linear line of scales down each 

side of the fish (linear mirror) and also with a full set of large random scales all 

over the body (fully scaled). Carp have a thick leathery appearance and two 

barbells on each side of the mouth representing a distinguished marking for the 

carp. The carp‘s body is robust, deep and thick, and arched toward a lengthy 

dorsal fin, with nearly 20 soft rays (Plate 2.2A).  

 Dorsal fin extends well along the back, and the fin edge is high in the front and 

straight in the back. The caudal fin is forked and is articulated on a series of flat 

plates. The first dorsal and anal fin spines are serrated. The pectoral fins are 

suspended immediately behind the opercular region of the skull on the lower 

sides of the body, which act as the main braking fins; they achieved this by 

placing the fins out to provide a large surface area to the water. The pelvic or 

ventral fins are paired act as hydrofoils and suspended on the lower side 

approximately mid body (Plate 2.2A).  

Lateral line is a sense organ in aquatic organisms (mainly fish) used to detect 

movement and vibration in the surrounding environment. The basic sensory unit 

of the lateral line system is the neuromas, which is a bundle of sensory and 

supporting cells, located superficially on the skin or under the skin in fluid filled 

canals on the head and body. The mucus layer covers the entire external area 

http://en.wikipedia.org/wiki/Sense
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of the fish. The mucus layer provides protection from bacteria and fungus and 

also gives the fish its slippery feel (Plate 2.2A).  

2.3.2 Internal anatomy of the carp 

With respect to the internal anatomy of the carp, eyes are just forward of the 

gills, which can see in two directions at the same time, to either side of the body 

as well as above or below on each side. The nostrils are just forward and 

slightly above the eyes, used purely for scent. The gills of carp consist of two 

sets of holobranches arranged in each side in four pairs of the buccal cavity. 

Each holobranch is composed of two hemi-branches arising from the posterior 

edge of the bronchial arch or gill arch in such a way that the free ends diverge 

and touch those of the adjacent holobranches, an additional primal gill hemi-

arch is also present (Plate 2.3). Gills have similar function to the lungs of 

mammals, not only the primary site for respiration but are also the principle and 

often exclusive site for osmoregulation, acid base balance and metabolism of 

circulating hormones and xenobiotics (Roberts, 2001). The swim bladder, 

located below the backbone consists of 2 different size chambers (Plate 2.2B). 

Fish adjust their position by inflating or deflating these chambers. This changes 

the density relative to the surrounding water. In conjunction with the auditory 

system, it controls the orientation, and the level at which fish swim (Roberts 

2001).   

The liver is large, multi-lobed, fairly prominent, reddish brown in colour, lying in 

the abdominal cavity and vasculature drains into the sinus venous. The primary 

functions of hepatic tissue are metabolism and filter the blood draining the 

intestine before it enters the general systemic circulation. The liver plays a 

prominent role in detoxification process. It also produces bile which is used in 

the digestion/absorption of fat. The gall bladder is located next to the liver which 
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plays an important role in fat digestion through excretion of the bile. The internal 

sex organs of the males and females are the testes and ovaries respectively.  In 

both the male and female, these organs are located below the swim bladder. 

Eggs and sperm exit the body via the gonopores which are located in front of 

the urinary opening. The gonopores are connected by the gonoduct. The kidney 

is also extremely important in regulating water and salt concentrations within the 

body. The head kidney (or pronephros) is a major antibody producing organ as 

well as antigen trapping organ. Head kidney has been also recognised in fish as 

possessing endocrine, haemopiotic, excretory and lymphatic tissues (Roberts, 

2001). The urinary bladder plays an important role in osmoregulation as the salt 

content in the carp body is higher than the surrounding water where it lives. The 

carp fish is continually taking in water trying to equalize salt concentration. The 

waste products (faeces and urine) of the carp digestive system are excluded via 

the anal pore (Plate 2.2B). 
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External Features 

 

 

 

Internal Anatomy 

Plate 2.2 The external and internal views of the mirror carp Cyprinus carpio L. (A) 

showing external features; (B) the internal view showing position of the major internal 

organs. 
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Plate. 2.3 Transverse section of fish gill showing the gill arch, with rakers and primary 

lamellae  

 

 

 

 

 

 

 

 

 

 

 



 Chapter 2. 

  

55 
 

2.4 Gene expression analysis using reverse transcription Polymerase 
Chain Reaction quantitative (Q-PCR) and Real-time polymerase chain 
reaction (RT-PCR)    
Major steps involved in the gene expression analysis have been outlined in the 

figure 2.1. Each of these steps has been further elaborated in the following 

sections (i.e. 2.4.1-2.4.5).  

2.4.1 RNA Extraction 

In addition to HIF-1α as the target gene, ß-actin was considered as a house 

keeping gene for internal control, which was selected on the basis of the 

previous studies carried out under hypoxia using this gene (Terova et al., 2008; 

Ton et al., 2003). Liver tissues dissected from fish (n=6) and stored at -80°C 

until RNA extraction. Liver samples from individual fish were used for gene 

expression analysis. Total RNA of samples was extracted using GenElute 

mammalian Mammalian Total RNA Miniprep Kit (Sigma Aldrich, UK). Sample of 

liver tissue (0.02 g) was homogenised in Ice using sonicator (Misonix, Microson 

XL., 20 levels) in eppendrof tubes containing 350 µl of lysing solution [5 µl 2-

mercaptoethanol plus 500 µl lysis buffer] on level 4-5 for 10 sec to confirm full 

break of the tissue/cells in order to improve the quality of extracted RNA. 

Following this step, samples were immediately stored on ice while other 

samples from the same batch were being processed. The tissue lysate were 

centrifuged for 2 min at max speed (Micro Centaur, MES, >8,000X g), 

supernatant containing the RNA was gently transferred to filtration tube and 

centrifuged for 2 min. 400 µl of 70% ethanol was added to the throw-flow liquid, 

and transferred to the binding tube and spin for 15 sec at < 13,000, g, the eluted 

flow-through was discarded and the sample washed with wash solution 1 and 2 

as summarised in Fig. 2.2. 
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Fig. 2.1 Major experimental steps to determine relative expression of HIF-1α and β-
Actin genes in the liver samples of C. carpio.  

 

Liver tissues dissected and stored at -80 °C 

RNA extraction using  OLAGEN 

Rneasy mini kit

Reverse transcription to obtain 

cDNA

Dnase digestion

Gel electrophoresis to check the purity and 

molecular weight characteristics of PCR 

products 

Real time (Q-PCR) to determine semi quantitative 

expression of genes
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Fig. 2.2 Flowchart to explain major steps involved in RNA extraction using RNeasy kit. 
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µl 2-mercaptoethanol plus 500 µl 
lysis buffer]

cells
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2.4.2 DNA digestion 

To avoid the contamination with genomic DNA, DNA digestion method was 

used to digest any potential DNA contamination present in the RNA using 

DNase I column enzyme (Sigma Aldrich, UK) for 15 min for DNA digestion. 

Samples were washed with wash solution and elute using elute solution. RNA 

quantity and purity was measured using NanoDrop spectrometer (ND-1000) by 

measuring the absorbance of the RNA samples at 260 nm. The ratio of 

RNA:DNA and RNA: Protein was in the range of 2.10-2.23 and above 1.5 

respectively (Fig. 2.3). RNA samples were stored in a freezer at -80 °C until 

required.  

 

 



 Chapter 2. 

  

59 
 

 

Fig. 2.3 RNA purity and concentrations data from liver samples of C. carpio. 
Highlighted number is RNA concentration in 2 µl of the sample measured by NanoDrop 
spectrophotometer.  

A

B
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2.4.3 Reverse transcription to obtain complementary DNA (cDNA)  

To convert the total RNA samples to cDNA material, the reverse transcriptase 

method was used. Briefly, cDNA was synthesised using 1µg of total RNA 

incubated with reverse transcriptase DNTPs mix (Deoxynucleotide triphosphate 

sodium) along with random hexamers. Furthermore, 1.6 ml of molecular water 

was added to 1 unit vial to make a final concentration of 1-5 µM for each sample 

as a master mix. The mixture (master mix; Table 2.1) was briefly centrifuged     

< 2,000 for 5 sec to gently collect all components to the bottom of the tube and 

to prevent it from sticking to the wall of the eppendorf. The mixture was 

incubated (Gene Amp PCR system 9700) at 70 °C for 10 min following which 

the tubes were immediately removed and placed on ice for 5 min. 10 µl of 

master mix was added to each previously incubated sample to obtain a final 

volume 20 µl. The reaction was incubated at room temperature for 10 min to 

ensure the elongation of random primers. The reaction was incubated at 21 °C 

for 10 min, 37 °C for 50 min, 94 °C for 5 min to denature the Moloney-Murine 

Leukemia Virus (M-MLV) reverse transcriptase, and then preserved at 4 °C for 

a month. 

Primers were designed using the mRNA sequences, which was obtained from a 

primer blast in the NCBI (National Centre for Biotechnology Information; Table 

2.2). The criteria for primer included the GC ratio, temperature and product 

length. The method development and optimisation took several weeks and 

many primers were used to obtain specific carp PCR product for cDNA. 
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Table 2.1 Preparation of CDNA Master Mix A and Master Mix B. 

Chemical name Volume Master mix type 

10 mM dNTPs 1 A 
Random Hexamers 1  
Total volume  2  
 
10x M-MLV Reverse Trascriptase Buffer 

 
2 

 
B 

M-MLV Reverse Trascriptase 1  
Molecular water 7  
Total volume  10  

 

 

 
Table  2.2 Primers used for PCR reactions for the target genes. The length of bases for 
the genes ranged between 90 and 170 bases. 
Primer / 
Gene 

Sequence 5'-3' Product 
size 

Accession No. 

 
β-Actin 

 
Forward: 5'TCGCTTAGGCCTTGCTCTTCAAACA-
3' 

 
92 

 
M24113 

 

 Reverse: 5'- GGCTGTCGCGTGCACATTGC-3'   

  
(HIF-1α) 

 
Forward: 5'- CCGTGTGCAGGAGCGCAGTG-3' 

 
153 

 
EU144225 

 

 Reverse: 5'- TCCAGAGTGTGGCGGCTAAGGA-3'   

HIF-1α =hypoxia inducible factor 1α  
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2.4.4 Gel electrophoresis to check the purity of PCR products 

In order to check the purity and molecular weight characteristics of PCR 

product, agarose gel electrophoresis was run. The DNA was produced by the 

ordinary PCR machine (Gene, Amp, PCR system 9700, Applied biosystem, UK) 

and was separated by gel electrophoresis in order to confirm the size, location 

and quality of the PCR specific product for specific primers. The electrophoresis 

tank was prepared using a standard method (Sambrook et al., 1989). Gel was 

prepared by mixing 70 ml of Ix TAE (Tris Acitate EDTA) with 0.70 g agarose to 

make 1% gel for electrophoresis, and was microwaved for 2 min on 

medium/high power. Subsequently, 2.5 µl of the Orange G dye (1/10 sample 

volume) was added to each sample. To calibrate the gel, 25 µl of 1 kb ladder 

was prepared as follows; 21.5 µl of molecular water, 2.5 µl of Orange G dye and 

I µl of ladder (100bp, Promega). The gel was left to warm, then was poured into 

an electrophoresis tank (Pharmacia Bioteech, GNA 100, 8X10.5 cm) and was 

left to solidify, then the electrophoresis tank was filled with I x TAE buffer, 25 µl 

of each sample was loaded into the wells starting with the ladder. The 

electrophoresis tank then was covered and connected to the power on 40 volts 

for 1 h. DNA stained using SYBR safe and then visualized and photographs 

were taken of the gel using UVItec Limited, England. 

2.4.5 Real-time quantitative polymerase chain reaction (Q-PCR)  

Real-time- quantitative Polymerase Chain Reactions (Q-PCR) experiments 

were carried out to compare semi-quantitative analysis of the gene expression 

in the experimental relative to the reference (control) group. The Syber Green 

PCR Master Mix was prepared for one reaction (Table 2.3). Negative controls 

and samples for target and housekeeping genes were used in triplicate. Each 
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sample was run three times by RT-PCR protocol to confirm the results from 9 

fish treatment-1.      

The thermal protocol for PCR reactions were: 3 min incubation at 95 °C, 

followed by 40 reaction cycles: 15 s at 95 °C, 30 s at 60 °C, 20 s at 72 °C where 

the fluorescent amplification signal was read (Dondero et al., 2006). Melting 

curves for PCR products were adjusted between 60-90 °C. The data were 

analysed based on the differences between the reference (control) and the 

treatment groups using a comparative Ct analyses, using the following 

equation: 

ΔΔCt = ΔCt sample  –ΔCt reference control 

Amount of target (RQ) = 2-( ΔΔCt)  

where Ct is threshold cycle. 
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Table 2.3 Reagents used to prepare sybergreen PCR Master Mix for thermocycling 

reactions for Q-PCR (Dondero et al., 2006).          

 

2.5 Nitroblue tetrazolium (NBT) reduction assay 
Respiratory burst activity of different blood cells (mainly neutrophils and 

monocytes) were quantified using the reduction of nitroblue tetrazolium (NBT) to 

formazon as a measure of superoxide anion (O2
−) production. This assay was 

carried out as per the method described by Kumar et al., (2005). Briefly, the 

blood samples were collected by piercing the caudal peduncle in a test tube 

containing 2.5% EDTA as anticoagulant. Fifty µl of blood was placed into the 

wells of ‗U‘ bottom microtitre plates (three replicate wells were used sample-1) 

and incubated at 22 °C for 1 h to facilitate adhesion of cells. Following this step, 

the supernatant was removed and the adhered wells were washed three times 

in PBS. After washing, 50 μl of 0.2% NBT+1 µl ml-1 of phorbol myristate acetate 

(PMA) were added and resulting solution was incubated for a further h at 22 °C. 

The cells were then fixed with 100% methanol for 2–3 min and again washed 

(3x) with 70% methanol. The plates were then air dried. Sixty µl 2 M potassium 

hydroxide and 70 μl dimethyl sulphoxide were added into each well to dissolve 

the formazon blue precipitate formed. The optical density (OD) of the turquoise 

blue solution was then read in a plate reader at 540 nm.  

  

Chemical / reagent  Volume (µl) 

SYBR® Green JumpStar Taq ReadyMix 12.5 

reference Dye 0.25 

Forward Primer (10 µM) 0.5 

Reverse Primer  (10 µM) 0.5 

Template cDNA 2.0 

Molecular water 9.5 

  
Total volume 25.25 
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2.6 Determination of lipid peroxidation using thiobarbituric acid-reactive 
substances (TBARS) assay 
Determination of thiobarbituric acid-reactive substances (TBARS) assay was 

used to determine lipid peroxidation as described by Camejo et al., (1998) with 

slight modifications. Briefly, liver samples (from individual fish) were weighed 

and homogenized (1:10, wet tissue weight/buffer volume) using a Potter- 

Elvjeham glass homogenizer in a buffer of 20 mM Tris-HCl (pH 7.6), containing 

1 mM dipotasium EDTA, 0.15 M potassium chloride, 0.5 M sucrose and 1 mM 

dithiotheritol. Homogenates were centrifuged (4 °C at 10,500 xg for 10 min) and 

the supernatant was transferred to a polypropylene microcentrifuge tubes. Forty 

µl of homogenate were added to 10 µl of 1 mmol l-1 butylatedhydroxytoluene 

(2,6-Di-O- tert-butyl-4-methylphenol or BHT) to labelled eppendorf to avoid 

undesired further oxidation of samples. 1,1,3,3-tetraethoxypropane (TEP) was 

used as the standard in the range of 0-100 nmol ml-1 dissolved in phosphate 

buffer pH 7.5 (as shown in Fig. 2.4). Following this step, 140 µl of 0.1 M 

phosphate buffer (pH 7.5) was added to bring the volume to 190 µl, 

subsequently 50 µl of 50% (w/v) trichloroacetic acid was added to each tube 

(Al-Sabti and Metcalfe, 1995). The reactions were allowed to continue by 

adding 75 µl of 1.3% (w/v) thiobarbituric acid (TBA) dissolved in 0.3% (w/v) 

NaOH to each well, followed by incubation at 60 °C for 60 min. Supernatants 

were centrifuged (10,000 xg for 2 min at 4 °C) and pipetted out 200 µl of the 

supernatant was transferred into each well, and then OD was measured 

spectrophotometrically at 530 nm. Absorbances were expressed as TBARS 

nmol gww-1. 
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Fig. 2.4 Standard curve for lipid peroxidation assay. Data from three independent 
experiments expressed as means ± S.E; n=3. 
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2.7 Determination of DNA strand breaks using Single Cell Gel 
Electrophoresis (SCGE) or the Comet assay 

2.7.1 Assessment of cell viability with trypan blue  

Prior to determination of DNA strand breaks using single cell gel electrophoresis 

(SCGE) or the Comet assay, erythrocyte viability was assessed through trypan 

blue dye exclusion assay. This test relies on membrane integrity to distinguish 

between viable or non-viable erythrocytes. Briefly, 500 µl of 0.4% trypan blue 

dye was added to 500 µl of erythrocyte and mixed. Using a haemocytometer, 

percentage viability was calculated as living cells/total cells counted. Any cells 

that exhibited uptake of the blue stain were considered as non-vital. Only 

samples with >90% viability were considered for determination of DNA strand 

breaks using the Comet assay (Tice et al., 2000).  

2.7.2 Single Cell Gel Electrophoresis (SCGE) -‘Comet assay’ 

The Comet assay protocol was constructed using guidelines outlined by Tice et 

al., (2000). In brief, peripheral blood sample was collected from a caudal vein 

using a 1 ml syringe with a 25 gauge needle (illustrated in Plate 2.4). Depending 

upon the fish size, up to 300 µl blood sample was collected from each fish (300 

µl  per 30g fish weight). To prevent blood clotting, syringes were flushed twice 

with a heparin (Porcine Intestinal Mucosa) solution diluted with physiological 

saline containing 1000 units ml-1. The basic steps of the Comet assay are 

summarised in Fig. 2.5. 

2.7.2.1 Slide preparation  

Frosted slides were prepared by coating with molten NMP agarose [1% in 

phosphate buffer saline (PBS)] and left at 30°C for 15 min until set. Whole blood 

samples from fish were diluted 1 in 5000 with Ca and Mg free physiological 

saline solution [Dulbecco's Phosphate-Buffered Saline (DPBS)] (Gibco, 
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Invitrogen, Paisley, UK), to give a cell count of approximately 2.5x105 cells ml-1. 

Cells were then transferred into 24 microcentrifuge tubes which contained 

DPBS and centrifuged 2,500 xg for 2 min. The resulting pellet was resuspended 

in 170µl low melting agarose (LMP) and added to the prepared slides to give 

two replicates of 85 µl at either end of the slide. Cover slips or glasses were 

placed over each drop and gels were allowed to set at 4°C for approximately 5-

10 min. 

2.7.2.2 Lysis 

Coverslips were gently removed and slides were immersed for 1 h in the dark at 

4°C in the lysis solution [2.5 mM NaCl, 100 mM Na2EDTA, 10 mM tris-BASE, 

1% n-lauroylsarcosinate, 1% Triton X-100, 10% DMSO and adjusted with 

NaOH to pH 10] to remove cellular proteins.  

2.7.2.3 Alkali (pH<13) unwinding 

DNA was left to unwind in the electrophoresis chamber (Pharmacia Biotech 

GNA200) at 4°C in freshly prepared alkaline electrophoresis buffer [1 mM 

Na2EDTA, 300 Mm NaOH, pH 12.3]. Slides were placed side by side in the 

electrophoresis chamber with labelled ends towards anode. Unwinding of DNA 

was optimised by investigating various times- 10, 20, 30 and 40 min (Section 

2.7.3). 

2.7.2.4 Electrophoresis 

Electrophoresis was performed at 25 V, 300 mA at 4°C in the dark for 20 min. 

Both unwinding and electrophoresis times were optimised in the first part of the 

study using different unwinding and electrophoresis times (see section 2.4.3). 
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2.7.2.5 Neutralisation and staining 

Embedded cells were gently immersed in neutralization buffer [0.4 M Tris-

BASE, pH 7.5] for 5 min and this step was repeated three times followed by 

rinsing with distilled water for 10 min. Slides were then allowed to air dry for 24 

h. Finally, to visualise Comets, 40 µl (2 µg ml-1 stock) Ethidium bromide (in a 

fume cupboard, gloves worn) stain was applied to each gel and coverslips 

added.  

2.7.2.6 Comet visualisation and scoring 

Scoring was achieved using a fluorescence microscope (Leica, DMR) and 

Komet 5.0 image analysis software (Kinetic Imaging Ltd., Liverpool, UK) was 

used to score 100 cells for each slide (50 randomly selected cells per gel from 

each exposed individual fish). Slides were independently coded by given a 

numbers and scored without knowledge of the code. Initially, the software 

provided several parameters but tail DNA (%) and Olive tail moment (OTM) 

were considered to be the important parameters (Kumaravel and Jha, 2006).  
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Plate 2.4 Photograph illustrating collection of blood samples (300 µl) from the caudal 

vessel of Cyprinus carpio L. 
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Fig. 2.5 The critical steps involved in the modified Comet assay (adapted from Tice et 
al., 2000) 
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2.7.3 Comet assay optimisation using hydrogen peroxide (H2O2) 

The aim of the Comet assay optimisation was to establish the optimal 

unwinding and electrophoresis times for the erythrocytes which gives the 

desired level of DNA damage (i.e. low background levels). Hydrogen peroxide 

(H2O2) was used as a reference chemical (positive control) at an exposure 

concentration 100 µM (10 min). This concentration was selected based on 

previous studies using H2O2 as a reference agent (Cheung et al., 2006; Tice et 

al., 2000). Time intervals investigated were 10, 20, 30 and 40 min. for both 

unwinding and electrophoresis. Slides were then prepared as per the standard 

Comet assay protocol described in section 2.7.2. 

2.7.4. Validation of the Comet assay under in vitro conditions using 

hydrogen peroxide (H2O2) 

Once unwinding and electrophoresis times had been optimised, the Comet 

assay was validated using H2O2. This was conducted by in vitro exposure of fish 

erythrocytes to a range of H2O2 concentrations (Tice et al., 2000). After 

collection, blood samples were centrifuged at (500 g for 5 min) the supernatant 

was removed and replaced with 200 µl H2O2 solution (diluted with DPBS) 

obtaining final nominal concentrations of 0, 1, 10, 50, 100, 200 µM H2O2 

respectively. The concentrations of H2O2 were based on an earlier study by Tice 

et al. (2000). The samples were then incubated for 10 min at 4°C in the dark. 

Following the incubation, cells were washed with DPBS to remove any H2O2 

residues. Slides were then prepared as described in section 2.7.2. 
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2.7.5. Modified Comet assay for the detection of oxidised DNA bases 

This modified Comet assay for the detection of oxidised DNA bases (i.e. purines 

and pyrimidines) is essentially identical to the conventional protocol (but 

modified with the addition of bacterial enzymes: (i.e. Formamidopyrimidine DNA 

glycolyase (Fpg) and Endonucleases III (Endo-III) to treat the slides after lysis 

step to allow the enzymes to recognise the oxidised bases and convert them 

into DNA strand breaks, thus increasing the sensitivity of the assay and allowing 

indirect assessment of oxidized purines (the majority of which are 8-oxodG 

recognised by Fpg) and pyrimidine bases. Enzymes as well as protocol for the 

storage and use of the enzymes were kindly provided by Professor Andrew 

Collins, Department of Nutrition, University of Oslo, Norway as described by 

Reeves et al. (2008). Briefly, slides were prepared as described in 2.7.2.except, 

following cell lysis, the slides were washed three times with enzyme reaction 

buffer (4 mM HEPES, 0.01 mM KCl, 0.05 mM Na2EDTA, and 0.02 mgml-1 

bovine serum albumin at pH 8). Fpg and Endo-III enzymes (1 unit of enzyme 

diluted in 50 µL of buffer per gel) were added to each duplicate gel. After 

enzyme addition, covered with coverslips and incubated in a humid chamber at 

37°C for 45 min. Following incubation, the slides were processed identically 

undergoing the standard protocol which included steps of unwinding, 

electrophoresis and neutralization. Comet scores were compared to reference 

slides (buffer incubation with no enzymes). 
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2.8 Determination of haematological parameters     

2.8.1 Determination of haemoglobin content 

Determination of hemoglobin (Hb) level was performed using the 

cyanmethaemoglobin method (Dacie and Lewis, 1995). Briefly, the Drabkin‘s 

reagent consists of 1.0 g sodium bicarbonate, 50 mg potassium cyanide, 200 

mg potassium ferricynide made to a 1l solution using distilled water and stored 

in borosilicate glass bottle for later use. Assay was performed in test tubes 

where 20 µl of freshly collected blood was mixed with 5 ml of diluents. Solution 

was inverted several times before being allowed to incubate at room 

temperature (25 oC) for 10 min. Absorbance was measured using a 

spectrophotometer (Thermo spectronic, Helious Epsilon, USA) at 540 nm. A 

stock solution of cyanmethaemoglobin was used as a reference or standard 

which was diluted into several concentrations using the diluents. Absorbance 

values generated from the serial dilution was used to calculate a standard curve 

for the unknown samples reading. 

2.8.2 Determination of total erythrocyte and leukocyte counts 

Both total erythrocyte and leukocyte counts were accomplished by diluting 20 µl 

of freshly collected whole blood sample with 0.98 ml of Dacie‘s fluid (10ml of 

40% formaldehyde, 31.3 g trisodium citrate, 1.0 g brilliant crystal blue dissolve 

in1 l of distilled water and filtered through 0.45 µm syringe filter) mixed gently to 

disperse the cells. Counts were performed on an improved Neubauer 

haemocytometer (Fig. 2.6). Total erythrocytes were carried out in the central 

counting chamber; containing 25 squares with subdivision of further 16 squares. 

Counting was performed in 5 squares (the central one and the 4 square in the 

corner) from the divided 25 squares, (volume counted per square = 0.2 × 0.2 × 

0.1=0.004 mm3). Erythrocyte counts are expressed as 106 cells mm3. White cell 
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(i.e. leukocytes) counts were performed on the same sample in a similar way by 

counting 5 of the large areas (volume = 1 × 1× 0.1 mm = 0.1 mm3). White cell 

counts are expressed as 103 mm3. All counts included cells that touch the right 

and top side of the boundary lines of each square. Both erythrocyte and 

leukocyte counts were performed in duplicate per a sample. Calculation is 

determined according to the following equation:   

Cell count (x 106 cells/mm3) = ((average cell count / volume of square (mm3)) × dilution 

factor)) / 1,000,000. 
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Fig. 2.6 Positions of erythrocytes and leucocytes for counting on Neubauer 
haemocytometer. W= white blood cell (leukocyte), E = erythrocyte (Dacie and Lewis, 
1995). 
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2.8.3 Determination of haematocrit value (HCT) 

Haematocrit (packed cell volume) of whole blood was determined in duplicate 

as described by (Klontz, 1997). Whole blood was collected in 300 µl heparinised 

microhaematocrit tubes and subsequently separated using a Centurion 

haematocrit centrifuge (10,500 g for 5 min). Hct value was determined as the 

total percentage packed cell volume using Hawksley reader (Hawksley, Sussex, 

UK). 

