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A Comparison of Exact and Heuristic
Algorithms to Solve the Travelling Salesman

Problem

Matthew Chatting

Project Advisor: Dr. Matthew Craven, School of Computing, Electronics and
Mathematics, Plymouth University, Drake Circus, Plymouth, PL4 8AA

Abstract

This article provides an overview to the Travelling Salesman Problem (TSP) and the
relevant aspects of graph theory and computational complexity theory to understand
the TSP. Beyond this, two algorithms capable of solving the TSP are introduced, ex-
plained and analysed in terms of their efficiency. The first algorithm is a random search
heuristic ‘hill climber’ and the second is an exact ‘branch and bound’ algorithm. The
benefits and drawbacks of each algorithm are discussed alongside their performance
on distinct instances of the TSP. Consideration is also given to current research on the
factors contributing to the complexity of instances.
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1 Introduction

The Travelling Salesman Problem

In one form or another, the Travelling Salesman Problem (TSP) has been considered
throughout most of human history and represents the concept of finding the shortest
tour around a set of locations, finishing at the original location and only visiting each
location once [6].

More commonly, the TSP has been thought of as a salesman visiting a number of
cities. So, for the sake of simplicity throughout this article, the locations shall be re-
ferred to as cities. The TSP is relatively simple and can be solved by hand when
considering a small set of cities. However, the complexity of the TSP escalates as
more cities are considered, making brute force, trying every possible solution, ineffi-
cient [11]. Hence, it is necessary to utilise logical methodologies to solve the problem.

As the objective of the TSP is to find the shortest tour around a set of cities, a method-
ology of calculating the cost of a tour must be defined. The cost may be the geograph-
ical distance between two cities or some other measurement relative to the problem.
As such, each instance (unique problem) of the TSP has an associated method for
calculating the cost between each pair of cities.

A TSP instance is classified as either asymmetric or symmetric. If an instance is asym-
metric it indicates that the cost between each city pair is dependent on the direction of
travel. Meaning, the distance from city i to j may be different to the distance from city
j to i. Conversely, a symmetric instance means that the distance between each pair of
cities is the same regardless of the direction of travel. The complexity of a symmetric
instance, for n cities, can be quantified by it having (n − 1)! feasible tours, as demon-
strated in Table 1. Note that all instances included in this article are symmetric, and
more detail can be found on each in Section 4.

Table 1: No. of feasible solutions relative to the no. of cities

n 1 2 3 . . . 10 20 30 40
# Sols 1 1 2 . . . 362, 880 1.22× 1017 8.84× 1030 2.04× 1046

Graph Theory

Instances of the TSP can be modelled using the principles of graph theory; the problem
is viewed as an undirected weighted graph where cities are vertices, city connections
are edges and the objective is to find the optimum valid tour. For a tour to be valid it
must visit every city only once, except for the original city which is also the final city.
So, the set of feasible solutions is all possible Hamiltonian cycles within the graph and
the optimum solution is the shortest Hamiltonian cycle.
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Computational Complexity Theory

A brief insight into computational complexity theory shall be provided to allow some of
the underlying components of complexity to be explained. This, in turn, shall be used to
help understand the complexity of the TSP (as an NP-hard problem [10]) and predict
how different approaches to finding the optimum solution to a given instance would
work. However it is worth noting that complexity theory is not the main component of
this article so only relevant aspects of the topic are included.

Algorithms

An algorithm can be described as a process, or set of rules to be followed explicitly.
The idea is that by following an algorithm the process can be completed without any
intuitive knowledge, making it ideal for a computer. An algorithm can be written for any
number of reasons, perhaps to complete a simple but repetitive task or to complete
a very difficult and long task a human would not be able to do within a reasonable
amount of time.

This article shall investigate the efficiency of how two distinctly different algorithms
operate when applied to various instances of the TSP. The two algorithms considered
shall be a hill climbing algorithm and a branch and bound algorithm. Both algorithms
shall be explained, tested and analysed throughout the article.

Hill Climbing

An hill climbing (HC) algorithm is known as a random search heuristic. The use of the
word random indicates there is an element of randomness in the algorithm; if it is run
twice then the same output is not guaranteed, while search heuristic means that the
algorithm works by considering small iterative changes to improve upon the current
solution. When applied to the TSP an HC algorithm works by randomly generating a
valid tour and, through a series of permutations, gradually decreases the cost of the
tour by iteratively changing the order in which the cities are visited. This algorithm is
explained in more detail in Section 5, including the specific permutations applied and
small examples.

Branch and Bound

A branch and bound (BB) algorithm is known as an exact algorithm because it is
designed to always find the optimal solution to a given problem and does not rely
on any form of randomness. So, if a BB algorithm is run multiple times under the
same conditions on the same problem, the solution found will remain constant. A BB
algorithm is better than a brute force approach because it is able to split the set of all
feasible tours into subsets and, by calculating the lower bound of each subset, decide
to remove or investigate these subsets in more detail. This sets the BB algorithm apart
from a brute force approach because it does not need to fully investigate each branch.
This algorithm is explained in more detail in Section 6.
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Current Research

The TSP is a heavily researched topic, with a lot of effort being allocated towards
proposing new algorithms to solve various instances of the TSP. Much of the current
research is looking at the application of evolutionary and genetic algorithms to solve
the TSP [1]. Further research is being conducted to better understand the features of
various instances of the TSP in an effort to predict how effective various algorithms
would be in solving the instance [18]. Currently, ‘Concorde’ [2], is widely regarded as
being the best TSP solver available and applies advanced heuristics such as Chained
Lin-Kernighan [3].

It should be noted that the objective of this artcile is not to develop upon these current
aspects of leading research, but rather to create two very different algorithms designed
to solve the TSP and analyse their performance across various instances.

2 Graph Theory

Background of Graph Theory

Graph theory was originally devised by Leonhard Euler, allowing him to solve the fa-
mous Königsberg bridge problem, The problem required a circular walk to be found
which would allow a person to cross over each of the seven bridges exactly once.

Rather than considering the problem as land masses with bridges spanning rivers;
Euler reduced the problem down to a graph, by considering the land and bridges as
the vertices and edges of the graph, respectively.

Reducing the problem to a graph allowed Euler to focus on the key aspect of the prob-
lem relevant to finding the solution, the connections between land masses. By doing
this Euler was able to prove that it was impossible to find a circular walk encompassing
each bridge exactly once [15].

