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Abstract Polymorphous concepts are hard to learn, and this is perhaps surprising because

they, like many natural concepts, have an overall similarity structure. However, the dimen-

sional summation hypothesis (Milton & Wills, 2004) predicts this difficulty. It also makes a

number of other predictions about polymorphous concept formation, which are tested here.

In Experiment 1 we confirm the theory’s prediction that polymorphous concept formation

should be facilitated by deterministic pretraining on the constituent features of the stimulus.

This facilitation is relative to an equivalent amount of training on the polymorphous con-

cept itself. In Experiments 2–4, the dimensional summation account of this single feature

pretraining effect is contrasted with some other accounts, including a more general strategic

account (Experiment 2), seriality of training and stimulus decomposition accounts (Exper-

iment 3), and the role of errors (Experiment 4). The dimensional summation hypothesis

provides the best account of these data. In Experiment 5, a further prediction is confirmed

— the single feature pretraining effect is eliminated by a concurrent counting task. The

current experiments suggest the hypothesis that natural concepts might be acquired by the

deliberate serial summation of evidence. This idea has testable implications for classroom

learning.

Keywords Categorization · overall similarity · family resemblance · dual-process theory



POLYMORPHOUS CONCEPTS 3

A polymorphous concept is one defined by an n-out-of-m rule (Ryle, 1951). For example, in

a set of geometric shapes that vary in the three stimulus dimensions of size (large or small),

shape (square or triangle), and shade (black or white), one polymorphous category would be

defined by the rule “category A is at least two of small, square, and white”. In an undergradu-

ate project subsequently published in Nature, Stephen Lea and colleagues demonstrated that

people found polymorphous concepts harder to acquire than either conjunctive (e.g. “large

AND square”) or disjunctive (e.g. “black OR triangular”) concepts (Dennis, Hampton, &

Lea, 1973).

In a similar vein, Shepard, Hovland, and Jenkins (1961) had previously demonstrated

that three-dimension polymorphous concepts (a.k.a. Type IV problems) were harder to ac-

quire than single dimension concepts (Type I problems, e.g. “category A is square”), and

two dimension exclusive-or concepts (Type II problems, e.g. “white squares OR black tri-

angles”). The former of Shepard’s results is easily replicated (e.g. Lewandowsky, 2011;

Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994; Rehder & Hoffman, 2005); the

latter is perhaps more elusive (Kurtz, Stanton, Romero, & Morris, 2013). Polymorphous

concept formation has also been studied with five dimension stimuli in both people and pi-

geons. People took on average 440 trials to reach 85% accuracy on these problems (Wills,

Noury, Moberly, & Newport, 2006); pigeons never came under control of all five features

(Lea, Lohmann, & Ryan, 1993).

In summary, polymorphous concepts are hard to learn, for both humans and pigeons.

This is perhaps somewhat surprising because, as Dennis et al. (1973) pointed out, many

everyday concepts seem to be polymorphous in nature. For example, Wittgenstein (1958)

argued that many concepts have a polymorphous structure, and he described natural cate-

gories as being characterized by a set of “family resemblances”. In psychology, a similar

point was made and evidenced by Rosch (e.g. Rosch & Mervis, 1975). It is perhaps odd that
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the human, or pigeon, brain, which has presumably adapted to learn concepts of the form

occurring in their environment, should find polymorphous concepts so hard to acquire.

The puzzle appeared to deepen in the 1980s when evidence emerged that people switch

from classification by dimensional rules, to classification by overall similarity, when time or

cognitive resources are scarce (e.g. Kemler Nelson, 1984; Smith & Kemler Nelson, 1984;

Smith & Shapiro, 1989; Ward, 1983). A polymorphous classification is a form of overall

similarity classification, so it seemed striking that classification under time pressure, con-

current load, or incidental conditions, should take a form that people apparently found so

difficult to master when not under those constraints. These results, among others, led to a

number of theorists proposing dual-process accounts of category learning, in which an im-

plicit system learns by overall similarity and an explicit system attempts to extract simple

rules (e.g. Ashby, Alfonso-Reese, Turken, & Waldron, 1998).

By the 21st century, this dual-process view of category learning became sufficiently

popular that for some it was viewed more as an established fact than as a theory (Ashby

& Maddox, 2011). Against this context, our lab reported a number of cases where over-

all similarity classification was more effortful than single dimension classification. Time

pressure and concurrent load reduced overall similarity classification, and increased single

dimension classification (Milton, Longmore, & Wills, 2008; Wills, Milton, Longmore, Hes-

ter, & Robinson, 2013). Instructions to respond meticulously increased overall similarity

classification, and decreased single dimension classification (Wills et al., 2013). Those who

employed overall similarity classification had more frontal lobe activation and larger work-

ing memory capacities than those employing single dimension classification (Milton, Wills,

& Hodgson, 2009; Wills et al., 2013).

One interpretation of our results is that the relationship between effort and overall simi-

larity classification depends on details of the experimental procedure. In other words, there



POLYMORPHOUS CONCEPTS 5

were differences in our procedures, relative to the earlier work, and these differences led

to us failing to observe low effort overall similarity classification. An alternative interpreta-

tion, which we favor, is that results appearing to show overall similarity classification is a

low effort “fall back” mechanism arise from methodological or analytic confounds. For ex-

ample, the conclusions of the Kemler Nelson, Smith, and Ward procedures cited above can

be shown to be artefacts of their analysis technique (Wills, Inkster, & Milton, 2015). A range

of other results appearing to support overall similarity classification as a low effort classifi-

cation mechanism (Filoteo, Lauritzen, & Maddox, 2010; Nomura et al., 2007; Smith et al.,

2014; Spiering & Ashby, 2008; Waldron & Ashby, 2001; Zeithamova & Maddox, 2006),

also turn out to be flawed (Carpenter, Wills, Benattayallah, & Milton, 2016; Edmunds, Mil-

ton, & Wills, 2018; Edmunds, Wills, & Milton, 2019; Le Pelley, Newell, & Nosofsky, 2019;

Milton & Pothos, 2011; Newell, Dunn, & Kalish, 2010; Newell, Moore, Wills, & Milton,

2013; Tharp & Pickering, 2009; Wills et al., 2019). In summary, the existing evidence is

largely compatible with the idea that overall similarity classification is more effortful than

single dimension classification.

We have previously proposed the dimensional summation theory (Milton & Wills, 2004)

as an account of why overall similarity classification is so effortful. In brief, the theory says

that when participants classify by overall similarity, they engage in an explicit, serial, coun-

ting process. They count up the number of dimensions in the stimulus that are characteristic

of each of the candidate categories, and pick the category with the highest total. For ex-

ample, imagine [black, square, large] are characteristic of category A, while [white,

triangle, small] are characteristic of category B. The participant is presented with a

small black triangle. They note that one dimension (color) is characteristic of category A,

while two dimensions (shape, size) are characteristic of category B. They therefore conclude

that the stimulus belongs to category B. This dimensional summation account explains why



6 Andy J. Wills et al.

overall similarity classification is more effortful and time consuming than single-dimension

classification—overall similarity classification is in effect the summation of several single

dimension classifications.

