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Abstract 

Activity-Based User Authentication Using Smartwatches 

Neamah Hasan Al-Naffakh 

Smartwatches, which contain an accelerometer and gyroscope, have recently 

been used to implement gait and gesture- based biometrics; however, the prior 

studies have long-established drawbacks. For example, data for both training and 

evaluation was captured from single sessions (which is not realistic and can lead 

to overly optimistic performance results), and in cases when the multi-day 

scenario was considered, the evaluation was often either done improperly or the 

results are very poor (i.e., greater than 20% of EER). Moreover, limited activities 

were considered (i.e., gait or gestures), and data captured within a controlled 

environment which tends to be far less realistic for real world applications. 

Therefore, this study remedies these past problems by training and evaluating 

the smartwatch-based biometric system on data from different days, using large 

dataset that involved the participation of 60 users, and considering different 

activities (i.e., normal walking (NW), fast walking (FW), typing on a PC keyboard 

(TypePC), playing mobile game (GameM), and texting on mobile (TypeM)). 

Unlike the prior art that focussed on simply laboratory controlled data, a more 

realistic dataset, which was captured within un-constrained environment, is used 

to evaluate the performance of the proposed system.  

Two principal experiments were carried out focusing upon constrained and un-

constrained environments. The first experiment included a comprehensive 

analysis of the aforementioned activities and tested under two different scenarios 

(i.e., same and cross day). By using all the extracted features (i.e., 88 features) 

and the same day evaluation, EERs of the acceleration readings were 0.15%, 

0.31%, 1.43%, 1.52%, and 1.33% for the NW, FW, TypeM, TypePC, and GameM 

respectively. The EERs were increased to 0.93%, 3.90%, 5.69%, 6.02%, and 

5.61% when the cross-day data was utilized. For comparison, a more selective 

set of features was used and significantly maximize the system performance 

under the cross day scenario, at best EERs of 0.29%, 1.31%, 2.66%, 3.83%, and 

2.3% for the aforementioned activities respectively. 

A realistic methodology was used in the second experiment by using data 

collected within unconstrained environment. A light activity detection approach 

was developed to divide the raw signals into gait (i.e., NW and FW) and stationary 

activities. Competitive results were reported with EERs of 0.60%, 0% and 3.37% 

for the NW, FW, and stationary activities respectively. The findings suggest that 

the nature of the signals captured are sufficiently discriminative to be useful in 

performing transparent and continuous user authentication. 
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1 The Need of Better User Authentication for Mobile 

Devices 

This study investigates the feasibility of a novel biometric modality that offers a 

flexible and robust authentication for the smartphone owners using 

smartwatches. Given that people use these devices to access sensitive and 

personal information such as online payment and Internet banking, an enhanced 

authentication approach that continuously and transparently protects the user’s 

information from unauthorized access is essential. The proposed solution would 

not ask users to perform certain actions but to wear the smartwatch and data 

would be collected in the background and used to verify their identity. To this end, 

chapter one highlights the evolution of mobile devices and their impact in society; 

it begins with an overview on the rapid development regarding the embedded 

hardware features and significant number of applications and services that are 

available on these devices. Security concerns and existing user authentication 

approaches (including the strength and weakness of each approach) is also 

highlighted.  Finally, the prevalence of smartwatches and vulnerabilities, and 

suggestion for adding a level of protection against user misuse is also discussed. 

1.1 Introduction  

Mobile devices have become an irreplaceable part of people’s daily life. Over 7.9 

billion people currently utilize mobile devices for personal communication, with 

these devices increasingly having access to sensitive information from financial 

to health-related and corporate services (Jonsson et al., 2019). Such emerging 

and diverse applications (apps) encourage consumers to use their mobile devices 

more frequently than PCs (Enge, E, 2019); smartphones are more susceptible to 

risk (e.g., lost, misplace or stolen) than other digital devices due to their small 
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size, portability and ubiquity (Tanviruzzaman and Ahamed, 2014). The use of 

mobile devices has inherently raised security concerns and there exists a 

prevalent requirement to secure these devices. Current user authentication 

approaches (e.g., password and PIN-based authentication) suffer from security 

and usability issues (as users seek to circumvent or avoid them) (Clarke and 

Furnell, 2007; Hocking et al., 2013). For example, research conducted by 

Kaspersky Lab showed that more than 50% of participants disabled their login 

credentials (i.e., PIN code) because of its intrusive implementation (Kaspersky, 

2018). Moreover, a PIN-based authentication technique is susceptible to several 

types of attacks such as brute force and shoulder surfing (Kim, I. 2012). 

Therefore, securing information on these devices and continuously checking the 

user’s identity in a more innovative and convenient fashion is pivotal (Al 

Abdulwahid et al., 2013). 

The use of biometric technology in a transparent and continuous manner has 

been proposed in order to remove the inconvenience of authenticating the user 

and to improve the overall security of the device (Clarke, N. 2011). However, 

previous research in the domain still encounters performance caveats due to the 

increased reliance on behavioural biometrics and their inherent instability (i.e., 

external environmental factors influencing behavioural authentication 

approaches) (Saevanee, et al., 2012). Whilst previous research in Transparent 

Authentication System (TAS) (Clarke, N. 2011) has focused upon its application 

in computers and mobile devices, little attention has been given to the use of 

wearable devices – which tend to be sensor-rich highly personal technologies and 

finding substantial adoption among users.  

Wearable computing becomes more prevalent in the market and it is predicted 

that the trend will continue as the technology improves. A survey showed that 
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more than 80% of smartwatch consumers said that healthy living and medical 

care access are major benefits of wearable technology (Phaneuf, A. 2020). Due 

to their fixed contact with individuals (i.e., either left or right wrist), it is envisaged 

that smartwatches (e.g., LG and Microsoft Band 2) have the ability to capture 

more accurate personal data (e.g., acceleration and heart rate) than smartphones 

do. Therefore, wearables could be used to enhance the mobile security in a more 

effective way. Most modern smartwatches contain Micro Electro Mechanical 

System sensors, which are based upon a single chip that offers both tri-axial 

gyroscope and accelerometer capabilities and can be used on their own for a 

biometric system (Lau and Tong, 2008). Accelerometer detects acceleration, 

vibration, and tilt to show the speed of navigation apps and switch the phone’s 

orientation when a user turns it, while gyroscopes provides orientation details 

(e.g., gyroscope determines where the phone is pointing in three dimensions).  

The is a lack of modalities that serve TAS practically well, activity recognition that 

recognises what a user is doing at a specific point of time is a new approach that 

attracting an enormous amount of attention. Understanding what the user is doing 

(e.g., walking, running, or just lying down) can help to better adapt the user’s 

needs; for example, activity recognition can be used in mobile health apps, and 

identify the user’s identity in a transparent and continuous manner. Activity-based 

user authentication using smartwatches can offer several advantages over 

traditional authentication techniques. For instance, it is reliable (i.e., nearly 

impossible to imitate), convenient for a user (i.e., does not require explicit user 

interaction with a sensor during authentication), and provides transparent and 

continues user authentication as long the user’s hand moves. This research, 

therefore, proposes to investigate, implement and strengthen the state-of-the-art 
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in transparent authentication and use wearable computing devices to secure 

smartphones and smartwatches. 

1.2 The Prevalence of Mobile Devices 

Nowadays, users are highly dependent upon mobile devices due to their 

portability and capability (Xu et al., 2017). With the rapid evolution of mobile 

devices, the sales of mobile phones and tablets dramatically increased and 

surpassed the PC market (Anthony, S. 2014). According to a study by BrightEdge, 

more than 55% of the website traffic were being undertaken using mobile devices 

(Greg, S. 2017) and mobiles become the most popular computing device for 

Internet access as shown in Figure 1.  

 

Source (Dave, C. 2019) 

Figure 1: Internet usage of mobile devices Vs desktop computers 

1.3 Sensitive Storage 

With the ubiquity of modern smartphones and their enormous capabilities, they 

now hold a huge amount of private information such as personal photos, emails, 

and health-related. The smartphone information is often considered more 

valuable than the cost of the device itself (Lifestylegroup, 2011). Moreover, users 

access to critical online information by using smartphones such as sending 

business emails as well as carry out e-commerce activities including making 
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payments. Email typically contains personal and sensitive user information such 

as financial data, bills, and business critical information. There are over 3.7 billion 

email users and approximately 269 billion emails were sent per day during 2017, 

around half of these emails were browsed using a smartphone (Templafy, 2017). 

Global users that use mobile devices for banking transactions is predicted to 

reach 1.75 billion by the end of 2019 compared to 800 million in 2014. Payments 

for a wide range of services (e.g., bills or online shopping) also take place by the 

smartphones and in the next coming years VISA/Credit cards might become less 

relevant. In 2017, around one billion pounds was spent in the British stores via 

contactless mobile payments and according to Barclaycard the value of mobile 

and smartwatch payments exceeded 490 billion within one year (Finextra, 2018). 

1.4 Mobile Data Security Concerns  

Mobile devices become an irreplaceable part of the people’s daily life; similar to 

personal computers (PCs), these devices are also prone to security concerns 

such as malware. They are more susceptible to risk (e.g., lost, misplace or stolen) 

than other digital devices because of their portability and ubiquity (Tanviruzzaman 

and Ahamed, 2014) hence, increase in the vulnerability of sensitive information 

of these devices. A comprehensive analysis of the NHS health applications (i.e., 

testing 79 mobile health applications) was conducted by Imperial College London 

and the study found that the user's privacy can be easily breached as the 

developers do not use any encryption technique to secure the personal 

information stored in these applications (Press Association, 2015). Another study 

showed that news and sports were the most exposed hacked smartphone data 

that represented 29% of leaks followed by 19%, 11%, and 10% for business and 

industry services, shopping apps, and travel apps respectively (Porta, 2018). That 

such a high proportion of leaks (especially for business, shopping, and travel 
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apps) should be an alarming signal for security leaders. This is because these 

apps store the user's credit card information for subsequent use hence, misuse 

would occur when an unauthorised person access this information. 

Another mobile security threat is mobile service fraud, an imposter can utilize the 

available services in the victim’s device without paying a charge. For example, 

buying expensive products due to loss or theft of a mobile device from the 

proprietor and making international phone calls until the smartphone’s user 

notifies the service provider. With increased use of mobile payments and mobile 

commerce, mobile payment fraud is on the rise. 

1.5 Existing User Authentication Methods on Smartphones 

Authentication is a process that verifies and confirms the user's identity. There 

are a variety of issues that pose a threat to mobile phones such as loss the device 

and mobile service fraud. Without enabling an authentication mechanism (e.g., 

PIN or fingerprint) to lock the smartphone, the sensitive information that are 

stored in the stolen or lost devices could be easily accessed by unauthorized 

users. Therefore, securing the mobile data in an effective and useable fashion is 

essential. However, current user authentication approaches on mobile devices 

are suffering from usability and security issues.  

Password and PIN-based authentication methods have become the most popular 

methods due to a plethora of cost-effective implementations enabled by their low 

computational overhead (Xiaoyuan Suo et al., 2005; Jesudoss and 

Subramaniam, 2014). Although traditional passwords do not provide a sufficient 

level of protection, they are still deployed in many computing services such as 

ATM machines, Internet services, and smartphones to provide a baseline security 

(Raza et al., 2012). Conventional password approach is susceptible to several 

types of attacks such as brute force, spying and phishing, dictionary words (Kim, 
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I. 2012; Jesudoss and Subramaniam, 2014), smudge (Walters, R. 2012), and 

shoulder surfing (Luo and Yang, 2015). Other shortcomings of this technique are 

re-use, infrequent changing, simple to guess, written down, and hard to 

remember (Wiedenbeck et al., 2005; Chang, et al., 2012).  

When it comes to the smartphone’s safety, enabling four-digit PIN on the device 

is important to reduce the chance of disclosing the user's information. Although 

using a four digits number is not hard to memorize, many mobile users disabled 

the PIN security due to its intrusive implementation nature (Clarke and Furnell, 

2007; Schlöglhofer and Sametinger, 2012). According to a survey that included 

1,500 participants, strangely, only 3% of the smartphone’s owners used a 

password to protect their personal data and 15% used PIN authentication, while 

over 50% did not utilise any authentication method to protect their devices 

(Bursztein, E. 2014). The reason for this is probably that typing passwords or PINs 

on touch keyboards is error-prone, time-consuming, and inconvenient. Even if 

mobile consumers employed this technique, they generally tend to select a simple 

password as it is easy to remember (Tanvi et al., 2011). 

Pattern-based passwords authentication is based upon drawing a sequence of 

movements on the device touchscreen rather than entering a combination of 

characters; it is considered easy to remember and use (Khan et al., 2011). 

However, the available patterns are relatively small compared to PIN and 

conventional passwords due to the limited number of dots, making them more 

vulnerable to brute force attacking methods (Lashkari et al., 2009; Jadhao and 

Dole, 2013). Additionally, some of the issues faced by conventional passwords 

are also present in this technique such as infrequent changing and sharing with 

others. From a technical standpoint, Aviv et al., (2010) highlighted the fact that 

graphical passwords on mobile touch screens can be easily retrieved by 
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attackers. Given the sensitive of data contained on mobile devices, the desired 

level of security is arguably not being met. 

The conventional mobile based authentication methods (i.e., PIN codes, 

Password or Patterns) are a single layer of security that can be easily guessed 

by an intruder or beaten through some social engineering techniques. Apple 

released iPhone 5s that contains a fingerprint sensor in order to offer the 

consumers a quick unlock of their devices and provide a better security. 

Thereafter, the fingerprint scanner was also included on many Android 

smartphones (e.g., HTC, Samsung, and Huawei). A study conducted by Roy et 

al., (2017) showed that there is a possibility of generating “MasterPrint” among 

different smartphones users. The possible explanation of this vulnerability is that 

the captured sample/s does not contain enough distinctive features due to the 

limited image size of the user's fingerprint, which is partially captured by using a 

built-in smartphone fingerprint sensor. Moreover, fingerprint does not provide 

continuous and transparent user authentication, similar to the traditional user 

authentication techniques.  

Several new Android 4.0 smartphones (e.g., Galaxy S6 and Nexus 6P) supported 

the facial recognition feature as an alternative authentication solution to passcode 

(Aune, P. 2011). Nevertheless, Krupp et al., (2013) highlighted that users were 

dissatisfied in employing face recognition to unlock their mobile devices. This can 

be attributed to the intrusive implementation of this technique such as user cannot 

be authenticated in a dark room or keep a particular distance from the sensor 

(i.e., front camera) in order to obtain the sample (Bursztein, E. 2014; Bhagavatula 

et al., 2015; Krupp et al., 2013). Moreover, this approach can be easily 

circumvented if anyone has a good quality picture of the user’s face and poses it 

in front of the phone (YourSecurityResource, 2013; Moren, D. 2015). This is 
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caused by the lack of liveness detection implemented on the device. Recently, 

Apple solution enable facial recognition to securely unlock the user’s device. 

Nevertheless, the proposed technique still suffers from security and usability 

issues. For example, the face sample cannot be taken if direct sunlight faces the 

ID camera, the face sample of kids under 13 years old does not contain sufficient 

biometric characteristics, and there is a possibility that identical twins can deceive 

the system (James, T. 2017; Leswing, K. 2017).   

It is clear that relying solely on the previous authentication methods puts the 

user’s information at risk as intruders seek to circumvent them. Therefore, a 

sophisticated user authentication approach that does not require explicit user 

interaction with the device and secure enough to defend against different types 

of attack is definitely needed. 

1.6 The Impact of Wearable Technology in our Society 

Wearable technology is a technology that is worn on the user’s body and usually 

connected with a smartphone via Bluetooth. The wrist worn devices have several 

forms such as health monitoring wristbands and smartwatches that can be used 

for multi-purposes; for example, Internet of Things and tracking the user’s health 

and fitness activities. About 140 million wearable devices were sold in 2017, most 

being smartwatches, and is expected that by 2022 the smartwatch users 

worldwide will be nearly 454 million (Costello, K. 2018). The smartwatch revenue 

is predicted to exceed 50 billion by 2022 (Steve, S. 2018).   

As wearable devices including several embedding sensors (see Figure 2), these 

devices are capable of capturing various personal based biometrics data such as 

3-axis accelerometer, 3-axis gyroscope, temperature, and heart rate. Due to the 

fixed contact of wearables with individuals (i.e., either left or right wrist), it is 

envisaged that smartwatches (e.g., LG and Microsoft Band 2) have the ability to 
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capture more accurate personal data than smartphones do. For example, heart 

rate, acceleration and gyroscope data could be effectively collected by using 

smartwatches as data was collected with minimal effort (i.e., data can be collected 

in a transparent and continuous manner). Therefore, wearables offer the 

opportunity to get more reliable biometric measurement that can effectively use 

for authentication-based and activity recognition systems. Figure 2 illustrates that 

smartwatches are sensor-rich devices that enable a wide variety of personal 

biometric-based information, potentially more accurately than what can be 

captured by smartphones. 

 

Figure 2: The existing sensors in smartwatches 

In terms of security, the smartwatch needs to be protected and secured just like 

other computing technologies. The internet security report of Norton highlighted 

that smartwatch users store sensitive business documents and bank account 

details on their device (Steve, S. 2018). The sensitive information stored in 

smartwatches attracting an enormous amount of hacker attention to breach the 



 

11 

 

user's privacy and security. Given that the smartwatches are usually connected 

with smartphones, the lack of security means a serious risk of attack on both 

devices. A comprehensive analysis of 10 smartwatches trademarks (e.g., Apple, 

and LG watch R) was conducted by Lemos, R. (2019) in order to explore the 

security concerns of these devices. The study indicated that seven smartwatches 

do not use any encryption technique for the installed apps, and three watches 

had vulnerabilities that permit information being misused by unauthorized users. 

Although the people’s life could be much more convenient by using smartwatches 

(i.e., they can be used for opening door via Near Field Communication, start cars, 

or paying bills), there is a high risk to misuse the services and the sensitive 

information stored on the device when the device is lost or stolen. Bluetooth and 

public WiFi are other pitfalls that can be misused; for instance, if the WIFI traffic 

is not encrypted, hackers, who are connected to the same network, could access 

the user's data (Ricci, et al., 2016). 

Current user authentication approach on smartwatches (i.e., PIN security) suffers 

from many issues such as being easy to guess and difficult to enter due to the 

small screen size of the smartwatch (Junshuang Yang, et al., 2015a). 

Smartwatches are also vulnerable to different types of attack; for example, brute 

force attack on Bluetooth passcodes (Karakaya, et al., 2016) or hackers could 

guess what a smartwatch user is typing through disclosure the motion data 

produced by the accelerometer or gyroscope sensors of the smartwatch 

(Kaspersky, 2018 ; Winder, D. 2015; Liszewski, A. 2015). Therefore, such devices 

need improved mechanisms of user authentication to secure the aforementioned 

information and continuously check the user’s identity in a transparent fashion. 
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1.7 Aims and objectives of the research 

The aim of this study is to explore, propose and evaluate a new biometric modality 

for smartphones (i.e., an activity-based biometric authentication technique using 

the smartwatch acceleration and gyroscope data). Such a system would enhance 

the overall security and offer continuous and transparent user authentication for 

smartphones and smartwatches users. To achieve this, this research is divided 

into five distinct stages: 

 To evaluate the existing user authentication approaches and the highlight the 

need for better user authentication techniques. 

 To investigate the potential behavioural biometric modalities and their 

applicability to deploy for smartphones and smartwatches devices, with the aim 

of increasing the transparent authentication capability available to the device. 

 To design and conduct several experiments that provide a robust and reliable 

authentication system.  

1.8 Thesis structure 

This thesis describes the research leading to the formulation of a suitable security 

strategy for smartphone and smartwatch devices. Chapter 2 provides an overview 

of the current user authentication approaches by highlighting the key issues 

associated with each approach. It starts by reviewing the popular authentication 

methods (i.e., secret knowledge-based and token-based authentication 

approaches). This is then followed by an overview of a generic biometric system, 

biometrics performance metrics factors, and details of the physiological and 

behavioural biometric techniques (specifically, techniques that are applicable in 

the concept of TAS for digital devices.  
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The state of the art of transparent and continuous biometric-based studies, in 

particular gait recognition based on accelerometer and gyroscope sensors, is 

presented in chapter 3. The chapter also provides thoroughly analysis of the key 

parameters that influence the system performance. For example, scenarios that 

were used to collect the user's movement data, the extracted feature subset and 

the process that was used to select the discriminative and unique feature 

information, and reliable classifier/s that offers high authentication accuracy.  

Chapter 4 presents the feasibility of deploying activity-based user authentication 

using smartwatch. This is achieved via carried out several experimental based 

upon collecting five different activities (i.e., normal walking, fast walking, typing 

on a PC keyboard, playing mobile game, and texting on mobile touch screen). 

These activities were collected under a controlled environment to explore whether 

the technology is sufficiently capable and the nature of the signals captured 

sufficiently discriminative to be useful in performing TAS.  

To ensure that the proposed technique can be used for real world authentication-

based systems, chapter 5 introduces a more realistic experiment by collecting 

real life data (i.e., uncontrolled data) and evaluates the system performance 

under unconstrained environment. Several experiments were carried out to 

provide a robust and reliable authentication system. 

Chapter 6 addresses a number of further research questions surrounding the 

viability of the approach via conducting scientifically valid experiments. It begins 

by determining the optimal sample size and the amount of data required for the 

training and validation phase; subsequently, using the majority voting schema in 

order to improve the classification results.  
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Finally, Chapter 7 presents the main conclusions from the research, highlighting 

the key achievements and limitations. The chapter also discuss on the future 

research and development. 

1.9 Conclusion 

Billions of mobile devices are being globally used having multiple applications in 

e-commerce, browsing as well as for storing personal data. The use of 

smartphones for several purposes (e.g., sending and receiving Emails, and online 

banking) has inherently raised security concerns and there exists a prevalent 

requirement to protect these devices. Current conventional technologies for 

providing device security such as password and PIN, however, fall short of 

addressing these security concerns due to lack of technical sophistication or 

simply because of their intrusive implementation. Apart from that password or PIN 

based authentication approaches demand a high level of memorability from the 

user to be authenticated (specifically, if the user uses a unique password for each 

account), these methods fall short of addressing the security concerns due to lack 

of technical sophistication. Moreover, the intrusive implementation of password 

or PIN techniques considerably increased the authentication burden and resulted 

in smartphone users to take no security precautions against unauthorized access.  

Although big smartphone brands (e.g., Apple and Samsung) enabled fingerprint 

and facial based user authentication in order to improve the security level and 

take the burden away of entering a password or a four-digit PIN, these techniques 

are one time authentication (i.e., do not continuously verify the user's identity). 

Apple subscribers might force to retrieve a backup device if their Face ID is not 

recognized hence, this presents obstacle for applying the aforementioned 

biometric modality (Palmer, D. 2017). It is therefore, imperative to find a new 

mechanism while striking a right balance between robust security and ease of 
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use. Behavioural biometrics technologies have the potential to offer transparent 

and continuous mode of user authentication promising a greater degree of 

usability while incorporating resilient security. The next chapter reviews state of 

the art in user device authentication including conventional knowledge and token 

based as well as physiological and the recently emerging behavioural biometric 

techniques. 
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2 Review of Biometric-Based User Authentication  

There are three primary approaches for implementing user authentication: secret 

knowledge, token, and biometric- based. Details of the he first two approaches 

were already discussed in the previous chapter. An overview of a user-friendly 

techniques (i.e., biometric-based user authentication) and the metrics that are 

frequently used to evaluate the system performance would be presented in this 

chapter. A brief explanation of various biometric techniques and focuses on the 

approaches for achieving transparent authentication is also discussed. 

2.1 Introduction 

The idea of providing security credentials (i.e., a username and password or PIN) 

before gaining access to a particular service or an account is generally accepted 

by users (Chiasson and Biddle, 2007; Hocking et al., 2013). However, 

conventional authentication mechanisms in computing system could be 

circumvented if not correctly implemented (Al Abdulwahid et al., 2013). Various 

methods to verify the legitimate user have existed, and each one supplies 

different levels of security. A thorough review of secret knowledge and token-

based user authentication (including their strengths and weaknesses) has 

presented in the previous chapter, as a result, it is believed that biometrics still 

offer the greatest potential to solve the security and usability issues for 

smartphones.  

2.2 Biometric -based authentication  

Biometrics are used to differentiate between users based on their physiological 

or behavioural characteristics (e.g., how they look (face) and how they walk 

(gait)). It is argued that biometrics offer the potential to be the most effective 

approach to verify the presence of the genuine user not the presence of a device 
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(i.e., token) nor a pre-set information (i.e., secret). This can be achieved based 

upon unique features that cannot simply loss and nearly impossible to share 

(Singh and Singh, 2013).  

The traditional user authentication approaches (i.e., KBA and token) cannot prove 

if the login credentials have been provided by a legitimate user or an imposter. 

Reason for this is that the aforementioned methods are relying on “what the user 

has” or “what the user knows”, whereas biometrics techniques are capable of 

verifying the user’s identity based upon such physical and behavioural 

characteristics that are linked to a specific user (Kulkarni and Namboodiri, 2014; 

Jain et al., 2004). Biometrics are considered a user-friendly approach that does 

not require remembering a password or carrying multiple tokens; it is in the 

possession of the user all the time (Karnan et al., 2011). Nevertheless, such 

system also has some drawbacks; For instance, if a hacker obtains access to the 

user’s biometric samples, it would be difficult to replace or revoke data because 

of the limited physical features available per user (Ratha et al.,2001). Moreover, 

biometric-based systems might incorrectly accept unauthorized users or reject a 

legitimate user. This is because the system decision is based upon measuring 

the similarity between the reference and test samples rather than exact match 

between two alphanumeric strings (as in KBA and token-based authentication). 

 An Introduction of the Biometric System 

The modern definition of biometrics by International Biometric Group is: 

“the automated use of physiological or behavioral characteristics to determine 

or verify identity”. 

 (IBG, 2010).  
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Biometric systems could utilize two modes: identification or authentication 

(verification); below is the description of each mode (Smith, R. 2002; Mayhew, S. 

2012). 

 Authentication: is the process of verifying the identity of a user who claims to 

be. When the user provides a sample (e.g., fingerprint), the system tries to find 

a match between the presented sample (test sample) and the stored template 

of that user (reference sample) thus, it is a one-to-one comparison. If the 

reference and test samples are matched, the access is granted; otherwise, the 

access is denied. 

 Identification: is the process of identifying the identity of a person (who is this 

person?) rather than validating the claimed identity. The system tries to find 

whether there is a match between anonymous sample and all the reference 

templates in the database (one-to-many comparison). As a result, the 

identification mode requires more time than the authentication mode to 

generate a result. Identification is typically used for surveillance in the airport 

and in the criminal investigations. Therefore, the feature extraction process in 

the identification system should be more sophisticated than in an 

authentication system. 

 Components of a Biometrics System 

A typical biometric system consists of five main components as shown in Figure3 

(Li, F. 2012).  

 Sample acquisition: collecting a biometric sample/s from a user using an 

equipped sensor in the computing devices (e.g., mobile camera, which can be 

utilized in facial recognition) or specialised sensors (e.g., fingerprint reader). 



 

19 

 

 Feature extraction: from the collected sample(s), distinctive characteristics are 

extracted to construct the reference template. 

 Storage: the reference template, which has resulted from the feature extraction 

phase, would be stored in the database. This template is used for comparison 

in the verification phase subsequently. 

 Classification: during the classification phase, a matching algorithm is applied 

to compare between the new biometric template (i.e., probe or test template) 

and the reference template; accordingly, a similarity score is generated. 

 Decision: the process of accepting or rejecting a user is based on the 

comparison between the computed similarity score and the threshold value. If 

the similarity score meets or is above the threshold value, the user will be 

granted access to the system; otherwise he/she will be declined. 

 

Source (Li, F. 2012) 

Figure 3: The components of a biometrics system 

Generally, a biometric system has two main processes, as illustrated in Figure 4 

(Sui et al., 2011). Below is the description for each phase:  

 Enrolment phase: enrolment refers to the stage in which a biometric system 

extracts a set of features from the user’s biometric samples. These features 
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are subsequently used to generate the reference template of that user. The 

process of generating the user’s reference template should be accurate. From 

that perspective, the high quality biometric samples must be collected; 

otherwise, the user is asked to provide the sample again. 

 Verification phase: in this phase, the system captures a biometric sample from 

a user, extracts features that would be used to create the probe template, and 

finally compares that template against the stored template for authentication. 

If the matching score meets or exceeds the pre-set threshold value, the user 

will be granted access to the system; otherwise, they will be refused. In 

general, the accuracy of the biometric system is based upon the selection of 

threshold value; lack of it makes the system vulnerable to penetration or 

wrongly rejecting a legitimate user. 

 

Figure 4: Conventional biometric authentication 

 Biometrics Performance Metrics Factors 

Having stated that the biometric-based user authentication tends to be more 

convenient to the users, these systems are susceptible to two basic types of 

failures: a false acceptance rate (FAR) and a false rejection rate (FRR). The 

former shows the percentage in which the system incorrectly accepts an imposter 

as the legitimate user. The latter displays the percentage in which the authorized 

user is wrongly rejected by the system (Jain et al., 2002). Error rates FAR and 

FRR are calculated as: 
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FAR = 
 N accepted impostors

total N impostors
 

FRR =  
 N rejected genuines

total N genuines
 

 

In general, these types of errors, FRR and FAR, result from a variety of issues 

such as environmental noise and trait variability. The resulting values of both 

metrics are based on pre-set a threshold value for the biometric system. Figure 5 

shows that the two metrics are inversely proportional. Therefore, setting a high 

threshold value reduces the probability of accepting an imposter by the system 

(i.e., low FAR), and it may result in high refusal of a legitimate user (i.e., high 

FRR). Subsequently, genuine users might feel discomfort from repeated 

authentication failures. So, it is important to take into consideration during design 

an authentication system to have a balance between security (i.e. FAR) and 

usability (i.e., FRR). 

 
Source (Clarke and Furnell 2005) 

Figure 5: Biometrics performance metrics factors 
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In addition to the FAR and FRR metrics, the equal error rate (EER) is also widely 

used to evaluate the performance of authentication systems. The EER is 

calculated by taking the average of the FAR and FRR. As illustrated in Figure 5, 

EER represents the intersection point between the FAR and the FRR curves, i.e., 

FAR equals FRR (Gamassi et al., 2004). There are other performance statistics 

to evaluate the biometric systems such as failure to enrol rate and failure to 

acquire rate. The former refers to the error rate that occurs during the enrolment 

phase. It is typically occurred when the extracted features are not sufficient to 

form the reference template. The latter is resulted when the system is incapable 

to capture the user’s sample(s) due to a technical failure. 

 Biometrics System Characteristics 

In order to employ a biometric technique for an authentication-based system, 

there are a number of standard criteria need to be considered (Jain et al., 2004), 

these include:  

 Universality: the selected biometric trait/modality should be feasible in every 

individual; for instance, implementing fingerprint-based system requires each 

person to have fingers.  