A similar logic is taken when considering the TSP. While at first glance the majority of
problems may seem too complex to be solved by an algorithm, the principles first used
by Euler can still be applied to reduce different instances of the TSP to simple graphs.
The following definitions will outline all aspects of graph theory used throughout the
artcile.

Definitions

Definition 1. A graph, G, is represented by G = (V,E), where V is the set of n cities
and E is the set of edges between each city pair, formally

V = {1, 2, . . . , n} ⊆ N
E = { (i, j) : i, j ∈ V } .

Figure 1 is an example of an arbitrary graph. The number of edges adjacent to any
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Figure 1: An arbitrary graph with ten vertices

vertex v ∈ V is known as the degree of v, for example, the degree of vertex 6 in Figure
1 is 3.

Definition 2. If a graph has an edge between a vertex and itself it is known as a loop.

Figure 2: A single vertex with a loop

Figure 2 shows a single vertex with a loop. As we will only be considering simple
graphs, there shall be no loops. Note, simple graphs also omit multiple edges con-
necting the same vertices.

Definition 3. A graph is complete if all pairs of vertices v ∈ V are connected by some
edge in E.

Figure 3: A complete graph with eight vertices

Figure 3 shows a complete, undirected and un-weighted graph with 8 vertices arranged
in no particular order, this graph is also known as K8.

Definition 4. A walk is a sequence of vertices within a graph, G, which are connected
via edges. For example,

vi, vi+1, . . . , vj−1, vj
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Figure 4: A walk within K8

is a walk, where vi and vj are known as the start and end points of the walk, respec-
tively. Note, in a walk edges and vertices can be used multiple times.

Figure 4 shows an example of a walk (bold edges) in K8, where the walk follows the
sequence 1, 5, 2, 1, 8, 5. Note this walk visits some of the vertices multiple times but
does not use any edge more than once.

Definition 5. A path in a given graph, G, is a walk in which edges and vertices can be
used only once.

Figure 5: A path within K8

Figure 5 shows an example of a path (bold edges) in K8, following the sequence
8, 1, 3, 5, 2, 4 (or 4, 2, 5, 3, 1, 8, however in these cases the direction is not relevant). Note,
the path does not re-use any edges or vertices to complete this sequence.

Definition 6. A cycle in a given graph, G, is a path which ends at the start point. For
example

vi, vi+1, . . . , vj, vi.

Figure 6 shows a cycle (bold edges) following the sequence 1, 8, 4, 2, 5, 3, 1 on K8.
Note, if a graph cannot contain a cycle, it is known as acyclic.

Definition 7. A Hamiltonian cycle is a cycle which visits every vertex, v ∈ V , exactly
once.
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Figure 6: A cycle within K8

Figure 7: A Hamiltonian cycle within K8

Figure 7 shows a Hamiltonian cycle within K8. By the definition of the TSP we are
looking for the optimal Hamiltonian cycle in our graph, where the cost of the cycle is
dependent upon the weightings of the chosen edges.

Definition 8. Let G be a graph with n vertices. G is a tree if the following criteria are
met:

1. G is connected

2. G is acyclic

3. G has n− 1 edges

Figure 8 depicts an arbitrary tree with 17 vertices and 16 edges.

Definition 9. Let G be a tree with n vertices. A vertex of G with degree 1 is known as
a leaf.

Figure 8 has ten leaves: B, E, G, H, I, J, N, O, P and Q.

Application of Graph Theory to the TSP

An instance of the TSP can be considered as a complete undirected weighted graph
where the cities are represented as vertices, with the objective being to find the optimal
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Figure 8: A tree with 17 vertices

tour, T . The set of feasible solutions to the TSP is the set of Hamiltonian cycles and
the optimum solution, T , is the Hamiltonian cycle with the least cost. As the graph is
defined as being a complete graph it is known that a Hamiltonian cycle exists.

Each edge in a graph representing an instance of the TSP has an associated cost and
by summing each of these costs the total cost of a proposed tour can be calculated.
So, if we let Xi,j define the cost between the city pair { i, j} where i 6= j in the graph
G, we can say the total cost of the tour, c(T ), starting from city i1 is

c(T ) = Xi1,i2 +Xi2,i3 + . . .+Xin−1,in +Xin,i1 (1)

for distinct ij ∈ {1, . . . , n}. The methodology for calculating Xi,j for each instance
is outlined in Section 4, as it is dependent on the edge weight type (metric) of the
instance in question. If we let H represent the set of all Hamiltonian cycles present in
the graph G we can define the optimum tour as

T ∗ = min{ c(T ) : T ∈ H} .

3 Computational Complexity Theory

As complexity theory is a large field, this article shall only provide a brief summary of
the key concepts before moving onto the specific applications when considering the
TSP. Complexity theory focusses on the complexity of computational problems and
allows problems to be categorised depending on their complexity. Complexity theory
also allows problems be reduced to show the underlying relationship between them
[9]. Reducing a problem down to another (more well known) problem provides a better
understanding of how to tackle the problem.

There are many ways to define the complexity of a problem, each with their own merits.
The approach taken in this article is to measure the time taken for the algorithm to find
the solution. When using time as the measure of complexity, problems often fall within
one of two categories, P or NP (although there are other categories). NP is split into
a further three subsections: NP, NP-Complete and NP-Hard. Each category shall be
discussed in more detail, however some definitions are required first.
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Turing Machines

The aforementioned classifications of complexity all depend upon the time taken to
find the solution using an algorithm, beyond this, the classifications also rely upon the
type of machine running the algorithm. There are two machines which are relevant
for this discussion, the deterministic Turing machine and the non-deterministic Turing
machine. Both are named after the world-famous mathematician Alan Turing.

Definition 10. A Turing machine is a conceptual representation of a computer in
digital form which follows instructions input via tape. This allows the machine to com-
plete various tasks depending on the input tape, while only storing a limited library of
instructions on the machine [5].

Definition 11. A deterministic Turing machine is representative of a conventional
computer, and as such, is only capable of carrying out binary calculations [25].

Definition 12. A non-deterministic Turing machine is a theoretical machine capable
of carrying out more than one action at each step, theoretically allowing it to assess
the both TRUE and FALSE outcomes of one variable in one step [25].