Dimensional summation theory also predicts that accurate polymorphous classification

should be difficult. In part, this is because polymorphous concepts are a type of overall

similarity category structure, and hence require summation across multiple dimensions. Di-

mensional summation theory predicts that polymorphous concepts should be particularly

difficult to acquire because it is hard to determine which stimulus features are characteristic

of which categories. For example, in a five dimension, two category polymorphous classifi-

cation problem, such as the one depicted in Figure 1 and Table 1, any given feature occurs

11 times in one category and 5 times in the other category. It will therefore take consider-

able exposure to the category structure to reliably determine which category each feature is

more characteristic of. This information is required by a dimensional summation strategy to

classify polymorphous concepts accurately.

Dimensional summation theory’s account of the difficulty of polymorphous classifica-

tion leads to a prediction — polymorphous classification should become easier if one first

receives deterministic training on each of the stimulus dimensions. For example, one is

first trained that horizontal bars indicate category A, and vertical bars indicate category B.

Having mastered this simple discrimination, one is then trained on each of the other four

dimensions in turn, before commencing the polymorphous classification problem. A partic-

ipant who is pretrained in this way is then in a position to immediately apply a dimensional

summation strategy, using the knowledge they have already acquired about each of the con-

stituent features.

This prediction receives informal support from the results of Wills et al. (2009) where,

with this kind of single feature pretraining, around two thirds of participants (both pigeon
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Category A Category B
lines color shape trapezium flankers lines color shape trapezium flankers

horizontal yellow stars long-base fine vertical blue blobs long-top coarse
horizontal yellow stars long-base coarse vertical blue blobs long-top fine
horizontal yellow stars long-top fine vertical blue blobs long-base coarse
horizontal yellow blobs long-base fine vertical blue stars long-top coarse
horizontal blue stars long-base fine vertical yellow blobs long-top coarse

vertical yellow stars long-base fine horizontal blue blobs long-top coarse
horizontal yellow stars long-top coarse vertical blue blobs long-base fine
horizontal yellow blobs long-base coarse vertical blue stars long-top fine
horizontal blue stars long-base coarse vertical yellow blobs long-top fine

vertical yellow stars long-base coarse horizontal blue blobs long-top fine
horizontal yellow blobs long-top fine vertical blue stars long-base coarse
horizontal blue stars long-top fine vertical yellow blobs long-base coarse

vertical yellow stars long-top fine horizontal blue blobs long-base coarse
horizontal blue blobs long-base fine vertical yellow stars long-top coarse

vertical yellow blobs long-base fine horizontal blue stars long-top coarse
vertical blue stars long-base fine horizontal yellow blobs long-top coarse

Table 1 The five dimension two category polymorphous classification employed in the current experiments.
Stimulus dimensions are as shown in Figure 1. The most typical stimuli are shown above the first dotted
line. Stimuli that differ by one feature from these are shown between the first and second dotted line. The
remainder of the stimuli, below the second dotted line, differ from the most typical examples of the category
by two features.

and human) successfully classified a polymorphous category structure on the basis of overall

similarity (see also Lea et al., 2018). However, these previously reported experiments had

no control group against which to compare the pretrained group. In the current set of exper-

iments, control participants received an equivalent amount of training on the polymorphous

concept itself.

Outline of the paper

In Experiment 1 we demonstrate that single feature pretraining increases accuracy on a

subsequent five dimension polymorphous classification, relative to an equivalent amount of

training on the polymorphous classification itself. It also increases reaction time. Experiment

2 shows, through a partial reversal procedure, that the pretraining advantage is specific to the

feature-category information learned in pretraining, and not to some more general strategic



8 Andy J. Wills et al.

Fig. 1 Examples of the stimuli employed in the current experiments. The stimulus on the left is the most
typical member of category A; on the right is the most typical member of category B. Image credit: Andy J.
Wills, CC-BY-SA 4.0. https://osf.io/4g6az/

or motivational factor. In Experiments 3 and 4, we demonstrate that, as predicted by dimen-

sional summation theory, it is the deterministic structure of the single feature pretraining

that leads to the advantage, and not a range of other coincidental differences. Finally, in

Experiment 5, we test a prediction of dimensional summation theory that the single feature

pretraining advantage should be reduced or eliminated by a concurrent counting task — a

task that should interfere with the counting operations assumed to underlie high-accuracy

polymorphous classification. This prediction is confirmed.

Experiment 1

In Experiment 1, we compared single feature pretraining on a five dimension polymorphous

concept to an equivalent amount of training on the polymorphous problem itself. We em-

ployed a between subjects manipulation, with a yoking procedure to match overall training

length across randomly-selected pairs of participants.
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Method

Participants and apparatus

Twenty-four people participated in this experiment, randomly allocated to two between sub-

ject conditions, with the constraint that each condition had twelve participants. The sample

size was decided before data collection on the basis that is was sufficient to detect large

between-subject effects (d = 1.2 at 80% power). All participants in the current paper were

undergraduate students from the University of Exeter. In all experiments, the stimuli were

presented on a 17-inch monitor, placed approximately 1 meter from the participant at eye

level. Responses were collected via a standard keyboard.

Stimuli

Two types of stimuli were employed in the current experiment: five feature stimuli and sin-

gle feature stimuli. Figure 1 shows two five feature stimuli, and Table 1 shows the category

structure. Each five feature stimulus had five binary stimulus dimensions: (1) orientation of

the center stripes (horizontal or vertical), (2) background color of the center stripes (yellow

or blue), (3) icon shape (“stars” or “blobs”), (4) trapezium shape (long-base or long-top), and

(5) flanker texture (fine or coarse). These stimuli were similar to those used in related exper-

iments in pigeons (Lea, Wills, & Ryan, 2006). Each single feature stimulus comprised just

one feature, selected from the five feature stimuli (e.g. a long-base trapezium). All stimuli

were presented on a mid-gray background, and the five feature stimuli were approximately

14×7 degrees of visual angle in size, excluding that background. The size and location of

features in the single feature stimuli were the same as the corresponding features in the five

feature stimuli, with the remaining four features absent. In the single feature presentation of
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the center-stripes’ background color, the color was depicted as a solid square of the same

dimensions as the center stripes.

Ten single feature stimuli, and thirty-two five feature stimuli (see Table 1), are possi-

ble within this stimulus set. Five of the single feature stimuli were assigned to category A

(horizontal, yellow, stars, long-base, fine); the remaining five single feature stimuli were as-

signed to category B (vertical, blue, blobs, long-top, coarse). The category membership of

the five feature stimuli was determined by the number of category A and category B features

presented — where the number of category A features exceeded the number of category B

features, the item was assigned to category A, otherwise it was assigned to category B.

For example the stimulus [horizontal, blue, stars, long top, fine] was assigned

to category A because it has three category A features [horizontal, stars, fine] and

two category B features [blue, long top].

Procedure

Participants were randomly paired for the purposes of yoked training. In each yoked pair

of participants, one was randomly assigned to the single feature condition, and the other to

the control condition. The single feature participant was trained on the single feature stimuli

to an errorless criterion, and then trained on the five feature stimuli. The yoked control

participant received the same total number of training trials as the single feature participant,

but trained on the five feature stimuli from the outset.