 Uniqueness: the biometric technique needs to be sufficiently discriminative in 

order to differentiate between individuals. For example, the user’s retina is 

more distinctive (i.e., unique) than the facial recognition.  

 Permanence: the biometric characteristics should be stable over time, 

otherwise, the user would be asked to enroll frequently to the system. For 

example, unlike gait technique, people’s iris contains discriminatory 

information that would not be affected by mood and age.  
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 Collectability: the process of collecting the biometric samples should be simple 

and cost-effective (i.e., using embedded or suitable sensor). For example, 

hand geometry system requires a specialized scanner to obtain the sample 

(i.e., the sensor size is big and not suitable for kids due to the physiological 

change of their hand shape over time. In contrast, gait data can be collected in 

a transparent and continuous manner using the smartphone built-in sensor.   

To ensure the biometric-based system is acceptable and can be used in real life 

scenario, the following criteria should be considered:  

 Performance: the proposed system should achieve a high recognition rate, 

speed, and robustness. 

 Acceptability: an indication whether the end-user is comfortable to use the 

proposed system (i.e., biometric-based user authentication). For instance, 

people would prefer to provide a facial scan rather than retina sample as the 

latter technique is more intrusive. 

 Circumvention: the authentication system should be sufficiently secure and 

reliable to defend against different types of attack.  

 Biometrics Techniques 

In general, biometric techniques are classified into two main categories: 

physiological and behavioural (Nanavati et al., 2002). The former aims to 

authenticate/identify users based upon their physical characteristics such as face 

and fingerprint (Wayman et al., 2005). The latter differentiates individuals through 

utilising unique behavioural feature set such as walk pattern and typing on a 

keyboard (Woodward, et al., 2003). Given that the physiological biometric 

characteristics of an individual are nearly stable over time and more resistant to 

different conditions (e.g., age, body fitness, and mood), they tend to be more 
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reliable techniques. In addition, the physical features contain high levels of 

distinguished information (Woodward, et al., 2003).  

In contrast, behavioural characteristics tend to be less unique and stable due to 

the change in mood, health, and environment. However, most of the behavioural 

biometrics systems are unobtrusive (i.e., do not require explicit interaction from a 

user) and hence more user-friendly than their physiological counterparts. Table 1 

shows the applicability of the physiological and behavioural biometric techniques 

in smartwatches and highlights their characteristics such as uniqueness, 

collectability, performance, and acceptability. 
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l Ear recognition Medium Medium High Medium Medium High No 

Face recognition High Low Medium High Low High No 

Fingerprint recognition Medium High High Medium High Medium No 

Iris recognition High High High Medium High Low No 

Retina recognition High High Medium Low High Low No 

B
eh

a
v
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ra

l Gait Medium Low Low High Medium High Yes 

Voice verification Medium Low Low Medium Low High Yes 

Behavioral profiling Medium Low Low High Low High Yes 

Keystroke dynamics Low Low Low Medium Low Medium No 
Signature recognition Low Low Low High Low High No 

Table 1: A brief comparison of biometrics approaches 

It is shown from Table 1 that none of the physiological biometric approaches are 

applicable or can be collected from smartwatches to offer a transparent user 

authentication for smartphones due to the unavailability of data within these 

devices (i.e., smartwatches). In contrast, the equipped smartwatch sensors (e.g., 

heart rate, skin temperature, acceleration and gyroscope) enable the collection 

of a wide variety of behavioural biometric-based information. Based on the 

presented characteristics in Table 1, none of the behavioural-based techniques 

outperforms any of the other approaches. Nevertheless, for instance, the success 

of speaker recognition technique depends completely upon the quality of the input 
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samples (probe voice samples) that are more likely to be different from the 

reference samples, which have been collected in a controlled environment. 

Therefore, this could lead to reducing the performance significantly (Rajasri, et 

al., 2013). Moreover, some factors such as age, alcohol consumption, emotional 

state, and health conditions can change the pattern of the person’s voice 

(Sonkamble et al., 2010). On the other hand, gait recognition tends to have a very 

high acceptability because it is easy to acquire. In addition, the usage of motion 

sensors (accelerometer and gyroscope) is not limited to capture only gait 

information but can be extended to collect a wide range of activities such as typing 

on a PC or mobile keyboard, playing game, gesture, and stationary activities.  

Gait Recognition 

Gait recognition is a technique that identifies or verifies people using their walk 

patterns as each individual has a distinctive walk (Arora, P. 2015). It is an 

unobtrusive mechanism (convenient for a user) that does not require explicit user 

interaction with a sensor during authentication or identification phase (Derawi et 

al., 2010a). Recently, researchers showed an increased interest on mobile gait 

authentication, and performance rates were vary considerably relying on the 

feature extraction methods and the types of classifiers. In general, the reported 

EERs ranged from 5% to 19% when training and testing data are collected within 

the same day (Gafurov, D. 2007a) and in the range of 10% to 33% when multiple 

days data were used to create the reference and test templates. Although the 

human gait is visible to monitor, the literature showed that a user’s walking style 

is nearly impossible to imitate (Gafurov et al., 2006a; Gafurov and Snekkenes, 

2009; Zhang et al., 2011). Gait is an attractive and cost-effective technique, 

especially when modern mobile phones and/or smartwatches can be utilized to 

capture the user’s gait data. Moreover, it can be used to provide continuous and 

transparent user authentication as long as a user is walking. Nevertheless, this 
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technique relatively suffers from issues such as a shoe type, ground condition, 

carrying a load, and permanence (Gafurov et al., 2010; Muaaz and Nickel, 2012).  

2.3 Background Knowledge on Gait Recognition 

Having completed the review of activity recognition literature, there is no research 

to date has been performed; given the nature of the wearable computing and the 

sensors, gait recognition using mobile devices is the modality that has the closest 

link to activity-based user authentication and has been thoroughly explored with 

only few studies perhaps included the use of smartwatches. In general, gait 

recognition can be categorized into three main approaches, machine vision 

based, wearable sensor based, and mobile sensor based. Description of each 

approach is explained below: 

 Machine Vision based: in machine vision, the movement of the whole body is 

captured from a distance using a video-camera (as shown in Figure 6). 

Thereafter, image/video processing methods are applied in order to extract 

some unique characteristics such as height and distance between feet (Arora 

and Gandhi, 2014). It is often utilized for identification purposes such as airport 

security. 

 

Source (Gafurov, D. 2007a)  

Figure 6: An example of machine vision approach 

 Wearable Sensor based: in this approach, the periodic motion of the legs is 

captured (see Figure 7) by attaching a wearable recording sensor(s) to 

different positions around the human body (see Figure 8) such as hip, waist, 
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pockets, lower leg, and arm (Gafurov and Snekkkenes, 2008; Ngo et al., 2014). 

The raw time-series accelerometer data of three directions (i.e., x, y, and z) is 

then segmented into cycles or windows in order to extract discriminative gait 

information such as average cycle, standard deviation, and the Bark frequency 

cepstral coefficients (BFCC).  

 

Source (Hoang et al., 013) 

Figure 7: Illustration of periodic motion of the legs 

 

Source (Gafurov, D. 2007a) 

Figure 8: Different locations of attached wearable sensor 

 Mobile Sensor based: the third gait approach is mobile sensor based that 

attempts to utilize the smartphone sensors (i.e., accelerometer and gyroscope) 

for collecting the gait data. It is cost effective and provides transparent and 

continuous user authentication (Derawi et al., 2010a). Smartphones, while 

having the benefit of technological maturity and widespread adoption, suffer 

from several problems to produce a consistently effective implementation. For 

example, a survey by Ichikawa et al., (2005) showed that users tend to put their 

phone in numerous locations around their body wherever there is a pocket 
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(e.g., inside coat pocket and back pocket). Moreover, the study highlighted that 

girls mostly keep their phone inside shoulder bags while males put their phone 

in several locations such as trouser pockets, upper-body pockets and inside a 

pouch attached to their hip. Therefore, this could make the data collection 

process less accurate or nearly impossible.  

Fundamentally, the majority of the studies applied one of the following two 

methods to chunk the walking signals, 1) cycle based and 2) segment based. 

A brief description of each method is described below: 

 Cycle-based Method 

Cycle-based method can be considered as the most common approach 

used in gait recognition. Predominantly, studies attempted to detect the 

periodic steps of the individuals. Cycle-detection methods aim to be 

invariant to pace by standardizing the number of steps as opposed to the 

amount of time represented in each instance (Derawi, M. 2010b). In order 

to extract gait cycles from acceleration signals, two different approaches 

are often utilized, namely local minima and the salience vector. The former 

is based upon identifying the initial start of each cycle in the gait signal. 

After all minima are located, the data points between two consecutive 

minima are considered as one cycle (Gafurov, et al., 2007a).In the latter 

approach, cycles are detected by identifying minima and maxima salience 

vectors. The benefit of detecting the local maxima is to determine the exact 

start point of each cycle as it typically represents the actual walking pattern 

(Nickel et al., 2011d). 

According to (Derawi, M. 2010b; Nickel et al., 2011d; Muaaz and Nickel, 

2012; Muaaz and Mayrhofer, 2014), the detected cycles in the acceleration 

signals require further analysis. This has been carried out usually by using 
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a distance function (e.g., dynamic time warping (DTW) or Manhattan) to 

remove unusual cycles that are significantly different than other cycles 

(i.e., high distance to other cycles). Subsequently, the regular cycles are 

averaged in order to construct the user’s reference template, which is 

further used for comparison against the input template. Finally, the 

standard classification methods (e.g., Absolute, Euclidean, and DTW 

distance metrics) were used to recognize the user’s walking pattern. This 

can be achieved by calculating the distances of two feature vectors (i.e., 

reference and probe templates) through applying one of the 

aforementioned distance functions in order to obtain a decision. Ideally, 

distance scores obtained from the user’s samples should be as small as 

possible, an indication that the reference and probe samples have been 

taken from the same person. Also, when samples of other persons are 

tested against the user’s template, distance scores should be as big as 

possible, indicating that they were obtained from different persons 

(Gafurov, et al., 2006b). Below is a brief description of the most common 

classification algorithms used in cycle extraction approach (Derawi, M. 

2012):  

Absolute Distance  

The Absolute distance is a metric that measures the sum of the absolute 

values of the differences between all the reference and test samples. 

However, it requires that the reference and probe templates have the same 

length as illustrated Equation 1. 

 

Euclidean Distance  
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The Euclidean distance, as shown in Equation2, can be considered as a 

special case of absolute distance. It measures the square root of the sum 

of the differences between all the values in the stored template and the 

corresponding values in the test template. 

 

DTW Distance  

This algorithm is unlike Absolute and Euclidean distance metrics, it can 

calculate the optimal distance between two given feature vectors even if 

the length of these vectors are not equal. The DTW distance function is 

less sensitive with the variations of the detected cycle features.  

In conclusion, the challenge with the cycle extraction method is to find a 

mechanism for identifying the start and end point of each cycle. Moreover, 

cycles are not guaranteed to be of the same length (and can vary widely in 

length depending on the pace of a user) thus, the system does not perform 

well or fails for unusual (i.e. both slow and fast) paces. This method also 

requires complicated computations that seem less feasible to implement 

on the mobile phones due to the limited processing resources in these 

devices. 

 Segment-based Method: this method is simplest and easy to implement as 

the raw motion data are directly divided into fixed size windows (e.g., 5 or 

10 seconds) and then extracting set of gait features based upon the 

acceleration readings in the window (Kwapisz et al., 2010). In general, the 

calculated gait features from these windows can be categorized into two 

types: statistical and cepstral coefficient. Although the statistical features 



 

31 

 

(e.g., standard deviation, and root mean squared) do not require complex 

measurement (easy to generate), they perform high level of accuracy. 

These features can be computed for single axis (e.g., vertical, horizontal, 

and lateral directions) or with the fusion of three axes sensor. Similarly, the 

cepstral coefficient features, which have been successfully implemented 

in speaker recognition, can be used alone and still provide extremely 

strong accuracies, specifically the Bark frequency cepstral coefficients 

(BFCC) and Mel-frequency cepstral coefficients (MFCC), “which belong to 

the most widely used spectral representations of audio signals for 

automatic speech recognition and speaker verification” (Subramanian,  H. 

2004). Some studies have been successfully used by combination of both 

features (i.e., statistical and cepstral coefficient) in order to construct more 

sophisticated feature vectors (Nickel et al., 2011b; Hestbek et al., 2012). 

Typically, supervised machine learning algorithms, such as Support 

Vector Machine (SVM), Hidden Markov Model (HMM) and Neural Network, 

were used to classify the segment-based features. For a given input gait 

data (training data), the task of supervised learning method is to find a 

generalized function (e.g., for a given data points of x, y values will be 

generated). The output of this function is used to predict a class label for 

each user, which is further used for comparison.  

Different machine learning algorithms were utilized in mobile-based gait 

authentication studies, and the system accuracy was fairly acceptable. 

Nickel et al., (2011a) and Nickel et al., (2011b) used HMM and SVM 

respectively to classify the user’s gait pattern with EERs of 10.4% and 

6.3%. Another research by Kwapisz et al., (2010) applied two learning 

methods, J48 decision trees and neural networks and reported 85.9% and 
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95% positive and negative authentication rates respectively. The former 

(i.e., positive authentication rate) is a rate in which a user is successfully 

recognized while the latter (negative authentication rate) is a rate in which 

an imposter is correctly rejected. The classification was performed using 

data mining suite tool, WEKA. The first attempt to use smartwatches for 

gait recognition was by Johnston and Weiss (2015). The authors presented 

a comprehensive test by applying four WEKA approaches, namely 

Multilayer Perceptron (MLP), Random Forest, Rotation Forest, and Naive 

Bayes, in order to find the best classification method for gait authentication 

and identification. There was no clear pattern with respect to which 

algorithm performs best as the reported EERs were nearly similar.  

2.4 Conclusion 

Mobile computing and smartwatches have significant security concerns as any 

other technology. As previously discussed, current user authentication 

approaches (e.g., secret knowledge and token-based authentication) suffer from 

usability and security issues. The literature has highlighted that the 

implementation of these techniques is intrusive (relying upon users to remember 

something). Also, security issues can result from several factors such as lost or 

stolen token, using a simple password, and re-using the same password on 

several websites. Due to these weaknesses, further attention was placed upon 

using biometrics as they can provide reliable and convenient user authentication 

and do not require users to carry or remember anything. 

With the rapid evolution of smartphones and smartwatches, which tend to be 

sensor-rich highly personal technologies, a number of biometric techniques can 

be implemented on these devices such as gait and voice verification. However, it 

is important to identify appropriate biometric technology that provides a balance 
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between security and usability and does not require complicated computations. 

The equipped motion sensors (i.e., accelerometer and gyroscope) on 

smartphones and smartwatches can be utilized to collect the data transparently 

(without explicit interaction from the user with the sensor) hence, could be useful 

to design an effective transparent and continuous user authentication system to 

secure the both devices in one go.  
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3 Current State of the Art in Motion-based Biometric 

Authentication  

3.1 Introduction  

The present chapter reviews state of the art in transparent and continuous 

authentication using acceleration and gyroscope sensors technologies. The main 

sections of the chapter are as follows. Section 3.2 details literature review 

methodology, gait-based authentication using specialized sensors are 

highlighted in section 3.3 and mobile gait-based authentication is reviewed in 

section 3.4; section 3.5 includes the application of these to wearable devices 

(smartwatches). Final discussion is presented in section 3.6 and conclusions are 

drawn in section 3.7.  

3.2   Review Methodology  

A comprehensive overview of the technical and academic disciplines is provided 

in this chapter. In order to comprehensively review the prior work in the area and 

identify the limitations of the existing methodologies, the following predefined 

research questions were highlighted: 

 What is the aim of the paper?  

 How many samples were collected from each participant and which data 

collection scenario was applied (i.e., singles or cross day scenario)? 

 How many participants were involved in the experiment? 

 What feature extraction methods were implemented and what types of 

features were extracted?   

 How well classification methods were performed?  

 What are the outstanding questions that were not covered by the literature? 
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Once the research questions were highlighted; the next task is to identify the 

search keywords that help to find the most related articles. To this end, finding 

studies focusing upon sensor-based gait/activity recognition were essential to 

build concrete background on the state of the art. This step is described by the 

following: 

 Finding all the relevant semantic synonyms and hyponyms to ensure that all 

papers with a similar problem definition are retrieved (i.e., gait recognition, 

sensor-based authentication, activity recognition using wearable computing, 

wearable sensor-based authentication, mobile accelerometers, classifying 

accelerometer, different approaches to gait recognition, wave to access mobile 

devices, motion behavior, smartwatch-based authentication, and activity 

recognition). 

 Formation of abstraction and conclusion, at the same time, neglecting any 

papers that do not meet the predefined search criteria. 

In order to find all relevant studies, multiple well-known academic sources (i.e., 

journals and conference proceeding) and academic online research repositories 

were explored. Epistemologically, formal websites were used such as the 

electronic databases of IEEE, ACM, SpringerLink, and Google Scholar. Finally, 

to ensure the search process yields the best candidate papers, a list of 

requirements and standards for the selected papers is created, these involve: 

 Reviewing a state of the art was focused on the key papers that have been 

published by the leading scientists in the field of activity and gait recognition.  

 Papers that were published since 2005 and forwards were selected due the 

limited amount of research outputs in gait recognition technology. Furthermore, 

papers focusing on machine vision or floor sensor-based gait recognition were 
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excluded as the data collection methodology of this research reflects mobile-

based sensor capture employed in this domain is completely different from the 

proposed system of this research.  

 Excluding brief papers that do not include an experimental evaluation.  

Database 
Number of 

papers 

Final Selected 

papers 

Quality evaluation 

Conference Book Journal 

IEEE Xplore 54 28 19 - 9 

SpringerLink 7 5 - 5 - 

ACM 13 7 3 - 4 

Google Scholar 34 11 5 - 6 

Total 108 51 27 5 19 

Table 2: The total studies and the selected articles with quality evaluation 

3.3 Gait Authentication using Attached Sensors 

Reviewing of papers was focused on gait authentication using attached sensors, 

11 relevant articles were identified and summarized in Table  (details of each 

individual study is presented in Appendix A). The first attempt in wearable- based 

gait recognition was wearing a dedicated sensor to collect the motion data 

(dedicated means that the sensor is not a part of mobile/smartwatch devices and 

physically attached to the user). A variety of studies have been performed in this 

domain by attaching a recording device to different positions around the human 

body (i.e., hip, waist, pockets, lower leg, and arm). 

 Authors Year Type  Citation 

1 Mäntyjärvi et al. 2005 Conference 228 

2 Gafurov et al. 2006a Conference 39 

3 Gafurov et al. 2006b Conference 166 

4 Okumura et al.  2006 Conference 64 

5 Gafurov et al.  2007a Conference 64 

6 Gafurov et al.  2007b Journal 80 

7 Gafurov and Snekkenes 2008a Conference 16 

8 Gafurov and Snekkenes 2008b Conference 21 

9 Gafurov et al.  2010 Conference 30 

10 Sangil Choi et al.  2014 Conference 5 

11 Cola et al.  2016 Conference 9 

Table 3: An overview of the selected gait-based studies using dedicated sensors 
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Studies by (Gafurov et al., 2006a; Okumura et al. 2006; Gafurov, et al., 2007a; 

Gafurov et al., 2007b; Gafurov and Snekkkenes, 2008a; Gafurov and Snekkenes 

2008; Gafurov et al., 2010 ; Sangil Choi et al., 2014; Cola et al., 2016) were mainly 

focused on merely gait activities (i.e., normal or fast walking) and utilized the cycle 

based approach that requires  a complex computational processing to detect 

each cycle from the acceleration signal. Moreover, these studies used the 

traditional algorithms such as dynamic time warping (DTW) and absolute distance 

that are not effective for behavioural -based biometric system due to the changes 

of the human behavioural over time.  

The use of wearable dedicated sensors for gait authentication opened a new 

domain of transparent and continuous user authentication, at best an EER of 

2.5% (Cola et al., 2016). However, these studies all relied on extremely limited 

amounts of gait data from each user (30 to 120 seconds) and required the use of 

costly specialized devices in order to collect the data. Furthermore, these devices 

require comprehensive set-up that reduce the usefulness of their performance 

and increases the cost of implementation into a potential real-world system. 

3.4 Mobile Accelerometer-based Gait Authentication  

As discussed in the previous section, attaching a dedicated sensor around the 

human body for gait verification is costly to implement. Therefore, recent studies 

attempted to utilize the mobile sensors (i.e., accelerometer and gyroscope) for 

collecting the gait data. A comprehensive analysis of the previous research on 

mobile gait authentication has been investigated (with the papers included being 

listed in Table  and detailed in Appendix A). There are two main advantages of 

using mobile sensors in gait verification: the first being that no additional hardware 

is required, while the second is that users are for the most part accustomed to 
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carrying the device. Therefore, authentication can be conducted in a transparent 

manner.  

 Authors Year Type Citation 

1 Derawi et al.  2010a Conference 136 

2 Kwapisz et al. 2010 Conference 102 

3 Nickel et al.  2011a Conference 48 

4 Nickel et al. 2011b Conference 20 

5 Nickel et al. 2011c Conference 7 

6 Nickel et al. 2011d Conference 25 

7 Nickel and Busch  2011e Journal 15 

8 Hestbek et al.  2012 Conference 4 

9 Busch and Nickel  2012 Conference 1 

10 Wirtl et al. 2012 Conference 17 

11 Muaaz and Nickel 2012 Conference 9 

12 Ho et al. 2012 Conference 5 

13 Shrestha, et al. 2013 Conference 6 

14 Muaaz and Mayrhofer 2013 Conference 11 

15 Ross, A 2013 Conference 3 

16 Hoang et al. 2013 Journal 15 

17 Muaaz andMayrhofer 2014 Conference 4 

18 Watanabe, Y 2014 Conference 3 

19 Gascon et al. 2014 Conference 58 

20 Watanabe, Y 2015 Conference 1 

21 Damaševičius et al. 2016 Journal 15 

22 Ehatisham-ul-Haq, et al 2017a Journal 1 

23 Kumar, et al.  2017 Conference 1 

24 Kumar, et al. 2017 Conference 1 

25 Ehatisham-ul-haq, et al 2017b Conference 1 

26 Shen, et al. 2017 Conference 13 

27 Lee et al. 2017 Journal 6 

Table 4: A summary of mobile-based gait authentication studies 

Although mobile-based gait authentication provides an unobtrusive and user-

friendly method for authentication, the majority of previous studies collected the 

motion data by placing a mobile phone in a fixed position (i.e., in the trouser 

pocket or on the hip). However, users can put their phone in numerous locations 

around their body wherever there is a pocket (i.e., inside coat pocket and back 

pocket). Moreover, the collected signals by smartphones are too noisy that 

require extensive pre-processing, which add extra cost in terms of the required 

resources.  

 



 

39 

 

3.5 Smartwatch Accelerometer-based Gait Authentication  

The increased popularity of smartwatches, which tend to be sensor-rich highly 

personal technologies (e.g., accelerometer, gyroscope, and heart rate), attract an 

enormous amount of interests. So far, however, little attention has been given to 

the use of wearable devices for the authentication purposes. Given that the 

smartwatches are usually worn in a fixed position (i.e., on either the right or left 

wrist), they offer more accurate and reliable personal biometric data than 

smartphone do.   

While this research was in the progress, there were only three articles (Mare et 

al., 2014; Johnston and Weiss, 2015; Junshuang Yang et al., 2015) published in 

the area of activity about gait-based user authentication using smartwatches. 

Since then, 12 studies have been published and identified covering issues related 

to gait and gesture-based user authentication. However, these publications have 

not influenced the direction of this research, in regard to the data collection 

methodology and the broad spectrum of the results that were collected in this 

thesis. Moreover, the majority of these papers still suffered from several 

shortcomings; for example, using limited dataset and samples, data collected on 

the same day, using unrealistic methodology to collect the user’s motion data (i.e., 

controlled environment), and a limited range of activities were considered. Table 

5 displays an overview of the selected smartwatch-based user authentication 

studies. 
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 Authors Year Type Citation 

Citation 

1 Mare et al. 2014 Conference 49 

2 Johnston and Weiss 2015 Conference 38 

3 Yang et al. 2015 Conference 24 

4 Kumar et al. 2016 Journal 18 

5 Davidson et al. 2016 Journal 7 

6 Shrestha et al. 2016 Journal 8 

7 Lewis et al. 2016 Conference 3 

8 Dong and Cai 2016 Conference 1 

9 Lee and Lee 2017 Conference 15 

10 Griswold et al. 2017 Conference 1 

11 Liang et al. 2017 Conference 1 

12 Wang et al. 2017 Conference 3 

13 Xu et al. 2017 Conference 9 

14 Ahmad et al. 2018 Journal 1 

15 Acar et al. 2018 Journal 1 

Table 5: An overview of the selected smartwatch-based authentication studies 

Using smartwatches for collecting the user’s movement data have several 

advantages over smartphones that are summarized below: 

 The captured signals from the wearables are less noisy due to the consistent 

placement of the device (i.e., on the left or right wrist).  

 Unlike smartphones that capture limited activities (e.g., gait and typing 

activities), a wide variety of personal data could be collected from 

smartwatches such as eating, typing on PC, dribbling, clapping, brushing teeth, 

drinking, and several arm gestures (for example, punch gesture or drawing a 

circle)  

 Smartwatches can be used to capture more accurate and personal biometric 

data (e.g., acceleration, heart rate, and skin temperature) than smartphones 

do. 
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3.6 Discussion 

Despite a large body of research, the problem of sensor based- authentication is 

far from a solved problem. Table 6 displays a comprehensive analysis of the prior 

studies on gait authentication which has been discussed in this literature. The 

commentary that follows describes the key achievements and milestones that 

have taken place. 
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1 Mätyjärvi et al.(2005) C FD SC   EER= 7& 10 36 CD 

2 Gafurov et al.(2006a) C TD ABS EER= 5 & 9 21 SD 

3 Gafurov et al. (2006b) C TD EUC EER= 16 22 SD 

4 Okumura et al. (2006)   C TD DPI EER=5  22 SD 

5 Snekkenes et al.(2007) C TD ABS & 
Correlation 

EER= 7.3 & 
9.3 

50 SD 

6 Gafurov et al. (2007) C TD EUC EER= 13 100 SD 

7 Gafurov and 

Snekkkenes (2008a) 

S FD EUC EER=13 30 SD 

8 Gafurov and  

Snekkenes (2008b) 

C TD EUC EER= 5.6 30 SD 

9 Gafurov et al. (2010) C TD EUC EER= 1.6 30 SD 

10  Sangil Choi et al. 

(2014) 

C TD K-NN CCR =100  10 SD 

11 Cola et al. (2016) C TD k-NN   EER=2.5 15 SD 

12 Derawi et al. (2010a) C TD DTW EER=20.1 51 CD 

13 Kwapisz et al.(2010) S TD J48 & 

FFMLP 

CCR=100   36 SD 

14 Nickel et al. (2011a) S FD HMM & MV FRR=10.42  

FAR=10.29 

48 CD 

15 Nickel et al. (2011b) S TD&FD SVM &MV FRR =6.3 

FAR=5.9 

48 CD 

16 Nickel et al. (2011c) S FD SVMs, HMMs 

& QV 

EER= 10 

and 12.63 

36 CD 

17 Nickel et al. (2011d) C TD Manhattan, 

DTW 

EER= 21.7 

and 28 

48 CD 

18 Nickel& Busch (2011e) S FD HMM& QV EER= 6.15 48 CD 

19 Hestbek et al. (2012) S TD& FD SVM &QV FAR = 9.82 

FRR=10.45 

36 CD 

20  Busch and  Nickel 

(2012) 

C FD  HMM & QV EER=15.46 

& 13.89 

36 CD 

21 Wirtl et al. 2012 S FD K-NN & QV HTER=8.4 36 CD 

22 Muaaz and Nickel (2012) C TD DTW & MV EER=29.39 48 CD 
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Table 6: Comprehensive analysis of the prior studies on gait 

authentication 

23 Muaaz and Mayrhofer 

(2013) 

C TD DTW & MV 

 

EER= 33.3 51 CD 

24 Shrestha, et al. (2013)   S TD - FRR=10 

FAR =1%. 

20 SD 

25 Ho et al. (2012) C TD SVM CCR =100   32 SD 

26 Ross, A. (2013) S TD J48 & 

FFMLP 

CCR= 90.3 

& 70.5   

9 SD 

27 Hoang et al. (2013) S TD SVM CCR=91.33  14 SD 

28 Muaaz and  Mayrhofer 

(2014) 

C TD DTW EER=19 35 CD 

29 Watanabe, Y. (2014) S TD FFMLP FAR =1.30 

FRR =2.34 

4 SD 

30 Gascon et al. (2014) S TD SVM TP= 92 

FAR= 1 

315 SD 

31 Watanabe, Y. (2015) S TD FFMLP CCR=97.92    8 CD 

32 Damaševičius et 

al.(2016) 

S TD Jacc    EER=5.7 14 SD 

33 Ehatisham-ul-Haq, et 

al. (2017a) 

S TD&FD SVM, BN, 

DT & k-NN 

CCR= 99, 

97.4, 97& 

93    

10 SD 

34 Kumar, et al. (2017) S TD&FD K-NN, SVM, 

& RF 

EER=12.1, 

10.7, 5.6 

57 CD 

35 Ehatisham-ul-haq, et 

al. (2017b) 

S TD&FD K-NN, BN& 

SVM 

CCR=89.7  

94.5 & 94.2 

10 SD 

36 Shen, et al. (2017) S TD&FD HMM EER=4.93 102 CD 

37 Lee et al. (2017) S FD DTW FAR =0 

FRR= 7.6 

24 CD 

38 Johnston  and Weiss 

(2015) 
S TD RF, FFMLP, 

& NB 

EER= 1.4, 

2, & 4.5 

59 SD 

39 Yang et al. (2015) S TD DTW EER= 5% 26 CD 

40 Kumar, et al. (2016) S TD&FD k-NN CCR=86.8  13 CD 

41 Davidson et al. (2016) S FD k-NN TP =88.4  

FP =1.3    

10 SD 

42 Shrestha et al. (2016)    S TD&FD RF   EER=2.6 18 CD 

43 Lewis et al. (2016) C TD DTW FRR= 30 

FAR=15   

5 SD 

44 Dong and Cai (2016)   S TD SVM EER=0.65 20 SD 

45 Lee and Lee (2017)     S TD&FD KRR FRR=22.3  

FAR=13.4 

20 CD 

46 Griswold-Steiner et al. 

(2017) 

S TD&FD SVM EER=7, 10, 

& 15 

20 CD 

47 Liang et al. (2017) S TD SVM EER=4 20 CD 

48 Wang, et al. (2017)       S TD Manhattan EER=4.3 10 SD 

49 Xu et al. (2017) C TD k-NN CCR=96  20 CD 

50 Ahmad et al. (2018) S TD&FD DT, K-NN, 

SVM, & NB 

CCR=90.4, 

90.2, & 77 

6 CD 

51 Acar et al. (2018) S TD&FD FFMLP EER=1 34 SD 
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(C: Cycle-based; S: Segment-based; TD: Time Domain Features; FD: Frequency Domain Features; DTW: 

Dynamic Time Warping; EUC: Euclidean distance; ABS: absolute distance; MV: majority voting; QV: 

Quorum voting; Jacc: Jaccard distance; BN: Bayesian network; SC: Signal Correlation; DT: Decision 

trees; LR: Logistic  Regression; RF: Random Forest; KRR: Kernel Ridge Regression; k-NN: k-Nearest 

Neighbors; HMM: Hidden Markov Model; SVM: Support Vector Machine; EER: Equal Error Rate; CCR: 

Correct Classification Rate; SD: Same Day; CD: Cross Days). 