P

P stands for polynomial time and indicates that a given problem can be solved by
a deterministic algorithm, on a deterministic Turing machine, within polynomial time.
This means that the time taken to reach the solution can be represented by O(nk), the
order of the complexity, where k is some constant [14] and n is a problem parameter
(for example, the size of the problem). In this case there is a polynomial relationship as
n changes because k is kept constant; however, it is worth noting that the magnitude
of the complexity will be dependent on k. A sorting problem is a prime example of a
problem which falls into complexity class P.

Figure 9: Plot of the relationship between the size of a problem and the time taken to
solve for various orders of complexity

Figure 9 shows how much the value of k can affect the time taken to solve a problem
within complexity class P. It is clear that while n effects the time taken to solve the
problem, k is the dominating term in the definition.

61



The Plymouth Student Scientist, 2018, 11, (2), 53-91

NP

The class NP stands for non-deterministic polynomial time, indicating that a problem
can be solved by an algorithm on a non-deterministic Turing machine within polynomial
time [16]. As non-deterministic machines do not exist, NP problems cannot be solved
in polynomial time. However, a fundamental requirement of an NP problem is that the
solution can be verified within polynomial time [14].

NP-Complete

Under the assumption that P6=NP, see [8] for a discussion on this topic, a problem is
classified as being NP-complete if it satisfies two criteria. Firstly, the problem must
fit the definition of an NP problem. Secondly, all problems within the classification
are reducible to the same problem, this means that if a polynomial time algorithm is
found to solve one NP-complete problem then the algorithm could be used to solve all
NP-complete problems [7].

NP-Hard

An NP-hard problem is “at least as hard as any NP-complete problem and quite possi-
bly harder” [13]. Expanding upon this loose definition, an NP-hard problem cannot be
solved whilst providing proof of the solution within polynomial time.

As stated in Section 3, an NP problem can have its proposed solution validated within
polynomial time, i.e. O(nk). For the TSP, it is not possible to validate a solution within
polynomial time due to the requirement to check that the tour is not just a Hamiltonian
cycle but the optimum Hamiltonian cycle. This second condition requires that all other
feasible tours are known to be longer than the proposed solution, which at its worst
would require a brute force check as shown in Table 1 in Section 1. Thus, we can state
that the TSP is classified as NP-hard under computational complexity theory [10] and
[21].

4 TSP Instances

There are many different TSP instances, with each instance representing a different
challenge or application. The majority of these instances have either optimal or nearly
optimal solutions already discovered, allowing them to be used as benchmarks when
developing a new approach to solving these problems. Table 2 shows the key infor-
mation for instances used in this article. Note, all instances have been sourced from
Heidelberg University [24]. The key difference between instances (other than size) is
the the edge weight type, this indicates the manner in which cost of travelling between
a pair of cities is calculated. As Table 2 shows, the instances used in this article were
of types ‘ATT’, ‘EUC-2D’, ‘GEO’ or ‘MATRIX’. Recall that the cost of travelling between
a pair of cities, say i and j, is denoted as Xi,j.
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Table 2: Key information of chosen instances

Instance # Cities Edge Weight Type Length of Optimum Solution
ATT48 48 ATT 10, 688

BayG29 29 GEO 1, 610
BayS29 29 GEO 2, 020
Berlin52 52 EUC-2D 7, 542
Burma14 14 GEO 3, 323
Dantzig42 42 MATRIX 699

Fri26 26 MATRIX 937
GR17 17 MATRIX 2, 085
GR21 21 MATRIX 2, 707
GR24 24 MATRIX 1, 272

Swiss42 42 MATRIX 1, 273
Ulysses16 16 GEO 6, 859
Ulysses22 22 GEO 7, 013

EUC-2D

The edge weight type EUC-2D represents a Euclidean distance in two dimensions.
Hence, the cost of travelling between two points is

Xi,j =
√

(xi − xj)2 + (yi − yj)2 (2)

This value is rounded to the nearest integer.

ATT

The instance, ATT48, represents the 48 capitals of the contiguous mainland U.S. states
and ATT indicates the edge weight type used is pseudo-Euclidean [23]. That is, the
distance between cities i and j are calculated by finding the difference between the x
and y co-ordinates of the cities and summing the square of these differences, dividing
by ten and calculating the square root. Put simply

Xi,j =

√
(xi − xj)2 + (yi − yj)2

10
(3)

GEO
The co-ordinates within an instance with the edge weight type GEO are stored as de-
grees and minutes. So, to calculate the distance between two cities these co-ordinates
first need to be converted into decimal degrees before the great circle distance (gcd)
can be found. To calculate the decimal degrees one must first split the degree and
minute components, e.g. from DDD.MM to DDD and MM. The decimal equivalent of
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the co-ordinate is calculated as:

decimal degree =
π × (DDD + 5

3
×MM)

180
(4)

Note that Equation 4 applies for converting both longitude and latitude. After converting
the x and y co-ordinates the gcd between the two is calculated as

Xi,j = 6378.388× arccos

(
(1 + a1)× a2 − (1− a1)× a3 + 1

2

)
(5)

for a1 = cos(xi − yi), a2 = cos(xj − yj) and a3 = cos(xj + yj) and the final solution
is rounded down to the nearest integer. The value 6378.888 in Equation 5 represents
a sphere with radius 6378.888, allowing the great circle distance between the two co-
ordinates to be calculated.

MATRIX

MATRIX indicates that the instance already has some form of cost matrix associated
to it, either a complete cost matrix or only the upper / lower triangles of the matrix. As
we know that all cost matrices are symmetric along the main diagonal it is simple to
complete the cost matrix where either the upper or lower triangle sections are provided.

Optimum Tour Examples

Figures 10 and 11 show the optimum tours for Burma14 and ATT48 respectively.
Burma14 and ATT48 have been displayed as they are the most referenced problems
throughout the article alongside GR21, however it is not possible to plot the optimum
tour for GR21 as no (x, y) co-ordinates are provided for this instance.

Figure 10: Burma14 optimum tour Figure 11: ATT48 optimum tour
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5 Hill Climbing Algorithm

Overview

A Hill Climbing algorithm can be visualised by considering a solution landscape of a
maximisation problem, see Figure 12, where the peak is the optimal solution and the
dot is the current solution.