Each training trial began with the presentation of the to-be-categorized stimulus, which

remained on the screen until the participant classified it as either a member of category A

(by pressing the “X” key) or a member of category B (by pressing the “>” key). A feedback

message immediately followed, informing the participant whether they were correct or in-

correct, and also giving the correct category membership (e.g. “Correct. It was category A”
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or “Wrong! It was category B”). The next trial began 2000 ms after the onset of the feed-

back message. In every block, each presented stimulus occurred with equal frequency and

the order of presentation was randomized. Participants were trained in blocks of 32 trials,

with the opportunity to rest for a few seconds at the end of each block. The participant’s

percent correct score for the current block was presented to them at the end of the block,

along with a statement that the target accuracy was 100%.

Each single feature participant trained on one stimulus dimension at a time, reaching a

criterion of one errorless block on that stimulus dimension before being trained on the next.

The stimulus dimensions were trained in a different random order for each participant. After

reaching criterion on the fifth stimulus dimension, single feature participants were given a

30-item test on all the single feature stimuli (each feature was presented three times, in a

random order). The procedure for these test trials was identical to the training procedure

above, except that no feedback was given. One or more errors on this test led to the single

feature training phase being restarted. Once the single feature participant had achieved er-

rorless performance on each of the dimensions and on the 30-item test, they were trained

on the five feature stimuli for 8 blocks (receiving feedback, as before). The yoked control

participant received the same number of blocks of training on the five feature stimuli as the

single feature participant had received on the single feature stimuli, and then continued to

train on the five feature stimuli for a further 8 blocks.

Results and discussion

The raw data for this experiment are archived along with the analysis scripts at https://osf.io/4g6az/.

All data analysis was conducted with R (R Core Team, 2019), using principal packages dplyr

(Wickham, Francois, Henry, & Muller, 2019), effsize (Torchiano, 2019), ggplot2 (Wickham,
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Fig. 2 Accuracy and reaction time in phase two of Experiment 1, as a function of pretraining condition.
Distributional information is shown as a boxplot, a violin plot, and individual data points. The box plot
shows median performance and interquartile range. The violin plot is a density plot, rotated through ninety
degrees, and mirror copied to produce the symmetrical pattern shown; see Hintze and Nelson (1998) for
details. The small gray plot symbols are scores for individuals. Image credit: Andy J. Wills, CC-BY-SA 4.0.
https://osf.io/4g6az/

2016), and pwr (Champely, 2018). Bayesian analysis was conducted following the proce-

dure described by Dienes (2011), with priors as described below. Following Jeffreys (1961),

Bayes Factors exceeding three were considered as evidence for the experimental hypothesis,

while Bayes Factors smaller than one-third were considered as evidence for the null.

In this first experiment, the absence of any closely related previous study led us to adopt

quite broad priors for the effect of single feature pretraining on accuracy and on reaction

time. For accuracy differences (i.e. probability of a correct response after single feature

pretraining minus probability of a correct response in the control condition), we assumed

a uniform prior ranging for -.5 to .5. Chance performance is .5 on this task, and perfect

performance is 1. It thus seemed unlikely that the difference between conditions would fall

outside this range. Reaction time is not bounded in this way, but in practice it is very rare
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for conditions in lab-based category learning studies to differ in mean reaction time by more

than 5 seconds. We thus adopted a uniform prior from -5 to +5 seconds for our reaction time

analysis.

Two participants in the single feature condition did not complete the experiment in the

time available. They were excluded on this basis, along with their yoked participants in the

control condition. The remaining participants took a mean of 9.60 blocks (range: 7–16, SD

= 2.46) to complete phase one. Median reaction times across phase one were 0.78 s (IQR =

0.16) in the single feature condition, and 2.49 s (IQR = 1.64) in the control condition.

Figure 2 shows the results of principal interest, which are the phase two accuracy and

reaction times. As predicted, single feature pretraining substantially increased accuracy on

the polymorphmous classification, relative to an equivalent amount of training on the poly-

morphous problem itself. Both the unstandardized and standardised effect sizes were large;

there was an increase in accuracy of about .18 on average, and Cohen’s d (Cohen, 1992)

was 1.46. There was strong Bayesian evidence for the experimental hypothesis, BF = 29.9.

Figure 2B shows that this increase in accuracy was accompanied by a substantial increase

in reaction time, mean = 1.79 seconds, d = 1.12, BF = 4.03.

In summary, single feature pretraining increased accuracy on a polymorphous classifi-

cation with a large effect size. This increase in accuracy was accompanied by an increase in

reaction time. This pattern of results is consistent with the idea that single feature pretrain-

ing encourages a dimensional summation strategy, which takes substantial time to complete.

However, it’s also compatible with a more general strategic or motivational account, that the

pretraining causes a general slow down of responding, and this results in better performance

at test. Under this latter account, the specific content of the pretraining phase should not mat-

ter too much. Under the former account, it’s crucial that the information gained in training

is compatible with the test phase.
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In Experiment 2, we compared these two accounts by introducing a partial reversal be-

tween the two phases, where the valence of three dimensions, but not the other two, was

reversed. For example, in pretraining, horizontal lines indicated category A and vertical

lines indicated category B. In the polymorphous classification phase this might be reversed,

so that horizontal lines were now characteristic of category B and vertical lines characteris-

tic of category A. Two further dimensions (e.g. flankers and trapezium) would be reversed,

while the other two dimensions maintained their pretraining valence. Under a dimensional

summation account, reaction time in this partial reversal condition should remain high, as

participants attempted to employ a dimensional summation strategy, but the accuracy benefit

observed under regular single feature pretraining should be reduced or eliminated. Partial re-

versal is a superior design to full reversal, as humans are readily able to detect a full reversal

of polymorphous concepts and adapt by reversing the category labels, leaving the under-

lying feature-category knowledge intact (Kruschke, 1996; Wills et al., 2006). This strategy

does not work when only some of the dimensions have been reversed.

Experiment 2

In Experiment 2, we conducted a between subjects comparison of (a) single feature pretrain-

ing, (b) partially-reversed single feature pretraining, and (c) pretraining on the polymorph-

ous problem itself.
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Method

Participants

Sixty people participated in the current experiment, randomly allocated across three be-

tween subject conditions, with the constraint that each condition had twenty participants.

The sample size for this and all subsequent experiments in this manuscript was determined

after analysis of Experiment 1, and prior to data collection for Experiments 2–5. It was cho-

sen to provide good statistical power (greater than 90%) to detect effects of the size seen in

Experiment 1.

Procedure

The procedure was identical to Experiment 1, apart from four changes. First, a partial re-

versal condition was added. Participants in this condition received the same pretraining as

participants in the single feature condition. However, at the end of phase one, and unknown

to the participants, the valence of three of the dimensions was reversed. For example, hor-

izontal stripes might become characteristic of category B, with vertical stripes now char-

acteristic of category A (the opposite to phase one). For each participant, three of the five

stimulus dimensions, randomly selected, were reversed.

Second, phase one now involved a fixed amount of training, rather than training to cri-

terion. All participants received twenty blocks of training in phase one. This change was

made to eliminate the possibility that the yoked training procedure of Experiment 1 might

have over-estimated the size of the single feature pretraining effect, due to the Church effect

(Church, 1964). For those unfamiliar with the Church effect, a brief summary is provided

in the Appendix. In the single feature and partial reversal conditions, participants now com-

pleted four blocks of training on each of the five stimulus dimensions before moving on to
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the next (as in Experiment 1, the order in which the dimensions were trained was random-

ized). In the control condition, participants received twenty blocks of training on the five

feature stimuli.

