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ABSTRACT  

Hannah Patricia Thompson  

EXPLORING THE SENSITIVITY OF MANTLE CELL LYMPHOMA TO INHIBITORS OF   

BRUTON’S TYROSINE KINASE 
 

Mantle cell lymphoma (MCL) is an incurable B-cell lymphoma which responds poorly to 

conventional chemotherapy. Inhibitors of Bruton’s tyrosine kinase (BTKi) have shown a 

significant clinical effect; despite this success however, approximately one third of MCL 

patients have primary resistance to the drug, and patients who initially respond to 

treatment frequently acquire secondary resistance with aggressive relapse of the 

disease. The purpose of this study was to understand how BTKi-resistance or sensitivity 

is mediated, aiming to identify new targets for therapy or predictive biomarkers of 

response.  

 

Combining a range of cell culture, biochemical and molecular techniques, the work 

presented describes the development of in vitro models of MCL with different 

sensitivity or resistance to BTKi. These models identify distinct functional and signalling 

responses of sensitive or resistant cell lines during BTKi treatment in the presence or 

absence of stromal cell support. The REC-1 cell line demonstrated reduced survival, 

proliferation, inhibition of BTK and ERK signalling, and downregulation of IRF4 

expression in response to BTK inhibition. In contrast, resistant cell lines (G519, JEKO-1 

and JVM2) or REC-1 cells with acquired resistance to BTKi did not downregulate IRF4.  

The stromal microenvironment also supported BTKi resistance and opposed IRF4 

downregulation. These findings were reproduced using ex vivo primary MCL cells taken 

before and during clinical BTKi therapy, identifying IRF4 as a potential mediator and 

biomarker of BTKi treatment sensitivity or resistance in a clinical setting.  

 

Further detailed assessment of IRF4 protein interactions using molecular and 

proteomic approaches in BTKi sensitive cells identified a novel potential association 

with proteins involved in mitochondrial function that may be involved in resistance to 

treatment with BTKi. Further investigation of these interactions may indicate novel 

targets for the design of therapeutic combinations which can overcome BTKi resistance 

in MCL. 
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1.1 Mantle cell lymphoma 

Mantle cell lymphoma (MCL) is currently classified by the World Health Organisation 

(WHO) as a mature B-cell neoplasm which represents up to 10% of all cases of Non-

Hodgkin’s Lymphoma (NHL).1,2  The incidence of MCL is approximately 1 in 100,000 in 

Europe and the USA3 and is marginally higher among Caucasians (~0.6 in 100,000) than 

among black and Asian populations (~0.3 in 100,000).4 MCL can develop at a young 

age, but diagnosis of the disease is more common in elderly individuals with a median 

age of 65 years,5 and the frequency of males diagnosed is greater than that of females 

(3:1 ratio, respectively).2,6 

The majority of MCL patients (75%) are diagnosed at a late clinical stage (stage III-IV) 

with an aggressive form of MCL, characterised by progressive nodal disease indicated 

by widespread dissemination of MCL cells to the lymph nodes (>90%), bone-marrow 

(70-80%), spleen (60%), liver (30%), peripheral blood (30%) and gastrointestinal tract 

(lymphomatous polyposis) (20-30%).1,7,8 Patients with aggressive MCL have the worst 

long term survival of all NHL subtypes with a median overall survival of 3-5 years and 

require immediate treatment.8-10  

However, a minority of MCL patients display a more indolent form of the disease, 

characterised by a non-nodal leukaemic presentation with only bone marrow 

involvement and an enlarged spleen.11,12 These indolent cases are less common but 

have a progression free survival ranging from 7 to 10 years in the absence of 

treatment.8,13,14 
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1.1.1 The biological characteristics of mantle cell lymphoma  

MCL is a heterogeneous disease and has several different phenotypes. However, the 

characteristic hallmark of MCL and the primary oncogenic mechanism in the 

development of MCL, is the t(11; 14) (q13; q32) translocation which occurs at the pre-

B stage of differentiation, during recombination of the V(D)J genes of the 

immunoglobulin heavy chain variable region (IGHV) in the bone marrow.15,16 This 

translocation event joins the IGHV enhancer-promotor on chromosome 14 (14q32), to 

the transcription unit of the proto-oncogene CCND1 on chromosome 11 (11q13) which 

encodes the protein cyclin D1.  

Cyclin D1 is a key regulator of the G1/S transition of the cell cycle.17,18 In normal B-cells, 

cyclin D1 is transiently expressed and binds to cyclin dependant kinase (CDK)4 and 

CDK6 to form a CDK/cyclin complex which phosphorylates the tumour suppressor 

retinoblastoma (RB1) gene. This leads to activation of E2F transcription factors which 

promote cyclin E/CDK2 activation to trigger entry into the S phase of the cell cycle.1,17  

In MCL, cyclin D1 is overexpressed which enables cells to bypass these cell cycle 

control mechanisms and leads to uncontrolled cell proliferation.19  

Although the t(11; 14) (q13; q32) translocation is found in the majority of MCL cases, a 

small number of cases lack cyclin D1 overexpression and instead overexpress cyclin D2 

or D3.20,21 In addition, the translocation exists in blood cells in approximately 2% of 

healthy individuals.1,22 This suggests that deregulation via CCND1 and cyclin D1 

overexpression is not the only cause for MCL development.  

MCL has a high degree of genomic instability. Several genomic aberrations are 

frequently observed in MCL which can increase cyclin D1 expression and are thought 
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to contribute to disease progression. Some of these include mutations in ATM and 

TP53 genes 23 causing alterations in DNA damage response, mutations in epigenetic 

modifiers including MLL2, MLL3 and SMARCA4,24 mutations in NOTCH1/2 25 causing 

deregulated Notch signalling, and mutations in TNF receptor-associated factor 2 

(TRAF2) and Baculoviral IAP Repeat Containing 3 (BIRC3) which affect the NFκB 

signalling pathway.26,27 

1.1.2 Cell of origin of mantle cell lymphoma 

MCL cells proliferate in the mantle zone, surrounding germinal centres (GC) within 

lymphoid follicles.28,29 However, the cell of origin of MCL remains a topic of debate. In 

most cases, the MCL cells express an un-mutated (germ line configuration) IGHV gene 

indicating a pre B-cell (antigen-naïve) origin. However IGHV somatic hyper-mutations 

have been reported in 15 - 40% of MCL cases 30-32 which indicate a GC B-cell (antigen-

exposed) origin. In around 10% of these cases, stereotyped heavy complementarity-

determining region 3 (VH CDR3) sequences have been detected which has indicated 

that the development of MCL cells can be driven by antigen selection.16,30 

1.1.3 Immunophenotype of mantle cell lymphoma cells 

MCL cells have a unique immunophenotype which can be determined by the cluster of 

differentiation (CD) proteins they express on their surface. These markers assist in 

identifying their stage in B cell development, and can be useful for differentiating MCL 

from other cell types and from other lymphomas with similar cell morphology. MCL 

cells reflect the phenotype of a mature B-cell with a moderate to strong expression of 

surface immunoglobulins IgM and IgD (mainly lambda).8,33 MCL cells also express the 

pan B-cell antigens including CD19, CD20 and CD22 and the T-cell and chronic 

lymphocytic leukaemia (CLL)-associated antigen CD5.34 However MCL cells do not 
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normally express CD10 (a GC associated antigen), or CD23 (a cell surface molecule for 

B-cell activation and growth).8 The absence of CD23 is particularly useful for identifying 

chronic lymphocytic leukaemia (CLL) cells which strongly express CD23.35,36 

Occasionally, some MCL cells have expression of CD10 and CD23 37 which pinpoints a 

later stage in B-cell development and therefore suggests a different subtype of NHL 

however the cells still display features that are characteristic of MCL. 

1.1.4 Histological subtypes of mantle cell lymphoma  

There are three different histologic patterns of MCL including mantle zone, nodular, 

and diffuse which correspond to different stages in the progression of the disease.38 

The majority of aggressive MCL cases show a diffuse pattern, while indolent MCL cases 

show a growth pattern restricted to the mantle zone, thus it is thought that the 

behavior of indolent cells may correspond to early stages in the development of 

aggressive MCL.16 

Four cytological variants have also been described including classical small-cell, 

blastoid, pleomorphic and marginal zone-like.1,39-41 The classical small-cell variant is the 

most common but the blastoid and pleomorphic variants have a higher Ki67 

proliferation index and are generally more aggressive.8  

1.1.5 Treatment of mantle cell lymphoma  

Conventional treatment for newly diagnosed patients is a combination chemotherapy 

regime which is tailed to the age and co-morbidities of the patient.  For those patients 

not suitable for autologous stem cell transplant then an anthracycline-based 

chemotherapy regime incorporating rituximab, a chimeric monoclonal antibody (mAb) 

which specifically targets the CD20 protein expressed on B-cells (R-CHOP; 
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cyclophosphamide, doxorubicin, vincristine and prednisone) can achieve remissions in 

60-90% of patients.42 However, for most of these patients the remission period is only 

temporary and is followed by relapse (return of disease and symptoms), while other 

patients may be refractory (not responding) to treatment. The median overall survival 

after relapse is between 1 and 2 years.43 More intensive cytarabine based regimes 

followed by an autologous transplant in complete remission offers better long term 

outcomes but is usually only an option for younger MCL patients without comorbidity 

who can tolerate the toxicities associated with these intense chemotherapy 

regimens.44 

Other agents which have been explored in the treatment of patients with MCL include 

bortezomib, lenalidomide and temsirolimus.  Bortezomib is a reversible proteasome 

inhibitor which induces cell cycle arrest and apoptosis in MCL cells.45 In initial clinical 

trials, bortezamib demonstrated overall response rates (ORR) of 32% as a single agent 

in relapsed and refractory MCL, increasing to 71% when given in combination with 

chemotherapy.46 Lenalidomide and temsirolimus, have shown only moderate activity 

as single agents in relapsed and refractory MCL (ORR 35% and 22%, respectively).47,48 

Within the last decade, there has been a fundamental change in the management of 

patients with MCL with the development of Bruton’s tyrosine kinase (BTK) inhibitors 

(BTKi). This will be discussed in more detail in later sections and although these agents 

have improved treatment outcomes in MCL, they are not effective in all patients, and 

those who do respond eventually develop acquired resistance and suffer relapse of the 

disease.  Therefore there is a continued need for drug development for patients with 

MCL. 
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1.2 Mantle cell lymphoma and the tissue microenvironment  

The tissue microenvironment is an important component in the development of many 

forms of cancer49-51 and has been implicated in the pathogenesis and drug resistance 

of several haematological malignancies, including MCL.52-54  

In addition to the intrinsic pathways that lead to the development and progression of 

MCL, there is growing evidence to suggest that interactions between MCL cells and 

accessory cells in the tissue microenvironment lead to disease progression.55,56 While 

the majority of MCL cells can be eliminated by conventional treatments, a minority of 

lymphoma cells reside in protective tissue niches (residual disease), where they receive 

signals from accessory cells that promote lymphoma cell survival, growth and drug-

resistance which lead to relapses.57 

1.2.1 Cellular interactions in the tissues; the role of CD40L 

The cellular components which make up the MCL microenvironment are found within 

the primary lymphoid organs (bone-marrow) and secondary lymphoid tissue (lymph 

nodes, spleen and mucosa-associated lymphoid tissues). Collectively, these include T 

cells, macrophages, follicular dendritic cells (FDCs) and mesenchymal stromal cells 

(MSCs).55 

An important interaction within the MCL microenvironment involves Follicular T helper 

cells (FTH). In normal B-cell maturation, FTH cells are required along with B-cells to 

produce a series of signals in order for the adaptive immune system to elicit a 

response to antigen. 

The first of these signals involves engagement of the FTH cell receptor with various 

antigens. These can either be peptides that are presented on the surface of antigen 
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presenting cells (APCs) in the context of the major histocompatibility complex II (MHC 

II), or unprocessed innate antigens binding to a cognate B-cell receptor (BCR).58  

The second step involves co-stimulatory signals between activated FTH cells and either 

APCs or B cells. One essential signal is produced by the CD40 Ligand (CD40L) (also 

known as CD154) expressed on activated FTH cells when it engages with the CD40 

receptor expressed on B-cells and APCs.59 

The CD40L is a type II transmembrane protein of the tumour necrosis factor (TNF) 

superfamily.  Although primarily expressed by activated T-cells and B-cells, CD40L can 

also be expressed on dendritic cells, granulocytes, macrophages and platelets.60-62 

CD40L may be cleaved into a soluble form (sCD40L) that has a cytokine-like activity. 

Both forms bind to several receptors, including CD40.60 

Engagement of CD40L to CD40 stimulates the formation of germinal centres (GC) and 

is critical for B cell proliferation, differentiation, antibody class switch recombination 

and affinity maturation. These processes are essential for the generation of memory B 

cells and long-lived plasma cells. 

During B cell differentiation within the GC (Figure 1.1), somatic hyper-mutation takes 

place to allow maturing B-cells to diversify the variable region of their surface 

immunoglobulin; through the addition of mutations in the V(D)J regions of both the 

heavy and light chains. This produces antibodies with high antigen affinity BCRs.63 

GC B-cells expressing BCRs with high affinities for antigen are selectively engaged by 

FTH cells and receive CD40 survival signals through their BCR, whereas GC B-cells 

expressing BCRs with weak affinities for antigen do not receive sufficient CD40 survival 

signals and are deleted via the extrinsic Fas-dependent apoptosis pathway.59 
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The CD40 signal is transduced through the ligand-dependent recruitment of adaptor 

proteins of the TNF receptor-associated factor (TRAF) family. This leads to activation of 

proximal protein kinases and subsequent activation of survival pathways (described in 

section 1.2.3) including the mitogen activated protein kinase (MAPK) pathway, the 

phosphatidylinositol 3-kinase (PI3K) cascade and the nuclear factor kappa-light-chain 

enhancer of activated B cells (NF-κB) pathways. Stimulation of these pathways leads to 

transcription of pro-survival proteins including the B-cell lymphoma-2 (BCL2) proteins 

(described in section 1.2.3) which protects the cell from apoptosis.59,64,65 

The observation from our group and others53,63-67 that ex vivo primary MCL cells 

undergo spontaneous apoptosis in vitro suggests that they depend on these signals 

within the in vivo environment for their survival. 

Established In vitro models have been described in the literature 53,64-67 which exploit 

various interactions within the tissue microenvironment and can be used to facilitate 

survival of primary cells in culture and to explore drug resistance pathways in MCL. 
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Figure 1.1: B cell differentiation and survival through the germinal centre. After encountering 

an antigen, naïve B cells are activated by their CD40L/CD40 interactions in the T cell rich zone 

of the lymph node, and the germinal centre reaction is initiated. B cells proliferate rapidly as 

centroblasts in the dark zone of the lymph node. These cells undergo somatic hypermutation 

(SHM) to diversify the heavy and light chain regions of their surface immunoglobulins. In the 

light zone, proliferation is reduced and some of these centrocytes undergo class switch 

recombination (CSR) of their immunoglobulin isotype. Interactions with follicular dendritic cells 

and T cells select the cells with highest antigen affinity. These cells then differentiate into 

plasma cells or memory B cells. B-cells with a low-affinity BCR undergo apoptosis. (Figure 

adapted from Marr 2016 68). 
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1.2.2 Chemokines, adhesion and migration 

MCL cells have a high propensity for dissemination and homing to different tissue 

compartments. The movement and homing of B lymphocytes is a regulated process 

during which the cells are attracted and retained in the tissues in response to 

chemokine gradients produced by mesenchymal stromal cells (MSCs) such as 

fibroblasts and associated macrophages. This is dependent on the responsiveness of 

chemokine receptors and the expression of various adhesion molecules on the MCL 

cell.52 

MCL cells express high levels of surface adhesion markers, such as the C-X-C motif 

chemokines CXCR4 and CXCR5, and the very late antigen 4 (VLA-4/CD49d), which are 

thought to be important for retaining the cells in their tissue microenvironment, and 

also integrin β1-containing receptors (α4β1 and α5β1) which are major mediators of 

cell adhesion to stroma.65 It is thought that the high expression of these receptors 

facilitates cell adhesion mediated drug resistance (CAM-DR) in MCL which may be 

responsible for characteristic relapses observed in MCL and the reason for the 

incurability of patients following chemotherapy.52,65  

Several studies are focusing on disrupting these homing and adhesion interactions by 

blocking external micro environmental signals.69,70 One study has demonstrated that 

inhibition of VLA-4 and CXCR4 adhesion increases sensitivity to chemotherapy in MCL 

cell lines.70 
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1.2.3 BCR signalling and downstream survival pathways  

The major signalling pathway in B-cell activity is the BCR pathway (Figure 1.2). The BCR 

is linked to downstream pathways which regulate the growth, differentiation and 

survival of normal B cells. BCR signalling pathways are critically involved in the 

progression of mantle cell lymphoma and thus components of the BCR signalling 

pathway are molecular targets for therapeutic approaches.73  

Important proteins required for B-cell signalling and activation are non-receptor 

tyrosine kinases. The BCR is composed of a membrane immunoglobulin (in most cases 

this is IgM) non-covalently bonded to a heterodimer composed of CD79a and CD79b. 

These molecules have cytoplasmic domains that contain Immunoreceptor Tyrosine-

based Activation Motifs (ITAMs) Igα and Igβ.71 When a specific antigen binds to a BCR, 

the tyrosine residues of the ITAMs are phosphorylated by SRC family kinases including 

LCK/YES novel tyrosine kinase (LYN), and spleen tyrosine kinase (SYK).72,73 The 

phosphorylation results in recruitment of many kinases and adaptor proteins, including 

LYN, SYK, PI3K, BTK, the guanine exchange factor VAV proteins, the growth factor 

receptor-bound protein 2 (GRB2) and the B-cell linker (BLNK).74  

Following recruitment of LYN and SYK to the phosphorylated ITAM of the BCR, BLNK is 

recruited to the non-ITAM portion of CD79a and is rapidly phosphorylated by SYK. 

Activated BLNK then recruits BTK for phosphorylation by SYK.75 This enables BTK to 

phosphorylate its direct substrate phospholipase C gamma (γ) 2 (PLCγ2), which 

hydrolyses phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-

trisphosphate (IP3) and diacylglycerol (DAG).76 This event leads to calcium (Ca+2) 

mobilisation by IP3, and activation of protein kinase C (PKC) by DAG77,78. The influx of 

calcium directly activates a number of transcription factors, including NF-κB, and 
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activator protein 1 (AP-1) which regulate important genes required for cell 

proliferation and survival, and nuclear factor of activated T cells (NFAT) which 

regulates cytokine production and other effectors of the immune response74. 

In addition to calcium influx, the β isoform of PKC (PKCβ) can lead to activation of NF-

κB by phosphorylating the caspase recruitment domain-containing protein (CARMA1) 

which activates the CARD11-BCL10-MALT1 (CBM) complex. The CBM activates NFκB 

which translocates to the nucleus to regulate transcription of NFAT and the 

myelocytomatosis viral oncogene homolog (c-MYC).83,84 In normal B cells, MYC 

activates transcriptional programs that favour cell growth and proliferation, and 

suppresses programs that cause cell growth arrest.79 

Activation of PKCβ also leads to activation of the MAPK pathway. The MAPK pathway 

includes the extracellular signal-regulated kinase 1/2 (ERK1/2) which is constitutively 

active in MCL 88,89 and therefore represents an additional target for investigation in this 

thesis. 

The MAPK pathway can also be activated via the PLC-γ2 signal which is transduced to 

the rapidly accelerated fibrosarcoma (RAS) protein through VAV and GRB2, which 

complexes with the son of sevenless (SOS) protein.80 These proteins which are 

recruited by BLNK after BCR ligation activate RAS in the form of RAS-gaunosine 

triphosphate (GTP). RAS-GTP then binds to the serine/threonine kinases B-RAF and C-

RAF. Stimulated RAF kinases phosphorylate and activate mitogen-activated protein 

kinase kinase (MEK1/2), which results in the phosphorylation of ERK1/2. 

Phosphorylated ERK1/2 kinases form dimers, which can then be translocated into the 

nucleus to regulate genes such as c-MYC and the transcriptional activator ETS Like-1 

protein (ELK1).81  The MAPK pathway regulates several other transcription factors 
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including AP-1 and the activating transcription factor 2 (ATF2) through c-Jun N-

terminal kinase (JNK), and the MYC associated factor X (MAX) through p38 MAPK, 

leading to proliferation and survival or apoptosis 74,82. 

There is an increasing body of evidence implicating deregulated BCR signalling in the 

pathogenesis and progression of several lymphomas, including MCL.81 In a phospho-

proteomic analysis of MCL cell lines, the most abundant phosphorylated peptides 

identified were those generated following BCR activation, including SYK, LYN, BTK, and 

PKC. Inhibition of key molecules of these pathways caused apoptosis in MCL cells in 

vitro 81. As mentioned, BTK is an essential protein linked to important BCR survival 

pathways in MCL and has a critical role in the amplification of the BCR signal. Inhibition 

of BTK has produced profound effects in the treatment of MCL patients (discussed in 

detail in section 1.3). 
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Figure 1.2: The key BCR signalling pathways involved in the progression of mantle cell 

lymphoma. BTK is an essential protein linked to important BCR survival pathways in MCL. The 

dashed arrows indicate that several steps may be involved in the activation of each component 

shown (Figure adapted from Roskoski 2016.81 Permission to reproduce this figure was granted 

by Elsevier). 
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As mentioned above, NFkB transcription factors can be activated by several BCR 

signalling components to regulate the growth and survival of B-cells. The NF-κB family 

has five monomers: RelA (p65), RelB, c-Rel, p50/p105 (NF-kB1) and p52/p100 (NF-kB2), 

which homo or hetero dimerise to form up to 15 different NF-κB complexes to regulate 

expression of growth factors, cytokines, chemokines, adhesion molecules, and 

apoptosis inhibitors. 

The two primary pathways for NF-κB activation are the canonical and non-canonical 

pathways (Figure 1.3) and these pathways are frequently deregulated in MCL 83. 

The canonical pathway is triggered by toll-like receptors (TLRs) and pro-inflammatory 

cytokines such as tumour necrosis factor alpha (TNFα) and interleukin-1 (IL-1), which 

initiate inflammatory responses, immune regulation, and cell proliferation. 

The non-canonical pathway is activated by TNF family cytokines, including lymphotoxin 

β (TNFSF3), CD40L and B cell-activating factor (BAFF), which promotes B cell 

maturation and lymphoid organogenesis. 

The common regulatory step in both of these cascades is activation of an inhibitory 

kappa B (IκB) kinase (IKK) complex consisting of catalytic kinase subunits (IKKα and/or 

IKKβ) and the regulatory non-enzymatic scaffold protein NEMO (NF-κB essential 

modulator also known as IKKγ).  

The NF-κB dimers are activated by IKK-mediated phosphorylation of IκB, which triggers 

proteasomal IκB degradation. This enables the active NF-κB transcription factor 

subunits to translocate to the nucleus and induce target gene expression.  

Stimulation of the canonical pathway by TLR leads to the recruitment of adaptors (such 

as TRAF) to the cytoplasmic domain of the receptor. These adaptors in turn recruit the 
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IKK complex, which leads to phosphorylation and degradation of the IκB inhibitor 

resulting in nuclear translocation of NF-κB dimers, predominantly the NF-κB 

heterodimer RelA/p50. 

Activation of canonical NFkB signalling by BCR also leads to nuclear translocation of 

RelA/p50 but occurs via an alternative pathway, involving activation of BTK, PKC and 

the CBM complex which leads to the activation of the IKK complex.  

The non-canonical pathway involves an IKK complex that contains two IKKα subunits, 

but not NEMO. Under non-stimulation, TNF associated factor proteins (TRAF) 2 and 

TRAF3 form a complex with cellular inhibitor of apoptosis 1 and 2 (cIAP 1 and cIAP 2) 

and the NFκB inducing kinase (NIK). Stimulation by TNF family cytokines such as CD40L 

destabilises the complex and releases NIK which phosphorylates and activates the IKKα 

complex leading to phosphorylation of the p52 precursor p100, and the persistent 

activation of the RelB/p52 heterodimer. 
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Figure 1.3: The canonical and non-canonical NF-kB signalling pathways. In the canonical 

pathway, ligand binding to a receptor leads to the recruitment and activation of an IKK 

complex comprising IKK alpha and/or IKK beta catalytic subunits and two molecules of NEMO. 

The IKK complex then phosphorylates IκB leading to proteasomal degradation. NF-κB then 

translocates to the nucleus to activate target genes. Non-canonical NF-kB activation involves 

phosphorylation and processing of the p52 precursor p100 into the mature protein and 

subsequent nuclear translocation of the RelB/p52 heterodimer to the nucleus to activate 

target genes. Chronic active BCR (A) or Toll-like receptor (TLR) (B) signalling activate the 

canonical NF-kB pathway. CD40 signalling (C) activates the non-canonical NF-kB pathway 

(Figure adapted from Colomer & Campo 2014.83 Permission to reproduce this figure was 

granted by Elsevier). 
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Important targets of NF-κB signalling include the BCL2 protein family which are the key 

regulatory proteins governing the intrinsic pathway of mitochondrial apoptosis84. 

The group of pro-apoptotic proteins includes BCL2-associated X protein (BAX), BCL2 

antagonist/killer 1 (BAK), BCL2-associated agonist of cell death (BAD), BCL2-like 11 

(BIM), BCL2 binding component 3 (PUMA) and NOXA which all promote cell death.  

The group of anti-apoptotic proteins to which BCL2 belongs also includes B-cell 

lymphoma-extra large (BCL-XL), the myeloid cell leukemia sequence 1 (MCL-1), BCL2-

like 2 (BCL-W) and the BCL2-related protein A1 (BFL-1), which all promote cell survival. 

As mentioned in section 1.2.1, levels of the BCL2 proteins increase in response to CD40 

stimulation which is important for the survival of mature B cells. CD40 signalling 

stimulates the non-canonical NFκB pathway leading to activation of RelB/p52 which 

induces expression of BCL2, BCL-XL and MCL-1 (Figure 1.4). In the absence of CD40 

stimulation, the cIAP1/2 complex degrades NIK which inhibits further signalling 

through the non-canonical NFkb pathway and promotes B cell apoptosis. 
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Figure 1.4: Survival of B cells in the presence and absence of CD40 signalling through the non 

canonical NFkB pathway. Under non-stimulation, TRAF 2 and TRAF3 form a complex with cIAP 

1 and cIAP 2 and NIK. In the absence of CD40 stimulation, the cIAP1/2 complex degrades NIK 

which inhibits further signalling through the non-canonical NFkb pathway and promotes B cell 

apoptosis. In the presence of CD40 stimulation, the complex is destabilised, permitting the 

release of NIK from the complex and continued signalling through the non-canonical NFκB 

pathway. The non-canonical NF-κB pathway targets activation of the p52/RelB NF-κB complex 

via processing of p100. Nuclear translocation of the p52/RelB dimer activates transcription of 

anti-apoptotic BCL2 family proteins thereby promoting survival (Figure adapted from Elgueta 

et al 2009 59 and Braun et al 2006 85). 
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In normal B cells, the balance of anti- and pro-apoptotic BCL2 proteins protects cells in 

response to cellular stress, but also induces death in damaged cells. Cancer cells can 

manipulate this system by skewing the balance toward anti-apoptotic proteins, 

thereby facilitating prolonged tumour-cell survival.86 

BCL2 proteins are overexpressed in several B cell malignancies including MCL.86-88 In a 

tissue microarray of 62 MCL samples,89 BCL2 expression positively correlated with 

expression of BTK, which as mentioned, is an essential component of the BCR signalling 

complex. BTK (discussed in detail in section 1.3) upregulated BCL2 transcription 

through the canonical NF-κB pathway. In addition, the high BCL2 levels were thought 

to result from a defect in protein degradation due to a deficiency of FBXO10 (the E3 

ubiquitin ligase which targets BCL2 for proteasomal degradation).90 

It has also been indicated that the high BCL2 levels in MCL may be due to mutations in 

the tumour suppressor protein TP53 which lies directly upstream from BCL2 and 

causes resistance to chemotherapy.86 

Several agents which specifically target BCL2 have been explored in B cell 

malignancies, including ABT-199 (Venetoclax). However, resistance to BCL2 inhibitors 

has been observed in CLL and MCL patients, and in CLL has been linked to modulation 

of BCL2 proteins by the tumour microenvironment, particularly in response to CD40 

signalling.88,91,92 Venetoclax is currently being evaluated in combination with BTK 

inhibitors for the treatment of CLL and MCL.93,94 
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1.3 BTK and BTK inhibitors  

1.3.1 BTK 

BTK (MW: 76 KDa) belongs to the TEC family of non-receptor tyrosine kinases and is 

expressed in most haematopoietic cells of both lymphoid and myeloid lineages, with 

the exception of T-cells and plasma cells.95 BTK is constitutively expressed from the 

early stages of B-cell maturation until the stage prior to terminally differentiated 

plasma cells.96  

The BTK gene is situated on the long (q) arm of the X chromosome at the g21.1-22 

locus and encodes a 659 amino acid protein.97 The structure of BTK is characterised by 

five domains, similar to that of other TEC family members (ITK, BMX, TXK and TEC). 

Starting at the N-terminus, these include PH (pleckstrin homology) and BH (TEC 

homology) domains, followed by SH3 (Src homology 3) and SH2 (Src homology 2) 

domains, and end with a tyrosine kinase (TK) domain at the C-terminus 98,99 (Figure 

1.5). Amino acid 481 in the adenosine triphosphate (ATP) binding cleft of the kinase 

domain is a cysteine residue (Cys481) and is crucial for the activity of BTK inhibitors 81 

(described later). 

 

Figure 1.5: BTK protein structure. BTK is a 659 amino acid protein which has five structural 

domains. From the N-terminus: PH (pleckstrin homology), BH (TEC homology), SH3 (Src 

homology 3), SH2 (Src homology 2), TK (tyrosine kinase). The BTK phosphorylation site pY223 is 

located in the SH3 domain and the pY551 site in the TK domain. A crucial cysteine residue 

(Cys481) is located in the TK domain (Figure adapted from Hutchinson and Dyer 2014 98). 
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The BTK gene was identified in 1993, during which time a loss of function mutation 

was discovered and found to be responsible for the production of the defective protein 

which leads to human X-linked agammaglobulinemia (XLA).100,101 This 

immunodeficiency syndrome was originally identified in 1952 by an American Navy 

paediatrician, Colonel Ogden Carr Bruton, who observed a condition in a group of 

young boys characterised by recurrent bacterial infections and caused by an absence 

of mature B lymphocytes and failure of immunoglobulin production.102 Consequently, 

the gene was named after Dr Bruton, in recognition of his initial work. These studies 

demonstrated that BTK was an essential protein tyrosine kinase required for B-cell 

maturation and thus a key protein in BCR signalling events.  

BTK is located downstream of the BCR, predominantly in the cytoplasm (but also in the 

nucleus), and translocates to the plasma membrane via the PH domain for 

phosphorylation and activation. There are two main tyrosine phosphorylation sites 

within BTK. Phosphorylation of tyrosine (Y) 551 within the kinase domain regulates the 

transition between active and inactive states and occurs on localisation to the 

membrane by LYN and SYK kinase.103 A conformational change in the protein then 

enables auto-phosphorylation at Y223 in the SH3 domain98 and subsequent activation 

of PLCy2 which as mentioned, activates pathways for survival, proliferation and 

migration. In addition, BTK stimulates actin polymerization at the cell cortex, leading to 

a reconfiguration of the actin cytoskeleton required for BCR aggregation.80,104  

In addition to its involvement in BCR signalling pathways, BTK is also involved in co- 

stimulatory pathways involving chemokine receptor binding and TLR signalling. BTK is 

activated by chemokine binding to CXCR4 and CXCR5 via interactions with G-protein 

sub-units of the chemokine receptors.98,105 The ligands for these receptors are tissue 
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homing chemokines CXCL12 and CXCL13 (respectively) thus it is believed that BTK has 

a role in B-cell migration and homing. In addition, BTK regulates integrin-mediated 

interaction of tumour cells with the microenvironment and has a role in the secretion 

of chemokine ligands (CCL) CCL3 and CCL4 by MCL cells.106 

1.3.2 First in class BTK inhibitor - Ibrutinib 

Ibrutinib (previously known as PCI-32765) was among a panel of small molecule BTKi 

initially synthesised by Celera Genomics to study BTK function, and was later 

developed by Pharmacyclics.107 The ibrutinib compound demonstrated the most 

favourable activity in animal models of autoimmune disease and arthritis and was 

therefore selected over the alternative compounds for use in further pre-clinical 

studies and subsequent clinical trials.108 

Ibrutinib (trade name: Imbruvica), is an irreversible, small molecule inhibitor of BTK 

with a half maximal inhibitory concentration (IC50) of 0.5nM. The drug is an oral tablet 

administered once daily at an optimal dose of 560 mg in MCL. The irreversibility of the 

drug is attributed to an electrophilic group, which binds covalently to the cystine (Cys) 

481 region within the catalytic ATP binding site of the BTK kinase domain107 which 

prevents its auto-phosphorylation at Y223 and downstream cascade of signals.109 The 

existence of a cysteine residue in the catalytic site is uncommon and therefore 

enhances specificity of ibrutinib to BTK and other TEC kinases.97 Several other BTKi 

have been developed which bind to BTK at the same cysteine residue but with even 

more selectively, one of these is acalabrutinib (discussed later). Figure 1.6 shows the 

binding of acalabrutinib to the ATP binding pocket of BTK.110 
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Figure 1.6: Binding model of acalabrutinib (gold) in the ATP binding pocket of BTK. Figure 

adapted from Barf et al 2017.110 

 

1.3.3 Pre-clinical studies with ibrutinib  

The therapeutic potential of BTK inhibition for treating lymphoma was first 

demonstrated by its effects on malignant cell lines and primary cells in vitro.  

In CLL cell lines, ibrutinib inhibited BCR signalling proteins ERK, PI3K and NF-кB which 

reduced the survival of CLL cells and inhibited CD40, BAFF, TLR and cytokine 

signalling.111 Ibrutinib was also found to inhibit DNA replication, and block pro-survival 

pathways in CLL cells by downregulating CCL3 and CCL4 expression.112 Furthermore, 

ibrutinib disrupted integrin α4β1-mediated adhesion of CLL cells to stromal elements 

such as fibronectin and Vascular cell adhesion protein 1 (VCAM1) and reduced 

migration of primary cells to tissue homing chemokines CXCL12, CXCL13 and CCL19.113  

ATP binding pocket  
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In MCL cell lines, ibrutinib increased apoptosis and reduced levels of anti-apoptotic 

proteins BCL-2, BCL-XL, and MCL-1.114 In addition, knockdown of BTK in MCL cells using 

siRNA (short interfering RNA) was shown to reduce phosphorylated levels of the signal 

transducer and activator of transcription 3 (STAT3) and inhibit the NF-κB pathway, 

which is required for MCL growth and migration.115 

In a study by Honigberg et al,109 ibrutinib selectively blocked BCR signalling and 

induced an objective clinical response of 38% in Canines with naturally occurring B-cell 

NHL. Shortly after this study, ibrutinib entered clinical trials. 

1.3.4 Clinical studies with ibrutinib  

The clinical efficacy of ibrutinib as a single agent was first reported in patients with 

various relapsed and refractory (R/R) B-cell malignancies. Despite the irreversibility of 

the drug, it did not cause any major side effects and demonstrated durable objective 

responses, particularly in CLL and MCL.116 In a subsequent phase Ib/II trial, an overall 

response rate of approximately 71% was achieved in R/R CLL patients on continuous 

treatment with ibrutinib.  

A phase II trial was then initiated in MCL (PCYC-1104), which enrolled 111 patients with 

R/R MCL who had received at least one prior therapy.117 A total of 68% of MCL patients 

had a response to ibrutinib, of which 21% had a complete response (CR) and 47% a 

partial response (PR). Ibrutinib was also found to be highly active in previously treated 

patients with Waldenström’s macroglobulinemia (WM).118 

Due to its significant clinical activity and safety in these B-cell malignancies, ibrutinib 

received a breakthrough designation and accelerated approval by the US Food and 

Drug Administration (FDA) for the treatment of R/R MCL in November 2013, for CLL in 
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July 2014 and for WM in January 2015. Ibrutinib has since been approved in Europe for 

R/R MCL and CLL and for other indications including previously untreated CLL with the 

del(17p13.1) karyotype, and for patients with untreated WM. 

However not all lymphoma subtypes have achieved high response rates following 

ibrutunib treatment. For example, in R/R Follicular lymphoma (FL), 37.5% of patients 

responded to ibrutinib and 12.5% had a complete response.116 In R/R Marginal zone 

lymphoma (MZL), approximately 50% of patients have responded to ibrutinib.119 In R/R 

Diffuse large B-cell lymphoma (DLBCL), complete or partial responses of 37% have 

been achieved in patients with the activated B-cell (ABC) subtype of DLBCL but 

responses of only 5% have been achieved in patients with the germinal centre B-cell 

(GCB) subtype.120  

1.3.5 Therapeutic mode of action of ibrutinib  

Despite the clinical success of ibrutinib, its mechanisms of action are still not entirely 

understood. It is currently unknown why this class of drug has such a profound effect 

in certain B cell lymphoproliferative disorders, particularly in MCL where there is 

dependence on cyclin D1. However, a particular feature of ibrutinib treatment is that a 

peripheral lymphocytosis is observed which is accompanied by a rapid reduction in 

lymph node size and represents the migration of neoplastic cells from tissues to 

blood.117  

A peripheral lymphocytosis is observed in most MCL patients responding to ibrutinib, 

and increases by more than 50% from baseline in 34% of cases. The lymphocytosis 

peaks at a median of 4 weeks and falls to near baseline level after approximately 3 

months.117 This effect is also seen in CLL patients treated with ibrutinib where a 

lymphocytosis is seen in approximately 80% of cases and takes longer to resolve.121 
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These observations have suggested that there is a similar mechanism of action of BTKi 

on adhesion and migration of the neoplastic lymphocytes in patients with CLL and 

MCL.  