Figure 12: Convex landscape Figure 13: Rugged landscape

HC algorithms generate arbitrary solutions and make iterative improvements. As the
algorithm converges on the optimal solution the dot ‘climbs’ up to the peak. A typi-
cal HC algorithm only adopts ‘uphill’ changes that improve the solution, and thus the
HC algorithm is classified as a local neighbourhood search heuristic. If applied to a
problem with multiple local maxima, Figure 13 for example, the HC algorithm would
stop at the first local maximum reached. The algorithm would not identify any changes
which would improve the solution and wrongly conclude the optimal solution had been
reached. Therefore, the effectiveness depends greatly upon the landscape of the in-
stance being solved. It is worth noting the ruggedness of the non-convex landscape
in Figure 13. As the complexity of the problem increases, often the landscape will be-
come more rugged. This indicates a greater risk of the HC algorithm returning a local
maximum.

Although Figures 12 and 13 represent a continuous solution landscape this is not
strictly true for most problems, and any movement on the landscape would be dis-
crete not continuous. However these have been included as a visual aid to assist in
understanding the concept of a solution landscape.

As the TSP is a minimisation problem, the HC algorithm developed will only accept
‘downhill’ steps. Further, the solution landscape of a TSP will often have multiple
local minima, so there is a risk of getting stuck in a ‘valley’. By this definition, the HC
algorithm applied to the TSP can be viewed as trying to maximise the negation of a
function. So, when applying an HC algorithm to find the optimal solution to an instance
of the TSP, the aim is to minimise the objective function f(x). This is equivalent to
maximising the function −f(x). Here, the objective function f(x) is represented by the
cost of the tour, c(T ). At each iteration the algorithm will adjust the tour in some way.
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This creates the new tours, each with their own costs

c(T ′), c(T ′′), . . . , c(Tm)

where m ∈ N and represents the number of permutations applied. Each new tour will
be compared to c(T ), and, if any

{c(T ′), c(T ′′), . . . , c(Tm)} < c(T ),

then the tour with the smallest cost is accepted as the new tour and becomes c(T ).
This process is repeated until a tour is found which satisfies the condition

{c(T ′), c(T ′′), . . . , c(Tm)} > c(T ),

and then, the tour represented by c(T ) is classified as the optimum solution found as
no possible swap can improve upon the current tour.

The first step for the HC algorithm is to use an initialisation function to create an initial
tour, considering the example in Figure 14, a completely random valid tour might be

1, 4, 3, 5, 2, 1,

which would have an associated cost of 35.

Figure 14: Five city example

Next the potentially shorter tours, known as ‘children’ are generated and compared
against the ‘parent’. Children could be generated in various ways by applying differ-
ent permutations to the current tour. One potential permutation is a simple city swap
heuristic, where children are generated by swapping two cities in the tour [19].

Being a Hamiltonian cycle the starting city does not affect the overall efficiency of a
tour so there is no need to swap the first city. So following on with our example, the first
city considered for swapping is city 4. The impact of swapping this city with all other
cities (i.e. 3, 5 and 2) would be calculated in search of a shorter tour, generating the
following children:

1, 3, 4, 5, 2, 1;

1, 5, 3, 4, 2, 1;

1, 2, 3, 5, 4, 1.
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The cost of the children is compared against the initial tour and the one with the biggest
benefit is adopted as the new tour.

This is repeated for the next city in the tour, i.e. 4 or 3, depending on which tour is
chosen. The algorithm would iteratively apply the swapping process to every city in
the tour and restart at the second city after the penultimate one has been swapped,
until no better tour can be found. At this point either a local, or global, minimum has
been found and the search is complete.

The HC algorithm is an effective way of finding optimum solutions to convex problems
quickly and at least a locally optimum solution for non-convex problems. Additionally,
it will return a valid solution even if it is interrupted mid-way. For all these benefits, the
biggest drawback of the HC algorithm is the risk of it returning a local optimum, with
no way of the user knowing if their result was not the best possible outcome. Several
methods exist to minimise this risk (one of these methods is ‘random restart’).

Random restart iteratively repeats the HC algorithm a chosen number of times, and
each run of the algorithm has a new randomly generated starting tour produced by the
initialisation function. Before using a random restart the optimum cost discovered is
stored and after all restarts have been completed the shortest tour is kept as the opti-
mum result. This iterative method increases the chance of finding the global optimum,
although it increases the computational time required because the HC algorithm is run
multiple times. When the algorithm is applied to a problem with a known optimum (see
Table 2), random restarts can be used until the global optimum tour is found. How-
ever, for previously unsolved problems this would not be possible so it is important to
remember the solution found by a hill climbing algorithm may not necessarily be the
optimum solution in these cases.

Developed Hill Climbing Algorithm

As stated previously, the HC algorithm is split into 4 distinct steps:

1. Generate initial tour;

2. Apply heuristics given on pages 68-71 to the current tour;

3. Repeat step 2 until no better solution can be found;

4. Apply random restarts if desired.

Each step shall be explained in detail, giving visual aids where appropriate.

Initial Tour Generator

Two potential methods of generating the initial tour were considered, a completely ran-
dom valid tour and a (logical) modified nearest neighbour tour. The modified nearest
neighbour approach requires selecting a city, say i, at random and the next city, i+1, is
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Figure 15: Comparison of initial tour generators on ATT48

randomly chosen from the set of the three closest cities to i not already visited. Each
potential city has an equal probability of being chosen, 1

3
, so the initial tour still involves

randomness. It is proposed that taking this logical approach reduces the time required
for the algorithm to converge on the optimum solution - this is investigated in detail
in Section 7. An example of the difference between the two methods can be seen in
Figure 15. See Figure 11 for the optimum tour of ATT48.

Swap Heuristic

The first permutation applied is a straightforward city swap heuristic as outlined in the
example in Section 5. A for loop is used to consider all possible swaps and identify the
most beneficial city swap available. Additionally, a while loop is used to apply the swap
heuristic repeatedly until it can provide no further improvement.