The third change to the procedure, relative to Experiment 1, was that phase two was

shortened from eight blocks, to four blocks. This was for practical reasons; shortening phase

two reduced the length of the experiment, and hence allowed us to test participants more

efficiently. Analysis of Experiment 1 indicated that the first four blocks were sufficient to

detect the effect of pretraining.

The fourth and final change was that the single feature tests right at the end of single

feature pretraining in Experiment 1 did not appear in this or any subsequent experiment. We

considered such tests to be superfluous, given that training in phase one was now fixed in

length, rather than to criterion. Participants moved directly from the end of single feature

pretraining to the beginning of phase two without any intervening tests.
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Fig. 3 Accuracy and reaction time in phase two of Experiment 2, as a function of pretraining condition.
Image credit: Andy J. Wills, CC-BY-SA 4.0. https://osf.io/8nyfw/
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Results and discussion

The raw data for this experiment are archived along with the analysis scripts at https://osf.io/8nyfw/.

Following Dienes (2011), Bayesian priors for the effects of single feature pretraining on ac-

curacy and reaction time were based on the results of Experiment 1. Specifically, a normally

distributed prior was used, with a mean of the observed effect in Experiment 1, and a stan-

dard deviation of half that. Due to the lack of previous data on the effects of a partial reversal

on single feature pretraining, we employed the same broad priors described in Experiment

1 for comparisons involving this condition (i.e.-.5 to +.5 for accuracy, -5 to +5 for reaction

time).

Fixed-length training in phase one of the single feature and partial reversal conditions

elicited accurate, rapid responding from participants; for both conditions mean accuracy was

98% (SD = .01), and median reaction time was around 0.67 s (IQR = 0.23). Unsurprisingly,

phase one performance for participants in the control condition was worse (mean accuracy

= 0.65, SD = 0.05) and slower (median RT = 1.33, IQR = 0.46)

Figure 3 shows the results of phase two. As observed in Experiment 1, single feature pre-

training substantially increased accuracy on the polymorphous classification, relative to an

equivalent amount of training on the polymorphous problem itself. Both the unstandardized

and standardised effect sizes were large, albeit not quite as large as in Experiment 1 (perhaps

indicating that our concerns about the Church effect were well founded). The mean increase

in accuracy was 0.12, d = 1.01, BF = 45.4. In contrast, the partial reversal pretraining condi-

tion reduced accuracy on the polymorphous classification, relative to the control condition.

The mean decrease was 0.19, d = 2.2, BF = 9×108. This pattern of results is not consistent

with a general strategic or motivational account of the single feature pretraining effect. It is,

however, predicted by the dimensional summation hypothesis.
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Figure 3B shows the reaction times in phase two. As in Experiment 1, the increase in

accuracy produced by single feature pretraining was accompanied by an increase in reaction

time, mean increase = 2.04 s, d = 1.96, BF = 4× 107. The partial reversal condition also

induced an increase in reaction time relative to the control condition, mean increase = 1.44

s, d = 0.79, BF = 3.02, which suggests that participants were still attempting to apply the

information from phase one. The reaction time results are predicted by the dimensional

summation hypothesis

Experiment 3

Having established the presence of a single feature pretraining (SFPT) effect in polymorph-

ous classification, we then set about trying to understand why it occurs. One possibility, al-

ready mentioned, is that SFPT helps polymorphous classification primarily because it trains

the feature dimensions deterministically. This provides, for the participant, clear knowledge

of the feature-category relationships upon which a dimensional summation strategy can be

enacted. However, there are a number of other possible explanations, two of which we ex-

amined in Experiment 3.

The first possibility is that SFPT allows participants to focus on one stimulus dimension

at a time, and it is this seriality of the learning of the feature-category relationships which

leads to the SFPT advantage, rather than the deterministic presentation of these relation-

ships. One prediction of this seriality hypothesis is that single feature pretraining should

also increase polymorphous classification accuracy if dimensions are trained sequentially,

but with the feature→ category associations presented in the same probabilistic manner as

they occur in the polymorphous concept itself. For example, in one block of single feature

training, horizontal stripes would be followed by category A on 11 occasions and category B
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on 5 occasions. In contrast to the seriality hypothesis, a dimensional summation hypothesis

predicts that probabilistic single feature pretraining should be less effective than determin-

istic training. This is because probabilistic training gives a less clear (albeit more accurate)

indication of the relationship between features and category labels in a polymorphous con-

cept.

Another prediction of the seriality hypothesis is that the effectiveness of single feature

pretraining should be reduced if dimensional training is intermixed. So, for example, if all

ten features occur on different, randomly ordered, trials in the same block then, under a

seriality hypothesis, participants must either attempt to learn several feature-category rela-

tionships concurrently, or ignore all trials but the ones for the features they have chosen

to focus on. Either way, intermixed single feature pretraining should be less effective than

serial single feature pretraining. Under the dimensional summation hypothesis, intermixed

deterministic training can be approximately as effective as sequential deterministic training,

because it is the deterministic nature of training, not its precise sequencing, that is crucial.

In Experiment 3, we added two further single feature pretraining conditions. In one con-

dition, single feature pretraining is intermixed but deterministic. In the other, single feature

pretraining is sequentially-ordered, but probabilistic. The addition of these two conditions

allows a comparison of the dimensional summation and seriality explanations of the single

feature pretraining effect. The seriality hypothesis was generated prior to data collection in

Experiments 2–5, and came from a simple enumeration of the procedural differences be-

tween the single-feature pre-training and control conditions. In other words, single feature

pretraining is not only deterministic, it is also serial, and thus it is a logical possibility that

it is the seriality of single feature pretraining, rather than its deterministic nature, that drives

the effect. Thus, the seriality hypothesis was not inspired by any particular formal theory of
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classification learning, simply by the several procedural differences between the phase one

conditions of Experiment 1.

We also examined further a priori, procedurally-inspired account of the single feature

pretraining effect in Experiment 3. Perhaps, by presenting features singly during pretraining,

the dimensional structure of the polymorphous stimuli becomes more obvious in phase two,

and it is this decomposition of the stimuli during pretraining that primarily leads to the single

feature pretraining advantage. If this is the case, it should be possible to produce similar

levels of accuracy on the phase two polymorphous classification by making the dimensional

structure more obvious during phase one in some other way. In Experiment 3, we did this

through constructed polymorphous pretraining. In this procedure, the polymorphous stimuli

in phase one were constructed on screen on each trial, with each dimension being added

every few hundred milliseconds until the stimulus was complete.

Method

Participants

One hundred people participated in the current experiment, randomly allocated across five

between subject conditions, with the constraint that each condition had twenty participants.

The sample size was set prior to data collection (see Experiment 2 for details).

Procedure

The procedure of the single feature and control conditions was identical to Experiment 2.

Three further between subject conditions were added. All conditions received the standard

polymorphous classification task in phase two, but differed in the nature of the phase one
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pretraining. All conditions contained the same number of trials in each phase. The three

additional conditions were as follows:

Single feature probabilistic pretraining Training in this condition was identical to the single

feature pretraining of Experiment 2, except that the feedback was probabilistic rather than

deterministic. In each block, each feature was presented 16 times. On 11 of those occasions,

the feedback was given consistent with the mapping described in the Experiment 1 procedure

(e.g. vertical lines→ category A). On the remaining 5 occasions, the opposite feedback was

given (e.g. vertical lines→ category B). This probabilistic relationship between a single cue

and the category label is identical to that observed in the polymorphous classification task.