In most evaluations, a relatively small data set was used and frequently was 

obtained on the same day. This contradicts the notion that the only more reliable 

test comes from multi-day testing. This maxim holds because performance on 

single day datasets does little to test how resistant the system is to the variability 

of the human gait over the time (Nickel et al., 2011b; Muaaz and Mayrhofer, 

2014). Most studies claiming a system resilient to the CD problem either trains on 

mixed data from both days (thus not making it a true CD test as a user will be 

required to enroll in the system every day) or has an error rate so high that the 

system would not be practical. Notably, the lack of realistic data underpins a 

significant barrier in applying these systems in practice (in both mobile and 

smartwatch contexts). In cases when multi-day scenario was considered, the 

error rates were significantly increased but this is more realistic evaluation 

scenario as it avoids training the user’s model every day.  

The use of smartwatches for capturing the user’s activity data have several 

advantages over smartphones. It is envisaged that smartwatches have the ability 

to capture more accurate personal data (e.g., acceleration and heart rate) than 

smartphones do due to their fixed contact with individuals (i.e., on either the left 

or right wrist). The majority of previous studies collected the user’s movement 

data by placing a smartphone in a fixed position (e.g., in the trouser pocket or on 

the hip). It is widely understood that smartphones suffer from several issues to 

produce consistent and reliable data collection in real life; for example, carrying 

the device in a handbag makes the data collection process less accurate or nearly 
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impossible. In contrast, smartwatches provide a more consistent data collection 

of the user’s motion as it is almost fixed to the user regardless of their clothing 

choices. Smartwatches can provide a consistent orientation (i.e., it is worn in such 

a way that the text on screen is easily readable to the user). As a result, 

smartwatches offer the opportunity to collect the user’s motion data in a more 

effective and reliable fashion than smartphones could. Several activities (e.g., 

eating, PC browsing, and hand gestures) would not be recognized when a 

smartphone is used to collect the movement data. However, smartwatches tend 

to capture a wide variety of personal activities. 

Although sensor based-authentication systems could be implemented using 

accelerometers or gyroscopes as the source triaxial (three axes) sensor, the 

literature seems to overwhelmingly support the use of the accelerometer alone. 

Intuitively, both sensors should offer similar information and thus similar levels of 

predictive power, but in practice only few studies (Johnston and Weiss, 2015; Lee 

et al, 2017; Ahmad et al., 2018) that test systems using both sensors 

independently overwhelming show that accelerometers offer better accuracies 

and error rates. This constraint should not present a realistic problem; both 

sensors are almost ubiquitous on all smartwatches. It is possible that the fusion 

of data from both sensors would offer a greater level of accuracy than either 

sensor alone (Damaševičius et al. 2016; Lee et al, 2017); however, there is little 

research on the subject. This is presumably the result of Android Wear (a popular 

if not dominant operating system for smartwatches), which does not allow the two 

sensors to be sampled simultaneously (rather, they must be sampled 

successively), making fusion difficult to perform in a precise manner.  

So far, all the early studies have focused upon using data that has been collected 

within a controlled environment (i.e., all users were asked to do exactly the same 
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type of activity such as walking on a flat floor in an indoor environment). This 

experimental approach, whilst standard in assessing the feasibility of a biometric 

in the early stages of research, is arguably not reflective of real-world use (i.e., 

tends to be far less realistic for real world applications). This is because capturing 

labelled data for training and testing a classifier under different operation 

conditions (e.g., carrying a load, hands in a jacket or trouser pocket, and various 

walking speeds and surfaces) is challenging or nearly impossible. In reality, the 

process of labelling the motion data for the reference and test templates is quite 

intrusive and unlikely to be implemented by industry and/or accepted by common 

smartphone users. Therefore, a more realistic experiments should be 

investigated by collecting real life data to make sure the captured signals can be 

used for practical authentication system. 

As outlined previously, there are fundamentally two different approaches used to 

pre-process the raw acceleration data, cycle extraction and segmentation. Cycle 

extraction purportedly offers a precise manner of generating instances from the 

testing data by detecting steps and splitting the data accordingly. This offers an 

exciting opportunity where if such a system is implemented effectively, a system 

may be able to be trained in just a manner of steps. Nevertheless, based on the 

recent mobile-based gait studies (Derawi et al., 2010a; Nickel et al., 2011d; 

Muaaz and Nickel, 2012;  Muaaz and Mayrhofer, 2013), the performance of using 

cycle extraction method was low. At best, cycle extraction methods can operate 

at 15.46% of EER (Nickel and Busch, 2012). The high error rate of using this 

approach is most likely the result of the complicated and unclear nature of cycle 

extraction, as gait is only semi-periodic and the signals originating from these 

devices are noisy due to a confluence of factors (e.g., the device not being 

securely fastened to the user, cheap sensors, rounding errors, etc.). Furthermore, 
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cycles are not guaranteed to be of the same length (and can vary widely in length 

depending on the pace of a user); cycle extraction must be paired with a system 

that normalizes the length of each step, which adds yet another parameter to be 

tested and refined. In contrast, the segmentation-based methods focus on fixed-

length blocks of data. These methods, while not guaranteeing the number of 

steps (in the case of short windows, there may be no full steps at all) or that the 

completeness of all steps within the window, is simple to implement. Despite the 

simplicity of segmentation based method, it appear to be more effective in most 

implementations with an EER of 10% in the worst scenario (Nickel et al., 2011a;  

Nickel et al., 2011b; Nickel and Busch, 2011; Watanabe, Y. 2014; Johnston and 

Weiss, 2015; Yang et al., 2015).  

With respect to features, there have been several studies in literature that 

suggested generating the statistical and cepstral coefficient features from a fixed 

segment size could produce better performance scenario (Nickel et al., 2011a;  

Nickel et al., 2011b; Nickel and Busch, 2011; Watanabe, Y. 2014; Watanabe, Y. 

2015; Johnston and Weiss, 2015; Nickel and Busch, 2012; Hestbek et al., 2012; 

Ho et al., 2012; Hoang et al., 2013). These studies used statistical features such 

as AAD, RMS, BD, TBP, Max, Min, Mean, and Std. Likewise, more recent 

features have borrowed from signal processing or speaker recognition areas by 

using features derived from the Fourier transform of the signals. Specifically, 

MFCCs and BFCCs were used in some papers to great success. In addition, 

some studies have relied on a combination of MFCCs and BFCCs alone and still 

managed to produce strong results (Nickel et al., 2011c; Nickel and Busch, 2011; 

Nickel and Busch, 2012).  

The majority of researches in this literature do not seem to be an overwhelming 

concern with the length of feature vectors. Unless a specific need for the biometric 
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system to reside entirely on the smart device (thus severely limiting the amount 

of available processing power and memory) arises, it is likely that feature vectors 

will continue to expand as long as the additional features provide a greater level 

of accuracy. Nevertheless, an advance feature selection approach is required, 

especially for smartwatches/smartphones-based user authentication system in 

order to reduce the potentially large dimensionality of input data and to maximize 

the system performance.   

Various feature selection approaches were proposed in the prior gait/ activity-

based user authentication systems (Nickel et al., 2011b; Nickel and Busch, 2011; 

Nickel and Busch, 2012; Hestbek et al., 2012; Hoang et al., 2013). Nevertheless, 

these studies were based upon evaluating the performance of individual feature 

and then pick out a subset that achieved the lowest EER under some 

classification system. This could be useful if the proposed system consists of few 

features (e.g., 5, 10 or 15 features), otherwise the implementation of a such 

method would be worthless as the extracted features are relatively correlated to 

each other. In comparison, several biometric-based authentication systems 

created the user’s reference and test templates based upon selecting the most 

common features (e.g., features that have the smallest standard deviation for all 

the population. This could result in making the system vulnerable to accepting 

illegitimate user (i.e., high FAR). However, a balance between security and 

usability needs to be taken for TASs (i.e., low FAR and low FRR). Most recent 

smartwatch-based gait recognition study by Kumar et al., (2017) utilized two 

feature selection algorithms, namely Information Gain Based Feature Ranking 

and Correlation Feature Selection. However, the prediction accuracy was 

relatively low (i.e., 86.8% correct classification rate). Therefore, a novel feature 

selection strategy is required to offer a delicate balance between usability and 
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security. In term of classifiers, using the standard classification methods (e.g., 

Absolute, Euclidean, and DTW distance metrics) for training biometric systems is 

another subject that is still debated within the literature.  

Many researchers prefer a more traditional (to the area of biometrics) approach 

where a single template is generated (much as a system that relies on fingerprints 

or facial recognition would) and is later tested by finding the template most similar 

to the test data. While this approach works well for certain domains, it does not 

seem to be the most effective type of system for activity recognition or other 

behavioural biometric techniques. This is due to the fact that the user’s behaviour 

changes over the time. Hence, applying these methods resulted in high EERs 

ranged between 19% (Muaaz and Mayrhofer, 2014) and 33.3% (Muaaz and 

Mayrhofer, 2013). Therefore, it is more reasonable to collect multiple instances 

from each individual on multiple days and utilising more complex algorithms than 

have been tried in earlier studies.  

It is interesting to note that the majority of findings of the aforementioned 

investigations were based upon applying majority and quorum voting schemas in 

order to make a decision. Although quorum voting usually yielded greater 

performance (Nickel et al., 2011b; Nickel et a, 2011c; Nickel and Busch, 2011), 

the majority voting appears to be more resilient to error given the higher threshold 

for classification (Kwapisz et al., 2010; Nickel et al., 2011a). Quorum, while 

lowering the level of accuracy required to verifying a user, may result in a high 

false acceptance rate. This failure to identify imposters can be explained by the 

extremely low proportions of correct classifications required to accepting a user 

as genuine. Although this may be acceptable for systems more concerned with 

usability, such permissiveness will most likely render the system impractical for 

most uses. Majority voting, while requiring the system to be more discriminative, 
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offers a greater level of security and thus is more likely to offer a suitable balance 

between usability and security. Ultimately, conscious decisions must be made to 

create a system that does not appear to the end user as too demanding without 

compromising too much security.  

3.7 Conclusion 

The literature on sensor based- biometric authentication demonstrates increasing 

levels of promise. Initial experiments conducted 10 years ago barely obtained an 

EER of 19% to more modern systems nearing to an EER of 2.6%. This drastic 

improvement can be attributed to more intricate feature vectors that utilize more 

complex features and a departure from purely statistical methods to more artificial 

algorithms.  

It is apparent that smartwatches are the most effective hardware option to collect 

the motion data Johnston and Weiss, (2015). Smartphones, while having the 

benefit of technological maturity and widespread adoption, suffer from too many 

problems to produce a consistently effective implementation. Namely, the 

problems of orientation and off-body carry (i.e., when the device is not carried in 

a pocket or somewhere else close to the body) make obtaining consistent 

accuracy nearly impossible. Smartwatches, by virtue of being watches, guarantee 

consistent placement on the body regardless of clothing choices of an individual 

user. Similarly, since the smartwatches do not rotate their screen based on 

orientation, the smartwatch is worn in a consistent orientation at all times (i.e., it 

is worn in such a way that the text on screen is easily readable to the user). These 

advantages make the possibility to design an effective transparent and 

continuous user authentication system for both mobile/smartwatch, as the need 

to develop orientation and placement independent features is negated. 
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The majority of prior studies in the domain collected data within a controlled 

environment   (i.e., users were asked to perform specific activities or gestures in 

an indoor environment) and subsequently utilize this data in order to verify the 

user’s identity in a transparent and continuous manner.  However, such dataset 

tends to be far less realistic for real world applications. Moreover, these studies 

have relied upon limited activities (i.e., gait or gestures). Collecting real life motion 

data is a big challenge as the user’s arm pattern could be vary depending on the 

activity type. As the process of obtaining labelled samples in the real-life scenario 

is unexpected or quite intrusive, developing an approach that automatically 

identifies the activity type for each context might significantly improve the 

authentication decisions. Further influencing factors on the biometric system 

performance is the selected feature subset; selecting unique features for each 

user would improve the results and reduce the complex computations on the 

smart devices which have limited processing resources. Therefore, a feature 

selection approach of any mobile/smartwatch-based biometric system needs to 

be sophisticated enough before the classification phase takes place. 
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4 Feasibility Study into the Capture & Analysis of 

Smartwatch-based Activity Recognition  

Chapter 3 has identified the possibility of using the smartphone and smartwatch 

acceleration and gyroscope data for TAS. It has been highlighted that 

smartphones suffer from providing consistent and reliable movement data. 

Although smartwatches offer the opportunity to capture rich and personal 

biometric-based user information, only few studies utilized these devices and 

were based upon limited activities (i.e., gait or unrealistic gesture). The aim of this 

chapter is to present a feasibility study to use the smartwatch movement sensors 

(i.e., accelerometer and gyroscope) in order to capture multiple activities (not 

merely gait or gesture). It presents a comprehensive evaluation on wearable 

technology, details of the collected dataset, feature extraction, a novel feature 

selection method, and comprehensive results to determine whether the proposed 

system can be applied to protect the sensitive information on both devices (i.e., 

smartphones and smartwatches).  

4.1 Introduction 

The earlier discussion has identified that the intrusive implementations of the 

current user authentication approaches (i.e., PIN and passwords) spur 

smartphone users to take no security precautions against unauthorized access. 

Entering PIN code adds loads of burden to the smartwatch users due to the small 

touch screen of these devices. It is widely recognized that those methods are 

considered an unreliable basis for user authentication hence, they are an 

attractive target for attackers to misuse the user's personal data.  

As long as the current wearables are connected to smartphones via Bluetooth, a 

permanent access would be provided to the smartwatch users. This is because 
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the identity check happens only during the pairing process (i.e., the smartwatch 

will automatically be connected to the smartphone without requiring user 

credentials). Therefore, securing information on these devices from unauthorized 

access in an effective and usable fashion is crucial. Several TAS for smartphones 

were proposed such as  the user’s typing rhythm (Banerjee and Woodard, 2012), 

behaviour profiling Li et al., (2011), ear and face recognition techniques (Ali Fahmi 

et al., 2012; Clarke et al., 2008). Nevertheless, one of the key challenges for using 

TAS is the lack of appropriate biometric modalities. In addition, previous research 

in this domain also encounters performance issues due to the reliability of 

behavioural biometrics (i.e., the performance can be influenced by external 

environmental factors such as mood) (Saevanee et al., 2012). 

In recent studies, biometric measurements based on motion signals (e.g., the 

accelerometer and gyroscope readings) were collected by utilizing mobile phone 

sensors for transparent and continuous user authentication. Nowadays, wearable 

devices have become increasingly prevalent among users and equipped with rich 

sensors that are capable of holding versatile and quite frequently highly sensitive 

user data. This data was employed to develop several applications such as 

health-related, conducting financial transactions, and capturing physical 

activities. The possibility of collecting the motion data from a dedicated sensor 

and/or smartphone technology for implementing a transparent and continuous 

user authentication system is highlighted in the previous chapter. However, little 

attention is given to the use of wearable devices – which tend to be sensor-rich, 

highly personal technologies.  

Wearables could be used to enhance mobile security in a more effective way. 

Few studies have demonstrated that smartwatches can provide continuous and 

transparent biometric authentication service by using the accelerometer and/ or 
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gyroscope data (Mare et al., 2014; Johnston and Weiss, 2015; Junshuang Yang 

et al., 2015; Kumar, et al., 2016). However, the prior research either used a limited 

dataset or trained and tested the system on data that was collected on the same 

day (which is not a realistic model for a real-world application as the user would 

be required to enrol on the system every day). Moreover, early smartwatch-based 

user authentication studies focussed upon merely a limited range of activities 

(i.e., gait activities only).  

To this end, the present chapter examines the possibility of using smartwatch 

technology for acquiring the desired motion signals for the TAS based upon the 

user’s daily activities. The main contributions of this study are demonstrated as 

follows:  

 Based upon prior art, this is the biggest dataset for activity -based user 

authentication using smartwatch, which contains data of 60 users over multiple 

days.  

 To provide an evaluation of the approach against a number of activities (rather 

than a single activity). Five popular daily life activities were captured (i.e., 

normal walking, fast walking, playing a mobile game, typing on a PC keyboard 

and texting on a mobile touch screen). 

 To explore a comprehensive feature set that was extracted in the time and 

frequency domains to highlight their usability and the impact on system 

performance.  

 To investigate and propose a novel feature selection method that was based 

upon generating a dynamic feature vector for each user and successfully 

reduced the feature vector size with better performance.  

 To evaluate and compare the optimal source sensor for the authentication task.  
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The rest of this chapter is organized as follows: section 5.2 provides a 

comprehensive evaluation of wearables technology. The methodology for data 

collection, pre-processing, feature extraction and reduction is presented in 

section 5.3. Experimentation along with corresponding discussion of the results 

are presented in sections 5.4 and 5.5 respectively. Finally, conclusions are 

detailed in section 5.6 

4.2 Technology Evaluation 

Several wearable technologies are launched in the market that contain a wide 

variety of sensors. In order to select the suitable technology for capturing the 

motion-based signals that fit the research aims and objectives, a comprehensive 

analysis needs to be conducted. These include, what are the available sensors 

in the wearable technology?, what smartphones can be connected with the 

wearable technology?, what are the existing application(s) in order to obtain  data 

from the device?, how good is the sensor precision readings?, and how expensive 

is the smartwatch . Based on the answers to these questions, the optimal device 

will be selected for obtaining the motion data that can be used for a transparent 

and continuous biometric authentication system. 

 Microsoft Band 2: the Microsoft Band 2 is an advanced fitness tracker that can 

be paired with smartphones running Android 4.1 or above, iOS 8.2 and later, 

and Windows 8.1. This provides users with the benefit of being able to use the 

smartwatch regardless of preferred smartphone ecosystem. It includes 13 

sensors (i.e., optical heart rate, 3-axis accelerometer and gyroscope, GPS, 

pedometer, skin temperature, ambient light, galvanometer, magnetometer, 

altimeter, thermometer, ultraviolet, Galvanic skin response and microphone). 

This means the Band 2 can collect several biometric-based data that would be 

useful for any behavioural-based biometric systems.  
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The readings of a galvanic skin response sensor, which checks if the smartwatch 

user is wearing the band or not, can be effectively used for activity- based user 

authentication using smartwatches. For example, if a user takes off the band, the 

collected data for this period would be neglected. Moreover, the Band 2 screen is 

always active allowing collection of motion data while the user on the go. 

Collecting samples from the smartwatch accelerometer and gyroscope sensors 

would require a custom application that runs on both the phone (for storage and 

transmission purposes) and the smartwatch itself. However, there is an open 

source application available that performs this function.  

 

Figure 9: List of smartwatches 
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 LG Urbane Watch: the LG Urbane is a small and light watch (66.5g) having 

three triple-axis inertial motion sensors (compass, accelerometer, and 

gyroscope), heart rate monitor, and barometer. The accelerometer and 

gyroscope are present as a single microelectromechanical system chip (i.e., a 

MEMS chip), which provides the device with information about instantaneous 

acceleration and rotational velocity. The watch display is a 1.3-inch PO led 

screen that is protected by a Gorilla Glass 3 holding up against scratches, and 

for some added protection the glass is slightly recessed into the body of the 

watch to help against accidents. The LG Urbane works with smartphones and 

all smartwatch applications that run on Android Wear; this includes many 

popular applications such as Runtastic Running and Fitness and Cloud Magic.  

 Samsung Gear Live: the Samsung Gear is slightly lighter than LG G Watch 

(59g) and offers dust and water resistance. In comparison with LG Urbane, the 

Samsung Gear contains only four sensors (i.e., accelerometer, gyroscope, 

heart rate monitor, and compass). It is optimised for mobiles running on 

Android 4.3 and onwards but does not support devices running iOS of any 

version.  

 Sony Smartwatch 3: it has 5 in-built sensors (ambient light sensors, GPS, 

compass, accelerometer and gyroscope). Sony Smartwatch 3 is compatible 

with smartphones running Android 4.3 and later. The watch weight is 45g. 

Although the Sony company claims that the battery life is up to 2 days of normal 

use, testing the design to reflect usage over an average day suggests the 

battery is completely drained within a few hours (Summerson, C. 2015). 

Furthermore, this problem has been publicly acknowledged by Google support 

(Hayden, 2015), with the support team stating that a conflict between Android 

http://www.droid-life.com/tag/gear-live
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Wear 5.1 (the most current version of the Android Wear subsystem) conflicts 

with the firmware of specific watches and results in massive battery drain and 

overheating (Hayden, 2015). 

 Apple Watch: the Apple Watch is Apple’s sole offering in the smartwatch field 

and is compatible only with Apple devices. There are several different sensors 

built into the Apple Watch (e.g., heart rate, ambient light sensors, pulse 

oximeter, accelerometer and gyroscope) to measure steps taken, calories 

burned, pulse rate and a variety of other metrics. In terms of battery 

performance the Apple Watch has the same issues of Android Watches, its 

battery life is about 18 hours of normal use (Stables, J. 2015). In comparison 

with the other dominant offerings in the smartwatch market, the Apple Watch 

is 78% more expensive than the most expensive Android Wear offering (see 

Table 7).  

As shown in Table 7, all of the selected smartwatches offer the basic sensors: 

accelerometer and gyroscope. Given that there is no particular advantage in 

opting for a more expensive device (at least for research purposes), it is 

reasonable to suggest that an optimal device for data collection is the one that 

is most cost effective. It is apparent that Microsoft Band 2 has more sensors 

(e.g., GPS and Skin temperature) and the cheapest compared to other 

smartwatches. These sensors offer the opportunity to capture various 

personal, biometric-based data, which can be useful for a transparent and 

continuous biometric system. Also, it can be connected to multiple mobile 

platforms (i.e., Android, iPhone and Windows Phone); therefore, there are no 

restrictions in order to collect data from a large pool of participants who have 

different types of smartphones. In addition, unlike other smartwatch 

technologies, Microsoft Band 2 offers the opportunity to collect data in a 
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continuous manner for at least 4 hours without recharging and thus offers the 

potential to collect a huge amount of real life data. 

Features Microsoft 

Band 2 

LG Urbane Samsung 

Gear 

Sony 3 Apple Watch 

 

Sensors 

Accelerometer  

Gyroscope  

Compass  

Heart rate  

Ambient light  

GPS  

Skin 

temperature  

Pedometer 

Microphone 

Magnetometer 

Altimeter 

Ambient 

Light 

Accelerometer 

Compass 

Gyroscope 

PPG 

Barometer 

Accelerometer 

Compass 

Gyroscope 

ECG 

Accelerometer 

Compass 

Gyroscope 

Ambient light 

sensors 

Accelerometer 

Gyroscope, 

Heart rate, 

Ambient light 

sensors 

 Pulse 

oximeter 

Bluetooth      

Smartphone 

Compatibility 

Android 4.3 

and later , iOS 

8.2 or newer, 

Windows 8.1 

or later  

Android 4.3 

and later , 

mobiles 

running iOS 

8.2 or above  

Android 4.3 

and above  

Android 4.3 

and above 

iPhone5 and 

newer 

Battery life two days two days One days Two days One day 

Operating 

system 

Android Wear Android Wear Android Wear Android Wear IOS 

Price (in £) 125 165 190 190 340 

Table 7: Comprehensive evaluation of wearable technology 

4.3 Experimental Methodology 

With the aim of investigating the feasibility of using wearable computing for 

transparent user authentication, extensive experiments were conducted to 

capture and analyse the user’s movement data. In order to overcome some of the 

shortcomings of the prior work, this section will explore the following research 

questions: 
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1. What is the impact of the time and frequency domain features on the system 

performance?  

2. Which sensor can provide a more consistent and reliable motion data for 

recognizing individuals?  

3. What is the most effective classification strategy – generic or activity-based 

authentication model?  

4. Can the captured activities use for identifying the user's arm pattern?  

5. How does the performance vary across same and cross-day evaluation 

methodologies?  

6. Does the proposed feature selection approach have a positive effect on the 

proposed system performance? 

To address these questions, the following experiments were conducted:  

 Time and Frequency Feature Analysis, accelerometer vs gyroscope sensor 

(research questions 1 and 2). 

 Evaluating Generic vs Activity-based authentication model, different activities, 

(research questions 3, 4, and 5). 

 Single and cross day scenario, all features against selective feature subset 

(research questions 5 and 6). 

 Data collection 

To determine and evaluate the feasibility of the proposed activity-based user 

authentication system, it is important to ensure the population sample being used 

as large and significantly reliable as much as possible. Therefore, this experiment 

aims to capture sufficient number of samples from each individual to effectively 

train the user’s reference template with a variety of possible instances of the same 
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activity; as a result, the recognition rate could be increased. In order to collect 

user’s movement data, the Microsoft band 2 is utilized due to its wide range of 

built-in sensors.  

A third-party application called Companion for Band, which is compatible with all 

android smartwatches and smartphones that run versions of Android 4.3 and 

later, was utilized to capture the accelerometer and gyroscope signals (see Figure 

10). The application contains three different sampling rates (i.e., 16 Hz, 32Hz and 

128Hz as shown in Figure 11) and data was captured at 32 Hz. Reasons for 

selecting 32hz sampling rate was to capture enough accelerometer and 

gyroscope readings and to avoid repetition of the axis values; as a result, less 

signal noise and better performance can be obtained. In addition, more power will 

be consumed, and more storage space will be required if a higher sampling 

frequency is applied. As soon as the data was acquired by the smartwatch, it was 

sent to a smartphone residing in the user’s pocket via Bluetooth (in the rare event 

if the user did not have a pocket he/she was told to hold the phone in their 

dominant hand). 

 

Figure 10: View life data streams of all sensors 
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Figure 11: Sensors sampling rate 

As highlighted earlier, the prior art merely focused on gait or gesture data that are 

limited activities; therefore, a wide range of activities were considered in this study 

that are non-intrusive, frequently used, contain unique arm pattern, and more 

natural. These included five physical activities (i.e., normal walk (NW), fast walk 

(FW), typing on PC (TypePC), playing mobile game (GameM), and typing on 

mobile phone (TypeM)). Based on the previous studies (Nickel et al., 2011d; 

Nickel et al., 2012b; Lee et al, 2017; Shen et al., 2018; Kumar et al., 2017) that 

were able to capture acceptable number of samples (in the range of  36 to 100 

samples) and achieved stronger accuracies than other prior art, this study aims 
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to have at least the same amount of data but also a trade-off between the time 

required and cost involved for getting people participate in the experiment. 

Therefore, it was considered that a total of 60 hours of the movement data from 

60 users (26 males and 34 females) was appropriate and, hopefully, shows better 

data than any other prior art.  

For each activity, 72 samples were obtained from each user (in total, each 

participant provided 360 samples for the all activities over two days), The age of 

the participants was ranging from 18–55 years old as shown in Figure 12; most 

participants in the data collection methodology were university students (80%) 

while the rest were university staff or faculty (each participant received 

compensation of £25). Once ethical approval was sought and obtained, 

accordance with the guidelines provided by University of Plymouth, written 

informed consent was obtained from each test subject prior to data collection.  

 

Figure 12: The age ranges across the participants for the controlled dataset 
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In order to be able to perform both same-day and cross-day analysis (as pre the 

prior art), two sessions were obtained per participant for each activity occurring 

on two separate days within a time frame of 3 weeks. The reason for capturing 

the controlled data over two days only is to ensure that each participant follow up 

and complete the requested sessions. Data for each activity and each session 

was carried out in three phases (i.e., phase 1, phase 2, and phase 3) separated 

by at least 15 minutes time interval. The single phase contained two minutes of 

the user’s motion data; the reason for capturing data of one session in three 

different phases is to get more reprehensive data rather than repeating the same 

activity. 

The raw gait signals (i.e., NW and FW) were collected by asking users to walk on 

a predefined route and encouraged to walk on flat ground in their own natural and 

comfortable manner. For consistency, the gait data was collected on the second 

day in a manner similar to the first, with the user walking over the same route. For 

a more realistic scenario, the user had to stop in order to open a door and take 

multiple turns. Moreover, no other variables, such as type of footwear or clothing, 

were controlled.  

In addition to gait data, typing activities (typing on PC and smartphones keyboard) 

were also considered in this study. Although the prior studies of keystroke-based 

behavioural biometrics showed the possibility of verifying users based upon their 

typing rhythm, keystroke technique requires plenty of data to train the classifier.  

Moreover, the discriminative characteristics of this modality are based upon the 

inter-key latency and hold time that effected by external factors such as change 

of keyboard. The applicability of such system was limited on computers or 

smartphones and to the best of the author's knowledge this is the first study that 
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investigated the usage of smartwatch motion sensors for recognizing the user's 

identity based upon their typing rhythm.  

In the typing activities, users were asked to sit and continuously type a short and 

predefined text on the touch screen of their smartphone and on a PC keyboard. 

Regarding of the game activity, users were asked to sit and playing Candy Crush 

Saga on their smartphone. The criterion for selecting this game was based on 

many factors; for example, it was the top mobile games by downloads, free 

application to install, simple to play, and contains enough touch gestures on the 

mobile touch screen to obtain a unique pattern for each individual. 

 Data Pre-Processing 

This section describes the procedure of collecting and transforming the data into 

a form suitable for traditional machine learning classification algorithms. Pre-

processing provides a mechanism to remove unnecessary noise from the signal 

data; once the data collection was completed, the signal processing phase was 

undertaken- a brief description of the steps is described below:  

 Time interpolation: Due to the limited accuracy of sensors in Android devices, 

the smartwatch only outputs whenever there is a change in acceleration and 

gyroscope values Therefore, time interpolation was applied to ensure that the 

time period between two successive data points was always equal. 

 Filtering: several studies identified that the application of a low pass filter could 

be useful in reducing the unwanted/non-discriminative information from the 

signal hence enhance a better performance can be achieved. Therefore, this 

study carried out with several settings (i.e., 10, 20, and 30) and through 

experimentation the cut-off frequency of 20Hz achieved the best accuracy 

(examples of the filtering are shown in Figure 13). 
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Figure 13: The acceleration signal before and after filtering 

 Segmentation: most classification approaches do not directly operate on time-

series data and require the data to be represented as a set of samples. As 

discussed early in chapter 3, there are two main approaches to segment the 

raw movement data, namely cycle-based and segment-based. The literature 

shows that the performance varies significantly by using these two methods. 