Figure 16: Example of the swap heuristic

Figure 16 shows a change (circled) implemented by the swap heuristic. As shown, a
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more favourable route has been found by swapping the order in which the cities are
visited. The change in cost, ∆, due to a swap can be calculated easily. Recall we have
defined Xi,j as the cost of travelling from city i to city j. If j = i+ 1, this ∆ is

C1 = Xi−1,i +Xj,j+1, (6)
∆ = C1 − (Xi−1,j +Xi,j+1). (7)

However, if j 6= i+ 1 then the ∆ in cost is

C2 = Xi−1,i +Xi,i+1 +Xj−1,j +Xj,j+1, (8)
∆ = C2 − (Xi−1,j +Xj,i+1 +Xj−1,i +Xi,j+1). (9)

These calculations can only be applied to a symmetric TSP as, in Equation 7, the cost
ofXi,j = Xj,i so this edge does not need to be taken into account. This would not apply
for an asymmetric TSP. In either case, if ∆ is positive then the proposed modification
would be beneficial. In this way, ∆ may be seen as the benefit or dis-benefit arising
from the swap. This tour is stored until all other city pairs have been swapped and the
change resulting in the greatest benefit is adopted as the new tour. The process is
repeated until the swap heuristic can produce no shorter tours can be produced.

2-opt Heuristic

The 2-opt heuristic (2-opt) is the first permutation which applies a ‘k-opt’ transforma-
tion. A k-opt transformation is defined as removing k edges from the current tour and
replacing them in all possible combinations [12]. Thus, 2-opt involves removing two
edges and replacing them in all possible ways. When removing two edges there are
two new ways of reconnecting them, but only one which results in a valid tour.

Visually, 2-opt can shorten the tour by removing segments where the proposed cycle
overlaps. This is completed within the algorithm by selecting a segment of the current
tour, i.e. the ith city to the jth city, reversing it and inserting it back into the tour in the
original location. In an instance with n cities, the algorithm uses nested for loops with
2 ≤ i ≤ n− 1 and i+ 1 ≤ j ≤ n to evaluate all possible 2-opt swaps.

If we consider the random initial tour from the example in Section 5, which was 1, 4, 3, 5, 2, 1,
and calculate all possible 2-opt permutations with i = 2 (the second city visited, in this
case city 4) we would produce:

1, 3, 4, 5, 2, 1;

1, 5, 3, 4, 2, 1;

1, 2, 5, 3, 4, 1,

with j = 3, j = 4 and j = 5 respectively. After calculating the cost associated to these
tours we would consider i = 3 and i = 4, at this point we have i = n−1 so the algorithm
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would identify the most beneficial swap, set that as the new tour and repeat until no
better tours can be found with this permutation.

The impact of this permutation is calculated by considering the change in cost where
adjacent vertices have changed, similarly to the swap heuristic, and the change result-
ing in the greatest benefit becomes the new tour.

Figure 17: Example of the 2-opt permutation applied

Figure 17 shows 2-opt applied to ATT48, where a shorter tour has been created by
modifying a segment of the tour which overlaps (circled). As with the swap heuristic, a
for loop is used to asses the impact of all potential 2-opt permutations on the current
tour.

3-opt Heuristic

The 3-opt heuristic (3-opt) applies a k-opt transformation where k = 3. As expected,
3-opt involves removing three edges from the current tour and reconnecting them in
all possible combinations resulting in a valid tour. This is achieved by removing two
segments from the current tour and rejoining them in all possible combinations, how-
ever the HC algorithm omits combinations which are equivalent to a 2-opt as the tour
has already been optimised under this heuristic. The total cost of each new tour is cal-
culated similarly to 2-opt. While 3-opt allows for more flexibility in optimising the tour
it requires more calculations, taking longer to compute each step. Figure 18 shows
3-opt applied to ATT48.

In an instance with n cities, the algorithm uses three nested for loops with 2 ≤ i ≤ n−4,
i + 1 ≤ j ≤ n− 2 and j + 2 ≤ k ≤ n to evaluate all possible 3-opt swaps. An example
of the 3-opt transformation can be provided by taking a generic sequence of 8 cities,
1, 2, 3, 4, 5, 6, 7, 8, 9, 1 and letting i = 3, j = 5 and k = 8. This would mean rearranging
the blue and red portions from 1, 2, 3, 4, 5, 6, 7, 8, 9, 1 in all possible combinations not
equivalent to the 2-opt transformations. Note, the red portion is always from j +1 to k.
This example would create the children:
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1, 2, 6, 7, 8, 3, 4, 5, 9, 1;

1, 2, 8, 7, 6, 5, 4, 3, 9, 1;

1, 2, 5, 4, 3, 8, 7, 6, 9, 1;

1, 2, 8, 7, 6, 3, 4, 5, 9, 1;

1, 2, 6, 7, 8, 5, 4, 3, 9, 1.

Figure 18: Example of the 3-opt permutation applied

Enhanced Swap

The enhanced swap is a modified version of the swap heuristic designed specifically to
increase the robustness of the algorithm after observing the performance of all other
permutations on the instance ATT48. The enhanced swap is applied after all other
permutations and, quite simply, moves the position of a city, say i, within the tour.

Completed Algorithm

The completed HC algorithm is an amalgamation of the swap heuristic, 2-opt, 3-opt
and enhanced swap applied consecutively. It fully optimises under each permutation
and progresses onto the next when no shorter tours can be found by applying the
current heuristic. The efficiency of this algorithm when applied to the instances listed
in Table 2 is analysed in Section 7. Figure 11 shows the optimum tour for ATT48 which,
additionally, is found by the hill climbing algorithm.
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Figure 19: Example of the enhanced swap

6 Branch and Bound Algorithm

Overview

The Branch and Bound algorithm relies on splitting the set of all feasible tours into
subsets and calculating the lower bound (LB) of the subset, where the LB is defined
as the cheapest possible solution within the subset. Note that some of the constraints
of the problem are relaxed to allow this to be calculated easily. Branches with LBs
greater than a defined bounding criterion are pruned until only one tour remains, the
optimal tour [17]. The pruning (also known as bounding) stage of BB separates it from
a brute force approach as the LB of a branch is calculated without every path being
individually computed. Because of this, the efficiency of the BB algorithm is dependent
upon the choice of bounding criterion, this is discussed in more detail in Section 7.

The overall LB of the problem is calculated by summing the minimum two elements of
every row in the cost matrix (CM) and dividing the total by two [22]. Dividing by two
to avoids double counting edges, as each edge is incident with two vertices and all
vertices are in the final tour, also the initial LB is always rounded up and the method is
known as the two neighbour bound. As the BB algorithm builds up potential tours the
LB for each branch would change depending on the cities already visited.