The end-of-block message still reported percent correct, but participants were told the target

accuracy was “over 65%” (rather than 100%, as in the other conditions). The maximum

sustained accuracy achievable in this pretraining task is 68.75%.

Single feature intermixed pretraining Pretraining in this condition was identical to the sin-

gle feature pretraining of Experiment 2, except that in each block, all ten features were

presented, in a random order. In each 32-trial block, eight features were presented six times,

and two features were presented eight times. The two features to be presented with slightly

higher frequency were randomly selected on each block, with the constraint that both fea-

tures came from the same dimension (e.g. bar orientation). This randomization procedure

allowed us to match the block and phase length of the other conditions exactly, at the cost

of slight random variations in presentation frequency of each feature across blocks and par-

ticipants.

Constructed polymorphous pretraining Pretraining in this condition was identical to poly-

morphous pretraining, except that, on each trial, the stimulus was constructed on screen over
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time. Each stimulus presentation began with the central lines feature (horizontal or vertical

stripes). After 300 ms, the background color was added (blue/yellow), and after subsequent

delays of 300 ms each, the other features were added in the order: icons (stars/blobs), trapez-

ium, flankers. Responses made before the stimulus was complete were ignored.

Results and Discussion

The raw data for this experiment are archived along with the analysis scripts at https://osf.io/vu8ms/.

The data for two participants were lost due to technical errors. Bayesian priors for the effects

of single feature pretraining on accuracy and reaction time were based on the results of Ex-

periment 2, in the manner described in Experiment 2. Due to the lack of previous data on the

other hypothesized effects, we employed the same broad priors described in Experiments 1

and 2 for the remaining comparisons (i.e.-.5 to +.5 for accuracy, -5 to +5 for reaction time).

Deterministic single feature pretraining elicited high accuracy, both with sequential or-

dering (mean accuracy = .98, SD = .01), and intermixed ordering (mean accuracy = .92, SD

= .10). Probabilistic single feature pretraining led to lower performance (mean accuracy =

0.56, SD = .05); this is to be expected given the probabilistic nature of the feedback. Ac-

curacy in the probabilistic single feature condition was higher than could be achieved by

random responding, BF = 1.6× 107 (calculated against a uniform prior of accuracy being

somewhere between 0.5 and 1). Mean accuracy in the polymorphous pretraining condition

was 0.62 (SD = .05), comparable to the results of Experiment 2. Similar accuracy was ob-

served under constructed polymorphous pretraining (mean accuracy = 0.64, SD = .07).

Reaction times in phase one were also as expected on the basis of Experiment 2, with a

median of 0.68 s (IQR = .13) and 1.23 s (IQR = 0.62) in the single feature and polymorphous

control conditions, respectively. Reaction times for the single feature intermixed and single
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Fig. 4 Accuracy and reaction time in phase two of Experiment 3, as a function of pretraining condition.
Image credit: Andy J. Wills. CC-BY-SA 4.0. https://osf.io/vu8ms/

feature probabilistic conditions were in the same range as the two previously-mentioned

conditions, with median times of 1.03 s (IQR = 0.18) and 0.95 s (IQR = 0.37) respectively.

Reaction times were substantially longer in the constructed polymorphous condition (me-
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dian = 2.71 s, IQR = 0.64), but this is to be expected as the stimulus took time to construct

on screen, and responses prior to the completion of the construction were ignored. Reaction

times as measured from the completion of the stimulus were similar to the polymorphous

control condition (median = 1.21 s, IQR = .64).

Turning to phase two, Figure 4 shows the key results of the current experiment:

Deterministic single feature pretraining As previously observed in Experiments 1 and 2,

single feature pretraining substantially increased accuracy and reaction time on the poly-

morphous classification, relative to an equivalent amount of training on the polymorphous

problem itself. Mean accuracy increased by 0.18, d = 1.67, BF = 2.4×105, and mean reac-

tion time increased by 1.84 s, d = 1.84, BF = 6.8×1010.

Probabilistic single feature pretraining A single feature pretraining advantage was not ob-

served when the feature→ category associations in pretraining were probabilistic. Accuracy

was slightly lower (mean = -.04) after probabilistic pretraining, than after polymorphous

pretraining, d = .44, but with Bayesian evidence for the null, BF = 0.18. Reaction time was

slightly higher, mean = 0.10 s, d = .20, again with Bayesian evidence for the null, BF = 0.05.

Given these and the deterministic single feature pretraining results, one would expect

accuracy and reaction time to be lower after probabilistic pretraining than after determinis-

tic pretraining. Comparison of the deterministic and probabilistic single feature conditions

confirms this expectation; accuracy is lower, mean = .22, d = 1.79, BF = 6.3× 105, and

reaction time is higher, mean = 1.74 s, d = 1.98, BF = 1.5×107. The results concerning the

probabilistic single feature pretraining condition are predicted by the dimensional summa-

tion hypothesis, but not the seriality hypothesis.



POLYMORPHOUS CONCEPTS 25

Intermixed single feature pretraining A single feature pretraining advantage was observed

when the single feature pretraining was deterministic, but with the features presented in an

intermixed order. Accuracy was higher after single feature intermixed pretraining than pol-

ymorphous pretraining, mean = .21, d = 1.85, BF = 2.4×106, as was reaction time, mean

= 2.30 s, d = 2.65, BF = 1.2× 1014. Sequential and intermixed single feature pretraining

produced comparable levels of accuracy on subsequent polymorphous classification, mean

accuracy difference = .03, d = 0.21, BF = 0.15, with comparable reaction times, mean re-

action time difference = 0.47 s, d = 0.41, BF = 0.21. These results seem contrary to the

seriality hypothesis, but can be accommodated by the dimensional summation hypothesis.

Constructed polymorphous pretraining Constructing the polymorphous stimulus on the screen

one feature at a time did not improve accuracy on a subsequent standard polymorphous clas-

sification, relative to an equivalent amount of training on that standard classification, mean =

.02, d = .19, BF = 0.09; nor did it affect reaction time, mean = .30 s, d = .48, BF = .15. These

results provide no support for the decomposition hypothesis. They are compatible with the

dimensional summation hypothesis, because the relationships between features and cate-

gory labels are probabilistic, not deterministic, in the constructed polymorphous pretraining

condition.

Summary The results of Experiment 3 provide further support for the dimensional summa-

tion explanation of the SFPT effect, but not for two alternative explanations of this effect

(the seriality, and decomposition, hypotheses).
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Experiment 4

In Experiment 4, we considered another alternative explanation of the SFPT effect — the

effect of errors during pretraining. A number of authors have previously argued that learning

can be enhanced through the avoidance of errors during training (Baddeley & Wilson, 1994;

Terrace, 1963). Although the issue of whether making errors is beneficial or detrimental

to learning remains controversial (Ashby, Maddox, & Bohil, 2002; Edmunds, Milton, &

Wills, 2015; Potts & Shanks, 2014; Seabrooke, Hollins, Kent, Wills, & Mitchell, 2019),

it is undeniably the case that, in the current experiments, single feature pretraining is not

well matched to the polymorphous control condition in terms of the number of classification

errors participants produce. It is therefore possible that the SFPT advantage comes from

this difference in error frequency, rather than from the provision of deterministic feature-

category associations assumed to be the cause by the dimensional summation hypothesis.