The error rate of using cycle-based is considered as high with the EER is 

ranging from 19% to 33.3%.  

In contrast, the performance of the segment-based method appears to be more 

effective and stable, with studies reporting EERs between 1.4% and 10%. 

Therefore, the tri-axial raw format for both accelerometer and gyroscope 

signals were segmented into 10-second segments, which ensures that each 

sample includes several movement data and any brief period of non-

movement signal (e.g., a pause) will not dominate the sample. This was 

achieved by using a sliding window approach with no overlapping. Therefore, 

in total 72 samples were collected for each activity and each user over two 

different days. Examples of the accelerometer and gyroscope data along the 

x, y, and z axes of two users are illustrated in Figures 14 and 15 respectively. 

Discriminating patterns can be clearly observed between the accelerometer 
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and gyroscope data of the selected two users across the x, y and z axes. 

Preliminary analysis suggests users do have distinctive movements that can 

be used to transparently and continuously authenticate individuals. 

 

Figure 14: Acceleration sample of three axes for subject A and B 

 

Figure 15: Gyroscope sample of three axes for subject A and B 
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Further investigation was conducted to show the inter and intra-variance of 

collected sensor data between users. Ideally, the acquired data from a genuine 

user is quite similar (i.e., low intra-variance) and different enough from other users 

(i.e., high inter-variance) to be used for authentication purposes. In order to check 

the similarity of the user’s movement pattern, three gait samples are randomly 

selected from each user and represented in the following Figures. Each Figure 

contains the accelerometer signals in three orthogonal directions (x, y, and z). 

 

Figure 16: Three acceleration gait samples of three axes for Subject A 
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Figure 17: Three acceleration gait samples of three axes for Subject B 

 

Figure 18: Three acceleration gait samples of three axes for subject C 
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Figure 19: Three acceleration gait samples of three axes for subject D 

The previous Figures (i.e., 16, 17, 18, and 19) show that of the three 

accelerometer parameters measured along each axis (x, y, and z), the variance 

along y-axes is even for the same user (i.e., high intra-variance) and less 

distinctive between different users (i.e., less inter-variance). The other 

accelerometer values along x and z axis do appear to be quite unique among 

users and nearly similar for the genuine user.  

 Feature extraction 

Feature extraction is a key component of any biometric system and needs to 

contain the user discriminative information necessary for classification. 

Therefore, a comprehensive feature extraction process was carried out on both 

the accelerometer and gyroscope sensor data. Based upon the prior art, features 

were extracted in both the time and frequency domains and resulted in 140 

features (Kwapisz et al., 2010; Nickel et al., 2011b;  Nickel et al., 2011c; Nickel et 

al., 2011d; Ross, A. 2013; Watanabe, Y. 2014; Johnston and Weiss, 2015). These 

features are the same regardless of whether the sample is being generated from 
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accelerometer and gyroscope signals. Since most features are generated on a 

per-axis basis and each sensor has 3 axes, most features are represented by a 

vector of three values. Several statistical features were also extracted; some of 

these features are new and have not been included in the prior studies (i.e., 

interquartile range, skewness, kurtosis, percentile, correlation coefficients). 

Details of these features (e.g., what they are and how they are calculated) are 

presented in Table 8, and the digit in brackets specifies the number of generated 

features for each feature type.  

Features NF TD FD Description 

Interquartile 

range 

3   The range in the middle of the data. It is the 

difference between the upper and lower quartiles 

in the segment. 

Skewness 3   A measure of the symmetry of distributions 

around the mean value of the segment. 

Kurtosis 3   A measure of the shape of the curve for the 

segment data 

Percentile 25,50 6   The percentile rank is measured using the 

following formula: R = (P/100) * (N+1). Where R 

represents the rank order of the values, P : 

percentile rank, and N is the total number of data 

points. 

Correlation 

Coefficients 

3   The relationship between two axes is calculated. 

The Correlation Coefficients is measured between 

X and Y axes, X and Z axes, and Y and Z axes. 

Difference 3   The difference between the maximum and 

minimum of the values in the segment. 

Median 3   The median values of the data points in the 

segment. 

Root Mean square 3   The square root of the mean squared. 

Maximum 3   The largest 4 values are calculated and averaged. 

Minimum 3   The smallest 4 values are calculated and averaged 

Average 3   The mean value of the values in the segment for 

each axis 

Standard 

Deviation 

3   The standard deviation is a measure of how spread 

the data points from the mean. It is calculated for 

each axis. 

Average Absolute 

Difference 

3   The average absolute distance of all values in the 

segment from the mean value over the number of 

data point in the segment (for each axis). 

Time Between 

Peaks 

3  - During the user’s walking, repetitive peaks are 

generated in the gait signal. Thus, the time 
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between consecutive peaks was calculated and 

averaged (for each axis).   

Peaks 

Occurrence 

3  - Determines how many peaks are in the segment. 

Variance 3   Average of the sum of the squared differences of 

each value in the segment from the mean over the 

segment size (for each axis).   

Cosine Similarity 3  - All pairwise cosine similarity measurements 

between axes. 

Covariance 3  - All pairwise covariances between axes.  

Energy 3 -  The summation of the mean square of each 

frequency component multiplied by time interval 

of the signal 

Entropy 3 -  Spectral entropy describes the complexity of the 

signal based on the Shannon entropy 

Binned 

Distribution 

30  - Relative histogram distribution in linear spaced 

bins between the minimum and the maximum 

acceleration in the segment. Ten bins were used 

for each axis 

Average 

Resultant 

Acceleration 

1   For each value in the segment of x, y, and z axes, 

take the square roots of the sum of the values of 

each axis squared over the segment size (i.e., 10 

seconds)  

Table 8: List of the extracted time domain (TD) and frequency domain (FD) 

features 

The process of extracting frequency domain features is somewhat different from 

the time domain. Before extracting a frequency domain feature, a Fourier 

transform is applied to the data. A set of frequency domain features are calculated 

which might be useful to create a discriminative feature vector for each individual.  

 Feature selection 

Feature selection plays a central role in the pattern recognition system, which 

takes place after extraction and prior to classification. Prior work has highlighted 

some features are more useful than others and the discriminative ability of 

features can vary between users Feature selection is used to select feature 

subset from the entire extracted features through identifying the most optimal and 

remarkable features for the machine learning algorithms in order to reduce 

potentially large dimensionality of input data (Hoang et al., 2013; Kumar et al., 
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2017). When the feature set size is relatively large, feeding all features to a 

classifier without selecting of a distinguish feature subset might negatively affect 

the system performance. Therefore, the feature selection step has become the 

focus of many research studies in the area of authentication (Nickel et al., 2011b;  

Nickel et al., 2011c; Hoang et al., 2013; Kumar et al., 2017) with the resultant 

effect of enhancing performance and reducing the computational complexity of 

the classifier. Subsequently making it easier to manipulate and calculate feature 

vectors on processing and battery limited digital devices.  

Previous authors have identified that creating a dynamic feature vector for each 

individual could be beneficial, however, there are limited studies that explored the 

approach in more details. Moreover, the feature selection approaches that have 

been presented so far do not seem to accel in terms of performance. To this end, 

this study carried out an exhaustive exploration of data using descriptive statistics 

for better understanding the nature of features and to explore the relationship 

between inter and intra variance that might exist. Thereafter, the output of this 

exploration process was used to develop a novel dynamic feature vector 

algorithm to see how that would impact the system performance. For each 

individual, a unique feature subset was generated (i.e., creating a dynamic 

feature vector that contains distinctive features for each user). This is achieved 

by calculating the mean and standard deviation (STD) for each feature 

individually for all users. Thereafter, comparison the authorized user’s results 

against impostors to select the feature set with the minimal overlap. In other 

words, for each feature, a score is calculated based upon the following condition: 

 If the mean of imposter’s feature is not within the range of the mean +/- STD 

of genuine, add 1 to the total score. 
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 Dynamically select the features according to their score order from high to 

low. The highest means less overlap between imposters and the genuine 

user as shown in Figure 20. 

 

Figure 20: The effect of the dynamic feature selection approach 

Figure 20 show an example of the automatic feature selection approach that was 

utilized in this study; this procedure was carried out for all the time domain 

features and retained the most predictive feature subset for each individual. From 

the presented information in Figure 20, it is apparent that the Kurtosis feature for 

user1 has less overlap than Variance feature, which means this feature would be 

used to create the reference template for user1 as it shows low intra-variance and 

high inter-variance. Although the proposed dynamic feature vector approach 

successfully maximized the system performance and reduced the feature vector 

size, it is not a definitive solution for the problem and a comprehensive evaluation 

for different feature selection approaches is required to find out the optimal 

method for TAS.   
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 Experimental Procedure  

The aim of the biometric-based authentication or verification is to determine if a 

system can classify a user correctly (a “genuine” user) or as an imposter.  This 

study utilized two approaches namely, generic and activity-based models. Both 

models, require separate training data and applying different mechanisms. The 

former used the whole collected data (i.e., NW, FW, TypePC, GameM, and 

TypeM) without considering the user’s activity type hence, one classifier was 

created for each individual.  

In contrast, multi- classifier/algorithmic (i.e., the more realistic and novel 

technique) was used in the latter; this was achieved by generating a separate 

model for each of the aforementioned activities hence, five models were created 

for each user. It is argued given the variability of the signal data, creating 

specialized models based upon activity will exhibit better recognition performance 

than a generic model. Therefore, it was necessary to design and develop a 

comprehensive experiment that confirms this assumption.  

Once these models were prepared, the reference and testing templates were 

created under two different scenarios (i.e., SD, and CD). In the SD scenario, data 

set was divided into two parts: 60% was utilised to train the classifier while the 

remaining 40% was used to evaluate the performance. The reason for selecting 

this ratio (i.e., 60% versus 40% for the training and testing respectively) is to 

ensure that the classifier is trained with sufficient representative samples and 

evaluate the robustness of the proposed system by using fairly acceptable testing 

samples. To test the system under the Cross Day (CD) scenario, the data of the 

first day was used for training and the evaluation was carried out by employing 

the second day data.  
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To train a classifier, a reference template needs to be created for each individual; 

the user’s reference template consisted of samples from the user itself and from 

other users (i.e., imposters). To distinguish between the genuine and imposter 

feature vectors, the genuine samples were labelled as 1 and 0 was used to label 

the remaining samples. To this end, 21 samples of the genuine user samples was 

selected and 295 random samples (i.e., 5*59) from the imposter group were used 

to build the user’s profile under the SD scenario. The criteria for selecting this 

proportion is that it showed low EER (compared to 200, 400, 500 of imposter 

samples). For the CD scenario, the same proportion of the imposter's samples 

(i.e., 300 samples) were used and the only difference was the amount of the 

legitimate user samples (i.e., 36 samples were utilized). This procedure was 

repeated for all users (so in total 60 tests), and different legitimate user was 

selected for each test.  

Once the user’s templates were created, a Feedforward Multi-Layer Perceptron 

(FF MLP) neural network was used as the default classifier; this is because neural 

network is less sensitive with the variation of the user’s arm pattern and require 

less training data compared to SVM, HMM, and K-NN (Nickel et al., 2011c; Nickel 

et al., 2012b). Moreover, it showed the possibility to build a high level of distinctive 

reference template for each individual and hence reliable performance for the 

proposed system (Kwapisz et al., 2010; Watanabe, Y. 2014; Johnston and Weiss, 

2015). For each experiment, four different FF MLP neural network training sizes 

were evaluated (i.e., 10, 15, 20, and 25) with each being repeated 10 times in 

order to account for errors that could occur due to the random setting of the neural 

network weights. In order to complete these results, 259, 200 tests were carried 

out (i.e., 4320 tests for each individual including the variation of the network and 

feature subset* 60 users). Nevertheless, the presented results in this chapter are 



 

76 

 

the key findings for the most important part of the conducted experiments. The 

results presented in this study were based on using FF MLP neural network of 

size 10 as it showed the lower EER for all the collected activities. 

4.4 Results 

After research questions of the prior work were already identified in the previous 

section, several extensive experiments were conducted. Details of the results and 

deep analysis of the conducted experiments are described in the following 

subsection. 

 Time VS Frequency Domain Features and Sensor Selection 

Selecting a set of features that are unique and distinguish can result in a better 

classification and easier to manipulate small feature subsets on digital devices. 

However, the majority of the prior acceleration-based biometric studies have not 

considered the effect of time domain (TD) and frequency domain (FD) on the 

system accuracy. Therefore, to avoid negative effects on the system 

performance, the EERs of both features (i.e., TD and FD) were calculated and 

presented in Table 9 (using the SD scenario, the acceleration (Acc) and 

gyroscope (Gyr) of the NW activity). 

Feature type NF EER (%) 

Acc Gyr 

All Features 132 0.18 3.37 

Time domain 88 0.15 3.73 

Frequency domain 44 3.09 12.69 

Table 9: The EERs of using all features, time and frequency domains 

The previous studies have already demonstrated that more features that are 

incorporated usually degraded the classifier’s accuracy. This is because some of 

these features could be irrelevant and/or redundant. It is clear that good 
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performances were achieved by using the TD features and all feature sets (i.e., 

little difference in results is observed between the two sets). By using the FD 

features alone, reasonable performance is obtained; however, its performance is 

far less promising in comparison with the results of using TD features alone, 

suggesting that FD features add little contribution towards the classification 

process and even negative impact on both sensors (i.e., the EERs were 

significantly increased to 3.09% and 12.69% for accelerometer and gyroscope 

respectively comparted to 0.15% and 3.73% when the time domain features were 

used). Moreover, it is difficult for the system to compute these features in real time 

on the smartphones and/or smartwatches due to their complicated calculation 

and the limited resources of these devices. Given the fact that detecting 

redundancies features makes the system more efficient, therefore, only the TD 

features (i.e., 88 features) were used in the subsequent experiments.  

Although sensor based-authentication systems could be implemented using 

accelerometer and/or gyroscope as the source triaxial sensor, further analysis 

was carried out to select the best sensor that offers lower error rates. As shown 

in Table 10, the evaluation results overwhelmingly support the use of the 

accelerometer sensor alone for smartwatch-based user authentication systems 

(with EERs of 0.15% and 0.93% for the SD and CD scenarios respectively). 

These errors are increased into 3.73% and 8.29 % of EER by using the gyroscope 

data of both scenarios respectively. Another analysis was conducted to reflect the 

EER spread within the population and the findings are presented in Figure 21. It 

can be seen in Figure 21, the EERs of using the gyroscope signal were 

significantly increased for the majority of users (or nearly similar) compared to the 

acceleration data.  As a result, all the subsequent results are based on the use of 

the acceleration data only. 
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Evaluation 

Scenario 

Sensors TD Features 

SD Acc 0.15 

CD Acc 0.93 

SD Gyr 3.73 

CD Gyr 8.29 

Table 10: The EERs of using the Acc and Gyr  

 

Figure 21: The EERs of the Acc versus Gyr sensors separated by users 

 Single classifier versus multi-classifier/algorithmic 

To evaluate the efficiency of the generated reference templates of individuals, 

two experiments were carried out, namely, single-and multi algorithmic. The first 

experiment (i.e., single classifier) utilized the generic model, which contains 

samples from all five activities but with the activity label removed. The second 

experiment (i.e., multi-classifier) evaluated by using the activity-based model, 

which contains five subsets, each contains the user’s movement data of single 

activity only (i.e., NW, FW, TypePC, GameM, and TypeM).  

So far, all the conducted analysis was based upon using all the extracted (i.e., 

time and/or frequency domain features). However, it is important to optimize the 

user's authentication model by selecting the most discriminative feature subset. 

Moreover, as mentioned earlier that the CD scenario is the most reliable test for 

any behavioral biometric-based user authentication systems. Therefore, Figure 
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22 depicts the EERs of using single classifier approach, CD scenario, and the 

effect of the proposed dynamic feature vector approach.  

As demonstrated in Figure 22, the EERs become flat (ranging from 7.1% to 7.6%) 

between 50 to 88 features suggesting little additional value over a feature length 

of 50. Shorter feature lengths do have a significant impact on the performance – 

possibly due to the noisier feature vector based upon all activities. The 

experimental set up of this approach (i.e., single classifier approach) bears a 

close resemblance to the prior work by Kwapisz et al., (2010). Nevertheless, they 

have reported low accuracy (i.e., about an EER of 19% compared to 7.1% in this 

study). The significant improvement could be the result of creating a complex and 

discriminative feature vector for each individual independently and to the 

selection of appropriate classifier (i.e., FF MLP neural network). It is clear that the 

reported results of utilizing the single algorithmic in this study greatly outperforms 

the prior work. Moreover, these findings are more reliable due to the utilization of 

the CD test (which is realistic evaluation) compared to the prior work that used 

the same day scenario (i.e., SD test). 

 

Figure 22: The EERs of using generic authentication model 

Although, the findings appear to be good enough to identify unique arm pattern 

for each individual, noting the system performance might worsen when using real 

life data due to a higher degree of variability in the signal data. Therefore, the 
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most realistic or practical experiment is to detect the user’s activity and creating 

multiple models, each trained with data of a specific activity.  Table 11 shows the 

benefit of generating the activity- based authentication model and its leverage on 

the system accuracy. As hypothesized, the results demonstrated that activity-

based authentication model greatly enhanced the recognition rate (i.e., the EER 

dropped drastically from 7.03% to the range of 0.69%- 5.81%). This substantiates 

previous findings in the literature that showed the accuracy of using the activity-

based authentication model could improve the system accuracy. Nevertheless, 

the evaluation results of this study are greatly surpassed the prior art that reported 

EERs in the range of 5.7% to 33.3% (as shown in Table 12); moreover, these 

studies were based upon collecting limited activities (specifically normal walking 

and gesture activities).  

In contrast, only two studies utilized the fast walking activity for the authentication 

purpose and obtained poor results, at best an EER of 17.4%, while the proposed 

system of this study achieved promising performance (i.e., 3.16% EER). The 

findings showed that some activities performed better than others (especially the 

gait activities that reported EERs of 0.69% and 3.16% for the NW and FW 

accordingly). Nevertheless, the typing and game activities still highly 

recommended for the use of TAS due to their high classification performance (i.e., 

at best EERs of 4.94%, 5.81%, and 4.54% for the TypeM, TypePC, and GameM 

respectively). The performances of TypeM and GameM are slightly superior to 

TypePC. This could be due to the position of the user’s hand being not fixed 

during the TypeM and GameM activities compared to TypePC where the hand 

position was fairly static. Thus, more differential movement data can be observed 

from the typing or interacting on a smartphone touch screen. The obtained results 
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offer vital evidence that the collected activities of this study have the potential to 

accurately recognize the legitimate user in a transparent and continuous fashion.  

A
ct

iv
it

y
 

1
0
 F

ea
tu

re
s 

 

2
0
 F

ea
tu

re
s 

 

3
0
 F

ea
tu

re
s 

 

4
0
 F

ea
tu

re
s 

 

5
0
 F

ea
tu

re
s 

 

6
0
 F

ea
tu

re
s 

 

7
0
 F

ea
tu

re
s 

 

8
0
 F

ea
tu

re
s 

 

8
8
 F

ea
tu

re
s 

 

NW 4.68 2.39 1.43 0.9 0.84 0.83 0.69 0.77 0.93 

FW 5.42 3.92 3.63 4.17 3.56 3.32 3.16 3.40 3.90 

TypeM 5.97 5.92 5.93 5.69 5.04 4.94 5.57 5.60 5.69 

TypePC 8.12 7.21 6.98 6.45 5.81 5.85 5.92 5.91 6.02 

GameM 4.97 4.82 4.83 4.79 4.62 4.54 5.17 5.80 5.61 

Table 11: EERs of using activity-based user authentication model for different 

activities 
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Derawi et al. (2010a) 20 51 NW Mob 

Nickel et al. (2011a) 10.4 51 NW Mob 

Nickel et al. (2011c) 10 36 NW Mob 

Nickel et al. (2011c) 17.4 36 FW Mob 

Nickel et al. (2011d) 21.7 48 NW Mob 

Nickel and Busch (2011e) 6.2 48 NW Mob 

Hestbek et al. (2012) 10 36 NW Mob 

Nickel et al. (2012b) 8.8 36 NW Mob 

Muaaz and Nickel (2012) 29.4 48 NW Mob 

Muaaz and Nickel (2012) 33.8 48 FW Mob 

Muaaz and Mayrhofer (2013) 33.3 51 NW Mob 

Muaaz and Mayrhofer (2014) 19 35 NW Mob 

Damaševičius et al.(2016) 5.7 14 NW Mob 

Shen, et al. (2017) 4.9 102 Ges Mob 

Junshuang Yang et al. (2015) 3.3 26 Ges SW 

Lewis et al. (2016) 22 5 Ges SW 

Kumar et al. (2016) 86.8 CCR 13 NW SW 

Shrestha et al. (2016). 8.7 18 NW SW 

Xu et al. (2017) 96 CCR 20 NW SW 

Liang et al. (2017) 4 20 Ges SW 

Griswold-Steiner et al. (2017) 12.5 20 Ges SW 

Table 12: Comprehensive analysis on gait authentication using mobile and 

smartwatch sensors 
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Regarding to the classification accuracy of the previous gesture-based 

authentication studies, remarkable recognition rates were achieved ranging 

between 3.3% and 4.93% of EERs (apart from Lewis et al., (2016)) that showed 

a high EER of 22%). Results from comprehensive evaluations for the TypeM, 

TypePC, and GameM activities were consistent with the prior findings that utilized 

different gestures (at best EERs of 4.94%, 5.81, and 4.54% for the 

aforementioned activities respectively). However, a fair comparison is required as 

this study utilized certain activities that are non-intrusive, frequently used, and 

more natural.  

In contrast, serious criticisms of the literature are capturing gestures that tend to 

be intrusive, do not offer continuous authentication, not realistic (i.e., complicated 

gesture such as a punch), and/ or not robust against imitation attack scenario. To 

show the efficiency of individual users’ performance, a comprehensive analysis 

for each activity was conducted (as shown in Figure 23). Figure 23 proves that 

each individual has a distinctive arm pattern, thus one third of the users reported 

an EER of around 0% for all the collected activities (e.g., 3, 4, 7, 12, 17, 19, 21, 

and 32), while the rest of the users reported an average of low EER in the range 

of 0-10%, apart from users 6, 8, 22, 23, 27, 46, and 50 that reported high EERs 

for particular activities (i.e., typing on a smartphone touch screen and/or PC). 

 

Figure 23: The EER of all activities separated by users 
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 Single Vs Cross Day Scenario 

While this study was in progress, the majority of prior work relied upon data from 

single session for both training and testing, which is not realistic and can lead to 

overly optimistic performance results. Much of the other acceleration-based 

recognition studies suffer from the same limitation and in cases when the CD 

scenario is considered, the evaluation is often either completed improperly or the 

results are poor. To overcome some of these past problems, a comprehensive 

experiment was carried out by training and evaluating the proposed system on 

data from across different days. Moreover, this section highlights the benefit of 

identifying the optimal features by creating a dynamic reference template for each 

individual. Two experiments are presented under two different scenarios; namely, 

Same-Day (SD) and Cross-Day (CD). The first experiment used all the extracted 

features (i.e., 88 unique features) while for comparison a more selective set of 

minimal features are used in the second experiment.  
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NW SD 1.13 0.78 0.24 0.26 0.27 0.13 0.20 0.16 0.15 

FW SD 1.55 0.80 0.62 0.36 0.35 0.32 0.28 0.32 0.31 

TypeM SD 2.40 1.76 1.38 1.18 0.99 1.21 1.24 1.39 1.43 

TypePC SD 2.28 1.36 1.38 1.15 1.15 1.30 1.39 1.33 1.52 

GameM SD 2.40 1.76 1.38 1.18 0.89 1.20 1.14 1.20 1.33 

NW CD 4.68 2.39 1.43 0.9 0.84 0.83 0.69 0.77 0.93 

FW CD 5.42 3.92 3.63 4.17 3.56 3.32 3.16 3.40 3.90 

TypeM CD 5.97 5.92 5.93 5.69 5.04 4.94 5.57 5.60 5.69 

TypePC CD 8.12 7.21 6.98 6.45 5.81 5.85 5.92 5.91 6.02 

GameM CD 4.97 4.82 4.83 4.79 4.62 4.54 5.17 5.80 5.61 

Table 13: The Impact of the SD, CD scenarios, dynamic feature selection technique 

on the performance in details 
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The results in Table 13 show if 10 seconds interval of the accelerometer data is 

evaluated properly, the proposed authentication system was able to achieve very 

high accuracy for both scenarios. For the SD scenario, EERs ranged between 

0.13% (for NW) 1.15% (for TypePC) by using 60 and 40 features respectively. 

Improvement on performance is obvious when comparing the outputs to the 

previous mobile-based acceleration studies under the SD scenario (i.e., EERs 

ranging from 5.7% to 1.4%). Moreover, the system is still able to effectively 

recognize the user’s arm pattern with low EERs of 0.78%, 0.80%, 1.76%, 1.36%. 

and 1.76% by using only 20 features for the NW, FW, TypeM, TypePC, and 

GameM activities respectively. These results suggest that the selected feature 

subset was highly discriminative, which was based upon automatic selection of 

the most relevant or optimal attributes. 

In addition to the SD, the more realistic test (i.e., the CD scenario) was also 

applied. As expected the system performance decreased under the CD 

methodology; this is because the behavioural biometric can be affected by 

several factors such as mood, clothes, tiredness, and permanence.  Nonetheless, 

the reported CD results are still promising in comparison with the prior work that 

reported EERs in the range of 5.7% - 33.3% (for the gait data) and 12.5% (for the 

hand writing activity). Moreover, the proposed feature reduction method has 

further strengthened the author’s confidence by minimizing the number of 

features and maximizing the discriminative information. The best findings of the 

captured activities were obtained by utilizing feature subset size ranged between 

50 to 70 features. With respect to the feature subset size, the findings in Table 13 

show that the SD test for the all activities, apart from the FW, requires less 

features than the CD (i.e., 60, 50, 40, and 50 features for the NW, TypeM, 

TypePC, and GameM respectively). This could be explained because the user’s 
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arm pattern could vary or be inconsistent over the time, hence more features are 

required for individual to be identified for the CD scenario.  

With the aim to understand how individual user performed, a most common 

activity was selected (i.e., NW activity) and results on each user’s acceleration for 

both SD and CD scenario are presented in Figure 24. As shown in Figure 24, high 

level of performances (i.e., in the range of 0-2% EER) were obtained for 90% 

users (apart from users 31, 37, 38, 42, 48, and 51). More than 25% of the 

participants reported 0% of EERs such as users 2, 4, 13, 15, 17, 21, and 27; this 

suggests that users have consistent and distinctive set of acceleration pattern 

characteristics.  

 

Figure 24: The EERs of the SD and CD scenarios for each user individually 

So far, the presented results in Table 13 were based upon static feature vector 

size for all users (i.e., the user’s reference template size was fixed for all users 

such as 70 features for the NW) although the composition of the feature vector 

was dynamic. Therefore, further analysis was carried out to optimize the feature 

vector for each user independently. For example, the reference template of user1 

might contain 40 features while 20 or 30 accelerometer features utilize to form 

the reference template of user 2. The aim of this investigation is to determine 

whether the optimized feature vector for each user independently can further 

improve the system accuracy. Moreover, to find out the requisite number of 
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features that build a robust reference template for each user independently.  

Table 14 shows a comparison of using static and optimized feature vectors for 

each activity. 

Activity Scenario Evaluation EER (%) for SFV EER (%) for OFV 

NW SD 0.13 0.05 

FW SD 0.28 0.14 

TypeM SD 0.99 0.5 

TypePC SD 1.15 0.3 

GameM SD 0.89 0.25 

NW CD 0.69 0.29 

FW CD 3.16 1.31 

TypeM CD 4.94 2.66 

TypePC CD 5.81 3.85 

GameM CD 4.54 2.3 

Table 14: The system performance using the static feature vector (SFV) and 

optimized feature vector (OFV) 

The finding in Table 14 confirms the hypothesis that creating optimized feature 

vector for each user independently might greatly reduce the EER; the proposed 

technique (i.e., optimized feature vector) clearly has an advantage over the static 

feature vector. As expected the EERs of the SD evaluation were decreased for 

all activities. Similarly, applying the more realistic test (i.e., CD scenario) revealed 

a significant improvement (i.e., a minimal of 34% and up to nearly 65%) over the 

classification performance, at best EERs of 0.29%, 1.31%, 2.66%, 3.85%, 2.3% 

for the aforementioned activities (compared to 0.69%, 3.16%, 4.94%, 5.81%, 

4.54% of using static feature vector method). The possible explanation for the 

significant improvement on the system accuracy is that the movement pattern of 

some users requires fewer features to produce the lowest EER and vice versa 

(i.e., the user's arm movement for particular users is inconsistent hence, more 

features are required to obtain the optimal or lowest EER). For example, fixing 

the size of the reference template for all users (60 features) might negatively 

affect the overall system accuracy. To support the above assumption, further 
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tests were undertaken for each activity and the evidence presented in Figures 25, 

26, 27, 28, and 29 for the NW, FW, TypeM, TypePC, and GameM respectively.  

 

Figure 25: The optimal feature vector size of each user for the NW activity 

 

Figure 26: The optimal feature vector size of each user for the FW activity 

 

Figure 27: The optimal feature vector size of each user for the TypeM activity 



 

88 

 

 

Figure 28: The optimal feature vector size of each user for the TypePC activity 

 

Figure 29: The optimal feature vector size of each user for the GameM activity 

Apart from the improvement in the system performance of using the optimization 

technique, Figures 25 and 26 show the gait templates size was reduced for more 

than half of users. For example, FW-based model of users 3, 5, 8, 10, 24, 32, 37, 

46, and 58 was created by utilizing only 20 prioritized features and even less 

features were used for users 1, 28, 31, 34, and 39 (i.e., 10 features). In contrast, 

other users such as 4, 6, 9, 13, 16, and 22 required more features (i.e., 80 to 88 

features) to produce the lowest EER. The possible explanation is the walking 

pattern of these participants was varied or inconsistent over the time. Therefore, 

more features are required to generate a reference template that is robust to 

impersonation attacks and effectively identify the user’s identity. For the 

remaining activities (i.e., TypePC, TypeM, and GameM), Figures 27, 28, and 29 

show a clear trend that the proposed DFVS technique was successfully reduced 
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the vector size of more than two thirds of users. This could be due to that less 

movement data could be obtained for these activities compared to the walking 

activities hence, less feature subset was able to form the user’s reference 

template.  

4.5 Discussion 

The conducted analysis seeks to address the following questions: 

 Can smartwatches provide a more reliable and consistent user’s motion signal 

than smartphones could? 