Another feature of ibrutinib therapy is the absence of tumour lysis. Tumour lysis 

syndrome is commonly observed following conventional treatment when large 

numbers of tumour cells die rapidly causing metabolic disturbances.122 The absence of 

tumour lysis suggests that apoptosis or inhibition of survival is not a primary 

mechanism of ibrutinib action.  

The findings from pre-clinical studies (section 1.3.3) suggest that ibrutinib may have 

more than one mechanism of action, whereby it acts to inhibit intrinsic B-cell signalling 

pathways resulting in reduced proliferation and survival, and also disrupts the extrinsic 

interactions necessary for homing and retention of malignant cells to the tissues.  

It has also been suggested that the outcome of ibrutinib treatment may result from 

the combined inhibition of BTK and other kinases, acting in synergy. Ibrutinib has a 

broad kinome which includes irreversible inhibition of several other kinases with a 

corresponding cysteine residue in the ATP binding site.123 Analysis of 491 kinase 

sequences revealed 9 additional kinases with a cysteine at position 481. These include 

four other TEC-family kinases (ITK, BMX, TEC, TXK), three epidermal growth factor 

receptor (EGFR) family kinases (EGFR, ErbB2/HER2 and ErbB4/HER4), and two other 

kinases (B lymphoid tyrosine kinase (BLK) and Janus Kinase 3 (JAK3)). In addition, 

ibrutinib binds strongly to SRC family kinases.109,110,121  

It is thought that this broad specificity could be the cause of off-target side effects 

observed in MCL such as bleeding, arthralgia, atrial fibrillation and diarrhoea.124 For 
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example, diarrhoea is also seen in patients treated with EGFR inhibitors 125 and 

therefore might be caused by off target inhibition of EGFR by ibrutinib. 

1.3.6 Second generation BTK inhibitors  

Due to the broad specificity of ibrutinib for BTK and its multiple modes of action, 

several second generation BTKi have been developed which have enhanced selectivity 

for BTK. These include acalabrutinib (ACP-196), tirabrutinib (GS/ONO-4059) and 

zanubrutinib (BGB-3111) which are currently being evaluated for the treatment of 

several B-cell malignancies. Table 1.1 summarises the data of completed trials in MCL, 

showing the response rates achieved in MCL patients following single agent treatment 

with several second generation BTKi compared with response rates achieved by 

ibrutinib as a single agent and in combination with rituximab. 

The furthest second generation BTKi in development is acalabrutinib (trade name 

CALQUENCE®) (formally known as ACP-196). Acalabrutinib is an irreversible BTKi which 

like ibrutinib, forms a covalent bond with cysteine 481 in the BTK kinase domain. In 

comparison to ibrutinib, it has higher selectivity for BTK as determined in a 

competition binding assay on a panel of 456 human kinases.110 The improved 

selectivity is thought to be due to the reduced intrinsic reactivity of acalabrutinib’s 

propiolamide electrophile compared to ibrutinib’s acrylamide electrophile which 

causes fewer off-target interactions with other kinases such as ITK, EGFR, ERBB2/4, 

JAK3, LYN, and SRC.110,126 

In the competition binding assay, acalabrutinib inhibited BTK at a higher concentration 

than ibrutinib (IC50 of 5.1 and 1.5nmol/L, respectively), however the IC50 against 

other kinases was much greater.110 The figure below (Figure 1.7) shows the chemical 
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structures and kinome scan images for acalabrutinib and ibrutinib and compares their 

binding affinities to all kinases which contain a cysteine residue at position 481 in BTK.  

The first pre-clinical study of acalabrutinib in canine models of NHL demonstrated 

enhanced in vivo potency compared to ibrutinib.127  

In a phase II study (ACE-LY-004), acalabrutinib was given to 124 patients with R/R MCL 

who had received 1 to 5 prior lines of therapy. The drug achieved an ORR of 82% and 

CR of 40%. At a median follow-up of 12 months, 72% of patients remained in 

response.128 As a result of this trial, acalabrutinib was granted accelerated approval by 

the FDA in October 2017 for the treatment of MCL patients whose disease has 

progressed after receiving at least one prior therapy. 

Since acalabrutinib has a shorter half-life, it is taken twice a day at a dosage of 100 mg 

in MCL. It is believed that this dosing improves BTK inactivation since BTK synthesis in 

malignant lymphocytes may be faster than the 24 hour dosing interval of ibrutinib 128 
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Therapeutic regimen  Patient 

population 

Phase Efficacy  Reference 

Ibrutinib (PCI-32765) R/R MCL Phase II  ORR (68%), CR (21%) Wang et al 
117

 

Ibrutinib (PCI-32765) R/R MCL Phase III ORR (72%), CR (19%) Dreyling et al 
129

  

Ibrutinib (PCI-32765) + 
Rituximab  

R/R MCL Phase II  ORR (88%), CR (44%), PR (44%) Wang et al 
130

 

Acalabrutinib (ACP-196) R/R MCL Phase II  ORR (81%), CR (40%), PR (41%) Wang et al 
128

 

Tirabrutinib (GS/ONO-4059) R/R MCL Phase I ORR (92%) Walter et al 
124

 

Zanubrutinib (BGB-3111) R/R MCL Phase Ib ORR (88%) Tam et al 
131

 

 

Table 1.1: Results of completed clinical trials evaluating the efficacy of several BTK inhibitors 

as single agents in MCL. R/R Relapsed or refractory, MCL Mantle cell lymphoma, ORR overall 

response rate, CR complete response, PR partial response.132 
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 IC50 (nM) 

Kinase Acalabrutinib Ibrutinib 
BTK 5.1 1.5 
BMX 46  0.8 
ITK >1000 4.9 
TEC 93  7.0 
TXK 368  2.0 

EGFR >1000 5.3 
ERBB2 ~1000 6.4 
ERBB4 16 3.4 
JAK3 >1000 32 
BLK >1000 0.1 

 

Figure 1.7: Chemical structures and kinase inhibition of acalabrutinib and ibrutinib. 

Recombinant enzymes were used to profile the in vitro activity of acalabrutinib compared with 

ibrutinib. Each BTK inhibitor was profiled at 1mM in a competition binding assay on a panel of 

456 human kinases (using KINOMEscan at DiscoverX, Fremont, CA). The size of the circles 

represents intervals of the percentage of remaining activity versus the untreated control. The 

table shows the IC50s for the kinases that contain a cysteine residue aligning with cysteine 481 

in BTK. IC50 denotes half-maximal inhibitory concentration (Figure adapted from Barf et al 

2017110 and Herman et al 2017133). 

Ibrutinib  Acalabrutinib  
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In addition to using BTKi as single agents for treating MCL, various combinations are 

also being explored incorporating BTKi and other targeted therapies into standard 

chemo immunotherapy regimens. 

Currently, there are 20 ongoing clinical trials evaluating the efficacy of BTKi in MCL 

(Table 1.2). These include either single agent BTKi, or BTKi in combination with other 

agents (including monoclonal antibodies and/or chemotherapy) in previously treated 

as well as untreated MCL.  

Some combinations have already been shown to be beneficial for improving treatment 

outcomes. For example, the response rate of ibrutinib as a single agent in the phase II 

trial was 68%, however in combination with rituximab, the ORR increased to 88%. 

When both agents were combined with bendamustine the ORR in 12 MCL patients was 

94% and 76% had a complete remission. However results from these trials are on-

going and will help to determine optimal treatment combinations for patients with 

MCL. 
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 Therapeutic regimen Patient population Phase Identifier 

1 Novel BTK inhibitor (BGB-3111) R/R MCL Phase II NCT03206970 

2 Novel BTK inhibitor (M7583) R/R MCL Phase II NCT02825836 

3 Novel BTK inhibitor (CT-1530) R/R NHL (including MCL) Phase II NCT02981745 

4 Novel BTK inhibitor (AC0010) R/R NHL (including MCL) Phase I NCT03060850 

5 Novel BTK inhibitor (CC-292) + 

Lenolidamide 

R/R NHL (mixed cohort) Phase Ib NCT01766583 

6 Acalabrutinib/ Bendamustine/ 

Rituximab 

Previously untreated MCL Phase III NCT02972840 

7 Ibrutinib (long-term) B cell lymphoma (including 

MCL) 

Phase II  NCT01109069 

8 Ibrutinib after induction therapy Previously untreated MCL  Phase II NCT02242097 

9 Ibrutinib and Obinutuzumab R/R MCL Phase II NCT02736617 

10 Ibrutinib and Carfilzomib R/R MCL Phase I/II NCT02269085 

11 Ibrutinib and Palbociclib R/R MCL Phase I NCT02159755 

12 Ibrutinib and Lenolidamide R/R NHL (including MCL) Phase I NCT01955499 

13 Ibrutinib and Pembrolizumab  R/R NHL (including MCL) Phase I NCT02950220 

14 Ibrutinib and Selinexor   Aggressive NHL (including 

MCL) 

Phase I NCT02303392 

15 Ibrutinib and Pevonedistat  R/R NHL (including MCL) Phase I NCT03479268 

16 Ibrutinib and Cirmtuzumab Cirmtuzumab treated MCL  Phase II NCT03088878 

17 Ibrutinib/ Bendamustine/ 

Rituximab 

Relapsed MCL or Indolent 

NHL 

Phase I NCT01479842 

18 Ibrutinib/ Bendamustine/ 

Rituximab 

Newly  diagnosed  MCL  Phase III NCT01776840 

19 Ibrutinib and Lenalidomide / 

Rituximab 

R/R MCL Phase I NCT02446236 

20 Ibrutinib, Avelumab, 
Utomilumab, Rituximab 
and Combination Chemotherapy 

R/R MCL Phase I NCT03440567 

 

Table 1.2: On-going clinical trials evaluating BTK inhibitors (as single agents and in 

combination therapy) in MCL. BTK Bruton’s tyrosine kinase, R/R Relapsed or refractory, MCL 

Mantle cell lymphoma, NHL Non-Hodgkins Lymphoma.134 
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1.3.7 Primary and acquired resistance to BTK inhibitors  

Despite the success of BTKi, approximately 30% of MCL patients display primary 

resistance to these agents and patients who initially respond eventually develop 

acquired BTKi resistance and aggressive relapse of the disease. About 25% of patients 

discontinue ibrutinib therapy after 20 months due to progression.135 The 1 year 

survival rate for those who experience disease progression after ibrutinib treatment is 

only 22%.103 Current available therapies for patients who have relapsed on BTKi 

treatment are often not effective which therefore indicates the need to discover 

biomarkers of BTKi resistance so that agents which target specific resistance 

mechanisms can be developed to overcome them.  

Nearly 700 unique mutations have been detected in the BTK gene which cause XLA136 

although none of these leads to its constitutive activity in MCL. However, several 

mutations have been identified in patients who have relapsed following BTKi therapy. 

These mutations can either affect BTK directly, or it’s downstream signalling 

components including PLCγ2. The first mutation identified was a point mutation 

causing a protein substitution (cysteine to serine) at the ibrutinib binding site (C481S) 

resulting in ineffective BTK inhibition due to loss of covalent binding.137 The C481S 

mutation has been observed following BTKi therapy with both ibrutinib and 

acalabrutinib,121,137-141 and results in chronic activation of downstream BTK and 

mammalian target of rapamycin (mTOR) / Protein kinase B (AKT) pathways. 

In R/R CLL patients with this mutation, the activity of BTK was restored even in the 

presence of ibrutinib, demonstrating reactivation of BCR signalling which enabled 

proliferation to proceed.137
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The BTK C481S mutation has been characterised by many studies as the most common 

mechanism of ibrutinib resistance. In a study by Sharma et al 135 the C481S mutation 

showed 25-fold less sensitivity to ibrutinib than the wild type.  

In another study, Chiron et al 138 identified C481S in 2 out 5 MCL patients who initially 

responded to ibrutinib but then progressed. The C481S mutation resulted in increased 

BTK and AKT activation which was driven by the cell cycle regulator CDK4. The 

mutation was only present in patients who had prolonged exposure to ibrutinib, and 

was not present in 6/6 patients with primary resistance, nor in patients who only 

partially responded to ibrutinib.  

Other BTK mutations have been found in ibrutinib refractory cases of CLL including 

C481F/Y/R, T474I/S, and L528W.135 These mutations all occur in the kinase domain of 

BTK and either directly attenuate (T474I/S) or hinder (L528W) ibrutinib binding. 

There has also been one report of a mutation T316A located in the SH2 domain in a 

R/R CLL patient.135 This mutation did not directly interfere with ibrutinib binding but 

prevented inhibition of CLL proliferation compared to the wild type cells. 

Mutations in molecules other than BTK have been identified. A gain-of-function 

substitution (R665W) has been reported in PLCγ2 which produces a constitutively 

active enzyme, which no longer needs to be phosphorylated by BTK.137 This mutation is 

thought to involve PI3K-AKT activation which overrides the inhibitory mechanism of 

BTK. 

Thus far, BTK mutations have only been detected in patients exposed to ibrutinib. 

However it has been suggested that the mutations may be present in tiny clones prior 



37 
 

to therapy which undergo subsequent clonal selection and expansion with continued 

use of ibrutinib.142,143  

Whole exome/transcriptome profiling of serial biopsies from the start of ibrutinib 

treatment until drug resistance in a patient with MCL, showed the evolution of the BTK 

C481S mutation.138  

Chronic exposure to ibrutinib has been shown to result in kinome reprogramming and 

activation of the PI3K-AKT-mTOR pathway in MCL cells, causing acquired ibrutinib 

resistance.144 However, some ibrutinib relapsed MCL and CLL patients do not have 

mutations in BTK or PLCy2 135,138 which suggests that other mechanisms for ibrutinib 

resistance exist. 

Primary resistance to ibrutinib in MCL is thought to involve PI3K-AKT activation since 

inhibition of ERK1/2 and AKT correlates with cellular response to BTK inhibition in 

vitro.145 

In other in vitro experiments, proliferation of ibrutinib resistant MCL cell lines was 

found to be mediated through the alternative NF-ĸB pathway, via TRAF2, TRAF3 and 

BIRC3 mutations.26,27 

In addition, as with conventional treatment, it is thought that interactions between 

MCL cells and accessory cells in the MCL microenvironment may be involved in 

resistance to BTKi. Amplified activation of the CXCR4-CXCL12 pathways have been 

detected in an MCL patient with ibrutinib resistance.26 

These studies demonstrate the need to identify biomarkers which can predict 

response to treatment so that patients with primary BTKi resistance do not receive 

unnecessary exposure to a drug which has no effect, and so that patients who do 
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respond to BTKi can be offered alternative therapies before these BTK mutations fully 

evolve and result in relapse.  

This thesis will particularly focus on the transcription factor Interferon Regulatory 

Factor 4 (IRF4) to determine whether this could represent a biomarker of BTK 

sensitivity or resistance in MCL. 

1.4 Interferon regulatory factor 4 (IRF4) 

IRF4 is implicated in the pathogenesis of several B-cell malignancies. Overexpression of 

IRF4 is seen in cases of ABC DLBCL and multiple myeloma (MM), both of which respond 

well to treatment which suppresses levels of IRF4. The role of IRF4 in the pathogenesis 

of MCL or in response to treatment (particularly with BTKi) is currently unknown and 

therefore represents an important area of investigation. 

IRF4 (MW: 50 KDa) (also known as MUM1, LSIRF, Pip, NFEM5 and ICSAT) is one of nine 

members (in humans and mice) of the interferon regulatory factor (IRF) family of 

transcription factors and has critical functions in various cell types of the immune 

system including B cells, macrophages and DCs.146  

Most IRF members are induced by type I and II interferons and cytokines in response 

to viral infections, however IRF4 is unique in that its expression is regulated by 

pathways of lymphocyte activation including BCR, LPS and CD40 signalling in response 

to various stimuli.147 These stimuli all activate the Rel/NF-kB pathway, which leads to 

activation of the IRF4 promoter.148,149 

1.4.1 Structure and function of IRF4 in normal B cells  

IRF4 is a 450 amino acid protein which has an N-terminal DNA binding domain (DBD) 

and a C-terminal interferon activation domain (IAD) (separated by a flexible linker) 
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(Figure 1.8) through which it can form homo or hetero-dimers with other members of 

the IRF family and with other proteins to activate transcription of its target genes.150 At 

the C terminal, there is an auto regulatory (AR) domain comprising an auto inhibitory 

region which interacts with the DBD to maintain the protein in an inactive state.151 The 

DBD is highly homologous to other IRF members due to the presence of five 

tryptophan sequences repeated at 10-18 amino acid intervals.150 Here, homo-or 

hetero-dimers formed between IRF4 and other IRF family members (predominantly 

IRF8) bind DNA with low affinity at Interferon-Stimulated Response Elements (ISREs 5’-

GAAANNGAAA-3’).150,152  

In addition to its interaction with other IRFs, IRF4 can also form heterodimers with 

members of the E-twenty-six (ETS) family, or the activator protein-1 (AP-1) family of 

transcription factors.153-156 

In B-cells, the principal co-binding partners for IRF4 are the ETS family members PU.1 

and SPI-B, which are critical for B-cell development and maturation. Hetero-dimers 

formed between IRF4 and PU.1 bind at ETS Interferon Composite Elements (EICEs: 5′-

GGAANNGAAA-3′)157 in the IAD. ETS proteins contain a sequence rich in proline, 

glutamic acid, serine, and threonine (PEST). Interaction of the IAD with the PEST region 

of an ETS protein relieves the auto-inhibitory effect and allows IRF4 to bind its target 

sequence with much greater affinity. 

Heterodimers formed by IRF4 and AP-1 family members such as the Basic leucine 

zipper transcription factor, ATF-like (BATF), regulate genes containing AP-1-IRF 

Composite Elements (AICEs: 5’-GAAATGAGTCA-3’ or 5’-GAAANNNNTGAGTCA-3’) 154-156 

which are important for regulating cellular functions in DCs and T-cells particularly in 

response to CD40 signalling. 
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Figure 1.8: IRF4 protein structure. IRF4 is a 450 amino acid protein which has an N-terminal 

DNA binding domain (DBD) and a C-terminal interferon activation domain (IAD), separated by a 

flexible linker. An auto regulatory (AR) domain comprising an auto inhibitory region is located 

at the C terminal  and maintains the protein in an inactive state. The DBD of IRF4 binds to 

other IRFs with low affinity. Interaction of the IAD with an ETS protein through its PEST 

domain, triggers the DBD to relieve the autoinhibition, allowing IRF4 to bind to its target with 

high affinity (Figure adapted from Marr 2016 68). 

 

IRF4 controls important events during B-cell development and maturation by 

transducing signals from various receptors to either activate or repress gene 

expression.  

During the early stages of B-cell development in the bone marrow, IRF4 interacts with 

its close family member IRF8 to coordinate the transition from the large pre B-cell to 

small pre B-cells.150 These events are mediated by several transcription factors 

including the paired box 5 (PAX5), a B-cell lineage specific activator.158 IRF4 and IRF8 

are direct targets of PAX5 and function with PU.1 to regulate PAX5 expression by 

binding to an enhancer region in the PAX5 locus.150  

At the pre-B cell stage, IRF4/8 and PU.1 regulate the rearrangement and expression of 

the immunoglobulin light chain by binding to the 3′ κ enhancer and λ enhancer 

regions, where EICE motifs were first identified.151,159,160  
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Downstream to pre-B cell receptor signalling, IRF4 and IRF8 induce the expression of 

the transcription factors ikaros and aiolos which function as negative regulators of BCR 

signalling and cell cycle progression.150 Ikaros and aiolos repress the expression of the 

surrogate light chain (SLC), an essential component of the pre-B cell receptor 

complex,161 and also inhibit large pre-B cell expansion by directly binding and 

repressing MYC.162 

IRF4 has been shown to regulate the expression of CXCR4 in pre-B cells by shifting pre-

B cells towards CXCL12 expressing stromal cells and away from IL-7 secreting stromal 

cells.163,164 IL-7 signalling inhibits pre-B cell differentiation by directly repressing light 

chain rearrangements. 

In mature B-cells, IRF4 is involved in the initiation and termination of the GC reaction, 

and cooperates with IFR8 to control plasma cell differentiation and class-switch 

recombination (CSR).165-168 At low levels, IRF4 binds cooperatively with ETS and AP-1 

family members at EICE/AICE motifs and induces expression of BCL6, OCT-Binding 

Factor 1 (OBF1) and Activation-induced cytidine deaminase (AID) which are required in 

order to initiate the GC reaction. BCL6 is a master regulator for GC reaction, while AID 

is critical for somatic hyper-mutation to generate high avidity BCRs, and CSR. Mice 

lacking IRF4 specifically in B-cells failed to form GCs due to insufficient induction of 

BCL6, OBF1 and AID.166 

Within the centrocytes of GCs, high levels of IRF4 are induced by antigen binding to 

high avidity BCRs. This causes a shift in the binding of IRF4 from EICE/AICE motifs, to 

binding low affinity ISRE motifs. IRF4 binding to ISRE induces the B lymphocyte-induced 

maturation protein-1 (BLIMP-1) and represses BCL6 which is required to end the GC 

reaction and to initiate plasma cell differentiation.166 
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IRF4 also has a role in the positioning of mature B lymphocytes within lymphoid 

microenvironments by its regulation of NOTCH2.169 

1.4.2 IRF4 in B cell malignancies  

Deregulation of the processes controlled by IRF4 has been linked to the pathogenesis 

of several types of B cell malignancies which correspond to specific developmental 

stages.146,147,170,171 This has highlighted that IRF4 can function both as an oncogene as 

well as a tumour-suppressor in different lymphoma subtypes (Figure 1.9).  

IRF4 has oncogenic roles in several GC and post-GC lymphomas, including Hodgkin 

lymphoma (thought to be derived from GC cells), the ABC subtype of DLBCL (thought 

to be derived from post GC cells), and multiple myeloma (MM) (a malignancy derived 

from plasma cells). On the other hand, IRF4 acts as a tumour suppressor in B cell acute 

lymphoblastic leukaemia (B-ALL) (derived from immature B cells) and in CLL (derived 

from quiescent mature B cells).150 

 

 

 

 

 

 

 

 

 

Figure 1.9: IRF4 in B cell malignancies. Red arrows point towards malignancies where IRF4 

functions as an oncogene, blue arrows point towards malignancies where IRF4 functions as a 

tumour suppressor.    
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IRF4 overexpression is seen in cases of ABC DLBCL.172 In DLBCL cell lines, IRF4 functions 

with ETS family member SPI-B to repress type I interferon responses.173 Specifically, 

IRF4 and SPI-B co-bind to EICE motifs to suppress IRF7 causing subsequent inhibition of 

interferon β production and interferon response mediated cell death.150,173  

The role of IRF4 in MM is unusual in that it directs plasma cell differentiation while it 

also functions as a survival factor for MM cells, a concept described as non-oncogene 

addiction.147,171 Studies have identified MYC as a direct target of IRF4 in MM. 

Upregulation of IRF4 and MYC contributes to cell proliferation and aggressiveness but 

it is thought that MYC deregulation is the critical factor in the pathogenesis of MM, 

and IRF4 functions in part as a survival factor by directly regulating MYC expression.171  

In CLL, higher IRF4 expression has been associated with better prognosis.170 Single 

nucleotide polymorphisms (SNPs) have been identified in the 3′ untranslated region 

(UTR) of the IRF4 locus174 and are associated with increased susceptibility for 

developing CLL. The risk alleles harbouring the SNPs are linked to downregulation of 

IRF4 and are associated with poor prognosis.174-176  

In NHL as a whole, IRF4 is associated with several genes including BATF, LIM domain-

containing protein 1 (LIMD1), CASP8 and FADD-like apoptosis regulator (CFLAR), 

serine/threonine-protein kinase pim-2 (PIM2), and CCND2 which are involved in B-cell 

development, oncogenesis, cell cycle regulation, and cell death157 However the 

molecular targets regulated by IRF4 specifically in MCL and in response to BTKi are 

unknown and require investigation. 
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1.4.3 Expression of IRF4 in mantle cell lymphoma 

Little is known about the involvement of IRF4 in MCL.  In a gene expression profiling 

study, IRF4 was shown to be over expressed in MCL along with several other 

lymphoma subtypes157 although this was only representative of 8 MCL cases. 

The majority of MCL tumour biopsies are usually negative for IRF4 expression, however 

IRF4 was expressed in 35% of MCL tumour biopsies (45/ 127 cases) with a 

characteristic GC or post-GC phenotype.149 As mentioned in section 1.1.2, MCL cells 

are derived mainly from antigen naïve pre GC B-cells, however up to 40% of MCL cases 

carry somatic mutations of the IGVH genes, indicative of a GC or post GC phenotype 

therefore IRF4 expression is likely to vary depending on the phenotypic subtype.  

In a small number of cases, it has been demonstrated that MCL cell clones can undergo 

plasma cell differentiation.177,178 A partial plasmacytic phenotype has been identified 

displaying stronger CD38 and IRF4 expression, identifying a biologically distinct subset 

of MCL.179  

IRF4 is expressed to varying degrees in several MCL cell lines including REC-1, HBL2, 

JEKO-1 and MINO179 and it has been demonstrated that REC-1 cells depend on IRF4 

expression for survival.179 IRF4 is also expressed in G519 and JVM2 cells180 however it 

should be noted that these cell lines have been transformed into lymphoblastoid cell 

lines by Epstein Barr Virus (EBV). IRF4 expression can be regulated through modulation 

of NF-κB signalling by viral proteins such as EBV.181 

1.4.4 IRF4 in response to treatment 

The immunomodulatory agent lenolidamide has demonstrated clinical responses in 

lymphomas which are characterised by IRF4 overexpression, including MM and DLBCL. 
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In the ABC subtype of DLBCL, IRF4 and SPI-B transcription factors prevent interferon 

beta (IFNβ) production by repressing IRF7 and amplify pro-survival NF-κB signalling by 

transactivating CARD11.173 Lenalidomide kills ABC DLBCL cells by downregulating IRF4 

and SPI-B, thereby increasing production of IFNβ and reducing the pro-survival effects 

of NF-κB signalling.  Lenalidomide has also demonstrated clinical activity in R/R MCL as 

a single agent117,182 which suggests involvement of IRF4 in aggressive relapse of MCL.   

IRF4 has been proposed as a potential marker of bortezomib (BZM) resistance in 

MCL.179 MCL cells from patients with poorer clinical responses to BZM showed high 

expression of IRF4 and MYC. Gene knockdown of IRF4 repressed expression of MYC in 

vivo, and was toxic for the subset of MCL cells with plasmacytic differentiation.180 

1.4.5 IRF4 in response to BTK inhibitors  

A small number of studies have demonstrated downregulation of IRF4 in response to 

ibrutinib in vitro. Ibrutinib induced downregulation of IRF4 has been demonstrated in 

DLBCL and MCL in vitro 106,173,183 and has also been shown previously by our group in ex 

vivo primary CLL cells (unpublished data). 

In MCL, Sun et al 183 showed that IRF4 was downregulated by ibrutinib in sensitive MCL 

cell lines and was rescued by a PKC agonist through reactivation of the NFkB pathway.  

IRF4 has also been shown to be downregulated in MCL cell lines in response to a 

combination of the BTKi spebrutinib (CC-292) and lenolidamide.106 In this study, the 

REC-1 cell line demonstrated enhanced sensitivity to both ibrutinib and CC-292 by 

inducing apoptosis, although only marginal apoptosis was induced by CC-292 (10-15%) 

after 72 hours treatment. Phosphorylated BTK Y223 was reduced in all cell lines (REC-1, 

MINO, UPN-1, MAVER-1 and Z138) regardless of their sensitivity to ibrutinib. However, 
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CC-292 downregulated the expression of the surrogate marker for NF-κB activation 

pIkB, only in MCL cell lines sensitive to CC-292. It has been described previously that 

lenolidamide (which directly targets NF-kB) downregulates IRF4 in sensitive cell lines 

180 and this study demonstrated that co-treatment with CC-292 significantly enhanced 

this effect in REC-1 cells. These results are of particular note given the results we will 

describe in this thesis. 
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1.5 Summary of introduction and aims of thesis 

General Background to approach  

MCL is often an aggressive lymphoma that has very poor outcome for patients. BTK 

inhibitors have shown a significant clinical activity in patients with particular subtypes 

of NHL; importantly this includes patients with MCL.  Research has shown that 

modifying the intracellular-signalling downstream of the BCR through inhibition of BTK 

alters the interaction between the neoplastic cells and their environment, with that 

there is an associated controlled regression of the MCL.117 This allows patients with 

MCL to achieve a clinical remission.  However, despite the promise of these agents in 

this difficult-to-treat disease, one third of MCL patients have primary resistance to 

BTKi, and most patients who initially respond eventually acquire secondary resistance 

with aggressive relapse of the disease.  

Hypothesis  

This clinical promise offered by BTKi provides an impetus for this project, it was 

hypothesised that study of relevant protein expression could identify processes that 

underlie sensitivity or resistance to BTKi in MCL, and that findings could be exploited to 

suggest new avenues for therapy as well as highlighting predictive biomarkers for 

treatment response that could be used to rationally direct therapy.   

Selection of IRF4 as a candidate molecule and Aims of thesis  

At the start of this PhD little was known about the mechanism(s) of action of BTK 

inhibitors in MCL, and importantly the mechanisms of BTKi resistance were unclear. 

However, preliminary work within this research group had suggested a protective role 

for the cellular microenvironment, and a potential role for IRF4 in mediating protection 

from the effects of BTKi. This provided the basis for the approach.  
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The Aims were: 

1. To identify, characterise and develop cell line models of MCL that reproduced 

the relevant features of disease behaviour including responsiveness or 

resistance to two BTKi drugs used clinically to treat MCL. 

2. To use these models to explore key elements of the biological response of MCL 

cells to BTKi with particular emphasis on the chemo-protective effects of the 

cellular microenvironment and on the potential role of IRF4. 

3. To expand on these findings to look at possible mechanisms of those chemo-

protective changes that were identified. 

4. To confirm findings using primary MCL cells.   
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2 Chapter 2- Materials and Methods 

  

 



50 
 

2.1 Reagents and buffers 

2.1.1 Buffers for cell culture  

Culture media  

RPMI 1640 growth media with GlutaMAXTM, supplemented with 10% Fetal 
Bovine Serum (FBS) and 1% penicillin/ streptomycin (Gibco, Fisher Scientific). 

Freezing media 

90% FBS containing 10% dimethylsulphoxide (DMSO). 

General wash buffer 

1X phosphate buffered saline (PBS) (Fisher Scientific). 

1 X Trypsin-EDTA 

1X Trypsin- EDTA, diluted in 1X PBS from 10X liquid (0.5% Trypsin, 5.3mM EDTA 
4Na) (Gibco, Fisher Scientific #10779413). 

RIPA lysis buffer  

20mM Tris, 150mM NaCl, 1mM EDTA, 1% Triton-X-100, with protease and 
phosphatase inhibitors (10µl/mL) (Sigma Aldrich #P8340/#P5726). 

Low stringency lysis buffer:  

1M Tris base pH8 (0.2mL), 3M NaCl, 10% Triton-X-100, MilliQ H2O. Protease 
inhibitor (Sigma Aldrich #P8340) was added before use.  

 

2.1.2 Buffers for flow cytometry  

1X Annexin-V binding buffer 

Diluted from 10X Annexin-V binding buffer (BD Biosciences). 

Fixation buffer 

Paraformaldehyde (PFA) diluted to 4% in 1X PBS 

Permeablisation buffer 

Triton X- 100 detergent diluted to 0.1% or 0.2% in 1X PBS  

Staining buffer   

0.5% Bovine serum albumin (BSA) diluted in 1X PBS containing 0.1% Triton-X-
100. 
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2.1.3 Buffers for 1D SDS-PAGE, western blotting and immunohybridisation  

10% (w/v) SDS 
 

For 100mL: 10g SDS dissolved in 90mL deionised water (dH2O). 
 

10% (w/v) Ammonium pursulphate (APS) 
 

For 1mL: 100mg APS dissolved in 900µl dH2O. For 10mL: 1g APS dissolved in 
9mL dH2O. 
 

1.5 M Tris-HCl, pH 8.8 (MW 121.14) 
 

18.17g Tris base dissolved in 70mL dH2O, and brought up to 100mL with dH2O. 
 

0.5 M Tris-HCl, pH 6.8 (MW 121.14) 
 

6g Tris base dissolved in 60mL dH2O, and brought up to 100mL with dH2O. 
 
10X Tris buffer   
 

30.2g of 24mM Tris-HCL, 144g of 191mM Glycine, dissolved and brought up to 
1000mL with dH2O. 

 
10X Tris buffered saline (TBS) 
 

24.2g of Trizma base, 80.06g of Sodium chloride (NaCl) dissolved in 800mL of 
dH2O. 

Resolving gel (10% acrylamide) 
 

1.5M Tris (pH 8.8), 10% (w/v) SDS, 10% APS, dH2O, 30% acrylamide (National 
diagnostics ProtoGel EC-890, Fisher Scientific # 12381469), 10µl N,N,N’,N’-
tetramethylethylenediamine (TEMED) (Sigma Aldrich). 

Stacking gel (4% acrylamide) 
 

0.5M Tris (pH 6.8), 10% (w/v) SDS, 10% APS, dH2O, 30% acrylamide, 6.7µl 
TEMED. 

2X Laemmli sample buffer (SDS reducing) 
 

0.5M Tris-HCL (pH 6.8), Glycerol, 10% (w/v) SDS, 0.5% (w/v) Bromophenol blue, 
dH2O + β-mercaptoethanol (BME) at 5% of the sample volume added just 
before use.  
 

1X Running buffer  
 

 24mM Tris, 191mM Glycine, 10% SDS.        
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1X Transfer buffer   
 

24mM Tris, 191mM Glycine, 20% MeOH 
 

Wash buffers 

1 X TBS diluted from 10X TBS 
1X TBST: 1 X TBS with 0.1% Tween-20. 

Blocking buffer and antibody dilution buffer 

5% BSA diluted in 1X TBST. 

Immunoprecipitation (IP) buffer  

1X PBST (1X PBS with 0.1% Tween-20) 

 

2.1.4 Buffers for agarose gel electrophoresis 

1X Tris Borate EDTA (TBE) 

Diluted from 10X TBE (89mM Tris, 89mM boric acid, 2mM EDTA) (Thermo 
Fisher Scientific #B52).    

DNA loading dye buffer  

6X DNA loading dye buffer (10mM Tris-HCL (pH 7.6), 0.03% bromophenol blue, 0.03% 

xylene, 60% glycerol 60mM EDTA, (Thermo Fisher Scientific #R0611). 

 

2.1.5 Buffers/reagents for chromatin immunoprecipitation 

1X enzymatic lysis buffer A  

(50µl of 4X Buffer A (CST #7006) + 750ul dH2O)) + 0.5µl 1M Dithiothreitol (DTT) 
and 5µl of 200X protease inhibitor cocktail (PIC), per IP preparation. 

1X enzymatic lysis buffer B  

(275µl of 4X Buffer B (CST #7007) + 825ul dH2O)) + 0.55µl 1M DTT, per IP 
preparation. 

1X ChIP buffer  

(10µl of 10X ChIP Buffer (CST #7008) + 90µl dH2O)) + 0.5µl 200X PIC, per IP 
preparation. 

Low salt wash  

(300μl of 10X ChIP Buffer + 2.7mL dH2O) 
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High salt wash  

(100μl of 10X ChIP Buffer + 900µl dH2O) + 70μl 5M NaCl (CST #7010) 

 
1X ChIP elution buffer 

(75µl 2X ChIP Elution Buffer (CST #7009) + 75µl dH2O, per IP preparation. 
 

Other reagents for ChIP 

 37% Formaldehyde (Fisher Scientific) 

 10X Glycine solution (CST #7005) 

 Micrococcal nuclease (CST #10011) 

 0.5M EDTA (CST #7011) 

 5M NaCl (CST #7010 

 RNAse A (10 mg/mL) (CST #7013) 

 Proteinase K (20mg/mL) (CST #10012) 

 ChIP-Grade Protein G magnetic beads (CST #9006) 

 Human RPL30 Exon 3 Primers 1 (CST #7014) 

 1M DTT (192.8mg DTT (CST #7016) + 1.12mL dH2O)  

(All provided in the SimpleChIP® enzymatic chromatin IP kit, CST #9003) except for 

formaldehyde. 

 

2.1.6 Buffers for DNA purification  

DNA binding buffer  

Containing chaotropic salts: guanadinium hydrochloride (Gu-HCl)/ sodium 

iodide (NaI). 

DNA wash buffer  

10mM Tris-HCl pH 7.5, 80% Ethanol (EtOH) 

DNA elution buffer  

10mM Tris pH 8-9 

(All provided in the SimpleChIP® DNA Purification kit (CST #14209). 
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2.1.7 Buffers for RNA extraction 

Buffer RLT 

Denaturing buffer containing guanidine-thiocyanate. 10µl of β-ME was added 

per 1mL of buffer RLT. 

Buffer RW1 

Stringent wash buffer containing guanidine salt and EtOH.  

Buffer RPE  

Mild wash buffer supplied as concentrate and diluted in 4 volumes of EtOH 

(96–100%). 

(All provided in the RNeasy Mini kit (Qiagen # 74104). 

 

2.2 Cells and general culture 

2.2.1 Cells and characterisation  

Blood samples from MCL patients were obtained by the clinical research team at 

Derriford hospital (University Hospitals Plymouth NHS trust, UK). MCL cases were 

confirmed by the presence of the t(11; 14) translocation by fluorescence in situ 

hybridisation and /or detection of cyclin D1  expression (by molecular , 

immunohistochemistry) and for the characteristic immunophenotypic cell surface 

expression by flow cytometry.  

All blood samples were obtained following informed consent (Integrated Research 

Application System project ID number: 145245), and under existing regulatory 

approval granted by the NHS Health Research Authority National Research Ethics 

Service Committee East of England – Cambridge East. 

Human MCL cell lines Granta 519 (G519), JEKO-1 and JVM2 were purchased from 

Deutsche Sammlung von Mikroorganismen and Zellkulturen (DSMZ, Braunschweig, 
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Germany). The REC-1 cell line was a kind gift from Professor Martin Dyer (University of 

Leicester, UK). The authenticity of the selected MCL cell lines is summarised in Table 

2.1.184,185  

The NIH3T3 murine bone marrow fibroblast cell lines, one transfected with CD40-

Ligand (T-CD40L), and the other, non-transfected (NT-CD40L) were also provided by 

Professor Martin Dyer.  