In Experiment 4, we tested this possibility by introducing two further between subject

conditions to the basic single feature pretraining design. In these additional conditions, clas-

sification errors were essentially eliminated during phase one by presenting the correct cat-

egory label a few hundred milliseconds after the stimulus was presented. This procedure is

sometimes referred to as observational training (cf. Ashby et al., 2002; Edmunds et al., 2015;

Wills & McLaren, 1997), as opposed to the more common feedback training used through-

out Experiments 1–3. Phase two of Experiment 4 employed standard feedback training in

all conditions, for comparability with these previous experiments. If the SFPT advantage is

primarily due to the lower rate of participant errors in single feature pretraining, compared

to the polymorphous classification control condition, then the use of observational training

during phase one should largely eliminate the SFPT advantage. In contrast, the dimensional

summation hypothesis predicts a SFPT effect should be seen under both observational and
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feedback pretraining, because only in the cases of single feature pretraining is there a deter-

ministic relationship between the features and the category membership.

Method

Participants and apparatus

Our intention was to test eighty participants, randomly allocated across four conditions, with

the constraint that each condition had twenty participants. The sample size was set prior to

data collection (see Experiment 2 for details). Due to an administrative error, data collection

in two conditions was terminated at twenty-one rather than twenty participants. Prior to the

analysis of Experiments 2–5, we chose to retain rather than discard these two additional data

sets, on the grounds that this minor and accidental over-collection of data was unlikely to

inflate statistical error rates.

In addition to the apparatus of Experiments 1–3, stereo on ear headphones were used

to present auditory stimuli to participants. The sounds were digitized and their presentation

was controlled by computer.

Procedure

The procedure of the single feature and control conditions was identical to Experiments 2

and 3, with the exception that feature→ category association ratings were taken at the end

of each block. On each rating trial, a single feature was presented in the center of the screen,

with a rating scale directly above it. At the top of the screen appeared a question asking

how likely it was that category A (or B) would occur when this feature was present. Par-

ticipants then had to respond on a scale from -10 (will never appear) to +10 (will always

appear). Participants were asked to rate each feature presented in the preceding block for
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both categories. The ratings part of the experiment was exploratory in nature, with no clear

predictions considered ahead of data collection. The results turned out to be largely unre-

markable and, for brevity, are not discussed in the current paper. The interested reader may

find the ratings data in the OSF repository cited below.

The procedure in the single feature observation and control observation conditions was

the same as the corresponding conditions described above, with the following exception. In

phase one, presentation of the stimulus was followed, after 200 ms, by the category label

spoken over headphones (“A” or “B”). A manual categorization response was still required,

and feedback still given, but with the expectation that very few errors would be made under

such conditions. The procedure in phase two was identical to the single feature and control

conditions described above; in other words there was no spoken label, participants had to

guess, and received feedback.
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Fig. 5 Accuracy and reaction time in phase two of Experiment 4, as a function of training type and pretraining
condition. Image credit: Andy J. Wills. CC-BY-SA 4.0. https://osf.io/g3w8a/
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Results and discussion

The raw data for this experiment are archived along with the analysis scripts at https://osf.io/g3w8a/.

Bayesian priors were determined in the same manner as previous experiments, using mean

effect sizes from Experiments 2 and 3 where appropriate, and broad priors otherwise.

As in previous experiments, single feature training in phase one elicited fast and accu-

rate responding (mean accuracy = .98, SD = .02, median RT = 0.73 s, IQR = 0.20), while

performance in the control condition was worse (mean accuracy = .67, SD = .11, median

RT = 1.99 s, IQR = 1.94). Unsurprisingly, presenting the correct category label resulted in

very few errors in both the single feature observation (accuracy = .98, SD = .02) and control

observation (accuracy = .98, SD = .04) conditions. Reaction times for these conditions were

in the same range as the other two conditions, 0.95 s (IQR = 0.35) for the single feature

observation condition, and 1.77 s (IQR = .45) for the control observation condition.

Figure 5 shows the results of phase two. As previously observed in Experiments 1–3,

single feature pretraining substantially increased accuracy and reaction time on the poly-

morphous classification, relative to an equivalent amount of training on the polymorphous

problem itself. Mean accuracy increased by .13, d = .93, BF = 43.0, and mean reaction

time increased by 2.22 s, d = 1.31, BF = 2945. Single feature pretraining also substan-

tially increased accuracy and reaction time in the observation conditions, with accuracy

increasing by .23, d = 2.1, BF = 5.3×108, and reaction time increasing by 3.38 s, d = 1.8,

BF = 1.6×106.

Inspection of Figure 5 suggests the post-hoc hypothesis that observational single fea-

ture training might be more effective than standard single feature training, but the Bayesian

evidence for this hypothesis is equivocal, BF = 1.13, as is the evidence for a difference

in reaction times, BF = 1.11. In terms of the two control conditions, there was substantial
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evidence for the null hypothesis that the two conditions do not differ, both for accuracy,

BF = 0.10, and for reaction time, BF = 0.14.

In summary, the results of Experiment 4 showed that the single feature pretraining ad-

vantage still occurs in the absence of any classification errors in phase one. This result is

compatible with the dimensional summation hypothesis, but is problematic for the idea that

the SFPT advantage is caused by the lower frequency of classification errors in SFPT, rela-

tive to a polymorphous control condition.

Experiment 5

Across Experiments 1–4, we established the presence of a single feature pretraining ad-

vantage in polymorphous category learning, and presented a range of findings that were

supportive of a dimensional summation account of this effect. One further, striking, pre-

diction of the dimensional summation account is that a relatively simple counting task, if

conducted at the same time as polymorphous classification, should eliminate the SFPT ad-

vantage. This is because a counting task should interfere with the deliberate summation of

characteristic features assumed to underlie accurate polymorphous classification. So, while

SFPT should provide the classifier with the constituent knowledge required to subsequently

classify a polymorphous category structure effectively, a concurrent counting load should

stop the classifier from applying that knowledge. Such is the idea tested in Experiment 5.
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Method

Participants

Eighty people participated in the current experiment, randomly allocated across four be-

tween subject conditions, with the constraint that each condition had twenty participants.

The sample size was set prior to data collection (see Experiment 2 for details).

Procedure

The procedure in phase one was identical to the single feature and control conditions of Ex-

periments 2 and 3. The procedure in phase two was also identical to these conditions, with

the exception that each block was accompanied by an asynchronous stream of spoken two

digit numbers. The numbers ranged from 11 to 98 and appeared in a random order. Each

number had a spoken duration of approximately one second (achieved using voice synthe-

sis), and there was a silent gap of 200 ms between the end of each number and the beginning

of the next. The stream of numbers began simultaneously with the beginning of each block,

and stopped at the end of each block, in phase two. Participants in the load conditions were

told to keep an exact count of the number of even numbers in each block, and were asked to

state their total at the end of each block. Participants in no load conditions experienced the

same stimuli, but were told that we were interested in automatic processing, so they should

ignore the numbers, and just enter their guess of the number of even numbers at the end of

each block. All participants received feedback on the accuracy of their count/guess.