2.8.4 Determination of differential leucocyte counts 

Blood smears were made by dropping 4 µl of fresh whole blood onto a glass 

slide, the end of the second slide (‗‗spreader slide‘‘) was placed against the 

surface of the slide with the blood drop, at an angle of 45°. By drawing the 

‗‗spreader slide‘‘ up against the drop of blood, it spread across the end of the 

slide by capillary attraction and filled the angle between the two slides. The 

‗‗spreader slide‘‘ was then pushed back along the other slide (Dacie and Lewis, 

1995). The prepared smears were left to dry at room temperature for an hour 

prior to being fixed in pure methanol for 5 min. Cells were stained using 20% 

Giemsa stain (pH 7.0)  for 10 min and washed with three changes of distilled 

water. When thoroughly dried, slides were mounted with coverslips (glasses) 

using DPX mountant.  

Counting was accomplished by observing the slides under the light microscope 

(Olympus Vanox-T microscope) at a final magnification of x1000. To prevent 

potential errors arising from uneven distribution of leucocytes, the slide was 

divided into four segments and 50 leucocytes per segments were counted. 

Leucocytes were counted in a parallel row beginning from the outside edge of 

the slide to the inside. The 200 leucocytes counted per slide were classified 

according to their general form, identified and recorded in a table as a specific 
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cell type (for example a lymphocyte or monocyte) by dividing the sum of each 

type of leukocyte by two, the percentage of each cell was obtained. 

Classification of the leucocytes was based on the classification system used by 

Groff and Zinkl (1999) for common carp (Fig. 2.7). Photographs of selected 

slides were also taken using a digital camera (Olympus camedia C-2020 Z) at a 

total magnification of x 1000 (zoom on the camera was x2.5).  
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Fig. 2.7 Blood cells of Cyprinus carpio L. A: Red blood cells (RBC) and lymphocytes (L) 
B: Neutrophil (N) with blue granular cytoplasm; C: Monocytes (M) with large oval 
nucleus; D: Eosinophil (E) with pink granular cytoplasm: Giemsa stain; Scale bars: 
25µm. 
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2.8.5 Plasma collection 

Prior to plasma collection, the remaining blood per fish was immediately 

centrifuged at 10,500 xg for 10 min; collected supernatant was subjected to a 

further 1 min spinning at 10,500 xg. The blood plasma samples were stored at - 

80oC until they were needed for analysis.   

2.9 Determination of Cu accumulation in the tissues 
The Cu concentration in the tissues was measured according to Federici et al., 

(2007). Fish were removed from their tanks and dissected out (6 fish treatment-

1). Briefly about 0.05 g of fresh tissue (i.e. gill, liver, intestine and kidney) were 

washed with Milli-Q water and placed on clean individual slides and dried to 

constant weight in an oven at 70°C for 24 h. All glassware were acid-washed 

(5% Aristar HNO3 for at least 2 h) to ensure that minimal contamination occurs, 

and then triple rinsed in deionised water. In a fume cupboard, each piece of 

dried tissue was placed in 20 ml polythene screw-top digestion vials 

(scintillation vials, Simport, Canada) and 1 ml of concentrated Aristar HNO3 was 

added. Samples were digested at 70°C for 2 h in water bath. Once digestion 

was completed (no brown fumes stopped evolving), the tubes were allowed to 

cool, then diluted with 4 ml of Milli-Q water. Tissue digest aliquots were stored 

at room temperature. Cu concentrations were measured by using Inductivity 

Coupled Plasma-Optical Emission Spectrometer (ICP-OES, Varian, Yarnton, 

UK. 725-ES). The software used with ICP was ICP Expert II Vision 1.1. Cu 

standards were also prepared in order to calibrate the instrument before metal 

analysis. The standard solutions were made by using 1000 mg l-1 Cu stock 

solution, diluted by 2% nitric acid. The Cu standards used were 0, 0.5, 1, 4 µg l-1 

the wavelength chosen for Cu measurements was 327.39 nm. Cu 

concentrations in the tissues were expressed as µg g-1 dry wt (dw). Calculation 
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to determine Cu concentrations in the tissues was carried out as per the 

following equation:  

𝑪𝒖 𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 (µ𝒈/𝒈) =
𝒗𝒐𝒍𝒖𝒎𝒆  𝒎𝒍 

 𝒔𝒂𝒎𝒑𝒍𝒆 𝒘𝒕.  𝒈 
× 𝒅𝒊𝒈𝒆𝒔𝒕 𝒄𝒐𝒏𝒄. (𝒎𝒈/𝒍) 

 

 

2.10 Histopathological studies 
Histological examinations were carried out at the end of each exposure as 

described by Myers et al. (1998). Fish were removed from their tanks and 

dissected out (6 fish treatment-1), and whole gill, liver, intestine were carefully 

collected. Tissue samples were immediately fixed in 10% formaldehyde solution  

(ratio of the tissue to the fixative solution was 1:100; 100 ml of 40% 

formaldehyde made to 1 l with distilled water, adjusted to pH 7.4) for 48 h . The 

preserved tissues were then dehydrated via a series of alcohols to remove 

excess water (70% for 24 h, 90% industrial methylated sprit, IMS, for 2h and 

100% IMS for 2h), cleared in three changes of Xylene (1h for each change) to 

remove alcohol and to make the tissues ready for paraffin infiltration. Tissues 

were then transferred to the paraffin oven (58-60°C) for 60-120 min to ensure 

the tissue was completely permeated with paraffin and manually set in wax 

blocks, which were then left to harden for 4 h., Transverse sections (thickness 

of 5-7 µm) were cut and stained with Haematoxylin and Eosin (Mayer‘s H and 

E), following standard method with some modifications of staining time to 

achieve the good results. Staining time was adjusted as follows: slides were 

cleared in Xylene 3 times for 2 min each. Then dehydrated in 2 changes of 

absolute alcohol; 90, 70, 50% for 2 min each. Sections were then stained with in 

Haematoxylin for 40 min, and then followed by good wash with tap water. The 

slides were then blued in alkaline LiCO3 (5 rinses), differentiated with acid 
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alcohol (2 rinses) followed by good wash with distilled water finally stained with 

Eosin for 1 min. Following staining, a good wash with distilled water was 

performed. Dehydration with descending alcohol series for 2 min each was 

applied. Clearing in 3 changes of Xylene for 2 min each was done (Plate 2.5). 

The slides were then covered with clean coverslips, making sure that there 

were no air bubbles trapped underneath them. Slides were examined by light 

microscopy using an Olympus Vanox-T microscope and photographed using a 

digital camera (Olympus camedia C-2020 Z) at total magnifications of x 100 and 

x 400 (zoom on the camera was x2.5).  

Detailed descriptions of pathology were done for the experiments according to 

Bernet et al., (1999). For the gill tissues, histological features were recognized, 

measured when appropriate and counted in relation to the number of lamellae. 

Only those secondary lamellae that were complete, from base to tip, were 

considered for analysis. For each experiment, treated/ exposed and untreated/ 

control, 6 fish were sampled for each treatment and 100 secondary lamellae 

were counted. A quantitative assessment of lesions in a histopathological 

investigation was done through practicable statistics (ANOVA).   
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Plate 2.5 The major steps for the sectioning of tissues for histopathological studies 

using different instruments. 
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2.11 Ultrastructural analysis using transmission electron microscopy 
(TEM) 
For ultrastructural studies, tissue samples were prepared as described by Au et 

al., (1999). Tissues (i.e. liver, gill or intestine) were cut into 1 mm3 cubes and 

immediately fixed (2.5% glutaraldehyde in 0.1 M cacodylate buffer, pH 7.2, 

made up with filtered freshwater). Tissue samples were fixed overnight at 4°C, 

followed by washing [in buffer, 1:1 of buffer: DI and then DI, 10 min each step] 

before post fixing in 1% aqueous osmium tetroxide for 2 h to provide contrast to 

the images. Samples were rinsed thoroughly with sodium cacodylate buffer (2 

times at 15 min) followed by dehydration schedule through a graded ethanol 

series, then infiltrated gradually in Spur‘s resin for several days and finally the 

resin is polymerised in a small capsule. Before embedding, semi-thin sections 

(0.5 mm) were cut with an ultramicrotome, collected on grids, positively stained 

with methylene blue/azur II and prepared for orientating the tissue for ultrathin 

sectioning. Ultrathin sections for TEM were stained in 2% uranyl acetate, 

followed by 1% lead citrate for 15 min for each stain, to produce high contrast 

stain for cellular and tissue components, and examined under a transmission 

electron microscope (JEOL, TEM-1200EX II) at 120 kV, and imaged using soft 

Imaging system, Mega View 3 (Plate 2.6). 

 

 



 Chapter 2. 

  

85 
 

 

                Plate 2.6 JEOL, TEM-1200EX II used for TEM analysis. 
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2.12 Feeding and weighing the fish 
All fish in each experimental tank were weighed at t = 0 and fed relative to 3 % 

biomass day-1 in three equal rations three times daily at ~ 09:00,13:00 and 

18:00 h. Throughout experiments/ trials, fish were reweighed every week and 

within this period feed input was adjusted daily based on a predicted feed 

conversion ratio value (FCR) (Cech et al., 1984).   

2.13 Growth and nutritional performance 
Growth performance and feed utilisation was assessed by specific growth rate 

(SGR) and feed conversion ratio (FCR). Calculations were conducted according 

to Cech et al., (1984) as per the following equations: 

𝑺𝑮𝑹 (%) =
𝑳𝒏 𝒇𝒊𝒏𝒂𝒍 𝒘𝒕(𝒈) − 𝑳𝒏 𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒘𝒕(𝒈)

𝑫𝒂𝒚𝒔 𝒇𝒆𝒅 − 𝟏
× 𝟏𝟎𝟎 

 

 

𝑭𝑪𝑹 =
𝒅𝒊𝒆𝒕 𝒇𝒆𝒆𝒅(𝒈)

𝒘𝒆𝒊𝒈𝒉𝒕 𝒈𝒂𝒊𝒏(𝒈)
 

 

 

2.14 Proximate analysis of diets and carcass 
The proximate composition of the carcass and diets were subjected to analysis 

for the determination of moisture, ash, lipid, and protein levels. All diets were 

ground by use of a house hold blender and analysed on a wet weight basis. 

Analysis was conducted in triplicate according to Baker and Davies, (1996) as 

described in the following sub sections. 

2.14.1 Moisture 

Diets (in duplicate) and carcasses (whole with peritoneal cavity and viscera) 

were weighed and dried at 105°C with a fan assisted oven (Genlab Ltd., UK) 

until a constant weight was achieved. Percentage moisture was determined by 

following equation: 
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𝑴𝒐𝒊𝒔𝒕𝒖𝒓𝒆  % =
(𝒘𝒆𝒕 𝒘𝒕. (𝒈) –  𝒅𝒓𝒚 𝒘𝒕. (𝒈))   

 𝒘𝒆𝒕 𝒘𝒕. (𝒈)
× 𝟏𝟎𝟎 

 

 

 

2.14.2 Ash 

Ash (total mineral or inorganic content) was determined in duplicate by adding a 

known sample weight (~ 500 mg) to a pre- weighed ceramic crucible. The 

crucibles and samples were then incinerated in a muffle furnace (Carbolite, 

Sheffield, UK) at 550°C for 12 h. After cooling in a dehumidification chamber, 

percentage ash was determined from the sample residue using the following 

formulae: 

 

𝑨𝒔𝒉 % =
(𝒔𝒂𝒎𝒑𝒍𝒆 𝒓𝒆𝒔𝒊𝒅𝒖𝒆 (𝒈) –  𝒄𝒓𝒖𝒄𝒊𝒃𝒍𝒆 𝒘𝒕. (𝒈)) 

 𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒔𝒂𝒎𝒑𝒍𝒆 𝒘𝒕. (𝒈)
× 𝟏𝟎𝟎 

 

2.14.3 Lipid 

Lipid content was determined in duplicate using the Soxhelt extraction method. 

Diets were weighed (~ 3 g) and placed into cellulose thimble lightly plugged with 

cotton wool and inserted into the condensers (raised into the ‗rinsing‘ position) 

of a SoxTecTmextraction system (Tecator Systems, Högnäs, Sweden; model 

1043 and service 1046). Pre- weighed cups containing 40 ml of petroleum ether 

were clamped into the condensers and extraction levers moved to the boiling 

position for 30 min, after which extraction levers were set to the ‗rinsing‘ position 

for 45 min. The cups containing extracted lipid were then transferred to a fume 

cupboard, cooled for 30 min and weighed. Total lipid content was determined as 

per the following formulae: 
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𝑻𝒐𝒕𝒂𝒍 𝒍𝒊𝒑𝒊𝒅  % =
(𝒄𝒖𝒑 (𝒊𝒏𝒄𝒕.𝑳𝒊𝒑𝒊𝒅) 𝒘𝒕. (𝒈) –  𝒄𝒖𝒑 𝒘𝒕. (𝒈)

 𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝒔𝒂𝒎𝒑𝒍𝒆 𝒘𝒕. (𝒈)
× 𝟏𝟎𝟎 

 

 

2.14.4 Crude protein 

Determination of the total crude protein in diets and fish samples was achieved 

in triplicate by the Kjeldhal method, which measures protein from the total 

nitrogen content of the samples. Total nitrogen is multiplied by a factor of 6.25 

to calculate apparent protein content. In brief, ~ 100 mg of sample was weighed 

directly into a micro kjeldhal tube along with one catalyst tablet (3 g K2SO4, 105 

mg CuSO4  and 105 mg TiO2; BDH Ttd., Poole, UK) and 10 ml concentrated 

sulphuric acid (H2SO4) (Sp. Gr. 1.84, BDH Ltd. Poole, UK). Digestion was 

performed with a Gerhardt Kjelda Thermo digestion block (Gerhardt Laboratory 

Instruments, Bonn, Germany) with the following schedule; 100°C for 30 min, 

225°C for 45 min (one hour if samples had particularly high lipid content) and 

380°C for 60 min. Once digestion was completed and following a cooling period, 

the samples were distilled using a Vodapest 40 automatic distillation unit 

(Gerhardt Laboratory Instruments, Bonn, Germany), the distillate was 

neutralised with concentrated H2SO4 and from the titration value crude protein 

determined using the following formulae: 

𝑪𝒓𝒖𝒅𝒆 𝒑𝒓𝒐𝒕𝒆𝒊𝒏  % =
((𝑺𝑻 −  𝑩𝑻) 𝑿 𝟎.𝟏 𝑿 𝟏𝟒 𝑿 𝟔.𝟐𝟓)

𝑺𝑾 
× 𝟏𝟎𝟎 

 

Where; 0.1 is the molarity of the acid; 14 is the relative atomic mass of nitrogen 

(N); 6.25 is the constant relationship between N and animal protein; ST is the 

sample titre (ml); BT is the blank titre (ml) and SW is the initial sample weight.  
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2.15 Statistical analysis 

Statistical analysis was performed using Statgraphics v5.1 software (StatSoft, 

USA). All data were presented as mean ± standard error (S.E.) and  normality 

tests are used to determine whether a data set is well-modeled by a normal 

distribution or not, or to compute how likely an underlying random variable is to 

be normally distributed and analysed using one way analysis of variance 

(ANOVA) or Kurskal Wallis test, followed by multiple range tests. For the Comet 

assay data were analysed using multifactor analysis of variance (two way 

ANOVA) followed by Turkey‘s multiple comparison test. Only P values < 0.05 

were considered significant. Any correlations between variables were 

determined using the Pearson‘s correlation coefficient. 

 

 

 

 

http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Random_variable
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2.16 Results 

2.16.1 Comet assay optimisation 

The results for 10, 20, 30 or 40 min. electrophoresis on either 10, 20, 30 or 40 

min. unwinding for the considered endpoint (i.e. tail DNA %) has been 

presented in Fig 2.8 (A&B) and Fig 2.9 (C&D). The results are shown for the 

negative and positive controls. Overall, there was no significant difference 

between the unwinding times for the different electrophoresis times or between 

the electrophoresis times for different unwinding times (ANOVA, P > 0.05; n=3). 

Therefore, 20 min unwinding time and 20 min electrophoresis time, giving a 

background of about 15% (Fig. 2.8B) was chosen for the duration of the study.    

2.16.2 Validation of the Comet assay under in vitro conditions using 
hydrogen peroxide (H2O2) 
Validation experiment was conducted with H2O2 exposure to erythrocytes. 

Results for % tail DNA demonstrated concentration-dependent increase in DNA 

damage in erythrocytes (Fig. 2.10).  There were significant differences between 

H2O2 concentrations (10-200 µM) in comparison with control (Kurskal-Wallis, P< 

0.03). Moreover, multiple range tests indicated a significant difference between 

H2O2 concentrations in both % tail DNA and Olive tail moment (Fig. 2.11 A&B). 

Thus, Comet assay using erythrocytes of the carp proved to be a sensitive 

technique for the detection of DNA damage. 
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2.16.3. Validation of the Comet assay under in vitro conditions using 
hydrogen peroxide (H2O2) to determine oxidative DNA damage (modified 
Comet assay protocol) 
Another validation experiment was conducted using H2O2 as reference 

genotoxic agents to optimize modified Comet assay. Two different enzymes 

were used: Fpg and Endo-III. The result showed a concentration- dependent 

increase for the induction of DNA damage. The induction of DNA damage 

following enzyme treatments was ranked as follow:  

Fpg > Endo-III > buffer (Two way ANOVA, P < 0.05), (Fig. 2.12 A&B).  
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Fig. 2.8 The effect of unwinding time (A&B) negative control (blue) and positive control- 
100 µM H2O2 (red). (A) 10 min electrophoresis (B) 20 min electrophoresis; n=3. 
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Fig. 2.9 The effect of unwinding time (C&D) negative control (blue) and positive control- 
100 µM H2O2 (red). (C) 30 min electrophoresis (D) 40 min electrophoresis; n=3. 
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Fig. 2.9 The effect of unwinding time (A-D) negative control (blue) and positive control- 
100 µM H2O2 (red).(A)10 min electrophoresis (B) 20 min electrophoresis (C) 30 min 
electrophoresis (D) 40 min electrophoresis; n=3. 

 

 

 

Fig. 2.10 Representative comet images of C. carpio L. erythrocytes following exposure 
to H2O2 for 10 min. for different unwinding and electrophoresis times. These comets 
illustrate the visual scoring classification; class 0 (A), class 1 (B), class 2 (C&D), class 3 
(E) and class 4 (F). Cells are stained with Ethidium bromide. Total magnification = 
400x. Scale bars 50 µm. 
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Fig. 2.11 DNA damage expressed as (A) % tail DNA (B) Olive tail moment  in C. carpio 
erythrocytes following 10 min in vitro incubation with  different concentrations of H2O2 
(1, 10, 50, 100, 200 µM). Data are means ± S.E (*) indicates significant differences 
from control, using Kurskal Wallis test. (n = 3). 
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Fig. 2.12 DNA damage expressed (A) as %tail DNA (B) Olive tail moment in C. carpio  
erythrocytes following 10 min in vitro incubation with different concentrations of H2O2 
(1, 10, 100, 200 µM) using bacterial enzymes (Fpg and Endo-III). Data are mean ± S.E. 
(*) indicate significant differences from control; (n=3).  
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CHAPTER 3 
 

ELEVATED DIETARY COPPER INDUCES BIOCHEMICAL, 
GENETIC AND HISTOPATHOLOGICAL CHANGES IN CARP, 

CYPRINUS CARPIO L. 
 

 
 

Results from this chapter have been presented at the 40th EEMS annual 

meeting, Oslo, Norway, Sep 2010 (poster presentation) and in Marine Institute 

Conference, Plymouth, UK, Dec 2010. 
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Hypotheses: (a) Elevated concentrations of dietary Cu induce responses at 

different levels of biological organisation 

 

Abstract 

Copper (Cu) is an essential element for all organisms including fish. 

Conversely, in line with other heavy metals, excessive amounts of this metal 

could be detrimental to normal physiological functions manifested primarily by 

impaired feed efficiency, reduced growth and tissue damage at both histological 

and molecular levels. Consequently we adopted an integrated approach to 

evaluate the impact of dietary borne copper on mirror carp, C. carpio, 

determining varying levels of biological responses, including specific growth rate 

(SGR), feed conversion ratio (FCR) and particularly DNA stability. Fish (mean 

weight 8.23 ± 0.14) were exposed chronically for 10 weeks to dietary Cu 

concentrations of 12 (control) -1000 mg kg d.w-1. Several endpoints at different 

levels of biological organisations were evaluated. These included oxidative DNA 

damage (using Comet assay in combination with Fpg and Endo-III enzymes), 

haematological and histopathological parameters (including ultrastructural 

changes) in selected organs. Cu accumulation in different organs was also 

determined at the end of this period. 

Oxidative damage in the DNA (determined in erythrocytes) showed a 

significantly higher level of damage at elevated Cu concentrations compared to 

control groups, suggesting that high dietary Cu exposure induces oxidative DNA 

damage. There was no significant effect of exposure on haematological 

parameters except for haemoglobin concentration. The Cu levels in liver were 

significantly higher in fish fed with 1000 mg kg d.w-1. The order of Cu 

accumulation in tissues was liver > intestine > gill > bone which are dose 

response. Highest concentration (1000 mg kg d.w-1), showed hepatocellular 
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coagulative necrosis with multifocal areas of lipid vacuolation of hepatocytes. 

There was a marked inverse relationship between specific growth rate and 

dietary Cu concentration for carp. These findings indicate complex stress 

responses occurring at different levels of biological organisation with oxidative 

DNA damage being precipitated at the higher organisational level. In common 

with human studies, this approach could be adopted to determine the impact of 

dietary factors on general health of individuals and populations. The ecological 

impact on fish biology is obvious given that growth, maturation and reproductive 

success ultimately reflects the Darwinian fitness of the organisms and ultimate 

survivability. Exposure to specific contaminants may have profound implications 

too for the global aquaculture industry dependent on quality feed ingredients 

and traceability of the food chain. 
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3.1 Introduction 

Cu is an essential trace element required in small concentrations for all 

organisms including fish. The optimal requirement of copper in diet as 

determined for several fish range from 3 to 5 mg Cu kg d.w-1 (Watanabe et al., 

1997). Conversely, at high concentrations this metal is considered to be a 

hazardous inorganic contaminant to aquatic organisms (Pedder and Maly, 

1985). Cu from natural and various anthropogenic sources constantly influx the 

aquatic environment where they create threats to fish health due to their toxicity, 

long persistence, bioaccumulation and biomagnification in the food chain (Zhou 

et al., 2008).  

Lanno et al. (1985) have reported that dietary uptake to copper is considerably 

less toxic relative to waterborne exposure. This is attributable to the mucosal 

layer in the gut which act as a great barrier to toxic metals (Handy, 1992), 

although Cu ultimately absorbed via the gut. Thus, the bioavailability of its much 

lower in contaminated feed compared to the equivalent quantity offered in 

dissolved form (Miller et al., 1993b). Whatever the uptake, Cu accumulated 

mainly in liver, intestine, gill and kidney. Thus, the bioaccumulation model of 

metals in fish can be utilized as effective biomarkers of environmental metal 

pollution (Larsson et al., 1985). Furthermore, tissue specific accumulation has 

been proposed as a key biomarker to assess the effect of the chronic exposure 

of metals in aquatic organisms (Kim and Kang, 2004). 

Growth is a good quantitative biomarker for measuring the long-term 

toxicological investigations and also provides an index of physiological status 

and performance (Rijnsdorp, 1990). Furthermore, histopathological and 

ultrastructural studies are also useful tools to assess chronically exposed 

environment (Arellano et al., 1999).   
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Since blood variables respond quickly to sub chronic effects of pollutants than 

other commonly measured endpoints, they have been widely used for the 

description of healthy fish and for predicting systematic relationships and the 

physiological status of fish. Moreover, detection of oxidative DNA damage is 

also sensitive and reliable biomarker to measure the impaired cellular process. 

But, few studies are available on the effects of Cu on oxidative DNA damage 

particularly through dietary route.  

Whereas toxic effects in fish exposed to highest waterborne levels of copper are 

well known, relatively few studies have been addressed the dietary metal 

toxicity, regardless of diet being an important pathway of contamination in wild 

fish (Dallinger and Kautzky, 1985). Also, there are still many gaps in the 

knowledge of Cu toxicity in fish, and which organ respond to elevated levels is 

essential. Therefore, this study aimed to test the following hypotheses: 

1. Elevated concentrations of dietary Cu (250, 500 and 1000 mg Cu kg d.w-1) 

can induce oxidative DNA damage in C. carpio.  

2. Elevated concentrations of dietary Cu will have an adverse influence on the 

growth rate of C. carpio. 

We adopt a holistic approach and achieve the following objectives:  

a. Determine damage to the DNA (using modified Comet assay as a biomarker 

of DNA damage)  

b. Determination the potential influences on haematological parameters 

(erythrocytes and leukocytes count, haematocrit value and haemoglobin 

concentration). 
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c. Determine the effects of dietary Cu exposure on tissue specific accumulation 

(liver, intestine, gill and bone) in carp. 

d. Examine the effects of dietary Cu exposure on histopathological and 

ultrastructural aspects in the major tissues and organs in carp. 

e. Determine the specific growth rate and food conversion ratio of the C. carpio 

exposed to elevated concentrations of dietary Cu.  

3.2 Diet formulation 

A ten-week feeding trial was initiated with four dietary treatments based on 

herring meal and lysamine pea protein as the source of protein, corn starch and 

viten were added as the carbohydrate source, vegetable oil provided lipids, and 

molasses was added as binder. In addition, mineral premix formulated to supply 

the recommended requirements for carp (Table 3.1). Cu- supplemented diets 

were prepared using the same formulation of control diet except that 1, 2 and 4 

g kg-1 of corn starch was omitted to compensate for the mass of Cu sulphate 

(CuSO4.5H2O) were supplemented with 0, 250, 500 and 1000 mg Cu kg-1 dry 

weight (subsequently termed as mg Cu kg-1 in the text). These concentrations of 

Cu were selected on the basis of previous studies carried out in our laboratory 

conditions in rainbow trout following exposure to dietary Cu (500 mg Cu kg-1) for 

3 months (Handy et al., 1999). In addition, the concentrations used in the study 

were in the range of other studies in our and other laboratory conditions where 

different fish species have been exposed to dietary Cu for physiological and 

toxicological studies (for review see Handy, 2003). In the absence of any 

mortality for these reports, the concentration range was justified especially for 

evaluation of genetic damage which is determined below the maximum 
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tolerated concentration or dose (MTC or MTD) for which mortality is considered 

to be final arbitrator (Canty et al., 2009; Jha, 2008). 

The copper sulphate was dissolved in 300 ml deionised water and mixed well 

with other feed ingredients. The resulting paste was extruded through a Hobart 

food mixer (model A-120, 3 mm extrusion plate) and dried at 40°C for 96 h. 

Pellets were stored at - 20°C to prevent lipid peroxidation until use. The control 

diet was similarly treated except that no Cu was added to the diet. The Cu 

content of diets was confirmed by atomic absorption spectrophotometer (ICP-

OES, Varian 725-ES ICP- optical emission spectrometer). Final Cu 

concentrations in the experimental diets were 11± 0.2, 241 ± 0.6, 481 ± 1.4 and 

993 ± 1.3 mg Cu kg-1 respectively, n=3 in the control and Cu supplemented 

diets. Proximate analyses of the diets indicated in Table 3.1.  
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Table 3.1Dietary ingredients, proximate composition of diet. 