Table 2.1: Authentication summary of MCL cell lines used in this study.184,185  

 

2.2.2 Peripheral blood mononuclear cell preparation  

Whole blood samples were processed in a sterile laminar flow hood within 16 hours 

from the time of collection. Peripheral blood mononuclear cells (PBMCs) were 

separated by density-gradient centrifugation using LymphoprepTM (AXIS SHIELD 

#1114545) or Ficoll-Paque PLUS (Fisher Scientific #11768538) following manufacturer’s 

instructions. Four to five 5mL EDTA tubes of whole blood was collected from each 

patient and was very slowly added on top of an equal volume of lymphoprep/Ficoll in a 

50mL falcon tube held at a 45 degree angle. In order to isolate the PBMCs, the tube 

containing the blood and lymphoprep/Ficoll was centrifuged at 2000rcf for 30 minutes 

Cell line Source Diagnosis t(11;14) CCND1/ 
cyclin D1 

EBV 
transformed  

REC-1 Peripheral 
blood/lymph 
node 

B-NHL, diffuse large cell 
progressing to transformed 
mantle cell, blastoid 
variant 

     

G519 Peripheral 
blood 

B-NHL (leukemic 
transformation of mantle 
cell lymphoma, stage IV) 

      

JEKO-1 Peripheral 
blood 

Mantle cell lymphoma 
 

     

JVM2 Peripheral 
blood 

B-prolymphocytic 
leukaemia (B-PLL) 
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at room temperature, with zero brake speed. The PBMCs were extracted from the 

interface between lymphoprep/Ficoll and plasma using a pasteur pipette and added to 

a fresh 50mL falcon tube. The cells were washed with 1X PBS and the supernatant was 

discarded. The pellet of cells was re-suspended in 10mL of culture media and a cell 

count was performed (section 2.2.7).  

2.2.3 Cellular cryopreservation  

Cell lines and primary lymphocytes were re-suspended in 1mL freezing media (section 

1.1). Cell lines were divided into aliquots containing 5 X 106 cells, and the primary 

lymphocytes were divided into aliquots containing 2 x 107 cells (low lymphocyte count) 

or 1 x 108 cells (high lymphocyte count) and added to 2mL cryopure tubes (Sarstedt). 

Cells were frozen gradually (1 degree per minute) to -80°C in a cryopreservation 

container filled with isopropyl alcohol (C3H8O). Cells were stored in liquid nitrogen (-

180°C) for future use. Cell pellets were prepared at 5 x 107 for protein assays and were 

frozen dry at -80°C. 

Cryopreserved PBMCs were thawed from liquid nitrogen in a water bath set to 37°C, 

and transferred to a 50mL falcon tube (Sarstedt). To remove the 10% DMSO, a volume 

of 9mL of warmed culture media was slowly added to the 1mL of cells to avoid 

temperature shock. The cells were centrifuged at 1500rcf for 5 minutes at room 

temperature and the supernatant containing DMSO was discarded. The cell pellet was 

re-suspended in 1mL of fresh culture media and topped up to the required volume. 
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2.2.4 Culture of suspension cell lines  

Suspension cell lines were grown in culture media in 25cm2 or 75cm2 vented flat-

bottom culture flasks (Sarstedt) and maintained in a humidified incubator at 37°C with 

5% CO2. All cell lines were passaged two to three times per week depending on their 

doubling time, to maintain optimal cell density. After every 28 culture passages, the 

cells were discarded and fresh aliquots of cells were obtained from liquid nitrogen. 

Suspension cell lines were tested for mycoplasma contamination by indirect staining 

with the fluorescent dye; 4’,6-diamidino-2-phenylindole (DAPI) which binds to DNA186 

and can be visualised by fluorescence microscopy. The figure below (Figure 2.1) shows 

DAPI fluorescence from the nuclei of two MCL cell lines, REC-1 (at passage 25) and 

G519 (at passage 28) with the detailed method described in the figure legend. 

Mycoplasma DNA (visualised as small white dots or flecks of fluorescence) was not 

detected within the cells or in the surrounding medium of either cell line. 
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Figure 2.1: Immunofluorescent analysis of REC-1 and G519 cell nuclei by DAPI staining. REC-1 

and G519 cells were seeded onto 5mm coverslips within a standard 24 well plate (Sarstedt) in 

culture media and left to settle overnight at 37°C. The media was carefully removed leaving 

the remaining cells attached to the coverslip surface. Cells were fixed in 200µl of 4% 

paraformaldehyde for 10 minutes, washed twice in 200µl of 1X PBS for 5 minutes and 

permeablised using 200µl of 0.1% Triton X-100 for 5 minutes. Cells were washed twice in 1X 

PBS for 5 minutes and blocked in 200µl of 1% BSA blocking buffer for 30 minutes at room 

temperature. The coverslips were removed from the 24 well plate and left to air dry overnight 

at room temperature. Cells were stained with 20µl of VectorSheild Hard Set Antifade Mounting 

Medium (containing DAPI) (Vector laboratories #H-1500), and mounted on to standard glass 

slides and left to cure for 4 hours.  A NIKON fluorescent microscope with NIS-Elements imaging 

software was used to visualise DAPI fluorescence. Left-REC-1 cell nuclei, right-G519 cell nuclei. 

Top-20X magnification, bottom- 100X magnification. 

 

 

 

 

 

 

REC-1 G519 
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2.2.5 Culture of T-CD40L and NT-CD40L murine bone marrow fibroblasts  

The murine bone marrow fibroblasts were previously transfected with a human CD40L 

sequence and were supplied to our group along with the non-transfected control 

fibroblasts by Professor Martin Dyer (University of Leicester, UK). The CD40L 

transfected cells (T-CD40L) and the non-transfected cells (NT-CD40L) were grown in 

culture media in sterile 75cm2 vented flat-bottom flasks with a special coating to 

support cell surface adhesion (Sarstedt). Once 70-80% confluent, the cells were 

washed in 1 X PBS and detached from surface of the culture flask using 1 x Trypsin- 

EDTA (section 1.1), then passaged 1 in 5 into fresh culture medium for ongoing culture. 

Surface expression of CD40L was determined by detection of a phycoerythrin (PE) dye, 

conjugated to a mouse-anti-human CD40-ligand monoclonal antibody (BD #555700) 

and assessed using both fluorescence microscopy (Figure 2.2) and flow cytometry 

(Figure 2.3).  

For assessment of CD40L by fluorescent microscopy, the T-CD40L and NT-CD40L 

fibroblasts were cultured on 5mm coverslips within standard 24 well plates in culture 

media for 48 hours until 70% confluent.  The media was discarded leaving the 

remaining cells attached to the coverslip surface. Each coverslip was stained with 50µL 

of anti-human CD40L-PE and incubated in the dark for 20 minutes. The coverslips were 

washed with 1X PBS and the cells were fixed with 200µL of 4% PFA for 10 minutes.  The 

coverslips were washed with 1X PBS for 5 minutes, then removed from the 24 well 

plate and left to air dry overnight in the dark at room temperature. Cells on each 

coverslip were stained with 20µL of VectorSheild Hard Set Antifade Mounting Medium 

(containing DAPI), then mounted on to standard glass slides and left to cure for 4 

hours.  
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The slides were then visualised using a NIKON fluorescent microscope with NIS-

Elements imaging software. The figure below (Figure 2.2) shows the images obtained 

following fluorescence microscopy indicating the presence of CD40L on the surface of 

the T-CD40L fibroblasts but not on the surface of the NT-CD40L fibroblasts. 

 

 

 

 

 

 

 

Figure 2.2: Characterisation of CD40L expression by fluorescence microscopy. Top images – 

NT-CD40L fibroblasts; bottom images – T-CD40L fibroblasts.  Left images - cells stained with 

DAPI alone (blue); middle images - cells stained with PE-anti-CD40-ligand mAb alone (red); 

right images – merged images of cells stained with DAPI (blue) and PE-anti-CD40-ligand mAb 

(red), 60X magnification. 

 

 

 

 

 

 

 

 

 

T-CD40L 

DAPI PE-CD40L DAPI + PE-CD40L 

  

NT-CD40L 
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For assessment of CD40L by flow cytometry, the detached T-CD40L and NT-CD40L 

fibroblasts were added to individual FACS tubes and stained with 20µl of anti-human 

CD40L- PE along with a corresponding IgG-PE isotype control and incubated in the dark 

for 20 minutes (extracellular antibody conjugation method, section 2.3.1). 

 

 

 

 

 

 

 

 

 

Figure 2.3: Characterisation of CD40L expression by flow cytometry. A gate was placed 

around the fibroblast population (P1) of the T-CD40L cells and the NT-CD40L cells. Expression 

of CD40L-PE was constricted to P1. Top row: forward and side scatter plots of fibroblast cells 

gated on P1. bottom row: peak plots showing the percentage of CD40L expression. Left: the PE 

isotype control (IgG1-PE), middle: the non-transfected fibroblasts and right: the CD40L 

transfected fibroblasts. 
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2.2.6 Culture of primary MCL cells  

The murine fibroblasts (T-CD40L and NT-CD40L) were seeded into standard flat-

bottomed 6 well plates (for protein assays) or 12 or 24 well plates (Sarstedt) (for 

functional assays) at a concentration of 5 x 105/mL, and returned to the incubator until 

70% confluent.  

To slow the proliferation rate of the fibroblasts, the well plates were irradiated 

through external beam radiation delivered through a linear accelerator (LINAC) by 

clinical physicists at Derriford Hospital Radiotherapy Department (University Hospitals 

Plymouth NHS Trust, UK). In brief, the cells were irradiated in the well plate using a 

6MV photon beam at the machine isocentre. The sample was at a depth of 5cm in a 

solid water phantom and the field size used was 20cm2. The dose of radiation 

delivered to the cells was 15Gy (Gray) in a single fraction. 

Once the irradiated fibroblasts had settled and adhered to the surface of the wells, the 

media was removed and the two monolayers of fibroblasts were washed in 1X PBS. 

Primary MCL cells were seeded at 4 x 106/mL (REC-1 cells at 5 x 105/mL) on to each 

fibroblast monolayer and returned to the incubator. The figure below (Figure 2.4) 

shows phase-contrast images of the murine fibroblast monolayers and the primary 

MCL cells after 48 hours in co-culture.   

 

 

 

 



63 
 

 

 

 

 

 

 

 

 

 

Figure 2.4: Phase-contrast images of murine fibroblast monolayers and co-culture with 

primary MCL cells.  Top: fibroblast monolayers, Left: NT-CD40L, and Right: T-CD40L. Bottom: 

Primary MCL cells (seeded at 4 X 106/mL) on top of the fibroblast layers after 48h in co-culture. 

 

2.2.7 Assessment of cell number  

A cell count was performed by counting the number of viable cells on a neuabauer 

haemocytometer using a trypan blue assay. On occasions, the trypan blue stained cells 

were counted with a TC20TM automated cell counter (Bio-rad). 

2.2.8 B-cell receptor activation  

The B-cell receptor (BCR) was stimulated by crosslinking IgM. Activating the BCR by 

stimulating IgM rather than IgG was preferred since most mature B-cell malignancies 

derived from antigen dependant BCR signalling express a functional IgM type BCR 

which promotes NFkB activation and cell proliferation.187,188 Cells were stimulated with 

                  NT-CD40L                                             T-CD40L  

Fibroblast 

monolayers   

Primary 

MCL cells 

seeded on 

top of the 

fibroblasts   
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Goat Fab’ 2 anti-human IgM antibody (0.5mg/mL) (Bio-Rad AbD Serotec, STAR146), 

diluted to 3µg/mL and signalling responses assessed after a time-dependent period as 

described in the results chapters. 

2.2.9 In vitro drug treatments  

The two BTK inhibitors used in this study were ibrutinib (Ibr) and acalabrutinib (Acal). 

Ibr was purchased from Selleckchem (Houston, Texas, USA), and Acal was supplied as a 

gift by Acerta Pharma (San Francisco, USA) prior to FDA approval. A ten millimolar 

stock solution of each drug was prepared in DMSO and stored at -20°C or -80°C for 

short and long term use (respectively). Ten millimolar stocks were diluted in DMSO to 

various working concentrations within the range of 10mM-1nM. Drugs were added to 

cell cultures using a 1 in 1000 dilution. 

2.2.10 Acquired BTK inhibitor resistant cell lines  

Cells from a cell line demonstrating sensitivity to BTKi (REC-1) were cultured at a 

density of 2 x 105 in 12mL of culture media (+10% FBS) in 25cm2 flasks. The cells were 

treated with increasing concentrations of Ibr at the following doses: 1nM, 3nM, 10nM, 

30nM, 100nM, 300nM, 1µM, 3µM.  

At the lower doses (<100nM), cells were passaged every 2-3 days and 3 times at each 

dose. At higher doses (>100nM), the density of REC-1 cells was increased to 5 x 105 in 

12mL and cells were passaged every 3-4 days, and 6 times at each dose, until the cells 

were proliferating at the same rate as untreated parent REC-1 cells cultured under the 

same conditions. The sensitised cells were then treated continuously for 8 weeks at 

1µM and 3µM, above the in vivo dose for Ibr (400nM),116,145 and grown for use in 

subsequent experiments.  
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Before each passage, the cells were centrifuged at 1500rcf and the supernatant was 

discarded. To wash the cells and remove the drug from the previous culture, the pellet 

was re-suspended in 10mL of serum free media, re-centrifuged at 1500rcf and the 

supernatant was discarded. The washed pellet of cells was then re-suspended in 12mL 

fresh culture media (+10% FBS) and split 1 in 2 into two fresh culture flasks. The cells 

were then treated directly with a 1 in 1000 dilution of Ibr and incubated at 37°C with 

5% CO2 until the next passage.  

At a later stage in the study, REC-1 cells were also sensitised to Acal in the same way to 

generate a cell line model of acquired Acal resistance. The continuous dosage did not 

exceed 1µM for Acal and therefore cells were sensitised to just below the in vivo dose 

for Acal which is 2µM (personal communication from Acerta Pharma). 

2.3 Flow cytometric assays  

Each antibody was conjugated to a specific fluorochrome which emits different 

wavelengths of fluorescence when activated and can be quantified by flow cytometry. 

2.3.1 Extra cellular antibody conjugation method 

This method was required for the detection of cellular antigens on the surface of cells. 

The below method was required for the detection of CD40L expression and for 

defining the primary MCL cell population.   

Fluorochrome-conjugated antibody (recommended amount per test described in 

relevant results chapters) was added to a volume of 100-200µl of cell suspension 

media. Tubes were incubated in the dark for 20 minutes at room temperature unless 

indicated otherwise.  Cells were diluted in 300µl of staining buffer, and analysed by 
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flow cytometry. Fluorescence was measured against an isotype control of the same IgG 

subclass and fluorochrome. 

2.3.2 Intracellular antibody conjugation method  

An intracellular antibody conjugation method was required for the detection of the 

nuclear antigen Ki67 (for assessment of proliferation) and for the detection of 

intracellular BTK (for assessment of BTK activity). 

Each assay had different culture requirements before fixation and are therefore 

described separately. 

For the proliferation assay, cells were cultured in 12 or 24 well plates in cell culture 

media at a concentration of 5 x 106/mL. A volume of 200µl was removed, pelleted by 

centrifugation at 13000rpm for 5 minutes, and then fixed in 200µl of 4% PFA for 10 

minutes at room temperature. 

For the BTK assay, cells were cultured in 1.5mL Eppendorf tubes and fixed in 

suspension. Cell lines were cultured at 1 x 106/mL in 1mL of serum free culture media 

and fixed with 200µl of PFA to a final concentration of 4% for 10 minutes at room 

temperature. 

For primary MCL cells, 200µl of cells (at 5 x 106/mL) in culture media (+ 10% FBS) were 

pre-labelled with anti-CD5 and anti-CD19 on ice for 20 minutes prior to fixation (as 

described above).  

Following fixation, cells were washed in 1 x PBS and permeablised with 0.2% Triton X- 

100 on ice for 10 minutes. Cells were re-suspended in 100µl of staining buffer and 

stained with fluorescein conjugated monoclonal antibodies directed against Ki67 or 

BTK (and an IgG isotype control) and incubated in the dark for 20-25 minutes. Cells 
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were diluted in 300µl of staining buffer, transferred to a FACS tube and analysed by 

flow cytometry. 

2.3.3 Apoptosis staining method  

For the apoptosis assay, cell lines were cultured at 1 x 106/mL in standard 12 well or 24 

well plates.  A volume of 100µl of cell suspension was collected into FACS tubes and 

stained with 5µl annexin V-FITC (BD #556419), gently vortexed and incubated in the 

dark for 20 minutes. Cells were analysed in 400µl of 1X annexin-V binding buffer 

(section 2.1).  

Primary MCL cells were cultured at 4 x 106/ml and 200µl of cells were pre-labelled with 

MCL surface markers on ice for 20 minutes before the addition of annexin-V- FITC. 

2.3.4 Analysis of flow cytometry data  

Samples were analysed on a BD AccuriTM C6 flow cytometer (BD Biosciences). Data 

were collected and plotted onto a 2D forward and side scatter plot. Analysis was 

performed on a minimum of 20,000 events per experimental condition using BD 

AccuriTM CFlow Plus software (BD Biosciences).  Cells were vortexed immediately prior 

to analysis to promote a single cell population.   

Gating was used to isolate the lymphocyte population based on forward and side 

scatter which allowed for exclusion of debris and cell clumps. In addition, assessment 

of the pulse area (FSC-A) vs the pulse height (FSC-H) was used to exclude doublets. 

The appropriate gating was then applied to a histogram which was used to determine 

the proportion of activated fluorescence of the specified cell population against an 

unstained or isotype control. The analysis applied to define the MCL population and to 

determine apoptosis, proliferation and phosphorylation of BTK in cell lines and primary 



68 
 

MCL cells is described in detail in the Appendix. In brief, apoptosis was determined by 

analysing the percentage of annexin V-FITC positive cells against viable cells. Cell 

proliferation was determined by analysing the percentage of KI67-FITC positive cells 

against an isotype control of the same IgG subclass. BTK phosphorylation was assessed 

by obtaining the median fluorescence intensity values of the BTK positive cells.   

The percentages and the median fluorescence intensity values were exported to 

Microsoft ExcelTM and GraphPad PrismTM (version 5) for statistical analysis. The 

proportion of cells expressing pBTK-Y223 was determined by calculation of the median 

fluorescence intensity ratio (MFIR) = median fluorescence intensity of pBTK-Y223 

antibody divided by median fluorescence intensity of isotype control. 

2.4 Biochemical assays 

2.4.1 Cell lysis 

Whole cell protein extracts were prepared by lysing ~1 x 107 cells in 100µl of RIPA 

buffer (section 2.1). The cells were incubated on ice for 30 minutes and vortexed every 

10 minutes. The lysed cells were pelleted by centrifugation at 13500rpm and the 

supernatant containing the protein was transferred to a fresh tube. The extracted 

protein was then quantified and stored at -20°C. 

2.4.2 Protein quantification 

Protein concentrations were estimated using the BCA (Bicinchoninic acid) Protein 

Assay Reagent kit (Thermo Fisher UK) according to the manufacturer’s instructions. 

One Bovine Albumin Standard Ampule (Thermo Scientific Pierce #11811345), was 

diluted into 9 different dilutions in 1X PBS to make a set of protein standards. Ten 
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microliters of each BSA standard was added in triplicate to a 96 well plate (Fisher 

Scientific) to construct a standard calibration curve.  

Protein lysates were diluted 1 in 5 in 1 X PBS, to bring them to within the detection 

range of the kit (0.2‐2mg/mL). Ten microliters of each diluted sample was added in 

duplicate to the 96 well plate. An adequate volume of working reagent (BCA reagent A 

and BCA reagent B, mixed at a ratio of 50:1) was prepared and 190µl was added to 

each sample including the BSA standards. The plate was then incubated at 37°C for 30 

minutes. The mean absorbance values of the samples were measured at 562nm using 

a microplate reader and protein concentrations were corrected against the standard 

curve. A multiplication factor of 5 was applied to the resulting sample values to 

account for the 1 in 5 sample dilutions. 

2.4.3 Gel preparation, sample loading and 1D electrophoretic separation 

A fresh 10% resolving gel mixture was prepared (section 2.1) and poured into a 1.5mm 

chamber between two glass plates up to three quarters of the length of the inner plate 

and left to polymerise for 45 minutes. A fresh 4% stacking gel mixture was prepared 

and was added on top of the resolving gel to the top of the inner glass plate. A 10 or 15 

well comb was added and the gel was left to polymerise for 45 minutes.    

 The glass plates containing the gels were placed in a Mini – PROTEAN Tetra cell system 

(Biorad; 165-8004) filled with 1X running buffer (section 2.1) and placed inside a gel 

tank.  

Protein was added to 1.5mL Eppendorf tubes and diluted in dH2O to achieve equal 

protein concentrations between all samples. Protein was denatured by adding an 
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equal volume of 2 X Laemmli sample buffer containing 5% β-mercaptoethanol to the 

protein, and heating the samples at 95°C on a heat block for 5 minutes. 

Samples were loaded into individual wells of the stacking gel along with 5µl of protein 

standard (Biorad) used as a marker to identify proteins based on their molecular 

weight. Samples were electrophoresed at 70 volts (V) using a Bio-Rad power pack, for 

35 minutes or until protein had lined up at the bottom of the stacking gel. The voltage 

was then increased to 140V and proteins were separated based on mass through the 

resolving gel for 1 hour.   

2.4.4 Co-immunoprecipitation (Co-IP) 

REC-1 cells were seeded at 10 x 107/mL and lysed in 1mL of low stringency lysis buffer 

(100µl lysis buffer/ 1 x 107 cells) (section 2.1). 

The cells were sheared using a needle and syringe to gently break the nuclear 

membrane. The protein concentration was estimated using the BCA assay (section 

2.4.2).  For each immunoprecipitation, 600µg of protein was diluted in 200µl of 1X 

PBST.  

Prior to immunoprecipitation, a pre clearing step was performed to eliminate any non-

specific binding to the beads. The diluted protein lysate was incubated with 50µl of 

protein G magnetic dynabeads (Novex) in a 1.5mL Eppendorf tube and agitated on a 

daisy wheel for 30 minutes at 4°C. The magnetic beads were pulled out of solution 

using a magnetic separator (Cell signalling technology #7017) and the pre-cleared 

lysate was transferred to a fresh 1.5mL Eppendorf tube.  

Immunoprecipitations (IP) were performed indirectly by adding antibodies specific to 

the protein(s) of interest to the diluted REC-1 protein lysate at concentrations 
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indicated on the data sheet,  and incubating with agitation over night at 4°C. A volume 

of 50µl of the protein G beads was added to each IP sample and incubated with 

agitation for 2 hours at 4°C.  

The samples were placed on a magnetic separator and the magnetic beads bound to 

the protein of interest were attracted to the side of the tube. The post IP fraction 

(remaining solution) was removed and saved for SDS-PAGE analysis to ensure the 

immunoprecipitation had worked. The beads were washed 5 times in low stringency 

buffer and eluted in 30µl of 2 X Laemmli buffer (section 2.1).  

The protein complex was separated from the beads, by adding 5% β-ME to each 

sample and heating the samples at 95°C for 5 minutes. The beads were pelleted by 

centrifugation at 14000rpm and the supernatant (containing the protein of interest) 

was collected and subjected to ID electrophorectic separation.  

2.4.5 Preparation of Mass spectrometry samples  

Protein immunoprecipitations were performed as previously described (section 2.4.4) 

and eluted in 30µl of fresh 2 X laemmli buffer. A fresh 10% resolving gel and 4% 

stacking gel was prepared. To prevent as much contamination as possible, all 

equipment including falcon tubes, Eppendorf tubes, glass plates and a ruler was 

soaked in methanol and left to air dry. The reagents used to make the gels including 

the MilliQ dH20, 30% acrylamide, tris buffer and SDS were drawn into a 20mL sterile 

plastic syringe (Becton Dickinson LOT: 7500C13LF) and filtered into a sterile falcon tube 

through a sterile Milllex GP filter unit 0.22µM (Merck Millipore #SLGP033RB). The 

polymerising agents (10% APS and TEMED) were subsequently added, and the gel 

mixture was poured into the chamber between the glass plates. A volume of 5% BME 

was added to each IP sample and the samples were heated at 95°C for 5 minutes.    
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A volume of 30µl of each IP sample was added to a 10 well gel as shown in the gel 

template below (Figure 2.5). Each IP sample was surrounded by empty wells 

(containing only 2 x Laemmli buffer) to prevent protein contamination from the ladder 

when cutting. 

The gel was left unstained to prevent any staining interference with the mass 

spectrometry. Therefore, after the running of the IP samples, the gel was flipped over 

and kept on the bottom 1.5mm spacer plate. The wells from the stacking gel were 

used as a guide to identify each lane. As shown in Figure 2.5. The IP lanes were cut 

vertically and then a sterile ruler was used to measure and cut out 8 individual pieces 

horizontally using a clean sterile surgical steel blade scalpel (Swann-Morton Sheffield 

England, REF 0503, Lot: 6901412) for each individual cut. The gel pieces were added to 

corresponding labelled tubes. Since the gel was flipped over, the IP samples were 

located in the opposite direction from the direction the samples were originally 

loaded. Each gel piece was covered in 1mL of MilliQ H2O and frozen at -80°C. 

Samples were sent to Manchester University on dry ice and analysed by research staff 

using SWATH MS (sequential window acquisition of all theoretical fragment ion spectra 

mass spectrometry). Analysis of the SWATH MS data is explained in more detail in 

Chapter 5. 
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Figure 2.5: Image of gel after separation of IRF4 IP samples. The image shows the 

approximate position of the cuts and the numbered gel pieces that were sent off for mass 

spectrometry analysis (samples were cut in the opposite direction from the way they were 

loaded). Samples 4 and 5 (possibly 6) contain the IRF4 IP at around 50KDa. 

 

2.4.6 Western blotting  

Proteins were transferred from the gel onto polyvinylidene difluoride (PVDF) 

membranes (Biorad #1620177). The PVDF membrane was prepared by immersing in 

100% Methanol for 20 seconds. The membranes were then rinsed in dH2O and left to 

soak in pre-chilled 1X transfer buffer for at least 20 minutes along with the fiber pads 

and filter paper. The membrane and gel were sandwiched between two pieces of filter 

paper and two fiber pads, all held together inside a mini gel holder cassette. The 

cassette was placed inside a Mini Trans-blot central core unit fixed inside the blotting 
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tank. An ice cold blue cooling unit was placed inside the tank in front of the central 

core unit and the tank was filled with 1X Transfer buffer. Proteins were transferred at 

100V using a Bio-Rad power pack for 1.5 hours. 

2.4.6.1 Immunohybridisation  

The membranes were rinsed briefly in 1X TBS and then incubated in blocking buffer 

(section 2.1) for 1 hour at room temperature.  The membranes were then incubated 

with primary antibodies diluted in blocking buffer overnight at 4°C. The membrane was 

washed for 10 minutes, 3 times in 1X TBST, to remove some of the background from 

the primary antibody and then incubated with a secondary antibody conjugated to-

HRP for one hour at room temperature. Again, the membranes were washed for 10 

minutes, 3 times in 1X TBST, to remove some of the secondary antibody background.   

2.4.6.2 Detection and analysis  

Membranes were enhanced for chemiluminescent visualization following incubation 

with ECL or ECL Prime western blotting substrate (GE Healthcare) for 1 or 5 minutes 

(respectively). The membranes were placed in a hyper cassette and exposed to XR film 

(Fisher Scientific) in a dark room and developed with a Compact X4 Xograph Imaging 

system (Xograph Healthcare Ltd). 

The protein bands detected on the western blot films were quantified using an Image J 

processing tool. The data was exported to Microsoft Excel where the recorded pixel 

densities for all data (bands, controls and their backgrounds) were inverted using the 

following formula; 255 – X, where X is the value recorded by ImageJ. The inverted 

background value was deducted from the corresponding inverted band value to obtain 

a net value. The final relative quantification values were determined by the ratio of net 
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band to net loading control. The ratios were represented as bar graphs and protein 

expression levels were statistically analysed using Graph pad Prism 5 software. 

2.5 Molecular assays  

2.5.1 Messenger RNA expression 

RNA was extracted from MCL cell lines using the RNeasy Mini Kit (QIAGEN, Hilden, 

Germany) following manufacturer’s instructions. Briefly, 5 x 106 cells were added to 

1.5mL Eppendorf tubes and centrifuged at 13500 rpm for 5 minutes at 4°C. The cell 

pellet was lysed in 350µl of denaturing buffer (Buffer RLT), centrifuged for 3 minutes at 

13500 rpm and the supernatant was carefully transferred to a clean 1.5mL Eppendorf 

tube. A volume of 350µl of 70% ethanol was added to the lysate to facilitate the 

selective binding of the RNA to the silica membrane of the RNeasy spin column. A 

volume of 700µl of the sample containing ethanol was loaded into a spin column 

placed inside a 2mL collection tube and centrifuged for 15 seconds at 10000 rpm. The 

flow through in the collection tube was discarded.  

A volume of 700µl of stringent salt buffer (Buffer RW1) was added to the spin column 

to remove any biomolecules that were non-specifically bound to the silica membrane. 

The spin column was centrifuged at 10000 rpm and the flow through was discarded. To 

remove the salt, a volume of 500µl of a mild wash buffer (Buffer RPE) was added to the 

spin column and centrifuged at 10000 rpm for 15 seconds and the flow through was 

discarded. This was repeated a second time with a 2 minute centrifugation. The spin 

columns were placed inside a clean collection tube and centrifuged at 13000 rpm for 

an extra 1 minute to dry the membrane. The spin columns were then placed inside a 

clean 1.5mL collection tube. 
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To elute the RNA, 30µl of RNase free water was added to the spin column and 

centrifuged for 1 minute at 10000rpm. The spin column was discarded leaving the 

purified RNA in the 1.5mL collection tube.    

The RNA was quantified using a NanoDrop 2000 spectrophotometer (Thermo 

Scientific). The purity of each RNA sample was determined from the ratio of 

absorbance at 260nm and 280nm. RNA was considered pure at ratio of ~2. Samples 

were stored at -80°C. 

2.5.2 Reverse transcription (RNA- cDNA) 

RNA was converted to complementary DNA (cDNA) using the Tetro cDNA synthesis kit 

(Bioline #BIO-65042) following manufacturer’s instructions. A priming premix was 

prepared on ice in RNAse free tubes (Fisher Scientific) containing 1µl of oligo dT, 1µl of  

dNTP mix (10mM), 4µl of reverse transcription buffer, 1µl of Ribosafe RNAse inhibitor 

and 1µl of Tetro reverse transcriptase enzyme per sample.  The quantity of RNA to add 

to the reaction (no more than 12µl or 2µg) was standardised to obtain equal 

concentrations for each sample. Diethyl pyrocarbonate (DEPC) treated water was 

added to the samples to bring the total reaction volume up to 20µl. Samples 

containing no reverse transcriptase (NRT) were also prepared to control for each test 

sample reaction. The samples were heated at 45°C for 30 minutes in a GSTORM 

thermal cycler (Applied Biosystems). The reaction was terminated by denaturing the 

enzyme at 85°C for 5 minutes. The samples were then chilled on ice and stored at -

20°C.   
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2.5.3 Polymerase chain reaction (PCR) 

Regions on IRF4 and PU.1 were amplified from cDNA by PCR and analysed against the 

housekeeping gene HPRT. The primers for IRF4 and HPRT were designed previously by 

the haematology group, the PU.1 primers were taken from Mankai et al 189. All primers 

were designed to span exon junctions thereby preventing amplification of genomic 

DNA. Each primer pair was evaluated for target specificity using NCBI primer blast 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi. The oligonucleotide 

sequences are shown in Table 2.2. All primers were purchased from Sigma Aldrich. 

Stock solutions of 10µM were prepared in nuclease free water (Fisher Scientific, 

BP2484-100) and stored at -20°C.  

Conventional PCR was used to optimise the primer annealing temperatures (Ta) prior 

to experimentation by running a temperature gradient (56-62°C). Primers were diluted 

to a final concentration of 200nM (each) in a PCR mix containing 10X Dream Taq buffer 

and 2X Dream Taq DNA polymerase (Thermo Fisher Scientific #EP0701), dNTP mix 

(Thermo Fisher Scientific #R0191), and nuclease free water (Fisher Scientific, BP2484-

100), and 2µl of each cDNA sample was added for a total reaction volume of 23µl. IRF4 

was amplified using a GSTORM thermal cycler (Applied Biosystems), following the cycle 

sequence outlined in Table 2.3. The PCR products were analysed by agarose gel 

electrophoresis (section 2.5.5). 

 

 

 

 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi
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Table 2.2: Oligonucleotide sequences used for amplifying IRF4, PU.1 and HPRT from cDNA. 

The IRF4 and HPRT primers were designed previously by the haematology group and the PU.1 

(Spi-1) primers were taken from Mankai et al189. 

 

 

 

Table 2.3: PCR cycle sequence for optimisation of primer annealing. 

 

 

Gene  Primer sequence 5’ - 3’) Size (bp) Amplicon 
size (bp) 

IRF4 Forward ACCCGCAGATGTCCATGAG 19 
 

 
90 

 
 

IRF4 Reverse GTGGCATCATGTAGTTGTGAACCT 24 
 

PU.1 Forward GTGCCCTATGACACGGATCT 20 
 

 
279 

 
 

PU.1 Reverse GTAGAGGACCTGGTGGCC 18 
 

HPRT Forward  CCTGGCGTCGTGATTAGTGAT 21 
 

 
131 

 
 

HPRT Reverse  AGACGTTCAGTCCTGTCCATAA 22 
 

Step Temperature Time No of cycles 

Heated lid 112°C   

Automatic hot start 95°C 10 minutes 1 

Start cycle amplification    

Denaturation  95°C 30 seconds  

40 Annealing  Ta gradient 56, 58, 60, 62°C  30 seconds 

Extension 72°C 60 seconds 

End cycle amplification    

Hold 4°C Infinite  
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2.5.4 Real time quantitative PCR (qPCR) 

Expression levels of IRF4 and PU.1 mRNA were compared against HPRT during the 

exponential growth phase of PCR. Primers were diluted to a final concentration of 

200nM in a PCR mix containing 2X SYBR Green Master I and PCR grade water (ROCHE). 

The PCR mix was added to each test well in a clear optical 96 well plate (ROCHE), and 

1-5µl (25-100ng) of each cDNA sample was added in triplicate in a total reaction 

volume of 15-20µl. The cDNA was amplified using the LightCycler 480 instrument 

(ROCHE) following the cycle sequence outlined in Table 2.4. A melting curve was 

included to determine the specificity of the primers for the PCR product and to ensure 

absence of non-specific amplification. The Cp values (also known as cycle threshold or 

Ct values) were obtained from the LightCycler 480 instrument and transported to 

Microsoft Excel. Relative quantification of IRF4 and PU.1 expression levels was 

normalised against HPRT and determined using the delta delta Ct method. 

 

Step Temperature Time No of cycles 

    

Pre incubation  95°C 10 minutes 1 

Denaturation  95°C 10 seconds  

45 Annealing  60°C  20 seconds 

Extension 72°C 10 seconds 

Melting curve 95°C 5 seconds 1 

 65°C 60 seconds 

Cooling  40°C 10 seconds 1 

 

Table 2.4: Cycle sequence for qPCR amplification of cDNA regions. 
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2.5.5 Agarose gel electrophoresis  

A 1 or 2% agarose gel was prepared in a glass flask by adding 1 or 2 grams of agarose 

powder (Fisher Scientific, UK) to 100mL of 1X TBE buffer (section 2.1). After gentle 

swirling, the mixture was heated for approximately 2 minutes until the agarose was 

completely dissolved in solution. In order to visualise the DNA, 5µl of GelRed TM 

(10,000X in water) nucleic acid gel stain (Cambridge Bioscience #BT41003) was added 

to the mixture. The gel mixture was then poured into a gel tray. A 15 or 20 well comb 

was added and the gel was left to set for at least 30 minutes before loading the 

samples.  

In order to track the PCR products during electrophoresis the samples were mixed with 

a 1 in 6 dilution of 6XDNA loading dye buffer (section 2.1) and then loaded into the 

wells of the agarose gel, alongside a Gene ruler 1Kb plus DNA ladder (Thermo Fisher, 

UK #10600301) or a 100bp DNA ladder (Norgen, Germany). The samples were 

electrophoresed through the gel using a Biorad power pack at a constant voltage of 

130V for 45 minutes or until the samples had almost migrated the length of the gel. 

Following electrophoresis, DNA in each sample was visualised using a UVP GelDoc-It® 

Imager (UVP, Cambridge, UK) aided by the Launch Vision Works LS programme. 

2.5.6 Chromatin immunoprecipitation (ChIP) 

Chromatin immunoprecipitations were prepared from several cell lines using the 

SimpleChIP® Enzymatic Chromatin IP Kit (Magnetic Beads) (Cell signalling technology 

#9003), following manufacturer’s instructions. 
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Preparation of chromatin for ChIP  

A cell count was performed for each cell line using a TC20TM automated cell counter 

(Bio-rad) and cells from each cell line were cultured at 5 x 106 in 20mL of fresh culture 

media in 15cm sterile culture dishes (Thermo Scientific #130183).           

Cross-linking chromatin  

To cross-link proteins to DNA, cells were fixed in 540µl of 37% formaldehyde to 

achieve a final concentration of 1% in each 20mL of cell suspension and left to 

incubate for 10 minutes at room temperature.  

To quench the formaldehyde and prevent non-specific cross linking, a volume of 2mL 

of 10X glycine solution was added to each cell suspension and left at room 

temperature for 5 minutes. 

Each cell suspension was then transferred to a 50mL falcon tube and centrifuged at 

1,500rpm for 5 minutes at 4°C. The supernatant was discarded and the remaining 

pellets were washed twice in 20mL of ice cold 1 X PBS and centrifuged at 1,500rpm for 

5 minutes after each wash.  