 What is the impact of the time and frequency domain features on the system 

performance?  

 Can activity- based user authentication model have a positive effect on the 

verification accuracy? 

 What is the influence of applying CD scenario on the system accuracy?  

 Does the proposed feature selection approach have a positive effect on the 

gait biometric performance? 

 Does the optimized feature vector have further improvement on the system 

accuracy? 

The obtained results suggest that smartwatches have the ability to capture more 

accurate personal data than smartphone could. Moreover, the experimental 

analysis reveals that activity- based user authentication is a highly efficient and 

recommended to be used for verifying the user in a transparent and continuous 

manner. Although features were extracted in both time and frequency domains, 

the findings in Table 9 supports the use of TD features alone due to their high 

correlated and distinctive characteristics for sensor-based user authentication 
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systems. Moreover, the complexity of calculating FD features make them less 

practical especially for mobile devices and smartwatches that have limited 

resources.  

When it comes to build the feature vector of individuals, a comprehensive 

experiment was carried out to determine the necessity of creating multiple 

reference templates for each user, each contains feature subset of specific 

activity. The results in section 5.4.2 support the usage of activity-based user 

authentication model rather than utilizing a generic model for all data. For 

example, the best EERs were 0.69%, 3.16%, 4.94%, 5.81%, and 4.54% for the 

NW, FW, TypeM, TypePC, and GameM respectively (compared to 7.02% when 

a generic-based model was applied). These errors were significantly reduced into 

0.29%, 1.31%, 2.66%, 3.85%, and 2.3% for the aforementioned activities by 

utilizing DFVS technique.  

As expected, the results demonstrate that biometric performance is degraded 

under the more realistic evaluation scenario (i.e., CD scenario). However, the 

levels of performance being achieved are excellent in comparison to other 

research on behavioral biometrics and transparent authentication. Using the CD 

scenario resulted in EERs of 0.29%, 1.31%, 2.66%, 3.85%, and 2.3% for the NW, 

FW, TypeM, TypePC and GameM respectively against 0.05%, 0.14%, 0.5%, 

0.3%, and 0.25% utilizing the SD test for the above activities. Compare with the 

prior art, this study utilized the biggest dataset in the domain and achieved 

overwhelming results. 

Further influencing factors on the biometric system performance is the selected 

feature subset; selecting unique features for each user would improve the results 

and reduce the complex computations on the smart devices, which has limited 

processing resources. Therefore, a feature selection approach of any 
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mobile/smartwatch-based biometric system needs to be sophisticated enough 

before the classification phase takes place. As expected, the proposed feature 

selection approach in this study, which was based on creating a dynamic feature 

vector for each user, successfully reduced user’s feature vector size. The 

reported EERs of using static feature vector for the CD evaluation were 0.69%, 

3.16%, 4.94%, 5.81%, and 4.54% for the NW, FW, TypeM, TypePC and GameM 

respectively (compared to 0.93%, 3.90%. 5.69%, 6.02% and 5.61% when the 

whole features were used). These errors were dramatically decreased into 

0.29%, 1.31%, 2.66%, 3.85%, and 2.3% for the aforementioned activities by 

optimizing the user’s template (i.e., optimized feature vector technique). In 

general, the proposed dynamic feature selection approach achieved a significant 

improvement on the system performance; this is because the most distinctive and 

unique features were selected to generate the dynamic feature vector for each 

individual hence, better recognition rates were obtained.  Nevertheless, the 

effectiveness of the proposed feature selection approach should be examined by 

collecting data over weeks or maybe months to find out the robustness of the 

user’s reference template versus the changes of the human pattern. 

The experimental methodology (specifically, the collected activities) and the 

findings show that of the proposed system is user-convenient and secure to 

authenticate users on their smart devices; moreover, the technology (i.e., 

smartwatches) is sufficiently capable and the nature of the signals captured 

sufficiently discriminative to be useful in performing activity recognition. Although 

the amount of the extracted samples from each user and for each activity was 

fairly acceptable (at least for a research purpose), a generalized activity-based 

acceleration dataset (i.e., dataset that contains movement data from a large 

number of users over long period of time as well as involves several human 
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activities such as jogging, eating, gestures, and driving a car) is necessary to 

claim the proposed system is robust to impersonation attacks. Moreover, a 

thorough evaluation is required for interpreting these results; this can be achieved 

by developing an application to test the efficiency of the system, using different 

artificial machine algorithms, and evaluating different segment size.  

Research has tended to focus on collecting data under constrained environment 

rather than capturing real life data. This scenario is only practical if a user 

declares/ labels the performed activity (which is unexpected in real-world 

implementation as users tend to do several activities during their daily life). As a 

result, capturing real life data is essential to make sure that the collected data can 

be used for real practical authentication system. 

Although the proposed system achieved high accuracy (i.e., as low as EER of 

0.29% and up to 3.85%), smoothing functions such as majority voting could 

reduce the error rates and offer a user-friendly environment by reducing the 

rejected user’s samples as well as monitoring the system from being misused. 

One of the major drawbacks to adopting a smoothing function is the time required 

by the system to predict the user’s identity (i.e., more time is required to make 

decision by the system). As a result, there is an increase chance for the imposter 

to abuse the system. 

4.6 Conclusion 

The experimental research has shown the effectiveness of using smartwatch-

based activity recognition system to identify the legitimate user based upon five 

different activities. The aim of this study is to strike a right balance between robust 

security and ease of use. The study also examined the effect of using the CD 

scenario on the system performance and presents a novel feature selection 

approach that effectively reduced the feature vector size without overtly affecting 
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performance. Moreover, the advantage of creating an activity-based user 

authentication model is highlighted in order to decrease the EER. Further 

investigation was carried out to present an analysis of the optimal feature vector 

size for each individual, which has resulted in lower EERs for the proposed 

system. The proposed system was evaluated by collecting the motion data from 

60 users and analysed the feature set to determine its uniqueness. However, 

more experimental work should be carried out to explore different feature 

reduction approaches.  

The next chapter will aim to remove the one factor that is explicitly controlled in 

all previous studies – the nature of the controlled data collection and instead look 

to understand what the performance of the approach is with real life data over a 

prolonged period of time (weeks). As the nature of the real-life signals is likely to 

be noisy, activity-recognition approach will be used in order useful to predict the 

user’s activity. 
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5 Continuous Smartwatch-Based User Authentication 

Using Unlabeled Motion Data 

There is no doubt that the reported findings in Chapter 5 were very competitive 

and outperformed the previous art, however, the majority of sensor-based studies 

(as well as the presented experiments in the previous chapter) were implemented 

within a controlled environment. This means that all participants were asked to 

do exactly the same type of activity such as walking on flat floor in an indoor 

environment. However, the more realistic test comes by capturing uncontrolled 

data (i.e., real-life signals where users will not ask to perform certain activities, 

but merely wear the smartwatch). To this end, this chapter aims to 

 Collect uncontrolled data to find whether the system still capable to achieve 

relatively good accuracy.            

 Investigate the effectiveness of the dynamic feature selection approach and its 

impact upon real-life data.  

 Demonstrate whether the fusion of the acceleration and gyroscope data has a 

positive impact on the system accuracy.  

5.1 Introduction 

The use of motion signals for TAS requires a scientifically valid experiment to 

collect, analyses and evaluate the feasibility of wearable computing. Therefore, 

the purpose of this research is to investigate and look at an experiment that 

provides the empirical basis for understanding how well this technique will offer 

by using data under unconstrained environment. When it comes to behavioural 

biometric systems, the majority of previous acceleration-based studies were 

based upon using data that have been collected within a controlled environment. 
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Nevertheless, the laboratory experiment tends to be far less realistic for real world 

applications; moreover, this might be very difficult to any classifier to discriminate 

between individuals. The big challenge in behavioural biometrics is implementing 

an experiment in a real-world scenario. This is because the random arm 

movements in the real scenario such as making a phone call and hand shaking. 

These factors can significantly affect the nature of the captured signal. Therefore, 

this study aims to collect real time accelerometer and gyroscope data within 

uncontrolled environment in order to setup a real practical authentication system. 

Collecting real data could be useful to enhance the performance of TAS; this 

could be due the fact that users are not doing exactly the same thing in the normal 

practical scenario, which might greatly help the classifier to differentiate between 

them.  

Although sensor- based user authentication systems could be implemented by 

using the fusion of both sensors (i.e., accelerometer and gyroscope), the majority 

of the previous studies utilized the accelerometer sensor alone. The variation of 

the real-life signals for both sensors could result in a unique and distinctive pattern 

for individuals. Therefore, this study utilized the fusion of both sensors to explore 

if the proposed technique could improve the system performance. The nature of 

the real-life signals is likely to be very noisy thus, it is very difficult to predict the 

activity type of individuals. It was already highlighted in the previous chapter that 

detecting the activity type would significantly reduce the EER for the sensor- 

based user authentication system. Therefore, this study proposed a lightweight 

activity detection method based upon the frequency component of the 

acceleration signals (more details can be found in section 6.2.2). As such, this 

study has sought to improve upon the prior art in the following manner: 
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 To provide a robust and realistic dataset that was captured in a completely 

unconstrained environment, involving 30 users with up to 10 days of real-life 

data collection. This is potentially the largest dataset for activity-based user 

authentication using commercial smartwatches. 

 To evaluate the performance of the proposed system based upon real-life data 

not simply laboratory controlled. 

 To propose a light activity detection approach to identify the activity type 

before classifying the user’s identity that significantly improved the system 

performance.  

 To investigate the effect of the fusion feature level on the classification 

accuracy. 

The present chapter describes the methodology of capturing the acceleration and 

gyroscope signals, pre-processing, feature extraction and selection process, and 

the classification performance.  Section 6.2 details the experimental setup that 

are used for designing the activity-based user authentication system. The results 

are explained in Section 6.3; Section 6.4 and 6.5 present the discussion and the 

conclusions respectively.  

5.2 Experimental Methodology 

This section describes the process of collecting the movement signals, divide the 

dataset into groups based upon the activity type, and feature extraction. In order 

to overcome some of the shortcomings of prior work, this study explores the 

following research questions:  

 To what degree can activity-based user authentication be successfully 

achieved in an uncontrolled environment (i.e., real-life)? 
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 Does the fusion approach (i.e., combination of both accelerometer and 

gyroscope data) for the real-life signal enhance the authentication 

performance? 

  Does the proposed activity detection and the majority voting method maximize 

the classification accuracy?  

 Data Collection 

In order to evaluate the activity-based user authentication under unconstrained 

environment, the acceleration and gyroscope data streams were collected from 

30 users. The acceleration and gyroscope data streams were collected from a 

subset of 30 users from the original controlled experiment (which involved 60 

users). Both genders were included in the data collection process (17 males and 

13 females) with a range between 18–55 years old as shown in Figure 30.  

 

Figure 30: The age ranges across the participants for the real life data 

Once the smartphone and Microsoft band 2 were turned on, the user’s arm signal 

was captured in a continuous and transparent manner by running an android 

application in the background. For consistency, the sampling rate was fixed (i.e., 

32 Hz) for all participants; users were not asked to provide predefined activities, 
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but merely to wear the smartwatch for 10 days to enable a real-world evaluation 

of the proposed approach (i.e., users were encouraged to freely undertake their 

daily routine in order to make sure the collected data represented the user’s actual 

and typical behaviour). Each user was asked to wear the watch for at least 4 hours 

per day (or until the smartwatch battery was drained). The total collected data per 

user was approximately 40 hours (4 hours * 10 days) and 1200 hours for all users. 

To the author’s best knowledge, this is the largest smartwatch-based sensor data 

in the domain.  

The total extracted samples per user of the uncontrolled experiment (over 10 

days) for each activity are presented in Table 15. The amount of the collected gait 

samples (i.e., for both normal and fast walking) were a total of 32327 (compared 

the prior accelerometer-based studies art that collected limited dataset ranging 

between 900 and 1000 samples). For the non-walking signal, 93637 samples 

were obtained which is the first acceleration/gyroscope-based smartwatch study 

that used the stationary signal for the TAS. 

User ID NW FW Non-W User ID NW FW Non-W 

1 1314 1763 2813 16 1243 381 9081 

2 276 199 1329 17 390 173 2810 

3 978 747 2270 18 1179 564 2250 

4 898 336 3461 19 847 145 3640 

5 897 246 3418 20 618 159 1025 

6 447 213 2929 21 758 185 5640 

7 416 135 1089 22 375 238 3400 

8 427 296 1797 23 209 107 2186 

9 1160 281 3066 24 276 155 2151 

10 832 425 2880 25 120 93 1484 

11 551 102 2865 26 629 528 1990 

12 844 333 2749 27 192 384 6910 

13 245 173 1062 28 970 750 2371 

14 391 152 8070 29 899 352 3161 

15 840 430 2418 30 997 264 3322 

Table 15: The total samples of the uncontrolled data separated by user 
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 Data Pre-Processing 

Several sensor-based studies have identified that the collected motion signal 

contained some noise and errors (Gafurov, et al., 2007a; Derawi et al., 2010a; 

Hestbek et al., 2012; Hoang et al., 2013; Muaaz and Nickel, 2012; Sangil Choi et 

al., 2014). It is complicated/ challenging to get the signal in the symmetric form, 

specifically for the real-life data as it contains several user’s activities such as 

running, walking, typing that could produce completely different signal shapes 

(i.e., waves), hence result in a very noisy data (which is nearly impossible to 

classify). As mentioned earlier, the noise could be resulted by shaking the hand, 

provide a quick gesture (e.g., suddenly raising the user’s hand) or changing 

clothes. Therefore, it is important to train multiple reference templates; each 

contains the data of specific activity and an activity recognition should be applied 

to distinguish the performed activity and select the correct authentication 

template. The following steps were adopted to the original acceleration and 

gyroscope signals to eliminate or reduce the noise. 

 Removing unworn signal: as long as the smartwatch is on, the application 

would keep running in the background and capture the movement data in a 

continuous manner. Therefore, the information of galvanic skin sensor was 

used to remove the signals in the case of the smartwatch user takes off the 

band. Figure 31 shows the original signal and the highlighted red part was 

removed as it represents the signal when the watch was not worn.  
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Figure 31: An example of real-life data of user 1 

 Gait detection: without identifying what a user is doing at a specific point of time, 

recognizing or predicting the user’s identity is difficult to achieve (i.e., the error 

rates would be increased significantly). The real-life signal is more likely to greatly 

fluctuate (i.e., very noisy) as shown in Figure 31; this is because users are more 

likely performing different activities during their daily routine. Other factors that 

negatively affect the regularity of the captured signal could be carrying a load, 

hand in a jacket or trouser pocket. As a result, dividing the signal into subsets 

could result in distinctive arm pattern among the population (each subset contains 

data of specific activity).  

This study proposed a lightweight approach that automatically detects the 

repetitive cycles of the user’s walking pattern from the original signal. This was 

achieved by analysis the horizontal (x) acceleration signal of different users due 

to the high discrimination power compared to the vertical (y) and sideways (z) 

motions. However, data of other axes (i.e., y and z), as well as x axis, were further 

utilized to create the reference and test templates. Based on the above 

observations, it is hypothesized that the detected cycles represent the user’s gait 

pattern while the rest of data is considered as non- walking (Non-W) samples. 

Primarily, it was important to determine the start point of the actual walking pattern 

that was identified of about 1.3m/s (Gafurov et al., 2007a) and thereafter detecting 
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the repetitive peaks based upon the initial gait sample. This was carried out by 

identifying the initial minima that is found at the following equation:  

Mi1= min (Aw-d1, ..., Aw+d2) 

Where (d1 = 50, d2 = 150, i =32 acceleration values and Aw was the first 

accelerometer value greater than 1.3m/s). The first minima was considered the 

start point of the first cycle, and the second local minima was selected as the 

terminus of the cycle. To compute the second minima, the following equation was 

used:  

Mi2= min (Mi1+D-d,..., Mi1+D+d), where D=32 and d=20 

This procedure was repeated until all remaining minima were found in the signal 

as shown in Figure 32. The end point of one cycle was considered as a start point 

for the next cycle and so on. Once the gait data was extracted, it was split up into 

two groups (i.e., normal and fast walking) in order to improve the classification 

accuracy. This was achieved by detecting the local maxima peaks for each 

segment and average the values. Segments that have high peak values were 

considered as fast walking (FW) samples while segments with low peak values 

reflect the normal walking (NW) data (see Figure 33). In total, the original 

movement data was segmented into 3 groups: NW, FW, and Non-W. 

 

Figure 32: An example of the detected local minima from the Acc signal 
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Figure 33: An example of filtering out the real-life data and fast walking VS 

normal walking 

 Filtering: similar to the conducted experiment (i.e., the controlled experiment) 

in the previous chapter, a low pass filter and the cut-off frequency of 20 Hz was 

used in order to minimize the unwanted accelerometer and gyroscope signals. 

Apart from eliminating irregular walk steps, the aim of applying the filtering 

technique was to reduce fake gait samples (i.e., when a user moves their hand 

in a symmetric way). Figure 33 presents the efficiency of the proposed filter 

that resulted in consistent walking style; moreover, it shows an example for the 

detected NW and FW samples by using a simple and lightweight gait detecting 

technique. It can be clearly observed from Figure 33 that the proposed gait 

detection approach was able to detect series of the same peaks range for the 

FW and NW respectively. For example, the magnitude range of the fast walking 

peaks were between 0 and 2, while it ranged from 0.4 to 1.2 for the normal 

walking peaks. 
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 Segment size: as the segment-based showed high level accuracy rather than 

the cycle-based method, the acceleration and gyroscope signals were 

segmented by using sliding window approach. Another important parameter 

that may affect the system performance is the window size. Several studies 

highlighted that choosing a short segment interval of data (e.g., 3, 4, and 5 

seconds) has dramatically increased the EER as it does not contain enough 

information to recognize the user’s pattern (Nickel et al., 2011b; Shen et al., 

2018; Mare et al., 2014; Kumar et al., 2016). In contrast, utilizing a bigger 

segment size (e.g., 15 or 20 seconds) requires more processing time and gives 

a high chance to attacker to misuse the proposed system as well as offers less 

number of samples for training the classifier. Therefore, selecting a suitable 

window size that offers a balance between the security and usability is 

required. This study divided the raw movement data into 10 seconds due to its 

high performance in the controlled experiment, which is presented in the 

previous chapter.  

   Feature Extraction and Feature Selection  

The 10 seconds of time-series data is transformed into a single example via the 

use of a number of summary features. The transformation process and summary 

features used in this study are identical to the ones used in the prior activity-based 

user authentication study (i.e., the controlled experiment in the previous chapter) 

due to their high performance. These features are the same regardless of whether 

the example is being generated from accelerometer or gyroscope data. Details of 

these features can be found in Section 5.3.3. The discrimination capabilities of 

the most relevant features that are invariant to changes were investigated. This 

was achieved by applying the feature selection approach, which was based upon 

creating a dynamic feature vector for each user.  
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 Experimental settings 

In order to train the authentication model, 40% was utilized (which is equivalent 

to 4 days data), while the remaining 60% samples were used to test the classifier. 

As mentioned earlier, the SD evaluation does not represent a realistic test for any 

behavioural -based biometric system. Therefore, all the findings in this study were 

based upon applying the most reliable scenario (i.e., CD test). After preparing the 

user’s templates, a FF MLP neural network was used as the default classifier due 

to its reliable performance shown in the previous chapter. For each experiment, 

two different FF MLP neural network training size were evaluated (i.e., 15 and 20) 

with each being repeated 10 times in order to account for errors that occur due to 

the random setting of the neural network weights. The experimental setup for the 

real-life experiment included a total 43,200 tests (i.e., 1440 test per user), the 

following section presents the key findings of this study. The results presented in 

this study were based on using FF MLP neural network of size 10 as it showed 

the lower EER. 

5.3 Results 

 The impact of gait detection method on the system accuracy 

Having devised and applied the gait detection method, data was divided into NW, 

FW and Non-W activities. To permit a comparison and discuss the results of the 

gait detection, four models were created for each individual. The first model (i.e., 

generic model) contains all data without predicting the activity type; on the other 

hand, each of the remaining three models (called as activity-based authentication 

models) trained with data of specific activity (i.e., NW, FW, and Non-W activities). 

Once these models were generated, two experiments were conducted; the first 

experiment utilized the generic model and reported EERs of 24.54% and 26.11% 
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for the accelerometer and gyroscope respectively. As expected, high EERs were 

obtained by using the generic authentication model due to the high degree of 

variability that exists within the captured signal. The variability of the real-life 

signal caused by the free arm movement, which was captured within uncontrolled 

environment. To find out if the proposed activity detection approach would 

improve the system performance, the second experiment focused upon 

identifying the activity type and then classifying the user’s identity. Table 16 

shows the EERs for each detected activity by using the CD scenario.  
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NW Acc 10.45 6.41 5.47 5.21 5.12 4.35 4.60 4.77 4.9 

Gyr 13.16 11.15 9.90 9.59 9.38 8.96 9.33 9.17 9.46 

FW Acc 5.05 2.37 2.00 1.62 1.44 1.24 1.25 1.44 1.74 

Gyr 9.50 7.08 6.34 5.87 5.81 5.74 5.66 5.88 6.01 

Non-W Acc 7.27 7.22 7.04 7.40 7.46 7.20 7.69 8.68 8.74 

Gyr 12.24 11.25 11.51 11.29 11.30 11.29 11.48 11.37 12.05 

Table 16: The EERs of using activity-based model 

The presented results in Table 16 showed that the accelerometer sensor 

achieved high level of performance, at best EERs of 4.35% 1.24% and 7.04% for 

the NW, FW and Non-W activities respectively (compared to an EER of 24.54% 

of utilizing a generic-based authentication model for the accelerometer data). 

Using the gyroscope -based signal for TAS reported EERs of 8.96%, 5.66%, and 

11.25% for the above-mentioned activities. These findings were consistent with 

prior art that highlighted the gyroscope sensor is less effective than 

accelerometer. However, these results are considered quite impressive if they 

are compared to the accuracy of generic-based authentication model (i.e., 

26.11% of EER).  
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Since the goal of the proposed feature selection approach is to reduce the user’s 

reference template and improve the system accuracy, Table 16 clearly shows an 

advantage over the verification performance and generating smaller feature 

vectors. For example, the feature reduction method was effective by decreasing 

the EERs from 4.9%, 1.74%, and 8.74% (using the all features of the 

accelerometer sensor) to 4.35%, 1.24% and 7.04% for the NW, FW and Non-W 

activities respectively. Although there is not a significant improvement on the 

system accuracy, the best EERs were achieved by curtailing the number of 

features from 88 to 60, 60, and 30 features for the aforementioned activities. This 

implies that the proposed method successfully discarded about 32% of the gait 

features and nearly 66% of the Non-W features. Clearly, the proposed activity 

detection method has a significant positive impact on the authentication accuracy 

and suggest that commercial smartwatches can be effectively utilized to design a 

robust, secure, and user-friendly authentication system (i.e., TAS).  

With the aim to understand how individual user performed for each activity, results 

for each user’s acceleration and gyroscope are presented in Figures 34, 35, and 

36. As shown in Figure 34, the acceleration EERs for the NW activity were 

relatively small (i.e. in the range of 0-5%) for 90% of users, while users 10, 11, 

and 17 achieved EERs ranged between 10% and 15%. This suggests that users 

have a consistent and distinctive set of acceleration pattern characteristics. 

Although the individual performance for the gyroscope sensor was less promising 

in comparison with the acceleration findings, the EERs for two third of the 

participants were fairly acceptable (ranging from 0-10%). The individual user 

performance for the FW activity using the acceleration signal was vastly good, 

where the majority of users achieved an EER of less than 1% (see Figure 35). 

These findings are in line with the controlled experiment (which is presented in 
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the previous chapter) that showed the fast walking signal of individual contains 

more distinctive information compared to other activities hence, the user’s identity 

can be identified even in a noisy environment with lower EER. For the Non-

walking activity, Figure 36 showed that one third of the users reported an EER in 

the range of 0-5% by utilizing the acceleration data, while the rest of the users 

resulted in EERs between 5% and 10%, apart from users 3, 4, 5, and 7. In 

contrast, the gyroscope performances were varied and less effective than the 

acceleration sensor; for instance, high EERs were achieved for some users (i.e., 

more than 20% EER such as users 1, 3, 7, and 20) while an EER of around 0% 

was achieved for others (e.g., 6, 16, and 19).  

 

Figure 34: The Acc vs Gyr EERs separated by users using the NW activity 

 

Figure 35: The Acc vs Gyr EERs separated by users using the FW activity 
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Figure 36: The Acc vs Gyr EERs separated by users using the Non-W activity 

 The effectiveness of using the fusion of both sensors on the 

biometric performance  

Although the findings in Table 16 suggest that accelerometer sensor resulted in 

lower EERs (i.e., better performance) than gyroscope for all activities, prior 

studies (Kumar et al., 2016; Kumar et al., 2017) have highlighted that sensor-

based authentication systems might be susceptible to attacks if a single sensor 

(e.g., accelerometer or gyroscope) is used. Moreover, other authors Johnston 

and Weiss, (2015) suggested that the system accuracy might be improved by 

using fusion features of both sensors. The fusion schema in biometric-based 

systems can be implemented at three different levels: sensor level, feature level, 

and score level. In the sensor level fusion, data of single modality or multiple 

biometric traits are used together; for example, capturing face samples from 

different cameras and different angles (in case of unibiometric system) or 

collecting multi-biometric modalities such as face and voice.  

When it comes to the feature level fusion, features that are extracted from 

different sensors readings are fused in order to generate a resultant reference 

template. Finally, the score level is an approach that measures the similarity 

scores between the reference and test templates and combines the resultant 

scores of each modality together. This study investigated whether the feature 
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level fusion can offer a better verification rates. As mentioned earlier, 88 time 

domain features were extracted for each sensor, so the fusion approach resulted 

in 172 features for accelerometer and gyroscope sensors (88 features * 2 

sensors). Table 17 displays the EERs of using the fusion approach of both signals 

for the detected activities. 
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NW 9.32 5.51 5.51 4.26 3.98 3.91 3.66 3.84 3.96 3.86 3.55 4.04 3.82 3.56 3.98 3.84 4.45 

FW 5.01 2.70 1.89 1.68 1.61 1.36 1.36 1.28 1.23 1.23 1.16 0.92 1.45 1.03 1.22 1.38 1.41 

Non-W 7.36 5.58 5.31 5.59 5.39 5.39 5.39 5.36 5.44 5.40 5.47 5.55 5.44 5.68 6.52 6.75 6.84 

Table 17: the EERs of applying feature level fusion separated by activities 

Obviously, Table 17 shows that the authentication performance is significantly 

improved for all activities. Using the fusion approach decreasing the EERs from 

4.35%, 1.24%, and 7.04% (for accelerometer) to 3.55%, 0.92% and 5.31% for the 

NW, FW, and Non-W activities respectively. This positive effect of using the fusion 

technique is more noticeable if it is compared to the gyroscope findings (i.e., 

EERs of 8.96%, 5.66% and 11.25%). Meanwhile, the feature reduction approach 

greatly reduced the user’s templates, specifically for the Non-W data that reported 

an EER of 5.31% by using 30 features only. For the gait activities (i.e., NW and 

FW), neglecting about 40% features led to obtaining lower EERs. 

To find out whether the individual user performance is better with or without the 

fusion approach, further analysis for each user separately was conducted (as 

shown in Figures 37, 38, and 39). This was achieved by comparing the findings 

of the fusion approach against the acceleration user’s performance (as it was 

better than the gyroscope results). Figure 37 proves that using the fusion 

approach successfully minimize the EERs for half of the users while the individual 
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user performance was nearly similar for the rest of users (e.g., users 9, 11, 12, 

13, and 14). A possible explanation for not maximizing the accuracy for 50% of 

the users may be that their gyroscope features were not sufficiently discriminative 

to add a noticeable contribution to the individual user performance. Another 

possible justification for this is that the majority of the selected feature subset for 

generating the user’s reference template was acceleration-based feature, hence 

the EER was nearly similar.  

Similarly, using the fusion approach for the FW activity improved the individual 

user accuracy for around 50% of the users (e.g., the EERs were significantly 

reduced for users 5, 11, and 15); the rest of the users reported nearly similar 

performance (as shown in Figure 38), apart from users 12 and 21 where their 

EERs were slightly increased by using the fusion approach. For the Non-Walking 

activity, a significant reduction for the reported EERs was achieved for more 65% 

of the users (apart from user 7) by utilizing the fusion method while no impact was 

noticed for the remaining users.   

 

Figure 37: The fusion vs Acc EERs separated by users using the NW activity 
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Figure 38: The fusion vs Acc EERs separated by users using the FW activity 

 

Figure 39: The fusion vs Acc EERs separated by users using the Non-W activity 

 The influence of the optimized feature vector upon performance  

The presented findings in Tables 16 and 17 were based upon creating dynamic 

reference template for each user but the feature vector size was fixed for all users; 

for example, the best EER for the NW activity was 3.55% by using 110 features 

for each individual. Nevertheless, the findings of the controlled experiment 

demonstrated that optimized feature vector could be useful to maximize the 

system performance. For instance, EERs of 0.29%, 1.31%, 2.66%, 3.85%, and 

2.3% were achieved for the NW, FW, TMob, TPC, MobG respectively (compared 

to 0.29%, 1.31%, 2.66%, 3.85%, 2.3% when the static feature vector was used). 

Therefore, further investigation was carried out to identify the optimal feature 

subset size for each user independently. For instance, some users might require 

few features to accurately recognize their pattern, while increasing the feature 

size may offer better accuracy/error rates for other users. Table 18 displays the 
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results of the best EERs for the all activities using static and optimized feature 

vector. 

Activity Sensor EER (%) 

of SFV 

EER (%) 

of OFV 

NW 

Acc 4.35 3.93 

Gyr 8.96 8 

Fusion 3.55 2.18 

FW 

Acc 1.24 0.73 

Gyr 5.66 5.15 

Fusion 0.92 0.70 

Non-W 

Acc 7.04 6.51 

Gyr 11.25 10.47 

Fusion 5.31 4.77 

Table 18: The system performance of using static and optimized feature vector 

As can be seen from Table 18, the authentication accuracies were enhanced by 

employing the optimized feature vector. The EERs of the NW were reduced from 

4.35%, 8.96%, and 3.55% to 3.93%, 8.10% and 2.18% by using the 

accelerometer, gyroscope, and the fusion data respectively. Similarly, the 

optimized feature vector offered lower EERs for the FW data (i.e., 0.73%, 5.15%, 

and 0.70% for the accelerometer, gyroscope, and fusion data sequentially 

compared to 1.24%, 5.66% and 0.92% when the static feature vector was 

utilized). For the Non-W activity, little difference in findings was noticed between 

the two approaches (i.e., the static feature vector and optimized feature vector). 