               Cu concentrations (mg kg d.w
-1

) 

Ingredient (g kg
-1

) Control 250   500      1000 
Corn starch

1
 390.99 389.99 388.99   386.99 

Herring meal 

(LT92)
2
 350.00 350.00 350.00    350.00 

Lysamine pea 

protein
3
 140.01 140.01 140.01    140.01 

Viten
4
 50.00 50.00 50.00     50.00 

Vegetable oil
5
 30.00 30.00 30.00     30.00 

Vitamin mineral 

premix
6
 20.00 20.00 20.00 20.00 

Molasses 10.00 10.00 10.00 10.00 

 

Proximate analysis (%) n=3 

Crude protein  38.6 ± 1.24 38.09 ± 0.32  38.07± 0.60   38.30 ± 1.20  

Lipid 13.2 ± 0.31 13.05 ± 1.65  13.09 ± 1.54 12.98 ± 0.02  

Ash 14.92± 2.04 15.00 ± 0.41  16.25 ± 0.43  15.07 ± 0.93  

Moisture 34.81± 1.32  35.13± 0.62  34.11 ± 0.25 34.04 ± 1.05  
1
 Sigma-Aldrich Ltd, UK. 

2
Herring meal LT92 - United Fish Products Ltd., Aberdeen, UK. 

3 
Roquette Frêres, France. 

4
 Sigma-Aldrich Ltd, UK. 

5
 Sunflower oil. 

6
 Premier nutrition vitamin/mineral premix: 121 g kg

-1
 calcium, Vit A 1.0 μg kg

-1
, Vit D3 0.1 μg kg

-1
, 

Vit E (as alpha tocopherol acetate) 7.0 g kg
-1

, Cu (as cupric sulphate) 250 mg kg
-1

, Magnesium 
15.6 g kg

-1
, Phosphorous 5.2 g kg

-1
. 
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3.3 Experimental design 

Mirror carp C. carpio weighing about 5.39 ± 0.14 g were obtained from 

Hampshire carp hatcheries (Bowlake fish farm, UK) and  acclimated for a period 

of 3 weeks, during this time fish were fed standard commercial diet of 2% body 

weight (Ewos, Micro 20 p, Ewos Ltd., Westfield, Bathgate, West Lothian. UK). 

Post acclimation, 120 fish were selected for dietary exposure (average weight, 

8.2 ± 0.1 g), were equally distributed into twelve 80-l fibreglass tanks, with 10 

fish tank-1 (four triplicate groups). Each tank was provided with 98% of re-

circulated-aerated fresh water at a flow rate of 600 l h-1. The physicochemical 

characteristics water quality was presented in Table 3.2. A 12-h light/12-h dark 

photoperiod was maintained throughout the trial duration. Weekly water 

changes, the self-cleaning design of the system and the routine cleaning weekly 

were carried out to ensure that food and faecal materials were cleared from 

each tank. Prior to experiment, all fish were fed the control basal diet with no 

added Cu for one week to acclimatise them to the experimental diet.  At the 

start of the experiment all fish were fed the diet three times daily at a rate of 3% 

of average body mass (equal rations at 9.00, 13.00 and 17.00 h) for 10 weeks, 

three tanks remained on the basal diet (no added Cu) containing 11 mg Cu kg 1, 

while the others were fed a high-Cu diet containing 250, 500 and 1000 mg kg 1 

added as CuSO4.5H2O. Throughout experiments/trials, fish were reweighed 

every week and within this period feed input was adjusted daily based on a 

predicted feed conversion ratio value (FCR). Daily feed was corrected on a 

weekly basis following batch weighing after a 24 h starvation period (see 2.12). 

SGR and FCR were determined (see section 2.13). Total mortality during the 

experiment was 0%. 
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Table 3.2 Average data of physical-chemical parameters of water used in the dietary 
Cu exposure experiment.  

Water quality parameters                                                               Values*                  

 pH 7.3 ± 0.3 
Temperature (°C) 24 ± 0.05 
Dissolved oxygen (mg l-1)  7.1 ± 0.02 

   Ammonia (mg l-1)  0.002 ± 0.01 
   Nitrite (mg l-1)  0.02 ± 0.3 
   Nitrate (mg l-1)  24.30 ± 0.06 
   Copper (mg l-1)  3.04 ± 0.6   

 
* Values are means ± SE.  

   

 

3.4 Biological sampling and analysis  

After 10 weeks of trial, fish were not fed the day before the sampling times in 

order to empty the gut and to facilitate dissection. Fish were netted (2 fish tank-

1, 6 treatment-1) and euthanized in a buffered solution of methane sulphonate 

(MS-222; 100 mg l-1 water for 10 min). Blood samples were obtained from the 

caudal vessel using a 25 gauge needle and 1 ml heparinized syringe 

immediately collected into test tubes for determination of oxidative DNA 

damage using modified Comet assay (see 2.7.5). Also for analysis of 

percentage haematocrit (2.8.3), measurement of haemoglobin concentration 

(see 2.5.1) and total leucocyte and red blood cell counts (2.8.2). Major tissues 

of interest (liver, intestine, and kidney) were dissected out, and fixed in 10% 

formaldehyde solution for histopathological studies (see 2.10). Another portion 

of liver tissues were fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer for 

ultrastructural studies by TEM (see 2.11). A further two fish per tank (6 fish 

treatment -1) were sampled for copper analysis, and the following tissues were 

sampled: liver, intestine, gill and bone (see 2.9; Cu analysis). For analytical 

procedures (lipid, protein and ash) 2 fish per tank (6 fish treatment-1) were dried, 

and percentage moisture also determined from initial and final weight (see 2.14 

and subsections).                 .                  
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3.5 Statistical analysis 

Statistical analysis was performed using Statgraphics v5.1 software (StatSoft, 

USA). All results are expressed as mean ± Standard error (S.E.). A way one 

ANOVA was used to test the differences between the treatments on the 

parameters measured at the end of the experiment. For the modified Comet 

assay (with the use of enzymes) data presented as average median ± S.E. was 

analysed using multifactor analysis of variance (two way ANOVA). Significant 

ANOVA was followed by a multiple comparison test. Level of significance was 

taken as P < 0.05. General linear model was used to determine the differences 

for the growth rate between weeks using one of the appropriate statistical 

methods (LSD). The numbers of measured for each parameter is specified in 

the table captions. 
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3.6 Results 

3.6.1 Determination of oxidative DNA damage  
 In the present study after 10 weeks of exposure to different concentrations of 

dietary Cu, no loss of cell viability was observed in any of the treatments (cell 

viability in the trypan blue exclusion dye, > 90% in all cases). Oxidative DNA 

damage was relatively low in control group and in low dietary Cu group (i.e., 

250 mg kg-1) compared to both medium and high dietary exposure groups. 

Oxidative DNA strand breaks increased significantly (P < 0.00005) on dietary 

exposure groups at high concentration (1000 mg Cu kg-1) compared to control 

and 250 mg Cu kg-1 by approximately 200% and 150% respectively. Also, DNA 

damage at 500 mg kg d.w-1 was significantly increased compared to control and 

250 mg Cu kg-1 groups by approx. 130% and 85% respectively. In addition, 

there was a significant difference between all dietary exposures groups. 

However, the enzymes (i.e. Fpg and Endo-III) and enzymes/Cu interaction was 

not significant (Fig. 3.1). These results suggesting that oxidative DNA damage 

depended upon the dietary Cu concentration.  
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Fig. 3.1 Induction of DNA single strands breaks (represented as percentage tail DNA) 
in C. carpio erythrocytes following 10 weeks exposure to dietary Cu concentrations 
(250, 500, 1000 mg kg d.w-1). Values are mean ± S.E. Different letters indicate 
significant different at P < 0.05, corresponding 95.0% confident intervals (n = 6). 
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3.6.2 Haematological parameters 

Haematological variables in the control and all dietary exposure groups are 

summarised in Table 3.3.  For in haematocrit (Hct%) values  there were no 

significant differences observed in all dietary Cu groups compared to control 

group, as well as no significant differences were observed between all dietary 

Cu treatments. The results upon red blood cell count (RBC) are indicated no 

significant differences in dietary Cu groups at 250, 500 mg kg-1; compared to 

control group fed basal diet. Only the group fed  the highest Cu concentration 

(1000 mg kg-1) had a significant decrease by approximately 30% compared to 

control group and also was significant decrease compared to both Cu dietary 

groups at 250, 500 mg Cu kg-1 respectively (ANOVA, P = 0.046). For white 

blood cell count (WBC) there were no significant differences observed in all 

dietary exposure groups compared to control group. Haemoglobin concentration 

showed significant decreased in dietary exposure groups at 1000, 500 mg kg-1 

by approximately 25% compared to control group and low dietary Cu group (250 

mg kg-1) (ANOVA, P = 0.028).    
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Table 3.3 Effect of 10 weeks exposure to dietary Cu on haematological parameters of 
C. carpio.  

 

variables 
Cu concentrations (mg kg d.w-1) 

Control 250  500  1000  

 Hct (%) 31.25 ± 0.73a 30.63 ± 0.80a  28.58 ± 1.63a 29.22 ± 1.62a 

  RBC (cells x 106µl-1) 1.77 ± 0.06a 1.42 ± 0.30a  1.47 ± 0.18a 1.21 ± 0.09b 

 WBC (cells x 103µl-1) 13.09 ± 0.04a 14.36 ± 0.06a 13.18 ± 1.43a 14.01 ± 0.97a 

 Hb (g dl-1)  9.34 ± 0.08a   9.68 ± 0.03a   6.89 ± 0.02b 7.03  ± 0.06b 

 
Data are mean ± S.E. Groups with different alphabetic superscripts within the row 
indicate significantly different at P < 0.05; (n=6). 
 
 

 

3.6.3 Histopathological studies 

Liver, intestine and kidney were examined at the end of the feeding trial. For the 

kidney, all tubules, glomeruli and other elements of the nephrons appeared 

normal, in both control and in all dietary Cu groups with no evidence of oedema, 

necrosis (Fig. 3.2 A&B). Intestine also showed normal structure, with no 

evidence of necrosis, oedema, haemorrhage or excessive epithelial sloughing 

in control and all dietary groups (Fig. 3.2 C&D) and there were no significant 

differences in the length and width of the villi in all treatment groups. The liver 

histology from control and exposed fish is briefly illustrated in Fig. 3.3. In control 

groups, sections of liver hepatocytes exhibited a typical architecture with no 

lesions in the hepatocytes. The hepatocytes present a homogenous cytoplasm 

around centrally or sub central located spherical nucleus (Fig. 3.3 A). The 

hepatic tissues of dietary Cu exposures exhibited histopathological changes 

after 10 weeks exposure to 500 and 1000 mg kg-1, the cells lost its normal size 

and structure especially at 500 and 1000 mg kg-1. At 500 mg Cu kg-1 diet 

hepatic parenchyma cells 83.3% of fish showed a typical perivascular 
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infiltrateration of mononuclear inflammatory cells (monocytes/macrophages and 

lymphocytes), with subendothelial fibroblastic nuclei on the back side of the vein 

(Fig. 3.3 B). At high Cu concentration (1000 mg Cu kg-1), 67% of fish exhibits 

some hepatocellular coagulation necrosis and intravascular fibrin deposition 

with also a typical perivascular infiltrate of mononuclear inflammatory cells 

(monocytes/macrophages and lymphocytes) (Fig.3.3 C). Additionally, 66% of 

fish exhibited large, multifocal moderate to severe areas of fatty change/lipid 

vacuolation of hepatocytes. (Fig.3.3 D). For the low dietary Cu exposure (250 

mg Cu kg d.w-1) the hepatic parenchyma cells did not show any 

histopathological alterations.    
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Fig. 3.2 Light micrographs of sections through kidney and intestine of C. carpio  
showing histological structures of control and dietary Cu exposures stained with H&E at 
5-7 µm thickness. (A) kidney control (B) 1000 mg Cu kg-1 (C) intestine control (D) 1000 
mg Cu kg-1 dw. PT = proximal tubule; S= Serous membrane; Ml= Muscularis 
longitudinal; Sg= Stratum granulosum; V= Villi; ep= epithelium. Scale bars: 100 µm. 
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Fig. 3.3 Light micrograph sections showing histological structures through liver of C. 
carpio L. from control and dietary Cu exposures stained with H&E at 5-7 µm thickness. 
(A) control liver showing normal histology of hepatocytes (white arrow); (B) 500 mg Cu 
kg-1 diet subendothelial fibroblastic nuclei with aggregations of mononuclear 
inflammatory cells (arrowhead); (C&D) 1000 mg Cu kg d.w-1 showing hepatocellular 
coagulative necrosis and infiltrateration of mononuclear inflammatory cells (black circle) 
and multifocal moderate to severe areas of fatty change/lipid vacuolation of 
hepatocytes (black arrow). Scale bars: 50 µm. 
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3.6.4 Ultrastructural study 

In control group, sections of liver hepatocytes exhibited a typical architecture 

with no pathological changes (Fig. 3.4 A). Hepatocellular size was between 9 

and 14 µm. The rounded hepatocelluar nuclei (2.0 ± 1.0 µm) displayed an 

electron–lucent euchromatin. The nucleus was surrounded by two to three 

cistern of rough endoplasmic reticulum and the smooth endoplasmic reticulum 

was poorly developed. A clear Golgi complex was not observed. A large 

number of mitochondria were diffused though the cytoplasm. The few numbers 

of roundish lysosomes of a very dark homogenous matrix was also observed. 

The hepatocytes contained few lipid droplets (vacuoles). 

The hepatocytes of dietary Cu exposures revealed that the number of lipid 

droplet (homogeneous semi-electron dense vacuole) had increased significantly 

at 1000 mg kg d.w-1 and 500 mg kg d.w-1 dietary Cu exposures compared to 

control group (Fig. 3.4 B&C; 17.8 ± 0.99 hepatocyte-1 and 11.3 ± 1.68 

hepatocyte-1) respectively (ANOVA, P = 0.016). These fat vacuoles were 

different in size (4.1 ± 2.9 µm) and were larger compared to control group. Also 

1000 mg Cu kg d.w-1 group showed an area of necrosis in some of the 

hepatocytes (Fig. 3.4 D).  
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Fig. 3.4 Transmission electron microscopy images: (A) control liver; nucleus (n), rough 
endoplasmic reticulum (rer) nucleolus (nu), mitochondria (m), rough endoplasmic 
reticulum (rer), lysosomes (l) (B) 500 mg Cu kg d.w-1 (C&D)1000  mg Cu kg d.w-1, the 
number of lipid droplets (lp) increased (red arrow); necrosis (red circle). Scale bars: 
2µm.  
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3.6.5 Cu analysis 

Cu accumulation in the liver, intestine, gill and bone of C. carpio, are shown in 

Table 3.4. After 10 weeks of Cu dietary exposure, it was found that Cu 

accumulated in tissues was concentration dependent, and the order of Cu 

accumulation in tissues were liver > intestine > gill > bone. The highest Cu 

concentration was registered in the liver at 1000 mg Cu kg-1 (60 and 1.8 fold 

increase, respectively) compared to the 250 mg Cu kg-1 and control groups 

(Kruskal-Wallis, P = 0.022). On the other hand, Cu levels in the intestine were 

lower in comparison to liver. Also, Cu levels in the intestine was significantly 

higher at 1000 mg Cu kg-1 and 500 mg Cu kg-1 dietary exposure treatments 

compared to control and to  250 mg Cu kg-1 groups (14.7 and 11 fold, 

respectively). In addition, the level of Cu in intestine was higher at 500 mg Cu 

kg-1  over in those exposed to control and to 250 mg Cu kg-1 dietary exposure 

groups (10 and 8 fold, respectively) (ANOVA, P = 0.003). Cu concentration in 

gill was showed much lower in comparison to liver and intestine in all dietary 

exposure groups. There was increase of Cu levels in gill at 500 1000 mg Cu kg-

1 (6 and 8 fold increase respectively) compared to control group. Also there was 

a significant difference between the 500 and 1000 mg Cu kg-1 (Kruskal-Wallis, P 

= 0.018). Cu accumulated in bone in lesser extent when compared to other 

tissues and also there was no significant difference between all dietary Cu 

groups.  
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 Table 3.4 Accumulation of copper (μg Cu g-1) by tissues of C. carpio fed diets 
containing different levels of Cu mg kg d.w-1 for 10 weeks.  

 

 
Data are mean ± S.E. Groups with different alphabetic superscripts within the row 
indicate significant difference at P < 0.05; (n=6). 
 
 
 
 

3.6.6 Growth and nutritional performance 

Initial body weight of mirror carp from all replications of control and experimental 

groups varied from 82 - 82.9 g and there were no statistical differences at the 

starting time of the trial (P < 0.05). All the data for growth and nutritional 

performance are summarized in Table 3.5.   

No fish died during the experimental period. After 10 weeks exposure to dietary 

Cu, there was a significant inverse relationship between the weight gain and the 

Cu concentrations (Fig. 3.5). The SGR of exposed C. carpio L. to dietary Cu 

was 1.6%, 1.6%, 1.5% at 250, 500, 1000 mg Cu kg-1 respectively, which was  

significantly lower compared to control group, and also there was a significant 

difference between high dietary exposure at 1000 mg Cu kg-1 and 500, 250 mg 

Cu kg-1 (ANOVA, P = 0.006). On the other hand, food conversion ratio (FCR) of 

dietary Cu groups was significantly different compared to control group and also 

a significant different between 1000 mg Cu kg-1 and 250, 500 mg Cu kg-1 

(ANOVA, P =0.004). These results, indicating that the highest level of dietary 

Tissue 
Cu concentrations (mg kg d.w-1) 

Control 250 500 1000 

  Liver 

  Intestine 

  Gill 

  Bone 

12.55 ± 4.04a 

  22.73 ± 2.64a 

  3.93 ± 0.66a 

  2.45 ± 0.69a  

 339.97 ± 184.22b  

  29.74 ± 2.76a 

  7.25 ± 0.63a 

  3.23 ± 0.63a 

679.40 ± 155.21c 

  243.72 ± 33.17b 

  19.61 ± 1.05b 

   3.63 ± 0.35a 

 737.03 ± 162.02c 

336.11 ± 92.68b 

24.80 ± 4.01c  

  5.76 ± 3.02a 
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Cu caused a gradual decline in growth rate of the Cu-fed groups relative to the 

control fed basal diet (Fig 3.4). 

Mean Weight of the control and Cu dietary groups for 10 weeks are presented 

in table 3.6. The growth rate of C. carpio for all treatments showed ascending 

trend from week 0 till the end of the trial (Fig. 3.6). Different concentrations of 

Cu revealed lower growth rate than control which started from week 5 till week 

10. Dramatically, decrease for all treatments appeared from week 9 and 10 

(LSD=3.1). The proximate composition of the carcass was similar for all the 

treatments and control group, with a trend for the high Cu concentration (1000 

mg Cu kg-1) to have a higher lipid, and lower ash content. However, these 

differences were not statistically significant (Table 3.5).         
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Table 3.5  The effect of dietary Cu exposure on nutrition and growth a  of C. carpio. 

Variable Cu concentrations mg kg d.w-1  

Control       250            500       1000  

Initial mean weight (g)     08.23 ± 0.03a 08.30 ± 0.05a 8.26 ± 0.02a 08.25 ± 0.02a 

Final mean weight (g)   30.05 ± 1.05a  26.50 ± 0.8ab 26.05 ± 0.75b 23.5 ± 0.01b 

Weight gain (g) 21.82 ± 1.08a 18.21 ± 0.75ab 17.79 ± 0.77b 15.25 ± 0.12b 

SGR (% g-1)  01.80 ± 0.02a 01.69 ± 0.03b 1.68 ± 0.04b 01.53 ± 0.01c 

FCR  01.39 ± 0.01a 01.56 ± 0.01b 1.55 ± 0.03b 01.70 ± 0.05c 

Proximate carcass compositionb    

Moisture (%) 70.20 ± 1.31a 70.51 ± 0.83a 71.60 ± 0.05a 71.53 ± 0.26a 

Crude protein (%)  54.32 ± 0.40a 52.25 ± 0.87a 54 .23 ± 1.10a 52.91 ± 0.52a 

Lipid (%) 30.11 ± 0.34a 30.40 ± 1.08a 31.92 ± 2.72a 33.41 ± 1.20a 

Ash (%) 08.51 ± 2.02a 09.01 ± 1.98a 09.9.32 ± 4.8a 07.65 ± 3.82a 
 

a
Values are means ± S.E. values within a row with different superscript letters are significantly 

different as determined by ANOVA at P < 0.05; ( n= 6).  
b
Values are for fish at the end of the experiment expressed as percentage of dry matter.      

Proximate carcass composition of initial fish for moisture, protein, lipid and ash respectively 
were (means ± S.E. n=6): 75.08±0.03; 52.80±3.19; 31.62±0.01; 5.18±0.5. 
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Fig. 3.5 Mirror carp C. carpio (A) fed basal diet without adding Cu. B, C & D fed Cu 
diets at 250, 500 and 1000 (mg kg d.w-1) respectively. Weight gain from control group 
was higher than this from experimental groups. 

 

 
 

 
Fig. 3.6 Mean of weight gain of C. carpio exposed to elevated dietary Cu 
concentrations for 10 weeks. 
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Table 3.6 Mean weight of the control and Cu dietary groups for 10 weeks (n=3). 

LSD=3.1; Less significant difference. 

Cu 

concentrations 

mg kg d.w-1  

Weight (Mean (g) ± S.E.) per week 

1 2 3 4 5 6 7 8 9 10 

Control 9.86±0.34 10.90±0.37 12.52±0.57 13.92±0.52 16.05±0.65 18.3±0.8 20.7±0.9 23.2±1.0 27.15±1.3 30.05±1.05 

250 10.1±0.27 11.26±0.25 12.92±0.22 14.45±0.45 16.32±0.42 18.35±0.5 20.2±1.0 22.4±1.1 24.14±0.9 26.5±0.8 

500 9.89±0.29 11.02±0.27 12.47±0.27 13.72±0.37 15.62±0.52 17.7±0.47 19.8±0.3 22±0.6 23.07±0.6 26.05±0.75 

1000 9.82±0.12 10.75±0.16 12.37±0.17 13.52±0.32 15.1±0.7 16.35±0.5 17.7±0.4 19.4±0.7 21.1±0.8 23.5±0.1 
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3.7 Discussion 

The data obtained from the Comet assay; showed that the high Cu 

supplemented groups exert a significant genotoxic action after 10 weeks of 

exposure. The analysis of the data, moreover, suggests that the genotoxicity is 

based on the concentration of the Cu: both 500, 1000 mg Cu kg-1 showed 

increasing DNA strand breakage in mirror carp (Fig. 3.1). While there is some 

evidence of Cu genotoxicity and carcinogenicity on aquatic ecosystem including 

fish, However, its genotoxic potential is poorly understood in fish (Atienzar et al., 

2001). Increasing evidence indicates that multifactorial mechanisms proposed 

to explain Cu genotoxicity one of the well-known mechanisms is though Cu 

initiated free radical generation that can damage biomolecules, including 

unsaturated lipids and DNA (Becker et al., 2009; Yourtee et al., 1992). The 

alternative mechanism for Cu genotoxicity is that Cu ions can directly interact 

with specific sequences of nucleotides in DNA leading to an inactivation of 

proteins involved in DNA replication, transcription and repair mechanisms 

(Hartwig, 1995; Prá et al., 2008). 

Cu was previously reported to induce DNA damage but such an effect was only 

observed in European eel Anguilla anguilla exposed for 24 h to Cu: 1 or 2.5 µM) 

with and without pre exposure to B-naphthoflavone, gill showed DNA integrity 

loss in all exposure conditions (Ahmad et al., 2008). The data obtained from the 

effect of 0.002 µM of Cu+2 on DNA erythrocytes from the teleost gilthead sea 

bream Sparus aurata and the bivalve mollusk Scapharca inaequivalvis showed 

that the in vivo treatment with 0.002 µM of Cu increased the susceptibility of 

DNA to be damaged, and all three comet parameters significantly increased (tail 

length, tail intensity, and tail moment) (Gabbianelli et al., 2003). Therefore, it is 

difficult to compare the DNA strand break measurements from the various 
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studies, because of various methods of measurement used to determine the 

extent of the DNA strand breaks after carrying Comet assay. However, the 

induction of DNA strands break in most of the studies measured by various 

methods was higher after exposure to standard well known DNA damaging 

chemicals.   

Haematological parameters have been considered as valuable biomarker for 

assessing fish health (Singh and Srivastava, 2010; van der Oost et al., 2003). In 

the present study most haematological parameters analysed remained 

unaffected. The results are indicating that the chronic dietary exposure of Cu 

has no significant effects on haematocrit (%) and for the total and for white 

blood cell count except for red blood cell count which exhibited significant 

decrease at high Cu dietary exposure (1000 mg Cu kg-1) compared to control 

group and to Cu dietary groups. These results are in agreement with the 

previous studies, Handy et al., (1999) reported no significant differences in 

haematocrit (%) and erythrocytes count in rainbow trout fed 500 mg kg-1 dietary 

Cu for 3 months. Furthermore, Gatlin and Wilson (1986) found that the 

haematocrit and RBC count were not affected in catfish exposed to 40 mg kg-1 

dietary Cu. Heavy metal exposure is known to induce changes in 

haematological indices in fish reviewed by Heath, (1995). However, no 

significant change in total RBC (for 250 and 500 mg Cu kg-1) and WBC count 

possibly the fish body tries to maintain this count with the limits of physiological 

standards using different physiological mechanisms. Significant decrease in red 

blood cell count and haemoglobin concentration at high concentration of dietary 

Cu (1000 mg Cu kg-1) may indicate osmotic disturbance and changes in blood's 

O2 carrying capacity and this developing anaemia (Gatlin and Wilson, 1986). 

But, long term waterborne exposure (0.2 mg l-1) resulted significant decreased 
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in erythrocytes count and haemoglobin concentration in trout (Vosyliene, 1996). 

In addition, the difference between dietborne and waterborne, that waterborne 

metal exposure could associated in gill damage which may lead to physiological 

disturbances (Pelgrom et al., 1995).   

After 10 weeks exposure to 250, 500 and 1000 mg Cu kg-1 liver showed a 

perivascular infiltration of mononuclear inflammatory cells 

(monocytes/macrophages and lymphocytes). These changes were more 

evident in fish exposed to high concentration (1000 mg kg-1); and also there 

was a moderate to severe areas of fatty change/lipid vacuolation of hepatocytes 

(Fig. 3.3). These alterations may be attributed to toxic effects of Cu on 

hepatocytes, since the liver associated with detoxification and biotransformation 

of all types of contaminants and toxins, the accumulation of inflammatory cells 

may indicate the reaction of melanodialdehyde in oxidative stress developed by 

Cu exposure. The present results are in agreement with those observed by 

several authors who studied the effects of various contaminants on fish 

(Arellano et al., 1999; Shaw and Handy, 2006). Intestine did not show 

histological alterations (Fig. 3.2), this is consistent with few studies on 

temperate species such as rainbow trout (Kamunde et al., 2001; Shaw and 

Handy, 2006). 

 For ultrastructural studies in liver, there was a significant increase in the 

number of lipid droplet compared to control group (Fig. 3.4). These lipid droplets 

could possibly indicate an alteration in lipid metabolism or partial changes in 

their morphology. In Solea senegalensis exposed to Cu (100 µg Cu l-1),  

Arellano et al. (1999) observed an increase in the number of lipid droplet, which 

were larger in size compared to control group.  
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 The present results showed Cu accumulation in tissues was dependent on the 

Cu concentration. There was a significant Cu accumulation in the intestine at 

high concentration (1000 mg Cu kg-1) in contrast to other Cu levels and control 

group (Table 3.4). Also, liver exhibited high level of dietary Cu accumulation, 

suggesting that dietary Cu transferred from intestine to the liver via a portal 

system, and also indicating a overloading of the Cu regulating capacity. 