Nuclei preparation  

Each pellet was re-suspended in 1mL of ice cold 1X enzymatic lysis buffer A (section 

2.1), and incubated on ice for 10 minutes, and mixed by inversion every 3 minutes. The 

suspension was centrifuged at 3,000rpm for 5 minutes at 4°C and the supernatant 

discarded. Each pellet was then re-suspended in 1mL of ice cold 1X enzymatic lysis 

buffer B (section 2.1), the centrifugation was repeated and supernatant was very 

carefully discarded. Each pellet was then re-suspended in 100µl of 1X enzymatic lysis 

buffer B, transferred to a 1.5mL Eppendorf tube and placed on ice.  
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Chromatin digestion and fragmentation 

To digest DNA to an optimal length for successful ChIP experiments (approximately 

150-900bp), a volume of 0.5 - 0.8µl of micrococcal nuclease (#10011) was added to 

each chromatin preparation, incubated for 20 minutes at 37°C, and mixed frequently 

by inversion. The digest was stopped after 20 minutes by adding 10μl of 0.5M EDTA 

(#7011) and placing the tube on ice. The nuclei was pelleted at 13500rpm for 1 minute 

at 4°C, the supernatant was discarded and the pellet was re-suspended in 100µl 1X 

ChIP buffer (section 2.1). 

The chromatin from each sample was sonicated in 100µl 1X ChIP buffer (section 2.1) 

using a Standard Bioruptor ® (Diagenode, Belgium). Nuclei were observed under a light 

microscope before and after sonication and were determined to be completely lysed 

(no whole cells visualised) after 10 sonication rounds of 30 seconds ON and 30 seconds 

OFF.  After sonication, the lysates were clarified by centrifugation at 10,000rpm for 10 

minutes at 4°C. Approximately 100µl of the supernatant containing the cross-linked 

chromatin was then transferred to a clean tube. 

Confirmation of chromatin fragment length prior to ChIP 

One 50µl aliquot of each sonicated chromatin sample was electrophoresed on agarose 

gel to check the chromatin digestion and fragmentation. A 1% agarose gel was 

prepared (as described in section 2.5.5). To prepare the samples, cross-linked protein- 

DNA interactions were reversed (see reversal of cross links) to free up the DNA 

fragments for electrophoresis. The DNA was purified using spin columns (as described 

later). Following DNA purification, a 10µl sample was removed, mixed with 6X DNA 

loading dye buffer and run on agarose gel alongside a 100bp DNA ladder (Norgen, 

Germany) as previously described.   
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Determination of DNA concentration in chromatin preparation  

DNA concentration and quality was determined using a NanoDrop 2000 

spectrophotometer (Thermo Scientific). The optical density was assessed at 260 nm to 

280 nm and the DNA quality threshold for the A260/A280 ratio was 1.8- 2.0. 

Preparation of the digested chromatin samples for ChIP, and preparation of the input 

sample.  

For each IP sample, the digested cross-linked chromatin was diluted to 1-10µg in 100-

500µl of 1X ChIP buffer. Ten microliters of each diluted solution was removed to a 

separate Eppendorf tube for the 2% input sample and frozen at -20°C. 

Indirect binding of chromatin with ChIP antibody 

A ChIP validated antibody specific for the protein of interest was added directly to the 

digested cross-linked chromatin preparation at the concentration specified on the data 

sheet. A histone (H3) antibody (used as a positive control) and a species matched 

normal IgG antibody (used as a negative control) were added to separate chromatin 

preparations at the concentrations specified in the protocol for establishment of the 

ChIP procedure. Samples were incubated over night at 4°C with rotation on a daisy 

wheel. 

Binding of Protein G magnetic beads to the antibody/chromatin complex 

A volume of 30µl of ChIP-grade protein G magnetic beads #9006 was added to each IP 

sample and incubated for 2 hours at 4°C with rotation on a daisy wheel. Each tube was 

then placed in a magnetic separation rack (cell signalling technology #7017) for 30 

seconds to attract the protein G beads bound to the antibody-antigen complex, to the 

side of the tube. The supernatant (which should not contain the relative chromatin 

fragments of interest) was discarded. Each bead pellet was washed 3 times in 1mL of 
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low salt wash (section 2.1), then washed once in 1mL of high salt wash (section 2.1) at 

4°C for 5 minutes with rotation. After each wash the tubes were placed in the 

magnetic separation rack and the supernatant was discarded.  

Elution of chromatin from antibody- protein G magnetic beads  

A volume of 150µl of 1X ChIP elution buffer (section 2.1) was added to each IP sample 

and to the 2% input samples. All samples were heated at 65°C for 30 minutes and 

gently agitated at 1200rpm in a thermomixer (ThermoFisher) to release the chromatin 

fragments bound to the antibody from the beads. The tubes were placed in the 

magnetic separation rack to attract the unbound beads and the supernatant 

containing the immunoprecipitated chromatin was transferred to fresh tubes.  

Reversal of cross links 

Cross-links within the antibody chromatin complexes were reversed by adding 6µl of 

5M NaCl and 2µl of proteinase K (#10012) to all tubes including the 2% input samples 

and incubating for 2 hours at 65°C. Proteinase K destroys the antibody-protein 

complexes, allowing them to be removed from solution, leaving only the DNA 

fragments. 

DNA Purification using spin columns  

A volume of 750ul of DNA binding buffer (#10007) was added to each DNA sample and 

vortexed briefly. Each sample was transferred (450µl at a time) to a spin column placed 

in a collection tube and centrifuged at 14,000rpm for 30 seconds. The flow through 

was discarded and the spin column was placed back in the collection tube. A volume of 

750µl of DNA wash buffer (#10008) was added to the spin column and centrifuged at 

14,000rpm for 30 seconds. The flow through was discarded and the spin column was 

placed back in the collection tube. The spin columns were centrifuged a second time at 
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14,000rpm for 30 seconds. The collection tube containing the flow through was 

discarded and the spin columns were placed into fresh 1.5mL Eppendorf tubes. A 

volume of 50µl of DNA elution buffer (#10009) was added to each spin column and 

centrifuged at 14,000rpm for 30 seconds to elute the DNA. The spin columns were 

discarded and the eluate containing the purified DNA was stored at -20°C.   

Confirmation of ChIP procedure by conventional PCR  

To determine the success of the ChIP, the purified DNA obtained from each sample 

(the IP and the input DNA samples) was amplified by conventional PCR for detection of 

the ribosomal protein L30 (RPL30) gene locus.  

A PCR reaction-mix was prepared (Table 2.5), the volume of each reagent was 

multiplied for the required number of samples (to include the positive control (Histone 

H3), negative control (normal rabbit IgG) and a NTC)). The mix was vortexed and 18µl 

was added to individual PCR tubes. A volume of 2µl of each DNA sample was added to 

the individual PCR mixes. The DNA was amplified on a Verity thermal cycler (Applied 

Biosystems) following the PCR cycle sequence in Table 2.6. For analysis of the RPL30 

amplicons, 10µl of PCR product from each sample was run on a 2% agarose gel (section 

2.5.5). 
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Table 2.5: The PCR reaction mixture for amplification of the RPL30 locus from ChIP samples 

 

Step Temperature Time Cycles 

    

Initial denaturation 95 5 minutes 1 

Denaturation  95 30 seconds  

40 Annealing  62 30 seconds 

Extension 72 30 seconds 

 72 5 minutes 1 

 

Table 2.6: The PCR cycle sequence for amplification of the RPL30 locus from ChIP samples.  

 

Confirmation of DNA concentration and fragment length using Bio-analyser    

Following PCR confirmation of the ChIP samples, pre-sequencing assessments were 

carried out by Dr Michele Kiernan (Plymouth University) using high sensitivity DNA kits. 

First, the DNA samples were quantified using the Qubit® dsDNA High Sensitivity assay 

kit (Life Technologies) and a Qubit fluorometer. 

Reagent  Volume for 1 PCR Reaction (18 μl)  
 

Nuclease-free H2O  13.1 µl  
 

10X PCR Buffer  2.0 µl  
 

4mM dNTP Mix  0.4 µl  
 

5μM RPL30 Primers  2.0 µl  
 

Taq DNA Polymerase  0.5 µl  
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Next, the size of the DNA fragments from each sample was assessed on the Agilent 

2100 Bio-analyser system (Agilent Technologies, Cheshire, UK)  using the High 

Sensitivity DNA Analysis Kit (Agilent Technologies #50674626,).  

In brief, a gel-dye mix was prepared and loaded into a well-marked ‘G’ (in a black 

circle) on a High Sensitivity DNA chip fixed to a chip priming station. A plunger was 

lowered and held in position for 1 minute before slowly pulling the plunger back to the 

1mL position. More gel mix was loaded into the remaining ‘G’ wells to complete 

loading of the gel-dye mix.  

Next, the marker, ladder and samples were loaded into allocated wells. The chip was 

vortexed for 1 minute at 2400rpm and loaded onto the bio-analyser instrument within 

5 minutes. Results were acquired using 2100 Expert Software (version B.02.08, Agilent 

Technologies).   

Prior to the assessment of individual samples, the gel and electropherogram of the 

DNA Ladder was evaluated to ensure that the required peaks were visible, all peaks 

were adequately defined, the baseline was flat and there was correct identification of 

both markers. 

2.5.7 Next generation sequencing (NGS) 

All sequencing procedures (including library preparation, sequencing and initial 

analysis) were performed by Dr Michele Kiernan (Plymouth University).  

Purified DNA from the ChIP sample was sequenced using an Ion personal genome 

machine (Ion PGM) (Ion Torrent). The ChIP sequencing data was imported on to a 

bioinformatics system and analysed using CLC Workbench software (version 11.1). 

Peaks were aligned to the human genome using the reference HG38.  
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3 Chapter 3- Characterising MCL cell line models of BTKi 

sensitivity and resistance 
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3.1 Introduction 

Inhibitors of BTKi have shown a significant clinical effect in the treatment of MCL, 

however one third of MCL patients have primary resistance to BTKi and a proportion of 

responding patients develop secondary resistance and aggressive relapse. Current 

therapies are less effective in relapsed cases, indicating the need to investigate the 

mechanisms underlying the cellular sensitivity of MCL to BTKi, and to discover 

biomarkers of BTKi resistance so that alternative treatments targeting specific 

resistance mechanisms can be used.  

Due to the complications associated with the culturing of primary MCL cells, the 

characterisation of MCL cell line models which have defined sensitivity or resistance to 

BTKi was of particular importance. 

This chapter describes the characterisation of MCL cell line models of BTKi sensitivity 

and resistance and subsequent development of a cell line model with acquired BTKi 

resistance. Our aim was to define these cell line models to allow identification of 

specific functional and signal responses to BTKi which may ultimately identify 

biomarkers which predict response to treatment with BTKi in MCL.  

Sensitivity to BTKi was assessed through functional assays of apoptosis and 

proliferation, linking these to responses of key BCR signalling proteins – pBTK and 

pERK1/2 and assessing the role of IRF4 as a potential biomarker of BTKi sensitivity. 

3.2 Methods employed 

The methods employed in this chapter involve the general culture of four validated 

MCL cell lines (REC-1, G519, JEKO-1 and JVM2) (Methods section 2.2.4). These cell lines 
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were assessed by flow cytometry for apoptosis (annexin V-FITC) and proliferation (Ki-

67-FITC) in response to varying concentrations of Ibr or Acal (Methods section 2.2.9).  

The cell line displaying BTKi sensitivity (REC-1) was additionally continuously treated 

with BTKi (Ibr / Acal) to generate an in vitro model of acquired BTKi resistance 

(Methods section 2.2.10).  

Assessment of responses by key signalling proteins of the BCR pathway following BTKi 

treatment were determined  through biochemical assays (Methods section 2.4) of 1D-

SDS PAGE (section 2.4.3) , western blotting (section 2.4.6) and immunohybridisation 

(section 2.4.6.1) using cell lysates or by flow cytometry following IgM stimulation 

(Methods section 2.2.8 and 2.3.2) .  

A table of antibodies/probes used in this chapter is shown below (Table 3.1).  

All data (flow cytometry and western blotting) were analysed using Microsoft Excel™ 

and GraphPad Prism™ Version 5 software. The statistical tests employed are described 

in the figure legend of each experiment. 
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Table 3.1: Antibodies/probes used in chapter 3. FC = flow cytometry, WB= western blotting, 

BD = BD Biosciences, CST= Cell signalling technology. 

 

 

 

 

 

 

Antibody/probe Species  Application Ref Source Conc 

Annexin-V-FITC  FC 556419 BD 5ul/test 

Ki67 (IgG1k) -FITC Mouse anti human FC 556026 BD 10ul/test 

BTK pY223 (IgG1k) -PE Mouse anti human FC 562753 BD 5ul/test 

BTK pY551 (IgG1k)-PE Mouse anti human FC 558129 BD 10ul/test 

BTK (IgG2a)-PE Mouse anti human FC 558527 BD 20ul/test 

IgG1k isotype-FITC  Mouse anti human FC 556026 BD 10ul/test 

IgG1k isotype-PE Mouse anti human FC 559320 BD 10ul/test 

IgG1k isotype-APC Mouse anti human FC 555751 BD 10ul/test 

IgG2ak isotype-PE Mouse anti human FC 555574 BD 20ul/test 

IRF4 primary antibody Rabbit anti human WB #4964 CST 1/1000 

pERK1/2 primary antibody Rabbit anti human WB #9101 CST 1/2000 

ERK1/2  primary antibody Rabbit anti human WB #9102 CST 1/2000 

GAPDH  primary antibody Rabbit anti human WB #2118 CST 1/5000 

Secondary antibody-HRP Goat anti rabbit WB #P0448 Dako 1/2000 
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3.3 REC-1 cells demonstrate increased apoptosis in response to Ibr but 

not Acal.  

Of the four mantle cell lymphoma cell lines assessed, REC-1 cells showed sensitivity 

to Ibr with increased apoptosis in a dose and time dependent manner. This effect on 

apoptosis was found to be less apparent following treatment with the more selective 

BTKi Acal.   

3.3.1 Assessment of apoptosis in MCL cell lines in response to Ibr  

Cell lines were tested for their apoptotic response to increasing concentrations of Ibr 

or Acal at regular time points over 72 hours. In REC-1 cells, apoptosis was induced by 

Ibr in a dose and time dependent manner indicating sensitivity to BTKi (Figure 3.1). 

This was confirmed by linear regression analysis (Figure 3.2) which showed a positive 

correlation between Ibr concentration and the percentage of apoptosis which was 

most significant after 72 hours (R2=0.71). However, more than 60% of the REC-1 cells 

remained viable after 72 hours even at the highest dose used (10µM). 

Unlike REC-1, the G519 cells showed no induction of apoptosis above baseline level at 

any concentration of Ibr, suggesting resistance to BTKi (Figure 3.1). In the JEKO-1 cells, 

apoptosis was increased by 7% after 24 hours, although only at a very high 

concentration (10µM) and there was no further increase over the 72 hours. In the 

JVM2 cells, there was a slight increase in apoptosis after 24 hours at 1µM, although 

this was not much higher than the baseline cell death over the 72 hours. Significant 

apoptosis was observed in this cell line at the highest dose (10µM), however this was 

not seen at lower doses suggesting this might be an off-target drug effect. 
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Figure 3.1: Cell death response to Ibr in MCL cell lines. Cells were seeded at 5 x 105/mL, 

treated with DMSO (vehicle) or increasing concentrations of Ibr (FC: 10nM, 100nM, 1µM and 

10µM). Cell death was determined by flow cytometry with annexin V-FITC staining at each 

concentration after 24, 48 and 72 hours incubation (N=3). 
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Figure 3.2: Regression analysis of Ibr concentration and apoptosis in REC-1 cells. The graph 

shows log (Gaussian) non-linear correlation curves showing a positive correlation  between 

concentration of Ibr and apoptosis of REC-1 cells at each time point with the greatest 

correlation at 72 hours ( R2 =0.71) N=3. 

 

3.3.2 Assessment of apoptosis in MCL cell lines in response to Acal 

In response to the more selective BTKi (Acal), apoptosis was only minimally increased 

in REC-1 cells compared to the control cells and only at doses >100nM. Apoptosis was 

only increased by Acal by 6% after 72 hours at high dosage (10µM) (Figure 3.3A), 

indicating that Acal induces less apoptosis when compared to Ibr at the equivalent 

doses. In G519 cells there was no induction of apoptosis above baseline level at any 

concentration of Acal (Figure 3.3B), which is equivalent to the lack of apoptosis seen 

with Ibr. In response to a higher dose range of Acal (1-100µM), apoptosis of REC-1 cells 

did not significantly increase until the dose reached 100µM (Figure 3.3C), and with 

approximately 55% of the cells still viable after 48 hours, even this extreme dose was 

insufficient to cause complete cytotoxicity. Apoptosis of the resistant G519 cells was 

also increased at this dose, suggesting off target effects due to the very high 

concentration of Acal (or DMSO). 
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Figure 3.3: Cell death response to Acal in MCL cell lines. Cells were seeded at 5 x 105/mL, 

treated with DMSO (vehicle) or increasing concentrations of Acal. Cell death was determined 

by flow cytometry with annexin V-FITC staining at each concentration after 24, 48 and 72 

hours incubation. A) REC-1, and B) G519 over a 72 hour time course with Acal (FC: 10nM, 

100nM, 1µM, 10µM). C) G519 and REC-1 cells after 48 hours Acal treatment using a higher 

dose range (FC: 1µM, 3µM 10µM, 30µM, 100µM). 
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3.4 REC-1 cells demonstrate reduced proliferation in response to both 

Ibr and Acal 

The proliferation of REC-1 cells is markedly sensitive to both Ibr and Acal with 

reduction in proliferation seen early (24 hours) and at very low concentrations (nM).  

This contrasts to the other MCL cell lines, particularly G519 cells and represents a 

laboratory assessment to determine BTKi sensitivity. 

3.4.1 Assessment of proliferation in MCL cell lines in response to Ibr  

The cell lines were tested for changes to proliferation in response to increasing 

concentrations of Ibr. In REC-1 cells, proliferation was reduced by Ibr equally at all 

doses tested (10nM, 100nM, 1µM, 10µM) as early as 24 hours after treatment (Figure 

3.4A). This reduction was time dependant; with proliferation reduced to approximately 

30% of control levels after 72 hours of treatment, but not dose dependant suggesting 

the proliferation of REC-1 cells may be reduced at lower doses of Ibr. 

In response to a lower dose range of Ibr, the reduction of REC-1 cell proliferation was 

shown to occur at doses as low as 1nM after only 24 hours treatment (Figure 3.4D). In 

contrast, the G519 cells did not show any reduction of proliferation over baseline 

levels over the 72 hours treatment with Ibr at the highest dose (10µM) (Figure 3.4B) 

which correlates with the survival of G519 cells in response to Ibr. 

The JEKO-1 and JVM2 cells were also analysed for the percentage of Ki67 positive cells 

after 48 hours treatment. Like G519, the JEKO-1 cells did not indicate any reduction in 

proliferation above baseline at any dose but the JVM2 cells showed a considerable 

reduction in proliferation at the highest dose (10µM) (Figure 3.4C), which  correlates 
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with the increased death of these cells only at 10µM and indicating likely off target 

drug effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Proliferation response to Ibr in MCL cell lines. Cells were seeded at 5 x 105/mL, 

treated with DMSO (vehicle) or increasing concentrations of Ibr as indicated. 1 x 106 cells at 

each concentration were taken at various time points, and stained with a Ki67-FITC antibody 

for analysis by flow cytometry. Cell proliferation was determined by analysing the percentage 

of KI67-FITC positive cells against an isotype control using an IgG1-FITC antibody (N=2). A) 

Proliferation of REC-1 and B) G519 in response to Ibr over a 72 hour time course. C) 

Proliferation of JEKO-1 and JVM2 cells after 48 hours Ibr treatment. D) Proliferation of REC-1 

cells in response to a low dose range of Ibr (10pM, 100pM, 1nM, 10nM). 

 

 

 

A) B) 

C) D) 
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3.4.2 Assessment of proliferation in MCL cell lines in response to Acal 

In response to Acal, the G519 cells showed no reduction of proliferation (<10µM after 

72 hours) (Figure 3.5), therefore providing more evidence that these cells are resistant 

to BTKi. The REC-1 cells showed a 32% reduction in proliferation after 72 hours of Acal 

treatment at a dose of 100nM (Figure 3.5), 100 fold higher than that seen with Ibr, 

demonstrating sensitivity to Acal, despite the lack of correlative apoptosis of the cells 

in response to Acal. 

 

Figure 3.5: Proliferation response to Acal in MCL cell lines. Cells were seeded at 5 x 105/mL, 

treated with DMSO (vehicle) or increasing concentrations of Acal as indicated. 1 x 106 cells at 

each concentration were taken at various time points, and stained with a Ki67-FITC antibody 

for analysis by flow cytometry. Cell proliferation was determined by analysing the percentage 

of Ki67-FITC positive cells against an isotype control using an IgG1-FITC antibody. Proliferation 

of G519 and REC-1 cells after 72 hours Acal treatment. 
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3.4.3 Comparison of proliferation in REC-1 cells in response to Ibr or Acal 

In a separate experiment, the proliferation of REC-1 cells was compared following 

treatment with either Ibr or Acal at a single effective dose (100nM). Proliferation was 

reduced equally in response to Ibr and Acal (100nM) from 24 to 72 hours (Figure 3.6). 

In vitro assays assessing proliferation were found to be a more sensitive indicator of 

BTKi effect than assays of apoptosis. Proliferation was therefore used as a measure of 

BTKi sensitivity for subsequent experiments. 

 

Figure 3.6: Proliferation response to Ibr versus Acal in REC-1 cells. Proliferation of REC-1 cells 

in response to Ibr or Acal treatment (100nM). 
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3.5 All MCL cell lines show increased levels of phosphorylated BTK 

(Y223) following BCR activation and down-regulation with Ibr  

The activity of BTK can be assessed through flow cytometric assessment of the 

intracellular phosphorylation of BTK at tyrosine 233 (Y223).  All 4 MCL cell lines 

irrespective of their sensitivity to treatment with BTKi showed a functional BCR with 

an increase in phosphorylated BTK (Y233) following anti-IgM stimulation and 

inhibition of this response by Ibr.  

Having established that REC-1 cells were sensitive to BTKi treatment it was important 

to assess BTK activity between the different cell lines.  Previous experiments from the 

group showed that assessment of BTK phosphorylation was difficult with western 

blotting and antibody hybridisation. We therefore assessed BTK phosphorylation by 

flow cytometry (Methods section 2.3.2) using an antibody to BTK, and the Y223 and 

Y551 phosphorylation sites of BTK (Table 3.1).   

3.5.1 Baseline assessment of BTK activity in REC-1 cells following Ibr 

treatment  

The sensitive cell line REC-1 was first analysed for total levels of BTK and BTK 

phosphorylation at Y551 and Y223 at baseline, and after 1 hour treatment with Ibr 

(10µM). REC-1 cells showed low levels of total BTK and phosphorylated BTK at Y551, 

however phosphorylation at Y223 was readily detected in unstimulated REC-1 cells and 

phosphorylation was reduced by Ibr (10µM) after 1 hour (Figure 3.7).  Upon B cell 

receptor (BCR) stimulation, Y223 is auto-phosphorylated which subsequently activates 

the enzymatic activity of BTK. With these results, we therefore used phosphorylation 

of BTK at Y223 as a surrogate marker of BTK activity. 
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Figure 3.7: Comparison of BTK phosphorylation and total BTK levels in unstimulated REC-1 

cells before and after 1 hour of Ibr treatment. REC-1 cells were treated with 10µM Ibr for 1 

hour and analysed for phosphorylated BTK and total BTK levels by flow cytometry. Bars 

represent the median fluorescence intensity ratios (PE marker/PE isotype control), units are 

arbitrary.    

 

 

3.5.2 Assessment of Ibr treatment on basal levels of Y223 BTK 

phosphorylation in all MCL cell lines   

All MCL cell lines (REC-1, G519, JEKO-1, JVM2) were subsequently analysed for levels of 

BTK phosphorylation at Y223 at baseline and after 1 hour treatment with Ibr (100nM, 

10µM). Ibr inhibited the activity of BTK in a dose dependent manner in all cell lines 

(Table 3.2, Figure 3.8) emphasising that sensitivity to BTKi treatment was through 

modulation of pathways downstream of the BCR and BTK molecule. 
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Ibr REC-1 G519 JEKO-1 JVM2 

Control 16.03268 5.309242 7.676796 16.12012 

100nM 9.558824 3.386256 4.588398 10.48649 

10µM 5.348039 2.446682 3.44337 3.45045 

 

Table 3.2: Median fluorescence intensity ratios (MFIR) for BTK phosphorylation at Y223 in 

unstimulated MCL cell lines in response to Ibr. Each MCL cell line was treated with Ibr (100nM 

and 10µM) for 1 hour. The table data represents the raw MFIR values for pBTK Y223 obtained 

for each unstimulated cell line before and after 1 hour incubation with Ibr (100nM and 10µM).  

Ratios calculated by marker / isotype control. MFIR expressed in arbitrary units. 

 

 

Figure 3.8: Reduction of pBTK Y223 following 1 hour Ibr treatment in unstimulated MCL cell 

lines. Lines represent the median fluorescence intensity ratios (expressed in arbitrary units) for 

pBTK Y223 (Table 3.2) illustrating the effect of IgM stimulation on BTK phosphorylation in each 

cell line at each time point, and the reduction of pBTK Y223 after 1 hour Ibr treatment. 
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3.5.3 Assessment of Ibr treatment on Y223 BTK phosphorylation following 

BCR activation  

Most BCR in MCL are IgM and can be stimulated via cross-linking with an anti-IgM 

antibody. MCL cell lines were stimulated with anti-IgM for a varying length of time to 

determine the optimal response to BTK phosphorylation.  In all MCL cell lines, pBTK-

Y223 rapidly developed following BCR activation and returned to near basal levels after 

60 minutes (Figure 3.9). REC-1 cells showed the greatest increase after 1 minute IgM 

stimulation. 
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Figure 3.9: Levels of pBTK Y223 in MCL cell lines following IgM stimulation. A) Graphical 

representations of pBTK Y223 median fluorescence intensity ratios (MFIR) in all MCL cell lines 

stimulated with IgM at various time intervals over 1 hour. B) Flow cytometry peak plots 

showing baseline levels of pBTK Y223 (blue) against an IgG1 isotype control (black) and the 

increase in pBTK Y223 following IgM stimulation for 1 minute (red). All cell lines responded to 

IgM stimulation at varying degrees but REC-1 showed the greatest increase after 1 minute.  

 

A) 

B) 
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Phosphorylation levels at Y223 of BTK were then determined before and after Ibr 

treatment in response to BCR stimulation for 1, 15 and 60 minutes. The addition of Ibr 

reduced phosphorylation of BTK-Y223 in all IgM stimulated cells in a dose dependent 

manner, as indicated by the reductions in MFI ratio with increasing dosage (Table 3.3, 

Figure 3.10), emphasising as in Figure 3.8 that all cells behave similarly whether they 

are sensitive or resistant to BTKi, suggesting that other signalling events further 

downstream from BTK may define sensitivity or resistance to BTKi in MCL.  

 REC-1 G519 JEKO-1 JVM2 

Unstimulated 

Control 16.03268 5.309242 7.676796 16.12012 

100nM Ibr 9.558824 3.386256 4.588398 10.48649 

10µM Ibr 5.348039 2.446682 3.44337 3.45045 

IgM: 1 minute 

Control 136.3905 9.640995 34.36602 21.86411 

100nM Ibr 130.1757 8.055687 24.65953 14.69745 

10µM Ibr  39.52451 2.470379 3.296961 4.310811 

IgM: 15 minutes 

Control  123.634 9.356635 11.3826 20.96547 

100nM Ibr 105.9273 4.753555 19.96478 14.82432 

10µM Ibr 62.98448 2.058057 7.259669 4.283784 

IgM: 60 Minutes 

Control  52.58824 5.103081 12.33564 20.7455 

100nM Ibr  41.91503 4.712085 8.13674 14.80931 

10µM Ibr  29.85621 1.906398 4.05663 5.261261 

 

Table 3.3: Median fluorescence intensity (MFI) ratios for pBTK Y223 following Ibr treatment 

in IgM stimulated MCL cell lines. The table data represents the raw MFI Ratio values for pBTK 

Y223 obtained for each IgM stimulated cell line before and after 1 hour incubation with Ibr 

(100nM and 10µM). MFI ratios were calculated by PE marker / PE isotype control. MFI ratios 

are expressed in arbitrary units. 
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Figure 3.10: Reduction of pBTK Y223 following 1 hour Ibr treatment in four MCL cell lines 

stimulated with IgM over time. Lines represent the median fluorescence intensity ratios 

(expressed in arbitrary units) for pBTK Y223 (Table 3.3) illustrating the effect of IgM stimulation 

on BTK phosphorylation in each cell line at each time point, and the reduction of pBTK Y223 

after 1 hour Ibr treatment. 
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3.6 All MCL cell lines showed downregulation of phosphorylated ERK 

(pERK) in response to Ibr, however pERK induced by BCR activation 

was only partially downregulated.  

The extracellular signal regulated kinase (ERK), is located directly downstream from 

BTK. All 4 MCL cell lines whether showing sensitivity to treatment with BTKi showed 

inhibition of baseline levels of phosphorylated ERK (pERK) with Ibr. Following BCR 

activation with anti-IgM, levels of pERK were increased but only partly reduced by 

Ibr in both REC-1 and G519 cells. 

3.6.1 Assessment of ERK activity in REC-1 cells following treatment with Ibr  

The sensitive REC-1 cells were first treated with three concentrations of Ibr (10nM, 

1µM, 10µM) for 4 hours, and levels of ERK1/2 phosphorylation were assessed in 

protein lysates through immunohybridisation (Methods section 2.4.6.1). Total levels of 

ERK 1/2 were abundant at each concentration. However, ERK1/2 phosphorylation 

(pERK) was downregulated by Ibr at all concentrations compared to the control cells 

(Figure 3.11), suggesting phosphorylation of ERK1/2  results from BTK activity in 

unstimulated REC-1 cells and that the BTK/ERK signalling pathway is involved in BTKi 

treatment response in sensitive MCL cells. 
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Figure 3.11: Immunoblot analysis of phosphorylated ERK (pERK) levels in REC-1 cells pre and 

post Ibr treatment for 4 hours. REC-1 cells were seeded at 5 x 106/mL and treated with a 

DMSO vehicle or Ibr at a range of doses (10nM, 1µM and 10µM). The cells were lysed after 4 

hours incubation with Ibr. 10% SDS gel. 25µg protein. pERK (Cell Signalling technology #9101) 1 

in 2000 dilution, ERK1/2 (Cell signalling technology #9102) 1 in 2000 dilution, GAPDH (Cell 

Signalling technology #2118) 1 in 5000 dilution in 5% BSA/TBST, o/n at 4°C.  Goat anti-rabbit-

HRP (Dako, P0448) 1 in 2000 dilution (pERK, ERK1/2) 1 in 5000 dilution (GAPDH) in 5% 

BSA/TBST, 1 hr, RT. ECL (Pierce, Life Technologies). 

 

3.6.2 Assessment of Ibr action on levels of phosphorylated ERK in all MCL cell 

lines  

To determine whether the downregulation of ERK phosphorylation was observed in all 

cell lines in response to BTKi and whether it was a transient or a continuous effect 

sustained over time, all four cell lines including REC-1 were treated with a single 

concentration of Ibr (10µM), and ERK1/2 phosphorylation was assessed at regular time 

points (as indicated) over 48 hours (Figure 3.12). Levels of total ERK1/2 in all 4 MCL cell 

lines remained fairly constant in all unstimulated cells over 48 hours.  However 

inhibition of ERK1/2 activity (measured as pERK) by Ibr, was observed in all MCL cell 

lines, both sensitive and resistant, therefore levels of pERK do not define sensitivity to 

BTKi, however it does suggest that BTKi have an effect on the MAP kinase pathway in 

these cell lines.  

For the REC-1 and G519 cells, pERK levels were normalised to ERK1/2. A paired t-test 

was used to compare pERK levels in control cells versus Ibr treated cells at 
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corresponding time points (Figure 3.13).   In REC-1 cells, pERK was reduced at as early 

as 1 hour following treatment and this reduction was statistically significant for up to 8 

hours compared to the untreated REC-1 cells at corresponding time points (p=0.0444). 

However pERK levels started to increase again after 24 to 48 hours suggesting 

reactivation of the ERK pathway through alternative, redundant pathways. Levels of 

pERK were also reduced after 1 hour in G519 cells following Ibr treatment and this 

reduction was statistically significant for the entire 48 hours (p=<0.0001).   

For JEKO-1 and JVM2 cells, pERK levels were normalised against GAPDH.  The levels of 

pERK were significantly reduced after 1 hour of Ibr treatment and the reduction was 

sustained for 48 hours in both JEKO-1 cells (p=0.0003) and JVM2 cells (p=0.0138). 
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Figure 3.12: Immunoblot analysis of p-ERK and ERK1/2 in MCL cell lines pre and post Ibr 

treatment. REC-1, G519, JEKO-1 and JVM2 cells were seeded at 5 x 106/mL, treated with a 

DMSO vehicle or Ibr (FC: 10µM). Lysates were taken at time zero (T0), and after 1, 4, 8, 24 and 

48 hours. 10% SDS gel. 15µg protein. p-ERK (Cell Signalling technology #9101) 1 in 2000 

dilution, ERK1/2 (Cell signalling technology #9102) 1 in 2000 dilution, GAPDH (Cell Signalling 

technology #2118) 1 in 5000 dilution in 5% BSA/TBST, o/n at 4°C.  Goat anti-rabbit-HRP (Dako, 

P0448) 1 in 2000 dilution (pERK, ERK 1/2) 1 in 5000 dilution (GAPDH) in 5% BSA/TBST, 1 hr, RT. 

ECL (Pierce, Life Technologies). One of two blots is shown for each cell line representing results 

of 2 independent experiments. 
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Figure 3.13: Densitometry analysis of the levels of pERK in MCL cell lines before and after 

treatment with Ibr (10µM). Levels of pERK were assessed by densitometry using Image J. P 

values were obtained by comparing the levels of pERK in untreated cells vs treated cells at 

each time point using paired t-test. Levels of pERK in REC-1 and G519 cells were normalised to 

ERK1/2. pERK was downregulated by Ibr in REC-1 cells for up to 8 hours (p= 0.0444) and for up 

to 48 hours in G519 cells (p=<0.0001). Levels of pERK in JEKO-1 and JVM2 were normalised to 

GAPDH. pERK was downregulated by Ibr for up to 48 hours in JEKO-1 cells (p=0.0003) and 

JVM2 (P= 0.0138). 
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3.6.3 Assessment of Ibr treatment on levels of phosphorylated ERK following 

BCR activation  

To determine whether pERK expression changed following activation of the BCR, cells 

of one sensitive cell line (REC-1) and one resistant (G519) were treated with Ibr (10µM) 

and stimulated with anti-IgM for 15 minutes or 4 hours. Protein lysates were prepared 

from the cells after 8 hours and 24 hours incubation with Ibr.  

Following cross-linkage of the BCR with anti-IgM after 15 minutes or sustained over 4 

hours, ERK1/2 activation, as indicated by pERK, was induced in both sensitive REC-1 

and resistant G519 cells, as already shown for BTK (pY223). Ibr had no effect on 

phosphorylated ERK levels following 8 hours of Ibr treatment.  In REC-1 cells, levels of 

pERK appeared to be reduced by Ibr after 24 hours compared to the levels in G519 

cells which were sustained (Figure 3.14), therefore upon BCR activation, pERK is only 

partially reduced by Ibr in both cell lines suggesting that ERK is additionally activated 

through alternative pathways to BTK and is not defining for sensitivity to BTKi. These 

results therefore suggest that pERK is not the best candidate for use as a biomarker to 

determine BTKi sensitivity. 
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Figure 3.14: Immunoblot analysis of pERK and ERK1/2 in REC-1 and G519 cells (+/- IgM 

stimulation) pre and post Ibr treatment. REC-1 and G519 cells were seeded at 5 x 106/mL, 

treated with a DMSO vehicle or Ibr (FC: 10µM) and stimulated with anti-IgM (3µg/mL) for 15 

minutes or 4 hours. The cells were lysed after 8 hours and 24 hours incubation with Ibr. 10% 

SDS gel. 15µg protein. p-ERK (Cell Signalling technology #9101) 1 in 2000 dilution, ERK1/2 (Cell 

signalling technology #9102) 1 in 2000 dilution, GAPDH (Cell Signalling technology #2118) 1 in 

5000 dilution in 5% BSA/TBST, o/n at 4°C.  Goat anti-rabbit-HRP (Dako, P0448) 1 in 2000 

dilution (pERK, ERK1/2) 1 in 5000 dilution (GAPDH) in 5% BSA/TBST, 1 hr, RT. ECL (Pierce, Life 

Technologies). 
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3.7 IRF4 protein expression is downregulated following treatment with 

BTKi in REC-1 cells  

IRF4 is downregulated following BTKi treatment (Ibr or Acal) only in sensitive REC-1 

cells and not in resistant cell lines.  IRF4 was downregulated early (8 hours) and at 

low concentration (nM).  The expression level of IRF4 was not increased following 

BCR activation with anti-IgM and shows a differential response between sensitive 

and resistant cells with REC-1 cells showing a persistent down-regulation of IRF4 

after 24 hours of Ibr treatment even following BCR activation with anti-IgM.  

Preliminary results from this group identified IRF4 as a protein of interest following 

BTKi treatment in patients with CLL.  This is maybe not surprising as IRF4 

overexpression is seen in various subtypes of NHL including DLBCL and MM and 

downregulation of IRF4 in response to a combination of treatment with Ibr and 

lenolidamide has been shown in the ABC subtype of DLBCL.173 However the role of 

IRF4 in response to BTKi treatment in MCL is currently unknown and was therefore 

investigated. 