Developed Branch and Bound Algorithm

The BB algorithm is split into six distinct steps:

1. Assign a bounding criterion and calculate an overall lower bound;

2. Set an initial city, e.g., city 1;

3. Evaluate valid neighbours adjacent to the current city;
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4. Prune any branches which now exceed the bounding criterion;

5. Repeat steps 3 and 4 until all branches reach a ‘leaf’;

6. Identify optimum solution from those remaining.

Bounding Criterion and Lower Bound

Step one of the algorithm is one of the most important aspects of a BB algorithm as
the closer the bounding criterion is to the optimum solution, the faster the algorithm
will identify the optimum solution. There are several ways of calculating the bounding
criterion, one could generate a nearest neighbour tour (where the next city visited is
the closest city) and use the cost of this tour as the bounding criterion. Alternatively
the user could use the output of a HC algorithm, for example to ensure they have found
the optimum tour. Figure 20 shows a nearest neighbour tour on ATT48.

Figure 20: Nearest neighbour initial tour on ATT48

From the example in Figure 14, a nearest neighbour tour from city 1 is

1, 3, 2, 5, 4, 1,

which provides a bounding criterion of 26. The next step is to calculate the overall
lower bound, the cost matrix for Figure 14 is



1 2 3 4 5

1 ∞ 6 3 5 7
2 6 ∞ 2 9 7
3 3 2 ∞ 8 9
4 5 9 8 ∞ 9
5 7 7 9 9 ∞


and the two neighbour bound produces an overall lower bound of

LB =
(3 + 5) + (2 + 6) + (2 + 3) + (5 + 8) + (7 + 7)

2
= 24. (10)

It is worth noting that this does not necessarily represent a valid tour.
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Branching and Bounding

The next step in the algorithm is to generate, assess and prune branches representing
all possible tours. The algorithm will select a city, say i, as the first city (without loss of
generality as all cities are visited regardless). The impact the choice of initial city has
on the time taken to solve the problem is investigated in Section 7. As this is the initial
city, no other cities have been visited yet and therefore any of the remaining cities can
be visited. So, if the problem contains n cities there are n − 1 potential cities to visit.
For each the associated cost of visiting them must be evaluated.

To do this a data-frame with n− 1 rows is created, this can be visualised by imagining
a decision tree (see Figure 21), where each row represents an edge in the decision
tree for this problem. As each row represents a potential tour, the minimum LB for the
tour is calculated and stored in the data-frame and any row with an LB greater than
the bounding criterion is removed from the data-frame. This simulates the bounding
aspect of the algorithm. Figure 21 shows this first step of branching and bounding
applied to the example from Figure 14 with the LB for each tour shown alongside each
branch.

Figure 21: Initial step for branch and bound algorithm

The LB varies for each branch because of the different decisions made. On each
branch, the LB of the tour being constructed is the overall LB plus the cost of the tour
so far, c(T ), minus the minimum edges adjacent to the two cities in the tour. The
calculations representing city 1 to city 5 are

c(T ) = 7 (11)

LB = 24− 3 + 7

2
+ c(T ) = 26. (12)

The fraction 3+7
2

represents the minimum costs of the edges adjacent to city 1 and city
5. By subtracting this value from the LB we are subtracting as little as possible from the
LB before adding the cost of the edge chosen. This keeps the LB as large as possible,
which helps when it comes to pruning branches. It is also worth noting that the value
being subtracted (3+7

2
) is always rounded up to the nearest integer using the ceiling

function in R.

As this LB is not greater than the bounding criterion (26), this branch is not be pruned.
However, the LB for city 1 to city 2 is greater than 26 so all subsequent nodes in this
branch would not be considered.

Next, all possible tours from the rows remaining in the data-frame are evaluated. This
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is accomplished by duplicating each row n − 2 times; n − 2 is used as all tours under
consideration are currently of length two and therefore there are n−2 cities that can be
visited given the definition of the problem. For each iteration within the algorithm this
value will change to represent the number of cities which can be visited. Specifically,
this can be written as

Number of duplicates = n− length of current tour. (13)

Again, each of these rows can be represented by branches on a decision tree and
for each the LB is calculated and the relevant branches are pruned. This process is
repeated until all potential tours are complete. At this point there will be one (or more)
tours remaining, and the shortest tour is the optimum tour. As the BB algorithm is an
exact algorithm, this is known to be the global optimum solution to the problem.

For these stages, the LB calculations for each branch are slightly different. Instead of
subtracting the cost of the minimum edge adjacent to each city, the second cheapest
adjacent edge value is used for the city which the salesman is departing from and the
minimum adjacent edge cost is used for the city the salesman is travelling to. This
is because the minimum edge adjacent to the city the salesman is departing from
has already been subtracted from the LB in the previous iteration of the algorithm, so
subtracting the second cheapest adjacent edge keeps the LB as accurate as possible.
For example the calculations for the new LB from city 3 to city 2 would be

c(T ) = 2 (14)

LB = 24− 3 + 2

2
+ c(T ) = 23 (15)

Note, the new LB (23) is smaller than the LB calculated at the previous stage for
this branch (24). Recall that this is because we always round up, using ceiling,
when subtracting the cheapest adjacent edges to a city to avoid erroneously pruning
a branch.

Figure 22: Second step for branch and bound algorithm

Figure 22 shows all branches and respective LBs considered in the second iteration of
the algorithm. Figure 22 indicates the tours 1, 3, 2 and 1, 4, 5 are the only branches not
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Figure 23: Completed branch and bound algorithm

to be pruned at this stage, as the lower bounds of all other branches exceeds the cost
of the original nearest neighbour tour.

Figure 23 shows the completed tree for the example problem. In this case the cost of
the optimum tour is 26, and the Hamiltonian cycle is 1, 3, 2, 5, 4, 1. While this is the same
as the initial nearest neighbour tour produced this can be considered a coincidence.

7 Analysis

Linear Regression

Linear regression can be described as an analytical approach to predict an outcome
using the linear relationship between an outcome variable and one, or more, predictor
variables [20]. For linear regression to be applicable the following conditions must be
true:

• the predicted variable is continuous;

• the predictor variable (or variables) are continuous;

• the predicted and predictor variables have a linear relationship;

• the predictor variable is distributed normally.