For example, the EERs decreased from 7.04% to 6.51% (for accelerometer) and 

from 11.25% to 10.47% (for gyroscope). The possible explanation for this 

outcome could be the reference template for the majority of users was nearly 

optimized. For example, the best EERs for the Non-W data were obtained by 

using small feature subset such as 30 and 20 for the accelerometer and 

gyroscope signals respectively as shown in Table 16. 
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Apart from the improvement in the system performance of using optimized feature 

vector, Figure 40 shows that the user’s reference template size was decreased 

for half of the users. For example, the feature vector of users 2, 19, and 29 was 

created by utilizing only 20 prioritized features and even less features were used 

for users 13, 14, 24, 25 (i.e., 10 features). In contrast, other users such as 8, 9, 

11, 8, 15, 16, and 18 required more features (i.e., 70 to 88 features) to produce 

low EER. This can be explained that the gait pattern of some users is more 

inconsistent over time hence, more features are required to recognize their 

pattern. 

 

Figure 40: Applying optimized feature vector of each user for the FW activity 

5.4 Discussion 

The discussion would be formed around four of the following core questions:  

 To what degree smartwatch-based user authentication can achieve with 

uncontrolled environment? 

 What is the effect of the feature level fusion on the verification accuracy? 

 Does the classifier performance improve by using the proposed activity 

detection method? 

 Does the optimization of the feature vector maximize the classification 

recognition rate?   
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The main goal of this study is to evaluate the scalability of smartwatch-based user 

authentication system within the uncontrolled environment. To achieve that, real 

life signals (i.e., unlabelled data) was captured from 30 users over 10 days with a 

minimum of 4 hours per day from each user. The findings in Table 18 strongly 

suggest that smartwatch-based user authentication can be used to replace, or at 

least supplement, password-based authentication systems. The proposed 

system has an advantage over password-based user authentication, in which 

impersonation is much more difficult to accomplish and even video footage of the 

arm movement (to match the victim’s arm pattern) is not sufficient to mimic a user 

Gafurov et al., (2007b).  

Although the evaluation of any behavioural-based biometric system is a big 

challenge (due to the noisy signals), competitive results with EERs of 2.18%, 

0.70%, and 4.77% were achieved for the NW, FW, and Non-W data respectively. 

These results show that the proposed system highly efficient in identifying the 

legitimate user in a transparent and continuous manner; the most closely related 

work was conducted by Lee and Lee (2017), which was based upon capturing 

uncontrolled data. The stated authentication accuracy of their experimental work 

(i.e., an EER of 8%) is considerably lower than the findings of this study (i.e., an 

EER of 2.18%, 0.70%, and 4.77% for the NW, FW, Non-W respectively). 

Moreover, the gait results still better than the prior gait studies that were based 

upon controlled data and reported EERs in the range of 5.7% to 33.3% (Muaaz 

and Nickel, 2012; Damaševičius et al. 2016).  

When it comes to non-walking activities such as gesture or typing activities, the 

prior art reported EERs ranged between 22% and 4.9% compared to 4.77% of 

EER in this study (Lewis et al., 2016; Shen et al., 2018). Nevertheless, these 

studies based upon a dataset collected from a controlled laboratory environment 
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(i.e., unrealistic setup for real practical systems). Although the authors in Yang et 

al., (2015) and Liang et al., (2017) slightly outperform the Non-W performance 

with EERs of 3.3% and 4%, their systems suffer from a number of pitfalls. For 

example, the collected gestures (i.e., punch or drawing a 3D circle) were 

unrealistic for the authentication purpose and cannot offer transparent and 

continuous authentication. Moreover, their system explicitly required labelled 

data (i.e., constrained environment) and the authentication phase was based 

upon limited amount of test samples (in the range of 10 to 30 samples). 

In order to explore the impact of the selected sensor on the system performance, 

three fundamental experiments were carried out; the first experiment utilized the 

acceleration data, while the gyroscope signal evaluated in the second and finally 

the feature level fusion of both sensor was employed in the third experiment. The 

authentication performance of using the acceleration signal was quite impressive 

when one considers that the system evaluation was based upon utilizing realistic 

unconstrained real time data; at best EERs of 3.93%, 0.73%, and 6.51% for the 

NW, FW, and Non-W activities respectively. On the other hand, the gyroscope 

sensor was less effective and reported EERs of 2.18%, 5.15%, and 10.47%.  

Although the above findings show that the nature of the captured signals 

sufficiently discriminative to be useful in performing TAS, Table 18 elaborates the 

benefit of the fusion approach on the recognition accuracy. For example, the 

EERs of using the accelerometer data were further reduced from 3.93%, 0.73%, 

and 6.51% into 2.18%, 0.70%, and 4.77% (by using the fusion method). Apart 

from the improvement on the system performance, the combination features of 

both sensors could add an extra layer of security for the user authentication-

based biometric system. 
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As the nature of motion-based real-life signals is very noisy, building robust and 

applicable authentication system without identifying the activity type nearly 

impossible or would lead to overly undesirable performance results (i.e., above 

20% of EER). The reported authentication rates of using the generic- based 

authentication model confirm the above hypotheses by reporting EERs of 24.54% 

(for accelerometer) and 26.11% (for gyroscope). It is highlighted earlier, this 

model was created by using unlabelled data (i.e., without predicting the activity 

type). Therefore, the proposed activity detection method (which created a 

separate model for each individual activity) greatly reduced the EERs to 2.18%, 

0.70%, and 4.77% for the NW, FW, Non-W respectively. Nevertheless, 

developing a context aware approach might give better understanding to the 

user’s daily activities (rather than dividing the data into walking and non-walking 

activities) (Benzekki et al., 2018; Feng et al., 2014; Habib and Leister, 2015; 

Primo et al., 2014; Witte et al., 2013). This can be achieved by obtaining 

information from other smartwatch sensors (e.g., GPS, and ambient temperature) 

that could be used as a basis for making a more intelligent decision and improve 

the system accuracy still further. 

To highlight the positive effect of the feature reduction, all the evaluations of the 

proposed smartwatch-based user authentication system were conducted with 

and without the feature selection. Based upon the results in Table 16, it is obvious 

the proposed approach alleviated effectively the computation overhead by 

neglecting about 33% of the total gait features, and even more when the Non-

walking activity is considered (i.e., nearly 66%).  

In the case of the fusion-based method (i.e., 176 features), the best EERs were 

achieved by curtailment the subset size into 110, 120, and 30 features for the 

NW, FW, and Non-W activities respectively (see Table 17). That means the 
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feature reduction method was able to minimize the user’s gait templates of around 

30% and more than 80% for the Non-W feature vector, which is a significant 

achievement. In comparison with walking templates, it can be seen that the user’s 

reference template of the Non-W activity requires few features (i.e., 30 features 

by using the accelerometer data alone and the fusion approach). This could be 

explained if the user was not active (i.e., there is not a significant arm movement), 

few observation and features are sufficient to make the optimal authentication 

decision.  

In contrast, the human gait varies and could be influenced by several factors in 

the real scenario such as clothes and carrying a load. As a result, more features 

are required to recognize the user’s pattern in an effective fashion. Apart from the 

significant reduction on the user’s templates, the proposed feature selection 

approach successfully improved the system performance with EERs of 2.18%, 

0.70%, and 4.77% compared to 4.45%, 1.41% and 6.84% for the NW, FW, and 

Non-W respectively. This is an improvement of around 50% over the classification 

performance of the gait activities and the EER of the Non-W data was nearly 

reduced by 40%. Nevertheless, more investigations are necessary to explore and 

implement different feature selection strategies that further improve the 

classification decisions.   

5.5 Conclusion  

The investigation undertaken in this research has positively demonstrated that 

smartwatch- based biometric is a feasible approach in achieving reliable 

transparent user authentication. Although data was collected under 

unconstrained environment, the findings showed that the proposed system can 

effectively verifies the user’s identity with low EERs for all the detected activities. 

A preliminary study was conducted to examine the effectiveness of using the 
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fusion-approach and its impact on the system performance; a novel feature 

selection approach was also proposed to effectively reduce the feature vector 

size without overtly affecting performance. Based upon the findings of the 

conducted investigations, the aforementioned approaches (i.e., the fusion and 

feature selection) have significantly reduced the EERs for a subset of 30 users.  

Employing the optimized feature vector has further strengthen the system 

performance, at best, EERs of 2.18%, 0.70%, and 4.77% for the NW, FW, and 

Non-Walking respectively (compared to 3.55%, 0.92%, and 5.31% when a static 

feature vector for each individual was used). Experimental results also 

demonstrate the advantage of predicating the activity type in order to enhance 

the system performance. The proposed detection method has been proved that 

the gait activities contain distinctive information (rather than the non-walking data) 

as more movement data can be captured while a user is walking, which is further 

positively contributed towards the classification results.  
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6 Evaluation of the Activity-based User Authentication 

System Using Smartwatches  

The prior two experimental chapters have provided a solid foundation to 

demonstrate the feasibility of performing activity recognition using a smartwatch. 

There are however, a number of additional research questions that present 

themselves when considering whether this approach is practically feasible. This 

chapter will investigate the principle variables that poses serious concerns to the 

proposed system and impact the authentication accuracy. These include, 

evaluate the optimal segment size that offer a trade-off between security and 

usability, determine the amount of training samples, and propose a smoothing 

function (i.e., the majority schema) in order to maximize the system accuracy. 

Details are determined in the following sections. 

6.1 Introduction 

Whilst competitive experimental results are obtained in Chapters 4 and 5 that 

show the effectiveness of the proposed system, it is important to evaluate the 

system performance to show how smartwatch-based acceleration/gyroscope 

data can provide transparent and continuous protection and would be used in a 

practical context. Therefore, further practical evaluations were undertaken to 

ensure the system is both secure and maximise a user’s convenience. Moreover, 

to explore the improvement of certain operations against the base experimental 

results as well as to determine the optimal settings that are required for a practical 

perspective. Therefore, this chapter aims to provide a comprehensive analysis in 

the following manner:  
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 Examine the authentication accuracy by testing different segment sizes and 

find out the optimal sample size that offers secure and usable authentication-

based system.  

 Avoid the training overfitting in order to maximize the authentication accuracy 

and reduce the dimension of the training set size.  

 Highlight the necessity of having a more balanced situation (i.e., system should 

be adjusted at a certain level of security and provide a high degree of 

transparency to the end-use) by applying the majority voting schema. 

 Propose a context aware approach that could be useful to predict a wider 

variety of activities rather than dividing data into gait and non-gait samples 

hence, improving the recognition rates.  

6.2  Investigation into segment size and recognition performance 

Although the experimental setup in the previous chapters shows competitive 

results that outperform the majority of the prior art, it is unclear how the sample 

size can affect the classification performance. So far, all the findings were 

obtained by utilizing a sliding window approach in order to chunk the raw motion 

data into equal windows of 10 seconds interval, with no overlap between the 

extracted segments. Nevertheless, deep analysis is required to investigate 

whether increasing or decreasing the window size would influence the 

authentication performance. Various segment sizes (2.5, 5, 7.5, 10, 12.5, and 15 

seconds) were evaluated to select the optimal segment length that offers secure 

and usable biometric-based authentication system.  

The same database that was used in the previous chapter (i.e., real life data of 

30 participants over 10 days) and the cross-day evaluation were employed for 

this investigation. For consistency, data pre-processing, the amount of samples 
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for each setting, the split of the training and testing data (i.e., 40% and 60% were 

utilized to form the reference and test templates respectively), and the classifier 

configuration (i.e., FF MLP neural network of size 10) were exactly same to the 

uncontrolled experiment setup. Finally, the conducted analysis of this 

investigation was based upon analysis only one activity (i.e., the FW activity) due 

to the time constraint and the EERs are presented in Table 19. 

Segment Length 

in Seconds 

EER% 

2.5 1.50 

5 1.32 

7.5 1.22 

10 0.92 

12.5 0.90 

15 0.82 

Table 19: Evaluation results for different segments sizes 

Table 19 shows that the system performance enhanced by increasing the 

segment size from 2.5 to 15 seconds, at best an EER of 0.82% was reported. This 

substantiates previous findings in the literature that showed a decrease in the 

EERs by using sufficient data points in the window (Nickel et al., 2011b; Shen et 

al., 2018; Mare et al., 2014; Kumar et al., 2016). This improvement could be 

explained that employing larger segment sizes helps to accurately extract unique 

and distinctive features hence, constructing a robust and effective reference 

template for the proposed system. Nevertheless, the main downsides of 

employing a large segment size are implementation costs (i.e., more time and 

resources are required to process the segmented data) and reduce the usability 

aspect of the authentication system. Moreover, the user’s pattern might be 

inconsistent, which negatively affects the system performance. Although the EER 

was decreased from 0.92% to 0.82% for the segment size of 10 and 15 seconds 

respectively, using 10-second sample of data could provide a high level of 

security and user convenience and contain sufficient predictive features for TAS. 
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6.3 Overfitting in machine learning and the negative impact on the 

classification performance    

The number of samples required to train the user’s model is an important system 

parameter. Overfitting is “the production of an analysis that corresponds too closely or 

exactly to a particular set of data, and may therefore fail to fit additional data or predict 

future observations reliably” (López, X. 2018). An example of the overfitting 

problem is shown in Figure 41. There are two possible explanations for the 

overfitting; firstly, the training data may contain noise hence, the machine learning 

algorithms may fit the noise into the model and therefore poor performance would 

be obtained. Secondly, limited training samples (i.e., small dataset) that are not 

sufficient to train the model. As this study captured fairly acceptable number of 

samples from each subject, specifically for the NW and Non-W activities, it is 

essential to analysis and investigate the proper training dataset size that avoids 

the overfitting issue.  

To determine required sample sizes, a comprehensive experiment was carried 

out by using real life data (i.e., NW and Non-W activities). Users that have limited 

samples were excluded from the experiment (i.e., users that have less 400 

samples). In order to train the user’s reference template, an equal number of 

samples were chosen from each user (i.e., 85 samples per day for the selected 

activity) and the remaining samples for that particular day were neglected to make 

sure the evaluation scenario is equivalent to the most realistic test (i.e., the CD 

test). For example, if the acceleration signal of one day contained 250 samples 

for user1, random 85 samples were utilized to train the user’s model and, 

thereafter, data of different days was utilized to evaluate the system accuracy. 

Details of the results for each activity and the required number of samples to train 

the FFMLP classifier are presented in Table 20. 
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Figure 41: Model training and overfitting problem in machine learning 

Activity Type Training Scenario  Samples EER (%) 

NW One Day 85 11.19 

NW Two Days 170 7.60 

NW Three Days 255 5.75 

NW Four Days 340 3.92 

NW Five Days 425 3.05 

Non-W One Day 85 8.51 

Non-W Two Days 170 6.15 

Non-W Three Days 255 5.67 

Non-W Four Days 340 5.41 

Non-W Five Days 425 5.09 

Table 20: The effect of training size on the authentication performance 

As can be seen in Table 20, increasing the sample size has a positive effect on 

the system accuracy. For example, using a single day training data (i.e., 85 

samples) reported EERs of 11.19 and 8.51% for the NW and Non-W activities 

respectively (compared to EERs of 5.75% and 5.67% when 255 samples were 

utilized for the training purpose, which is a significant improvement on the 

authentication recognition rate). This amelioration was slightly lower by 

increasing the number of samples into 340 and 425 (e.g., EERs of 5.41% and 

5.09% for the Non-W activity); this is not particularly surprising given the fact that 

the classifier was trained with sufficient representative samples. However, more 

experimental work is required to find out whether feed up more data to the 
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machine learning algorithms could further reduce the EERs. This can be done by 

collecting real life data over a longitudinal basis.  

6.4 Investigation into majority schema and trade-off between the 

system security and usability 

Based upon the classification result, a decision on whether to accept or reject the 

output is made by the system. According to the literature, two standard schemas 

are used: majority or quorum voting. The former scheme accepts a user as 

genuine if a half or more of the user’s test samples are positive. The biometric 

decision is then based upon merging multiple classification outputs to a single 

one and it either represents a genuine user or an impostor. The latter 

authenticates a user as genuine if a requisite number of the user’s test samples 

are positive. A better performance is normally obtained by using the quorum 

voting technical while the system is more resilient to error when the majority 

voting is applied. Under the quorum voting scheme, a small number of correct 

classification outputs are required to accept a user. While this will improve the 

user convenience (i.e., the user will be highly likely to accept the deployment of 

such system), it will result a high false acceptance rate (i.e., there is a high chance 

for the imposter to abuse the system).  

In contrast, more discriminative user behaviour is required when utilizing the 

majority voting technique; otherwise, a high false rejection rate will be produced 

by the system. It is understood that the system will provide a better security when 

using the majority voting method; at the same time, the system is more intrusive 

(i.e., less user friendly). As a result, it is important that a proper decision logic that 

can balance the system security and user convenience is applied for the gait 

authentication system.  
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So far, all the presented results were based upon classifying single sample in 

order to calculate the EER. In order to reduce FAR and FRR (i.e., low EER), 

majority voting was used. Two parameters need to be identified: number of 

samples (#S) and the number of votes (#V). Several #S (i.e., 5, 7, 9, and 11 

samples) were tested to select the best experiment configurations that offer a 

balance between the both errors. The evaluation process was carried out on the 

real-life dataset by using NW activity (as it contains enough samples for the 

evaluation purpose) and using the fusion approach as it showed the best 

performance. Results of the voting investigation are presented in Figure 42. If the 

#V of each experiment is equal or more than half of the selected samples, the 

whole votes are considered for genuine. For example, if the #S is chosen to be 9 

examples and the proposed system recognized 5 only, the FRR in this case would 

be zero.   

 

Figure 42: Voting results using different number of samples 

Figure 42 clearly demonstrates that the lowest EER was 0.60% for #S=9 (i.e., 90 

seconds of real movement data) and nearly similar when #S=11 compared to 

EERs of 1.06% and 0.82%, for #S of 5 and 7 respectively. By employing the 

majority schema, the reported EERs were much less compared with the single 

sample mode (i.e., 10 seconds data). For instance, at best 3.55% of EER was 

reported by utilizing 10 seconds real life NW signal while this error was 



 

126 

 

significantly dropped down into 0.60% by using the aforementioned schema. 

Therefore, a series of experiments were carried out to examine the effect of the 

majority voting on the system performance (using #S=9) and the findings are 

displayed on Table 21.  

Activity 

type 

Sensor 

type 

EER (%) of using 

majority voting 

NF EER (%) of using 

single sample 
NF 

NW Acc 0.73 60 4.35 60 

NW Gyr 1.07 60 8.96 60 

NW Fusion 0.60 70 3.55 110 

FW Acc 0 50 1.24 60 

FW Gyr 0.34 50 5.66 70 

FW Fusion 0 50 0.92 120 

Non-W Acc 4.95 30 7.04 30 

Non-W Gyr 7.20 30 11.25 20 

Non-W Fusion 3.37 30 5.31 30 

Table 21: The best EERs with and without using the majority voting. 

As expected, the majority voting scheme greatly improved the authentication 

performances for the captured activities. It also showed that a single sensor can 

effectively recognize the legitimate user and rejecting imposter with invaluable 

recognition rates. For instance, accelerometer-based authentication reported low 

EERs of 0.73%, 0%, and 4.95% for the NW, FW, and Non-W activities 

respectively (compared to 4.35%, 1.24%, and 7.4% when the system decision 

was based upon 10 seconds duration). Further improvements were achieved with 

EERs of 0.60% and 3.37% for the NW and Non-W respectively by using the fusion 

sensor approach (and the error rate of the FW was not affected and remained 

0%). In addition to the significant improvement on the authentication accuracy, 

using the majority voting schema required less features to attain a low EER (e.g., 

the feature subset size of NW and FW were reduced from 110 and 120 into 70 

and 50 features respectively). As a result, the proposed system can be 

implemented in in a more efficient and less time-consuming manner.  

To investigate the stability and reliability of the results over all users, the individual 

user performance was further analysed to find out if particular users reported high 
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EER. The conducted analysis was based upon selecting the NW and Non-

Walking activity as the FW data achieved an EER of 0% for all users. Figures 43 

and 44 display the EERs for each of the 30 users and compare the user’s 

performance with and without utilizing the majority voting (and the results of the 

fusion approach were presented in the Figures as it showed better accuracies 

compared to the acceleration and gyroscope sensors). 

 

Figure 43: The single sample mode vs majority voting results separated by users 

using the NW data 

 

Figure 44: The single sample mode vs majority voting results separated by users 

using the Non-Walking data 

It can be seen from Figure 43 that employing the majority voting for the NW 

activity resulted in an EER of 0% for two third of the users (e.g., the users 1, 2, 3, 

4, 5, 7, 9, and 12) and low EERs ranging between 1% and 2% for the rest of users 

(apart from the users 10 and 11). Even for the users 10 and 11, the majority voting 

significantly reduced the EERs from 10% and 14.5% to 4% and 9% respectively 
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(which is an improvement of more than 60% and 40% over the individual user 

performance). The positive impact of the majority voting is also highlighted and 

shown in Figure 44 for the Non-Walking activity, where the performance for all 

users were improved (apart from the users 6, 15, and 16 as their EERs were 

already 0% before employing the majority schema). It is apparent from Figure 44 

that even after using the majority voting, the ERRs of some users (in particular, 

users 2, 3, 4, and 7) were not good as other user’ performances (ranging from 9% 

to 15%). The primary cause of this outcome is that the proposed activity detection 

method is heavily reliant on the user’s gait information and less effective to 

identify the actual activity when the user is not walking. Therefore, more advanced 

method is required to predict the activity type rather than dividing the user’s 

movement data into gait and non-gait information.  

6.5 Conclusion 

This study shows that activity-based user authentication is a viable means for 

verifying the user’s identity by evaluating the system under the most realistic 

dataset (i.e., real-life data was collected over multiple days). It does show that the 

system performance could be improved significantly by using the majority voting 

approach. It is argued that using the majority approach would require more time 

to make a decision by the system (as it depends on a number of results rather 

than each individual result). Nevertheless, the best results of aforementioned 

approach were achieved by using 50 and 70 features only for the FW and NW 

data respectively (compared to 110 and 120 features when the single sample 

mode was considered). The segment size and the amount of the training samples 

were also investigated. By performing in-depth analysis for the suitable segment 

size and the required training samples, it was found that that 10 seconds of data 

is sufficient for performing TAS and training the classifier with samples that were 
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captured over four to five days could be sufficient to avoid the overfitting problem 

and construct a robust reference template. 
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7 Conclusions and Future Work 

This chapter presents a brief discussion about the main accomplished 

contributions and highlights the shortcomings of this study. Subsequently, 

suggestions and scope for future work to secure smart devices in a transparent 

and continuous manner are also highlighted.  

7.1 Achievements of the research 

Considerable progress has been made in order to offer a robust and useable 

biometric-based user authentication system for smartwatch devices. The 

reported findings attained the overall objectives of this research, which were 

highlighted in Chapter 1 and the full achievements are described below:  

 Having understood the feasibility of activity-based user authentication using 

smartwatches; this was achieved by conducting a comprehensive analysis of 

the prior art on gait and gesture authentication using dedicated, mobile, and 

smartwatch sensors (this is highlighted in Chapter 4). 

 Evaluating the recognition performance across a range of activities and 

examination of the most effective classification strategy (i.e., single or multi 

classifier approach). The single and cross day evaluation methodologies were 

also explored. By conducting extensive experiments, several time and 

frequency domain were extracted from the acceleration and gyroscope data 

and the impact of these features was highlighted (Chapter 5). 

 Exploring the use of static and dynamic feature vectors and has proposed a 

new feature vector mechanism that maximize the system performance and 

successfully reduce the user’s reference template size (this is highlighted in 

Chapter 5 and 6).  
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 Capturing a real-life data over multiple days– rather than using test data 

collected under laboratory conditions to ensure the captured signals can be 

used for real practical authentication system (Chapter 6).  

 Proposing a light activity detection approach that in order to predict the user’s 

activity for better training practice hence, the system can effectively verify the 

user’s pattern. Individual sensor performance and the fusion of both sensors 

were also explored, and the findings outperform the prior accelerometer –based 

studies that used unrealistic setup (i.e., laboratory dataset captured within 

controlled environment) (Chapter 6). 

 Conducting a comprehensive analysis of three important parameters (i.e., the 

segment size, the training sample size, and the majority voting) with the aim of 

showing the best system configurations that could enhance the authentication 

decisions and determine the requirement for practical system implementation. 

The aforementioned parameters are critical for TAS and the optimal system 

configurations practical system implementation are suggested (this is 

highlighted in Chapter 7). 

A number of papers within the research domain have been presented at refereed 

journal and conferences and a short description for the published papers are 

summarized below:  

 Activity Recognition Using Wearable Computing 

N. AI-Naffakh, N. Clarke, P. Dowland and F. Li, Proceedings of the 11th 

International Conference for Internet Technology and Secured Transactions 

(ICITST), Barcelona, 2016, pp. 189-195. 
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 A Comprehensive Evaluation of Feature Selection for Gait Recognition Using 

Smartwatches 

N. AI-Naffakh, N. Clarke, P. Dowland and F. Li, International Journal for 

Information Security Research (IJISR), Volume 6, Issue 3, September 2016.  

 Unobtrusive Gait Recognition using Smartwatches 

N. AI-Naffakh, N. Clarke, F. Li, and P. Dowland, Proceedings of the 16 

International Conference of the Biometrics Special Interest Group (BIOSIG), 

Darmstadt, Germany, 2017. 

 Continuous User Authentication using Smartwatch Motion Sensor Data 

N. AI-Naffakh, N. Clarke, and F. Li, Proceedings of the 12 International 

Conference for Trust Management (IFIPTM), Ontario Canada, 2018. 

The first two studies (i.e., Al-Naffakh et al., 2016; Al-Naffakh et al., 2017a) 

explored the feasibility of activity recognition using smartwatches and proposed 

a feature selection approach that helped to improve the system performance. The 

latter two studies (i.e., Al-Naffakh et al., 2017b; Al-Naffakh et al., 2018) 

concentrated on comprehensive analysis that involved collecting the largest 

dataset in the research area, developing a novel dynamic feature selection 

approach for each user independently, identifying the optimal source sensor for 

the authentication task, highlighting the impact of the majority schema on the 

system accuracy, and the feasibility of using multiple activities  Recently, a journal 

article submitted for publication that included a comprehensive and more realistic 

investigation by using unlabelled movement data. To this end, it is believed that 

the research has successfully achieved valid and useful contributions to the 

biometric-based user authentication field.   
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7.2 Limitations of the research  

Although the overall objectives of the research have been achieved, there is still 

a number of limitations that are summarised below 

 Despite the collected samples of this study are fairly acceptable and, to the 

best of the author’s knowledge, represent the biggest dataset for activity -

based user authentication using smartwatch, it would be recommended to 

capture data from a large number of users (e.g., between 100 to 200) over a 

prolonged period of time (i.e., months). As a result, the performance of the 

proposed system was not tested over a long period time to claim an allegation 

of robustness, despite the literature provided evidence that building the user’s 

reference template over a long period of time could improve the system 

performance.   

 While the proposed activity detection method (Chapter 6) successfully 

improved the authentication rates, it was limited to divide the real-life data into 

gait and non-gait samples only. Moreover, the proposed technique does not 

thoroughly examine or provide a better understanding of the nature of signal, 

although the findings in Chapter 6 suggesting that identifying the activity type 

accurately could significantly reduce the EER.  

 Given that the aim of this work is verify the user’s identity of smart devices and 

due to the time constraint, designing a framework to evaluate the proposed 

system could be useful although the development of such a system is 

considered outside the scope of the research. 
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7.3 Suggestions and Scope for Future Work 

The conducted research by this thesis has successfully presented alternative 

user authentication solution for smartphones and smartwatches devices. 

However, a number of ideas has been identified in which a more direct 

continuation of the research programme could be carried out. The details of future 

work are listed as follows. 

 Developing an application that transparently and continuously collect the 

user’s samples and negligible resources consumption.  

 Further investigation is required to explore different feature reduction 

approaches in order to remove the redundant features that might negatively 

influence the classification results and consume more computational power.  

 More experimental work should be carried out in order to understand how the 

user’s template might be changed over the time and make sure that template 

will be always appropriate to identify the legitimate user versus other users 

(i.e., imposters) 

 Future work will focus on better optimization such as extracting new features, 

evaluating different machine learning classifiers (e.g., Random Forest, Naive 

Bayes, and SVM) and combining the smartphone and the smartwatch 

movement data.  

 Although this study was able to divide the uncontrolled data into gait and non-

gait data, a context aware approach could be useful to predict a wider variety 

of activities hence, improving the recognition rates. For example, using GPS 

and the calendar, it would be possible to identify not only that an individual is 

running but that he is running to catch a train to the airport – thus likely to be 

carrying or pulling luggage. In this scenario, a composite classifier could be 
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used that not only focusses upon running but running and carrying luggage. 

This can be achieved by incorporating other sensor-based information (e.g., 

GPS) to provide some situational awareness of what a user might be doing at 

a specific point of time. 

 Implementing the proposed system in a real-world scenario is required; this 

can be achieved by developing a framework prototype on the device in order 

to evaluate the activity-based user authentication technique on live user and 

analysis real user feedbacks. The storage space of deploying the framework 

is also important parameter that required further investigation.  

7.4 The Future of Activity-Based User Authentication for Smart 

Devices 

Mobile and smartwatch devices have become an irreplaceable part of people’s 

and currently utilized for various purposes (e.g., personal communication, online 

payment, and office work); also, these devices have increased amount of access 

to sensitive information such as financial or health records. The use of 

smartwatch and mobile devices have inherently raised security concerns and 

there exists a prevalent requirement to secure these devices.  Despite several 

techniques are proposed to recognise the owner’s identity, the obtrusive 

implementations of these methods promote users to take no security precautions 

against unauthorized access, specifically to the smartwatch subscribers due to 

the small touch screen of these devices. Therefore, protecting the information and 

continuously checking the user’s identity in a more innovative and convenient 

fashion is pivotal. To this end, this research has designed a novel activity-based 

user authentication by utilizing the accelerometer and gyroscope sensors of 

smartwatch and the findings have positively demonstrated that the proposed 

system is a feasible approach in achieving reliable transparent authentication.  
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To conclude, verifying the legitimate user of smartwatch and mobile devices will 

be crucial in the near future as more applications and services emerge to the 

smart devices. Therefore, the future will see further growth and expansion to 

perform user authentication in a continuous and user-friendly fashion. 
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Appendix A: Details analysis of the prior art 

A comprehensive analysis was conducted for each individual study in the prior 

art, details of each study (including, technology used, data collection 

methodology, feature types and feature selection approaches, classification and 

decision making) is described below:  

Mantyjarvi et al., (2005) placed a recording device on the user’s belt; data was 

collected from 36 participants, who each provided data on two different days 

within controlled conditions (i.e., laboratory dataset). In each session, the user 

was asked to walk around 20 meters using the normal, fast and slow paces (the 

first session was used for training and the second was used for testing). To 

construct the feature vector, local minima and maxima of each step were detected 

in the first method while 40 Fast Fourier Transform (FFT) coefficients were 

computed in the second approach. For the last two methods, data were 

segmented into histograms, and in case of higher order moments, skewness and 

kurtosis were extracted to form the reference template. Four different 

classification methods were utilized: signal correlation, frequency domain, 

histogram, and higher order moments. The reported EERs were 7%, 10%, 18% 

and 19% for the aforementioned algorithms respectively. However, the amount of 

the collected data from each user was small (in total about 30 seconds) for each 

speed. 