3.7.1 Assessment of levels of IRF4 in MCL cell lines following treatment with 

BTKi  

All MCL cell lines were tested for baseline expression of IRF4 (by western blotting and 

immunohybridisation) and subsequent changes in expression following Ibr treatment 

(10µM). In all non-stimulated cells, IRF4 was consistently expressed in all four cell lines 

over a 48 hour time course (Figure 3.15). Treatment with Ibr had no effect on IRF4 

expression in the resistant cell lines (G519, JEKO-1 and JVM2), however IRF4 was 

significantly downregulated by Ibr in sensitive REC-1 cells (p= 0.0078), commencing at 

around 4 hours and almost abolished by 48 hours, as determined by a paired t test of 



115 
 

the densitometry data (Figure 3.16). This precedes the Ibr-induced reduction in 

proliferation observed at 24 hours and the increased apoptosis observed at 24 to 48 

hours. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Immunoblot analysis of IRF4 in MCL cell lines pre and post Ibr treatment. The red 

arrow indicates downregulation of IRF4 expression after 48 hours Ibr treatment only in REC-1 

cells. 10% SDS gel. 25.0µg protein. IRF4 (Cell Signalling technology #4964) 1 in 1000 dilution, 

GAPDH (Cell Signalling technology #2118) 1 in 5000 dilution in 5% BSA/TBST, o/n at 4°C.  Goat 

anti-rabbit-HRP (Dako, P0448) 1 in 2000 dilution (IRF4) 1 in 5000 dilution (GAPDH) in 5% 

BSA/TBST, 1 hr, RT. ECL (Pierce, Life Technologies) (GAPDH) ECL prime (IRF4). 
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Figure 3.16: Levels of IRF4 in MCL cell lines before and after treatment with Ibr. Levels of IRF4 

were assessed by densitometry using Image J and normalised to GAPDH. A paired t test was 

used to determine the significance of IRF4 downregulation in cells treated with Ibr (10µM) 

compared to the untreated cells. Error bars represent standard error of the mean of 2 

independent experiments for each cell line. 
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To identify the particular dose of BTKi required to downregulate IRF4, and determine 

whether this dose would be therapeutically achievable in vivo, REC-1 cells were 

cultured as described above and treated with Ibr or Acal at a range of concentrations 

(10nM, 100nM, 1µM 10µM).  Protein lysates were prepared from cells after 48 hours 

in culture.  

IRF4 was shown to be downregulated by Ibr at a dose of 10nM while the dose required 

for Acal was 10 fold higher at 100nM (Figure 3.17). However, both doses were below 

the reported maximum achievable in vivo dosage for each drug (400nM for Ibr,116,145 

and 2µM for Acal (personal communication from Acerta Pharma). 

 

 

 

 

 

 

Figure 3.17: Immunoblot analysis of IRF4 in REC-1 cells pre, and 48 hours post BTKi treatment 

with Ibr and Acal. 10% SDS gel. 30.0µg protein. IRF4 (Cell Signalling technology #4964) 1 in 

2000 dilution, GAPDH (Cell Signalling technology #2118) 1 in 5000 dilution in 5% BSA/TBST, o/n 

at 4°C. Goat anti-rabbit-HRP (Dako, P0448) 1 in 2000 dilution (IRF4) 1 in 5000 (GAPDH) in 5% 

BSA/TBST, 1 hr, RT. ECL (Pierce, Life Technologies). 

 

 

 

 

 

 

 



118 
 

3.7.2 Assessment of IRF4 expression in response to BCR activation and 

treatment with Ibr 

To determine the expression of IRF4 following BCR activation with anti-IgM and BTKi 

treatment, both REC-1 cells and G519 cells were stimulated with anti-IgM for 15 

minutes or 4 hours. Proteins were extracted after 8 hours and 24 hours incubation 

with Ibr (10µM).  

Short-term or sustained BCR stimulation did not alter baseline levels of IRF4 in either 

REC-1 or G519 cells. However, IRF4 was clearly down-regulated in REC-1 cells following 

24 hours of Ibr treatment, even in the presence of BCR activation (Figure 3.18).This 

change possibly occurred as early as 8 hours after Ibr treatment. Importantly in 

resistant G519 cells there was no downregulation of IRF4 seen in response to Ibr. 

 

 

 

 

 

 

 

 

 

Figure 3.18: Immunoblot analysis of IRF4 in REC-1 and G519 cells treated with Ibr following 

acute and chronic BCR activation. 10% SDS gel. 20.0µg protein. IRF4 (Cell Signalling technology 

#4964) 1 in 2000 dilution, GAPDH (Cell Signalling technology #2118) 1 in 5000 dilution in 5% 

BSA/TBST, o/n at 4°C.  Goat anti-rabbit-HRP (Dako, P0448) 1 in 2000 dilution (IRF4), 1 in 5000 

dilution (GAPDH) in 5% BSA/TBST, 1 hr, RT. ECL (GAPDH), ECL prime (IRF4) (Pierce, Life 

Technologies).   
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3.8 IRF4 downregulation is not seen in cells which have acquired 

resistance to BTKi. These cells show stable levels of phosphorylated 

BTK following treatment with BTKi. 

An in vitro model of acquired Ibr or Acal resistance was created using the REC-1 cell 

line. In contrast to the parent REC-1 cells, the resistant REC-1 cells demonstrated 

resistance to the actions of BTKi on survival and proliferation, with a possible 

increased baseline proliferation. Phosphorylated BTK (Y223) was not downregulated 

following BTKi treatment and levels of IRF4 were maintained. 

3.8.1 Determination of BTKi resistance in REC-1 cells. 

REC-1 cells were passaged in the presence of Ibr until stable resistance to Ibr was 

established, and then continuously treated at concentrations exceeding that of the 

maximum in vivo dose (>400nM). At a later stage in the study, REC-1 cells were also 

sensitised to Acal in the same way to generate a cell line model of Acal resistance (For 

full details on developing the resistant cell lines see Methods section 2.2.10).  

The resistance status of the cells was determined by assessing the proliferation 

response to Ibr compared to the sensitive REC-1 cells. The REC-1 cells sensitised to 

1µM of Ibr (REC-1/R (Ibr 1µM)) and to 3µM of Ibr (REC-1/R (Ibr 3µM)) were re- treated 

with 1µM and 3µM Ibr (respectively) along with the parent REC-1 control cells (REC-

1/P) at the same dosage. A total volume of 1 x 106 cells was harvested from each 

sample at regular time points over 72 hours for analysis of proliferation by flow 

cytometry (Methods section 2.3.2). 

Compared to the treated parental REC-1 cells, Ibr did not reduce proliferation of the 

Ibr sensitised REC-1 cells (at either dose). In fact, the sensitised cells were more 

proliferative than the parent untreated REC-1 control cells. A paired student t test 
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revealed that proliferation was significantly reduced in the ‘parent’ REC-1 cells treated 

with 1µM and 3µM doses of Ibr compared to the sensitised REC-1 cells treated with 

the corresponding doses at all time points (p= 0.0094) (Figure 3.19). 

 

 

Figure 3.19: Proliferation response to Ibr in parent vs Ibr resistant REC-1 cell lines.  Resistant 

REC-1 cells (one sensitised to 1µM and the other to 3µM Ibr) were washed in media to remove 

the drug after 72 hours of previous culture with Ibr. A volume of 12mL containing 3 x 105/mL 

cells at each concentration were added to clean culture flasks. An equal volume and density of 

parent REC-1 cells was added to 3 separate flasks. One flask of parent REC-1 cells was treated 

with DMSO (vehicle control) and cells in each other flask were treated with either 1µM or 3µM 

of Ibr. Approximately 1 x 106 cells from each flask were taken at the indicated time points over 

72 hours, then fixed in PFA and permeablised in triton X-100, and stained with a Ki67-FITC 

antibody for analysis by flow cytometry. Cell proliferation was determined by analysing the 

percentage of Ki67-FITC positive cells against an isotype control using an IgG1-FITC antibody. 
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3.8.2 Assessment of IRF4 expression in BTKi resistant REC-1 cells  

After resistance to both Ibr and Acal had been established in REC-1 cells (by showing 

no BTKi induced reduction of proliferation), an experiment was devised to identify 

changes in IRF4 expression compared to sensitive parent REC-1 cells in response to 

both BTK inhibitors to  determine whether differences in IRF4 expression could be seen 

in cells of acquired BTKi resistance. 

The REC-1 cells sensitised to 1µM of Ibr (REC-1/R (Ibr 1µM), 3µM of Ibr (REC-1/R (Ibr 

3µM) and 1µM of Acal (REC-1/R (Acal 1µM) were re- treated with corresponding doses 

of Ibr or Acal along with the parent REC-1 control cells (REC-1/P) at the same dosage. 

Cells were removed from each sample after 72 hours incubation for analysis of 

apoptosis, proliferation and BTK Y223 phosphorylation by flow cytometry, and protein 

lysates were prepared for analysis of IRF4 expression by western blotting and 

immunohybridisation.  

The parent REC-1 cells treated with Ibr (1µM and 3µM) showed downregulated IRF4 

compared to the parent REC-1 control cells (as shown previously), while the acquired 

resistant REC-1 cells continuously treated with 1µM Ibr showed no downregulation of 

IRF4 in response to Ibr (Figure 3.20). These results match the findings for IRF4 

expression in innate resistant cells (G519, JVM2 and JEKO-1 cells) in response to Ibr, 

providing more evidence that IRF4 could be a potential biomarker of BTKi sensitivity in 

MCL. 

In the Ibr resistant REC-1 cells continuously treated with 3µM Ibr, IRF4 protein was not 

as expressed as the parent REC-1 control cells but was clearly more expressed than the 

parent REC-1 cells treated at this dose, indicating that a dose of 3µM was still having 

some effect on IRF4 downregulation.  A likely explanation for this however looking at 
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the apoptosis/ proliferation responses is that the cells are yet to become totally 

resistant to 3µM at the time of this experiment. In the Acal resistant REC-1 cells 

continuously treated with 1µM Acal, again IRF4 protein was not as expressed as in the 

parent REC-1 control cells but was clearly more expressed compared to the parent 

REC-1 cells treated at the same dose of Acal. Again however at the time of the 

experiment the Acal resistant cell line was still in the process of being sensitised to 

1µM suggesting that resistance at this dosage may not have been fully established. 

The table below (Table 3.4) compares the survival and proliferation between parental 

cells treated with BTKi and corresponding acquired resistant cells.  Overall survival and 

proliferation is maintained in acquired resistant cells compared to parental treated 

cells and is statistically significant (Figure 3.21) compared to parental treated cells.  As 

highlighted above, survival and proliferation in the acquired Ibr resistance cells at 3µM 

was slightly reduced, suggesting these cells were not entirely resistant to Ibr at this 

dose.   
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Figure 3.20: Immunoblot analysis of IRF4 expression in parent vs resistant REC-1 cells treated 

with BTKi. Parent (P) and resistant (R) REC-1 cells were treated with corresponding doses of Ibr 

or Acal (as indicated). Cells were lysed after 72 hours incubation and analysed for IRF4 

expression by western blotting. 10% SDS gel. 20.0µg protein. IRF4 (Cell Signalling technology 

#4964) 1 in 2000 dilution, GAPDH (Cell Signalling technology #2118) 1 in 5000 dilution in 5% 

BSA/TBST, o/n at 4°C.  Goat anti-rabbit-HRP (Dako, P0448) 1 in 2000 dilution (IRF4), 1 in 5000 

dilution (GAPDH) in 5% BSA/TBST, 1 hr, RT. ECL (GAPDH), ECL prime (IRF4) (Pierce, Life 

Technologies).   
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 Apoptosis (%) Proliferation (%) 

P control 12.34 89.28 

P + Ibr 1µM 19.22 37.84 

P + Ibr 3µM 28.44 44.58 

P+ Acal 1µM 16.68 47.56 

R (Ibr 1µM) + Ibr 1µM 6.78 83.53 

R (Ibr 3µM) + Ibr 3µM 16.21 79.82 

R (Acal 1µM) + Acal 1µM 8.84 85.15 

 

Table 3.4: Percentage of apoptosis and proliferation in parent vs resistant REC-1 cells treated 

with BTKi, corresponding to IRF4 expression (Figure 3.20). Parent (P) and resistant (R) REC-1 

cells were treated with corresponding doses of Ibr or Acal (as indicated). Cells were removed 

after 72 hours incubation and analysed for apoptosis (Annexin V-FITC) and proliferation (Ki67-

FITC) by flow cytometry. 

 

 

 

 

 

 

 

 

 

Figure 3.21: Paired t test comparing the percentage of apoptosis and the percentage of 

proliferation in parent vs resistant REC-1 cells treated with BTKi. 
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3.8.3 Assessment of BTK activity in REC-1 cells with acquired BTKi resistance  

As previously shown, Ibr reduces basal levels of BTK phosphorylation (pBTK-Y223) in all 

MCL cell lines including REC-1 (Table 3.2). However, in the acquired resistant Ibr and 

Acal REC-1 cells, no reduction in pBTK Y223 is seen, as demonstrated by the increased 

median fluorescence intensity ratios for pBTK Y223 compared with the parent REC-1 

control cells (Figure 3.22).  It is possible that the resistant cell lines have developed a 

BTK mutation causing ineffective binding of BTKi to the BTK catalytic site and therefore 

BTK phosphorylation is no longer reduced in response to BTKi. 

 

 

 

 

 

 

 

 

 

Figure 3.22: Median fluorescence intensity ratios (MFIR) for pBTK Y223 following BTKi 

treatment in parent REC-1 control cells vs resistant REC-1 cells. Parent (P) REC-1 control cells 

treated with DMSO and Resistant (R) REC-1 cells treated with corresponding doses of Ibr 

(1µM/3µM) or Acal (1µM) were removed after 72 hours incubation, and stimulated for 1 

minute with anti-IgM. Cells were fixed and permeablised, stained with anti-human pBTK Y223-

PE and analysed by flow cytometry. MFIR= pBTK Y223-PE/ IgG1-PE isotype control. Units are 

arbitrary. 
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3.9 Discussion 

Of the four MCL cell lines tested, the REC-1 cell line proved to be an excellent model to 

assess responses to the microenvironment, BCR stimulation and BTKi sensitivity. This 

was shown by the induction of apoptosis in response to Ibr and reduced proliferation 

in response to Ibr and Acal. The effects on proliferation and apoptosis in REC-1 cells 

were also achieved at Ibr doses between 1nM and 10nM, which is below the reported 

maximal achievable dose in vivo (400nM).116,145 The large proportion of REC-1 cells 

which remained viable after 72 hours Ibr treatment indicated that cell death is not the 

main mechanism of action in these cells.  

In addition to this cell line model of Ibr sensitivity, this study has also identified models 

of Ibr resistance. The G519 cell line was the most consistently resistant cell type 

showing no changes in proliferation or apoptosis from baseline over 72 hours even at 

the highest dose of drug. The JVM2 cells showed a considerable reduction of 

proliferation at 10µM together with increased cell death. The JEKO-1 cells showed no 

reduction in proliferation, but like JVM2, had a cell death response at the highest dose 

(10µM). It can be suggested that since these high concentrations greatly exceed the 

activity range of Ibr for BTK, the effect on cell death in particular, may represent off-

target activity in these cells, through non-specific binding to other kinases, particularly 

within the TEC family. Additionally, in REC-1 cells, despite Acal being more selective for 

BTK, the drug did not induce the same level of apoptosis compared with Ibr, and there 

was an absence of off-target effects in response to high doses of Acal providing further 

evidence that the apoptotic effect of Ibr is more likely a result of multiple kinase 

inhibition rather than a direct mechanism of BTKi action. The lack of apoptosis in 

response to Acal suggests that BTK inhibition may not directly induce cell death and 
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thus represents a secondary effect of BTKi. The identical reduction of REC-1 cell 

proliferation in response to both Ibr and Acal suggests that BTKi directly targets 

proliferation and therefore the Ki67 assay is a better measure to determine sensitivity. 

Excluding the results at the highest dose (10µM), the JVM2 and the JEKO-1 cells were 

characterised as Ibr resistant. This is contrary to other studies which have 

characterised JVM2 cells as sensitive to Ibr,190 although that study used a 5µM 

concentration which again, may cause off-target effects and is not therapeutically 

achievable in vivo. Like JVM2, the JEKO-1 cell line has been shown to be sensitive to 

Ibr114,145 and this was achieved at therapeutic doses. Since the JEKO-1 cells used for this 

study were frozen down at low passage (Passage 4), development of mutations 

through continued culturing is unlikely. We have noted that the JEKO-1 cells shown by 

others to be  sensitive to Ibr,114,145 were purchased from the American type culture 

collection whereas in this study the JEKO-1 cells were purchased from the German 

collection (DSMZ), indicating possible variation between the two JEKO-1 lines.  

In all cell lines there was evidence of basal BTK activation, represented by Y223 

phosphorylation that was universally inhibited by Ibr. This BTK activity was shown to 

induce ERK1/2 activation (pERK) which was reduced following Ibr treatment in all MCL 

cell lines, suggesting that ERK1/2 activation is dependent on BTK signalling. Activation 

of the BCR increased Y223-BTK and ERK1/2 phosphorylation in both sensitive and 

resistant cells, but although levels of pY223-BTK were reduced upon Ibr treatment, the 

levels of pERK were only partially reduced. This is consistent with other studies 190 and 

suggests that this subsequent activation of ERK1/2 depends only partly on BTK signals 

and suggests an additional route for ERK1/2 activation following BCR stimulation, 

possibly through activation of MAPK and PI3K pathways. 
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Expression of IRF4 (present in all cell lines), was completely inhibited following Ibr 

treatment in the REC-1 cells, but not in the resistant cell lines. This change in IRF4 

expression was shown to be an early and specific indicator of biological (proliferation 

and apoptosis) responses to Ibr. This IRF4 down-regulation occurred even in the 

presence of BCR stimulation in Ibr-sensitive cells (REC-1). Results from these 

experiments suggest that IRF4 has potential use as a biomarker in monitoring BTKi 

treatment in MCL by identifying patients who may or may not respond to BTKi and also 

those who are acquiring resistance to these agents. 

To understand the resistance to BTKi agents observed clinically, an in vitro model of 

acquired Ibr resistance was created in the REC-1 cell line. Long-term Ibr treatment 

(1μM) led to the establishment of a REC-1 cell line with acquired resistance (REC-1/R 

(Ibr 1µM)), while the passage-matched parent REC-1 cells used as the vehicle control 

line (REC-1/P) remained sensitive to Ibr as assessed by cell proliferation. 

In the presence of both Ibr and Acal, BTK activation was maintained in the REC-1 

resistant cell lines, which correlates with the continued proliferation of the cells.  

Although sequencing for BTK mutations was not carried out in this study, it is possible 

that the resistant cell lines had developed a BTK mutation causing ineffective binding 

of each inhibitor to the BTK C481 residue and therefore BTK phosphorylation is no 

longer reduced in response to Ibr. This would explain the expression of IRF4 in the REC-

1/R (Ibr 1µM) cells which was not downregulated with Ibr and matches IRF4 expression 

seen in the untreated parent REC-1 cells.  

This is different from the innate resistant cells (G519, JEKO-1 and JVM2), here, IRF4 is 

not downregulated by BTKi, although the BTK pY223 response was reduced. This 

suggests the drug was still able to bind to BTK preventing phosphorylation at Y223, 
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suggesting other downstream mechanisms are involved in primary resistance (tissue 

microenvironment).  

These results demonstrate that IRF4 is downregulated in sensitive MCL cell lines but 

not downregulated in the same cells with acquired BTKi resistance or in innate 

resistant cell lines. These findings suggest that IRF4 is a potential biomarker of 

treatment response to BTKi. To validate these findings, IRF4 protein levels were 

assessed in ex vivo primary MCL cells taken from MCL patients currently on clinical 

treatment with BTK inhibitors (discussed in CHAPTER 4) and in models representing the 

tissue microenvironment. 
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4 Chapter 4- Assessing the response of MCL cells to BTK 

inhibitors within the microenvironment  
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4.1 Introduction 

Within the bone marrow and lymph nodes, mature B-lymphocytes receive essential 

signals for growth and survival by interacting with specific accessory cells. There is 

evidence that these signals are essential for the survival of MCL cells in vitro.53,65,117,191 

BTKi are thought to have a role in disrupting the interactions which retain the cells in 

their protective tissue niches; however, processes such as the engagement of CD40L or 

BCR within the tissues may induce the activation of cellular processes including NFkB, 

MAPK and PI3K pathways which may be involved in forming resistance pathways, and 

may allow the malignant cells to bypass the effects of BTK inhibition. It was 

hypothesised that development of an in vitro system which reproduces the in vivo 

tissue microenvironment could be used to explore BTKi resistance pathways in MCL. 

This chapter describes the assessment of cell lines and primary MCL cells when co-

cultured on a stromal monolayer of murine fibroblasts, focussing on changes to BTKi 

induced apoptosis, proliferation, and protein expression of pERK1/2 and IRF4 in 

response to Ibr and Acal. The aim was to determine whether factors from the tissue 

microenvironment protect MCL cells from the effects of BTK inhibition in vitro. 

Subsequently, paired clinical samples taken before commencement and during BTKi 

therapy were assessed to confirm the relevance of the cell line findings concerning 

expression levels of IRF4, and to determine whether IRF4 could be used to predict 

response to BTKi treatment. 
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4.2 Methods employed  

The methods employed in this section involve the culture of sensitive and resistant 

REC-1 cells (Methods section 2.2.4 and 2.2.10), the isolation of ex vivo primary MCL 

cells (Methods section 2.2.2), and their co-culture onto two separate monolayers of 

murine fibroblast cell lines, one expressing CD40L (T-CD40L), and the other not 

expressing CD40L (NT-CD40L) (Methods section 2.2.6).   

The fibroblast cells were characterised for expression of CD40L (CD154) by 

immunofluorescence and flow cytometry (Methods section 2.2.5). Cells were assessed 

by flow cytometry for apoptosis (annexin V-FITC), and / or proliferation (Ki67-FITC) 

with and without fibroblast support and in response to varying concentrations of Ibr or 

Acal (Methods section 2.2.9 and 2.3). Primary MCL cells were distinguished by their 

forward and side-scatter characteristics and by their co-expression of CD5 and CD19. 

Assessment of signalling proteins following BTKi treatment (in vitro and clinical) were 

determined  through biochemical assays (Methods section 2.4) of 1D-SDS PAGE 

(Methods section 2.4.3), western blotting (Methods section 2.4.6) and 

immunohybridisation (Methods section 2.4.6.1) on cell lysates  or by flow cytometry 

following IgM stimulation (Methods section 2.3.2 and 2.2.8).  

A table of antibodies/probes used in this chapter is shown below (Table 4.1).  

All data (flow cytometry and western blotting) were analysed using Microsoft Excel™ 

and GraphPad Prism™ Version 5 software. The statistical tests employed are described 

in the figure legend of each experiment. 
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Antibody/probe Species  Application Ref Source Conc 

Annexin-V-FITC  FC 556419 BD 5µl/test 

Ki67 (IgG1k) -FITC Mouse anti human FC 556026 BD 10µl/test 

BTK pY223 (IgG1k) -PE Mouse anti human FC 562753 BD 5µl/test 

CD19 (IgG1k) -FITC Mouse anti human FC 555412 BD 10µl/test 

CD19 (IgG1k) -APC Mouse anti human FC 555415 BD 10µl/test 

CD5 (IgG1k) -PE Mouse anti human FC 555353 BD 10µl/test 

CD5 (IgG1k) -APC Mouse anti human FC 555355 BD 10µl/test 

CD154 (IgG1k) -PE Mouse anti human FC 555697 BD 20µl/test 

IgG1k isotype-FITC  Mouse anti human FC 556026 BD 10µl/test 

IgG1k isotype-PE Mouse anti human FC 559320 BD 10µl/test 

IgG1k isotype-APC Mouse anti human FC 555751 BD 10µl/test 

IRF4 primary antibody Rabbit anti human WB #4964 CST 1/1000 

pERK1/2 primary antibody Rabbit anti human WB #9101 CST 1/2000 

ERK1/2  primary antibody Rabbit anti human WB #9102 CST 1/2000 

GAPDH  primary antibody Rabbit anti human WB #2118 CST 1/5000 

Secondary antibody-HRP Goat anti rabbit WB #P0448 Dako 1/2000 

 

Table 4.1: Antibodies and stains used in Chapter 4. For flow cytometry the list includes 

antibodies with corresponding isotype controls used for assessment of apoptosis, proliferation 

and BTK phosphorylation and for labelling primary MCL cells. For western blotting the list 

includes antibodies used for immunohybridisation in cell lines and primary MCL cells. FITC - 

fluorescein isothiocyanate; PE - phycoerythrin; APC –allophycocyanin. FC- Flow cytometry, WB- 

western blotting, BD- BD Biosciences, CST- Cell signalling technology. 
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4.3 REC-1 cells show a dependence on CD40L following treatment with 

BTKi. This dependence is lost when cells acquire resistance to BTKi. 

REC-1 cells cultured in vitro demonstrated protected survival and proliferation from 

CD40L-stromal support following treatment with BTKi. In addition, stimulation with 

CD40L altered signalling, preventing down-regulation of pERK and IRF4 in response 

to BTKi treatment. These responses were also seen in the resistant REC-1 cells but 

were independent of stromal support. 

4.3.1 Assessment of apoptosis and proliferation within a CD40L co-culture 

system in response to BTKi. 

REC-1 cells were seeded into wells in culture media alone or in co-culture with 

fibroblast cells, either NT-CD40L or T-CD40L. Cells were treated with Ibr at a range of 

doses (as indicated) and assessed for rates of apoptosis and proliferation after 48 

hours as previously described.  

REC-1 cells co-cultured with the NT-CD40L cells demonstrated the same Ibr-induced 

proliferation effect and cell death response as the REC-1 cells cultured alone 

suggesting that stromal cell support in the absence of CD40L does not affect the 

response to BTK inhibition. In contrast (and rather surprisingly a for a cell line), stromal 

cell support with the T-CD40L cells prevented the reduction in proliferation and 

attenuated cell death (Figure 4.1), indicating that REC-1 cells were protected from the 

effects of BTK inhibition by stroma induced CD40-CD40L interactions. This was also 

shown in response to a dose range of Ibr treatment (10nM-10µM) (Figure 4.2).  
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Non-linear regression analysis (Figure 4.2) indicated that the rate of death for REC-1 

cells following Ibr treatment was approximately 3-fold greater across the dose range 

when cells were cultured in media alone compared with those cultured with CD40L. 

 

 

 

 

 

 

 

 

 

Figure 4.1: Survival and proliferation of REC-1 cells treated with Ibr in response to stromal 

cell stimulation (+/- CD40L). Murine fibroblast cells (NT-CD40L and T-CD40L) were seeded at 5 

x 105/mL, irradiated and incubated o/n. REC-1 cells were seeded at 5 x 106/mL on to the 

fibroblast monolayers, and treated with Ibr (FC: 100nM and 10µM). Approximately 1 x 106 cells 

were removed at 48 hours and analysed using flow cytometry. For the apoptosis assay, cells 

were stained with annexin V-FITC. For the proliferation assay, cells were fixed, permeablised 

and stained with Ki67-FITC and IgG1-FITC. A) Assessment of apoptosis (%) before and after Ibr 

treatment, B) Assessment of proliferation (%) before and after Ibr treatment. 
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Figure 4.2: Survival of REC-1 cells treated with Ibr in the presence of stromal cell stimulation 

(T-CD40L). Murine fibroblast cells (T-CD40L) were seeded at 5 x 105/mL, and incubated o/n. 

REC-1 cells were seeded at 5 x 106/mL on to the fibroblast monolayer, then treated with Ibr 

(FC: 10nM, 100nM, 1µM and 10µM). Cells were taken after 48 hours, stained with annexin V-

FITC and analysed by flow cytometry (N=1). Left: Ibr induced apoptosis (%) at each 

concentration; Right: Graph of the correlation between apoptosis and Ibr concentration 

analysed by non-linear regression. The curves of best fit: T-CD40L R2=0.9845, media alone R2= 

0.9780. The equation of the curves of best fit: T-CD40L y= 1.24x, Media alone y= 3.2x 

representing an approximate increase in death of 3-fold in the absence of CD40L. 
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4.3.2 Assessment of ERK1/2 phosphorylation and IRF4 expression in response 

to BTKi within a co-culture system.  

To determine the effects of BTKi treatment on ERK1/2 phosphorylation in the presence 

or absence of CD40L stimulation, REC-1 cells were seeded onto a fibroblast monolayer 

expressing CD40L (T-CD40L) and compared with REC-1 cells cultured in media alone. 

REC-1 cells under both conditions were treated with Ibr at a range of doses (10nM, 

100nM, 1µM, 10µM) and incubated for up to 48 hours. Protein was extracted after 24 

hours and 48 hours treatment (Methods section 2.4.1). 

The presence of CD40L did not significantly effect baseline expression of pERK. 

However, CD40L did oppose the down-regulation of pERK induced by Ibr treatment in 

cells cultured in media alone (Figure 4.3). 

 

 

 

 

 

 

Figure 4.3: Immunoblot analysis of pERK and ERK1/2 in REC-1 cells (cultured in media alone 

and with T-CD40L fibroblasts) pre, and 24 hours post Ibr treatment. Fibroblast cells (T-CD40L) 

were seeded at 5 x 105/mL and incubated o/n. REC-1 cells were seeded at 2 x 106 /mL, on to 

the fibroblast monolayer and treated with a DMSO vehicle, followed by increasing 

concentrations of Ibr (10nM, 100nM, 1µM, 10µM). Protein was extracted after 24 hours 

incubation. 10% SDS gel. 20.0µg protein. pERK (Cell Signalling technology #9101) 1 in 2000 

dilution, ERK1/2 (Cell signalling technology #9102) 1 in 2000 dilution, GAPDH (Cell Signalling 

technology #2118) 1 in 5000 dilution in 5% BSA/TBST, o/n at 4°C.  Goat anti-rabbit-HRP (Dako, 

P0448) 1 in 2000 dilution (pERK, ERK1/2), 1 in 5000 dilution (GAPDH), in 5% BSA/TBST, 1 hr, RT. 

ECL (Pierce). 
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The assessment of IRF4 expression of REC-1 cells showed that in the presence of 

stromal cells that expressed CD40L the baseline expression of IRF4 was increased; and 

(compared to cells cultured in media alone) these conditions opposed the IRF4 

downregulation seen with Ibr over a range of doses at 24 hours and 48 hours (Figure 

4.4). These data suggest that signalling following BTKi treatment is modulated in cells 

cultured on a CD40L-stromal layer preventing down regulation of IRF4 expression. 

 

 

 

 

 

 

 

 

Figure 4.4: Immunoblot analysis of IRF4 in REC-1 cells (cultured in media alone and with T-

CD40L fibroblasts) pre, and 24-48 hours post Ibr treatment. Murine fibroblast cells (T-CD40L) 

were seeded at 5 x 105/mL and incubated o/n. REC-1 cells were seeded at 2 x 106 /mL, on to 

the fibroblast monolayer and treated with a DMSO vehicle, followed by increasing 

concentrations of Ibr (10nM, 100nM, 1µM, 10µM). Protein was extracted after 24 and 48 

hours incubation.  Upper panel IRF4 expression after 24 hours; Lower panel IRF4 expression 

after 48 hours. 10% SDS gel. 20.0µg protein. IRF4 (Cell Signalling technology #4964) 1 in 2000 

dilution, GAPDH (Cell Signalling technology #2118) 1 in 5000 dilution in 5% BSA/TBST, o/n at 

4°C.  Goat anti-rabbit-HRP (Dako, P0448) 1 in 2000 dilution (IRF4), 1 in 5000 dilution (GAPDH) 

in 5% BSA/TBST, 1 hr, RT. ECL (GAPDH), ECL prime (IRF4) (Pierce, Life Technologies). 
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To confirm CD40L was responsible for these IRF4 results as opposed to stromal cell 

interactions alone, REC-1 cells were seeded onto both fibroblast monolayers, T-CD40L 

and NT-CD40L. In addition, the response to both Ibr and the more specific BTKi Acal 

was assessed. Protein was extracted after 48 hours as described previously and 

assessed for IRF4 expression. 

As shown in Figure 4.5, IRF4 was downregulated by both Ibr and Acal when cultured 

with the NT-CD40L stromal cells correlating  with the reduced survival and 

proliferation data of  REC-1 cells cultured  in the absence of CD40L (Figure 4.1). 

However in REC-1 cells cultured with T-CD40L stromal cells, as demonstrated above, 

IRF4 expression was upregulated in the control cells with no/ or limited  

downregulation of IRF4 seen with Ibr and Acal treatment respectively and correlates 

with the previously shown data of enhanced survival and proliferation in the presence 

of CD40L (Figure 4.1).   
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Figure 4.5: IRF4 expression in REC-1 cells co-cultured with stromal cells NT-CD40L and T-

CD40L following 48 hours treatment with BTKi. REC-1 cells were seeded at 5 x 106/mL in 

culture media alone and onto two fibroblast monolayers NT-CD40L and T-CD40L. Cells were 

treated with a DMSO vehicle control, Ibr (100nM) and Acal (1µM). Protein was extracted after 

48 hours incubation. A) Immunoblot analysis of IRF4 expression B) Densitometry analysis of 

IRF4 levels relative to GAPDH (units are arbitrary). 10% SDS gel. 25.0µg protein, IRF4 (Cell 

Signalling technology #4964) 1 in 2000 dilution, GAPDH (Cell Signalling technology #2118) 1 in 

5000 dilution in 5% BSA/TBST, o/n at 4°C.  Goat anti-rabbit-HRP (Dako, P0448) 1 in 2000 

dilution (IRF4), 1 in 5000 dilution (GAPDH) in 5% BSA/TBST, 1 hr, RT. ECL (GAPDH), ECL prime 

(IRF4) (Pierce, Life Technologies). 
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4.3.3 Functional and biochemical response of acquired BTKi resistant REC-1 

cells when cultured on a CD40L co-culture system. 

As determined in chapter 3, acquired BTKi resistant REC-1 cells show no reduction in 

survival, proliferation or levels of IRF4 expression in the presence of BTK inhibitors. To 

determine whether stromal interaction would modulate this response, the acquired 

BTKi resistant REC-1 cells were co-cultured on NT-CD40L and T-CD40L fibroblast 

monolayers and treated with Ibr at a range of doses (as indicated) and assessed for 

changes in apoptosis, proliferation and IRF4 expression. 

The below results show that survival and proliferation were not affected when the 

acquired BTKi resistant REC-1 cells were cultured on either of the NT-CD40L or T-CD40L 

fibroblast monolayers (Figure 4.6) and IRF4 expression was not downregulated (Figure 

4.7). 

 

 

 

 

 

 

 

Figure 4.6: Survival and proliferation of acquired Ibr resistant REC-1 cells co-cultured with 

NT-CD40L and T-CD40L stromal cells following treatment with Ibr. Resistant REC-1 cells were 

seeded at 5 x 106/mL onto two fibroblast monolayers; NT-CD40L and T-CD40L and treated with 

Ibr (FC: 100nM and 1µM). Cells were harvested from the monolayers after 48 hours incubation 

for analysis of survival and proliferation by flow cytometry. A) Assessment of apoptosis (%), B) 

Assessment of proliferation (%). 
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Figure 4.7: Immunoblot analysis of IRF4 expression in acquired resistant REC-1 cells co-

cultured with NT-CD40L and T-CD40L stromal cells following treatment with Ibr. Resistant 

REC-1 cells were seeded at 5 x 106/mL onto two fibroblast monolayers; NT-CD40L and T-CD40L 

and treated with a DMSO vehicle control or Ibr (100nM or 1µM). Protein was extracted after 

48 hours incubation for analysis of IRF4 expression. 10% SDS gel. 25.0µg protein, IRF4 (Cell 

Signalling technology #4964) 1 in 2000 dilution, GAPDH (Cell Signalling technology #2118) 1 in 

5000 dilution in 5% BSA/TBST, o/n at 4°C.  Goat anti-rabbit-HRP (Dako, P0448) 1 in 2000 

dilution (IRF4), 1 in 5000 dilution (GAPDH) in 5% BSA/TBST, 1 hr, RT. ECL (GAPDH), ECL prime 

(IRF4) (Pierce, Life Technologies). 
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4.4 Primary MCL cells cultured ex vivo demonstrate a functioning BCR 

and when co-cultured with CD40L, and behave similarly to REC-1 

cells following BTKi treatment. 

Primary MCL cells cultured ex vivo demonstrate a functional BCR with inhibition of 

phosphorylated BTK (Y223) following BTKi treatment. Primary MCL cells are 

heterogeneous, but generally behave similarly to REC-1 cells when co-cultured with 

stromal support and in response to BTKi. Co culture with CD40L induced survival, 

prevented BTKi-induced IRF4 downregulation and protected the primary cells from 

BTKi-induced death. 

4.4.1 Assessment of BCR signalling in response to BTKi treatment 

In all MCL cell lines (REC-1, G519, JEKO-1 and JVM2), Y223 BTK phosphorylation was 

reduced 1 hour following Ibr treatment. To determine whether the data was 

comparable in primary MCL cells, pre-treatment primary cells taken from four 

individual MCL patients were treated in vitro with Ibr or Acal (100nM), and incubated 

for 1 hour (MCL01, MCL02, MCL04) or 90 minutes (MCL03). Levels of BTK 

phosphorylation were assessed in both unstimulated and in anti-IgM stimulated cells 

(Methods section 2.3.2 and 2.2.8). 

As was seen in the MCL cell lines, phosphorylation of BTK-Y223 in primary cells was 

much greater following anti-IgM stimulation for 1 minute than at baseline (Figure 4.8). 