The intestine seems to have an important role in controlling the uptake of 

dietary Cu, as was indicated by the considerable increase in intestinal Cu 

concentrations in the Cu dietary groups. This agrees with Handy et al. (1999) 

who also observed the greatest increases of Cu concentration in the liver and 

intestine in rainbow trout exposed to 300 mg Cu kg-1 for 3 months. Similarly, 

Berntssen et al., (1999) found the large increases of the Cu accumulation in the 

intestine and liver in Atlantic salmon Salmo salar L.  exposed to 700 mg Cu kg-1 

for 4 weeks. While Lorentzen et al. (1998), found no increase in hepatic Cu 

content in Atlantic salmon exposed to dietary Cu concentration up to 100 mg Cu 

kg-1 for 12 weeks. 

Generally, there are two major routes for uptake of metal in aquatic organisms. 

These include digestive tissue in case of metals in diet or sediment, and the gill, 

in the case of dissolved form (Lapointe and Couture, 2009). In this study, Cu 

content in the liver of the exposed fish was approximately 60, 55 and 32 fold 

greater compared to controls at 1000, 500, 250 mg Cu kg-1 respectively. This 

finding is in accordance with results of Miller et al., (1993b) reported that the 

higher Cu accumulation in liver of rainbow trout increased as the Cu 

concentration increased in the diet. Moreover, Kim and Kang (2004) found that 

http://medwelljournals.com/fulltext/?doi=javaa.2009.2495.2502#t5
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the Cu concentration in the liver of rockfish was approximately 51, 18 and 11-

fold higher compared to control at 500, 250 and 125 mg Cu kg-1 respectively.  

It can be concluded that the mirror carp liver is typically important for Cu storage 

in contrast with other tissues. The high accumulation of Cu in the liver clearly 

confirmed that liver is the vital organ for detoxification and excretion of Cu 

through the induction of metal binding proteins such as metalthioneins (Handy 

et al., 1999),  which is a sequestering agent. The detoxification of the Cu may 

be by sequestration rather than elimination by excretion (Phillips and Rainbow, 

1989). Therefore the high level of Cu in the liver may be an induction of the 

storage of sequestered products in it. 

Interestingly, levels of Cu accumulation in the liver and intestine tissues were 

higher than levels of accumulation in the gill tissue. Its appear to be the 

digestive system is more active compared with activity in the gill tissue, so the 

accumulation of metals in the digestive system is more than is usual. In 

addition, since the gill tissue is in direct contact with water and osmoregulation, 

gill easily disposed of Cu. Similar pattern of Cu accumulation were also shown 

in another study carried out with rainbow trout (Gundogdu et al., 2009). Levels 

of Cu accumulation in the bone were lower than levels in the liver, intestine and 

gill. This suggesting that carp bone does not play a major role in Cu 

detoxification. 

No mortalities were observed by elevated dietary Cu concentrations during the 

experiment. However, Cu dietary exposure resulted reduction of C. carpio 

growth rate and there was opposite relationship between growth and Cu 

concentrations. (Table 3.5.), and was reflected by a decrease in SGR of 

exposed mirror carp to dietary Cu. Several researchers have observed 
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reductions in growth rate during dietary Cu uptake in fish but others are not. 

Baker et al. (1998) found that 2400 mg Cu kg-1 diet produced depression in 

growth rate of Grey Mullet Chelon labrosus in 10 weeks. Lanno et al.(1985) 

reported a transient depression of growth rate in fresh water adapted rainbow 

trout Onchorhyncus mykiss when exposed to 664 mg Cu kg-1 for 8 weeks.  

Berntssen et al. (1999) also reported a significantly growth reduction in juvenile 

Atlantic salmon when exposed to > 500 mg Cu kg-1 for 12 weeks. It is also 

similar to juvenile rockfish Sebastes schlegeli  which revealed a depression on 

growth rate at (125, 250, 500 mg Cu kg d.w-1) in 60 days (Kim and Kang, 2004).  

 A possible explanation for impairment of growth the physiological changes 

permitting metal detoxification and homeostasis cost energy and reduced 

growth caused by exposure to Cu has been attributed to metabolic costs 

associated with metal detoxification as suggested by Kim et al., (2006). 

Furthermore, toxicants that interact with energy yielding reactions indirectly 

inhibit the syntheses of RNA, DNA and protein. In the case of mirror carp, the 

intestinal morphology remained similar for both control and all exposure groups, 

the reduction in growth which reflected by a decrease in SGR, appear due to 

increased energy consumption for sustaining normal metabolism leaving less 

energy available for growth. Other explanation for decreased growth is perhaps 

explained by reduced feed intake during copper exposure and poor absorption 

of the major nutrients.  

In conclusions, the data obtained from the Comet assay showed that the high 

Cu supplemented groups exert a significant genotoxic action after 10 weeks of 

exposure. The analysis of the data, moreover, suggests that the genotoxicity is 

based on the concentration of the Cu; both 500, 1000 mg kg-1 showed 
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increasing DNA damage in mirror carp. Therefore, this test is a promising tool 

for estimation of the relationship between DNA damage and the exposure of 

fish to genotoxic pollutants at the single cell level.  

The results of this integrated study of the dietary Cu exposure affects only Hb 

concentration and RBC count at high Cu concentration (1000 mg Cu kg-1) and 

did not affect the other parameters. Cu accumulation clearly reflected the level 

of dietary exposure. The liver is a more important storage tissue than other 

tissues, and the order of Cu accumulation in tissues was liver > intestine > gill > 

bone. Dietary Cu exposure resulted in reduction of mirror carp specific growth 

rate and had inverse relationship between growth and Cu concentration. These 

findings indicate complex stress responses occurring at different levels of 

biological organisation with oxidative DNA damage being precipitated at the 

higher Cu level. In addition, the results of this study indicate that maximum 

allowable Cu concentration in food of mirror carp should be below 250 mg kg -1  
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CHAPTER 4 
 

HYPOXIA-INDUCED OXIDATIVE DNA DAMAGE LINKS WITH 
HIGHER LEVEL BIOLOGICAL EFFECTS INCLUDING SPECIFIC 

GROWTH RATE IN CARP, CYPRINUS CARPIO L. 
 

 
Results from this chapter have been presented at the 15th International 
Symposium on Pollutant in Marine Organisms, Bordeaux, France, May 2009 
and at the Plymouth Marine Sciences Partnership Symposium 2009, Plymouth, 
UK, April 2009 The results have also been published in Ecotoxicology, 20, 
1455-1466 (Mustafa et al., 2011). 
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Hypotheses: Both hypoxia and hyperoxia induce responses at different levels of 

biological organisation (i.e. DNA to individual) in a representative carp species. 

 
Abstract 

Both hypoxia and hyperoxia, albeit in different magnitude, are known stressors 

in the aquatic environment. Adopting an integrated approach, mirror carp 

(Cyprinus carpio L.), were exposed chronically (i.e. 30 days) to hypoxic (1.8 ± 

1.1 mg O2 l
-1) and hyperoxic (12.3 ± 0.5 mg O2 l

-1) conditions and resultant 

biological responses or biomarkers were compared between these two 

treatments as well as with fish held under normoxic conditions (7.1 ± 1.04 mg 

O2l
-1). The biomarkers determined included the activities of glutathione 

peroxidase (GPx), measurement of oxidative DNA damage (using modified 

Comet assay employing bacterial enzymes: Fpg and Endo-III), haematological 

parameters, histopathological and ultrastructural examination of liver and gills. 

Specific growth rate of the fish, as an important ecotoxicological parameter, was 

also determined over the exposure period. The study suggested that while the 

levels of hepatic GPx were unaffected, there was a significant difference in 

activity in the blood plasma under different exposure conditions. Interestingly, 

oxidative DNA damage was significantly higher in both hypoxic and hyperoxic 

compared to normoxic conditions, Fpg showing enhanced level of damage 

compared to the Endo-III treatment. The haematological parameters showed 

enhanced values under hypoxic conditions. Transmission electron microscopic 

(TEM) studies revealed damage to liver and gill tissues in both the extreme 

conditions. Interestingly specific growth rate of fish was significantly lowered in 

hypoxic compared to normoxic condition and this was found to be correlated 

with DNA damage. Taken together, these results indicate that prolonged
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exposure to both hypoxic and hyperoxic conditions induce oxidative stress 

responses at both DNA and tissue levels, and hypoxia can result in 

compensatory changes in haematological and growth parameters which could 

influence Darwinian fitness of the biota with wider ecological implications.
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4.1 Introduction 

Chronic exposures to both hyperoxia and hypoxia could be damaging to aquatic 

organisms leading to suboptimal growth and biomass production (Wedemeyer, 

1997). Although lack of dissolved oxygen (DO) or hypoxia (DO < 2.8 mg l-1) 

could be a natural phenomenon caused by daily fluctuations in oxygen 

concentrations (Nikinmaa, 2002), chronic hypoxic conditions prevailing in so 

called ‗dead zones‘ in different parts of the world, which is linked to 

anthropogenic activities, often leads to mass mortality of sensitive biota and 

could lead to overall reduction in biodiversity (Diaz and Rosenberg, 2008). With 

respect to hypoxia-induced biological responses, most of the mechanistic 

studies have been carried out using mammalian cells under in vitro conditions 

(Wu, 2002). Our understanding of molecular responses using in vitro models 

therefore requires further elucidation at whole organism level.   

Fish as a group are considered to be prime models to study oxygen dependent 

processes as they demonstrate acclamatory or adaptive responses with respect 

to their requirements (Lushchak and Bagnyukova, 2006; Soitamo et al., 2001). 

Most of the studies carried out using fish involving hypoxic or hyperoxic 

exposures have however used only short term exposures (Wu, 2002). Where a 

chronic exposure has been performed, only a selected biochemical or 

physiological responses have been studied, which do not provide a holistic 

picture of the potential impact at the individual level. In this context, the 

significance of oxidative stress associated with both environmental 

contaminants and also in aquaculture related activities have been subject of 

scientific investigations (Livingstone, 2003; Lushchak, 2011). For example,
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effects of hypoxia (0.40 mg O2 l-1) for 2, 6 or 10 h and subsequent normoxic 

recovery has shown induced oxidative stress and a compensatory changes of a 

range of antioxidant enzymes in different tissues of goby, Perccottus glenii 

(Lushchak and Bagnyukova, 2007). A 42 d exposure to common carp, Cyprinus 

carpio L. to 0.50 mg O2 l
-1 has shown to induce DNA damage (determined by 

TUNEL signal) in liver cells, especially during the first week of exposure. There 

was however no change in other cellular parameters (e.g. proliferation, number 

or size, caspase activity) including induction of DNA single strand breaks (Poon 

et al., 2007). Gene expression analyses in gonads of mature zebrafish (Danio 

rerio) maintained under normoxia (3 mg O2 l-1) and hypoxia (1 mg O2 l-1) 

following short (4 d) and long term (14 d) exposures showed differential 

expression of genes associated with initial adaptive response (e.g. metabolism 

of carbohydrate, proteins, nucleic acid) and a suite of genes belonging to 

different ontology categories related with lipid metabolism, steroid synthesis and 

immune response which could lead to reproductive impairment (Martinovic et 

al., 2009). Field and laboratory studies in different fish species have also 

demonstrated that hypoxic conditions could potentially lead to abnormal 

developments of reproductive systems (Thomas and Rahman, 2010; Wu, 

2002). 

A 5 h exposure of rainbow trout to varying degrees of oxygen saturation (3.30-

21.10 mg l–l), showed enhanced degree of DNA single strand breaks (as 

determined by the alkaline unwinding technique) under hypoxic and hyperoxic 

conditions compared to normoxic conditions (i.e. 11 mg O2 l
–l). The highest rate 

of DNA breaks occurred when the fish were kept under hypoxic conditions 

(Liepelt et al., 1995). Apart from this study, where a single endpoint was 

studied, to our knowledge there have been no further investigations to compare
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the biological responses of these two contrasting environmental conditions 

concurrently. In particular, comparison of levels of oxidative DNA damage is 

lacking. Whilst exposure to both hyperoxia and hypoxia have been shown to 

cause DNA damage and apoptosis in cells of diverse origin (Cacciuttolo et al., 

1993; Gozal et al., 2005; Poon et al., 2007), evaluation of oxidative DNA 

damage and its potential knock-on effects at individual level has not been 

elucidated. This is particularly important given that oxidative stress (including 

oxidative DNA damage) has been implicated in a variety of pathophysiological 

conditions including impairment of reproductive success in humans and, could 

well correlate to ecotoxicological parameters affecting other species (Jha, 

2008). Furthermore, although both hypoxic and hyperoxic conditions are 

commonly observed in the aquatic environment (van Raaij et al., 1994), to our 

knowledge, concurrent comparison of impact of hyperoxia and hypoxia at 

different levels of biological organisation, elucidating cause-effects coupling is 

lacking. This is particularly important for illuminating the mechanisms of 

biological responses, as considerable overlap or commonalities in molecular 

pathways could exist for these contrasting conditions (Lushchak and 

Bagnyukova, 2006). 

In the backdrop of above information, overall aim of this study was to compare 

the biological or biomarker responses at different levels of organisation (i.e. 

DNA to individual) in a representative carp species, Cyprinus carpio L., 

following chronic exposure (i.e. 30 days) to both hypoxic and hyperoxic 

compared to normoxic condition. This species has been used for such studies 

by different workers e.g., (Lushchak et al., 2005; Poon et al., 2007). We also 

aimed to test the correlations between DNA damage with other biomarkers and 

specific growth rate (SGR) of the fish. A modified single cell gel electrophoresis 
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or the Comet assay was employed as a robust assay to determine oxidative 

DNA damage (Azqueta et al., 2009). Levels of antioxidant enzyme, glutathione 

peroxidase (GPx activity) in plasma and liver samples and, haematological 

parameters were also determined along with histopathological and 

ultrastructural studies in selected tissues. Finally, measurement of feed 

conversion rate (FCR) and specific growth rate (SGR) and its potential 

correlation with DNA damage were also determined.  

4.2 Materials and methods 

4.2.1 Fish and their maintenance 

Cyprinus carpio L. (genetically male; ca. 30 g) were obtained from Hampshire 

carp hatcheries (Bowlake fish farm, UK) and were transported to the Aquarium. 

Fish were acclimated and grown to attain an average weight of 98.06 ± 0.39 g 

within 2 months in a re-circulated aerated fresh water at a rate of 600 l h-1. 

Water temperature was maintained at 23.0-23.5 °C with an electric immersion 

heater; pH was between 7.2 and 8.0 and adjusted with NaHCO3 as necessary. 

Dissolved oxygen (DO) concentration was maintained at 7.40 mg l-1 using air 

stones. All the water quality parameters were monitored and recorded daily 

using an electric meter (Hach HQ4d). Water was renewed weekly and 

nitrogenous compound were monitored weekly using a Hanch Lange DR 2800 

and cuvettes for ammonia (Lange, LCK 304), nitrite (Lange, LCK 341) and 

nitrate (Lange, LCK 340) (Hach Lange Ltd., Salford, UK). The following levels of 

nitrogenous compounds were considered acceptable; ammonia (un-ionized) (< 

0.10 mg l-1), nitrite (< 1.0 mg l-1), nitrate (< 50 mg l-1). Mechanical filtration media 

was washed twice a week to maintain high filtration efficiency and reduce 

biological loading on the filter system. 
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4.2.2 Experimental design 

Following the acclimation period, 36 fish (weighing 98.06 ± 0.39 g) were 

randomly distributed into six 80-l fiberglass tanks (duplicate tanks treatment-1), 

normoxia (control group) at 7.1 ± 1.04 mg O2 l
-1, hypoxic treatment group at 1.8 

± 1.1 mg O2 l
-1 [achieved using pumping nitrogen gas; N2: purity 99.99%], at 

specific water flow through the system ≈ 1 l min-1) and a hyperoxic treatment 

group at 12. 3 ± 0.5 mg O2 l
-1 [O2 injected: purity 99.95%] for 30 days (Plate 

4.1). The concentration of oxygen in the water was measured three times daily 

by using an oxygen electrode (Oxy Guard, Handy Polaris, DK). Water 

temperature was maintained at 23.0-23.5 °C and pH was maintained at 7.07 ± 

0.25. A 12 h light/12 h dark photoperiod was maintained through the exposure 

duration.  The exposure start time began when the desired dissolved oxygen 

level was achieved, which was within 2 days after the initiation of nitrogen and 

oxygen pumping. During the experimentation period the fish in each treatment 

group were fed commercial feed pellets (Ewos, Micro 20 p, Ewos Ltd., 

Westfield, Bathgate, West Lothian. UK) at 2% biomass per day provided in 

equal rations at 09:00, 13:00 and 17:00 h. Daily feed was corrected weekly 

following batch weighing after a 36 h starvation period (see 2.12), SGR and 

FCR were determined (2.13).  
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Plate 4.1 A view of the experimental set up using nitrogen and oxygen cylinders  
to maintain hypoxia and hyperoxia in the water tanks. 
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4.2.3 Analytical procedures 

Fish were sampled at the end of experimental period 30 days (see 2.3), which 

by the nature of feeding schedule included one day of feed withdrawal prior to 

sampling. Fish were ethically anaesthetised with tricaine methanesulfonate 

(MS-222; 100 mg l-1 water for 10 min) (Pharmaq, Fordingbridge, UK). Whole 

blood was sampled from the caudal vein using a needle and syringe from 6 

random individuals treatment-1 and kept under room temperature (22 ± 1°C) in 

heparin treated tubes until immediate analysis of percentage haematocrit 

(2.8.3), the measurement of haemoglobin concentration (2.8.1) and total 

leucocyte and red blood cell counts (2.8.2). Plasma removed and stored at – 80 

°C (see 2.8.5) until analysis of glutathione peroxidase activity. 

Blood samples were taken and stored on ice on heparin treated tubes for 

analysis by the single cell electrophoresis ‗modified Comet assay‘ (2.7.5). The 

liver tissue excised and stored – 80 oC for enzyme analysis. Also, liver and gill 

tissues were dissected and immediately fixed in 10% formaldehyde solution for 

histopathological studies (see 2.10) another  portions of these tissues were 

fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer for ultrastructural 

studies (see 2.11).  

 

4.2.4 Measurement of glutathione peroxidase activity 

Glutathione peroxidase (GPx) activity was measured in plasma and liver as 

described by Lushchak et al., (2005) with slight modifications. Liver samples 

were weighed and homogenized (1:9 w/v) using a Potter- Elvjeham glass 

homogenizer in 100 mM Tris-HCl (pH 7.5), containing 2.5 mM dipotasium 

EDTA, 0.01% Triton X-100, and 2.5 mM sodium azide. Homogenates were

 



Chapter 4.  

159 
 

centrifuged (4°C for 20 min at 10,500 xg). The supernatant was transferred to a 

polypropylene microcentrifuge tube. Just prior to the GPx assay, a mixture 

containing 50 mM potassium HEPES buffer, (pH 7.5), 1 mM dipotasium EDTA, 

0.21 mM NADPH, 1 Uml-1 glutathione reductase (Sigma G-3664 from 

Saccharomyces cerevisiae) and 1 mM GSH was prepared; 270 µl of this 

mixture and 50 μl of sample were mixed and the reaction was initiated by the 

addition of 5 μl of 12.4 mM H2O2. The decrease in absorbance was monitored 

for 60 sec in a microplate reader (Optimax, Molecular Devices, Sunnyvale, CA, 

USA) using 96 well plates. All measurements were carried out in triplicate. The 

assay temperature in each case was 20 ± 2.00°C. Activity was expressed as 

nmol min-1 ml-1 in plasma and nmol min-1 g-1ww (wet weight) in liver. 

 

4.2.5 Statistical analysis 

Statistical analysis was performed using Statgraphics v5.1 software (StatSoft, 

USA). All data were presented as mean ± standard error (S.E.), and analysed 

using a one way analysis of variance (ANOVA) or Kruskal Wallis test, followed 

by multiple range tests. For the modified Comet assay (with the use of 

enzymes) data presented as median ± S.E. were analysed using multifactor 

analysis of variance (ANOVA) followed by Turkey‘s multiple comparison test. P 

values < 0.05 were considered significant. Any correlations between variables 

were determined using Pearson‘s correlation coefficient. 
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4.3 Results 

4.3.1 Determination of GPx activity 

The liver GPx activity in hyperoxic reared fish was significantly decreased in 

comparison with normoxic group (ANOVA, P = 0.04). Also, the GPx activity in 

hypoxia decreased, but it was not significantly different from the normoxic 

group. Moreover, multiple range tests indicated that there was no significant 

difference between the hypoxic and hyperoxic group (Fig. 4.1 A). Over all, the 

GPx activity in the liver tissue of mirror carp seems to be unaffected by hypoxic 

condition for the exposure periods, (i.e. 30 days). In contrast to liver, a 

significant decrease in GPx activity was observed in the blood plasma in 

hypoxic group compared to normoxic group (Fig. 4.1 B). On the other hand, the 

hyperoxic group showed increased GPx activity compared with normoxic group 

and was highly significant indicating increased oxidative stress in this group. 

This significant difference was detected between hypoxic and the hyperoxic 

treatment groups (ANOVA, P = 0.002). 
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Fig. 4.1 Activity of GPx (A) in liver (B) in plasma, following 30 days of exposure to   
normoxia, hypoxia and hyperoxia. Values are mean ± S.E. * indicates significant 
differences from normoxic group; # indicates significant differences between the 
hypoxia and hyperoxia groups at P < 0.05; n=6. 
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4.3.2 Determination of oxidative DNA damage  

Both hyperoxic and hypoxic conditions showed a strongly significant (P < 

0.00005) increase for oxidative DNA damage compared to normoxic condition. 

Oxidative DNA damage was relatively low in normoxic fish compared to 

hyperoxic and hypoxic groups. Conversely, the highest degree of oxidative DNA 

strand breaks (i.e. %DNA in tail) was seen in the presence of Fpg enzyme 

which increased by about 25% in the both cases (hypoxic group and hyperoxic 

group) compared to normoxic condition. This enzyme showed a statistically 

significant different compared to buffer control and Endo-III treatments using 

two way ANOVA, P= 0.0001 (Fig. 4.2). 
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Fig. 4.2 Induction of DNA single strands breaks (represented as percentage tail DNA) 
in C. carpio erythrocytes following 30 days exposure to normoxia, hypoxia and 
hyperoxia (1.8-7.0-12.3 mg l-1 respectively). Values are average median ± S.E. * 
statistically significant different versus normoxia; # statistically significant different 
versus buffer and Endo-III at P < 0.05; n = 6. 
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4.3.3 Determination of haematological parameters 
The results of the various indices for the hypoxic, hyperoxic and normoxic 

treatment groups are summarised in Table 4.1 Differences among groups were 

found for Hct value which increased in hypoxic group by about 25% than the 

normoxic group. Hct value in hypoxic group (38.00 ± 0.04) was highly significant 

from the normoxic group value (31.00 ± 0.03) and also from hyperoxic group 

value (30 ± 0.01) (ANOVA, P = 0.001). The highest Hb concentration was 

registered in hypoxic group (9.57 ± 0.66). This value was significantly higher by 

about 40% than value registered in normoxic group (6.76 ± 0.60) (ANOVA, P = 

0.03). The Hb concentration in the hyperoxic group marginally increased (7.41 ± 

0.48) from the normoxic group value, but was not significantly different from 

either control or hypoxic treatment values. On the other hand, RBC count 

increased ~90% in hypoxic group and ~ 50% in hyperoxic group compared to 

the normoxic group. RBC count was having highest value in hypoxic (3.42 ± 

0.30) and hyperoxic (2.70 ± 0.08) groups, these values were significantly higher 

(Kruskal-Wallis, P = 0.0003) in comparison to the normoxic group value (1.82 ± 

0.20). In addition, multiple range test detected significant differences between 

hypoxic and the hyperoxic treatment groups. No differences among the groups 

were found for total leukocyte counts. 
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Table 4.1 Haematological parameters in Cyprinus carpio exposed to normoxic, hypoxic 
and hyperoxic conditions for 30 days. 

 

Data are mean ± S.E. Groups with different alphabetic superscripts within the row 

indicate significant difference at P < 0.05; (n=6). 

 

4.3.4 Histopathological Studies 

The liver sections of control (normoxic) group exhibited normal morphological 

structures with no abnormalities in the hepatocytes. It showed a homogenous 

cytoplasm around a centrally located spherical nucleus. Microscopic 

examination of hepatocytes and their nuclei from hypoxic group areas showed 

histopathological changes after 30 days of exposure compared to the normoxic 

group. Hepatocytes in 4 fish (out of 6) lost their normal boundaries. There were 

cellular and nuclear degeneration, cytoplasmic vacuolation in most regions of 

the liver sections. Livers on the hyperoxic treatment didnt show any 

histopathological changes under the light microscopy (Fig. 4.3 A-D).  

Gill morphology in the control (normoxic) group had normal morphological 

structures in which lamellae were lined by squamous epithelium composed of 

non-differentiated cells. Gills from hypoxic condition showed several histological 

alterations including lifting of lamellar epithelium and enhanced presence of 

goblet cells on the lamellae compared to normoxic group. In addition, in some 

cases aneurysm resulted in the fusion of some secondary lamellae. These 

changes were significantly different compared to normoxic and hyperoxic group 

 

parameters  Normoxia Hypoxia Hyperoxia 

Hct (%)   31.16 ± 1.24
a

     38.00 ± 0.80
b

        30.83 ± 1.44
a

 

Hb (g/dl)   06.76 ± 0.60
a

        09.57 ± 0.66
b

        07.41 ± 0.48
ab

 

RBC (cells x 106µl)   01.82 ± 0.20
a

        03.42 ± 0.30
b

     02.70 ± 0.08
c

 

WBC (cells x 103µl)   14.70 ± 0.43
a

        14.32 ± 0.51
a

        15.11 ± 0.93
a

 



Chapter 4.  

166 
 

(Table 4.2; ANOVA, P < 0.05). Gills from hyperoxic group showed lifting of the 

lamellar epithelium and curling of secondary lamellae. The extent of the 

damage was however not severe compared with hypoxic condition. Most of 

these changes were significantly different from the normoxic group (Fig. 4.4 A-

D). 

 

Table 4.2 Histopathological changes presented as a percentage in the gills of C. carpio 
L. exposed to normoxic, hypoxic and hyperoxic conditions for 30 days. 

 

Data are mean ± S.E. Groups with different alphabetic superscripts within the row 

indicate significant difference at P < 0.05; (n=6). 