If there is only one predictor variable, which will be the case in our analysis, it is known
as simple linear regression. The equation for a simple linear regression model is

Yi = β0 + β1Xi + εi, (16)
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which, with the exception of the error term, can be equated to the standard line equa-
tion

y = mx+ c,

and, therefore, represents a straight line. In Equation 16, β1 represents the gradient of
the line, β0 represents the y-axis intercept, Y is the predicted value andX is the predic-
tor value, while ε denotes the random error terms which accounts for the randomness
in the predicted variable.

As our analysis shall investigate how the number of cities in an instance effects the
time taken to solve the problem, our predictor variable is discrete. Despite having
a discrete predictor variable, we can still use a linear regression model because our
predictor is not a categorical variable and there is a continuous scale as the instance
size changes. This means that the difference between an instance having 20 or 21
cities is equivalent to the difference between an instance having 40 or 41 cities. So,
despite the discrete nature of the data the scale is continuous. Whereas if categorical
data had been converted into a numerical representation, for example the results of a
survey, the difference between 1 and 2 may not be equivalent to the difference between
3 and 4.

Analysis of the Hill Climbing Algorithm

Initial Tour Analysis

In Section 5 it was claimed that the time taken to find the optimum solution could be
reduced by using a modified nearest neighbour (logical) initial tour, instead of a com-
pletely random valid tour. To assess the validity of this claim the instances: Burma14,
BayG29, BayS29, GR17, GR21 and GR24 were each run sixty times on the hill climb-
ing algorithm, thirty times with a random initial tour and thirty times with a modified
nearest neighbour initial tour. Each time the algorithm was run, the time taken to find
the optimal solution and the cost of the initial tour was collected.

Figure 24 shows the time, in seconds, to find the solution relative to the number of
cities in the instance. Note that each instance had a discrete number of cities but a
jitter plot has been used as a visual aid only. Looking at Figure 24, in the smaller
instances there is a very small difference between the logical and random initial tours.
However, Figure 25 shows the clear difference in mean times per initial tour for each
instance size and would appear to show that there is an exponential growth in time as
the number of cities increases. So, unless stated otherwise, all future analysis shall be
conducted with the modified nearest neighbour initial tour.

Application to Various Instances

Each instance listed in Section 4 was run through the HC algorithm 100 times using
the logical initial tour generator. As the optimum for each instance is known this was
used to stop the algorithm once the optimum tour was found. Each time the algorithm
was run the following metrics were collected:
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Figure 24: Jitter plot of instance size against time taken to solve

Figure 25: Size of instance against mean time taken to solve

• Time - time taken, in seconds, to find the optimum solution;

• Restarts - number of random restarts to find the optimum solution;

• Steps - number of permutations applied in the successful restart.

While most statistical inference generally relies on at least 30 data points, exceeding
this value only increases the accuracy of the regression models created. The algorithm
was run 100 times to allow for plenty of data to be collected within a reasonable amount
of time, also allowing for the easier identification and removal of outliers without having
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a significant impact on the number of data points remaining. For example, if only 30
runs were completed, removing an outlier would bring the total number of data points
below 30, potentially reducing the accuracy of the models.

Figure 26: Histogram of time in seconds with added density line

Figure 26 shows the histogram of the time taken to find the optimum solution across
all instances with different scales on the vertical axes to emphasise the peak in the
density line. Figure 26 implies that a Poisson regression model may be a good fit
due to the distribution of the data, however a Poisson model is only suitable when the
predicted variable is an integer which does not hold in our case without coercing the
data into an integer.

Figure 27: Histogram of the transformed time, with added density line

Figure 27 is a histogram of the time taken to find the optimum solution across all
instances with a logarithm transformation applied to the time. After the transformation
has been applied the data is normally distributed, with a slight skew, and a linear
regression model may now be suitable.

Figures 28 and 29 show the QQ plot and residuals plot, respectively, of a Poisson
model that has been created using instance size to predict the integer time taken to
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Figure 28: Poisson model QQ plot Figure 29: Poisson model
residuals

find the optimum solution. Figure 28 shows the model is unfit because the plotted
values do not follow the dotted line in a linear fashion as expected and Figure 29 rein-
forces this interpretation as there are many points outside of Cook’s distance. Cook’s
distance can be described as a measure by which the influence of a data-point can be
measured, where the greater the residual value (e.g., the point labelled 18 in Figure
29) the more influential the point is on the model [27] (see [4] for a complete definition
of Cook’s distance). By considering Figures 28 and 29 we can see that the outliers
identified in the QQ plot are also identified as being highly influential on the overall
model, which would imply that a Poisson regression model is not a good fit for the
data. Hence a simple linear regression model of the log adjusted times was consid-
ered, where the instance size is used to predict the logarithm of the time required to
find the optimum solution.

Figure 30: Linear model QQ plot Figure 31: Linear model residuals

Figures 30 and 31 show the QQ and residuals plots, respectively, of the linear model.
Both plots clearly show this is a better model in comparison to the Poisson model.
Note that Figure 30 shows nearly all data points fit closely to the dotted line and Figure
31 shows no highly influential data-points (as the absolute value of the standardised
residuals is less than four). However, both plots do still indicate that the outliers in the
data are somewhat influential - these can be seen clearly at the bottom tail of Figure
30.
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These potential outliers can be investigated in more detail by producing a box-plot
of the data, Figure 32, for each instance size run through the hill climbing algorithm.
The horizontal line within each box represents the 50th percentile, while the top and
bottom of each box represent the 75th and 25th percentiles respectively. The ends of
the whiskers represent extensions of the box-plot designed to include the majority of
the data and identify any outliers, which can be seen in ATT48 and Berlin52.

Figure 32: Box plot of transformed time per instance

After removing these observed outliers and creating a new simple linear regression
model, again using instance size to predict time taken to solve, we can see in Figure
33 that this new linear regression model (blue line with 95% confidence interval) closely
reflects the trend visible in the data.