In BCR activated primary cells, phosphorylation of BTK-Y223 was significantly reduced 

by 100nM concentrations of Ibr (p=0.0047) after 1 hour, but not significantly by Acal 

(p=0.06) at this time point (Figure 4.9). Further reductions may have been seen after a 

longer incubation with BTKi but this could not be achieved in primary MCL cells 

unsupported in culture due to the rapid rates of apoptosis. 
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Figure 4.8: Increase in BTK-Y223 phosphorylation in patient samples after anti-IgM 

stimulation for 1 minute. Median Fluorescence Intensity ratios of BTK-Y223 phosphorylation in 

unstimulated cells vs anti-IgM stimulated primary cells (Units are arbitrary). 
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Figure 4.9: Reduction of pBTK-Y223 in patient samples after in vitro Ibr and Acal treatment 

(100nM) for 1 hour. The tables show the Median Fluorescence Intensity ratios of BTK-Y223 

phosphorylation in 4 primary MCL cell cases. Cells were stimulated with anti-IgM and treated 

in vitro with Ibr (upper panel) and Acal (lower panel) (100nM). * MCL03 cells were treated for 

1.5 hours. Data were analysed using a student’s paired t-test. 

 

 

 

 

 

 

 

Case  Untreated  Ibr 
(100nM) 

MCL01 6.585928 5.15917 
MCL02 15.18704 12.54907 
MCL03 11.47 8.86 
MCL04 9.3681592 6.6355721 

Case  Untreated  Acal 
(100nM) 

MCL01 6.585928 5.716263 
MCL02 15.18704 12.71481 
MCL03 11.47 11.07 
MCL04 9.3681592 7.9415423 
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4.4.2 Assessment of CD40L co-cultures on the survival of BTKi-treated MCL 

cells  

Due to the poor proliferative response of primary MCL cultured ex vivo,  even with 

CD40L stimulation (data from studies performed by Dr D Tucker as part of a completed 

MD from this group), the effects of BTKi  treatment on the proliferation of primary 

MCL cells was not assessed. However, those studies did demonstrate that CD40L 

protected primary MCL cells from apoptosis. Therefore we assessed whether CD40L 

also protected cells from BTKi- induced apoptosis.  Initially we assessed the effects of 

stromal cell support on primary MCL cell survival before BTK inhibition. Ex vivo primary 

cells from five MCL cases were seeded into wells in culture media alone or with murine 

fibroblast cells, either NT-CD40L or T-CD40L. The primary cells were removed for 

assessment of apoptosis after 24 and / or 48 hours.   

Although the response was variable (Table 4.2), most MCL cases showed enhanced 

survival in the presence of CD40L. This is very clearly demonstrated in the cases 

analysed at 24 hours (p=0.0201  paired t-test) although less clear in those cases 

analysed at 48 hours (Figure 4.10) largely as a result of the low apoptotic rates of cases 

MCL03 and MCL09 which are clinically indolent cases (the disease characteristics for 

these samples are shown in Table 4.3). 
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Table 4.2: Survival of primary MCL cells after 24 and 48 hours co-culture on a stromal layer. 

Primary MCL cells were seeded at 4 x 106/mL onto two fibroblast monolayers; NT-CD40L and T-

CD40L. Cells were harvested from the fibroblast layer after 24 and 48 hours incubation, 

labelled with MCL surface markers and annexin V-FITC for 20 minutes at RT and assessed for 

apoptosis by flow cytometry. The table shows the percentage of apoptotic cells from 4 cases of 

primary MCL after 24 hours and from 5 cases of primary MCL after 48 hours of co-culture. 

 

 

 

 

 

 

 

 

 

 

 

  % Apoptosis 
NT-CD40L 

% Apoptosis 
T-CD40L 

 
MCL03 

 
24 hours 10.3 7.5 
48 hours 0.7 1.0 

    
MCL05 

 
24 hours 10.7 3.8 
48 hours 14 2 

    
MCL06 

 
24 hours 20.37 12.53 

    
MCL07 

 
24 hours 14.4 10.4 
48 hours 10.0 2.5 

    
MCL08 

 
48 hours 8.5 4.5 

    
MCL09 

 
48 hours 1.5 2.6 



148 
 

 

 

 

 

 

 

 

 

Figure 4.10: Survival of primary MCL cells after 24 and 48 hours co-culture on a stromal layer 

with and without CD40L. Paired t test comparing rates of apoptosis for 4-5 cases of primary 

MCL cells cultured with NT-CD40L and T-CD40L murine fibroblasts. A) Cases assessed at 24 

hours B) Cases assessed at 48 hours. Some cases analysed at 48 hours were different to the 

cases analysed at 24 hours. 

 

Case Indolent/ aggressive 

subtype of MCL disease 

MCL01 Aggressive 

MCL03 Indolent 

MCL06 Aggressive 

MCL07 Aggressive 

MCL08 Aggressive 

MCL09 Indolent 

 

Table 4.3: Disease characteristics of MCL cases whose cells were analysed for survival in 

section 4.4.2. 

 

 

 

 

 

 

A) B) 
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To determine whether the survival of primary MCL cells was reduced in response to 

BTKi, the cells co-cultured on NT-CD40L and T-CD40L fibroblasts were treated in vitro 

with Ibr or Acal at the doses indicated and analysed for apoptosis by flow cytometry. 

Again results are heterogeneous with overall low levels of apoptosis seen in all cases. 

However for cells co-cultured for 24 hours with CD40L, apoptosis was significantly 

reduced in response to BTKi (p=0.0004) (Table 4.4, Figure 4.11), suggesting that CD40L 

protects primary cells from apoptosis even in the presence BTK inhibition. This finding 

is similar to the results previously shown for REC-1 cells. As before, results are less 

clear at 48 hours mainly as a result of the outlaying MCL08 case in response to Acal 

(Table 4.5, Figure 4.11). 
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  Apoptosis (%) 

Case  NT-CD40L T-CD40L 

MCL03 Control 10.27 7.46 

 Ibr (100nM) 10.28 5.65 

 Acal (1µM) 13.72 6.46 

MCL05 Control 20.37 12.53 

 Ibr (100nM) 22.27 13.48 

 Acal (1µM) 20.09 15.69 

MCL 06 Control 10.70 3.82 

 Ibr (100nM) 15.28 4.22 

 Acal (1µM) 14.30 4.07 

MCL 07 Control 14.39 10.35 

 Ibr (100nM) 15.58 12.80 

 Acal (1µM) 16.56 11.68 

 

Table 4.4: Survival of primary MCL cells in response to BTKi after 24 hours co-culture on NT-

CD40L and T-CD40L fibroblasts. Primary MCL cells were co-cultured on a monolayer of NT-

CD40L and T-CD40L fibroblasts and treated with Ibr (100nM) or Acal (1µM). Approximately 1 x 

106 cells were removed after 24 hours and stained with annexin-V-FITC for analysis of 

apoptosis by flow cytometry.  

 

  Apoptosis (%) 

Case  NT-CD40L T-CD40L 

MCL03 Control 0.72 0.97 

 Ibr (100nM) 0.86 1.00 

 Acal (1µM) 0.79 0.97 

MCL06 Control 10.70 3.82 

 Ibr (100nM) 15.28 4.22 

 Acal (1µM) 14.30 4.07 

MCL07 Control 10.00 2.50 

 Ibr (100nM) 8.90 2.20 

 Acal (1µM) 6.30 1.40 

MCL08 Control 8.51 4.51 

 Ibr (100nM) 5.10 5.77 

 Acal (1µM) 7.44 13.43 

MCL09 Control 1.46 2.60 

 Ibr (100nM) 1.65 5.24 

 Acal (1µM) 1.45 4.21 

 

Table 4.5: Survival of primary MCL cells in response to BTKi after 48 hours co-culture on NT-

CD40L and T-CD40L fibroblasts. Primary MCL cells were co-cultured on a monolayer of NT-

CD40L and T-CD40L fibroblasts and treated with Ibr (100nM) or Acal (1µM). Approximately 1 x 

106 cells were removed after 48 hours and stained with annexin-V-FITC for analysis of 

apoptosis by flow cytometry.  
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Figure 4.11: Survival of primary MCL cells co-cultured with stromal cells with and without 

CD40L in response to in vitro BTKi treatment. Paired t-test comparing the rates of apoptosis in 

response to Ibr (100nM) and Acal (1µM) (treatment groups combined), in primary MCL cells 

co-cultured with NT-CD40L and T-CD40L murine fibroblasts. A) 24 hours, B) 48 hours. Some 

cases analysed at 48 hours were different to the cases analysed at 24 hours. 
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4.4.3 Analysis of IRF4 expression in BTKi-treated primary MCL cells in 

response to CD40L co-culture 

In the BTKi sensitive REC-1 cell line, IRF4 expression was upregulated by CD40L and 

IRF4 levels were sustained in response to BTKi (both Ibr and Acal). To determine 

whether these findings were also features in primary MCL cells, ex vivo primary MCL 

cells from 8 untreated patients were co-cultured with murine fibroblasts; NT-CD40L 

and T-CD40L, and treated in vitro with BTKi (Ibr or Acal). The cells were removed from 

the fibroblasts after 48 hours incubation with BTKi and lysed to obtain protein for 

analysis of IRF4 expression.      

Results from those experiments are shown in Figure 4.12. A representative 

immunoblot is shown in Figure 4.12A.   In the absence of treatment, IRF4 expression 

was significantly upregulated by CD40L in all eight MCL patient samples (paired t-test 

p= 0.0012) (Figure 4.12B).  IRF4 expression was significantly down regulated by Ibr 

(p=0.0393) and almost significantly by Acal (p=0.0590) in all primary MCL cases co-

cultured without CD40L (Figure 4.12C). However, stromal co-culture with CD40L 

prevented BTKi-induced downregulation of IRF4 in all 8 primary MCL cases (Ibr 

p=0.3398, Acal p=0.3802) (Figure 4.12D). 
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Figure 4.12: Assessment of IRF4 expression in BTKi-treated primary MCL cells in response to 

CD40L co-culture. A) Representative immunoblot analysis of IRF4 expression (Case MCL07) co-

cultured with/without CD40L and treated in vitro with BTKi for 48h. B) CD40L upregulates IRF4 

expression in 8/8 patient samples (Paired t-test p= 0.0012). C) IRF4 is significantly down 

regulated by Ibr and almost significantly downregulated by Acal in 8 patient samples co-

cultured without CD40L (paired t-test). D) CD40L stimulation prevents downregulation of IRF4 

by BTK inhibitors (Paired t-test; Ibr p=0.3398, Acal p=0.3802). Blot details: 10% SDS gel. 30.0µg 

protein. Rabbit anti-human IRF4 (CST #4964) 1 in 1000 dilution, rabbit anti-human GAPDH (CST 

#2118) 1 in 5000 dilution, in 5% BSA/TBST, o/n at 4°C.  Goat anti-rabbit-HRP (Dako, P0448) 1 in 

2000 dilution in 5% BSA/TBST, 1 hr, RT. ECL (GAPDH), ECL prime (IRF4) (Pierce, Life 

Technologies). 

 

 

 

 

 

C) D) 

B) 

MCL07 

A) 
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4.5 IRF4 expression can predict response to BTKi treatment. 

In primary MCL patient samples, downregulation of IRF4 was associated with clinical 

response to BTKi therapy.  In these patients, downregulation of IRF4 expression was 

an early response to BTKi therapy and sustained over time.  Results suggest that 

sustained or loss of IRF4 downregulation in response to BTKi treatment can signify 

primary or acquired resistance. 

Results from cell line and ex vivo BTKi-treated primary MCL cells have shown that IRF4 

expression is downregulated in cells sensitive to BTKi treatment, but that IRF4 

expression can be affected by either primary resistance seen in BTK resistant MCL cell 

lines, or by factors within the microenvironment such as stimulation by CD40L. 

However data from in vivo BTKi-treated patient samples would provide further 

rationale of the use of IRF4 as a predictor of response to BTKi treatment. 

4.5.1 Assessment of IRF4 expression in MCL patient samples following BTKi 

treatment 

Blood samples from 8 patients on monotherapy with BTK inhibitor agents Ibr and Acal 

were collected over the course of the PhD and were compared with pre-treatment 

samples.  Samples were taken from patients responding to BTKi therapy, and from one 

patient who was treatment refractory and not responding to BTKi therapy. The specific 

BTK inhibitor monotherapy given to patients and their response to therapy is shown in 

Table 4.6. Following isolation of the PBMCs (Methods section 2.2.2), the primary MCL 

cells were lysed in a RIPA buffer (Methods section 2.4.1) to obtain protein for analysis 

of IRF4 expression. 
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Case BTKi Treatment Status 

MCL01 Acalabrutinib Responding  

MCL02 Acalabrutinib Responding 

MCL04 Acalabrutinib Refractory 

MCL10 Ibrutinib Responding 

MCL11 Acalabrutinib Responding 

MCL12 Acalabrutinib Responding 

MCL13 Ibrutinib Responding 

MCL14 Ibrutinib Responding 

 

Table 4.6: The specific BTK inhibitor monotherapy used in the clinical treatment of 8 primary 

MCL cases examined for IRF4 expression levels and their response to treatment. 

 

The results are shown in Figure 4.13. IRF4 expression was downregulated in 7 out of 8 

MCL patient samples tested. These samples were taken from patients clinically 

responding to BTKi treatment. Statistical analysis of those 7 samples (three patients on 

Ibr treatment and four patients on Acal treatment) show significant IRF4 down-

regulation (paired t-test; p=0.0009).  Sample MCL04 shows sustained levels of IRF4 

expression and was clinically refractory to BTKi treatment.  
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Figure 4.13: IRF4 expression levels in patient samples on clinical therapy with BTKi. A) IRF4 

expression in 8 patient samples on BTKi treatment compared to their matched pre-treatment 

sample, in all but one case there is a clear downregulation of IRF4. B) In the 7 cases which are 

responding to clinical BTKi treatment, IRF4 is significantly downregulated. Data was statistically 

analysed using paired t-test (p=0.0009).  Blot details: 10% SDS gel. 30.0µg protein. Rabbit anti-

human IRF4 (CST #4964) 1 in 1000 dilution, rabbit anti-human GAPDH (CST #2118) 1 in 5000 

dilution, in 5% BSA/TBST, o/n at 4°C.  Goat anti-rabbit-HRP (Dako, P0448) 1 in 2000 dilution in 

5% BSA/TBST, 1 hr, RT. ECL (GAPDH), ECL prime (IRF4) (Pierce, Life Technologies). 

 

 

 

A) 
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We next assessed the expression of IRF4 during time on BTKi-treatment to determine 

how quickly downregulation of IRF4 expression occurred. IRF4 expression was 

assessed in two clinically responding cases over several treatment cycles with Acal.  

The cycle- associated white cell count (WCC)/ lymphocyte count is shown in Table 4.7.  

Immunoblot analysis shows that downregulation of IRF4 expression occurs within the 

first treatment cycle and was sustained over time, (Figure 4.14 and 4.15), not 

surprisingly response was variable between and within patient samples but expression 

levels were independent of the reported WCC.   
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Figure 4.14: IRF4 expression over several Acal treatment cycles in a patient responding to 

therapy. A) Immunoblot analysis of IRF4 expression B) Densitometry analysis of IRF4 

expression relative to GAPDH expressed in arbitrary units. C= cycle, D = day. Blot details: 10% 

SDS gel. 30.0µg protein. Rabbit anti-human IRF4 (CST #4964) 1 in 1000 dilution, rabbit anti-

human GAPDH (CST #2118) 1 in 5000 dilution, in 5% BSA/TBST, o/n at 4°C.  Goat anti-rabbit-

HRP (Dako, P0448) 1 in 2000 dilution in 5% BSA/TBST, 1 hr, RT. ECL (GAPDH), ECL prime (IRF4) 

(Pierce, Life Technologies). 

 

 

 

 

 

 

 

B) 

A) 



159 
 

 

 

 

 

 

 

 

 

Figure 4.15: IRF4 expression over several Acal treatment cycles in a patient responding to 

therapy. A) Immunoblot analysis of IRF4 expression B) Densitometry analysis of IRF4 

expression relative to GAPDH expressed in arbitrary units. C= cycle, D = day. Blot details: 10% 

SDS gel. 30.0µg protein. Rabbit anti-human IRF4 (CST #4964) 1 in 1000 dilution, rabbit anti-

human GAPDH (CST #2118) 1 in 5000 dilution, in 5% BSA/TBST, o/n at 4°C.  Goat anti-rabbit-

HRP (Dako, P0448) 1 in 2000 dilution in 5% BSA/TBST, 1 hr, RT. ECL (GAPDH), ECL prime (IRF4) 

(Pierce, Life Technologies). 
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Case  Acal treatment cycle WCC (x109/L)  

MCL02 Pre 36  

 C1D8 345  

 C1D21 339  

 C1D28 258  

 C2D15 155  

 C2D28 118  

 C3D28 73.9  

 C4D28 43.8  

 C5D28 34  

 C8D28 15  

 C10D28 12.9 lymphocytes: 9.4 

 

Case  Acal Treatment cycle WCC (x109/L)  

MCL01 C1D1 89  

 C1D8 335  

 C1D15 196  

 C1D22 122  

 C2D8 32  

 C4D1 9.2 lymphocytes: 5.5  

 

Table 4.7: White blood cell counts obtained from two patients corresponding to individual 

Acal treatment cycles. Lymphocyte counts were obtained for the two samples demonstrating 

low WCC. 
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4.6 IRF4 expression can be used to monitor for BTKi-treatment 

resistance in primary MCL cases. 

All primary MCL cases whether sensitive or resistant to BTKi demonstrated a normal 

functional BCR with inhibition of phosphorylated BTK Y223 in treated samples, but 

showed differential expression of IRF4. Loss of clinical response to BTKi treatment 

corresponded to increasing IRF4 expression and lack of downregulation with 

sustained IRF4 levels corresponded to primary BTKi resistance. 

4.6.1 Assessment of BTK phosphorylation and IRF4 expression in MCL patient 

cells with primary and acquired resistance to BTKi treatment 

To validate whether IRF4 expression can be used as a biomarker to detect patients 

with primary or acquired BTKi resistance, further detailed studies on two individual 

MCL cases was undertaken.  One case (MCL04) was treatment refractory 

demonstrating primary resistance to BTKi and the other was an acquired resistance 

case from a previously responding patient (MCL02) who subsequently relapsed after 

23 months on BTKi therapy. The primary MCL cells isolated from these cases were 

assessed for BTK phosphorylation following IgM stimulation (Methods section 2.2.8 

and 2.3.2) by flow cytometry. In the acquired resistance case, BTK phosphorylation was 

assessed in a pre-treatment sample and compared to a BTKi-treatment sample with 

relapsed disease. In the primary resistance case, BTK phosphorylation was assessed in 

a pre-treatment sample following in vitro treatment with Ibr and Acal at the doses 

indicated. 
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In both cases of BTKi resistance, phosphorylation of BTK-Y223 was reduced by BTKi as 

shown by the reductions in the median fluorescence intensity ratios for pBTK-Y223-PE 

against a corresponding isotype control (Figure 4.16).  

 

 

 

 

 

 

 

 

 

Figure 4.16: Flow cytometry analysis of phosphorylated BTK-Y223 in MCL patient cells with 

primary and acquired resistance to BTKi. A) MFIR of pBTK-Y223 in a pre-treatment sample vs. 

a BTKi-treatment sample from a patient with acquired BTKi resistance (case MCL02). B) MFIR 

of pBTK-Y223 in a pre-treatment sample from a patient with primary BTKi resistance following 

in vitro treatment with Ibr and Acal (1µM) (case MCL04). MFIR denotes the median 

fluorescence intensity ratio of pBTK-Y223-PE / IgG-PE isotype control. Units are arbitrary. 
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IRF4 expression was assessed in both the acquired and primary resistant BTKi cases 

(MCL02 and MCL04, respectively).  

In the acquired BTKi resistance case, protein was extracted from PBMCs during BTKi 

treatment until relapse. IRF4 was initially downregulated over several treatment cycles 

with Acal as shown previously (Figure 4.14) and shown again in Figure 4.17A. However, 

comparison of the patient’s pre-treatment sample with their relapse sample showed 

that IRF4 was not downregulated at relapse (Figure 4.17B) and appeared as a band 

slightly lower than that seen pre-treatment.   

In the primary resistance case, protein was extracted from PBMCs pre-treatment and 

during the first 3 cycles on treatment.  IRF4 was consistently expressed over several 

treatment cycles with Acal therapy and was not downregulated even after three 

months on therapy (Figure 4.18). 
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Figure 4.17: Immunoblot of IRF4 expression in primary MCL cells in a patient with acquired 

BTKi resistance. A) Shows downregulation of IRF4 expression during treatment response, B) 

shows loss of IRF4 downregulation at disease relapse. Blot details: 10% SDS gel. 30.0µg 

protein. Rabbit anti-human IRF4 (CST #4964) 1 in 1000 dilution, rabbit anti-human GAPDH (CST 

#2118) 1 in 5000 dilution, in 5% BSA/TBST, o/n at 4°C.  Goat anti-rabbit-HRP (Dako, P0448) 1 in 

2000 dilution in 5% BSA/TBST, 1 hr, RT. ECL (GAPDH), ECL prime (IRF4) (Pierce, Life 

Technologies). 
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Figure 4.18: Expression of IRF4 in primary MCL cells in a patient with primary BTKi resistance. 

IRF4 expression is not downregulated over several Acal treatment cycles in a patient clinically 

not responding to treatment. A) Immunoblot analysis of IRF4 expression B) Densitometry 

analysis of IRF4 expression relative to GAPDH expressed in arbitrary units. C= cycle, D = day. 

Blot details: 10% SDS gel. 30.0µg protein. Rabbit anti-human IRF4 (CST #4964) 1 in 1000 

dilution, rabbit anti-human GAPDH (CST #2118) 1 in 5000 dilution, in 5% BSA/TBST, o/n at 4°C.  

Goat anti-rabbit-HRP (Dako, P0448) 1 in 2000 dilution in 5% BSA/TBST, 1 hr, RT. ECL (GAPDH), 

ECL prime (IRF4) (Pierce, Life Technologies). 
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4.7 Discussion 

The tissue microenvironment is recognised to contribute to the development of 

chemo-resistance, and has been proposed as a mechanism of Ibr resistance in MCL and 

other B cell malignancies.191-194 Like their normal B cell counterparts, MCL cells are 

attracted into the tissues by chemotactic factors secreted by accessory cells such as 

stromal cells in the microenvironment, where important interactions take place with 

other cell types including T cells. CD40L is expressed on T cells, and in normal cells has 

an important role in providing co-stimulatory signals following stimulation of the BCR 

which increase the survival and growth of specific B cell clones.  

In this study, REC-1 cells treated with either Ibr or Acal demonstrated enhanced 

survival and proliferation in the presence of CD40L-stromal support. We found it 

surprising that a cell-line model would show such dependency, mimicking the 

behaviour of MCL cells in vivo, but this behaviour provides further support for the use 

of REC-1 cells as a model to investigate mechanisms of BTKi resistance in MCL. 

Stromal cell support in the absence of CD40L did not affect functional or signalling 

responses of REC-1 cells to BTK inhibition. However, the presence of CD40L stroma 

prevented downregulation of ERK1/2 phosphorylation following BTKi treatment of the 

REC-1 cells, suggesting that there is a BTK-independent pathway for ERK1/2 activation 

that is induced by CD40L possibly by MAPK and PI3K pathways. In addition, IRF4 

expression in REC-1 cells following CD40L stimulation was sustained and not down-

regulated in response to treatment with either Ibr or Acal.  These data suggest that 

CD40L stimulation provides a pathway for REC-1 cells to resist effects of BTKi 

treatment. Increased levels of IRF4 expression are seen following CD40L stimulation, as 

we see with BCR stimulation. However, unlike effects of BCR stimulation, IRF4 
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expression is sustained following BTKi treatment in the presence of CD40L, reflecting a 

possible mechanism of resistance and/or a biomarker of resistance. Studies suggest 

that both the canonical and non-canonical NF-κB pathways can be activated by MCL 

stromal cell interaction, either alone or through secretion of B-cell activating factor 

(BAFF),53 and may be a possible pathway mediating the effect of IRF4. There was no 

evidence of increased IRF4 expression in REC-1 cells co-cultured with stromal cells in 

the absence of CD40L.  

Unsurprisingly, REC-1 cells with acquired BTKi resistance were independent of CD40L; 

they required no additional stimulation from CD40L to overcome BTKi effect 

suggesting that the increased survival, proliferation and the sustained levels of IRF4 in 

these cells was independent of the effects of CD40L. This suggests that acquired 

resistance to BTKi may occur through an intrinsic mechanism, such as mutations in the 

BTK molecule.  

Like the MCL cell lines  described in Chapter 3, primary MCL cells whether sensitive or 

resistant to BTKi all showed a normal functional BCR with increased pBTK-Y223 

following IgM stimulation which was reduced following BTKi treatment. 

Phosphorylated BTK-Y223 was significantly reduced by Ibr but not Acal, however given 

the near significance (p=0.06) this was possibly due to the low dosage of Acal 

treatment (100nM) used to treat the cells in vitro. It is likely that this result would be 

significant at higher dosage. These results are suggestive that in cells with innate 

resistance, resistance mechanisms may occur further downstream from BTK or via 

alternative pathway activation possibly by effects of the tissue microenvironment. 
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Primary MCL cells behaved similarly to REC-1 cells when co-cultured with fibroblast 

support and in response to BTKi treatment.  Survival was significantly increased after 

24 hours co-culture with CD40L although not at 48 hours, which could be due to 

patient variability given that some patient samples analysed at 48 hours were different 

to samples analysed at 24 hours, two of which were indolent cases which generally 

have lower rates of apoptosis. In addition, the data is only representative of 5 

individual MCL cases at 48 hours, it is likely therefore that significance would increase 

with a larger sample size.   

Similar results were shown in response to BTKi; CD40L significantly prevented 

apoptosis of primary MCL cells in response to BTKi after 24 hours co-culture but not 

after 48 hours which again may be influenced by the small sample size and indolent 

cases with low apoptosis rates. 

CD40L significantly upregulated IRF4 levels in all 8 MCL patient samples analysed (p= 

0.0012) (Figure 4.12B). In the absence of CD40L, IRF4 was downregulated by BTKi (both 

Ibr and Acal), but in the presence of CD40L, no downregulation of IRF4 expression was 

seen in response to BTKi (both Ibr and Acal). 

These findings suggest that signals from the tissue microenvironment may modulate 

drug response in MCL and that CD40L-CD40 signalling may have a role in primary 

resistance to BTK inhibitors by modulating expression of IRF4. To validate whether IRF4 

could be a biomarker of BTKi treatment response in MCL, ex vivo samples from 

clinically treated patients (n=8) were analysed before and during BTKi treatment. The 

results showed that IRF4 was downregulated in 7 samples from patients shown to be 

clinically responding to BTKi and was not downregulated in 1 refractory case. In 

responding patients, IRF4 downregulation was shown to be an early response to 
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therapy occurring within the first treatment cycle and was sustained over several 

treatment cycles until relapse when its downregulation was prevented and IRF4 

expression was sustained.  Here however, we noticed that the IRF4 band was detected 

lower than that predicted which may reflect a post translational 

modification/alteration in phosphorylation sites which could be explored further using 

2 dimensional SDS-gel electrophoresis.  Commercially available phospho- IRF4 

antibodies are not widely available. The group of Wang & Ning 195 have developed a 

polyclonal antibody specific to phospho-IRF4 (Y121/124) offering the opportunity for 

collaborative studies. 

Similarly, IRF4 was not downregulated over several treatment cycles in a primary 

resistance case. These findings provide further evidence that IRF4 expression is 

associated with response to BTKi treatment in MCL and could have potential use as a 

biomarker in a clinical setting. The mechanisms of IRF4 regulation by BTKi in MCL are 

discussed in Chapter 5.  
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5 Chapter 5 - Investigating IRF4 regulation, interactions and 

effects of BTKi. 
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5.1 Introduction 

The findings from this study have indicated that IRF4 is linked to the treatment 

response to BTKi, both in MCL cell lines and in primary cells. However, to understand 

the role that IRF4 has in cells treated with BTKi, it is important to understand its 

regulation and function in MCL.  Therefore, further studies were undertaken to test 

the control of IRF4 within MCL, and to investigate the complex relationship between 

protein translation and degradation through assessment of mRNA levels. Subsequent 

studies then went on to explore the interactions between IRF4 and other cell proteins: 

initially exploring known interactions (specifically the interaction with the ETS family 

member PU.1 - as discussed in the Introduction section 1.4.1). Then subsequently, and 

perhaps more importantly, interactions with previously unreported proteins were 

studied using co-immunoprecipitation studies and SWATH mass spectrometry.  Finally, 

since IRF4 is a known transcription factor, studies were performed to identify IRF4 

target genes through sequencing of IRF4-DNA chromatin precipitates from either BTKi 

sensitive or resistant cells, aiming to determine DNA binding sites of IRF4 which can be 

mapped to the human genome to further identify its interactions.  
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5.2 Methods employed 

The methods employed in this chapter involve the isolation of RNA (Methods section 

2.5.1) from REC-1 and G519 cells following BTKi treatment, conversion of the RNA to 

cDNA (Methods section 2.5.2) and analysis of IRF4 and PU.1 mRNA expression by 

quantitative real time PCR (qPCR) (Methods section 2.5.4).  

Co-expression of IRF4 and PU.1 was investigated using biochemical assays of co-

immunoprecipitation (Co-IP) (Methods section 2.4.4), western blotting (Methods 

section 2.4.6) and immunohybridisation (Methods section 2.4.6.1) of IRF4 protein 

precipitates from REC-1 cells. Further assessment of IRF4-protein interactions was 

determined using SWATH mass spectrometry of co-precipitated proteins (Methods 

section 2.4.5). Functional relationships of the proteins identified using SWATH were 

determined using STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) 

database, using highest confidence analysis (predicted significance >0.9).  

Chromatin immunoprecipitation (ChIP) of IRF4 (Methods section 2.5.6) was optimised 

in REC-1 and G519 cells. The ChIP procedure was confirmed by amplification of the 

RPL30 locus using conventional methods of PCR (Methods section 2.5.3) and agarose 

gel electrophoresis (Methods section 2.5.5). The DNA sequences bound to IRF4 were 

detected by next generation sequencing (Methods section 2.5.7) on purified IRF4 DNA 

from G519 cells.  

The list of antibodies used in this chapter is shown below (Table 5.1), accompanied 

with the antibody dilutions relating to the applications in which they were used. 

The mRNA expression data (qPCR) was analysed using the delta delta Ct (2^-ddCt) 

method in Microsoft Excel™. Sequencing reads obtained from the IRF4 ChIP sample 
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were aligned to the human genome reference HG38 using CLC Workbench version 11 

software. 

 

Table 5.1: Antibodies used in Chapter 5. HRP= Horseradish peroxidase, WB= western blotting, 

IP = immunoprecipitation ChIP=chromatin immunoprecipitation, CST= Cell signalling 

technology. All antibodies used for ChIP were validated except for the MUM-1 antibody from 

Abcam. 

 

 

 

 

Antibody/probe Species  Application Ref Source Conc 

 

IRF4 primary antibody Rabbit anti human WB 

IP/ChIP 

#4964 CST 1/1000 

1/25 

MUM-1 primary antibody  Rabbit anti human WB 

IP/ ChIP 

ab133298 Abcam 1/5000 

1/25 

PU.1/Spi-1 primary 
antibody 

Mouse anti human WB MAB5870 R & D 

systems  

1/250 

 

GAPDH  primary antibody Rabbit anti human WB #2118 CST 1/5000 

 

Histone H3 (D2B12) XP 
primary antibody  

Rabbit anti human  ChIP  #4620 CST 1/50 

Normal Rabbit IgG  
primary antibody 

Rabbit anti human  IP/ChIP #2729 CST 1/250 

Secondary antibody-HRP Goat anti rabbit WB #P0448 Dako 1/2000 

 

Secondary antibody-HRP Goat anti mouse  WB #P0447 Dako 1/2000 

 

IgG light chain secondary 
antibody-HRP 

Mouse anti rabbit WB ab99697 Abcam 1/2000 
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5.3 Downregulation of IRF4 mRNA is an early and specific response to 

BTKi treatment in sensitive REC-1 cells, but not in resistant cells 

(innate or acquired). 

Downregulated expression of IRF4 mRNA was shown to be an early response to BTKi 

treatment in the BTKi sensitive REC-1 cells. However, downregulation was not 

demonstrated in the acquired resistant REC-1 cells or the G519 cells; these findings 

corresponded to the retained expression of IRF4 protein in these latter cells. 

5.3.1 Assessment of IRF4 mRNA expression in REC-1 cells following BTKi 

treatment 

Expression of IRF4 mRNA was first assessed in REC-1 cells following treatment with Ibr 

(10µM). RNA was extracted from the cells at regular time points over 48 hours and 

converted to cDNA. The cDNA was amplified by qPCR using primers specific for regions 

on IRF4 and the control gene HPRT.  

Expression of IRF4 mRNA was found to be downregulated (relative to HPRT) in REC-1 

cells as an early response to Ibr, and was maximally reduced after 4 hours of treatment 

(Figure 5.1). This timescale related well to the results already reported in chapter 3 

(Figure 5.2) where the downregulation of IRF4 protein expression occurred at 4-8 

hours following BTKi treatment. This suggested that the changed IRF4 protein 

expression might be due to altered mRNA transcription and biosynthesis rather than 

degradation, and the down regulation of IRF4 was therefore a specific 

transcriptionally-regulated response to treatment. However, IRF4 mRNA was not 

persistently downregulated at this level and appeared to increase with time (although 

relative to baseline expression was still lower). The IRF4 protein expression did not 

follow the same trend (Figure 5.2), suggesting alternative/additional mechanisms must 
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underlie the persistent downregulation of IRF4 protein expression seen in REC-1 

treated cells. 

 

 

 

 

 

 

Figure 5.1: Expression of IRF4 mRNA in REC-1 cells in response to Ibr. REC-1 cells were treated 

with Ibr (10µM). RNA was extracted from the cells at regular time points over 48 hours. IRF4 

and HPRT regions were amplified from cDNA using qPCR. A) 2^-ddCt of IRF4 mRNA levels 

normalised to HPRT (N=2). B) Agarose gel electrophoresis analysis of the qPCR amplicons for 

IRF4 (91bp) and HPRT (131bp) (representative image from one experiment). 

 

 

 

 

 

Figure 5.2: Expression of IRF4 protein in REC-1 cells in response to Ibr. REC-1 cells were 

treated with Ibr (10µM). Protein was extracted from the cells at regular time points over 48 

hours and separated by SDS-PAGE. 10% SDS gel. 25µg protein, Rabbit anti-IRF4 Ab (CST #4964) 

1 in 1000, GAPDH (CST #2118) 1 in 5000 in 5% BSA/TBST, o/n at 4°C.  Goat anti-rabbit-HRP 

(Dako, P0448) 1 in 2000 dilution (IRF4), 1 in 5000 dilution (GAPDH) in 5% BSA/TBST, 1 hr, RT. 

ECL (Pierce, Life Technologies) (GAPDH) ECL prime (IRF4). Expression of IRF4 protein after 48 

hours Ibr treatment is indicated by the red arrow. 

 

A) B) 

Ibr (10µM) 
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To determine whether the response to Ibr was similar with a more specific BTKi, 

expression of IRF4 mRNA was compared in REC-1 cells treated with either Ibr or Acal at 

1µM concentrations. IRF4 mRNA was again found to be downregulated by Ibr by 4 

hours (as previously); and slightly later (after 4 hours) following treatment with Acal 

(Figure 5.3). Despite the differences in the first 4 hours following treatment, there was 

a similar trend in IRF4 mRNA expression in response to either Ibr or Acal. 

Note that in this experiment, the time 0 control was excluded from analysis, since the 

PCR amplicons assessed by agarose gel electrophoresis showed reduced expression of 

the IRF4 cDNA in the time 0 control sample compared to the treated samples (Figure 

5.4), which was not seen in the previous experiment (Figure 5.1B). This was possibly 

due to poor quality RNA as shown in Table 5.2. Since there was no difference seen 

between IRF4 mRNA expression at 0 or 1 hour (as shown in Figure 5.1) and is in 

accordance with  what is generally considered to be the case with mRNA transcription, 

analysis of IRF4 mRNA was compared relative to the 1 hour treated samples for both 

Ibr and Acal. 
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Figure 5.3: Expression of IRF4 mRNA in REC-1 cells in response to Ibr and Acal. REC-1 cells 

were treated with Ibr or Acal (1µM). RNA was extracted from the cells at regular time points 

over 48 hours. IRF4 and HPRT regions were amplified from cDNA using qPCR.  IRF4 mRNA 

levels were normalised to HPRT (2^-ddCt). 
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Table 5.2: Nanodrop assessment of RNA concentration and purity. The time 0 sample 

(highlighted in red), shows poor RNA purity compared to treated samples. 

 

 

 

 

 

 

 

 

 

Figure 5.4: Agarose gel analysis of the PCR products showing poor expression of IRF4 cDNA in 

the time 0 sample. IRF4 and HPRT cDNA amplicons from the time 0 sample (indicated by 

orange arrow) compared to the samples treated with Ibr (1µM) after 1, 4, 8, 24 and 48 hours. 

 

 

 

 

 

Sample Concentration 
ng/µl 

A260/280 
(2.0) 

A260/230 
(2.0-2.2) 

Ctrl   0h 167.8 2.8 1.5 

Ibr     1h 202.3 2.1 1.9 

Ibr     4h 251.4 2.1 2.0 

Ibr     8h 308.9 2.1 1.9 

Ibr   24h 298.9 2.1 2.0 

Ibr   48h 357.9 2.1 1.7 

Acal  1h 190.1 2.1 1.7 

Acal  4h 275.1 2.1 1.8 

Acal  8h 335.7 2.1 1.7 

Acal 24h 247.4 2.1 1.9 

Acal 48h 328.7 2.1 1.7 
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5.3.2 Assessment of IRF4 mRNA in BTKi- treated MCL cells with innate or 

acquired resistance 

IRF4 mRNA expression was next assessed in cells with either innate or acquired BTKi 

resistance to provide evidence of whether the differences seen in protein expression 

between BTKi sensitive and resistant cells were consistent with changes to IRF4 

transcription.  

 

The innate resistant G519 cells were assessed following treatment with Ibr or Acal 

(1µM). RNA was extracted from the cells at regular time points over 48 hours. IRF4 

mRNA expression was  found to differ between treatment with Ibr and Acal (although 

again, the trends are similar but delayed with Acal); however both showed increased 

mRNA expression at 24 and 48 hours relative to the control time 0 sample (Figure 5.5).  