For participants in the load conditions, phase one was preceded by one block (thirty two

trials) of practice on the counting task. Participants were asked to keep count of the number

of even numbers, but the categorization stimuli were replaced by a large letter “A” or “B”,

making that part of the task very easy. Participants in the no-load conditions did not receive
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practice on the counting task, as this might have undermined the later instruction that they

were to ignore the digits and just make a guess.
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Fig. 6 Accuracy and reaction time in phase two of Experiment 5, as a function of load and pretraining
condition. Image credit: Andy J. Wills. CC-BY-SA 4.0. https://osf.io/fdm8r/

Results and Discussion

The raw data for this experiment are archived along with the analysis scripts at https://osf.io/fdm8r/.

Bayesian priors were determined in the same manner as previous experiments, using mean

effect sizes from Experiments 2–4 where appropriate, and broad priors otherwise. As in pre-

vious experiments, single feature training in phase one elicited fast and accurate responding

(mean accuracy = .98, SD = .02, median RT = 0.57 s, IQR = 0.11), while performance in

the control condition was worse (mean accuracy = .64, SD = .06, median RT = 1.52 s, IQR

= 0.96).
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Figure 6 shows the results of phase two. As previously observed in Experiments 1–4,

single feature pretraining substantially increased accuracy and reaction time on the poly-

morphous classification, relative to an equivalent amount of training on the polymorphous

problem itself. Mean accuracy increased by .11, d = .97, BF = 46.3, and mean reaction time

increased by 1.29 s, d = 1.78, BF = 1.4×106.

Concurrent load in phase two eliminated the single feature pretraining advantage; mean

accuracy differed by less than .01, d = .08, with Bayesian evidence for the null, BF = .08.

Reaction time increased by 0.49 s, d = 0.58, with weak Bayesian evidence for the null, BF

= 0.36. Given these results, one would expect performance to be worse in the single feature

load condition than the single feature no-load condition, and this is indeed the case; mean

accuracy dropped by 0.15, d = 1.18, BF = 101.7. There was Bayesian evidence that the two

conditions did not differ in reaction time; on average reaction time was 0.50 s shorter under

load, d = 0.49, BF = 0.27. In the polymorphous pretraining conditions, load had no effect

on accuracy, with Bayesian evidence for the null; mean accuracy drop = .04, d = 0.48, BF =

0.22. The effect of load on reaction times in the polymorphous conditions was inconclusive,

mean increase = 0.30 s, d = 0.69, BF = 0.38.

In summary, Experiment 5 demonstrated that the single feature pretraining advantage in

polymorphous classification was eliminated by the concurrent presence of a counting task.

This result is predicted by the dimensional summation hypothesis. It is also congruent with

another experiment from our lab, in which the prevalence of overall similarity classification

in a different procedure (the match-to-standards task) was reduced by a concurrent counting

load (Wills et al., 2013).



34 Andy J. Wills et al.

General Discussion

Polymorphous concepts are those defined by an n-out-of-m rule. Such concepts are hard

to learn and, from some perspectives, this is surprising because polymorphous concepts

have an overall similarity structure — a type of structure assumed to be commonplace in

real-world categories. However, the difficulty of acquiring polymorphous concepts is pre-

dicted by the dimensional summation theory of overall similarity classification (Milton &

Wills, 2004). This theory states that overall similarity classification is achieved through the

deliberate counting of the number of stimulus features characteristic of each of the can-

didate categories. This strategy is hard to apply to polymorphous concepts because each

feature, taken individually, only probabilistically predicts the category label. This expla-

nation, in turn, leads to the prediction that deterministic pretraining of the characteristic

feature-category associations should facilitate subsequent classification of a polymorphous

category structure.

In Experiment 1, we demonstrated the presence of such a single feature pretraining ad-

vantage, relative to a control of an equivalent amount of training on the polymorphous prob-

lem itself. In Experiment 2, we employed a partial reversal manipulation to demonstrate this

advantage critically depended on the information learned in pretraining being applicable to

the subsequent polymorphous classification, and hence eliminated a more general strate-

gic or motivational account of the effect. In Experiments 3 and 4, we eliminated a number

of other possible accounts of the single feature pretraining effect, and in Experiment 5 we

demonstrated that the single feature pretraining effect was eliminated by the presence of a

concurrent counting load during the subsequent polymorphous classification phase. Overall,

the results of these five experiments provide strong support for the dimensional summation

account.
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Future research

There are several ways in which the current investigations could be extended to further in-

vestigate the dimensional summation hypothesis. For example, the stimulus dimensions in

the current experiments are easy to verbalize, highly perceptually discriminable, and mostly

spatially separated. Ease of verbalization seems likely to facilitate rule-like processing (see

e.g. Kurtz et al., 2013), which seems relevant given that the dimensional summation hypoth-

esis is a rule-like account of behavior. Hence, future work might productively investigate

whether the effects of single feature pretraining (SFPT) persist where the stimulus dimen-

sions are harder to verbalize.

It might also be informative to investigate the effects of SFPT with spatially integrated

and/or perceptually subtle stimulus dimensions. Other work we have done demonstrates that

such stimuli are less likely to be sorted spontaneously into overall similarity groups than the

current stimuli (Milton, Copestake, Satherley, Stevens, & Wills, 2014; Milton, McLaren,

Copestake, Satherley, & Wills, in press; Milton, Viika, Henderson, & Wills, 2011; Milton &

Wills, 2004, 2008). Thus, our prediction is that SFPT of such stimuli would be particularly

beneficial to subsequent polymorphous classification of them. This is because induction of

an overall similarity strategy is particularly likely to be required for such stimuli and, under

our account, SFPT is an effective way of inducing such a strategy.

The prevalence of spontaneous overall similarity sorting is also affected not only by

stimulus properties, but also by the underlying category structure (Pothos & Close, 2008).

It might therefore be worthwhile examining whether the benefits of SFPT generalize to cat-

egory structures other than the polymorphous structure considered here. For example, in a

polymorphous category structure, all category members are presented with equal frequency.

This leads to participants encountering low typicality category members more frequently
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than high typicality category members. This is because, with a polymorphous category struc-

ture, there are more low typicality members than high typicality members (see Table 1). It

might be argued that, in more naturalistic categories, the reverse is likely to be true — in

other words, that participants are more likely to encounter high typicality members than

low typicality members. For this reason, one might wish to consider extending the current

investigation to category structures where high typicality items dominate.

Dimensional summation theory predicts that the accuracy benefits of SFPT would be

present but smaller for such structures. They would be smaller because single-dimension

responding leads to high accuracy in such structures anyway, so there is less to be gained by

switching to a dimensional summation strategy. For example, in a case where only the high-

typicality members are presented (the first six rows of Table 1), participants can achieve .83

accuracy by using any one dimension and ignoring all the others. At limit SFPT, even if

completely effective in inducing overall similarity responding in all participants, can only

lead to an increase in accuracy of .17. This is substantially smaller than the upper limit

improvement of .31 possible with the current category structure.

Another category structure that might be interesting to investigate is Sephard et al.’s

Type VI structure, which is well known to be particularly hard to learn, and certainly harder

than the polymorphous (Type IV) structure used in the current studies (Nosofsky et al.,

1994). In a five-dimensional version of the Type VI problem, and using the current stimulus

set as an illustration, a stimulus belongs to category A if it contains one, three, or five of the

features [horizontal, yellow, stars, long-base, fine], and category B otherwise.