 

 

 

 

 

 

 

 

 

 

 

 

Lesion (%)  Normoxia Hypoxia Hyperoxia 

Lifting epithelium  1.50 ± 0.71
a

   36.66 ± 3.64
b

        20.50 ± 3.43
c

 

Hyperplasia   00.00 ± 0.00
a

        16.66 ± 3.60
b

        1.83 ± 0.48
a

 

Necrosis   0.00 ± 0.00
a

        2.16 ± 0.60
b

 0.54 ± 0.22
a

 

Fusion   0.83 ± 0.40
a

        13.33 ± 1.54
b

        15.50 ± 2.96
b
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Fig 4.3 Light micrographs of sections through liver of C. carpio showing histological 
structures of normoxic, hypoxic and hyperoxic treatments stained with H&E at 5 µm 
thickness. A: normoxic liver; B&C: hypoxic liver; D: hyperoxic liver. (pt) pancreatic 
tissue, (hv ) hydrobic vacuolation. Scale bars: 50 µm. 
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Fig. 4.4 Light micrographs of secondary lamellae from C. carpio showing histological 
structures of normoxic, hypoxic and hyperoxic treatments stained with H&E at 5 µm 
thickness. A: normoxic gill; B&C: hypoxic gill and D: hyperoxic gill. (ep) epithelial cell; 
(epl) epithelial cell lifting; goblet cell; (fu) fusion; (an) aneurysm. Scale bars: 50 µm. 
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4.3.5 Transmission electron microscopic (TEM) studies 

For TEM studies, liver in normoxic condition showed normal organelles (e.g. cell 

membranes, nuclei, mitochondria, rough endoplasmic reticulum; Fig. 4.5 A&B), 

hypoxic specimens revealed significantly increased number of lipid droplets in 

the cells (homogeneous semi-electron dense vacuole) of varying sizes (17.3 µm 

± 0.4) compared with normoxic and hyperoxic specimens (2.50 ± 0.61 and 6.20 

± 0.90) respectively (ANOVA, P = 0.03). In hypoxic condition, nucleus showed 

areas which were relatively clear and occupied by dense heterochromatin within 

nuclear envelope (Fig. 4.5 C&D). On the other hand, liver from hyperoxic 

treatment showed increased number of the mitochondria (23.40 ± 0.44) which 

was significantly different (ANOVA, P = 0.03) from normoxic and (8 ± 0.02) 

hypoxic conditions (11.30 ± 0.51) (Fig. 4.5 E&F). The nucleus of the 

hepatocytes also showed irregular shape occupied by dense heterochromatin in 

hyperoxic condition, which was not apparent while conducting light microscopic 

studies.  

TEM images in secondary lamellae of normoxic gill exhibited normal organelles 

with epithelial and pillar cells (Fig. 4.6 A). Hypoxic specimens showed lifting of 

the epithelial cells. There was also a breakdown of pillar cells and 

disorganisation of blood spaces (Fig. 4.6 B&C). The secondary lamellae of 

hyperoxic gill also revealed separation of epithelial cells and intracellular 

oedema (Fig. 4.6 D). 
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Fig. 4.5 Transmission electron microscopy images: A&B: normoxic liver; (n) nucleus, 
(nu) nucleolus, (mt) mitochondria, (rer) rough endoplasmic reticulum C&D: hypoxic 
liver; showing (lp) lipid droplets E&F: hyperoxic liver; the mitochondria are large and 
numerous.
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Fig. 4.6 Transmission electron microscopy images of the secondary lamellae from A: 
normoxic condition; B&C: hypoxic secondary lamellae and D: hyperoxic secondary 
lamellae.(IPCS) pillar cell; (RBC) red blood cell; (ep) epithelial cell; (epl) epithelial cell 
lifting; (od) oedema; white star disorganisation of the pillar cells. Scale bars: 5 µm.
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4.3.6 Determination of growth performances 

No mortalities occurred during the experimental period. Specific growth rate 

after 30 day of exposure (hypoxic and hyperoxic conditions) was significantly 

lower in the hypoxic group by approximately 30% compared to fish exposed to 

normoxic condition (ANOVA, P = 0.03). There were no significant differences for 

SGR between hypoxic and hyperoxic conditions (Table 4.3). This result 

suggests that the SGR was significantly affected by level of dissolved oxygen 

as evident by significant growth depression in the hypoxic group.
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Table 4.3 Growth performance of carp exposed normoxic, hypoxic and hyperoxic 
conditions for 30 days. 

 

Data are mean ± S.E. Groups with different alphabetic superscripts indicate significant 

difference at P < 0.05; (n=6).

Variable  Normoxia Hypoxia Hyperoxia 

Initial weight (g) 98 .3  ± 1.73a 97.3 ± 2.41a 98 .6  ± 2.09a 

Final weight (g) 165.2  ± 4.61a 139.8  ± 7.08b 146.3 ± 4.24ab 

Weight gain (g) 66.7 ± 3.52a 42.2   ± 6.43b 47.7 ± 3.75ab 

SGR (% g-1) 1.73 ± 0.01a 1.23  ± 0.10b 1.30 ± 0.09ab 

FCR 1.01 ± 0.21a 1.07 ± 0.11b 1.02 ± 0.08ab 

Survival rate (%) 100.0 ± 0.00  100.0 ± 0.00 100.0 ± 0.00 
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4.4 Discussion  

Several carp species (e.g. Crucian carp: Carassius carassius; gold fish: 

Carassius auratus; the mirror or common carp: C. carpio) are highly tolerant to 

hypoxic and even to anoxic conditions. This adaptive capability is critically 

important to allow them to occupy specific environmental niches where oxygen 

level can drop down to low concentrations (van den Thillart and van Waarde, 

1985). Therefore, species that routinely tolerate hypoxic status need a 

defensive strategy to cope with oxygen limiting conditions. This strategy could 

include changes in tissue-specific activities of antioxidant enzymes (Lushchak 

and Bagnyukova, 2006; Lushchak et al., 2005; Lushchak et al., 2001). In this 

context, GPx activity has been used as indices of oxidative stress, since this is 

considered to be the most important enzyme providing protection against this 

stress (Livingstone, 2001; Valavanidis et al., 2006).  

The results suggest that in the liver, hyperoxia induced a marked decrease in 

GPx activity compared to normoxic condition. Decreased activity of liver GPx in 

hyperoxic condition is possibly related with inactivation under enhanced ROS 

levels (Halliwell and Gutteridge, 1999). This decrease was not significantly 

different in hypoxic compared with normoxic group. Although not significant at 

the end of exposure period, decreased activity of this enzyme under hypoxic 

condition may reflect a general depression of metabolic activities that may affect 

both xenobiotic processing and protein synthesis (Lushchak et al., 2005). In 

contrast, significant increased GPx activity in blood plasma in the hyperoxic 

compared with normoxic and hypoxic groups indicates increased oxidative 

stress in this treatment group. It is possible that exposure to hyperoxia can 

stimulate ROS production which acts as upstream signalling molecules to 
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enhance oxidative stress. Such a response has previously been reported in rat 

exposed to hyperoxia (Buccellato et al., 2004). In fish, a previous study with 

rainbow trout has also demonstrated an elevation of GPx activity following 

exposure to ozonized water. This also increased the level of lipid peroxidation 

indicating that these fish were subjected to oxidative stress (Ritola et al., 2002). 

The decreased GPx activity in blood plasma in hypoxic compared with normoxic 

and hyperoxic groups probably indicates that the activity of this enzyme was not 

sufficient to deal with oxidative stress arising under hypoxic condition. 

For the Comet assay, significant increase for DNA strand breaks observed 

under hyperoxic condition is not surprising. Hyperoxic condition is known to 

elevate the production of ROS leading to oxidative stress (Lushchak and 

Bagnyukova, 2006). In contrast, the observed increase for DNA damage under 

hypoxic condition compared to normoxic condition is more intricate to explain. 

Liepelt et al. (1995) reported that highest rate of DNA strand breaks in the gills 

occur when the rainbow trout were kept under hypoxic condition (3.3 mg O2 l
-1; 

5 h exposure) followed by a rapid increase of the oxygen concentration. It is 

however not clear why hypoxic condition could lead to oxidative damage. Given 

that under hypoxic, opposed to anoxic condition, some degree of molecular 

oxygen is still available, ROS level could increase due to reduction of 

mitochondrial electron transport chain and their leakage to residual oxygen 

molecules leading to oxidative stress (Dirmeier et al., 2002). It has also been 

speculated that under hypoxic condition, xanthine dehydrogenase can be 

converted into xanthine oxidase which produces ROS as products (Lushchak, 

2011; Lushchak and Bagnyukova, 2007). Under hypoxic condition, limited 

proteolysis or oxidation could lead to production of efficient ROS producer 

(Lushchak, 2011). In addition, hypoxia may result in inactivation of carriers of 
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the electron transport chain and this process could increase the chance of 

electrons to ‗escape‘ and reduce oxygen via one-electron mechanisms 

(Lushchak and Bagnyukova, 2007). Furthermore, it has been suggested that 

repair of DNA strand breaks under hypoxic condition is less effective compared 

to normoxic condition (Modig et al., 1974). It could therefore be assumed that 

spontaneous DNA strand breaks could accumulate under chronic hypoxic 

condition as a result of inefficient DNA repair capability. Our results show that 

both hypoxic and hyperoxic conditions have considerable impact on the level of 

DNA strand breaks in fish erythrocytes. These results are consistent with 

previous studies where fish erythrocytes have been shown to be sensitive for 

measuring the genotoxic effects either in laboratory or in field studies 

(Belpaeme et al., 1998; Buschini et al., 2004).  

A significant increase in haemoglobin concentration in response to hypoxia 

compared with normoxic condition (approximately 40%) is consistent with a 

number of studies in fish chronically exposed to hypoxic condition (Greaney and 

Powers, 1978). However, carp have not been shown to demonstrate significant 

increases when exposed in a similar way (Jensen and Weber, 1985; Lykkeboe 

and Weber, 1978). This suggests that increasing haemoglobin concentration 

possibly improves preserving oxygen delivery during hypoxic challenge by 

protecting oxygen diffusion gradient from blood to tissues. Besides, there was a 

steep increase for the haematocrit value which was significantly different 

(approx. 25%) relative to normoxic and hyperoxic conditions, resulting possibly 

from a significant increase in number of red blood cells. This response has been 

observed in many marine and freshwater fish species (Muusze et al., 1998; 

Smit and Hattingh, 1978; Soldatov, 1996). The processes responsible for the 

increased numbers of RBCs in hypoxic condition however are not clear. 
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Perhaps, this increase is associated with both their release from blood storing 

organ (e.g. spleen) and the activation of the erythropoiesis in blood forming 

tissues concentrated in head kidney (Estebani et al., 1989). Both mammalian 

and fish studies have suggested that hypoxia inducible factor 1 (HIF-1α) is also 

responsible for activation of erythropoietin (EPO) gene transcription for 

enhancement of red blood cell production (Guillemin and Krasnow, 1997; Okino 

et al., 1998; Soitamo et al., 2001). The overall effect of differential gene 

expression have been suggested to lead to a series of biochemical and 

physiological responses, allowing the organisms to survive under hypoxic 

conditions with net decrease in metabolic rate and protein synthesis (Wu, 

2002). 

For histopathological and ultrastructural studies, the high accumulation of lipid 

droplets observed in hypoxic liver cells has been suggested to be associated 

with increased elongation of fatty acid and inhibition of lipolysis (van den Thillart 

et al., 2002). Increased synthesis or decreased catabolism and mobilization of 

lipid could account for lipid accumulation during hypoxia. Reduction in molecular 

available oxygen is known to decrease the intensity of oxidative phosphorylation 

occurring in mitochondria. This could lead to reduction in the formation of 

adenosine triphosphate (ATP) which is needed for lipolysis (van Raaij et al., 

1994). Our results are in line with previous study by Poon et al., (2007) who 

reported increased lipid content in the liver after 42 days exposure of common 

carp to hypoxia. Furthermore, ultrastructural study of flat fish (Plathichthys 

flesus L.) collected from highly contaminated sites with organochlorines and 

heavy metals have been shown to contain increased lipid droplet (Kohler, 

1990). For hyperoxic condition, liver didn't show any significant histopathological 
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changes, however, under the TEM; mitochondria were relatively larger in size 

and higher in number. This finding is consistent with observed increase in 

mitochondrial number per alveolar epithelial cells in hyperoxically exposed rat 

(Khazanov and Poborskii, 1991). This confirms that increased number of 

mitochondria is a generalised response to oxidative stress in both fish and 

mammals. 

The gills showed alterations in hypoxic conditions such as epithelial lifting, 

aneurysms, increased numbers of goblet cells, besides fusion of some 

secondary lamellae. These could possibly be examples of defense 

mechanisms. Similar histological changes in gills were common in a channel 

catfish, Ictalurus punctatus, exposed to sublethal hypoxic condition (Camargo 

and Martinez, 2007). The epithelial lifting have also been reported in gills of sea 

bass Dicentrarchus labrax exposed for three months to hypoxic and hyperoxic 

conditions (Coutinho and Gokhale, 2000). These histological alterations are 

non-specific and common to different environmental stresses and a range of 

contaminants (Mallatt, 1985). 

Our study confirms that mirror carp demonstrate high tolerance to long term 

hypoxia as no mortalities occurred over the exposure period. There was 

however significantly decreased SGR in fish exposed to hypoxic compared to 

normoxic condition. The lower SGR and growth reduction are in line with 

reported studies in other studies showing decline in fish growth under reduced 

or hypoxic environments (Chabot and Dutil, 1999; Dabrowski et al., 2004; 

Thetmeyer et al., 1999). As mentioned earlier, this probably results as a 

consequence of down regulation of maintenance energy required for optimal 

growth (Miller, 2005), which could also affect food intake (Glencross, 2009). In 
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this context, correlation between oxygen consumption and protein synthesis in 

fish cell lines has been reported (Smith and Houlihan, 1995). It is interesting to 

note that induction of oxidative DNA damage showed no correlation with GPx 

activities in liver under hyperoxic and hypoxic conditions (Fig. 4.7 A-C). 

Furthermore, SGR showed a significant negative correlation with oxidative DNA 

damage under hypoxic compared to hyperoxic and normoxic conditions (Fig. 

4.7 D-F). Such chronic conditions in the natural environment or in aquaculture 

would have profound knock-on effects on the Darwinian fitness of the 

organisms.  

In conclusion, our study suggests that compared to normoxia, both chronic 

hypoxia and hyperoxia induce oxidative DNA damage, oxidised purines 

showing higher levels of damage compared to pyrimidines in a carp species. 

Hypoxia also induced a significant increase in most haematological parameters 

along with ultrastructural changes in both liver and gills. Different exposure 

conditions also affected the specific growth rates of the fish, which was 

observed to correlate with oxidative DNA damage. Given the increasing number 

of ‗dead zones‘ in different parts of the world, we need to better comprehend the 

hypoxic conditions on the biota either alone or in combination with other 

contaminants and environmental stressors. Additionally, the intensive 

aquaculture or experimental rearing of new fish within recirculation systems with 

high aeration and varying sensitivity to ROS could influence production 

efficiency and biological responses which will also warrant further investigations 

for this globally expanding industry. 
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Fig. 4.7 Linear regression analysis illustrating correlations between the comet assay and the GPx activity, correlations between the comet assay and 
the SGR (D-F) in C. carpio following 30 days exposure to normoxia, hypoxia and hyperoxia. The solid line is a linear regression and the dashed lines 
represent 95% confidence limits. 
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CHAPTER 5 
 

HYPOXIA AND DIETARY COPPER INTERACTS 
DIFFERENTIALLY TO INDUCE SUB LETHAL TOXICITY IN 
CARP, CYPRINUS CARPIO L. AT DIFFERENT LEVELS OF 

BIOLOGICAL ORGANISATION 
 

Results from this Chapter have been published in Chemosphere, 87, 413-422 

(Mustafa et al., 2012). 
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Hypotheses: An elevated dietary Cu level impairs or modifies the biological 

functions in a representative carp species exposed to chronic hypoxic condition. 

Abstract 

Hypoxic event, (i.e., temporal or chronic depletion of oxygen) frequently occurs 

in the natural environment. It has been suggested that accumulation and toxicity 

of micro pollutants during such occasions increases. However, few 

experimental studies are available on the toxicity of heavy metal (which also 

serve as micronutrient) under hypoxic condition. To elucidate this phenomenon, 

mirror carp Cyprinus carpio L. weighing 16.13-16.23 g were exposed chronically 

to dietary copper at concentration 250 and 500 mg kg-1 d.w. for 30 days under 

normoxic (8.25 mg O2 l
-1) and hypoxic (3 mg O2 l

-1) conditions. We studied the 

potential modifying effects at different levels of biological organisation, including 

specific growth rate (SGR), feed conversion ratio (FCR) and oxidative DNA 

damage (using comet assay in combination with Fpg and Endo-III enzymes), 

haematological and histopathological parameters (including ultrastructural 

changes) in selected organs. Cu accumulation in different organs was also 

determined at the end of this period. 

This study showed that the combined action of dietary copper and hypoxia 

leads to increased DNA damage formation compared to the effects of the 

individual stressor. These results are consistent with a hypothesis that Cu in 

presence of hypoxia affects DNA integrity, causing increased oxidative DNA 

damage. Haematological parameters showed that the combined action of 

dietary Cu plus hypoxia result in increase red and white blood cells, haematocrit 

value, and increase in haemoglobin concentration. These changes suggest a 

compensatory response to respiratory surface reduction of gills (tissue damage 

and cell proliferation) in order to maintain oxygen demands from water to the 

tissues. The order of Cu accumulation in tissues was liver > intestine > kidney > 
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gill. Quantitative histology showed changes in gills in hypoxic group and in all 

dietary Cu groups under normoxic and hypoxic conditions. This included lifting 

and hyperplasia of the lamellar epithelium. Coagulative necrosis with multifocal 

areas lipid vacuolation of hepatocytes. Interestingly, SGR of fish fed with dietary 

Cu under normoxic hypoxic conditions reduced with elevating supplemental 

copper levels in diets. Overall, the results provide evidence for enhanced 

toxicological responses in fish following exposure to Cu either alone or in 

combination with hypoxic condition and lends support to the evolving viewpoint 

that many water quality guidelines should be revisited in terms of new 

ecotoxicological criteria. 
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5.1 Introduction 

Mostly linked with anthropogenic activities, hypoxia or temporal depletion of 

oxygen is now considered to be amongst the most pressing and critical 

problems for the hydrosphere in the world. Although common in both freshwater 

and marine environments, its impact on densely populated coastal regions with 

intense aquaculture activities, creating so called ‗dead zones‘ is of particular 

concern (Diaz and Rosenberg, 2008). Needless to mention, decreases in 

oxygen concentration has profound detrimental impact on the biological 

functions of the organism, oxidative stress being one of the mechanisms of 

production of these responses (Lushchak, 2011; Mustafa et al., 2011). It is also 

being realised that hypoxia could enhance the vulnerability to environmental 

chemicals in aquatic organisms by impairing the physiology and food/ 

contaminant uptake rate (Hattink et al., 2005). A strong relationship between 

ventilation rate and uptake of micropollutants has been suggested in aquatic 

ecosystems resulting in toxic impact when correlated with hypoxic conditions 

(Diaz and Rosenberg, 2008; Schiedek et al., 2007). This higher toxicity is 

explained by increased ventilation rate, causing a higher water flow over the gill 

epithelium, leading to severe physiological and behaviour responses in aquatic 

organisms (Sijm et al., 1994). In this context, aquatic ecosystems that undergo 

seasonal hypoxia can also be concurrently tainted with contaminants such as 

heavy metals (Diaz and Rosenberg, 2008). With rapid industrialisation and 

population growth, industrial effluents and domestic sewage containing diverse 

range and large quantities of potentially toxic metals are being discharged in the 

aquatic environment with long term consequences for the sustainability 

(Mohsen and Jaber, 2003; Rai, 2008). In addition, the presence of some metals 

has also been suggested to mimic the hypoxic action in the aquatic environment 
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(Kubrak et al., 2011). In common with other contaminants, the presence of 

heavy metals and variable oxygen availability may interact differentially to exert 

detrimental effects on aquatic ecosystems which need further elucidation to 

disentangle cause-effect coupling at different levels of biological organisation for 

hazarded risk assessment.  

Whilst copper (Cu) is essential for normal physiological functioning, it is toxic at 

elevated concentrations for aquatic life (Carvalho and Fernandes, 2006). World 

production of Cu has increased in the last few decades and contamination by 

Cu has become increasingly prevalent in the aquatic environment (IPCS, 1993) 

which is likely to increase bearing in mind manufacture and disposal of wide 

varieties of Cu-based products including agrochemicals. In relatively unpolluted 

marine waters Cu concentrations are less than 5ppb, but may reach 3 ppm in 

heavily polluted areas (Parry and Pipe, 2004; Soegianto et al., 1999).  

Furthermore, the transfer of metals through food chains can be substantial to 

reach high concentrations in fish tissues and the dietary accumulation of Cu 

dominates the aqueous route (Dallinger et al., 1987). In the environment 

common carp typically browse on the bottom (i.e., sediment) could accumulate 

more contaminants. It has also been suggested that concentration of the Cu in 

natural food (invertebrates) could reach up to 3750 µg g-1 in contaminated areas 

(Rainbow, 2007). Furthermore, hypoxia under chronic condition on its own right 

is likely to target the gills inducing adverse physiological and morphological (i.e. 

histopathological, ultrastructural) effects in addition to imparting indirect effects 

through assimilated Cu via dietary intake. The effect of Cu on aquatic 

ecosystems is complex and depends not only on its concentration but also on 

physicochemical characteristics of the water (e.g. alkalinity, hardness, pH etc.) 

which affect its speciation and subsequently bioavailability (Rathore and 
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Khangarot, 2003; Tao et al., 2001; Yim et al., 2006). Other environmental 

parameters such as oxygen level, temperature, salinity and presence of other 

metals may also affect metal toxicity to aquatic life. The standard laboratory 

based toxicological studies for risk assessments of chemicals carried out under 

well-defined conditions fail to consider these potential interactive effects.    

For metallic contaminants, the accumulation of Cu in the mud shrimp, 

Corophium volutator increased but was not significant under hypoxic condition 

(19% air saturation, Eriksson and Weeks, 1994). Pilgaard et al., (1994) showed 

that the uptake of Cu and zinc (Zn) was not enhanced under hypoxic events in 

rainbow trout, Oncorhynchus mykiss. Hattink et al., (2005) also showed that Zn 

uptake was not altered in carp, Cyprinus carpio L. under hypoxic conditions, 

despite an hyperventilation rate and a three-times enhanced toxicity under 

hypoxic compared to normoxic condition. Furthermore, using a toxicokinetic 

study, higher sensitivity of carp to cadmium (Cd) under hypoxic condition was 

observed, although hypoxic condition did not influence the uptake rate or the 

accumulation dynamics (Hattink et al., 2005). 

Given that (a) only limited information exists with respect to potential interactive 

effects of hypoxia with other environmental factors and (b) most of the studies 

to date have only been carried out following short-term aqueous exposures to 

heavy metals or hypoxia, taking into account only a limited number of biological 

responses, we aimed to probe the hypothesis that elevated dietary Cu 

concentrations impairs or modifies the biological functions in a representative 

carp species exposed to chronic hypoxic stress. We also emphasised the 

importance of the food chain as a conduit for metal toxicity in association with 

environmental stressors. These effects are examined on specific biochemical 
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and histological parameters thereby, adapting an integrated approach to the 

whole organism. 

5.2 Experimental design 

Cyprinus carpio L. weighing 3.5-4 g, length 6-7 cm (n = 250) were obtained 

from the Hampshire carp hatcheries (Bowlake Fish Farm. UK). Fish were 

acclimated for 3-4 weeks to the experimental (~2250-L) re-circulating aquarium 

system, with a pump filtration system (filtered Plymouth city mains water, pH 

7.2, dissolved oxygen 7.5-8.2 mg l-1, temperature 22-23 °C). During acclimation 

fish were fed standard commercial diet of 2% body weight (Ewos, Micro 20 p, 

Ewos Ltd., Westfield, Bathgate, West Lothian. UK).  

Following acclimation, 150 fish weighing 16.13-16.23 g were randomly 

distributed into 10 x 80-l fibreglass tanks, with 15 fish per tank. Each treatment 

was conducted in duplicate (two tanks per treatment). The treatments were: 

Normoxia (control):  two fish groups (15 fish per tank) were fed control diet (no 

added Cu) and kept under normoxic condition (8.25 mg O2 l
-1); the oxygen level 

was maintain to air saturation (equivalent to 95%).  

Normoxia plus copper: two groups were fed a high-Cu diet containing 500 mg 

kg-1 dry weight (subsequently termed as mg Cu kg-1 in the text) added as 

CuSO4. 5H2O (diets preparations as described in Chapter 3 section 3.2) in 

normoxic water. 

Hypoxia: two groups were exposed to hypoxic condition ~3 mg O2 l-1 (air 

saturation equivalent 35 %); oxygen levels were maintained by bubbling the 

tanks with nitrogen gas [N2: purity 99.99%] and maintaining steady water flow 

through the system ~1 l min-1). 
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Hypoxia plus copper: two groups were fed 250 mg Cu kg-1 and maintained in 

hypoxic conditions (~3 mg O2 l
-1). 

Hypoxia plus copper:  another two groups were fed 500 mg Cu kg-1 and 

maintained in hypoxic conditions (~3 mg O2 l
-1). 

The exposure time began when the desired dissolved oxygen level (3 ±0.41mg 

L-1) was achieved (i.e. within 2 d after the initiation of nitrogen pumping), in line 

with our previous study (Mustafa et al., 2011). Oxygen concentration was 

monitored (three times day-1) using a hand-held dissolved oxygen meter (Oxy 

Guard, Handy Polaris, DK), which did not vary significantly after the exposure 

period started. As the level of oxygen declined gradually, there were no 

mortalities either during the first two days or over the exposure period. The 

physico-chemical parameters of the water were presented in Table 5.1.  A 12-h 

light/12-h dark photoperiod was maintained throughout the duration of the 

experiment was maintained throughout the duration of the experiment. Water 

was renewed at least weekly and the self-cleaning design of the system 

ensured that food and faecal material were cleared from each tank. Fish were 

fed 3 % biomass per day (equal rations at 09.00, 13.00 and 17.00 hours) for 30 

days. Daily feed was corrected on a weekly basis following batch weighing after 

a 24 h starvation period (see 2.12). SGR and FCR were determined (see 

section 2.13).  

5.3 Biological sampling and analysis 

At the end of the trial (i.e. 30 days), fish were not fed day before the sampling 

times in order to empty the gut before dissection. Three fish per tank (n = 6) 

were netted and quickly anaesthetized in a buffered solution of methane 

sulfonate (MS-222; 100 mg l-1 water for 10 min). Fresh blood samples were 
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immediately collected from the caudal vessel using a 25 gauge needle and 1 ml 

heparinized syringe into eppendrof tubes for analysis by single cell 

electrophoresis ‗modified Comet assay‘ (see 2.7.5) and for analysis of 

percentage haematocrit (2.8.3), measurement of haemoglobin concentration 

(see 2.8.1) and total leucocyte and red blood cell counts (2.8.2) and also blood 

smears were made for determination of differential leucocytes cell counts (see 

2.8.4).  

Samples of gill and liver tissue were immediately dissected out and fixed in 10% 

formaldehyde solution for histopathological studies (see 2.10) another portions 

of gill tissue were fixed in 2.5% glutaraldehyde in 0.1 M cacodylate buffer for 

ultrastructural studies (see 2.11). A further three fish per tank (6 per treatment) 

were dissected out for Cu analysis, and the following tissue were sampled: liver, 

intestine, gill and kidney (see 2.9). For analytical procedures (lipid, protein and 

ash) three fish per tank (6 per treatment) were dried, and the percentage of the 

moisture also determined from initial and final weight (see 2.14 and 

subsections).                  