The pattern of IRF4 mRNA following Ibr treatment corresponds well to the IRF4 protein 

expression in G519 treated cells - although direct correlation cannot be made due to 

different doses used, it is clear that there is increased protein expression seen at 24 

and 48 hours (Figure 5.6).  Further analysis shows that IRF4 mRNA expression was 

significantly different in G519 cells compared to REC-1 cells in response to BTKi 

treatment (unpaired t test p=0.0006) (Figure 5.7) suggesting differences in IRF4 gene 

transcription between BTKi sensitive and innately resistant cells.  
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Figure 5.5: Expression of IRF4 mRNA in G519 cells in response to Ibr and Acal. G519 cells were 

treated with Ibr or Acal (1µM). RNA was extracted from the cells at regular time points over 48 

hours. IRF4 and HPRT regions were amplified from cDNA using qPCR. IRF4 mRNA levels 

normalised to HPRT (2^-ddCt). 

 

 

 

 

 

 

 

Figure 5.6: Protein expression of IRF4 in G519 cells following Ibr treatment. G519 cells were 

treated with Ibr (10µM). Protein was extracted from the cells at regular time points over 48 

hours and separated by SDS-PAGE. 10% SDS gel. 25µg protein, Rabbit anti-IRF4 Ab (CST #4964) 

1 in 1000, GAPDH (CST #2118) 1 in 5000 in 5% BSA/TBST, o/n at 4°C.  Goat anti-rabbit-HRP 

(Dako, P0448) 1 in 2000 dilution (IRF4), 1 in 5000 dilution (GAPDH) in 5% BSA/TBST, 1 hr, RT. 

ECL (Pierce, Life Technologies) (GAPDH) ECL prime (IRF4).   
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Figure 5.7: Comparison of IRF4 mRNA expression in REC-1 and G519 cells in response to BTKi. 

The average relative expression values (2^-ddCt) of IRF4 mRNA from 3 x data sets for REC-1 

and 2 x data sets for G519. Data was analysed using an unpaired t test on treated samples 

only. 
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To confirm whether differences in IRF4 gene transcription were additionally seen in 

acquired resistant MCL cells, the acquired resistant REC-1 cells (R (Ibr 1µM)) and 

parent REC-1 cells (P) were treated with a corresponding dose of Ibr (1µM) and 

incubated for 4 hours. RNA was extracted from each cell line along with untreated 

parent REC-1 cells (P control) at the same time point for assessment of IRF4 mRNA 

expression. In the acquired resistant REC-1 cells, IRF4 mRNA was upregulated relative 

to the untreated control cells at 4 hours which differed to that observed with parental 

treated cells (Figure 5.8). These findings are suggestive that differences in protein 

expression that we see in cells resistant to BTKi are additionally reflected at the level of 

IRF4 gene transcription. 

 

 

 

 

 

 

 

 

Figure 5.8: Expression of IRF4 mRNA in parent vs acquired resistant REC-1 cells in response to 

Ibr. REC-1 cells and acquired resistant REC-1 cells (R (Ibr 1µM)) were treated with Ibr (1µM). 

RNA was extracted after 4 hours treatment. IRF4 and HPRT regions were amplified from cDNA 

using qPCR. IRF4 mRNA levels were normalised to HPRT (2^-ddCt). 
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5.4 PU.1 does not interact with IRF4 in REC-1 cells and is not linked to 

the downregulation of IRF4 in response to BTKi. 

PU.1 was not detected in IRF4 protein precipitates from REC-1 cells following co-

immunoprecipitation. Assessment of protein expression showed that, in contrast to 

IRF4 expression, PU.1 was not downregulated in primary MCL cells treated in vitro 

with BTKi. In addition, expression of PU.1 mRNA in REC-1 cells was increased in 

response to BTKi which did not correlate with downregulation of IRF4 mRNA 

expression. These studies suggest that PU.1 does not interact with IRF4 in REC-1 cells 

and is not linked to the downregulation of IRF4 in response to BTKi. 

Having determined that IRF4 protein expression and transcription are specific changes 

seen in MCL cells in response to BTKi treatment, we wanted to understand more about 

the role IRF4 in MCL cells and how differences in IRF4 protein expression could 

influence the response of MCL cells to BTKi. Little is known about the interactions of 

IRF4 in MCL either at the protein or chromatin level. As described in the introduction 

we know that IRF4 activates transcription of its target genes by forming homo or 

hetero-dimers either with other IRF family members or with other proteins including 

AP.1 and ETS family members. The most recognised binding partners for IRF4 are ETS 

family members PU.1 and SPI-B.150 We therefore assessed the interaction of PU.1 with 

IRF4 in MCL cells through co-immunoprecipation assays, and through comparison of 

expression of IRF4 to PU.1 proteins and transcription in response to BTKi treatment.  
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5.4.1 Assessment of IRF4- PU.1 interaction in REC-1 cells 

To investigate whether PU.1 interacts with IRF4 in MCL, co-immunoprecipitation was 

performed. Briefly, REC-1 cells were lysed in a low stringency (LS) lysis buffer (100µl / 1 

X 107 cells). Protein was extracted for immunoprecipitation (IP) of IRF4 using a 1 in 25 

dilution of rabbit anti-human IRF4 antibody (CST #4964) and an IgG control IP using a 

normal rabbit IgG antibody (CST #2729) (Methods section 2.4.4).  

Samples of the IRF4 precipitated protein, the post IP sample, the normal IgG control 

and the REC-1 whole cell lysate were run on a 10% SDS gel and transferred onto a 

PVDF membrane. The membrane was cut into two pieces. One half was incubated with 

rabbit anti-human IRF4 primary Ab (1:1000) and the other, with mouse anti-human 

PU.1/Spi-1 primary Ab (1:250) in 5% BSA/TBST over night at 4°C. Both membranes 

were incubated for 1 hour with a light chain specific secondary antibody-HRP (abcam 

#ab99697) diluted 1:2000 in 5% BSA/TBST. 

As shown in Figure 5.9, both IRF4 and PU.1 were present in the whole cell lysate 

confirming their expression by REC-1 cells. IRF4 was also shown to be present in the 

IRF4 precipitated sample and was enriched compared to the whole cell lysate; IRF4 

was not expressed in the IgG precipitated control sample confirming the absence of 

non-specific binding. Expression of PU.1 was not detected in the IRF4 test IP sample, 

although IRF4 and PU.1 were weakly expressed in the IRF4 post-IP sample suggesting 

that not all of the IRF4 protein was successfully precipitated from the lysate. As IRF4 

showed enrichment in the test IP sample and with the effectiveness of the PU.1 

antibody at detecting PU.1, there should have been sufficient IRF4 protein present to 

identify any co-precipitated PU.1. These results therefore suggest that PU.1 and IRF4 

were not physically associated in REC-1 cells. 
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Figure 5.9: Co-immunoprecipitation of IRF4 and PU.1 in REC-1 cells. REC-1 cells were lysed in 

LS buffer (100µl per 1 x 107 cells). For each IP, 600µg protein was diluted in 200µl of 

immunoprecipitation buffer and incubated with Rabbit anti human IRF4 antibody (CST #4964) 

(1/25 dilution), or Normal rabbit IgG antibody (CST #2729) (1:250) o/n at 4°C. Membranes 

were incubated with Rabbit anti-human IRF4 primary Ab (1:1000) or mouse anti-human 

PU.1/Spi-1 primary Ab (1:500) in 5% BSA/TBST o/n at 4°C. Membranes were incubated with a 

light chain specific secondary antibody-HRP (Abcam) (1:2000) in 5% BSA/TBST for 1 hour. IRF4 

(MW: 50kD) PU.1 (MW: 42kD). 
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5.4.2 Assessment of PU.1 protein expression in primary MCL cells treated in 

vitro with BTKi 

Primary MCL cells co-cultured on a stromal layer (both NT-CD40L and T-CD40L), were 

treated in vitro with Ibr and Acal. Protein was extracted after 48 hours and analysed 

for expression of IRF4 and PU.1. As shown previously (Chapter 4), in primary cells 

cultured on the NT-CD40L stromal layer, IRF4 was downregulated by BTKi (both Ibr and 

Acal) and both upregulated and sustained when cultured on a CD40L stromal layer. 

This differs to the expression of PU.1 which shows stable expression in response to 

BTKi treatment and appears downregulated in response to CD40L co-culture (Figure 

5.10). 

 

 

 

 

 

 

 

Figure 5.10: Expression of IRF4 and PU.1 in primary MCL cells. Immunoblot analysis of IRF4 

and PU.1 in primary MCL cells (Case MCL07) co-cultured on a stromal layer (both NT-CD40L 

and T-CD40L) and treated in vitro with BTKi for 48 hours. 10% SDS gel. 30µg protein. 

Membranes were incubated with Rabbit anti human IRF4 primary Ab (CST #4964) 1 in 1000 

dilution and GAPDH (CST #2118) 1 in 5000 dilution, o/n at 4°C and detected using Goat anti 

Rabbit-HRP secondary 1 in 2000 dilution following 1 hour incubation at room temperature. The 

membrane was washed and re-incubated with Mouse anti human PU.1/Spi-1 primary Ab 

(1:500) o/n at 4°C and detected using Goat anti mouse –HRP secondary antibody. 
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5.4.3 Assessment of PU.1 mRNA levels following BTKi treatment in REC-1 

cells 

REC-1 cells were treated with Ibr (1µM) and incubated for 48 hours. RNA was extracted 

from the cells at regular time points (as indicated) and converted to cDNA. The cDNA 

was amplified by qPCR using primers specific for regions on IRF4, PU.1 and the control 

gene HPRT for assessment of both IRF4 and PU.1 mRNA expression. 

As shown earlier (section 5.3.1) IRF4 mRNA expression relative to the control HPRT 

gene was downregulated by Ibr in REC-1 cells. However an almost inverse pattern was 

seen with PU.1 mRNA expression. PU.1 mRNA expression appeared to increase with 

almost a log greater difference in PU.1 mRNA expression compared to IRF4 mRNA seen 

at 48 hours (Figure 5.11). These results are again suggestive that PU.1 and IRF4 are not 

binding partners. 

 

 

 

 

 

 

 

 

 

Figure 5.11: Expression of IRF4 and PU.1 mRNA in REC-1 cells in response to Ibr. REC-1 cells 

were treated with Ibr 1µM. RNA was extracted from the cells at regular time points over 48 

hours for assessment of both IRF4 and PU.1 mRNA. IRF4, PU.1 and HPRT regions were 

amplified from cDNA using qPCR. IRF4 and PU.1 mRNA levels were normalised to HPRT (2^-

ddCt). 
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5.5 IRF4 interactions identified by mass spectrometry reveals a role for 

IRF4 in mitochondrial ribogenesis  

Proteomic study of IRF4 immunoprecipitation of REC-1 cells reveals a particular 

association with mitochondrial ribosomal proteins and related functional processes. 

Previous studies revealed that it was unlikely that one of IRF4’s known binding 

partners, PU.1, was associated with IRF4 in MCL cells.  We therefore went on to 

explore other potential protein interactions of IRF4 in REC-1 cells through studies of 

co-immunoprecipitation using SWATH mass spectrometry. This study employed the 

same IRF4 antibody used in earlier precipitation (CST #4964), but also a second IRF4 

antibody (rabbit anti-human MUM-1 (abcam #ab133298)) for immunoprecipitation to 

allow better comparison of precipitated proteins (Figure 5.12).    

 

 

 

 

 

 

Figure 5.12: Testing the efficiency of the abcam MUM-1 antibody for the 

immunoprecipitation of IRF4 from REC-1 cells. REC-1 cell lysate (600µg) was incubated with 

rabbit anti-human MUM-1 antibody (abcam #ab133298) 1:25 in 5% BSA/TBST, o/n at 4°C. A 

volume of 50µl of protein G beads was added for 1 hour at 4°C. Membrane was incubated with 

abcam rabbit anti-human MUM-1 antibody (1:1000) o/n at 4°C. Membrane was then 

incubated with mouse anti-rabbit light chain specific secondary antibody- HRP (1:5000) for 1 

hour. WCL = whole cell lysate, BME = β-mercaptoethanol. 
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Briefly, IRF4 protein precipitations were prepared from REC-1 cell lysate using both CST 

IRF4 and abcam MUM-1 antibodies and an IgG control antibody. The denatured 

precipitates were run on a 10% resolving gel prepared under sterile conditions, and 

each IP lane was cut into 8 individual gel slices (Methods section 2.4.5, Figure 2.5). The 

gel was left unstained to prevent any staining interference with the mass 

spectrometry. 

The proteomic analysis was performed in Manchester by Drs Cieran and Bobby 

Graham, and data analysis was then performed with the help of Dr Karen Rees-Unwin 

and Dr John Burthem in Manchester.   

In brief, sequential window acquisition of all theoretical fragment ion spectra (SWATH) 

was used to identify proteins in the IP samples and to allow quantitative comparison of 

the protein abundance. Essentially, the technique simply acquires all ions from 

proteins in the samples using an isolation window that covers the whole mass/charge 

range. The fragmentation spectra then enable retrospective identification of the 

peptides allowing the parent proteins to be identified. Quantitation is derived from the 

quantity of ions related to each protein in relation to the total amount of protein in the 

sample. SWATH therefore generates a list of proteins within a sample and a supports a 

relative comparison of protein abundance between samples. Proteins present can then 

be further analysed by data analysis tools to determine likely significance, and can be 

further analysed using bioinformatics approaches (in this case analysis using STRING) 

to determine likely functional relationships. 

 

 



190 
 

The results below describe in more detail the analysis of these studies and the 

significance of the results. The initial analysis focussed on proteins that were 

precipitated by both IRF4 and MUM-1 antibodies and were not seen in the IgG control 

IP.  The specificity was confirmed since the IRF4 protein itself was found only in 

precipitates where the specific antibodies were used and not seen in the control 

precipitates. In addition, both these antibodies co-precipitated a range of proteins that 

were not found in the control. Analysis showed that the probability that the proteins 

had been co-precipitated by chance by the specific antibodies but not the control was 

< 0.00001 (Chi Squared test). This confirmed that many of the precipitated proteins 

were likely to be associated with IRF4 in some form, although some would be non-

specific.  

To further analyse the data and identify the major associated proteins with IRF4, the 

functional relationships of these proteins were assessed by exporting to STRING 

analysis database. This database combines a range of data mining and experimental 

sources to establish linked functional characteristics of proteins.  All high confidence 

interactions were initially considered in the analysis, but due to the extensive level of 

interaction (Figure 5.13) only the highest confidence interactions (STRING algorithm 

confidence >0.9) were examined in more detail (Figure 5.14).  Single proteins without 

linkage which more likely represented non-specific interactions or unknown 

associations were excluded to simplify the analysis.  The identities of proteins present 

in each string cluster were determined and used to ascribe the functional group to that 

cluster (Figures 5.15). These functional proteins clustered to Ribosomal proteins and 

translation and ribosomal assembly (Figure 5.16), Mitochondrial ribosome proteins 

and mitochondria and mitochondrial RNA (Figure 5.17), DNA processing and 
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transcription (Figure 5.18), RAS and signalling functions (Figure 5.19) and Metabolism 

(general) (Figure 5.20). 

 

 

 

Figure 5.13: STRING analysis of high confidence relationships.  Results suggested high level of 

interaction for the majority of precipitated proteins, but was too complex for detailed 

functional analysis. 
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Figure 5.14: Profile of relationships analysed with highest confidence (STRING algorithm 

confidence >0.9). Single proteins are shown without linkage and may be non-specific or 

unreported interactions. 
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Figure 5.15: Profile of relationships analysed with highest confidence with functional 

annotation. Data analysed with highest confidence with all single proteins or doublets 

excluded from the analysis. The groups are assigned function according to protein function of 

the majority of precipitated elements.  Group (1) Ribosomal proteins and translation, (2) 

Mitochondrial ribosome proteins, (3) Ribosome assembly, (4) DNA processing and 

transcription (5) RAS and signalling functions, (6) Mitochondria and mitochondrial RNA, (7) 

Metabolism (general). 
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Figure 5.16: Ribosome proteins and proteins of translation and ribosomal assembly. Proteins 

identified in functional groups 1 and 3. 
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Figure 5.17: Mitochondrial ribosome proteins and mitochondria and mitochondrial RNA 

proteins. Proteins identified in functional groups 2 and 6. 
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Figure 5.18: Proteins of DNA processing and transcription. Proteins identified in functional 

group 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: RAS and signalling function proteins. Proteins identified in functional group 5. 
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Figure 5.20: Proteins of Metabolism (general). Proteins identified in functional group 7. 

 

Further validation steps were undertaken to determine whether these IRF4 

associations were specific, since a possible criticism would be is that there are a large 

number of co-precipitated proteins detected in both test and control samples. The aim 

of this validation step was to see if the types of protein that were non-specifically 

precipitated (i.e. seen with control antibody alone or control antibody and IRF4 

antibodies) differed from the specific proteins (precipitated by the IRF4 antibody only). 

This analysis used a slightly extended dataset including both those that were solely 

present in control or IRF4 precipitates, but also proteins that were significantly 

enriched (>2-fold) in either sample. Comparison of the functional protein groups 

precipitated by control vs. test antibodies (as revealed by the STRING analysis 

database) is shown in Figure 5.21 and 5.22. 
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This analysis showed that ribosomal elements including RNA translational factors were 

a frequent finding in both the control and the IRF4 fractions suggesting that some of 

these protein types might be non-specific elements. However, one of the major 

aspects from the initial findings was confirmed – only the IRF4 antibodies precipitated 

mitochondrial RNA, shown as the distinct cluster in Figure 5.22 and enhanced in Figure 

5.23. The presence of mitochondrial ribosomal components only in IRF4 samples was 

highly significant (p<0.01 Chi square test). In comparison to a STRING analysis of 

known IRF4 interactions (Figure 5.24), the findings identified in this study are currently 

unknown and warrant further investigation. In addition, analysis of known IRF4, BTK 

and BCR interactions revealed a direct link for BTK and BCR but only an indirect link 

with IRF4 (Figure 5.25). 
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Figure 5.21: Profile of the relationships of the non-specific proteins precipitated by the 

control sample. Of note there are 2 significant functional clusters which both relate to cellular 

ribosomal RNA or RNA translation. 
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Figure 5.22: Profile of the relationships of the specific proteins precipitated by the IRF4 test 

antibodies. The two big clusters contain different proteins to the control, but they are 

functionally similar – relating to cellular RNA and RNA processing. However the highly distinct 

group (red circle) are mitochondrial ribosome elements which were not present in the control 

IP. 
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Figure 5.23: Enhanced detail of the distinct cluster of mitochondrial ribosome elements 

bound to IRF4. IRF4 precipitated proteins included MRPS5, MRPS9, MRPS22, MRPS26, 

MRPS23, MRPS31, MRPL3, MRPL38 and MRPL44 (mitochondrial ribosomal proteins), PTCD3 

(mitochondrial RNA-binding protein), TUFM (mitochondrial elongation factor Tu), DAP3 

(mitochondrial 28S ribosomal protein S29), and GADD45GIP1 (Growth arrest and DNA damage-

inducible proteins-interacting protein 1). 
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Figure 5.24: STRING analysis of known IRF4 interactions. The figure shows networks that are 

already known for IRF4 (Uniprot ID: Q15306). The findings from this study were not identified. 
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Figure 5.25: STRING analysis of known interactions for IRF4, BTK and BCR. Results showed a 

direct link for BTK (Uniprot ID: Q06187) and BCR (Uniprot ID: P11274), but no direct link with 

IRF4 (Uniprot ID: Q15306) (only indirect links). 
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5.6 Chromatin immunoprecipitation of IRF4 and detection of IRF4 

transcriptional targets can be achieved in MCL cell lines. 

Assessment of DNA interactions associated with IRF4 may indicate novel targets with 

the potential to overcome resistance to BTKi. Chromatin immunoprecipitation (ChIP) 

followed by high throughput DNA sequencing (ChIP-seq) is a useful method to identify 

binding sites for transcription factors on a genome-wide scale.  

The initial purpose of this section was to sequence DNA purified from chromatin 

precipitates of IRF4 and identify DNA sequences bound to IRF4 in MCL cell lines 

demonstrating sensitivity and resistance to BTKi. However, work was complex due to 

the extensive quality control steps required by the ChIP assay limiting the experimental 

results that could be analysed. Therefore the following section describes the work flow 

of the intended experiment, highlighting the problems encountered along the way and 

finishes with a summary of the optimised conditions required for ChIP-seq of IRF4 

which will be useful in future studies.   

Chromatin immunoprecipitation of IRF4 from MCL cell lines was performed using the 

Simple Chip Enzymatic Chromatin IP kit (CST #9003). This kit was chosen since the 

company had previously validated the rabbit anti-IRF4 antibody (CST #4964) (used 

throughout this study) for ChIP, in experiments with Hela cells. For details on the 

materials and reagents refer to methods section 2.1.5 and 2.5.6. 
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5.6.1 Introduction and general principle  

ChIP-Seq uses antibodies to detect proteins that are bound to DNA directly or that 

interact within DNA-bound protein complexes.  Protein- DNA interactions are first 

preserved using a formaldehyde solution for cross-linking. A series of lysis steps then 

disrupt cell and nuclear membranes, isolating only the nuclear contents for the ChIP. 

The chromatin is then digested using an enzyme and / or sheared into smaller 

fragments using sonication. An antibody specific to the protein of interest is then 

incubated with the cross-linked protein-DNA complexes and then bound to magnetic 

beads, which pulls the relative chromatin fragments out of solution. The cross-links are 

then reversed, and the resulting purified DNA can be used in subsequent DNA 

fragment library construction for DNA sequencing. Following sequencing, the sequence 

reads are analysed using peak-calling tools that align reads to a reference sequence 

and identify known DNA regions associated to proteins.   

5.6.2 Optimisation of chromatin digestion and fragmentation 

The first step in a ChIP assay is to optimise the chromatin digestion and fragmentation. 

This will depend on the size of the fragments required for the downstream application. 

Appropriate length fragments required for ChIP can be anywhere in the range of 150-

900bp. However DNA sequencing requires shorter fragments normally between 200-

400bp. 

Chromatin was first prepared from REC-1 cells at a concentration of 5 X 106 in 20mL 

culture media dispersed within a 15cm culture dish. Proteins were cross-linked to DNA 

by fixing cells in paraformaldehyde to a final concentration of 1%. Glycine was added 

to quench the formaldehyde and the cells were lysed in enzymatic 1 X lysis buffer A. 

The nuclei was pelleted and re-suspended in 1 X buffer B.  
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The protocol provided evidence that chromatin from Hela cells was digested to the 

appropriate length fragments (1-5 nucleosomes in length (900-150bp)) using 0.5µl of 

micrococcal enzyme and 3 sets of 20 second pulses with a sonication probe.  

To test these conditions in REC-1 cells, the chromatin was digested with 0.5µl of 

micrococcal enzyme for 20 minutes, washed and re-suspended in 1 X ChIP buffer and 

sonicated 3 times for 20 seconds using a Vibra-cell ultrasonic probe (SONICS).  

The crosslinks were reversed and the DNA from the chromatin was purified and 

analysed on 2% agarose gel. Most of the chromatin was digested to 3 nucleosomes in 

length (between 75bp and 500bp) (Figure 5.26) indicating that the length of time 

incubated with the enzyme or the volume could be reduced slightly in subsequent 

experiments to prevent over digestion. However these conditions were considered as 

optimal for this study since the downstream application was to sequence the ChIP 

samples.   
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Figure 5.26: Optimisation of chromatin digestion and fragmentation in REC-1 cells. Chromatin 

was digested with 0.5µl of micrococcal enzyme for 20 minutes and sonicated 3 times for 20 

seconds using a Vibra-cell ultrasonic probe. Chromatin was digested to 3 nucleosomes in 

length (between 75bp and 500bp). M= DNA ladder/marker. 

 

 

5.6.3 Preparation of chromatin samples for ChIP 

Using the same culture conditions and digestion and sonication conditions outlined 

above, chromatin samples were prepared from the following cell lines; REC-1, G519, 

and the acquired BTKi resistant cell lines REC-1/R (Ibr 1µM) and REC-1/R (Acal 1µM). A 

50µl aliquot was taken from each sample, the cross links were reversed (as before) and 

DNA was purified and quantified using a NanoDrop 2000 spectrophotometer. The DNA 

quantification values are shown in Table 5.3 and were used to standardise 

concentration of each sample in preparation for IP.  

Next, the original chromatin preparations from each cell line were diluted to 2µg in 

500µl of 1X ChIP buffer. This was recommended by the ChIP protocol to provide 

sufficient chromatin for immunoprecipitation and an optimal concentration for 

antibody binding using their CST ChIP validated antibodies. Ten microliters of each 2µg 

500bp 

75bp 

M 
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suspension was removed to a separate Eppendorf tube for the 2% input samples which 

were frozen at -20°C until a later stage of the protocol. The input DNA is used as a 

control for PCR effectiveness and is important in ChIP-sequencing data analysis. 

5.6.4 Immunoprecipitation of IRF4 from chromatin samples 

ChIP was performed using histone (H3), IRF4, and species-matched (normal rabbit) IgG 

antibodies (Table 5.1) on REC-1, G519 and acquired BTKi resistant REC-1 chromatin. 

The histone (H3) antibody was used as a positive control and the normal rabbit IgG was 

used as a negative control for establishment of the ChIP protocol. 

The indirect method of immunoprecipitation was performed by adding the appropriate 

volume of ChIP validated antibody to the 500µl of digested cross-linked chromatin. The 

amount of histone (H3) and normal IgG antibodies to add to the chromatin was 

specified by the kit protocol. The amount of ChIP validated IRF4 antibody added to the 

chromatin was a 1 in 25 dilution (specified on the product datasheet). 

The antigen/antibody complexes were separated from the solution on a magnet 

following incubation with ChIP grade protein G magnetic dynabeads. The beads 

containing the complex were then washed, the cross links were reversed and the DNA 

was purified. The efficiency of the ChIP was assessed by successful amplification of the 

ribosomal protein L30 (RPL30) locus using conventional PCR.  

 

 

 

 



209 
 

 

 

 

 

 

 

 

 

 

Table 5.3: Nanodrop assessment of DNA concentration and purity following DNA purification 

of various chromatin preparations pre immunoprecipitation.  

 

5.6.5 Assessment of the efficiency of immunoprecipitation from chromatin 

samples 

Histone H3 is an essential component of chromatin in the cell and is bound to most 

DNA sequences throughout the genome, including the RPL30 locus. Thus, IP of 

chromatin with the histone H3 antibody will enrich for the RPL30 gene and can be used 

as a positive control IP for almost any locus, including IRF4, while IP with the normal 

rabbit IgG will not result in RPL30 enrichment and is used as a negative control. 

 A volume of 5µl of each sample including the 2% input samples for REC-1 and G519 

was added to a PCR mix containing RPL30 primers and amplified with 40 rounds of 

PCR. A volume of 10µl of each sample was run on 2% agarose gel.  

Clear bands were present for the REC-1 2% input sample (taken from 2µg DNA) and 

the Histone H3 (positive control) sample but not the normal IgG sample (negative 

control) thereby confirming the efficiency of the ChIP procedure (Figure 5.27). The 

Sample  A260/280 (1.8-2.0) DNA Conc (ng/µl) 

REC-1 control 1 1.91 91.3 

REC-1 control 2 1.89 140.2 

REC-1 control 3 1.88 151.1 

REC-1/R (Ibr 1µM)  1.87 106.1 

REC-1/R (Acal 1µM)  1.86 91.2 

G519 1.86 146.0 
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RPL30 locus was amplified in all the IRF4 samples but to varying degrees. A very clear 

band was seen in the REC-1/R (Ibr 1µM) sample suggesting that the 2µg concentration 

of chromatin incubated with the IRF4 antibody was sufficient for effective IP of IRF4. 

Since all the chromatin samples were diluted to 2µg, it was suggested that some of the 

chromatin may have been lost during the wash steps in some of the samples. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.27: PCR validation of the ChIP samples. Chromatin immunoprecipitations were 

performed using digested chromatin from REC-1, G519 and REC-1/R cells and either Histone 

H3, IRF4 or Normal Rabbit IgG. Purified DNA was analysed by standard PCR methods using 

Human RPL30 Exon 3 Primers. PCR products were observed for RPL30 in the input samples for 

REC-1 (lane 1) and for G519 (lane 7) and for the IRF4 ChIP samples with and without BTKi, but 

not in the Normal Rabbit IgG ChIP sample (lane 3) or NTC (lane 9). RPL30 (161bp). M= DNA 

ladder/marker. 
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The ChIP samples underwent a number of pre-sequencing tests to confirm 

concentration and fragment length using high sensitivity DNA kits. A DNA 

concentration of 50ng is required for sequencing on the Ion Torrent, Ion personal 

genome machine (Ion PGM). Due to slight non-selective variation in results associated 

with UV spectrophotometry on the Nanodrop, final DNA concentrations before 

sequencing were determined using the Qubit® dsDNA High Sensitivity assay kit (Life 

Technologies).  

Despite the presence of DNA from all samples after 40 rounds of PCR, analysis of DNA 

concentration obtained using a qubit fluorimeter showed that the concentration of 

DNA in the original sample was too low for sequencing in 4 of the samples (Table 5.4). 

Furthermore, analysis of the 4 samples containing DNA using a bio-analyser showed a 

big peak of DNA in all samples at around 2kb. These fragments were too large to 

sequence on the Ion PGM. Smaller fragments were also present but were very faint 

suggesting the chromatin was not fully digested to the required length. Figure 5.28 

shows a gel like image of the DNA fragment size for each sample and Figure 5.29 

shows the Electropherograms, both obtained following analysis on the bio-analyser. 
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Table 5.4: High sensitivity analysis of DNA concentration for each ChIP sample and 2% inputs. 

Samples were re quantified using a Qubit high sensitivity DNA detection kit. Results show an 

adequate quantity of DNA in the input samples for REC-1 and G519 and in one of the IRF4 IP 

samples, but insufficient DNA quantity in four other IP samples precipitated from 2µg of 

chromatin. 

 

 

 

 

 

 

 

 

 

 

 

 

Sample  DNA Conc (ng/µl) Amount of DNA (µl) 
for sequencing (50ng) 

dH2O to 
39.5µl 

REC-1 2% Input 4.6 10.9 28.6 

REC-1 H3 10.2 4.9 34.6 

REC-1 IgG - 39.5 - 

REC-1 IRF4 - 39.5 - 

REC-1/R (Ibr 1µM) IRF4 2.7 18.5 21 

REC-1/R (Acal 1µM) IRF4 - 39.5 - 

G519 2% input  5.34 9.4 30.1 

G519 IRF4 - 39.5  
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Figure 5.28: Electrophoresis gel-like image of each ChIP sample and the input samples. The 

four samples in Lane 3 (REC-1 IgG IP), Lane 4 (REC-1 IRF4 IP), Lane 6 (REC-1/R (Acal 1µM) IRF4 

IP)) and Lane 8 (G519 IRF4 IP) demonstrated complete absence of DNA. The four samples in 

Lane 1 (REC-1 2% input), Lane 2 (REC-1 Histone H3 IP), Lane 5 (REC-1/R (Ibr 1µM) IRF4 IP)) and 

lane 7 (G519 2% input) show presence of DNA however strong bands were present at around 

2000bp (2kb) as indicated. M= DNA ladder/marker. 

 

 

 

 

 

 

 

2Kb 
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Figure 5.29: Electropherograms obtained from the Bio-analyser showing DNA fragment size 

of each ChIP sample including the 2% inputs. The size of the DNA fragments is indicated by 

the numbers on the peaks. Red arrows point toward peaks of around 2Kb. 

 

 

REC-1 2% Input 

G519 2% Input 

REC-1 Histone H3 IP 

REC-1 normal IgG IP REC-1 IRF4 IP 

REC-1/R (Ibr 1µM) IRF4 IP REC-1/R (Acal 1µM) IRF4 IP 

G519 IRF4 IP 
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Given that there was no DNA in four of the samples, the experiment was repeated 

with the following optimisation steps. 

The seeding concentration of cells from each cell line remained the same at 5 X 106 in 

20ml culture media. However this time, the chromatin was digested using 0.8µl of 

micrococcal enzyme for 20 minutes with additional sonication in a water based 

bioruptor (Diagnode). For assessment of chromatin digestion and fragmentation, a ‘no 

sonication’ REC-1 control sample was added for comparison. Ten cycles of 30 seconds 

ON, and 30 seconds OFF produced appropriate length fragments (Figure 5.30). The 

purified DNA concentrations are shown in Table 5.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.30: Analysis of chromatin digestion and fragmentation pre immunoprecipitation- 

Experiment 2. Chromatin from 5 X 106 cells per sample was digested with 0.8µl of micrococcal 

nuclease and 10 rounds of sonication. The DNA was purified and 10μl was separated by 

electrophoresis on a 1% agarose gel. Lane 1 shows absence of DNA in the un digested/no 

sonication control, while lanes 2 – 7 show that the majority of chromatin from each sample 

was digested to 1 to 4 nucleosomes in length (150 to 500bp). M= DNA ladder/marker. 
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Table 5.5: Nanodrop assessment of DNA concentration and purity following DNA purification 

of various chromatin preparations pre immunoprecipitation- Experiment 2. 

 

Each chromatin sample was diluted to 2µg in 1X ChIP buffer. The same concentrations 

of antibodies were incubated with the chromatin. PCR validation of the ChIP procedure 

showed a clear band was present for the REC-1 and G519 input samples and the REC-1 

Histone H3 (positive control) but not the IgG sample, again confirming the efficiency of 

the ChIP procedure (Figure 5.31). However bands were very faint in all of the IRF4 

samples using the CST antibody at a concentration of 1 in 25. The DNA concentrations 

following IRF4 IP from 2µg of DNA were very low. The integrity of the DNA was also 

poor (Table 5.6). This suggested that concentration of chromatin to the specific IRF4 

antibody required further optimisation. 

 

 

 

 

 

 

 

Sample  A260/280 DNA Conc (ng/µl) 

REC-1  1.92 62.6 

REC-1  1.91 56.9 

REC-1  1.92 78.7 

REC-1/R (Ibr 1µM)  1.90 92.1 

REC-1/R (Acal 1µM)  1.89 195.8 

G519 1.90 118.8 
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Figure 5.31: PCR validation of ChIP procedure- Experiment 2. Chromatin 

immunoprecipitations were performed using digested chromatin from REC-1 and G519 cells 

and either Histone H3, IRF4 or Normal Rabbit IgG. Purified DNA was analysed by standard PCR 

methods using Human RPL30 Exon 3 Primers. PCR products were observed for RPL30 in the 

input samples for REC-1 (lane 1) and for G519 (lane 7), and the Histone H3 positive control 

(lane 2), but not in the Normal Rabbit IgG ChIP sample (lane 3), NTC (lane 9), or any of the IRF4 

ChIP samples (lanes 4, 5, 6 and 8). M= DNA ladder/marker. 
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Table 5.6: Nanodrop assessment of DNA concentration and purity following DNA purification 

of ChIP samples and 2 % inputs post immunoprecipitation- Experiment 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample  A260/280 DNA Conc (ng/µl) 

REC-1 (2% input)  1.97 10.2 

REC-1 (H3) 2.05 9.4 

REC-1 (IgG) 2.00 7.9 

REC-1 (IRF4) 2.20 3.0 

REC-1/R (Ibr 1µM) (IRF4) 3.62 1.6 

REC-1/R (Acal 1µM) (IRF4) 1.92 3.0 

G519 (2% input)  2.20 5.4 

G519 (IRF4) 2.23 3.6 
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A third experiment was performed using chromatin prepared from REC-1 and G519 

cells. This time, the chromatin was not diluted and the antibodies were added directly 

to the chromatin preparations at their original concentrations (also suggested by the 

protocol), therefore the chromatin concentration was increased but the antibody 

concentration was kept the same. In addition to using the CST IRF4 antibody, the 

alternative abcam MUM-1 antibody was tested. 

Immunoprecipitation of IRF4 was more defined using the anti-MUM-1 antibody and a 

chromatin concentration of 12µg (Figure 5.32, blue arrow), however whether this was 

due to the antibody or the higher concentration of chromatin was unclear.  

To determine whether the CST IRF4 antibody would be more effective at higher 

chromatin concentration, a 1 in 25 dilution of the antibody was incubated with 10µg of 

G519 chromatin and compared with results at 2µg.   

At 2µg, IRF4 was not successfully pulled out, however at 10µg, IP of IRF4 was much 

more defined (Figure 5.32, orange arrow).  

The DNA concentrations following IP from 10µg and 12µg chromatin were much higher 

than at 2µg, the quality of the DNA was also better (Table 5.7). 
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Figure 5.32: Immunoprecipitation of IRF4 at higher chromatin concentration. Chromatin 

immunoprecipitations were performed from different concentrations of digested chromatin 

from REC-1 and G519 cells and either Histone H3, Normal Rabbit IgG or IRF4 from cell 

signalling technology or MUM-1 from abcam. PCR products were observed for RPL30 in all 2% 

input samples including REC-1 (2µg), REC-1 (12µg), G519 (2µg) and G519 (10µg). PCR products 

were not present for IRF4 IP from REC-1 (2µg), or G519 (2µg). Products were clear for IRF4 IP 

from REC-1 chromatin (12µg) using the abcam anti MUM-1 antibody (blue arrow), and from 

G519 chromatin (10µg) using the CST anti-IRF4 antibody (orange arrow). No amplification of 

RPL30 was present in the Normal Rabbit IgG IP sample or NTC. M= DNA ladder/marker. 
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Table 5.7: Nanodrop assessment of DNA concentration and purity following ChIP at higher 

chromatin concentration. IRF4 was precipitated from higher concentrations of chromatin; 

10µg from G519, and 12µg from REC-1 chromatin. 