This results in two 16-item categories for which no feature, considered individually, has any

diagnostic value. The dimensional summation hypothesis therefore correctly predicts that a

Type VI problem is very hard to learn — no feature is characteristic of either category, and
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hence there are no single dimension rules that can be derived from Type VI training. With

no single dimension rules, there is nothing to summate.

The core concepts of the dimensional-summation hypothesis also predict that SFPT

could, in principle, be effective in increasing the accuracy of Type VI classifications, partic-

ularly if that pretraining involved different category labels to the subsequent Type VI phase.

This is because such pretraining would facilitate the application of a parity rule (e.g. “It’s

category C if it has 1, 3, or 5 category A features, otherwise it’s category D”). We describe

this as an “in principle” accuracy benefit because it’s an open question how often such a par-

ity rule would spontaneously occur to participants under these conditions, and how effortful

it would be to apply if it did occur to them. The counting rule for polymorphous problems, in

contrast, seems very likely to occur to participants and to be rather easy for them to apply, as

it is essentially the same as a simple majority voting system (or, equivalently, a simple “pros

and cons” comparison). In the case of Type VI problems, it may be that some pretraining in

parity rules would be required in order SFPT to be effective.

Future research might also investigate whether the current results are specific to the

binary-valued stimulus dimensions we used (e.g. horizontal versus vertical). The dimen-

sional summation hypothesis is also applicable to continuous dimensions (e.g. line orienta-

tion in degrees rather than just 0 versus 90 degrees). SFPT in which participants learn the

boundary between category A and B on each continuously varying dimension separately,

should be beneficial to subsequent polymorphous classification for the same reasons it is

beneficial for binary valued dimensions.

However, perhaps the biggest question left unanswered by the dimensional summation

hypothesis is how one reconciles the idea of a slow deliberative summation of evidence with

the fact that natural categories, which are assumed to be polymorphous, can be classified ex-

tremely rapidly (Thorpe & Imbert, 1989). Of course, there may be a big difference between
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how we act when we are first learning a new category, compared to how we act after the

thousands of hours of practice we all have on familiar real-world concepts. Clearly there is

a set of methodologically difficult experiments that could be performed here to look at the

effect of very extended practice on unfamiliar polymorphous concepts (c.f. Logan & Klapp,

1991; Soto, Waldschmidt, Helie, & Ashby, 2013). We suggest that such experiments might

be an interesting topic for future research.

Alternative theoretical frameworks

It is possible to express the essence of the dimensional summation account in a variety

of alternative theoretical frameworks. For example, an anonymous reviewer argued that

the critical component of single-feature pretraining might be that it helped emphasize the

within-category correlations between stimulus features. We agree. It is a central part of

the dimensional summation account that, after SFPT, participants know that [horizontal,

yellow, stars, long-base, fine] are the characteristic features of category A. In other

words, we argue that it is critical they discover that these features go together; that they

discover that the features correlate within the category.

The same reviewer argued that single feature pretraining might encourage participants

to move away from single feature rules in phase two, because the pretraining makes it clear

that all of the features have diagnostic value, and because in phase two it becomes rapidly

apparent that no single feature is a perfect predictor. Again, we agree — these are the reasons

dimensional summation theory predicts single feature pretraining is effective. We note that

the results of the probabilistic single feature condition in Experiment 3 directly support this

interpretation.
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Finally, one might question the centrality of counting in our dimensional summation

hypothesis. The concurrent load manipulation of Experiment 5 provides good evidence that,

whatever is going on in phase two after SFPT, it is somewhat effortful. However, it is of

course possible that this effortful process is something other than counting. Researchers

may wish to specify an alternative account, and test it empirically.

Applications

By understanding the single feature pretraining effect in polymorphous classification, we

perhaps better understand how people learn polymorphous concepts, and it is widely be-

lieved that many natural concepts are polymorphous. On that basis, our hypothesis is that

natural concepts are learned by effortful combination of information, compiling evidence to

support one classification over another.

Of course, as discussed, this hypothesis requires further investigation with a broader

range of stimulus types than the single set employed in the current work. However, if our

results turn out to have some generality, one potential application would be to use an analog

of the single feature pretraining procedure to speed the training of natural concepts in the

classroom. This idea goes beyond the old adage to split complex problems into simple ones,

and adds that it might be productive to caricature probabilistic relationships as deterministic.

In that regard, there are parallels to transfer along a continuum procedures, which exaggerate

perceptual differences to speed learning, and which have been shown to be advantageous in

the training of difficult real-world discriminations (Hornsby & Love, 2014; McClelland,

Fiez, & McCandliss, 2002).
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Concluding remarks

Although the dimensional summation account of overall similarity classification is at vari-

ance with some older ideas about how overall similarity classification works (e.g. Ashby

et al., 1998; Kemler Nelson, 1984; Smith & Shapiro, 1989; Ward, 1983), it is fully consis-

tent with a substantial body of more recent work, across several different procedures. For

example, it is consistent with results from the match-to-standards procedure (Milton et al.,

2008; Milton & Wills, 2004; Milton et al., 2009; Wills et al., 2013), the triad procedure

(Wills et al., 2015), the criterial-attribute procedure (Wills et al., 2015), and information-

integration category learning procedure (Carpenter et al., 2016; Edmunds et al., 2015, 2018,

2019; Newell et al., 2013). It finds support from not only human behavioral data, but also

from comparative work with rats and pigeons (Lea et al., 2018, 2006; Wills et al., 2009) and

from functional imaging data in humans (Carpenter et al., 2016; Milton et al., 2009). In con-

clusion, the dimensional summation hypothesis is a plausible account of overall similarity

classification in a wide variety of lab-based conditions, and the current experiments add the

acquisition of polymorphous concepts to that growing evidence base.
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Appendix: Explanation of the Church effect

The Church effect (Church, 1964) concerns a potential confound in yoked designs. The problem is that yoked

designs can lead to artifactual differences between groups if there are individual differences across partici-

pants. For the purposes of illustration, imagine a simpler version of Experiment 1 in which both conditions

receive single feature pretraining. One would not expect to find a difference between these two conditions,

as they differ only in whether they contain yoked or non-yoked participants. In the Experimental group, each

participant is trained to an errorless criterion (as we did in Experiment 1, SFPT condition). In the Control

group, each participant receives exactly the same number of trials of single feature pretraining as one ran-

domly selected participant in the Experimental group (a yoking procedure). Now, consider those pairs of

participant, and imagine that the two members of the pair learn at different rates. If the yoked participant

learns faster than the experimental participant, the yoked participant will also reach an errorless criterion,

and so their terminal performance as measured by percent correct will be the same. However, if the yoked

participant learns slower than the experimental participant, then they may not reach an errorless criterion and

their terminal percent correct will be lower than the participant to which they are yoked. So, when we work

out the mean performance of the yoked group, we will average together some people who are worse than

the Experimental group, and some who are the same. This will of course lead to a lower mean in the yoked

condition. So, the yoking procedure has been ineffective in matching learning in the two conditions, as mea-

sured by percent correct. This problem can be avoided by giving everyone the same number of training trials,
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assuming random allocation of these individual differences across the two conditions. This is the procedure

we use from Experiment 2 onwards.
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