5.4 Statistical analysis 

Statistical analysis was performed using Statgraphics v5.1 software (StatSoft, 

USA). All data were presented as mean ± standard error (S.E.) and analysed 

using one way analysis of variance (ANOVA) or Kruskal Wallis test, followed by 

multiple range tests. For the modified Comet assay (with the use of enzymes), 

data presented as median ± S.E. were analysed using multifactor analysis of 

variance (ANOVA) followed by a multiple comparison test. P values < 0.05 were 

considered significant. 
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Table 5.1 Average data of Physical-chemical parameters of water used in dietary Cu exposure plus normoxia and hypoxia experiment.   

Values are means ± SE; 

 

 

 

 

Water quality parameters                                                              Normoxia Hypoxia  500 mg Cu kg
-

1
/normoxia 

250 mg Cu kg 
-1

 
/hypoxia  

500 mg Cu kg
-

1
/hypoxia 

Temperature °C 23.38 ± 0.18 22.40 ± 0.10 23.38 ± 0.18 22.54 ± 0.07 22.61 ± 0.07 

O2 mgl-1 08.25 ±  0.02 03.05 ± 0.10      08.25 ± 0.02 03.13 ± 0.06 2.55 ± 0.08 

O2% 95.21 ± 0.81 40.15 ± 0.09      95.21 ± 0.81 36.42 ± 0.83 34.36 ± 1.03 

pH 7.66 ± 0.07 7.66 ± 0.07      7.66 ± 0.07 07.66 ± 0.07 7.66 ± 0.07 

Nitrogenous compound  (mgl-1)      

Ammonia mgl-1  0.01 ± 0.00 0.05 ± 0.01      0.01 ± 0.00 0.07 ± 0.01 0.09 ± 0.02  

Nitrite mgl-1 0.01 ± 0.08 0.02 ± 0.01 0.01 ± 0.01 0.03  ± 0.01 0.05 ± 0.02 

Nitrate mgl-1 25.43 ± 0.77 27 ± 0.58 25.43 ± 0.77 25.20 ± 1.22 26.73 ± 0.65 
 

Copper mgl-1 2.07  ± 0.06 2.80  ± 0.01      3.01 ± 0.01        2.86 ± 0.07 3.04 ± 0.07 
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5.5 Results 

5.5.1 Determination of oxidative DNA damage  

 After the exposure period, no loss of cell viability (determined by trypan blue 

exclusion dye) was observed in any of the treatments (cell viability > 90% in all 

cases). Oxidative DNA damage was relatively low in normoxic compared to all 

treatment groups. Compared to normoxic condition, the level of oxidative DNA 

damage showed strong significant difference following exposure to dietary Cu 

level under normoxic condition (1.6-fold) as well as under hypoxic condition at 

both Cu levels (2.1 and 2.5-fold respectively; Fig. 5.1). In addition, there was a 

significant difference found  between the dietary Cu groups at both levels plus 

hypoxia and the 500 mg Cu kg-1 for normoxic and also compared to hypoxic 

group (ANOVA, P = 0.0001). However, there was no statistically significant 

interaction (at 95% confidence level) between the two enzymes (i.e. Fpg and 

Endo-III) used and the Cu concentrations. These results suggest that oxidative 

DNA damage depended upon the dietary Cu concentration and oxygen levels. 
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Fig 5.1 Induction of DNA single strands breaks (represented as percentage tail DNA) in 
C. carpio L. erythrocytes following 30 days exposure to dietary Cu concentrations (250, 
500 mg kg-1) under normoxic and hypoxic conditions. Values are average median ± 
S.E. Different letters indicate significant different at P < 0.05, corresponding 95.0% 
confident intervals (n = 6). 
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5.5.2 Haematological parameters 

Results for haematological parameters are presented in Table 5.2. Following 

exposure to dietary Cu, Hct value increased significantly in the hypoxic (approx. 

18%) compared to normoxic group. Also Hct values increased significantly at 

both Cu exposure levels under hypoxic condition (approx. 8%). In addition, 

there was a significant difference between both Cu levels under hypoxia and 

500 mg Cu kg-1 for normoxia treatment (Kruskal-Wallis, P = 0.03). A slight 

increase at 500 mg Cu kg-1 for normoxia treatment was observed compared to 

only normoxia (control) but was not significant. On the other hand, the number 

of red blood cells (RBC) was increased (approx. 25%) significantly (ANOVA, P 

= 0.002) in hypoxic groups compared to normoxic group. Also, RBC count in 

hypoxic groups was significantly increased compared to 500 mg Cu kg-1 under 

normoxic condition. The significantly increased value for Hb value was 

observed in hypoxic group (approx. 30%) compared to normoxia and compared 

to both Cu levels under hypoxia (approx. 12%). Also, both Cu levels under 

hypoxia were significantly increased (approx. 20%) compared to normoxia 

(ANOVA, P = 0.01).  

Interestingly, the number of white blood cells (WBC) was increased significantly 

at both Cu levels under hypoxic (approx. 8% and 15% respectively) and 

normoxic (approx. 8%) compared to both normoxic and hypoxic groups 

(ANOVA, P = 0.043). For differential leucocyte counts, four types of cells (viz., 

lymphocytes, neutrophiles, monocytes and eosinophiles) were observed but no 

basophiles were identified. Numerous types of lymphocytes were found. 

Significant increase in lymphocyte counts at both Cu levels under hypoxic 

(approx. 6% and 4% respectively) and normoxic (approx. 6%) compared to 

normoxic and also to hypoxic group were observed (ANOVA, P = 0.032). In 
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contrast, in the hypoxic group, frequency of lymphocyte marginally increased 

compared to normoxic (control) group but this increase was not deemed 

significant. Eosinophiles increased significantly at both Cu levels under hypoxia 

(appox. 76%) compared to both normoxic and hypoxic groups. Also fish fed a 

diet (500 mg Cu kg-1) under normoxia showed significant increases for 

eosinophiles (approx. 80%) compared to normoxic and hypoxic groups 

(ANOVA, P = 0.041). Neutrophiles decreased significantly (appox. 40%) in all 

Cu treatments compared to normoxia (ANOVA, P = 0.03). Also, monocytes 

decreased significantly in all Cu treatments plus normoxia and hypoxia (approx. 

17%, ANOVA, P = 0.031). 
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Table 5.2 Haematological parameters of C. carpio L. exposed to normoxic and hypoxic condition for 30 days either alone or fed with 
different levels of Cu containing diets (mg Cu kg dw-1). 

 

 

Data are mean ± S.E. Groups with different alphabetic superscripts within the row indicate significant difference at P < 0.05; (n=6). 

 

 

 

 

 

Parameter Normoxia Hypoxia 500 mg Cu kg-

1/normoxia 

250 mg Cu kg-1 

/hypoxia  

500 mg Cu kg-

1/hypoxia 

 Hct (%) 32.8 ± 0.8a 38.1 ± 2.3b 33.5 ± 0.7a 35.5 ± 1.0c  35 ± 1.0c 

 Hb (g dl-1) 8.6 ± 1.8a 11.3 ± 0.7b 8.8± 1.04a 10.1 ± 1.60c 10.7 ± 0.5c 

  RBC (cells x 106µl) 1.5 ± 0.2a   1.9 ± 0.4b 1.4 ± 0.1a 1.6 ± 0.20b 1.5 ± 0.4b 

 WBC (cells x 103µl) 13.0 ± 1.4a 13.4 ± 1.1a 14.05 ± 1.9b 14.02± 1.10b  14.9 ± 2.9c 

 

 Differential leukocyte count (%) 
     

 Lymphocytes (%) 79.0 ± 2.3a 80.4 ± 4.9a 84.1 ± 4.9b 84.1 ± 2.4b  82.1 ± 4.4b 

 Neutrophiles (%) 7.2  ± 0.1a 5.9 ± 0.2a 4.1 ± 5.3b 4.1 ± 1.1b 4.2 ± 2.2b 

 Monocytes (%) 12.3 ± 3.7a 12.0 ± 3.3a 9.07 ± 5.8b 10.1 ± 2.2b 9.1 ± 0.8b 

 Eosinophiles (%) 1.5 ± 1.5a 1.7 ± 1.5a 3.17 ± 5.4b  3.0 ± 1.2b 3.03 ± 2.7b   
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5.5.3 Histopathological study 

The gill morphology in the control (normoxic) group showed typical structures in 

which lamellae were lined by epithelial cells (Fig. 5.2A). After 30 days exposure 

to dietary Cu under hypoxia and normoxia, identical lesions were observed in all 

hypoxic groups. However, the extent of the damage was not severe in gills from 

500 mg Cu kg-1 under normoxic condition and also in gill tissue from the 

experimental hypoxic group (Fig. 5.2B-F).  

Quantitative analysis showed fusion of the secondary lamellae and lifting up of 

the epithelium. Epithelial hyperplasia and necrosis in the primary and secondary 

lamellae were significantly higher at both Cu levels under hypoxic compared to 

the normoxic group. Furthermore, a significant difference at both Cu levels 

under hypoxic compared to only hypoxic group and also to dietary Cu under 

normoxic condition were observed. On the other hand, clubbing of the ends of 

the secondary lamellae, which was significantly higher at both Cu levels under 

hypoxic compared to hypoxic group and also to dietary Cu plus normoxic group 

(Table 5.3; ANOVA; P < 0.05). A large percentage of the lamellar mucous cells 

were actively discharging mucous. Shortening of the secondary lamellae 

(atrophy) was also observed in all experimental Cu groups but it was not 

significant compared to other groups. In addition, several histopathological 

alterations in vascular system were observed in the gills. Erythrocytes 

congestion was general in the marginal channel (telangiectasis) and also 

throughout the entire lamellae (aneurysm) (Fig. 5.2F) in fish exposed to 250 and 

500 mg Cu kg-1 under hypoxic and also in only hypoxic condition.  

The liver of the control group exhibited normal hepatocytes (e.g. centrally 

located spherical nucleus) with no abnormalities (Fig. 5.3A). The hepatic tissues 

showed pronounced pathological changes after 30 d exposure to hypoxia either 
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alone or with different levels of dietary Cu (Fig. 5.3B-D). The hypoxic group and 

all dietary Cu groups plus hypoxia and normoxia showed marked cytoplasmic 

vacuolation of multifocal moderate to severe areas of lipid vacuolation of 

hepatocytes. On the other hand, necrosis in hepatic tissue was evident in 

hypoxic group and in all dietary Cu groups. For the intestine, all the groups 

showed normal histological structures, with no evidence of necrosis, oedema, 

haemorrhage or excessive epithelial sloughing in any of exposed fish. 
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Fig. 5.2 Light micrograph showing histological structures of the gill of C. carpio L. from 
normoxia, hypoxia and dietary Cu exposures plus hypoxia stained with H&E at 5-8 µm 
thickness. (A) control gill showing the (F), filament;  (L), secondary lamellae; , pillar cell; 
and (EP), epithelial cell (B) hypoxic gill showing (EPL) epithelial lifting; (C&D) 250 mg 
Cu kg-1 plus hypoxia demonstrating shortening of the secondary lamellae (black arrow) 
and hyperplasia of the epithelial cells (arrow head); (E&F) 500 mg Cu kg-1 plus hypoxia 
showing fusion of the secondary lamellae (white star); (AN), aneurysm; (N) necrotic 
cells occupying in the interlamellar space and secondary lamellae (black arrow). Scale 
bars: 50 µm. 
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Table 5.3 Histopathological changes presented as a percentage in the gills of C. carpio L. exposed to hypoxic condition and fed diets 
containing different levels of Cu mg kg-1 d.w plus hypoxia and normoxia for 30 days. 

Lesion (%) Normoxia   Hypoxia 500 mg Cu kg
-1

/normoxia 250 mg Cu kg
-1

 /hypoxia  500 mg Cu kg
-1

/hypoxia 

Gill       

Hyperplasia 3.40 ± 1.44a 23.00 ± 5.81b       3.20 ± 1.07c    31.4 ± 4.23d 29.6 ± 7.26d   

Fusion 2.40 ±1.17a 15.00 ± 4.01b        2.60 ± 2.60c     21.2 ± 8.58d    23.4 ± 7.72d 

Aneurism 0.00 ± 0.00a 10.00 ± 0.71b       0.00 ± 0.00a     2.6 ± 2.14abc    6.6 ± 5.88abc 

Club tips 9.06 ± 4.77a 25.00 ± 5.07b       3.80 ± 6.12a    33.6 ± 8.09c    34  ± 9.84c 

Lifting epithelium 0.00 ± 0.00a 15.20 ± 8.87b       0.00 ± 0.00c     27.4 ± 3.64d    42.4 ± 2.24d 

Atrophy 0.00 ± 0.00a 00.00 ± 0.00a       07.00 ± 3.92b       09 ± 5.42b    09.6 ± 2.77b 

Necrosis 0.00 ± 0.00a 15.20 ± 4.47b       2.20 ± 1.36c    24 ± 0.18d    29 ± 2.66d 

 

Data are mean ± S.E. Groups with different alphabetic superscripts indicate significantly different at P < 0.05; (n=6)
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Fig. 5.3 Light micrograph sections showing histological structures through liver of C. carpio L.   
from normoxia, hypoxia and dietary Cu exposures plus hypoxia stained with H&E at 5-8 µm 
thickness. (A) control liver showing normal histology (B) hypoxic liver showing multifocal moderate 
to severe areas of lipid vacuolation of hepatocytes (arrow head) (C) 250 mg Cu kg-1 d.w./hypoxia 
showed hepatocellular coagulative necrosis and enlargement of the hepatocytes (black arrow) (D) 
500 mg Cu kg-1 d.w./hypoxia showing hepatocellular necrosis (black star). Scale bars: 50 µm
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5.5.4 Ultrastructural study  

For the ultrastructural study, secondary lamellae under normoxic (control) 

condition exhibited typical regular structures with no lesions (i.e. ordered and 

parallel arrangement, coaxial system made up of wrapping epithelium and inner 

endothelium supported by pillar cells with central portion occupied by large 

nuclei; Fig. 5.4 A-D). Under hypoxic condition, secondary lamellae showed 

detachments of the epithelial cells and intracellular oedema. The epithelial cells 

contained swollen mitochondria with enlargement of numerous microvesicles 

under apical membrane (Fig. 5.4 E&F). Oedema and detachment of the cells 

were severe in 250 mg Cu plus hypoxia with up to 50% of detachment in one 

side of the secondary lamellae (Fig 5.4. 4G). Additionally, mitochondrion rich 

cells showed enlargement and increase in the number of the mitochondria and 

microvesicles (Fig. 5.4H). In 500 mg Cu kg-1 plus hypoxia treatment, approx. 40% 

of detachment of the epithelial cells was observed on both sides of secondary 

lamellae along with hyperplasia, breakdown of pillar cells and disorganization of 

blood cells (Fig. 5.4I&J). In addition, up to 70% of the mitochondrion rich cells 

exhibited swollen and damaged mitochondria along with irregular meshes of 

endoplasmic reticulum (Fig. 5.4 K&L). 
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Fig. 5.4 Ultrastructural differences in gills viewed by TEM. (A-D) secondary lamellae of 
normoxic gill, (E&F) secondary lamellae exposed to hypoxia; (G&H) secondary 
lamellae exposed to 250 mg Cu kg-1 plus hypoxia; (I-L) secondary lamellae exposed to 
500 mg Cu kg-1 plus hypoxia BM, basement membrane; PC, pillar cell; RBC, red blood 
cell; EPC, epithelial cell; MRC, mitochondrion rich cells; M, mitochondria; MV, 
microvesicles; RER, rough endoplasmic reticulum; HP, hyperplasia of the epithelial 
cells; EPL, epithelial lifting; black arrows indicates high concentration of numerous 
microvesicles under the apical membrane; arrow head indicates indicate swollen 
mitochondria; intermittent arrows, breakdown of pillar cells and disorganization of RBC; 
black star, irregular meshes of tubular reticulum; white arrow, indicate mitochondrial 
damage.  
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5.5.5 Copper accumulation 

Cu accumulation in the liver, intestine, gill and kidney of C. carpio, are shown in 

Table 5.4. After 30 days of exposure to dietary Cu under hypoxic and normoxic 

conditions, the liver showed significantly increased of Cu accumulation at 500 

mg Cu kg-1d.w (under both hypoxic and normoxic conditions) compared to 

normoxia group (11 and 10 fold increase respectively), compared to 250 mg Cu 

kg-1d.w/hypoxia (3.2 and 3 fold increase respectively), and also to hypoxia 

group (12 and 11 fold increase respectively (Kruskal-Wallis, P = 0.0003). There 

was no significant difference at 500 mg Cu kg-1 d.w under hypoxia and 

normoxia. In contrast, Cu levels in the intestine was significantly higher at  both 

Cu levels 250 and 500 mg Cu kg-1/hypoxia-exposed groups and also at 500 mg 

Cu kg-1/normoxia over in those exposed to the normoxic condition and also to 

hypoxic condition. Interestingly, there was a significantly different between 500 

mg Cu kg-1/normoxia-exposed group and 500 mg Cu kg-1/hypoxia-exposed 

group (Kruskal-Wallis, P = 0.0001). On the other hand, Cu concentration in the 

kidney was significantly increased at 500 mg Cu kg-1under hypoxia and 

normoxia in comparison to normoxia group (4 and 7 fold increase respectively) 

and also to hypoxia group (5 and 10 fold increase respectively). Also there was 

a significant difference between 500 mg Cu kg-1/normoxia-exposed group and 

500 mg Cu kg-1/hypoxia-exposed group (Kruskal-Wallis, P = 0.0003). In 

contrast, Cu accumulated in gill in lesser extent compared to other tissues and 

also there was no significant difference between all exposure groups under 

normoxic and hypoxic conditions.  
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   Table 5.4 Accumulation of copper (μg Cu g-1) by tissues and organs of Cyprinus carpio L. exposed to hypoxic condition and fed diets containing  
different levels of Cu mg kg-1 d.w. under normoxic and hypoxic conditions for 30 days.  
     

 

Data are mean ± S.E. Groups with different alphabetic superscripts within the row indicate significant difference at P < 0.05; (n=6) 

 

Tissue Normoxia        Hypoxia 500 mg Cu kg-

1/normoxia 
250 mg Cu kg-1 
/hypoxia  

500 mg Cu kg-

1/hypoxia 

Liver 66.98 ± 6.42a 62.97 ± 7.38a 688.16 ± 75.50b 234.45 ± 36.36c 763.94  ± 95.56b 

Intestine 
 

14.09 ± 1.59a
 18.87 ± 2.64a

 590.91 ± 149.68b
 221.26 ± 50.21c

 326.35 ± 74.55d
 

Gill 6.57 ± 1.00a
 

6.34 ± 0.44a
 

 
    10.28 ± 0.54       7.88 ± 0.41a

     10.68 ± 0.67a
 

Kidney 7.25 ± 0.76a  5.81 ± 1.15a 51.91 ± 11.16b 16.32 ± 2.47c 26.54 ± 3.50c 



Chapter 5.  

 

205 
 

5.5.6 Growth and nutritional performance 

All the data for growth and nutritional performance are summarized in Table 5.5. 

Initial body weight of fish from all replications of control and experimental 

groups varied from 16.13 g to 16.26 g with no significant differences at the 

starting time of the trial. No mortalities occurred during the experimental period 

(i.e. 30 d). Whilst fish from all treatment groups gained weight over the 

exposure period, weight gain following dietary Cu plus hypoxia exposure was 

however reduced with elevating copper supplements. There was significant 

differences in final weight in the Cu exposed and in hypoxic compared to 

normoxic groups (ANOVA, P = 0.012) which had knock-on effects on SGR 

which was significantly lower in all treatment compared to normoxic group 

(ANOVA, P = 0.019). On the other hand, feed conversion ratio (FCR) of dietary 

Cu groups at 500 mg Cu kg-1 under both normoxic and hypoxic conditions was 

significantly different compared to normoxic and hypoxic groups. Also, FCR at 

500 mg Cu kg-1 under normoxic was significantly different compared to 250 mg 

Cu kg-1 hypoxic condition (ANOVA, P = 0.007).  

 This result suggests that the SGR was significantly affected by the level of 

dissolved oxygen and Cu concentration as evident by significant growth 

reduction in hypoxic and in all dietary Cu groups. The proximate composition of 

the carcass was similar for all dietary Cu and normoxic groups, and there were 

no significant differences between the treatment groups compared to normoxic 

group (Table 5.5).  
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   Table 5.5 The effect of dietary Cu exposure and hypoxia on nutrition and growth performances a  of C. 

 

aValues are means ± S.E. values within a row with different superscript letters are significantly different as determined by ANOVA at P < 0.05; (n= 6). 
bValues are for fish at the end of the experiment expressed as percentage of dry matter.  Proximate carcass composition of initial fish for moisture, 
protein, lipid and ash respectively were (means ± S.E. n=6): 73.84±0.34; 59.83±0.04; 26.26 ±0.31; 10.26±0.07. The values within the rows without 
superscripts did not differ significantly (P > 0.05).  

Variables   Normoxia Hypoxia 500 mg Cu kg-

1/normoxia 
250 mg Cu kg-1 
/hypoxia  

500 mg Cu kg-

1/hypoxia 
Initial mean weight (g)     16.26 ± 0.06a  16.13 ± 0.06a 16.23  ± 0.16a 16.26 ± 0.13a 16.23 ± 0.03a 

Final mean weight (g)   31.56 ± 0.16a 28.60 ± 0.36b  25.67 ± 1.13c 28.70 ± 1.76b 26.68 ± 0.03bc 

Weight gain (g) 15.30  ± 0.23a 12.47 ± 0.43b 9.44 ± 0.96c  12.44 ± 1.63b  10.45 ± 0.06bc 

SGR (% g-1) 2.23 ± 0.03a 1.84 ± 0.09bc  1.59 ± 0.10b 1.95  ± 0.16c 1.72 ± 0.01bc 

FCR  1.00 ± 0.02a  1.18 ± 0.02a   1.52 ± 0.08b 1.22 ± 0.09c 1.39 ± 0.0cb 

Proximate carcass  compositionb       

Moisture (%) 72.39 ± 1.15 73.98 ± 0.80 72.95 ± 0.78 74.31 ± 0.84 74.21 ± 2.11 

Crude protein (%) 51.51 ± 0.75 55.78 ± 0.55 56.63 ± 0.67 59.17 ± 0.84 56.01 ± 0.72 

Lipid (%) 36.59 ± 0.66 33.48 ± 0.07 33.10 ± 1.17 32.46 ± 0.30 32.81 ± 0.23   

Ash (%) 06.81 ± 0.46 07.31 ± 0.31 08.23 ± 0.005 07.85 ± 0.07 08.44 ± 0.18 
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5.6 Discussion 
There is no doubt that exposure to high concentration of Cu can damage cells 

and tissues because Cu ions and its complexes can lead to increase the ROS 

followed by oxidative damage to biomolecules including unsaturated lipid, 

proteins and DNA (Becker et al., 2009; Yourtee et al., 1992). The alternative 

mechanism for Cu genotoxicity, Cu ions can directly interact with specific 

sequences of nucleotides in DNA leading to an inactivation of proteins involved 

in DNA replication, transcription and repair mechanisms (Hartwig, 1995; Prá et 

al., 2008). As well as, elevated oxygen concentration acts as an inductor for 

oxidative DNA damage in aquatic animals and may lead to DNA damage 

(Halliwell and Aruoma, 1991). 

Whilst there have been a large number of studies pertaining to Cu-induced 

toxicity, there is paucity of information related to Cu-induced DNA damage in 

aquatic organisms, especially in fish either through aqueous or dietary 

exposure. Higher concentrations of Cu is known to induce damage at cellular 

and tissue levels either through generation of reactive oxygen species (ROS) or 

by direct interaction with biomolecules including enzymes and DNA (Prá et al., 

2008). These results in C. carpio exhibiting highest DNA damage in Cu 

supplemented groups held under hypoxic and normoxic, and also under hypoxic 

conditions compared to normoxic group is in line with in vitro or in vivo studies 

showing Cu-induced DNA damage (Al-Subiai et al., 2011; Atienzar et al., 2001; 

Lloyd and Phillips, 1999; Prá et al., 2008). Hypoxia induced oxidative DNA 

damage also confirms with our previous study where it has been significantly 

correlated with the specific growth rate (SGR) and GPx activity in this fish 

species (Mustafa et al., 2011). Oxidative DNA damage in the present 
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investigation is directly related with Cu and oxygen levels. Moreover, induced 

DNA damage with stressors alone or as a result of interaction is largely due to 

oxidative stress, oxidised purines showing higher damage compared to 

pyrimidines. Needless to mention, induction of genetic damage has implications 

for both short- and long-term survival of the natural species which could also act 

as surrogates for human health (Jha, 2004, 2008).  It is therefore not surprising 

that to maintain ecological quality of the hydrosphere attention is being 

focussed on those contaminants which are carcinogenic, mutagenic or show 

reproductive toxicity (Borja et al., 2004; Fuerhacker, 2009).  

Changes in haematological parameters (e.g. increase in RBC and lymphocyte 

numbers, Hb values) suggest water quality as one of the most important factors 

which could have knock-on effects on the overall physiology of the organisms 

(Casillas and Smith, 1977). A significant increase in the number of white blood 

cells at different Cu levels under hypoxic and normoxic conditions indicates 

activation of the immune system either directly or from the oxidative stress 

(Nussey et al., 1995b). In common with mammals, the nuclein products 

released from the damaged tissues (e.g. gill, liver) could stimulate the 

production of leucocytes (Wepener et al., 1992a, 1992b). Similar increases 

have been reported when fish were exposed to different pollutants including 

heavy metals (Nussey et al., 1995a; Wepener et al., 1992a). The increase in the 

number of lymphocytes and eosinophiles at both Cu levels under hypoxia and 

normoxia also indicate  some immune response occurring after the exposure to 

Cu (Ellis, 1981). The increases in haematocrit and Hb values, influencing the 

oxygen carrying capacity of blood is potentially an indication of polycythemia 

due to impaired osmoregulation and damage to gill cells (Wepener et al., 

1992a, 1992b). During anaerobic respiration, lactic acid is released causing a 
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rise in the acidity of blood which in turn leads to swelling and increased number 

of RBC (Soivio et al., 1974). Fish also compensate for poor oxygen supply by 

increasing the demand for oxygen intake resulting in epithelial lifting of the 

lamellae and mucous deposition on gills. Additional stress could cause 

adrenergic stimulation of the erythropoietic organs (mainly the pronepheric 

kidney and spleen) to contract and release stored erythrocytes into circulating 

blood (Nilsson and Grove, 1974). Overall, changes in the haematological profile 

indicate an attempt by the fish to adapt in an environment with an increased 

requirement for oxygen leading to further knock-on effects on other body 

systems.  

Exposure to Cu and hypoxia is known to exert a wide range of histopathological 

effects in fish (Arellano et al., 1999; Handy et al., 1999; Mallatt, 1985). The most 

noticeable histopathological alterations in the liver being increasing vacuolation 

associated with lipid accumulation, necrosis and cellular swelling. Increased 

hepatic lipid content could be attributed by either increased lipid deposition in 

excess of nutritional requirements or a failure to mobilize lipid stores under 

stressed conditions. Similar findings were also documented in Sleek Unicorn 

fish (Naso hexacanthus) exposed to heavy metals at contaminated sites in the 

Red sea areas (Montaser et al., 2010).  