Gafurov et al., (2006a) conducted a study by attaching the sensor to the lower leg 

of 21 participants who walked 1 minute using their normal speed within a 

constrained environment (i.e., experiment focused on controlled data). Half of the 

collected samples was used for the training, and the remaining samples was 

utilized to test the system. The feature extraction method involved the use of 

histogram similarity and cycle length. The former calculated 10-bin histogram and 
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applied Absolute distance metric for classifying the user’s pattern. This distance 

was considered as a similarity score (Figure 45 explains the steps used to 

calculate the reference and probe histograms). The latter (cycle length) was 

based upon the number of observations inside the cycles to form the feature 

vector. The findings were EERs of 5% and 9% for the histogram similarity and 

cycle length respectively. Nevertheless, the obtained results were based upon 

only one attempt to calculate the FRR, and 20 trails to measure the FAR of each 

user. 

 

Source (Gafurov et al. 2006a) 

Figure 45: Applying the histogram similarity method on the acceleration signal 

Gafurov et al., (2006b) carried out an experiment by attaching a motion device to 

the user’s hip. Due to the fact that sideway direction has less movement at this 

position, the tri-axis signal was combined into a single dimension. The data 

collection involved the participant of 22 users, each walked approximately 2 

minutes within a predefined hall (i.e., controlled dataset) using their normal pace. 
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Once all cycles were detected, the average cycle was calculated to form the 

user’s templates. Using Euclidean distance, the obtained EER was 16%. 

Nevertheless, the author did not explain their cycle extraction process hence, it is 

challenging to reason about the causation of the high EER. 

Research by Okumura et al. (2006) studied the ability to discriminate between 

individuals based upon their arm movement. The cycle-based approach was 

used in order to divide the raw time series acceleration data of 22 users (signals 

were collected under a constrained environment). The Dynamic Programming 

Matching (DPM) algorithm was utilized to identify the user’s identity and an EER 

of 5% was reported. Apart from the limited amount of the collected sample (i.e., 5 

samples from each participant), data was captured on the same day which does 

not show the variability of the human gait behaviour over the time. Moreover, the 

proposed system does not provide continues and transparent authentication as a 

user needs to shake the smartphone to gain access.  

Gafurov, et al., (2007a) proposed to place a motion-recording device in the user’s 

pocket, which is more realistic in terms of the sensor location for a system that is 

to be implemented. For the experiment, 50 subjects were involved, and four 

different methods were used to classify the labelled gait samples (i.e., absolute 

distance, correlation, histogram, and higher order moments). Cycles were 

detected by identifying a sequence of local minima in the acceleration signal. The 

initial minima was found at the following equation: 

Mi1= min (Aw-d1, ..., Aw+d2) 

Where (d1 = 50, d2 = 150, i =100 acceleration values while Aw was the first 

acceleration value greater than 1.3m/s). The first minima was considered the start 
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point of the first cycle, and the second local minima was selected as the terminus 

of the cycle. To compute the second minima, the following equation was used: 

Mi2= min (Mi1+D-d,..., Mi1+D+d), where D=100 and d=20. 

This procedure was repeated until all remaining minima were found in the signal. 

The end point of one cycle was considered as a start point for the next cycle and 

so on. To construct the feature vector, the averaged cycle for the first two methods 

(absolute distance and correlation) was computed. For the last two methods, 10-

bin histogram of gait cycles was measured. In case of higher order moments, two 

additional features (i.e., skewness and kurtosis) were calculated. The result 

showed an EER of 7.3% using absolute distance while the EERs increased to 

9.3%, 14% and 20% when correlation, histogram and higher order moments 

methods were utilized respectively. A fundamental problem with this approach 

lies in the cycle detection algorithm. The process of determining where a signal 

ends will most likely fail for unusual (i.e., both slow and fast) paces. Furthermore, 

only 24 cycles were used for training and testing purposes, which is limited 

amount of data. 

Gafurov et al., (2007b) involved 100 participants in their controlled experiment 

with each participant providing one minute of data. Instead of considering the 

collected acceleration signals of three axes (x, y, and z) separately, the signal 

was combined into a single axis, denoted as R. Cycles were detected by 

identifying the all local minima (Rm) in the combined gait signal. The first local 

minima was found from the first 250 acceleration values (e.g., Rm1= min (R1, R2, 

R3,…, R250) and considered as the start point of the first cycle. The remaining 

minima were calculated as follows: 

Rm2= min (Rm1+100-20,..., Rm1+100+20) 
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After all minima were identified, data points between two consecutive minima 

were considered as one cycle. To generate the reference and probe templates, 

the detected cycles were normalized in length, and the median average of 

normalized cycles was computed. Using Euclidean distance, an EER of 13% was 

achieved. Nevertheless, data was captured on the same day and within a 

controlled environment (i.e., walking on flat floor only). Notably, the decision to 

use fixed window sizes and Euclidean distance were not justified within the work; 

therefore, it is unknown whether there exists alternative parameters that would 

improve the accuracy of the system. 

A further study by (Gafurov and Snekkkenes, 2008a) had examined the potential 

of natural arm movement to support a gait recognition system by involving 30 

users for the data acquisition. During data collection scenario, a dedicated sensor 

was attached to the user’s wrist. Users were asked to walk at their natural speed 

in four different sessions on the same day (in total 40 seconds of data was 

obtained from each participant). Frequency domain was used to analysis the 

signal rather than time domain. Subsequently, the amplitudes, which are the 

maximum value in the signal, in a specified frequency range were detected. 

Varying quantities of amplitudes (2, 4, and 6) were evaluated to build the optimal 

reference template for each individual (see Figure 46). Employing Euclidean 

distance, the experimental results showed that using 6 amplitudes yielded better 

performance with an EER of 10 % compared to EERs 13% and 16% when 4 and 

2 amplitudes were utilized respectively. However, the amount of test data to 

evaluate the system efficiency was limited, where the calculation of FRR was 

based on only two comparisons. 
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Source (Gafurov and Snekkkenes 2008a) 

Figure 46: The amplitudes in the frequency domain signal 

An expanded subsequent implementation of gait authentication was investigated 

by Gafurov and Snekkenes (2008). A motion recording device was attached to 

the participant’s ankle. Data was collected from 30 participants under a 

constrained environment, with each of them asked to walk 4 sessions on the 

same day using their natural walking style (each session contained about 15 

seconds of motion data). To extract the gait features, cycles were detected by 

identifying the user’s standing phase within the gait signal. This standing phase 

was detected by filtering out accelerations that were above or below chosen 

thresholds. This procedure was repeated until all standing phases were detected 

within the dataset. The distance between two successive phases was marked as 

one cycle. After all cycles were detected, the median values of the extracted gait 

cycles were then used to compute the average cycle. Using Euclidean distance, 

an EER of 5.6% was obtained by employing the sideways-direction data only. 

However, the reported performance was achieved by requiring all participants to 

wear the same shoes as each other, which is not a realistic expectation for a 

practical system. Moreover, Figure 47 shows a signal after cycle detection with 

this algorithm has been performed; each cycle is a different colour with the black 

portion being discarded, as it is an irregular length. Different cycle lengths are 

common as users change their speeds, so it is apparent from the Figure that this 
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algorithm (and thus this system) would perform poorly in real-world conditions 

where users do not always maintain a constant speed. 

 
Source (Gafurov and Snekkenes 2008b) 

Figure 47: An example of detected cycles (in colour) from the signal. 

Gafurov et al., (2010) employed the same dataset and cycle extraction method 

that was used by Gafurov and Snekkenes (2008). However, their resulting EER 

improved from 5.6% to 1.6% by using cycle matching instead of computing an 

average cycle. Euclidean distance was used to calculate the similarity score 

between two sets of cycles. Subsequently, from multiple comparisons between 

cycle pairs, the lowest similarity score between two cycles was considered as the 

best matching. Nevertheless, reducing the threshold used to mitigate false 

negatives would also influence the accuracy of the system. Moreover, sensor 

placement on the lower leg is unrealistic for the real life-based authentication 

applications.  

Sangil Choi et al., (2014) claimed that dividing the extracted cycle into dynamic 

and static parts can improve the performance of gait recognition. They alleged 

that the dynamic parts contained more distinctive features due to the significant 

changes in acceleration values. To separate the dynamic and static parts, firstly 

the rate of change between two successive acceleration values (Jerk) was 

calculated in the given equation: 
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The dynamic part of the gait cycle was characterised with high jerk values. 

Secondly, a threshold value was computed based upon 100 acceleration values, 

in the x, y, and z directions. This threshold was used to identify the start and end 

point of the dynamic section. Figure 48 (A, B) shows the signal before and after 

separating the dynamic and static parts. Once the two parts have been 

distinguished, the standard deviation (Std) of each axis (x, y, and z) was 

calculated and used to construct the feature vector. Two experiments were 

implemented; the first experiment (called similarity) was to investigate whether 

two samples from the genuine user were similar to each other. This was achieved 

by calculating Std of two random gait cycles and comparing them to each other. 

The second experiment (called individuality) was to determine if the calculated 

features of each user were distinctive enough to differentiate them from other 

users. Euclidian distance was applied to calculate the distance between 

reference and probe templates for each user. Subsequently, the k-Nearest-

Neighbours (k-NN) was applied and reported 100% correct classification rate. 

However, the dataset is considered limited with 10 users only, which was 

collected in a controlled environment. Moreover, having only 30 seconds of 

normal walking data, per user, is limited when making an allegation of robustness. 

 

Source (Sangil Choi et al., 2014) 

Figure 48: (A) original signal, (B) signal after isolating dynamic and static parts 
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Recently, Cola et al., (2016) conducted a study with a set of 15 users, each 

provided fast and normal walking samples (that were collected within a controlled 

environment) by attaching Shimmer sensor into their trouser pocket and wrist (in 

such way the sensor looks similar to a watch). Cycle based approach was used 

to segment the collected data that was obtained within single day and resulted on 

an average of 70 samples for each user. Correlation-based feature selection 

method was applied in order to choose the best time domain feature subset (e.g., 

root mean square, average absolute variation, and median). Several supervised 

algorithms (i.e., k-NN, Multi-layer Perceptron Neural Network, Random Forest, 

Rotation Forest, and Multinomial Logistic) were utilized in order to identify the 

optimal classifier that can provide the best accuracy for gait-based continuous 

authentication system. The findings showed that there was not a major difference 

between the evaluated classifiers (in terms of the performance) within an average 

of 2.9% and 2.5% of EERs for the wrist and leg movement respectively.  

Recent technological advances in communication technology and mobile 

computing have provided new ways to for developing biometric based user 

authentication systems.  Aiming to study the practicality of such a system, Derawi 

et al., (2010a) used a Google G1 phone to collect the gait signal from 51 

volunteers in two sessions, each provided on different days (the gait samples 

were obtained within a constrained environment). The mobile was placed in a 

pocket attached to the users’ belt, and the user was then asked to walk using their 

natural speed (this dataset was used in multiple studies in this chapter). In total, 

data collected from each user amounted to only two minutes; one third of the data 

was used for training and the remaining was used for testing the system. To 

extract the gait cycles, the average cycle length was estimated. Subsequently, 

the minimum peak in the gait signal was considered the start point of the first 
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cycle (i.e., Pstart =Pmin) whereas the terminus of the first cycle was calculated as 

follows: 

Pend = Pstart + averageLength. 

This procedure was repeated until all cycles were detected in the data set. Before 

calculating the average cycle, Dynamic Time Warping (DTW) was used to omit 

the cycles that were significantly different than other cycles (i.e., high distance to 

other cycles). Using DTW, the obtained result was high with an EER of 20.1%. 

This high error rate could be attributed to the minimal amount of data used to train 

and test the system. 

An alternative solution to segment the raw acceleration signal was proposed by 

Kwapisz et al., (2010). They raised several concerns about cycle extraction 

method (specifically, the unclear boundaries between the cycles and the complex 

computational effort required to detect those cycles). Therefore, the raw 

accelerometer data (which was collected within a controlled environment) was 

divided into segments (using sliding window approach) instead of cycle detection 

method. The data collection process was more thorough, where each user was 

asked to provide multiple activities (i.e., walk, run, climb up and down stairs) for 

specific time in one session only. A mobile was placed inside the front pocket of 

36 users. Data of each activity was collected separately with the goal of using the 

dataset for identification and authentication tasks. In total, 10 minutes of data was 

captured per user for all activities. The raw time-series accelerometer data was 

then partitioned into 10 second segments. After the collected data was 

segmented, the statistical features of each axis were calculated. These included 

average (Avg), standard deviation (Std), average absolute difference (AAD), time 

between peaks (TBP), binned distribution (BD), and the average resultant change 

in the acceleration (ARCA). The user’s reference template was created 



 

163 

 

regardless which activity the user was performing (in other words, the user’s 

activity label was removed). Using only a single 10 second segment of walking 

data, the authors achieved 72% and 69% identification rates using decision trees 

(J48) and Neural network respectively. In comparison, the authentication result of 

five participants was 85.9% positive authentication rate at 95% negative 

authentication rate using J48. By using the majority voting to all test data (5 to 10 

minutes), the identification and authentication accuracy were further improved to 

100%. However, it has to be noted that the authentication results were based on 

limited number of participants (specifically five participants). Moreover, using the 

majority voting scheme, a scheme which accepts a user as genuine if a half or 

more of the user’s test samples are positive, might increase the false acceptance 

rate. Therefore, applying this schema require a large amount of test data to claim 

the system is robust to impersonation attacks. 

A further study has been conducted by Nickel et al., (2011a). The authors 

employed the same database that was used by Derawi et al., (2010a). The 

segment-based approach was used to divide the time-series accelerations data 

into 3 seconds segments. A total of 28 samples were obtained from each subject’s 

data. In order to create the user’s template, 20 samples from the user’s data and 

all samples of 30 imposters were used. The remaining samples from the genuine 

user and all samples of 17 imposters were used in the testing phase. The 

proposed system achieved a FRR of 10.42% with a FAR of 6.62% using HMM 

and the majority voting method. To have a balance system (security and 

usability), only 8 samples from each imposter was utilized to calculate the FAR. 

The study reported 10.42% of FRR and 10.29% of FAR. Although the system was 

able to identify imposters with data not used in the training phase, the false 
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positives of each genuine user was evaluated based on limited samples of only 

17 imposters. 

The research study by Nickel et al., (2011b) also employed the same dataset 

used by Derawi et al., (2010a). Authors demonstrated that increasing the 

segment size into 10 seconds could enhance the system accuracy. After the raw 

acceleration data was divided into segments, a total of 12 samples were extracted 

from each user. To train and validate the system, 50% of the first and second day 

samples were used for training, and the remaining samples were used for 

validation (this is known as mixed-day scenario). New features, which have been 

successfully implemented in speaker recognition, were extracted. Specifically, 

BFCC and MFCC were calculated. Figure 49 explains the steps that were used 

to extract the cepstral coefficient features. The extracted features were based 

upon the acceleration values of each axis and the resultant acceleration 

(magnitude) as well. Two feature subsets were calculated to build the reference 

template, the statistical and cepstral coefficient features. The computed statistical 

features were BD, maximum (Max), minimum (Min), mean, Std, root mean 

squared acceleration (RMS), and zero cross; on the other hand, only BFCC was 

measured from the cepstral coefficient features. SVM and quorum voting method 

(a method that accepts a user as genuine if a requisite number of the user’s 

samples are positive) were applied to classify the user’s gait pattern. The 

proposed system revealed 6.3% of FRR and 5.9% of FAR (compared to roughly 

EERs of 20% and 10% of the previous studies by (Derawi et al., (2010a) and 

Nickel et al., (2011a), respectively). However, the findings of this study were 

based on using a mixed-day scenario. This scenario requires a user to re-enrol in 

the system every day; effectively; the system is equivalent to a single-day 

scenario. 
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Figure 49: The process of extracting BFCC and MFCC 

 

Source (Nickel et al. 2011b) 

Figure 50: Quorum voting scheme (#V total test segments, #Vg, number of votes 

for genuine, #GV positive classification results) 

Nickel et al., (2011c) attempted to compare the performance of two classification 

algorithms, HMM and SVM. The study argued that SVM slightly showed better 

accuracy. For the experiment, the normal walking pace of 36 subjects was 

recorded by placing a mobile phone inside a pouch attached to the user’s belt. 

The subject participated in two sessions, each in a separate day. Once the raw 

movement data was obtained, the segment- based approach was used to chunk 

the time-series accelerations data into five seconds windows with an overlap of 

50% (this means with five seconds, every two seconds and half, a new segment 

is generated). The amount of the extracted samples from each subject was fairly 

acceptable, around 200 samples per session (this dataset is used in multiple 
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researches in this literature). Statistical (Min, Max, mean, Std, Bin, RMS, and zero 

cross) and cepstral coefficient features (MFCC and BFCC) were generated for x, 

y, z axes and magnitude vector (m). Each feature was evaluated, and the user’s 

reference template was constructed by using a feature subset that produced the 

lowest error rate. Once the feature selection was completed, it was found that 

only cepstral coefficient features were more consistent and robust enough to 

report the best performance. When the first day data was used to train and test 

the system (called the same-day scenario), the reported performance was 

16.60% total error rate (TER), TER is the summation of FAR and FRR and 5.86% 

of EER using SVM and HMM respectively. However, the system performance 

significantly dropped down to 40.52% of TER and an EER of 17.06% for the 

aforementioned classifiers by using the first day samples for training and the 

second day data for testing (called cross-day scenario). Although using this 

scenario displayed a higher error rate, it avoids training the user’s model every 

day, which is more realistic for real world applications. To improve the system 

performance, the quorum voting schema was applied to 70 samples from a user’s 

test data (corresponding to about 3 minutes of the walking data). If 3 out of the 70 

samples were correctly classified, then the user was considered to be the genuine 

user. EERs of 10% and 12.63% were achieved by using SVM and HMM 

respectively. Nevertheless, including more participants might increase the 

chance of accepting an imposter. Moreover, the decision was based upon 

continuous 3 minutes of the walking data that would require more processing time 

and increase the intrusiveness of implementing such system.  

Research by Nickel et al., (2011d) proposed a system with real-time testing that 

took place on the mobile device. During the data collection phase, 48 subjects 

were participated and each of them provided two sessions on two different days. 
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In each session, the subject was asked to walk in a natural speed on flat ground 

for 10 seconds that were later used for training phase. The subject was then 

asked to walk about 15 minutes in a predefined route during the authentication 

phase, the route included walking on flat ground, up/down stairs, and 

opening/closing doors. The authentication process was activated every 30 

seconds when the subject stopped at one of the predefined points. Cycles were 

detected using minima and maxima salience vectors. The extracted cycles were 

then filtered by calculating the DTW distance between all cycle pairs, and irregular 

cycles, which had a high distance from other cycles, were removed. The resulting 

dataset hence is referred to as the remaining cycles. Two different methods were 

used to pre-process the extracted cycles, majority voting and cyclic rotation metric 

(CRM), a metric that compares each probe cycle to every reference cycle of a 

genuine user and stores the largest distance as a similarity score. In the first 

method (Majority voting), the remaining cycles were further analysed to find the 

smallest distance between each pair of remaining cycles, this was hence used to 

create the reference template. In contrast, the second method (CRM) used the 

remaining cycles for both reference and probe cycles (Figure 51 provides the 

cycle extraction process used for both methods). The cross-day scenario was 

applied for both of the enrolment and authentication phases. Using DTW with the 

majority voting approach, an EER of 28% was achieved. In comparison, applying 

the Manhattan and DTW distance functions with the CRM method, the reported 

EER was 21.7%. In addition to the high error rate that were resulted from both 

approaches, the user needed to wait ~30 seconds to unlock their phone, which is 

more than the required time to enter the PIN itself. Moreover, some subjects were 

always rejected by the system (i.e., their FRR was 100%). 
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Source (Nickel et al. 2011d) 

Figure 51: Cycle extraction steps during the enrolment and verification phase. 

Nickel and Busch (2011) investigated the influence of the sample size on the gait-

based biometric performance. For the experiment, the authors employed the 

same dataset of Nickel et al., (2011d). Instead of extracting cycles from the gait 

signal, segment- based approach was used. Various segment sizes (2, 3, and 4 

seconds) were evaluated to select the optimal segment length, which produced a 

lower error rate. Based on the acceleration values in the segment, the cepstral 

coefficients feature (MFCC) for a separating axis (x, y, and z) and magnitude were 

calculated. The user’s template was created by generating the MFCC feature 

from a segment size of 2 seconds as it provided better results. The cross-day 

scenario was applied to train and test the system; the first 10 seconds of walking 

data (on flat floor) was employed to train HMM and 5 minutes of mixed gait data 

(included walking on flat floor, up/down stairs, and opening/closing the doors) 

were used for testing. When the user’s reference template trained with only 10 

seconds (i.e., five samples), an EER of 31.6% was achieved. However, 

increasing the amount of training data into 114 seconds of mixed data greatly 

reduced the EER into 18.11%. These results were based upon a single 2 seconds 

instance of the acceleration data. Applying the quorum voting approach to a group 

of 60 samples of the user’s test data (which is equivalent to 2 minutes) resulted 

in 6.15% of EER. In comparison with the previous work by Nickel et al., (2011d) 
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that reported an EER 21.7%, this study achieved an improvement of more than 

70% (i.e., a low EER of 6.15%). This could be explained that segment-based 

approach provides a significant performance boost when compared to the cycle 

method. However, some users in this study were rarely recognized by the system 

with a high FRR of about 60% or higher. 

Hestbek et al., (2012) proposed to use the Discrete Wavelet Transform (DWT) in 

order to convert the raw acceleration data into signal information, approximation 

and details coefficients. Again, this study employed the same dataset used by 

Nickel et al., (2011c). The sliding window approach divided the acceleration 

signal into 5 seconds with 50% overlap and then the BFCC and Std features were 

extracted. More details of the feature extraction process are shown in Figure 52. 

SVM and the quorum voting method were used to classify the user’s gait pattern. 

Fifty segments from the authentication dataset of each user, which typically 

corresponds to 2 minutes of the walking data, were passed to the quorum voting 

method. The obtained results were 9.82% of FAR and 10.45% of FRR. Apart from 

the computational overhead of applying the DWT, the findings of this study did 

not improve the performance of the prior art by Nickel and Busch (2011), which 

achieved an EER of 6.15%. 

 

Source (Hestbek et al. 2012) 

Figure 52: The steps of extracting BFCC features 



 

170 

 

To investigate if the cycle extraction method can enhance the gait recognition 

performance, Nickel and Busch (2012) suggested a new solution. They proposed 

that each segment contains a number of cycles (called cycle-based segment) 

instead of windowing the raw data into fixed segment size. The same dataset 

used in Nickel et al., (2011c) was employed in this study, and the cross-day 

scenario was used to train and test the system. Cycles were detected in the gait 

signal based upon the presented cycle extraction method in Nickel et al., (2011d). 

Around 264 cycles were extracted, half of these cycles were used for training 

(which corresponds to about 4 minutes of the walking data). From the 

acceleration values of each cycle, the combination of cepstral coefficient features 

(BFCC and MFCC) was generated for each axis (x, y, z, and m). A comprehensive 

evaluation has been conducted to construct a robust reference template. This has 

been done by testing the impact of the sampling rates, and the number of cycles 

per segment. Including one cycle per segment and 100 samples per second, an 

EER of 22.7% was achieved. However, using 50 and 200 sampling rates 

decreased the performance to 27% and 28.8% respectively. Further experiments 

were conducted by including four cycles in each segment (corresponding to four 

seconds); the EER dropped significantly from 22.7% to 17.96%. The 

aforementioned recognition rates were based upon utilizing only 4 seconds of the 

accelerometer data (single sample without voting). Considering a group of 14 

samples of the user’s data (corresponding to about 2 minutes of the walking data) 

and using the quorum voting method resulted in an EER of 15.46%. To 

benchmark between cycle- based segment method and segment-based 

approach, the authors carried an additional experiment. The same features 

(BFCC and MFCC) were extracted but from a fixed segment size of 5 seconds 

(without prior identifying the contained gait cycles). The results revealed EERs of 

13.89% and 17.28% with and without voting. In addition to the complexity and 
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computational overhead of identifying the cycles in the gait signal, it can be noted 

that the proposed method (i.e., cycle-based segment approach) did not improve 

the system performance before and after voting. 

Nickel et al. (2012b) investigated the efficiency of applying three machine learning 

algorithms (i.e., k-NN, HMM, and SVM) on the gait recognition rates. The normal 

walking pace data was collected from 36 users by attaching a mobile phone at 

their hip pouch. Each user took a part twice on two different days; each session 

contained approximately 10 minutes of the controlled gait data. The segment-

based approach was used to divide the raw acceleration data into 7.5 seconds 

with a 50% segment overlap. On average, about 132 samples were extracted per 

session from each user. The first day data was used to create the reference 

template and the remaining samples were used for testing. Once the reference 

and test templates were generated, the cepstral coefficients and statistical 

features were extracted. The selected feature subset was based on two main 

criteria: the performance of individual feature and the combination with other 

features and the feature’s discriminative potential score (the features that had low 

intra-class variability and high inter-class variability were selected). The 

evaluation outcomes of the cepstral coefficient and statistical features showed 

that BFCC was sufficient to create the user’s reference template. Euclidean 

distance was used to compute the distance between reference and test templates 

and k-NN was applied to select the closest match of the calculated distances. The 

proposed system achieved unbalanced performance (22.22% of FRR and 3.97% 

of FAR) which is equal to 13.09% of HTER (HTER =
FAR+FRR

2
 ). However, these 

findings were based upon using a single sample, which was constructed from 

only 7.5 seconds of the motion data. Therefore, to reduce the FRR (and make the 

system more tolerance to accept a genuine user), a group of 25 segments of the 
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user’s samples were passed to the quorum voting schema. If two segments were 

correctly classified, the user was considered as genuine. The reported result was 

8.24% HTER. Although HTER gives insight into the average error rate, the metric 

fails to communicate whether the system strikes a balance between usability and 

security (FRR and FAR, respectively). To find out the more suitable algorithm to 

classify the user’s gait pattern, HMM and SVM were also evaluated; five minutes 

of the walking data were used to train each of these classifiers and the verification 

data were between 1.7 and 3.2 minutes. Table 22 displays the performance of 

each algorithm after applying the quorum voting method. Although there was no 

noticeable change in terms of the error rates between the three algorithms, the 

SVM is more sensitive with the variation of the human gait. Hence, it produced a 

high FRR (Nickel et al., 2011c). In comparison, k-NN and HMM were less 

sensitive and performed slightly better. Nevertheless, while the authors claimed 

the efficiency of the system using a real-world implementation, they fail to state 

how accurate the system was in practice. 

Classification 

method 

Verification data 

based on minutes 

Performance 

(%) 
K-NN 1.7 HTER= 8.24 

HMM 2.5 EER= 8.75 

SVM 2.5 EER= 8.85 

Table 22: The performance of three different classifiers 

Muaaz and Nickel (2012) studied the effect of different walking speeds and 

surfaces on the gait recognition performance. Controlled data was collected from 

48 subjects and a Google G1 smartphone was placed inside a pouch attached to 

the user’s hip. Subsequently, the subject was asked to walk at their normal, fast, 

and slow paces on flat, grass, gravel, and sloping ground. Each subject 

participated in two sessions on two different days. Every session consisted of six 

different walks trails from each user. In the first four trials, the subject walked 

using their natural speed on flat, grass, gravel, and sloping ground. The last two 
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trails included the fast and slow gait speeds on extrovert ground (each trail 

contained about 1 minute of walking data). After the raw acceleration data were 

obtained, cycle extraction method was used to create the reference and probe 

templates. First, the cycle length was estimated by calculating the minimum and 

maximum salience vectors then the same method was used to detect the cycles. 

To remove the irregular cycles from the dataset, DTW was applied to calculate 

the distances between all cycle pairs. Thereafter, a threshold value has been set 

to decide which cycles must be deleted. At least six cycles were obtained from 

each trial (a “remaining cycle”). The remaining cycles were further analysed to 

select the optimal cycle (a “typical cycle”), which has the minimal distance to other 

cycles. Two different experiments were conducted; in the first experiment, the 

typical cycle was used for training and the remained cycles were used for testing. 

The second experiment employed the remaining cycles for training and testing 

purposes. In both experiments, the reported EERs were very high, with the first 

method performing slightly better. Applying DTW and the majority voting method 

to the normal gait data on flat, grass, gravel, and sloping ground, the best EERs 

were 29.39%, 32.05%, 36.10%, and 35.18% respectively. For the fast and slow 

gait signals, EERs was 33.81%, 35.31% were achieved consecutively. The 

findings of this study highlighted how different walking speeds and surfaces could 

influence the gait recognition. Therefore, it is important to train multiple reference 

templates, each contains data of specific walking speed. Thereafter, during 

verification phase, an activity recognition should be applied to distinguish the 

speed of probe vector and select the correct authentication template. 

Ho et al., (2012) proposed to classify the user’s gait pattern by sending the 

collected acceleration data to an application server for processing. The normal 

walking pattern of 32 subjects was monitored (which was obtained under a 
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constrained environment). Only two minutes of the motion data were collected 

from each user in one session and the tri-axis signals were combined. The 

periodic motion of one step was considered as one cycle. To detect the cycles in 

the fused signal, autocorrelation was used to estimate the cycle length and the 

start point of the first cycle was detected manually. A cycle is defined by two 

consecutive “zero crossings” or the points where the value of the signal changes 

sign. In total, 400 cycles were extracted from each subject; the statistical features 

(mean, variance, Std, Min, Max, and RMS) for each cycle were computed. To 

train and test the system, the authors divided the dataset into two parts, 70% of 

the user’s data was used for training and the remaining data was employed for 

testing. Using the SVM algorithm reported 100% correct classification; this 

performance was significantly dropped to 69.67% when the ratio was changed to 

50% as authorized user and 50% as unknown user. In addition to the higher error 

rate, the manual cycle detection is not practical for two reasons: first) it does not 

scale (i.e., it will not work if there are a large number of users); second) it is 

inaccurate (humans can introduce errors). Moreover, the experiment required a 

device with network connectivity which increases implementation cost. 

A study by Shrestha et al., (2013) proposed a gesture-based authentication 

system by utilizing the accelerometer and ambient light smartphone sensors. The 

experimental study included the participants of 20 users, each was asked to 

perform hand waving gesture 10 times on a single day. In order to classify the 

user’s identity, the authors developed a wave detection algorithm that are 

demonstrated in Figure 53. The FAR and FRR were used to evaluate the system 

accuracy with a FRR of 10% and a FAR of 1% being reported. A major defect of 

this system is the possibility of high false rejection rate when a user waves the 
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hand far away from the smartphone (i.e., distance between the hand gesture and 

a smartphone should be close). 