 

The DNA fragments from the G519 samples were analysed and re-quantified on the 

Bio-analyser using the high sensitivity DNA detection kit.  DNA was detected in the 

G519 2% input sample and most of the DNA fragments indicated on a gel-like image 

were between 150 and 200bp (Figure 5.33) and were sufficient for sequencing. Larger 

fragments were also present as shown on the electropherogram (Figure 5.34) but can 

be cleaned up using beads for size selection. The quantity of DNA detected in the G519 

2% input sample from the Bio-analyser using the high sensitivity kit was 10.9ng/µl, 

different to the nanodrop quantification 34.4ng/µl (Table 5.7). However, as shown in 

the gel-like image and electropherogram (Figure 5.33 and 5.34, respectively) no DNA 

was detected in the G519 IRF4 IP prepared from 10µg chromatin, despite the better 

DNA quantification and quality results obtained from the nanodrop. Again, it appeared 

that there was not sufficient DNA for sequencing. However, given the presence of DNA 

for the RPL30 locus following 40 rounds of PCR as shown on the agarose gel image 

(Figure 5.32, orange arrow), the G519 IRF4 sample was sequenced with the idea that 

the DNA would also be amplified in the process. 

Sample  A260/280 DNA Conc (ng/µl) 
 

REC-1 2% input 1.94 61.9 
 

REC-1 (abcam MUM-1 IP) 1.91 40.5 
 

G519 2% input 1.95 34.4 
 

G519 (CST IRF4 IP) 1.86 21.1 
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Figure 5.33: Electrophoresis gel-like image of the G519 2% input sample and the G519 IRF4 

sample following ChIP at higher chromatin concentration. ChIP of IRF4 was performed from 

10µg of G519 chromatin. DNA was detected by the Bio-analyser in the G519 2% input sample 

and most of the DNA fragments were between 150 and 200bp (lane 1). No DNA was detected 

in the G519 IRF4 IP prepared from 10µg chromatin (lane 2). M= DNA ladder/marker. 
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Figure 5.34: Electropherograms obtained from the Bio-analyser showing DNA fragment size 

for the G519 2% input sample and the IRF4 IP sample. The size of the DNA fragments is 

indicated by the numbers on the peaks. Small fragments were indicated by peaks of around 

100-250bp (red arrow) for the G519 2% input sample. No fragments were detected for the 

G519 IRF4 IP sample. Bio-analyser assessment of DNA concentration for the G519 2% input 

sample and the G519 IRF4 IP sample was 10.9ng/µl and 0.1ng/µl (respectively). 

 

 

 

 

 

 

G519 2% Input 

G519 IRF4 IP 
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The G519 IRF4 sample (10µg) was sequenced on the Ion PGM by Dr Michele Kiernan 

(University of Plymouth). Despite the absence of DNA obtained from the Bio-analyser, 

a successful library was generated from the sample and 79,000 reads were obtained.  

At this stage, the G519 IRF4 ChIP sample was only sequenced to see if sequencing 

reads could be obtained from the low amount of DNA. 

Therefore, the G519 IRF4 sample reads were aligned to the human genome with peak 

annotation (Figure 5.35). This generated a list of all peaks of > 0.0001 significance to 

either the 3’ or 5’ of genes and the distance the peak was from these genes (Table 5.8). 

However, in order to properly identify DNA sequences specifically bound to IRF4 in 

G519 cells, the normal IgG sample and the 2% G519 input sample should have been 

included to eliminate non-specific bias. Therefore detailed analysis was not 

undertaken, although given the interesting results from the protein co-

immunoprecipitation studies, a comparison of mitochondrial associated proteins 

(proteins from function group 2 and 6) was undertaken with potential IRF4 associated 

genes (Table 5.9).  This showed that IRF4 in G519 cells can be associated with DNA 

fragments from some of those proteins identified. 
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Figure 5.35: Peak annotations generated from the G519 ChIP sequencing reads. 
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Table 5.8: Sample of G519 sequencing read data. The list shows the results for the first 10 

IRF4 DNA targets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chr Region 
Center of 
peak Length 

Peak 
shape 
score P-value 5' gene 

5' 
distance 3' gene 

3' 
distance 

1 
125180106..
125180314 1.25E+08 209 26.53298 2E-155 RP11-344P13.1 3599581 CH17-333M13.2 18162865 

5 
49661458..4
9661574 49661504 117 23.14485 8.2E-119 CTD-2013M15.1 3765487 EMB 734617 

4 
49153148..4
9153288 49153198 141 17.90544 5.35E-72 TPI1P4 135993 RP11-1281K21.2 49882 

16 
46388681..4
6388807 46388743 127 17.09306 8.36E-66 PPP1R1AP2 10476164 ANKRD26P1 80533 

18 
108404..108
557 108470 154 15.32276 2.69E-53 RP11-683L23.6 14073 ROCK1P1 507 

3 
93470653..9
3470775 93470728 123 13.63451 1.25E-42 ABBA01000934.1 1956877 RNU6-488P 372988 

3 
93470416..9
3470545 93470449 130 13.57463 2.83E-42 ABBA01000934.1 1956640 RNU6-488P 373218 

16 
34583066..3
4583185 34583141 120 13.50516 7.29E-42 BCLAF1P2 314416 CTD-2144E22.9 358791 

Y 
11747623..1
1747716 11747669 94 12.75345 1.49E-37 RP11-295P22.2 273385 RCC2P1 33335 

5 
49659765..4
9659900 49659820 136 12.0967 5.5E-34 CTD-2013M15.1 3763794 EMB 736291 
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Mitochondrial and ribosome proteins IRF4-DNA 

binding sites 

Comments 

MRPS22 Mitochondrial Ribosomal Protein S22 0  

MRPS26 Mitochondrial Ribosomal Protein S26 0  

MRPS23 Mitochondrial Ribosomal Protein S23 0  

MRPS9 Mitochondrial Ribosomal Protein S9 0  

MRPL38 Mitochondrial Ribosomal Protein L38 0 Sites were found for MRPL 

32,33,35,37 and 39 

MRPL3 Mitochondrial Ribosomal Protein L3 1  

DAP3 Death-associated protein 3 1  

GADD45GIP1 Growth arrest and DNA-damage-

inducible proteins-interacting protein 1 

0  

Mitochondria and mitochondrial RNA   

ATP6V0D1 ATPase H+ transporting V0 subunit D1 2  

ATP5H ATP synthase, H+ transporting, 

mitochondrial Fo complex, subunit D 

0 Sites were found for 

ATP5HP2, P3, P4 

PPA2 Pyrophosphatase (Inorganic) 2 4  

ATP5O ATP Synthase Subunit O 0  

UQCRFS1 Ubiquinol-Cytochrome C Reductase, 

Rieske Iron-Sulfur Polypeptide 1 

3  

UQCRC2 Ubiquinol-Cytochrome C Reductase Core 

Protein 2) 

0 Sites were found for 

UQCRC2P1 

PMPCB Peptidase, Mitochondrial Processing Beta 

Subunit 

5  

TIMM44 Translocase Of Inner Mitochondrial 

Membrane 44 

2  

GRPEL1 GrpE Like 1, Mitochondrial 1  

KIAA1967 Deleted in Breast Cancer 1 0  

DNAJB1 DnaJ Heat Shock Protein Family (Hsp40) 

Member B1 

0 Sites were found for 

DNAJB8, 11, 12, 13, 14 

C11orl73 Chromosome 11, open reading frame 73 0 Sites were found for 33 

other Cllorf's 

DNAJ HSP40 (heat shock protein 40) 0  

 

Table 5.9: Comparison of mitochondrial associated proteins with potential IRF4 associated 

genes. 
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5.7 Discussion 

The results shown in this chapter attempt to characterise the role IRF4 has in 

neoplastic MCL cells. Results shown in chapter 3 and 4 demonstrate that the protein 

expression of IRF4 in MCL cells is downregulated in the neoplastic cells of both BTKi-

sensitive cell lines and primary cells, and that BTKi- resistance either innate or acquired 

either from pronged exposure to BTKi or through the influence of microenvironmental 

interactions do not show IRF4 downregulation. The initial question we asked was 

whether this downregulation was as a result of reduced gene transcription rather than 

because of increased protein degradation.  In REC-1 cells, IRF4 mRNA levels were 

found to be downregulated following Ibr treatment after 1 hour and maximally by 4 

hours correlating with the downregulation of IRF4 protein expression at 4-8 hours 

shown in previous chapters, suggesting that initial IRF4 expression-changes result from 

change to mRNA transcription as a specific response to treatment. However, IRF4 

mRNA levels were not maintained at this lower level with an increase seen over time 

although remaining lower relative to control. This differs to the protein expression of 

IRF4 in response to BTKi treatment which appears more downregulated with time 

suggesting additional/alternative mechanisms such as protein degradation are also 

involved in the control of IRF4. This response in mRNA levels was mirrored with Acal 

treatment although the response appeared delayed and may reflect the increased 

specificity of Acal and the higher reported IC50 dose.  

Further experiments indicated considerable differences in IRF4 mRNA expression in 

response to BTKi between sensitive and resistant cells. In the G519 cells IRF4 mRNA 

levels were shown to increase over time relative to the control cells with both Ibr and 

Acal BTKi, with an almost 10 fold increase seen at 48 hours in response to Ibr. This is 
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consistent with the observed changes to IRF4 protein expression in G519 cells 

particularly after 24 and 48 hours treatment.  This analysis clearly showed that the 

pattern of mRNA expression by G519 cells differed from that seen in BTKi treated REC-

1 cells. Similarly, in cells with acquired Ibr resistance (Ibr resistant REC-1 cells) IRF4 

mRNA was upregulated relative to the untreated control cells at 4 hours which differed 

to that observed with parental treated cells. 

These results suggest that the changes observed in IRF4 protein expression , at least at 

early stages, are at the level of transcription and differences exist in the transcription 

of IRF4 mRNA between cells with BTKi sensitivity and  resistance  which reflect IRF4 

protein expression. However, although these results are suggestive of a transcriptional 

control mechanism for IRF4, particularly given that IRF4 mRNA expression generally 

matched protein expression in each case, the fold change difference seen in REC-1 

cells following BTKi treatment was small and the sample size was small.  Therefore 

more replicates with the addition of  measurement of mRNA in control cells at the 

same time points (mRNA levels can vary under normal conditions ) would be required 

in order to confirm the significance of the data.   

To further determine the role IRF4 may have in response to BTKi treatment we looked 

for the protein associations of the molecule using co-immunoprecipitation. Initially this 

focussed on investigating the known interactions with the ETS family member PU.1 

which on binding with IRF4, results in release of the auto-inhibitory effect on the DNA 

binding region allowing IRF4 to bind its target sequence with much greater affinity 

(introduction section 1.4.1).  These interactions play an important role in B-cells 

maturation and development. However PU.1 was not detected in IRF4 protein 

precipitates from REC-1 cells following co-immunoprecipitation studies or in the mass 
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spectrometry analysis. In addition, we appreciate that failing to detect PU.1 in IRF4 

precipitates doesn’t prove lack of interaction. We therefore performed some further 

assessments of PU.1 expression in response to BTKi treatment. In assessing the 

response of PU.1 to BTKi treatment we found that in primary MCL cells co-cultured on 

stromal cells, unlike IRF4 expression,  protein PU.1 expression was not downregulated 

in response to BTKi when CD40L was absent and that PU.1 expression following MCL 

cell stimulation with CD40L remained stable (again the converse to what was seen with 

IRF4 protein expression). We would have expected if IRF4 and PU.1 were associated 

that they would show similar levels of expression. Assessment of levels of PU.1 mRNA 

in REC-1 cells further supports this contention. Expression of PU.1 mRNA in REC-1 cells 

in comparison to IRF4 mRNA levels was increased in response to BTKi with almost a log 

greater difference in PU.1 mRNA expression compared to IRF4 mRNA seen at 48 hours.  

Taken together these studies are suggestive that PU.1 is not a principal binding partner 

of IRF4 in our MCL cell lines, and that IRF4 regulates expression of its target genes 

through binding to other protein partners. 

Having explored the proteins of known associations with IRF4 we undertook further 

experiments to explore protein associations that had not previously been reported 

which might give insight into the role IRF4 plays in MCL biology.  

This element of the study employed immunoprecipitation as before, but in this case 

used mass spectrometry to determine protein association. The analysis identified a 

large number of co-precipitated proteins, the IRF4 protein itself was found only in 

precipitates where the specific antibodies were used and not seen in the control 

precipitates, confirming that the IP had worked. Further analysis of the co-precipitated 

proteins was therefore undertaken.   
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Initial analysis focussed on the subset of proteins (190 proteins) that were precipitated 

by both IRF4 test antibodies, but were not present in the control IP. This was done to 

focus on the proteins that were most likely to be significant. The proteins precipitated 

by both specific antibodies showed high similarity and data confidence analysis 

suggested that the probability of these proteins being co-precipitated by IRF4 but not 

control was p<0.00001 (chi squared test). Furthermore, analysis of functional 

relationships using STRING demonstrated that the proteins that were precipitated 

were linked at a functional level being mainly proteins with positive biosynthetic 

function: anabolic elements and were functionally consistent with a known function of 

IRF4 – to enhance anabolic processes196,197 and therefore the findings were biologically 

plausible. In particular, the link with mitochondrial proteins is interesting, this finding 

was not expected, however mitochondria have a recognised link to IRF4 196,197 and one 

that can be linked to chemo-resistance.198,199 

Further analysis to evaluate the specificity of IRF4 protein participates was undertaken. 

This analysis compared proteins which were present in control and IRF4 samples 

(presumed non-specific) with those present in both IRF4 precipitates (presumed 

specific), including proteins that were present or absent but also those that were 

significantly enriched (>2-fold) in either sample. This wider protein group was again 

analysed by STRING.  This analysis showed that ribosomal elements including RNA 

translational factors were a frequent finding in both the control and the IRF4 fractions, 

suggesting that some these protein types might be non-specific elements. However, 

one of the major aspects from the initial findings was confirmed – only the IRF4 test 

antibodies precipitated mitochondrial ribosomal elements. The presence of 
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mitochondrial ribosomal components only in IRF4 samples was highly significant 

(p<0.01 Chi square test). 

Therefore, the Proteomic study of IRF4 immunoprecipitation of REC-1 cells strongly 

suggests a particular association of IRF4 in REC-1 cells with mitochondrial ribosomal 

and functional processes. These results require confirmation by additional analysis, but 

are interesting. Mitochondrial proteins (while forming part of mitochondria) are 

encoded and synthesised by the main cellular DNA, not mitochondrial DNA, and are 

then exported to the cytoplasm where they are imported into the mitochondria and 

assembled. In short, it is plausible that IRF4 may associate with these proteins in 

nucleus, nucleolus or cytoplasm, the IRF4 does not have to enter the mitochondria to 

encounter them. We cannot say at what point the IRF4 binds to mitochondrial 

ribosomal proteins but given the functional link as referenced above it is certainly 

plausible that it might do so and that activation of mitochondrial function may 

contribute to the chemo-resistance associated with IRF4 expression.    

Experiments aiming to identify IRF4 target genes in BTKi sensitive and resistant MCL 

cell lines using ChIP analysis were limited due time constraints of this PhD and the 

extensive optimisation steps required for successful precipitation of IRF4 using the CST 

Simple ChIP enzymatic chromatin IP protocol.  

It was determined that a 20 minute incubation using 0.8ul of micrococcal nuclease 

with an additional 10 rounds of sonication was required in order to generate 

appropriate length fragments for ChIP-seq. This was confirmed by agarose gel 

electrophoresis and following assessment of the input DNA sample on the bio-

analyser. A concentration of 2µg of REC-1 chromatin was enough for successful ChIP of 

the histone H3 positive control as confirmed by amplification of the RPL30 locus, but 
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not for IRF4. At least 10µg of chromatin was required for immunoprecipitation of IRF4 

which showed a clear band for the RPL30 locus, however DNA from the G519 ChIP 

sample could not be detected using high sensitivity DNA quantification kits.  

Despite the absence of DNA, a successful library was generated from the G519 IRF4 

ChIP sample which may be due to the additional rounds of PCR required during DNA 

library preparation. In addition, a total of 79,000 reads were produced from the 

sample following sequencing of the DNA on the Ion Torrent PGM.  

Although the purified DNA from the G519 IRF4 ChIP sample was successfully 

sequenced, the resulting peaks are only relevant with an input DNA control. This would 

normally be sequenced in parallel with the ChIP sample. 

Furthermore, even though the reads generated were aligned to the human genome, 

the DNA sequences bound to IRF4 could not be accurately determined due to the 

absence of an appropriate IgG control. However it was noted that Spi-1 (the gene 

which gives rise to PU.1), was not detected in the G519 IRF4 DNA, providing further 

evidence for the lack of association with IRF4 in MCL. In addition, within the limitations 

outlined above and that this analysis was performed in G519 cells , it is interesting to 

note that genes which denote mitochondrial /ribosomal function were detected  in the 

G519 IRF4 DNA again suggesting a link of IRF4 to mitochondrial function. 
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MCL is a rare B-cell lymphoproliferative disorder that generally has poor outcome 

following conventional therapy. Inhibitors of BTK have significantly improved 

treatment outcomes for MCL patients. However it remains that a significant fraction of 

patients have primary resistance to BTKi and responding patients inevitably develop 

acquired resistance with aggressive relapse of the disease. Resistance to BTKi is 

therefore a major challenge in the management of MCL. 

This thesis builds on from existing knowledge of the mechanisms underlying the 

sensitivity of MCL cells to the first in class BTKi Ibr, and contributes further knowledge 

using the more selective BTKi Acal.  

In addition, this thesis contributes a significant body of evidence implicating IRF4 in 

BTKi response in both MCL cell lines and in primary cells possibly arising from 

activation of alternative survival pathways which modulate ERK1/2 phosphorylation.  

The findings with respect to IRF4 suggest it may have a role as a mediator of BTKi 

treatment-resistance in MCL and as a biomarker to predict response to BTKi therapy in 

the clinical setting. 

The downregulation of IRF4 in response to BTKi was significantly opposed following 

CD40L stimulation, therefore implicating CD40 signalling as a possible mechanism of 

resistance to BTKi within the cellular microenvironment of MCL. Further assessment of 

IRF4 protein interactions using the MCL cell line REC-1 identified a novel group of 

proteins associated with mitochondria which may be involved in mediating the IRF4-

mediated resistance to treatment with BTKi. Further investigation of these interactions 

may indicate novel targets for the design of therapeutic combinations which can 

overcome BTKi resistance in MCL.  
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6.1.1 Cellular responses to BTKi in MCL 

Given the spontaneous apoptosis of primary MCL cells in vitro, this study set out to 

characterise MCL cell line models of BTKi sensitivity and resistance. Previous studies 

have reported that the REC-1 cell line is valuable for the analysis of BTKi in MCL 26,106,200 

and this was confirmed and extended in this study: The REC-1 cells demonstrated 

sensitivity to BTKi showing dose dependant apoptosis in response to Ibr and a 

reduction of proliferation in response to both Ibr and Acal. In contrast, BTKi had no 

effect on G519 cells, again supporting other studies which have characterised these 

cells as BTKi resistant.145,201  

The JEKO-1 and JVM2 cells were also characterised as BTKi resistant as they only 

responded to Ibr at high dosage (10µM) which is likely to cause off-target activity in 

the cells due to the broad specificity of the Ibr kinome and indicates that effects 

observed at high dosage may not be a direct effect of BTK inhibition. This was 

supported by results using the more selective BTKi Acal, which compared with Ibr, did 

not induce substantial apoptosis in REC-1 cells or show any evidence of off-target 

effects even at exceptionally high dose.  

The findings with REC-1 are in accordance with another study reporting that minimal 

apoptosis was observed in REC-1 cells in response to the second generation BTKi, 

Spebrutinib (CC-292).106 Rather, inhibition of BTK in this study and others identify 

predominant effects on proliferation.145 In our studies, the effects on proliferation 

were not only induced by Ibr but also by Acal and both inhibitors reduced proliferation 

of REC-1 cells equally at low dosage (100nM). 

The observed low levels of apoptosis seen with treatment of MCL cells with BTKi is 

supported  by  both others in the field and by clinical observations -  in patients treated 



237 
 

with BTKi,  rapid apoptosis of circulating neoplastic cells  is not seen. However one of 

the known mechanisms of action of BTKi is to disrupt integrin mediated adhesion to 

the tissues rather than to directly inhibit survival. Again this is supported by clinical 

observations of the lymphocytosis seen in MCL and CLL patients directly following BTKi 

therapy which is accompanied by lymph node shrinkage.  This lack of cell attachment 

to the extracellular matrix (ECM)132,202 has been suggested to result in anoikis (a form 

of programmed cell death) of the leukaemia cells.   Certainly the mechanisms resulting 

in MCL cell death following BTKi treatment are not fully understood and could be a 

consideration for future work. 

6.1.2 Effect of the MCL microenvironment on the cellular response to BTKi 

MCL cells are recognised to be supported by accessory cells within a 

microenvironment providing signals for growth and survival, and known to be a major 

factor in causing resistance to chemotherapy. To investigate whether this MCL 

microenvironment influences responses to BTKi, this study developed a 2D in vitro 

model using two murine fibroblasts cell lines, one expressing CD40L and the other not 

expressing CD40L.  

It was rather surprising to find that REC-1 cells demonstrated dependency on CD40L; 

co-culture with fibroblast cells in the absence of CD40L did not alter the cellular 

response to BTKi, but co-culture in the presence of CD40L prevented the reduction in 

proliferation and attenuated cell death in response to BTKi. The murine fibroblasts 

expressing CD40L were also shown to support the survival of ex vivo primary MCL cells. 

The aggressive MCL subtypes demonstrated increased dependence on CD40L over the 

indolent subtypes, which has been shown in previous unpublished results by our group 

(Dr David Tucker, MD awarded 2017).  In response to BTKi, the primary MCL cells 
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behaved similarly to REC-1 cells showing increased apoptosis in response to Ibr while 

apoptosis was prevented in the presence of CD40L.    

In summary, these results demonstrated that REC-1 cells have a dependency on the 

tissue microenvironment in response to CD40L which mimics the behaviour of the cells 

in vivo and therefore represents a useful model to explore BTKi resistance pathways in 

MCL, and also suggests that CD40 signalling may play an important role in resistance to 

BTKi by increasing survival. 

6.1.3 Signalling responses to BTKi in MCL  

All MCL cell lines whether sensitive or resistant to Ibr, showed increased 

phosphorylation of BTK (pBTK-Y223) following IgM stimulation which was reduced 

following BTKi treatment. Similar results were seen in primary MCL cells although the 

degree of pBTK-Y223 following IgM stimulation was variable between cases.  

Again, in all cell lines, activation of the downstream effector molecule ERK1/2, 

appeared to be dependent on BTK signals as it was inhibited following Ibr treatment. 

These findings do not correlate with the cellular responses of each cell line following 

BTKi treatment and indicate that resistance mechanisms occur further downstream 

from ERK1/2. However, in the presence of BCR activation and CD40 stimulation, 

ERK1/2 phosphorylation was only partially reduced, suggesting that there is an 

additional route for ERK1/2 activation induced by BCR or CD40 signalling, possibly 

through activation of MAPK and PI3K pathways. A previous study by Ma et al 145 

showed that reduced phosphorylation of ERK and AKT levels after Ibr treatment 

correlated with cytotoxic sensitivity of MCL cells. It has been suggested by others that 

activation of PI3K-AKT causes primary resistance to Ibr in MCL.138,145 Therefore it would 
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seem mechanistically plausible for clinical studies to use BTKi in combination with PI3K 

inhibitors. 

6.1.4 IRF4 expression in response to BTKi in MCL  

The role of IRF4 in the pathogenesis of other NHLs such as DLBCL and MM is well 

understood. Both DLBCL and MM respond well to treatment which downregulates 

IRF4 expression. IRF4 also has defined roles in CLL, HL and ALL and is believed to 

contribute to disease pathogenesis. Evidence supporting a role for IRF4 in MCL biology 

is lacking, so given the preliminary results by the group indicating downregulation of 

IRF4  in CLL patients treated with BTKi, it was of  particular interest to investigate its 

expression in response to BTKi treatment in MCL. 

This study showed that IRF4 was downregulated by BTKi (both Ibr and Acal) in sensitive 

REC-1 cells, but not in REC-1 cells with acquired Ibr resistance or any of the innate 

resistant cell lines. Expression of IRF4 mRNA showed that downregulation of IRF4 was 

an early response to BTKi treatment in REC-1 cells and was prevented / increased in 

REC-1 cells with acquired Ibr resistance. These findings were validated in primary MCL 

cell samples from treated patients (n=8) analysed before and during BTKi treatment 

showing that IRF4 was downregulated in 7 samples from patients shown to be 

clinically responding to BTKi and was not downregulated in 1 refractory case.  

Consistent with the protein and mRNA expression of IRF4 in sensitive REC-1 cells in 

response to Ibr, IRF4 downregulation was also shown to be an early response to 

therapy occurring within the first treatment cycle and was sustained over several 

treatment cycles until relapse when its downregulation was prevented. Furthermore, 

IRF4 was not downregulated over several treatment cycles in a patient demonstrating 

primary resistance to BTKi (determined clinically).  
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These findings indicated that IRF4 may be involved in the development of both primary 

and acquired resistance to BTKi in MCL. In addition the observation that IRF4 was 

involved in treatment response to BTKi indicated it may have potential use as a 

biomarker in a clinical setting.  

Although only representative of 8 cases, these results represent the largest study of 

IRF4 expression in matched pre and post BTKi treatment patient samples thus far and 

show encouraging results. A larger panel of MCL patient samples would however 

strengthen the data. 

Modulation of IRF4 by CD40 signalling, a potential mechanism of BTKi resistance 

Unlike pERK, the downregulation of IRF4 was not altered in response to BCR activation 

in sensitive REC-1 cells; IRF4 was however modulated by CD40L stimulation which 

prevented its down-regulation in response to Ibr and Acal. This correlates with the 

enhanced survival and proliferation of the REC-1 cells and suggests an alternative 

route for IRF4 activation, possibly via CD40L induced activation of NFB which is a 

direct target of IRF4.147  In vitro experiments with primary MCL cells were consistent 

with results from REC-1 cells, IRF4 was downregulated by BTKi (both Ibr and Acal) in 

the absence of CD40L, but this effect was prevented in the presence of CD40L.   

Recently, it has been demonstrated that CD40L activation of the alternative NFB 

pathway has a major impact on the drug response in MCL. Rauert-Wunderlich et al 203  

showed that CD40L activation of the alternative NFB pathway in MCL led to 

independency of classical NFB signalling which resulted in resistance to BCR 

inhibitors. 
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Taken together these findings suggest that signals from the tissue microenvironment 

may modulate drug response in MCL and that CD40L signalling may have a role in 

resistance to BTK inhibitors by modulating expression of IRF4 through NFB. On the 

other hand, dependency on CD40L was lost in REC-1 cells with acquired BTKi resistance 

(both Ibr and Acal) suggesting that ‘acquired resistance’ to BTKi more likely occurs 

through an intrinsic mechanism. Furthermore, BTK activation was restored in these 

cells in the presence of both Ibr and Acal and correlated with the sustained 

proliferation of the cells. 

It is possible that the REC-1 cells with acquired BTKi resistance had developed a BTK 

mutation, as has been described in patients on BTKi in CLL and MCL and discussed in 

further detail in the introduction (section 1.3.7), causing ineffective binding of each 

inhibitor to the BTK C481 residue, and therefore BTK phosphorylation was no longer 

reduced in response to BTKi.  Indeed in these cells we saw an increased level of pBTK-

Y223 suggesting a more aggressive proliferative phenotype. This would also explain the 

sustained levels of IRF4 in REC-1 cells with acquired Ibr resistance which were not 

downregulated by Ibr and matched IRF4 expression seen in the untreated parent REC-

1 cells. 

However, this is different from the innate resistant cells (G519, JEKO-1 and JVM2) in 

which pBTK Y223 was reduced and IRF4 was not downregulated by BTKi suggesting the 

drug was still able to bind, only it was ineffective suggesting modulation via other 

mechanisms, such as alternative pathway activation via stimulation from the 

microenvironment, are involved in primary resistance. Detection of the BTK C418S 

mutation was not carried out in this study but would be a consideration in future 

studies in order to confirm the predictions made above. This could be carried out on 
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parent REC-1 cells and compared with the acquired BTKi resistant REC-1 cells and an 

MCL cell line with innate BTKi resistance such as G519.  

Assessment of IRF4-protein interactions in REC-1 cells  

It is well known that the most common binding partner for IRF4 in B-cells is ETS family 

member PU.1.150,151,159 This study showed no evidence of IRF4 interacting with PU.1 in 

BTKi sensitive REC-1 cells, and no link between PU.1 and IRF4 response to BTKi in 

primary MCL cells.  Interestingly, detailed assessment of IRF4- protein interactions by 

SWATH mass spectrometry revealed a strong relationship with mitochondrial proteins. 

This finding was novel, however mitochondria have a recognised link to IRF4 197 and 

one that can be linked to chemo-resistance. In studies of CLL, resistance to 

chemotherapy has been associated with increased mitochondrial mass which reduced 

sensitivity to fludarabine nucleoside 198 and correlated with the apoptotic response of 

the CLL cells. 

Further work will need to be carried out to prove the significance of these protein 

interactions and whether BTKi have effects on mitochondrial function. 

Use of IRF4 as a biomarker of BTKi response 

Findings from this study provide evidence that IRF4 is associated with response to BTKi 

treatment in MCL and could have potential use as a biomarker to predict response to 

BTKi therapy in a clinical setting.  

This would prevent unnecessary administration of BTKi to patients who do not respond 

to therapy (identified by absence of IRF4 downregulation within the first treatment 

cycle) and also those who are acquiring resistance to BTKi (identified by sustained IRF4 

expression following a period of downregulation). Early prediction of response to BTKi 
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would allow patients to be treated with alternative treatment options and thus 

improve treatment outcomes. 

Other studies have suggested early detection of the relapse specific mutation during 

Ibr treatment by identification of an evolving minute mutant clone.135  At present, this 

can only be achieved using deep targeted sequencing of the BTK gene either through 

NGS, which is costly, or Sanger sequencing (less sensitive), this however would not 

benefit cases of primary BTKi resistance where  it has been shown in previous studies 

that the mutation is not present.138  

Therefore monitoring IRF4 protein levels by flow cytometry or ELISA (enzyme-linked 

immunosorbent assay), would be a cheaper alternative to sequencing and would 

determine both primary BTKi resistance as well as onset of secondary resistance to Ibr 

and other BTK inhibitors. The use of flow cytometry to assess IRF4 levels along with 

pBTK-Y223 expression in the neoplastic B-cells would be a rapid and cost effective 

method to monitor patients on BTKi treatment compared to screening all patient 

samples for the presence of BTK mutations by NGS.  

Using data generated from this study, our group are currently optimising a method for 

assessment of IRF4 expression by flow cytometry in paired pre-treatment / BTKi-

treated samples in patients with CLL where IRF4 expression specifically in the 

neoplastic B-cells can be determined. CLL cases were chosen for optimisation studies 

due to the more frequent condition and guaranteed peripheral lymphocytosis which 

can be validated against detection of IRF4 by western blotting and 

immunohybridisation studies.  It is however anticipated that this will be assessed in 

MCL patients on BTKi treatment once these initial optimisation and validation steps 

are confirmed. 
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6.1.5 Alternative therapy combinations 

It was hoped that results from the chromatin IP studies would have generated insights 

into the role IRF4 may have in BTKi treatment in MCL.  This work is on-going but having 

performed initial optimisation experiments with the generation of gene-annotated 

reads it can be continued.  The proteomic study revealed some interesting insights, 

again which need validation, but which confirmed, could potentiate the evaluation of 

drugs which target mitochondrial function. Venetoclax is an oral selective BCL2 

inhibitor which is known to target mitochondrial metabolism and indeed combinations 

of Ibr with Venetoclax are showing promise 204 and are currently being evaluated in on-

going clinical trials.  

Our studies also show that MCL cells can overcome sensitivity to BTK inhibition 

through alternative pathway activation. It has been shown by others that one 

consequence of relapse-specific mutation is the activation of PI3K and CDK4 pathways 

which promote cell survival and proliferation.138 MCL is driven by cyclin D1 

overexpression, and it has been shown that blocking CDK4 (which normally interacts 

with cyclin D1 to promote cell cycle progression) makes Ibr-resistant cells carrying the 

relapse-specific mutation sensitive to drugs that inhibit PI3K and also re-sensitises cells 

to Ibr. Therefore it has been suggested that targeting CDK4 with palbociclib plus a BTK 

inhibitor may be able to override acquired resistance in MCL.  

Given the knowledge that in both DLBCL and MM IRF4 expression is downregulated 

upon treatment with lenolidomide it was interesting to note that during the course of 

this study a clinical trial was initiated testing lenolidamide in combination with Ibr in 

MCL (Trial ID: NCT02446236) and has shown encouraging results. This again is 

suggestive of the role IRF4 may have in the BTKi-treatment response in MCL. 
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6.1.6 Conclusion  

This thesis contributes significantly to the understanding on the particular sensitivity of 

MCL cells to BTK inhibition. Overall, this study has identified that BTKi induces 

downregulation of IRF4 in sensitive but not resistant MCL cell lines, and that 

downregulation is opposed by CD40L. CD40L encountered in the cellular 

microenvironment supports the proliferation and survival of MCL cells, and protects 

them from the effects of BTK inhibition.  This suggests that the expression of IRF4 

following treatment with BTKi might be a biomarker for BTKi-sensitivity in MCL, and 

that mitochondrial proteins modulated by IRF4 may play an important role in MCL 

treatment response. 
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Analysis of flow cytometry data  

 

Results were acquired using a BD AccuriTM C6 flow cytometer (BD) and data were 

analysed using BD AccuriTM CFlow Plus software (BD Biosciences).  

For analysis of apoptosis, a two dimensional (2D) plot of forward/side scatter identified 

populations of apoptotic or dead cells (small with low-forward scatter and irregular 

with increased side scatter) (Figure_Apx 1). This population was confirmed to express 

Annexin V consistent with the occurrence of apoptosis. Using this plot, the viable and 

apoptotic/dead cells were separately gated to determine the percentage viability 

within the sample (Figure_Apx 2). 

For the remainder of analyses, a gate was placed only around the viable lymphocyte 

population and assessed in relation to fluorescence of an isotype control. Proliferation 

was assessed using the nuclear proliferation antigen Ki67 and expressed according to 

the percentage of permeabilised viable cells expressing Ki67 –FITC (Figure_Apx 3). The 

activation of BTK was assessed using an antibody recognising phosphorylation of one 

of the activation epitopes of BTK (pBTK-Y223-PE) in permeabilised cells. The activation 

of BTK in these cells was expressed as the median fluorescence intensity of the peak. 

The median rather than the mean was chosen as the peaks produced from primary 

cells would often be skewed (Figure_Apx 4).       

For experiments using primary MCL cells, a forward / side scatter plot was obtained 

and a gate was placed on the population of cells containing lymphocytes (similar to the 

cell line approach above).  The CD5 / CD19 dual-staining population of cells (mantle 

cell population) within this gate were identified according to their fluorescence 

(compared with isotype control antibody). Apoptosis, proliferation and BTK 

phosphorylation data was determined as previously described, but only from the 
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CD5/19 positive population of cells.  Example of analysis plots to determine the 

percentage of apoptosis of primary cells labelled with MCL surface markers is shown 

(Figure_Apx 5) or median fluorescence intensity of BTK Y223 phosphorylation in 

primary MCL cells (Figure_Apx 6). 

 

 

 

 

 

 

 

Figure_Apx 1: Populations of viable or apoptotic lymphocytes using a forward (FSC-A) vs side 

scatter (SSC-A) plot. Viable lymphocytes with high forward scatter are shown in black, 

apoptotic/dead cells with low forward scatter and high side-scatter are shown in red.  

 

 

 

 

 

 

 

 

Figure_Apx 2: Example of FACS analysis plots used to determine the percentage of apoptosis 

of MCL cell lines. Using a forward/side scatter plot, a gate was placed around the population 

of cells containing both viable and apoptotic lymphocytes (labelled P1) (left).  Analysis on 

these cells using a peak plot of FITC fluorescence determined two defined populations.  A 

threshold line was placed between these defined populations to determine the percentage of 

annexin V-positive cells, shown in V1-R (right). 
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Figure_Apx 3: Example of FACS analysis plots used to determine the percentage of 

proliferation of MCL cell lines. Using a forward/side scatter plot, a gate was placed around the 

population of cells containing only the viable lymphocytes (labelled P1) (left). Using a peak 

plot, fluorescence from FITC labelled Ki67 positive cells was gated on the P1 cell population. A 

threshold line was placed between the Ki67 negative and positive cells to determine the 

percentage of the peak containing Ki67 positive cells, shown in V1-R (right). 

 

 

 

 

 

 

 

 

 

Figure_Apx 4: Example of FACS analysis plots used to calculate the median fluorescence 

intensity for BTK phosphorylation in MCL cell lines. Using a forward/side scatter plot, a gate 

was placed around the population of cells containing only the viable lymphocytes (labelled P1) 

(left). The median fluorescence intensity was calculated for PE labelled BTK Y223 positive cells 

gated on P1. 
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Figure_Apx 5: Example analysis plots of apoptosis in primary MCL cells. Using a forward/side 

scatter plot, a gate was placed around the population of cells containing lymphocytes (labelled 

P1) (top left). An isotype control (top right) and CD5/CD19 positive population (bottom left) 

allowed MCL cells to be identified. The percentage of annexin V-positive cells was applied to 

the CD5/CD19 positive cells to obtain the level of apoptosis (bottom right). 
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IgG1-PE/ IgG1-APC 

CD19-APC/CD5-PE 

positive cells 
Apoptosis of CD19/CD5 

positive cells only 



251 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure_Apx 6: Analysis to determine median fluorescence intensity of BTK Y223 

phosphorylation in primary MCL cells. Using the gating strategy described in Figure_Apx 5, the 

median fluorescence intensity of the BTK Y223-PE peak was determined for the CD5/CD19 

positive cells. 

  

Unstained viable cells shown in P1  Isotype control cells             

IgG1-FITC/ IgG1-PE/ IgG1-APC 

CD19-FITC/CD5-APC positive 

cells shown in Q5-UR 
Phosphorylation of BTK Y223-PE in 

CD19/CD5 positive cells only 
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