Following exposure to hypoxia either alone or in combination with dietary Cu, 

gills exhibited several histopathological changes which were significantly higher 

at combined exposures. These changes in histological features are however not 

exclusive to oxidative or oxygen related stresses. In fact some characters (e.g. 

lack of arrangement of the lamellae, the detachment of the epithelial layer from 

the basal lamina etc.) have been previously reported in other stressed 
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conditions such as exposure to pesticides, effluents from wastewater treatment 

plans and other environmental stresses in different fish species (Fanta et al., 

2003; Szakolczai, 1997). With particular reference to exposure to metals, 

Skidmore and Tovell (1972) observed severe curling and oedema of the 

secondary lamellae, with the epithelium lifted away from the basement 

membrane in rainbow trout, Oncorhynchus mykiss exposed to Zn. Similar 

changes were observed in Senegales sole, Sole senegalensis subjected to 

sublethal concentrations of Cu for 7 d (Arellano et al., 1999). The changes 

observed in the gill tissue could impair respiratory functions (e.g. gas exchange) 

generating an internal hypoxia which may stimulate the RBC to be released 

from the erythropoietic tissues into the blood stream (Pilgaard et al., 1994). All 

these alterations may represent a defence mechanism to adapt in the changing 

environment (Arellano et al., 1999; Camargo and Martinez, 2007). In this 

integrated study, we have determined the potential effects at different levels of 

biological organisation as well as in different tissues and organs (i.e. liver, 

intestine, gill and kidney). It is interesting to note that although fish were 

exposed to dietary Cu levels and they did not show significant accumulation of 

this metal in gills, but they exhibited histopathological abnormalities in this 

organ. It is to be remembered that hypoxia also induces stress on the gills. 

Even though the fish were exposed to Cu through dietary route, it will cause 

stress after assimilation and absorption. Indeed it has been shown that dietary 

Cu exposure induces histopathological changes in gills, despite the fact that it 

does not get accumulated in significant amount in this organ (Handy, 2003; 

Handy et al., 1999), which is in line with our observation.  

For the ultrastructural studies, whilst the secondary lamellae under normoxic 

condition showed typical regular structures, it displayed distinct morphological 
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changes compared to the hypoxic groups either alone or in combination with 

Cu. Deformation of erythrocytes was also noticed which could be due to the 

reduced vascular space. The restricted lumen of the vessels could also force 

the RBC to move into reduced space giving rise to cellular deformation. Nilsson 

et al., (1995) have suggested that this deformation may be an adaptation to 

increase oxygen uptake, since it can counteract the formation of a diffusion 

boundary layer around the erythrocytes resulting in mixing of intracellular 

haemoglobin molecules. Due to restricted passage, however, cells have to pass 

slowly via the lamella favouring oxygen uptake. The large ultrastructural 

changes observed in the gill could be due to a remodelling during hypoxia which 

is suggested to be a general characteristic associated with regulation of ion 

disturbances (Matey et al., 2008).  

Cu accumulation in tissues was seen to be directly related to its levels, highest 

in the liver followed by intestine, kidney and gill. Higher accumulation in the liver 

compared to other tissues possibly related to its important role in the 

detoxification and excretion of toxicants (Kim and Kang, 2004; Roesijadi, 1992). 

In addition, accumulation of Cu in the liver was virtually similar at 500 mg kg-1 

under hypoxic and normoxic conditions. A similar result has been reported in 

rainbow trout Oncrohynchus mykiss exposed to Cu (0.5 ppm) for 9 d in 

normoxic and hypoxic conditions (Pilgaard et al., 1994). For intestine, Cu 

accumulation at 500 mg Cu kg-1 under normoxia was significantly higher 

compared to hypoxia. The latter effect could be attributed to the suppression of 

the cellular metabolic rate in response to hypoxia (Hochachka, 1997). The 

intestine seems to have an important role in regulating the uptake of dietary Cu 

and higher accumulation of Cu in the intestine compared to liver and gill in 

rainbow trout has been reported (Handy et al., 1999). Lloyd (1961) has 
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proposed that higher toxicity of Cu in hypoxic condition may be associated with 

increased water coming in contact with gills as a result of hypoxia induced 

hyperventilation. This could however be only possible if sufficient quantity of Cu 

entering the interlamellar spaces of the gills is taken up as the water passes to 

the secondary lamellae. The Cu content of the kidney probably reflects the Cu 

level in the blood content of the organ and its sequestration by metallothionein.  

Dietary Cu exposure either in hypoxic or in normoxic conditions resulted in 

reduction in SGR. This could be explained by reduced daily feed intake since 

the lower feed intake could reduce the amount of nutrients available for growth. 

Impairment of growth rate following dietary Cu exposure in fish has been 

conflicting. Whilst some workers have reported reduction in growth rate (Baker 

et al., 1998; Clearwater et al., 2000) others have not (Handy et al., 1999; 

Kamunde et al., 2001; Lanno et al., 1985). Also, significant growth reductions 

have been demonstrated in different fish species exposed to hypoxic condition 

including by us (Mustafa et al., 2011; Petersen and Pihl, 1995). A possible 

explanation for impairment of growth could be that physiological changes 

permitting metal detoxification and homeostasis are highly energy dependent 

(Kim and Hyun, 2006). Furthermore, toxicants that interfere indirectly with 

energy production inhibit the synthesis of biomolecules (i.e. nucleic acids and 

protein). It is therefore likely that upon prolonged exposure to hypoxia, in order 

to conserve energy expenditure by metabolic depression, fish may have to 

eventually enhance the limited supply of energy from anaerobic sources. As a 

result, the physiological and biochemical adjustments may ultimately manifest in 

growth reduction and feed utilization efficiency (Hochachka, 1997; West and 

Boutilier, 1998). 
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In conclusion, hypoxia either alone or in combination with dietary Cu induces 

sub-lethal responses at different levels of biological organisation in fish. Whilst 

Cu accumulated differentially in the tissues, hypoxia did not significantly 

influence this accumulation. Combined exposure of hypoxia and Cu induced a 

significantly higher level of oxidative DNA damage suggesting that DNA 

damage in fish can serve as a sensitive biomarker for changes in water quality 

as well as presence of genotoxic chemicals. The study further supports the 

notion that water quality should be regarded as one of the most important 

factors responsible for individual variations in genotoxic and other sub-lethal 

biological responses in aquatic biota inhabiting different ecological niches where 

contaminants either in hypoxic or in normoxic conditions could be present in all 

probable combinations.  
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CHAPTER 6 
 

GENE EXPRESSION PROFILE, LIPID PEROXIDATION AND 
OXIDATIVE DNA DAMAGE IN CARP CYPRINUS CARPIO L. 
FOLLOWING EXPOSURE TO HYPOXIC AND SUBSEQUENT 

RECOVERY IN NORMOXIC CONDITIONS 
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Hypothesis: (a) hypoxia and transition back in normoxic condition induce 
oxidative stress and modify expression of hypoxia related genes in C. carpio L.  

(b) hypoxia-induced oxidative stress are manifested in varieties of way and 
these responses could be interrelated   

 

Abstract 

In fish a complex set of physiological and biochemical strategies are employed 

to cope with environmental stress including hypoxic stress, underlying 

mechanism of which could be expression of certain key genes. In order to probe 

the hypotheses that hypoxia induces oxidative stress and this stress could be 

manifested in varieties of way, C. carpio were chronically exposed to hypoxic 

condition (1.8±0.6 mg l-1) for 21 days and subsequently allowed to recover 

under normoxic condition for 7 days. At the end of these exposure periods (i.e. 

21 days hypoxic and 7 days recovery under normoxic condition), maximising 

the use of biological samples, adopting an integrated approach at different level 

of biological organisation, several endpoints were evaluated. These included 

determination of (a) expression of hypoxia inducible factor 1 (HIF-1α) gene 

using RT-PCR in liver samples (b) oxidative DNA damage in erythrocytes (using 

modified Comet assay employing bacterial enzymes: Fpg and Endo-III), (c) lipid 

peroxidation in liver samples by measuring the MDA production using the 2-

thiobarbituric acid (TBARS test) (d) respiratory burst (RB) activity of 

neutrophiles using reduction of nitroblue tetrazolium and (e) histopathological 

changes in gills. The results suggested that the expression levels of HIF-1α in 

response to hypoxia were significantly higher compared to concurrent normoxic 

controls, which reverted to control values within 7days exposure to normoxic 

condition (P < 0.05). Interestingly, the highest rate of oxidative DNA damage 

occurred when the fish were kept under hypoxic conditions followed by a rapid 

increase of the oxygen concentration (recovery period for 7 days) compared to 
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fish maintained under normoxic condition as concurrent controls. Hypoxic 

groups showed significantly increased values for TBARS levels (by ~ 2 fold) 

compared to both normoxic and recovery groups. RB activities increased under 

both hypoxic and recovery groups but there were no significant differences 

compared to normoxic control groups. Histopathological changes revealed 

damage in gill tissue under both hypoxia and recovery stages. Taken together, 

the results suggest that exposure to hypoxia resulted in the induction of 

oxidative damage at different levels of biological organisation. This also 

corroborated with adequate of activation of HIF-1α gene. 
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6.1 Introduction  

Fresh water fish and, to some extent marine fish are continuously exposed to 

frequent episodes of environmental and physiological hypoxia. Such events are 

likely to produce elevated levels of reactive oxygen species (ROS) during or in 

recovery of physiological stress, capable of inducing damage to biological 

systems (Abele and Puntarulo, 2004). The direct effects of oxidative stress 

include peroxidative damage to important macromolecules (i.e. DNA, proteins 

and lipids). Indirectly, changes induced by reactive oxygen metabolites in 

cellular membranes and components can modify the metabolic process which 

could lead to changes in physiology and possibly pathological changes in the 

organisms (Miller et al., 1993a).  

Generally, hypoxia even for short-term can be fatal or detrimental to humans 

and most mammals as they possess only little tolerance to anoxia and their 

tissues are normally debilitated by any prolonged lack of O2 (van der Meer et al., 

2005). Unlike mammals, fish have however evolved to survive on long 

exposures to hypoxia owing to a range of biochemical, physiological 

adaptations collectively known as the ―hypoxia responses‖ (Iwama et al., 2005; 

Nikinmaa, 2002).  Carp is one of the several fish species having the ability to 

tolerate hypoxic conditions ranging from hours to weeks (van den Thillart and 

van Waarde, 1985).  

Most important alterations that help fish to cope under this condition includes 

decreased metabolic rate (van den Thillart and van Waarde, 1985), increased 

ventilation rate (Jensen et al., 1993), increased haematocrit and haemoglobin 

concentration (Mustafa et al., 2011). By reducing the energy consumption of 

their tissues using glycogen reserves and anaerobic ATP which is mainly 

produced from glycolysis (Hochachka, 1997). Thereby, fish respond to stress by 
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inducing physiological responses including endocrine, metabolic and cellular 

changes (Bonga, 1997). However, metabolic damage associated with 

hypoxia/anoxia arises not only from hypoxia, but can also occur during tissue 

reoxygenation (recovery).  

The reintroduction of oxygen into hypoxic tissue results into rapid transient 

increase in ROS causing oxidative stress (Di Giulio et al., 1989; Halliwell and 

Aruoma, 1991; Lushchak et al., 2001). Hence, to successfully survive, hypoxia 

exposed organisms must not only maintain its viability under low levels of 

oxygen but also have effective mechanisms to prevent the oxidative stress 

during transition back from hypoxic to aerobic form. 

At molecular level, in vitro studies have suggested that many genes inducible by 

hypoxia are regulated by a ubiquitous, highly conserved DNA-binding protein, 

hypoxia inducible factor 1α (HIF-1α) (Guillemin and Krasnow, 1997; Soitamo et 

al., 2001). HIF-1α receives signal from the molecular oxygen sensor through 

redox reaction and or phosphorylation, which in turn activates the transcription 

of a number of hypoxia-inducible genes. The overall effect of differential gene 

expression have been suggested to lead to a series of biochemical and 

physiological responses, allowing the organisms to survive under hypoxic 

conditions with net decrease in metabolic rate and protein synthesis (Wu, 

2002).  

On the other hand, although recent technological developments have made it 

possible to detect patterns of gene expression, only little published reports are 

available on tissue expression patterns of HIF-1α in fish exposed to hypoxia. In 

addition to the natural environment, the oxidative status and the consequences 

of the hypoxic event are very important to the aquaculture. In this study 
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therefore, we have taken the opportunity to adopt a holistic approach to 

determine the biological responses at different levels of biological organisation. 

In particular, we used reverse transcription and real- time quantitative PCR (i.e. 

RT-PCR and q-PCR) technology to examine the HIF-1α gene expression 

pattern in C. carpio under hypoxic condition and subsequent recovery period. In 

addition, we also investigated oxidative DNA damage, lipid peroxidation, 

respiratory burst activity (i.e. measurement of release of reactive oxygen 

species by immune cells)  and histopathological changes in the gills of mirror 

carp, C. carpio L., chronically (i.e. 21 days) exposed to hypoxia (1.8 mg l-1) and 

subsequently to recovery period under normoxic conditions for 7 days to verify if 

hypoxia and transition back from hypoxic to aerobic condition (normoxia) is 

capable of inducing any oxidative stress with concurrent modification in gene 

expression profile in this species 

6.2 Materials and Methods   

6.2.1 Fish and their maintenance 

Mirror carp (Cyprinus carpio L.) were obtained from Hampshire carp hatcheries 

(Bowlake fish farm, UK), and kept in our aquarium at Plymouth University.  Fish 

were stocked into tanks and allowed to acclimate for 30 days before starting the 

trial. The tanks were connected to a tap water recirculation system (~2250-L), 

with strictly controlled water conditions: temperature 24 ± 1 °C, pH 7 ± 0.5, total 

ammonia below 0.1 mg l-1, nitrate below 22 mg l-1 and nitrite below 0.01 mg l-1. 

Dissolved oxygen (DO) was maintained at over 95% of the saturation value by 

adding pure O2 to the system. During the acclimation period, all fish were fed 

twice daily (8:00 a.m and 1:00 p.m) with a  commercial diet (Ewos, Micro 20 p, 

Ewos Ltd., Westfield, Bathgate, West Lothian. UK) at a rate of 2% of average 

body mass.  
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6.2.2 Exposure to hypoxic condition and sampling strategy  

After the acclimation period, 60 fish (weighing an average 30.2 g; length 14.4 ± 

2 cm) were transferred into each of six experimental tanks (10 fish tank-1) 

connected to the same recirculation system and allowed to acclimate for five 

days. Following this, first set of three tanks (control) were maintained under 

normoxic conditions (DO, 8.2± 0.5 mg l-1, 95–100% saturation), the second set 

of three tanks were maintained under hypoxic condition (DO, 1.8±0.6 mg l-1; 

30% of saturation). The DO value for hypoxic period was chosen on the basis of 

our observations on hypoxia tolerance level of common carp and in accordance 

with experimental protocols used in previous studies using identical set up 

(Mustafa et al., 2011, 2012). Low level of hypoxia was achieved using pumping 

nitrogen gas (purity: 99.99%) at specific water flow through system ≈ 1 l min-1, 

as described in earlier studies, which occurred within two days. This period did 

not led to significant built-up of excreta compared to controls, so that groups did 

not differ in more than ambient O2 levels (pH 7.5–7.8, nitrite 0.01– 0.02 mg l-1, 

and ammonia 0.061 ± 0.008 mg l-1). The concentration of oxygen in the water 

was measured three times daily by using a hand-held dissolved oxygen meter 

(Oxy Guard, Handy Polaris, DK). 

The exposure start time began when the desired dissolved oxygen levels were 

achieved, which was within 2 days after the initiation of nitrogen pumping. After 

3 weeks of exposure to hypoxia, 3 fish replicate tank-1 were randomly captured 

and immediately anaesthetized in a buffered solution of methane sulfonate (MS-

222; 100 mg l-1 water for 10 min). Fresh blood samples were immediately 

collected from the caudal vessel using a 25 gauge needle and 1 ml heparinised 

syringe into eppendorf tubes for analysis by modified single cell electrophoresis 

―modified Comet assay‖ (Mustafa et al., 201, 2012) and  NBT reduction test 
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(section 2.5). Fish were dissected; liver samples were isolated, frozen 

immediately in liquid N2, and stored at -80 °C for gene expression (HIF-1α) 

(sections 2.4.1-2.4.5) and lipid peroxidation analyses (see section 2.6). Gill 

samples were immediately fixed in 10% formaldehyde solution for 

histopathological study (section 2.10).   

Following exposure to hypoxic condition (i.e. 3 weeks), tanks were opened and 

the bubbling of nitrogen was replaced by bubbling of air; oxygen levels returned 

to normal values after about 30 min (fish kept under recovery for 7 days). After 

recovery period (i.e. 7 days), 3 fish from each tank (n=9) were sampled to carry 

out same analysis as described above. 
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6.3 Results 

6.3.1 Gene expression analyses using quantitative real time PCR (qPCR) 

The expression levels of HIF-1α in the liver sample from individual fish in 

response to hypoxic condition as estimated by quantitative real-time PCR (Q- 

PCR) are presented in Fig. 6.1. Fig. 6.2 provides qualitative expression of the 

two genes (i.e. marker β-actin and HIF-1α in agarose gel). These data 

demonstrate that longer exposure to hypoxic stress (21 days) induced up 

regulation of HIF-1α which was significantly higher compared to concurrent 

normal (normoxic) levels. Recovery period significantly decreased the HIF-1α 

levels which returned to control values within 7days of exposure to normoxic 

conditions (Kurskal- Wallis; P < 0.000). 
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Fig. 6.1 Expression pattern of HIF-1α mRNA as determined by real-time quantitative 
PCR in C. carpio exposed to normoxia and hypoxia (DO, 1.8±0.6 mg l-1, 31% of 
saturation) for 3 weeks and for 7days as recovery phase. Values are mean ± S.E; * 
indicates significant differences from normoxic groups; # indicates significant 
differences between hypoxia and recovery groups at P< 0.001; n = 6. 

 

 

 

 

 

 

 

 

 

 

Fig. 6.2 Photographs of PCR products showing HIF-1α and β-Actin detected in nuclear 
extracts of liver from hypoxic and normoxic fish in 1.5% agarose. 
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6.3.2 Determination of oxidative DNA damage 

Hypoxic condition showed highly significant (P < 0.00001) increase for oxidative 

DNA damage compared to normoxic condition. The highest rate of oxidative 

DNA damage occurred when the fish were kept under hypoxic conditions 

followed by a rapid increase of the oxygen concentration (recovery stage for 

7days). Also there was no significant difference between the hypoxic group and 

the recovered group for oxidative DNA damage (Fig. 6.3). On the other hand, 

the highest degree of oxidative DNA strand breaks was found in the presence of 

Fpg enzyme in hypoxic condition and following recovery stage compared to the 

normoxic groups. This enzyme showed a statistically significant difference 

compared to both control buffer and Endo-III treatments using two ways 

ANOVA (Fig. 6.3). 

 

  6.3.3 Respiratory burst activity 

The respiratory burst activity (NBT reduction) of neutrophils of C. carpio of the 

experimental groups is shown in Fig. 6.4. Higher respiratory burst activity was 

found in hypoxic (0.47 ± 0.03) and recovery groups (0.50 ± 0.02), but there 

were no significant differences compared to normoxic groups. 
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Fig. 6.3 Induction of DNA single strands breaks (represented as percentage tail DNA) 
in C. carpio erythrocytes following 3 weeks exposure to normoxia, hypoxia and 
following 7days recovery in normoxic condition. Values are average median ± S.E. 
Different alphabetic letters denote statistically significant different between groups 
*statistically significant different versus buffer and Endo-III at P< 0.001; n =9. 
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Fig. 6.4 Respiratory burst activity (NBT reduction) in C. carpio neutrophils following 3 
weeks exposure to normoxia, hypoxia and for 7days recovery under normoxic 
condition. Values are mean ± S.E; n =9. 

 

 

Fig. 6.5 Effect of hypoxia and recovery on levels of thiobarbituric acid reactive 
substances (TBARS) in the liver of C. carpio Values are mean ± S.E; * indicates 
significant differences from normoxic groups; # indicates significant differences 
between hypoxia and recovery groups at P< 0.05; n = 9. 
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6.3.4 Determination of lipid peroxidation (TBARS assay) 

The levels of TBARS in carp liver from the experimental groups are shown in 

Fig. 6.5. Hypoxic groups showed significantly higher values for TBARS levels, 

approx. 2 fold increases compared to normoxic groups. Also, there was a 

significant difference between hypoxia and recovery groups (ANOVA, P= 

0.013). In contrast, the level of TBARS decreased in recovered fish, which was 

similar to normoxic groups. There were no significant differences between the 

normoxic and recovery (under normoxic condition) groups. 
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6.3.5 Histopathological studies 

The gill morphology of normoxic group exhibited the typical structure in which 

lamellae were lined by epithelial cells (Fig. 6.6 A). After 21 days exposure to 

hypoxia, gills showed several notable histological alterations including lifting of 

lamellar epithelium, epithelial hyperplasia and necrosis in primary and 

secondary lamellae (Fig. 6.6 B-C). The magnitude of these changes decreased 

following 7 days exposure to normoxia (recovery period). However the recovery 

was not complete within 7 days in normoxic condition and the histological 

alterations persisted in this group (Fig. 6.6 D). Quantitative analysis for 3 main 

parameters (viz. epithelial lifting, hyperplasia and necrosis) showed that most of 

these changes were significantly higher under hypoxic compared to the 

normoxic groups. Also, these changes were significantly higher in the recovery 

group especially the necrosis compared to the normoxic group suggesting that 

7 days was not an adequate length of time for mirror carp to fully recover from 

necrosis after prolonged hypoxic stress (Table 6.1). 
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Fig. 6.6 General view of the C. carpio secondary lamellae of the gill viewed by light 
microscopy: C. carpio exposed to normoxia (control; A), (B&C) hypoxic gill  exposed to 
1.8 mg O2 l

–1 for 21 days showing (EPL) epithelial lifting; (H) hyperplasia, (D) recovery 
gill  for 7 days showing (N) necrosis. H& E stain; Thickness 5-8 μm. Scale bars 50μm. 
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Table 6.7 Histopathological changes presented as a percentage in the gills of C. carpio 
following 3 weeks exposure to normoxia, hypoxia and for 7days to recovery (normoxia). 

 

Data are mean ± S.E. Groups with different alphabetic superscripts with in rows 
indicate significantly different at P < 0.05.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Lesion (%) Normoxia Hypoxia Recovery after hypoxia 

Epithelial lifting 2.0 ± 2.5a 43. 2 ± 7.0b        24. 08 ± 5.4c    

Hyperplasia  0.0 ± 0.0a 40.4 ± 5.3b        23 ± 3.7c 

Necrosis 0.0 ± 0.0a 37.2 ± 5.3b         32.53 ± 6.4b 
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6.4 Discussion 

Several studies have been carried out to demonstrate the adaptive responses in 

fish exposed to hypoxic condition. These studies have selected a range of 

parameters at different level of biological organisation, from biochemical to 

individual level (Lushchak and Bagnyukova, 2007) Our previous investigations 

have shown that, in the common carp (C. carpio), which is especially suited to 

tolerate hypoxic condition; oxidative DNA damage haematological and 

histopathological changes in selected organs are induced (Mustafa et al., 2011; 

2012). Other studies have also demonstrated histological abnormalities, a 

decline in growth rate, and feed utilisation performance under a reduced oxygen 

or hypoxic event (Chabot and Dutil, 1999; Dabrowski et al., 2004; Scott and 

Rogers, 1980). However, the molecular responses to hypoxia have not been 

investigated extensively in fish, even though these animals are prime models for 

such studies. In this respect, considerable attention has been paid to oxygen 

related effects, as the hypoxic condition are known to affect growth, food intake 

and the physiological status of fishes (Jobling, 1994; Mustafa et al., 2011). In 

contrast, in mammals, hypoxia-induced changes for the expression of a broad 

range of genes have been reported (Bruick, 2003) and  extensive amount of 

information is available on HIF-1α mRNA transcript regulation (Beasley et al., 

2002; Turner et al., 2002; Zhao et al., 2004; Zhong et al., 1998). In contrast, 

only limited numbers of studies on HIF-1α regulation have been reported in 

teleost fish (Rytkönen et al., 2007; Terova et al., 2008). These studies have 

adopted different approaches with differing exposure scenarios in different fish 

species to elucidate the  expression of this key gene (i.e. HIF-1α ) which plays 

an important role to facilitate adaptation in the adverse environmental condition 
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by controlling the induction of several genes involved in the process of 

glycolysis, erythropoiesis and angiogenesis (Wu, 2002,  Soitamo et al., 2001).    

To fill the gaps in our knowledge, in the present study, we utilized real-time PCR 

technique to determine the changes in HIF-1α mRNA expression levels in 

response to chronic (i.e. 21 days) hypoxic stress. This extended exposure 

period promoted a remarkable increase in the transcript levels of HIF-1α mRNA, 

which significantly exceeded (by 13-fold) compared to normoxic controls. The 

expression patterns were then rapidly reversed upon re-exposure to normoxic 

condition. These data suggest that HIF-1α is involved in the adaptation 

response to hypoxia in the common carp. Similarly, in another hypoxia-tolerant 

species, Atlantic croaker (Micropogoniasundulatus), the levels of expression of 

HIF-1α and HIF-2α mRNAs were found to be in the similar range after long-term 

(3 weeks) exposure to hypoxia (Rahman and Thomas, 2007). In hypoxic-

sensitive species, sea bass (Dicentrarchus labrax), rapid recovery in terms of 

HIF-1α gene expression was also seen after 24h acute hypoxic stress (Terova 

et al., 2008). Therefore, it seems that the extent to which hypoxically stressed 

fish display high levels of HIF-1α expression upon return to adequate 

oxygenation condition is not related to the exposure period of the hypoxic stress 

sustained by the animals. In this context, it is to be pointed out that HIF-1α  

gene is highly conserved showing 61% similarity between fish and mammals 

(humans and mouse; Soitamo, 2001). Indeed, the mechanism of stabilization 

and degradation of HIF-1α protein is likely to be the same in fish as in mammals 

(Soitamo et al., 2001). Although the exposure scenarios in fish and mammals 

are not comparable, in fish (Chinook, salmon and rainbow trout) stabilization 

(i.e. return to normal level of gene product after hypoxic exposure)  occurred at 

much higher oxygen levels than in mammals which inherently are exposed to 
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low levels of oxygen for normal physiological activities. It is to be remembered 

that the gene expression analyses in the present study were carried out in the 

liver samples of fish. Mammalian studies have shown that a large number of 

factors such as life stage, fasting, sex, age, diet, circadian rhythm and liver lobe 

source can profoundly influence the expression pattern in the liver for a range of 

genes (Corton et al., 2012). Despite some variation in the levels of HIF-1α in 

different studies involving fish, it appears that expression of this gene provides a 

robust marker in response to hypoxic exposure.     

For the Comet assay, the high level of oxidative DNA damage observed under 

hypoxic compared to normoxic condition is not surprising (Fig. 6.3), which is in 

line with our previous studies (Mustafa et al., 2011, 2012). Several mechanisms 

have been proposed for the increased levels of DNA strand breaks under 

hypoxic condition (Lushchak, 2011). It is suggested that under hypoxia the sites 

of electron-transport chains are more reduced due to limited oxygen availability. 

Therefore, there are more electrons to escape from the chains and join oxygen 

molecules. The second mechanism could be related with operation of xanthine 

reductase/xanthine oxidase system. Under hypoxic conditions the first enzyme 

can be theoretically converted to the second via limited proteolysis or oxidation 

and be converted as an effective ROS producer. 