 

Source (Shrestha, et al., 2013) 

Figure 53: The proposed wave recognition algorithm 

Another study to classify the normal walk style was by Muaaz and Mayrhofer 

(2013). The acceleration data was collected from 51 participants, each was asked 

to place the mobile inside a pocket attached to their hip and walked about 30 

seconds down the hall in one session. In total, two sessions were captured per 

participant on two different days. Cycles were extracted from the gait signal based 

upon the presented approach by Muaaz and Nickel (2012). Two different 

experiments have been carried out using two different classification methods, 

DTW and SVM. The first experiment applied Piecewise Linear Approximation 

(PLA) to the acceleration data before estimating the cycle length. After the cycles 

were detected, comparison between the reference and probe cycles was carried 

out by using DTW as distance function. Figure 54 illustrates the steps used to 

compare two gait cycles. When the same day scenario and cross day scenario 

were used to train and test the system, the authors were able to achieve EERs of 

22.49% and 33.3% respectively. To train the SVM in the second experiment, 
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DTW was used to calculate the distance between the reference cycles and probe 

cycles, and the output distances from the DTW function was used as input to 

SVM. The achieved result was a FRR of 35.7% against a FAR of 1.1%. Obviously, 

both experiments reported high error rate. 

 

Figure 54: The process of applying DTW 

Ross (2013) attempted to identify the user’s identity based upon collecting several 

activities (i.e., walking, running, typing, sitting, standing, and walking up/down 

stairs). The acceleration and gyroscope motion data were collected from 9 users 

on the same day and under a controlled environment. The collected data from 

each user was at least 5 minutes for each activity except the stairs was either one 

or five minutes. The segment-based approach was used to divide the raw data of 

both sensors into 10 seconds windows with an overlap of 50% (An average of 

260 samples was obtained per user for all activities). A number of statistical 

features (i.e., Avg, Std, AAD, ARCA, ARCV, TBP, and BD) were generated for 

the accelerometer and gyroscope data separately, and the findings are presented 

in Table 23. The results show that gyroscope sensor was more effective than 

accelerometer. Using J48, the reported results were 86.4%, 95.4%, and 91.5% of 

correct classification rate for walking, running, and typing activities respectively. 
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Classification 

 Method 

Accelerometer 

features 

Gyroscope 

features 

Features of 

both sensors 

J48 85.3 89.4 90.3 

Multilayer neural network 62.4 64.9 70.5 

Table 23: Correct classification rate (%) of the proposed system 

The previous studies have primarily concentrated on collecting the acceleration 

data from a single mobile within a specific sampling rate. Therefore, Hoang et al., 

(2013) conducted a study to identify the user’s gait pattern regardless of the 

sampling rate and utilizing various phones. Two different smartphones (i.e., HTC 

Nexus and LG Optimus G) were fastened together and placed inside the user’s 

pocket. Two different sampling rates were obtained from both phones (27Hz for 

HTC Nexus and 100Hz for LG Optimus G). Data was collected from 14 

participants, each walked 12 rounds in one day (each round contained about 36 

seconds of the controlled gait data). Gait cycles were extracted by identifying the 

minimum peaks, and the distance between two consecutive peaks was 

considered as one cycle. Since all cycles were extracted, the gait signal was 

divided into segments where each segment contained 4 sequential cycles with a 

50% overlap windows Based upon the speed of a participant’s walk, the extracted 

segments per subject were between 110 and 167 (half of these segments used 

for training and the other half for verification). Subsequently, the time and 

frequency domain features were generated for separating axis (x, y, and z) and 

magnitude as well. The extracted time domain features were average maximum, 

average minimum, AAD, RMS, Std, 10-bin histogram, and waveform length. In 

the case of the frequency domain features, the first 40 Fast Fourier Transform 

coefficients, and the first 40 DCT coefficients were measured. By applying SVM, 

the resulted correct classification rates of using HTC Nexus phone and LG 

Optimus G gait signals were 99.81% and 97.53% respectively. Another 

experiment has been conducted to create the cross-device gait recognition model 
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(this model used data from one phone for training and testing the system by 

employing data from the second smartphone). To build this model, the 

aforementioned features were further analysed in order to select the features that 

were more resistant to changes in sampling rate. This was done by calculating 

the average error rate (AER) and the intra-class correlation coefficients (ICC) for 

each feature and then selecting the feature subset that showed higher ICC and 

lower AER. Based upon the conducted analysis, only the time domain features 

were used to create the feature vector. The result revealed a correct classification 

rate of about 91%. However, the number of participants was considered limited 

with 14 users only and data was obtained on the same day. 

Usually, gait data contains some noise and errors hence, it requires pre-

processing before extracting the features. These errors typically result from the 

phone movement in the subject’s pocket, whilst the noise is produced by impact 

forces and oscillations caused by the subject walking. From this prospective, 

Muaaz and Mayrhofer (2014) suggested a solution to handle these issues. The 

magnitude vector of the three axes was calculated to minimize the errors, and the 

multi-level daubechies orthogonal wavelet was used to reduce the noise (Percival 

and Walden, 2000). The normal walking signal (controlled data) was gathered 

from 35 volunteers, each was asked to place the mobile in their trouser pocket. 

Each volunteer participated one session per day for two days (the first and second 

day data were used to train and test the system respectively). Once the 

acceleration readings were obtained, cycles were detected by identifying the local 

minima in the gait signal. After all the local minima had been identified, the 

distance between two consecutive minima was considered to be a one cycle.; at 

least 12 cycles were detected from each user per session. Figure 55 illustrates 

the steps used to create the reference and test cycles. An EER of around 19% 
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was achieved using DTW. However, during the data collection stage the authors 

asked the subjects to wear a pair of trousers that have a tight front pocket to limit 

the mobile movement. Therefore, the system performance might decrease if the 

constraints imposed upon users were more realistic.  

 

Source (Muaaz and Mayrhofer, 2014) 

Figure 55: The steps used to create the reference and test templates 

In recent years, there have been relatively few studies on activity recognition that 

are based upon mobile accelerometers. Watanabe, Y. (2014) conducted a study 

to authenticate the phone’s user based upon three different activities (i.e., 

walking, touching the mobile’s screen, and making a phone call). Data was 

collected from 4 participants only (within a constrained environment), each 

walked three laps using their normal pace (in total, the participant walked 

approximately 2 minutes on same day). During each lap, the mobile’s position 

was different. In the first lap, the mobile was placed in the participant’s trouser 

pocket, whereas the second and third laps the participant pretended to pick up a 

phone call and touch on the mobile’s screen respectively. After the accelerometer 

data was obtained, it was segmented into 3 seconds intervals. Several statistical 

features (average, Std, AAD, BD, and TBP) for each axis were computed. A ten- 

fold cross validation technique was used to train and test the system (ten- fold 

cross means that 90% of the dataset used for training and 10% for testing and 

the procedure repeats 10 times). Five different classification methods were used, 
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Feedforward Multi-Layer Perceptron (FF MLP), J48, Radial Basis Function 

(RBF), Bayesian Network (BN), and Random Forest (RF). Table 24 displays the 

classification performances for each activity. The results showed that the mobile 

location influences the system performance significantly. When the mobile was 

placed in the pocket, only FFMLP showed balance result between the FAR and 

FRR rates. However, apart from the relatively small number of participants, the 

samples collected from each user was limited and gathered at same day. 

Algorithm In trouser pocket Touch on screen Hold calling 

FAR FRR FAR FRR FAR FRR 

FFMLP 1.30 2.34 3.65 7.81 9.38    22.66 

J48 3.39 15.63 7.03 22.66 6.51 29.69 

RBF 0.52 8.59 4.17    13.28 2.86 22.66 

BN 0.26 7.81 8.85 14.06 5.99 21.09 

RF 0.26 7.81 1.82 17.19 2.86 32.03 

Table 24: The reported FAR (%) and FRR (%) of each activity 

A further study was conducted by Watanabe, Y. (2015), where the data collection 

methodology was similar to his previous study; however, the number of 

participants was increased to 8 users, and data was collected from each user on 

two different days. The obtained accelerometer data was segmented into three-

second intervals. The user’s feature vector was created by using the same feature 

subset generated by Watanabe, Y. (2014). Two experiments have been 

implemented: in the first experiment, the same day scenario was used to train 

and test the system, whilst the second experiment used the cross-day scenario 

for training and authentication phases. Four different classification methods were 

utilized for both experiments, BN, RF, RBF, and FFMLP. Table 25 displays the 

achieved results of both experiments. 
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Table 25: Correct classification rate metrics (%) for each activity, S and C denotes 

to use the same and cross day data, respectively 

While gait recognition offers competitive authentication accuracies, the 

conducted study by Gascon et al. (2014) attempted to explore the possibility of 

protecting the sensitive smartphone information based upon the motion data of 

the typing activity. The data collection was performed in a single day and involved 

a considerable number of volunteers (i.e., 315 users). The users were asked to 

type a predefined text message on the touchscreen of their smartphones 

(controlled experiment). Thereafter, several time domain features were extracted 

to create the user’s reference template such as RMS, mean, and Std. At best, the 

experimental analysis showed a true positive rate of 92%, which is the rate of 

classifying the authorized user correctly and 1% of FAR by utilizing SVM. 

Although the motion signal was captured from a large dataset, at least in the term 

of behavioural-based biometric, it was collected in single session (which is not a 

realistic scenario as a more diversity typing profile of the users could be captured 

during multiple sessions). Moreover, the true positive rate was calculated for 

limited users (i.e., only 12 genuine users) and data of 302 users was utilized to 

measure the FAR hence, the recognition rate of identifying the legitimate user 

might decrease by using the whole dataset.   

Another study by Damaševičius et al. (2016) utilized the sliding window approach 

to divide the walking signals of 14 users (the gait samples were obtained within  

a constrained environment). Each participant was asked to perform several 

Mobile location Used data BN RBF FFMLP RF 

In trouser pocket S 98.96 98.96 97.92 96.88 

In trouser pocket C 97.22 97.92 97.92 93.75 

Hold calling S 90.63 90.63 90.63 91.67 

Hold calling C 86.11 86.11 88.89 81.25 

Touch on screen S 87.50 86.46 87.50 83.33 

Touch on screen C 88.89 91.67 86.81 87.50 
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activities namely, walking, upstairs, downstairs, running, jumping, sitting, 

standing, and elevator up and down. Five trails were recorded per activity in a 

single day. The majority of the extracted features were derived from the prior art 

(e.g., mean, covariance, and difference). The fusion of the acceleration and 

gyroscope data was used and applied Random Projections (RP) method (more 

details about RP method (Achlioptas, 2003) in order to reduce potentially large 

dimensionality of input data. As a result, the system performance could be 

enhanced by selecting the most optimal unique features for individual. Once the 

reference and test templates were created, the Jaccard distance was used for 

activity classification and reported an EER of 5.7%.  Nevertheless, similar to other 

prior art that collected the movement data on the same day, this study requires a 

user to re-enrol in the proposed system every day.  

A comprehensive gait analysis was conducted by Ehatisham-ul-Haq et al., 

(2017a) to explore the impact of different smartphone positions on the system 

performance. This was carried out by placing Samsung Galaxy into five different 

body positions (i.e., pockets on both sides, right and left wrist, and right upper 

arm). The acceleration and gyroscope signals of various activities (i.e., walking, 

upstairs, downstairs, sitting, standing, and running) were collected from 10 

participants; each was asked to provide three minutes of the motion data for each 

activity that was captured in a constrained environment. The segment-based 

method was utilized to divide the raw data into 5 second segment, which is 

resulted in a total of 36 samples for each activity. Subsequently, features were 

extracted in both, the time and frequency domains (e.g., max amplitude, min 

amplitude, energy, and entropy). SVM, Bayesian network, Decision trees and k-

NN were utilized to classify the user’s identity, and correct classification rates of 
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99%, 97.4%, 96.8%, and 93.3% were achieved for the aforementioned algorithms 

respectively.  

So far, all the presented studies were based upon utilizing labelled data (i.e., data 

was collected within a controlled environment). Therefore, Kumar et al., (2017) 

proposed a more realistic data collection scenario by capturing unlabelled 

smartphone movement signals and developed a context authentication model 

based upon the phone usage. Data was collected from 57 participants over 

multiple days; the sliding window approach was utilized in order to segment the 

raw time series data into 10 seconds windows with an overlap of 50%. Time and 

frequency domain features were extracted in order to form the user’s reference 

template such as mean, Std, median frequency, and spectral entropy. To build a 

context authentication model for each individual, k-means clustering and Random 

Forest were used to create several distinctive smartphone usage patterns. 

Subsequently, multiple authentication models were generated, each trained and 

evaluated based upon the predicted smartphone usage. Four different 

classification methods were applied: (i.e., Logistic Regression, FFMLP, K-NN, 

SVM, and Random Forest) that reported EERs of 13.7%, 13,5%, 12.1%, 10.7%, 

and 5.6% respectively. However, the proposed system fails to create a distinctive 

pattern for some users through reporting a high EER of about 40% or higher. 

Ehatisham-Ul-Haq et al., (2017b) conducted an activity recognition study by 

collecting the acceleration data within a single day from 10 users; each was asked 

to perform three minutes data for each of the predefined activities (i.e., walking, 

sitting, standing, walking upstairs and downstairs). The raw movement data was 

portioned into 5 seconds samples with a 50% overlap through using the segment-

based approach. Subsequently, a set of frequency and time domain features was 

used to form the user’s reference template such as energy, entropy, mean, and 



 

184 

 

variance. Thirty presents of the collected data was used to train the machine 

learning algorithms (i.e., K-NN, BN, and SVM), and the system performance 

evaluated by utilizing the remaining data (i.e., 70%). The average correct 

classification rates reported by K-NN, BN, and SVM classifiers were 89.65%, 

94.57%, and 94.24% respectively. However, a non-realistic scenario was used to 

test the efficiency of the proposed system (i.e., the enrolment and authentication 

phases were based upon data collected in a single session only).  

Lee et al. (2017) proposed to use the fusion of accelerometer and gyroscope 

sensors in order to offer implicit and continuous smartphone-based user 

authentication. The movement signals were collected from 24 users over a week, 

each was asked to install an application that continuously record the mobile 

movement data when users interact with their smartphone. Time and frequency 

domain features were extracted to train the authentication model such as Std, 

min, and max. To classify the arm movement pattern, DTW was utilized and 

reported 0% of FAR and 7.6% of FRR. These errors were increased to 6.4% and 

13.7% of FAR against 11.8% and 15.2% of FRR by using the accelerometer and 

gyroscope sensors respectively. Therefore, the presented results showed the 

necessity to use the combined signals of both sensors (i.e., acceleration and 

gyroscope) to improve the system performance. Although each participant 

provided 7 days data, the proposed algorithm to extract the user’s motion 

samples was able to capture only 18 samples per day from each user, which is 

limited to train and test a behavioural-based biometric system.  

Continuous user identification via touch and movement behavioural biometrics 

was suggested by Shen et al., (2018); multi-motion sensors were utilized to 

capture the acceleration, gyroscope, orientation, and magnetometer data from 

102 users over multiple days. All participants were asked to provide three touch-
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based movement scenarios: touching on a smartphone while a user sitting and/or 

standing, putting the device on a table and continuously interacting with the touch 

screen of the smartphone, and interacting with the smartphone on the go. In total, 

more than 520,000 samples were extracted, each sample contained 0.73 second 

of the movement data. For each sample, more than 190 frequency and wavelet 

domain features were extracted such as energy, entropy, mean and cross mean 

rate. Applying the HMM to a short segment size (i.e., 0.73 second) reported a 

high EER of about 27%, and the authentication performance was greatly 

improved (i.e., 4.93% of EER) by increasing the segment size into 8 seconds. 

However, this would increase the required time for the authentication decision as 

the authors used a large feature subset size (i.e., 192 features) and did not carry 

out any feature selection approach to remove the redundant or irrelevant features. 

Although mobile-based gait authentication provides an unobtrusive and user-

friendly method for authentication, the majority of previous studies collected the 

motion data by placing a mobile phone in a fixed position (i.e., in the trouser 

pocket or on the hip). However, users can put their phone in numerous locations 

around their body wherever there is a pocket (i.e., inside coat pocket and back 

pocket). Moreover, the collected signals by smartphones are too noisy that 

require extensive pre-processing, which add extra cost in terms of the required 

resources.  
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More recently with the introduction of smartwatches, the feasibility of using the 

accelerometer and gyroscope on the wrist offer the opportunity to provide more 

granular monitoring of physical movement. Mare et al., (2014) proposed a study 

to recognize users that were interacting with computer (specifically, interacting 

with a keyboard and/or mouse). The acceleration and gyroscope data were 

collected from 20 participants on a single day (data obtained within a constrained 

environment). An average of 485 samples were obtained from each user (each 

sample included one second of the user’s movement data). Usually, one second 

of the user’s motion data is not sufficient for identifying the user’s identity, 

therefore, the authors included 21 seconds in each single sample (which resulted 

in a total of 23 samples for each user).  To avoid the effect of the orientation, the 

collected signals across all three axes (x, y, and z) were combined into a single 

dimension (i.e., magnitude). Thereafter, several statistical features were 

extracted (e.g., power energy, peak to peak amplitude, mean, and median) and 

classified by utilizing the Random Forest algorithm. The best obtained results 

were 90% correct classification rate of the legitimate user against 100% for 

identifying imposters. However, more investigation for the sample size (i.e., 

segment size) is required as the authentication accuracies of this study obtained 

by asking users to type on the keyboard or move the mouse continuously for 21 

seconds, which is a bit inconvenient for users.   

Johnston and Weiss, (2015) conducted a study to collect the movement data from 

LG G Watch sensors, accelerometer and gyroscope. For the experiment, 59 

subjects were involved; each subject was requested to wear the watch on their 

dominant hand and walk using their natural gait speed (the gait samples were 

obtained within a constrained environment. At least 5 minutes of activities were 

captured from each user in one session, except few users that contributed of only 
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2 minutes. Subsequently, the raw data of each sensor was divided into 10 

seconds segments at the sampling rate of 20Hz. The statistical features (average, 

Std, AAD, TBP, BD, ARCV, and ARCA) were computed for each sensor 

separately. Since all features were extracted, a single predictive model for each 

genuine user was created. To train each model, 80% of the genuine user’s data 

and the data of four imposters were selected (for a 1:4 genuine to imposter ratio 

of data). Testing the model of each genuine user was performed by selecting four 

random users (which their data was not in the training dataset) and the remaining 

20% of the genuine user’s data. Utilizing the acceleration feature vectors only, 

the authors were able to achieve EERs of 1.4%, 2%, 2.5%, and 4.5% using 

Random Forest, Multilayer Perceptron, Rotation Forest, and Naive Bayes 

respectively. However, when the gyroscope features were used, the resulted 

EERs were significantly increased to 9.6%, 6.3%, 7.0%, and 9.6% (these results 

were generated via applying the same aforementioned algorithms). With a 

majority voting scheme, the proposed system managed to attain 0% EER (i.e., 

100% accuracy) with 50 seconds of data. Although the reported results were 

strong and based upon 50 seconds of authentication data, it has to be noted that 

the data was collected on the same day. Moreover, the testing for authentication 

is rather strange; besides the genuine user is data of 4 impostor users used in the 

training, the testing was done with data of 4 impostor users only (as well as the 

genuine user of course), which is not a comprehensive test to claim the system is 

robust to impersonation attacks. 

A gesture-based user authentication system was suggested by  Junshuang Yang 

et al., (2015) using Samsung smartwatch sensors (accelerometer and 

gyroscope). Four different gestures were evaluated in this study, forearm rotation 

about 90 degree clockwise (rotation), drawing a circle (circle), arm down (down), 
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and arm up (up). In the data collection phase, 26 subjects were involved; each 

was asked to wear the smartwatch and perform 40 gestures per session (10 times 

for each of the above gestures). In total, 160 gestures were collected per user 

over multiple days. The accelerometer and gyroscope readings were then 

converted into 30 features; these included the magnitude of the acceleration M, 

the corresponding first and second derivatives of each measurement, and the 

three angles between M and x/y/z. The histogram and DTW were used as feature 

extraction methods. The former was used to compute normalized n-bin histogram 

from the 30 features, and then Manhattan distance function was applied to 

calculate the distance between two histograms (reference and probe histograms). 

This distance value represented the similarity score between two gesture 

samples. The latter (DTW method) was utilised to compute the distance between 

every two gestures in the training set. Thereafter, the gesture that had a lowest 

DTW distance to other gestures was selected as a reference gesture. Applying 

histogram method for the circle, down, up and rotation gestures, EERs of 2.6%, 

3.1%, 2.9 and 4.7% were obtained respectively. These results were slightly 

decreased to 3.8%, 4%, 4.7% and 7.7% when DTW method was applied. 

Nerveless, the EERs of multiple users were more than 20%. 

Another smartwatch- based authentication study was conducted by Kumar, et 

al.,(2016) by analysing the user’s walking pattern. Different segment sizes (i.e., 

2, 4, 6, 8, and 10 seconds) were tested and the segment size of 10 seconds 

achieved the best authentication performance (i.e., correct classification rate of 

95%). Two different scenarios were applied, single and cross day; the former 

scenario included the participation of 40 users while only 13 users participated in 

the latter scenario (i.e., cross day). The authors utilized two feature selection 

algorithms, namely Information Gain Based Feature Ranking and Correlation 
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Feature Selection that successfully reduced 25% of the total time and frequency 

features. To evaluate the system accuracy, k-NN was utilized and reported 95% 

correct classification rate by using the single day scenario. However, the system 

performance was reduced to 86.8% when the cross day scenario was applied. 

This can be an indication that the feature selection approach that was used is not 

sophisticated enough to identify an optimal and unique feature set for individuals 

that work over time. Another reason could be that user’s behaviour changes over 

time; hence a template renewal mechanism is required. 

Davidson et al., (2016) utilized the smartwatch acceleration data to capture five 

simple activities (i.e., walking, typing, open a door, lifting a cup, and interacting 

with the smartwatch) to offer active and transparent authentication. Their 

experiment involved the participation of 10 users, and the segment-based 

approach was used to divide the raw signal into 5 seconds. In total, users 

provided only 5 samples for each activity, which is limited amount of data to train 

and test any biometric system. The reference and test templates were generated 

by extracting time and frequency domain features, which were selected based 

upon prior work identified in gait recognition studies. The true positive (TP) and 

false positive (FP) rates were used to evaluate the system efficiency. High true 

positive rate (i.e., above 90%) represents that the proposed system more 

frequently accepts a legitimate user while low false positive rate indicates to a 

high probability of preventing unauthorized access. To distinguish between a 

legitimate and an imposter, K-NN was used and reported 88.4% TP and 1.3% FP.  

The fusion of four smartwatch and smartphone sensors (i.e., accelerometer, 

gyroscope, magnetometer, and orientation) was investigated by (Shrestha et al., 

2016) in order to improve the gait recognition accuracy. The user’s walking 

pattern was captured from a set of 18 users, each user walked naturally about 35 
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meters per day and repeated the same experiment over multiple days. In total, 50 

gait samples were obtained from each participant. More than 300 features (e.g., 

range, mean, and root mean square) were used as input for training and testing 

the Random Forest classifier. The findings showed EERs of 8.75% (smartwatch 

sensors only), 4.5% (data of the smartphone) 2.6% (fusion signals of the 

smartwatch and smartphone). As expected capturing data from both devices 

improved the system accuracy. Nevertheless, this would require complex 

computational processing and hence high demand upon the battery (which is one 

of the biggest qualms of these devices). Moreover, it was unclear which scenario 

(i.e., single, mixed or cross day scenario) was applied to train and test the 

classifier.  

A preliminary study by Lewis et al., (2016) considered 3D arm gesture of 5 users 

over multiple days; cycle based method was used to segment the raw 

acceleration data. The study reported high error rate of about 30% FRR against 

15% FAR by utilizing DTW for classifying the movement pattern of individuals. 

This high error rates might be the lack of using the appropriate method of dividing 

the motion signal as well as using small dataset size.  

Dong and Cai (2016) conducted a test with 20 users providing single day of the 

acceleration and gyroscope gait data. The motion signal was collected by utilizing 

sensors on commercial devices (i.e., Samsung Galaxy Gear 1 and Samsung 

Galaxy S4). The walking signal was segmented by applying sliding window 

approach and then transferred into time domain features to represent the 

reference and probe templates. The division of training and testing data was 

rather strange where 90% of the collected samples (i.e., 40 samples) was used 

to train SVM and the remaining 10% samples (i.e., 10 gait samples only) for 

testing. Using the smartwatch sensors data reported an EER of 4.36% against 
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2.40% of EER when the smartphone motion signal was utilized. The system 

performance was significantly improved by using the fusion data of both devices 

and showed 0.65% EER. Nevertheless, all users were asked to wear flat shoes, 

which is unexpected condition in the real-life usage. 

An empirical authentication system called ‘iAuth’ was proposed by Lee and Lee 

(2017); the acceleration and gyroscope data of a smartphone and smartwatch 

were collected. Considerable number of samples (i.e., 1,200 samples) were 

acquired over multiple days to generate the feature vector of each individual. 

Using 6 seconds of data (i.e., the segment size of each sample), the time domain 

features (e.g., mean and variance) and frequency features (e.g., amplitude of first 

highest peak) were extracted. Two thirds (i.e., 800 samples) were used to train 

the Kernel Ridge Regression and the rest of samples for testing the proposed 

system. An experimental evaluation was carried out that included a set of 20 

users; the first experiment that utilized the smartphone acceleration signal 

reported a high FRR of 22.3% and 13.4% of FAR. Using the combination of 

smartwatch and smartphone sensors significantly decreased the error rates into 

8.3% of FRR against 7.5% of FAR. Nevertheless, the proposed system was 

carried out on a specific cloud server which is additional cost to consider when 

implementing iAuth tool. Moreover, the authors did not mention the strategy of 

selecting the training and test samples (i.e., is their system equivalent to single, 

mixed, or cross day scenario?).   

The feasibility of handwriting based-biometric authentication using smartwatches 

was investigated by Griswold-Steiner et al. (2017). The acceleration and 

gyroscope of the writing activity was captured from a group of 20 users over 

multiple days. Each user was asked to participate in three different experiments 

(i.e., EXP1, EXP2, and EXP3); EXP1 involved writing pre-defined text, copy a 



 

192 

 

random text was the task of EXP2, while data of EXP3 was captured by asking 

users to answer a questionnaire. Different segment sizes were tested (10, 20, 30, 

….., and 70 seconds) and the best results obtained by increasing the segment 

length into 70 seconds. More than 360 time and frequency domain features (e.g., 

zero cross, absolute difference, mean, and root mean square) were used to train 

and evaluate the effectiveness of SVM classifier. The lowest EERs were nearly 

7%, 10%, and 15% for EXP1, EXP2, and EXP3 respectively. However, in the real 

scenario, it is not expected that all users can type 70 seconds continuously 

without pause and this can be cumbersome. When the more realistic test (i.e., 

using segment size of 10 seconds) took a place, the system performance 

significantly decreased into 12.5%, 16%, and 20% of EERs. Moreover, the 

proposed system was limited to a specific surface (i.e., writing on a piece of 

paper); hence more than one surface should be considered (e.g., typing on touch 

screen and typing on a PC keyboard), along with their impact upon the 

performance.  

Liang et al., (2017) proposed a system to authenticate individuals based upon 

their punch gesture; Samsung Gear Fit 2 was used to collect the acceleration 

signal at a sampling rate of 100HZ from 20 subjects over multiple days. Time 

domain features were extracted to generate the user’s reference and test 

templates. The reported results of training and testing the SVM algorithm was an 

EER of 4%. Apart from that the punch activity is not a realistic gesture for 

transparent user authentication system and does not provide continuous 

verification, the data collection methodology was quite intrusive (i.e., data was not 

captured transparently, as each user was asked to hold his/her hand and press a 

button in order to start and finish the data collection).  
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Another gesture based- authentication study through handwaving biometrics was 

suggested by Wang et al., (2017). Segment based-approach was used to divide 

the raw acceleration data of a single day, which resulted in a total of 15 samples 

for each volunteer. To classify the characteristic of the user’s handwaving pattern, 

Manhattan distance was utilized and reported 4.3% of EER for a dataset of 10 

users only. Nevertheless, the selected gesture seems not robust against 

imitation-attack scenario as the EER was significantly increased to 14.5% when 

attackers masquerade as legitimate users.   

Xu et al., (2017) carried out a study in order to recognize the user’s walking 

pattern using a smartwatch. Their dataset consisted of 20 users, each provided 

20 minutes of the walking signal on two different days. The raw acceleration 

signal was segmented into cycles, and each segment contained 5 cycles. The 

detected cycles represented the unique characteristics of the user’s gait 

templates. To validate the effectiveness of the proposed system, K-NN was 

utilized and achieved more than 96% correct classification rate. Nevertheless, the 

proposed method to detect the gait cycles is cost to implement on digital devices 

(i.e., identifying the walking cycles and then normalized the length of each cycle). 

Activity based-user authentication for cloud-based services was developed by 

Ahmad et al., (2018); data of three smartwatch sensors (i.e., accelerometer, 

gyroscope, and magnetometer) was captured from 6 users only. Each user 

performed 5 gait activities (i.e., normal walking, walking up and downstairs, 

running, and jogging) for about one month. The captured signal was then divided 

into 30 seconds using the segment-based approach. The time and frequency 

features were fed into four machine learning algorithms (i.e., decision tree, K-NN, 

SVM, and Naïve Bayes). The findings showed that decision tree overcome other 

classifiers with an average of 90.4%, 90.2%, and 77% correct classification rates 
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for the acceleration, gyroscope, and magnetometer data respectively. The results 

also highlighted that the normal walking was more distinctive than other activities 

reporting more than 98% of correct classification rate, which confirms the findings 

of the prior acceleration-based activity recognition studies.  

Most recent smartwatch based-user authentication study by Acar et al., (2018) 

proposed the feasibility of utilizing the user’s typing rhythm on a PC keyboard. 

The collected acceleration and gyroscope signals were segmented into 20 and 

30 seconds (using sliding window approach) and then transferred into time and 

frequency domain features (e.g., covariance, correlation, and entropy). Each user 

was asked to participate in 3 different sessions on a single day (i.e., the first and 

second sessions consisted of typing predefined text while imitating a legitimate 

user in the third session, each trail included 4 minutes of the motion data). A 

Feedforward Multi-Layer Perceptron was able to predict 34 users with EERs of 

1% and 2% using a segment length of 30 and 20 seconds respectively. These 

findings were not affected when an unauthorized user attempted to imitate 

someone else with 99% correct classification rate. However, the robustness of 

such a system requires to collect data on multiple days in order to show the 

variability of the human’s typing rhythm. 
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