 Also, following hypoxic exposure, recovered fish in normoxic condition showed 

high level of oxidative DNA damage after 7d of re-oxygenation. This level was 

significantly higher compared to concurrent normoxic control group. Lushchak  

et al. (2011) have suggested that during hypoxia, the tissues of aerobic aquatic 

organisms, such as fish, are depleted of ATP, which is converted to adenosine 

and xanthine. After oxygenation, the accumulated xanthine is converted to uric 

acid by the enzyme xanthine oxidase. As a by-product of this reaction, several 
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ROS are produced such as superoxide anion radical [ O2], which are 

responsible for the induction of oxidative stress, leading to DNA strand breaks, 

lipid peroxidation and other types of cellular damage. 

A significant increase for TBARS levels in response to hypoxic compared to 

normoxic conditions (by approx. 2 fold) was found. Similarly, a significant 

increase for TBARS levels in response to hypoxia in C. carpio and Carassius 

auratus has been reported (Luschack et al., 2001, 2005). As mentioned above, 

that ROS level could increase since the reduction of mitochondrial electron 

transport chain and their subsequent leakage to join molecular oxygen resulting 

oxidative stress. The TBARS in hypoxic recovered fish was significantly 

decreased compared to hypoxic condition which might be a compensatory 

consequence of the maintenance. It is to be pointed out that malondialdehyde 

(MDA) is a naturally occurring product of lipid peroxidation which is mutagenic 

and carcinogenic.  

 A general mechanism that supports survival under hypoxic condition in the 

organisms is depression of metabolic rate (Storey and Storey, 2004) by 

maintaining high levels of carbohydrates reserves in the tissues for anaerobic 

energy supply. However, the problem that these adaptive species face a new 

risk when oxygen is reintroduced during the hypoxic to aerobic move (recovery); 

this is called the ‗oxygen paradox‘. During oxygen deficiency cells become 

highly reduced (Lushchak, 2011) and during re-oxygenation, reactive reductive 

equivalents can reduce molecular oxygen via a one electron mechanism 

resulting in the generation of high levels of ROS–superoxide anion, hydrogen 

peroxide and hydroxyl radical. Overproduction of these ROS leads oxidative 

stress (Lushchak, 2011).  
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The respiratory burst activity of blood cells (e.g. phagocytes) measured by 

reduction of nitroblue tetrazolium (NBT) did not show any significant decrease in 

the activity, either in the hypoxic condition or after 7d of recovery period. These 

findings suggested the levels of production of ROS could not reach a threshold 

which could induce respiratory burst activity in the target cells, although 

erythrocytes showed enhanced levels of oxidative DNA damage. It appears 

therefore that the mechanism of production of this biological response is 

different from those responses (e.g. DNA damage, lipid peroxidation and 

histological changes) which showed positive response for these exposure 

scenarios. In addition, perhaps increased sample size could have enhanced the 

sensitivity of this assay under the experimental conditions. 

For the histopathological changes in the gills, hypoxic conditions showed 

significant morphological changes, even if these features are not limited to 

oxygen stress (Mallatt, 1985). Changes such as epithelial hyperplasia, 

detachment of the epithelial layer from the basal lamina have been previously 

reported following exposure to other environmental stress (Fanta et al., 2003).  

This appears to be a paradoxical response to a reduced level of oxygen 

availability (Camargo and Martinez, 2007). In fact, 7 days was not an adequate 

length of time for mirror carp to fully recover from histological damage after 

prolonged hypoxic stress (Table 6.1). 

In conclusion, a high level of oxidative DNA damage was seen under hypoxia 

and re-exposure to normoxia. Also, high TBARS levels in response to hypoxia 

was observed, which reversed after exposure to normoxia. An increased level 

of lipid peroxidation was significantly correlated with oxidative DNA damage. 

We also isolated and characterized HIF-1α in C. carpio in response to hypoxia. 

The expression patterns for this gene in liver samples reversed upon recovery 
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to normoxia. Future studies are necessary before HIF-1α can be reliably used 

as a biomarker for hypoxia and to completely elucidate the underlying 

mechanism of HIF-activation in fish responded to hypoxia. This will open new 

opportunities for development of this adaptive response in vertebrates, which 

could have significant clinical implications in human health. 
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GENERAL DISCUSSION 
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7.1 Discussion 

The study carried out in this project focused on evaluating the biological or 

biomarker responses at different levels of organisation (i.e. DNA to individual 

level) following chronic exposure to hypoxic condition either alone or in 

combination with a  representative metal i.e. Cu in a fresh water fish species, 

Cyprinus carpio. Hypoxic conditions in the water and levels of dietary Cu (500 

and 1000 mg kg d.w-1) showed significant impact on the amount of DNA single 

strand breaks (DSSB) reflecting high level of oxidative DNA damage. These 

findings proved the usefulness of the measurement of DNA breaks as 

determined by the Comet assay in fish as a useful indicator for genotoxicity 

(Chapter 3-6). Also, determination of glutathione peroxidase (GPx) activity in 

liver and blood plasma complemented the results for the Comet assay (Chapter 

4). The haematological variables proved that fish have the efficiency to produce 

compensatory changes which possibly improves preserving oxygen delivery 

during hypoxic challenge (Chapter 3&5). Histopathology and ultrastructural 

changes in liver (lipid vacuolation, necrosis) and gill (e.g., epithelial lifting, 

hyperplasia, fusion) are good indicators of what cells and tissues can do to 

react with metal toxicity and hypoxic challenge (Chapter 4-6). Growth rate 

reduction as a result of exposure to hypoxic event is likely to be a reflection of 

the fish adaptation to the stressors under prolonged hypoxia to conserve energy 

expenditure by metabolic depression (Chapter 4). Also, growth reduction was 

observed in fish exposed to high levels of dietary Cu, which could be attributed 

to metabolic costs associated with metal detoxification (Chapter 3&5). Overall, 

in this study, I determined a range of sub-lethal biological effects using 

biochemical, genetic, haematological, histopathological and physiological 

effects. Based on these observations, it could be concluded that the toxic 
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effects of hypoxia and dietary Cu could manifest their responses in a varieties of 

way at different levels. The relative sensitivities of these responses have been 

further elaborated later in this chapter (section 7.1.3).  Schematic outlines of the 

thesis with main the results for each experiment are summarised in Fig. 7.1. 
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Fig. 7.1 A schematic outline of the thesis and research hypothesis tested for each 
experiment. 

 

Chapter 1 
Introduction and literature review

Chapter 2
General Materials and Methods  

Chapter 3
Elevated dietary copper induces biochemical, genetic and histopathological changes in 

carp, Cyprinus carpio L.
- Elevated dietary Cu induced oxidative DNA
- Elevated dietary Cu reduced  growth rate

Chapter 4 
Hypoxia-induced oxidative DNA damage links with higher level biological effects including 

specific growth rate in carp, Cyprinus carpio L.
- Hypoxia induced responses in fish at different level of biological organisation

- Biological responses at different levels correlated with each other 

Chapter 7
General Discussion

Chapter 5
Hypoxia and dietary copper interacts differentially to induce sub lethal toxicity in carp, 

Cyprinus carpio, at different levels of biological organisation
- Elevated  dietary Cu levels impaired the biological functions in C. carpio, L . exposed to 

chronic hypoxic condition

Chapter 6
Gene expression profile, lipid peroxidation, and oxidative DNA damage, in carp, Cyprinus 
carpio L. following exposure to hypoxic and subsequent recovery in normoxic conditions
-Hypoxia and transition back in normoxic condition induced oxidative stress and modified 

expression of hypoxia related genes in C. carpio, L. 
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7.1.1 Stress induced by water quality parameters and chemicals   

The physical or abiotic environment consists of many factors that can function 

as stressors either alone or in combination. These include chemical stressors 

such as temperature, oxygen, salinity, pH and ultraviolet (UV) light, as well as 

anthropogenic factors (viz. heavy metals, organic contaminants), physical 

stressors (e.g. handling, capture) and perceived stressors (i.e. stress response 

as a result of predators) (Barton, 2002; Cossins and Crawford, 2005). These 

can all affect aquatic ecosystems via two ways: either by debilitation and finally 

death (resulting tolerant or resistance effects) or by sublethal level effects 

affecting physiological processes which could result in toxic effects (Cossins 

and Crawford, 2005). Physical, chemical and perceived stressors can all induce 

non-specific responses in fish, which could be reflected by adaptation to enable 

the fish to cope with the disturbance and maintain its homeostatic status 

(Barton, 2002). If the stressor persists for long time (chronic), the fish is not 

capable of maintaining homeostasis, then the responses themselves may 

become detrimental threatening the fish health (Barton, 2002). Fish display a 

wide variation in their physiological responses to stress, which is classified as 

(a) primary response: which involves endocrine changes such as measurable 

levels of circulating catecholamines and corticosteroids, and (b) secondary 

responses: which include changes in features related to metabolism, 

hydromineral balance, cardiovascular, respiratory and immune functions (see 

Fig. 7.2). This integrated study further supports the observation that a range of 

biological responses could be induced in the fish following exposure to 

environmental contaminants and stressors. Whilst range of parameters for the 

studies, due to logistics and technical limitations, it was not possible to use 
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other parameters especially the molecular (e.g. microarrays, metabolomics 

etc.), physiological and immunotoxic responses to get a more holistic picture of 

the impact of these stressors.      

Furthermore, ecosystems are contaminated with complex mixture rather than a 

single agent. Several interactions can be characterised when organisms are 

exposed to combinations of contaminants depending on the direction of the 

combined effect (i.e., additive, synergistic, antagonistic or protective). Additive 

effects might occur when the toxicity of the mixture is equal to the amount of the 

toxicities of the individual components. Synergistic effects arise when exposure 

to two pollutants results in a response that is much greater than the sum of 

individual effects. Antagonistic effects result when exposure to two or more 

pollutants occurs, with the total response less than the sum of individual effects 

(Preston et al., 2000). Synergism between two environmental pollutants might 

occur via a variety of mechanisms. Firstly, the two pollutants could act at the 

same or different stages in the same mechanistic pathway; secondly, the 

presence of one might affect ability to mode the action of the other; and thirdly, 

the presence of one might influence the dose of the other. There are the 

possibilities that the presence of synergism could be dose or concentration-

dependent, that the same combined exposure might be synergistic for one 

effect and not for others. Toxicities of combinations of pollutants were greater 

than predicted from addition of individual toxicities (Mauderly and Samet, 2009). 

Authorities generally enforce regulations that assume that acceptable 

concentrations for pollutants can be treated independently, even when they are 

present in mixtures. However, serious consequences may result when such 

assumptions are incorrect (Preston et al., 2000). Therefore, the evaluation of 
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synergies and antagonisms among pollutants, including their dose–response 

relationships, is a necessary foundation for progressing toward a multipollutant 

water quality controlling measures.  Also, toxicity assessment of the impact of 

combined environmental pollutant exposure on health outcome requires 

application of sensitive, rapid, inexpensive, and reliable ecotoxicity biomarkers. 

In this study whilst increased, modest biological responses were observed with 

combined exposures of hypoxia and different levels of dietary Cu, the 

interactive effects were neither additive nor synergistic at the levels of Cu used. 

Enhanced levels of hypoxia and dietary Cu in future studies could throw some 

light on the possible interactive effects of these two factors in observed 

biological effects at different levels of biological organisation.      
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Fig. 7.2 Physical, chemical and other perceived stressors and their biological and ecological relevance (modified from Barton, 2002, Moore et al.,    
2004).
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7.1.2 Molecular methods in environmental monitoring 

Over the last decade, the extensive developments of our understanding of 

interaction of contaminants with biomolecules (i.e. DNA, protein and lipid) at 

biochemical and molecular levels and subsequent developments in our 

understanding of how genes and genomes are organised and work, have 

introduced several new areas of research. In addition to mechanistic toxicity, 

expression of gene transcripts (i.e. transcriptomics), proteins (i.e. proteomics) 

and small cellular molecules or metabolites (i.e. metabolomics) have 

significantly contributed to our understanding of the way environmental agents 

could induce adverse effects in the biota (Fent and Sumpter, 2011; Hines et al., 

2007; Hines et al., 2010). In common with human health arena, the importance 

of these technologies in aquatic toxicology facilitates to analyse how the 

toxicants interacts with and integrates from the environment to produce both 

stress and adaptive responses at molecular and individual levels. 

Technologies such as real time quantitative PCR (i.e. RT-PCR) is considered to 

be the most sensitive and reliable method for detection of gene expression level 

in terms of low amount of mRNA (Dondero et al., 2006). This direct method 

allows analysis of known or suspected expressional changes based on the 

mode of action of the toxicants. However, a limitation of this tool is that only a 

small set of genes can be analysed. In contrast, microarray technology is a 

holistic or global approach. This approach analyse thousands of genes (or 

almost the entire genome) at the same time and at a specific levels. This 

approach is considered to be superior as the toxicity of toxicants includes 

mostly multiple modes of actions and a cascade of gene interactions and 
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pathways rather than the changes in transcript expression of only a few genes. 

The concept of microarray technology is simple: thousands of copies of 

cDNA/oligonucleotides probes are immobilised onto a solid substrate. RNA 

samples to be studied are reverse-transcribed into fluorescent/radioactive-

labelled cDNA which is then applied to the microarray in a solution phase. But, 

the disadvantages of this method are transcript expression levels of some 

genes (in response to a toxicant) are depended on time and concentration. 

Thus, important time points may be missed. Also, many genes are not 

annotated and their functions remain unknown. In recent years, some of these 

technologies have been used to determine the hypoxia induced changes at the 

gene or whole genome levels (McElroy et al., 2012; Rahman and Thomas, 

2007; Ton et al., 2003). It is however important to link these changes at gene or 

genome expression level at individual or population levels (Jha, 2004; Jha, 

2008; Moore et al., 2004). Another new technologies assessing a large number 

of mRNA (transcriptomics), proteins (proteomics), or small molecules 

(metabolomics) in correlation with bioinformatic tools have the potential to 

determine the protein and/or metabolite changes revealing the mode of action 

of chemicals and its potential impact. They could enhance our understanding of 

the mechanism of the mode of action of toxicants as well as predict changes 

through comparison the chemicals sharing the same mode of action.    

Despite the progress made with these techniques (toxicogenomics), as 

mentioned above, to date only very studies have been conducted that 

correlates gene expression pattern with biochemical, physiological and 

histological responses at higher levels of biological organisation. Additionally, 

the use of these techniques in aquatic toxicology remain in its early (research) 
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stages, data cannot yet be applied to environmental risk assessment or for 

regulatory purposes until more studies is conducted to establish the validity of 

the data within physiological and toxicological contexts (Ankley et al., 2006). 

Thus, a correlation between the molecular (transcriptomics) and biochemical 

responses to adverse changes in physiology, growth, development, 

reproduction, and survival is important to enhance our understanding of adverse 

effects of chemicals. Limited study carried out in this project to link the gene 

expression data with higher level effects goes some way towards achieving 

these goals. Also, epigenetic mechanisms seem to allow an organism to 

respond to the environment through changes in gene expression ―meaning 

interpretation of the genotype during development to give the phynotype‖. 

Therefore, epigenetic processes are essential for development and 

differentiation which represents an exciting area of future research (Anway and 

Skinner, 2006). Further studies must be performed to establish robust 

correlation between gene expression changes and responses measured at the 

cellular or individual levels using different contaminants or stresses to move the 

science forward. Also, studies should be conducted to better define background 

or baseline data (gene expression, protein or metabolic profiles (Fent and 

Sumpter, 2011). 

 

7.1.3 Sensitivity and specificity of the biomarkers 

Choosing the right samples and organs for the biological end points is an 

important feature in establishing biomarkers as robust tools in environmental 

risk assessment (ERA). Given that toxicity of a chemical is a tissue or cell 

specific phenomenon (Jha, 2004; 2008), assessing the right end point in the 
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wrong tissue might lead to no results and also to misinterpretation of the data. 

The useful application of physiological and biochemical diagnostic biomarkers in 

aquatic toxicology could therefore be categorized on three parts. Firstly, these 

assays can serve as sensitive, rapid, and sublethal indicators of the potential 

effects of the toxic contaminants on survival, reproduction and/or growth of the 

aquatic species. Secondly, the sensitive nature of the biological systems to 

determine presence and quantity of selected chemicals can be used for ―true or 

specific bioassays‖ (e.g. endocrine disruption, neurotoxicity, immunotoxicity, 

genotoxicity etc.). Thirdly, physiological–biochemical methods can be used to 

elucidate the mechanism of action of toxic chemicals in aquatic organisms. 

These endpoints (biomarkers) have given some emphasis in this study. 

This study has shown that quantitative real time PCR analysis is an appropriate 

method to study the responses to hypoxic condition. We identified the 

expression of HIF-1α gene in the liver samples of the common carp. However, it 

remains to be determined which of these changes are tissues specific.  

Expression of this gene in other tissues or organs (e.g. gill) would have 

provided relative importance for the selection of the tissues or organs. One of 

the potential endpoints as an indicator of early warning is oxidative DNA 

damage using modified Comet assay employed with bacterial enzymes (Fpg 

and Endo-III). As DNA damage is efficiently repaired by cellular enzymes, its 

measurement gives a snapshot view of the level of oxidative stress. This study, 

demonstrating the loss of DNA integrity can serve as an ideal and sensitive 

biomarker in common with human or mammalian studies (Azqueta et al., 2009). 

Also, our results indicated an increase in the level of DNA strand breaks under 
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hypoxic and hyperoxic conditions and with increasing Cu concentration 

(Chapter 3-6). Therefore, Comet assay is considered to be a sensitive and 

reproducible technique for investigating effects of environmental stress on cells. 

The inclusion of lesion specific enzymes has improved the sensitivity and 

specificity of the assay, which detects broad classes of oxidized bases 

(pyrimidines and purines by digestion with Endo-III and Fpg, respectively). The 

premutagenic 7-hydro-8-oxo-2o-deoxyguanosine lesion probably is one of the 

most important lesions detected by the Fpg protein, which has been linked with 

development of malignancy (Collins, 2004; Collins, 2009). Although, malignancy 

in natural biota might not be so important in ecological terms as they have 

reproductive surplus, genotoxic effects however can impact other systems in 

the body leading to reduced Darwinian fitness (Dixon et al., 2002; Jha, 2004; 

Jha, 2008; Wurgler and Kramers, 1992).  

Despite Comet assay being used as a preferred tool for measuring most kinds 

of DNA damage at individual cell level, due to lack of a standardised protocol it 

has been difficult to compare results from different investigators. Differences in 

assay conditions and various methods of measurement used to determine the 

extent of the DNA strand breaks make the comparison hard. The earliest 

studies employing this assay used DNA tail lengths, while more current studies 

used image analysis softwares to calculate DNA tail moments or percentage of 

DNA in the tail.  The % tail DNA has the advantage that it can be ‗standardised‘ 

over studies, while tail length and moment, although constant within a study, 

may not be comparable across studies. Hence, there is an increasing emphasis 

on the use of the % tail DNA as the preferred metric or the primary end point 
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(Kumaravel and Jha, 2006). Measurement of oxidative DNA damage, as carried 

out in this study, is considered to be an important parameter, which has 

implications for many pathophysiological conditions (Jha, 2008). Whilst this 

technique is widely used in mammalian or human studies (Collins et al., 1997), 

there is lack of studies in aquatic organisms measuring oxidative damage 

(Valavanidis et al., 2006). Moreover, whatever little information related to 

oxidative damage in fish is available; they are mostly confined to measurements 

of lipid peroxidation (Lushchak, 2011). This study therefore contributes to only 

limited amount of information present in the literature measuring oxidative DNA 

damage in fish or shellfish (Aniagu et al., 2006; Emmanouil et al., 2007). These 

results is consistent with the mammalian or in vitro studies showing higher 

sensitivity for purine bases (Reeves et al., 2008). 

Lipid peroxidation was measured in this study using TBARS assay. This assay 

measures various malonic dialdehyde (MDA) that are end products of long 

chain reactions in the peroxidation processes. TBA also reacts with many types 

of compounds, such as different aldehydes, amino acids, and carbohydrates. 

Therefore, it is not appropriate to refer to MDA measurement, but rather to TBA-

reactive substances (TBARS), taking into account the low specificity of this 

assay. Although the assay is not specific it still could estimate the generation of 

ROS which lead to oxidative stress and DNA damage (Marnett, 1999). This 

study is in line with other studies showing lipid peroxidation as a result of 

exposures to hypoxia (Luschak, 2011) and dietary Cu. Interestingly, there was a 

significant correlation between oxidative DNA damage and lipid peroxidation 

(Chapter 6). This is an area where the relative sensitivity of different 
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biomolecules (i.e. DNA, protein and lipid) for oxidative damage could be further 

explored.  

Haematological variables widely used for the detection of physiopathological 

alterations in different conditions of stress (Nussey et al., 1995b). Blood 

parameters such as changes in haemoglobin, haematocrit, number of 

erythrocytes and white blood cells are indicators of toxicity with a wide potential 

for application in environmental monitoring and toxicity studies in aquatic 

animals since the blood is known to exhibit pathological changes before the 

onset of any external symptoms of toxicity (Blaxhall and Daisley, 1973). 

Thereby, our study demonstrates the suitability of haematological variables as 

sensitive biomarkers in monitoring the physiological status of fish and as 

indicators of the health for the aquatic environment which appears to have 

direct correlation with the Darwinian fitness and the immediate adaptation in the 

stressed condition.  

Histopathological and ultrastructural analysis and quantification has been 

suggested as tool to assess chronically exposed environment and a robust 

biomonitoring tool in environment risk assessment (Hinton et al., 1992). 

Histopathological responses in this study detected changes when there was 

little or no effect in other biochemical parameters. Also, ultrastructural studies 

have proved to be a useful tool for investigating the cellular changes, as well as 

providing complementation to histopathological studies for many features in 

different tissues. Fish gills are more sensitive to water-borne environmental 

stress. Any damage in their structure can interfere with respiration. Therefore 

this study had the aim of using C. carpio gill structure as biomarkers to study 
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the morphological alterations which could occur in branchial tissue after 

exposure to hypoxic condition. The liver is also an important internal target 

organ for stress related studies. It is an important detoxifying organ and the site 

of accumulation for many metals (essential and non-essential). It also contain of 

many enzymes including metabolic enzymes that could serve as biomarkers 

(Kim and Kang, 2004). This organ showed severe histopathological changes as 

a result of both the stresses in this study. To our knowledge, this study adds to 

very limited information in the literature pertaining to hypoxia induced 

ultrastructural and histopathological changes in a representative fish species 

and it should serve as a benchmark for future such studies.      

Growth rate of fish is also a good quantitative parameter in measuring the 

amount of energy available to an organism for various functions, (Rijnsdorp, 

1990). Furthermore, measurement of the growth can often be used to provide 

an index of physiological status and performance. Theoretically, in a 

contaminated environment an organism would use energy to cope with the toxic 

stress and hence has less energy available for growth, therefore it is very useful 

to record the morphmetrics of the fish (Storey and Storey, 2004). To our 

knowledge, no studies have been carried out to measure SGR in fish following 

exposure to hypoxia. This evident reduction in SGR was as a result of chronic 

rather than acute exposure, which most of the earlier studies have performed. 

Interestingly, in this study the levels of DNA strand breaks significantly 

correlated with the SGR under hypoxic condition (Chapter 4), which suggesting 

a possible ―cause and effect‖ relationship between the two endpoints (Fig. 7.3). 

This suggests that DNA strand breaks could be considered as an ecologically 
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relevant assay as it directly links with the growth of the organism. In future, links 

with reproductive success of the organisms would be an important parameter to 

evaluate. This could be accrued out be measuring DNA damage in the sperms 

of the fish species.     

We have chosen biomarkers that are promising and relate to stressor response 

and physiological status. A good biomonitoring programme will use a suite of 

biomarkers (Handy et al., 2002). Additionally, a useful biomarker should, among 

others, be ecologically related (i.e. able to show effects at higher level of 

biological organisation), permitting identification/predictions to be made on 

ecological risk in the receiving environment, and have an obvious correlation 

between an observable biomarker response (mainly in the case of an exposure 

biomarker) and a significant biological effect (Lam, 2009). 
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Fig 7.3 Relationship between % tail DNA damage and % SGR under normoxic, hypoxic 
and hyperoxic condition in C. carpio. Each point represents one fish, n=6.  
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7.1.4 Future work 

The present study serves as a spring board to stimulate further studies in the 

field. There are many areas where the present study could be further elaborated 

and extended. At molecular and biochemical level, it will be very useful to obtain 

an assessment of tissue- (and species-specific) gene expression changes and 

to define the role of individual genes involved in the adaptation following 

hypoxic exposure (e.g. genes involved in haematopoiesis process, oxygen 

supply etc.).  This will lead to a better understanding of the adaptive responses 

to hypoxia and results might have significant implications in human health arena 

(e.g. treatment of malignancy). The genetic and individual susceptibility and 

potential transgenerational effects of environmental contaminants have not 

been elucidated for environmental chemicals or complex mixtures, particularly 

in the aquatic environment and this could be considered novel aspect for future 

studies. Such studies could be conducted using molecular based investigations 

to identify the potential mechanisms (e.g. identification of the mutational 

changes, epigenetic effects etc.) through which tolerance is transmitted. It is 

however difficult to target specific genes for such studies. In mammalian 

studies, it has been shown that embryonic exposure of certain chemicals (e.g. 

endocrine disrupting agents) to rats can lead to decreased sperm quality and 

increased incidence of sterility. These effects were inherited to male offsprings 

through three subsequent generations (Anway and Skinner, 2006). In this 

context, DNA methylation plays an important role in the expression of genes. It 

is however known that DNA methylation is only important for the somatic 

lineages and has no role in embryonic lineages (including the germ line). 

Furthermore, among vertebrates, genomic imprinting is found only in mammals. 
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Numerous hypotheses have suggested an essential function to imprinting 

because of the unique development and physiology exhibited by mammals 

(Reik et al., 2001). It is therefore not surprising that no work pertaining to role of 

methylation on transgenerational effects has been carried out in fish or other 

vertebrates (except mammals as mentioned above). Therefore the role of 

methylation for transgenerational effects in fish is yet to be established.  

Challenges for future study also include determination of further suitable 

molecular biomarkers (e.g. metabolomics) which could serve as excellent 

indicators of exposures and to elucidate complex metabolic pathways (Hines et 

al., 2010). Additionally, establishment of strong links among the end points in 

fish and development (and refinement) of methods that can be used for 

regulatory purposes need further attention. In this context, it could be pointed 

out that the Comet assay, in the study is considered for in vivo mammalian 

regulatory toxicological studies (Burlinson et al., 2007; Jha, 2008). It is to be 

remembered that the aquatic environment and the species rarely encounter 

only one chemical or stressor at a time. Multiple endpoints assessed in a single 

experiment and evaluated together may therefore offer stronger evidence for 

the level of hazard present in an aquatic system. Information obtained through 

integrated studies using simultaneous applications of numerous biomarkers on 

various aquatic organisms (i.e. multiple biomarkers and multiple species) will 

provide a holistic assessment of toxicological impact of environmental 

pollutants. This could have significant clinical implications for human health as it 

goes without saying that ‗our‘ health depends on the health of the ‗environment‘ 
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which includes not only the physical environment but the extant biota on this 

planet.
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