Figure 33: Plot of ln(time) with a linear regression line

The regression line in Figure 33 follows the equation

y = 0.17× x− 4.38. (17)

Relating this back to Equation 16, β0 = −4.38 and β1 = 0.17. Recall that β0 represents
the y-axis intercept and β1 is the gradient of the line. However, as this line represents
the relationship between the number of cities in the instance and the natural logarithm
of the time we cannot draw any conclusions about the actual time taken to solve a
given instance yet.
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Figure 34: Histogram of standardised residuals of the linear regression model

Figure 34 is a histogram of the standardised residuals of the linear regression model,
showing they are (roughly) normally distributed. This reinforces our belief that the
linear regression model generated is a good fit for our data and is equivalent to creating
a scatter plot of the standardised residuals displaying no pattern or trend.

To confirm everything we have inferred from the plots we can look at the summary
of the liner regression model within R using the summary function from the package
pander. This shows us that p << 0.05 which means the model accurately reflects the
data and an R2 value of 0.82 indicates the model is representing a significant portion
of the variation present. Because of this, we can be confident that exponentiating
predictions from our linear regression model will provide a good estimation of the actual
time taken to solve an instance depending on the instance size.

Figure 35: Plot of predicted time to find optimum solution with actual time taken

Figure 35 shows the predicted time, in seconds, to find the optimum solution depending
on instance size plotted with the mean actual time taken to solve each instance. Note
that the prediction has been displayed as a continuous line for visual aid only and
predictions would only be made for discrete values. The equation governing these
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predictions is

y = exp(0.17×x−4.38) (18)

where y is the time in seconds.

Figure 35 shows that our linear regression model is a good predictor for all instances
except ATT48. This could indicate that there are features beyond the size of the algo-
rithm that impact the time taken for the HC algorithm to find the optimum solution. In
the next subsection, we analyse the BB algorithm outputs.

Branch and Bound Analysis

It is worth noting that, unfortunately, due to computational limitations the BB algorithm
was not able to be run successfully across all instances listed in Section 4. The al-
gorithm was successfully run on Burma14 and GR21. From these successful runs,
analysis shall be conducted to attempt to determine why these instances could be
solved within a ‘reasonable’ amount of time while other instances could not be solved
by looking at the instances sizes, initial cities chosen and the effect of the bounding
criterion used.

Solved Instances

Figure 36 shows a violin plot of the times taken to solve the two instances Burma14
and GR21 after the BB algorithm was run 15 times for each instance. Note, that city
1 was used as the starting city for all runs. A violin plot displays the time taken in
the form of a density plot, where the width of the violin indicates the frequency of the
variable.

Figure 36: Violin plot of instance against time (s)

The violin for Burma14 indicates that the instance was generally solved in just over
500 seconds, but on some occasions took up to around 540 seconds. While the violin
for GR21 shows a more uniform distribution of time from 590 to 660 seconds. The key
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point to take away from Figure 36 is that even the quickest runtime for GR21 is greater
than the longest runtime for Burma14, which would imply that the larger instance is
more computationally demanding than Burma14.

Bounding Criterion Analysis

As seen in Section 6, the BB algorithm aims to solve the problem by quickly identi-
fying (and removing) tours which are clearly not optimal depending on some defined
bounding criterion. The two neighbour method was explained; however, given the
computational restrictions it quickly became apparent that this would not be a suitable
approach for defining the bounding criterion.

Figure 37 and Table 3 show how modifying the bounding criterion effects the time taken
for the BB algorithm to find the optimum solution on the instance Burma14. Note that
for this subsection the BB algorithm used city 13 as the starting city as it was identified
to reduce the time taken for the optimum solution to be found, this is explained in detail
in Section 7.

Figure 37: The effect of increasing the bounding criterion on Burma14

Table 3: Time taken to find optimum solution per bounding criterion on Burma14

Bounding Criterion Time (s) Time (min)
3, 323.00 315.90 5.3
3, 356.23 534.43 8.9
3, 389.46 854.02 14.2
3, 422.69 1, 442.36 24
3, 455.92 2, 266.93 37.8
3, 489.15 3, 455.66 57.6

Using the nearest neighbour approach to generate an initial tour provides a bounding
criterion of 3, 638, which is roughly 9.5% greater than the initial 3, 323. From Table 3 it
is clear that using the bounding criterion generated from the nearest neighbour tour
would take the algorithm well over 1 hour (probably more) to find the optimum solution.
Therefore, unless stated otherwise all future applications of the BB algorithm will use
the currently known optimum as the bounding criterion to allow the algorithm to the run
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within a reasonable space of time. This can be considered equivalent to testing a HC
algorithm output to ensure it is the optimum solution.

Size of Instance

Sub-instances were generated by selecting a set number of cities, say p, where p ∈
{5, 6, 7, 8, 9, 10} from the instances Burma14 and GR21. This provided some insight
into how the the number of cities in the instance effects the time taken for the BB
algorithm to find the optimum solution. Note that in this subsection city 1 was used as
the starting city.

Figure 38: Relationship between the number of cities in the (sub-)instance and time
taken to solve for two instances

Figure 38 shows the time taken to find the optimum increases as the size of the sub-
instance increases in both cases. However, there is clearly more to the complexity
of the instance than the number of cities because the algorithm is capable of solving
GR21 in less than 250 seconds, see Figure 39, but was not able to solve GR17 after
running for 24 hours.

Because of this, it was decided to attempt to identify what allowed some instances to
be solved relatively quickly while others took longer. To first try and gain some insight,
the choice of starting city which the BB algorithm uses was considered.

Starting City

The choice of starting city can be made without loss of generality, as every city is
visited regardless, however it is believed that the choice of initial city does impact the
time taken to find the solution using the BB algorithm. This was investigated by running
the BB algorithm on Burma14 and GR21 with every possible starting city. Note that for
all of these runs, the value of the known optimum solution to the instance was used as
the bounding criterion, the reason for this was explained in Section 7.

Figure 39 shows the time taken for the BB algorithm to find the optimum solution
plotted against the variance in edge costs adjacent to the starting city. We cannot say
with any certainty if there is a direct relationship between the two from Figure 39 alone,
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Figure 39: Effect of the starting city on time taken to solve

although it does support the belief that there is more to the instance complexity than
the number of cities. Burma14 seems to show a stronger relationship between the two
metrics than GR21, as several starting cities in the latter had low variance but large
solving time. Overall, this provides a small insight into a very large area of ongoing
research which is expanded upon in Section 8.

Table 4: Costs of edges adjacent to city 1 in Burma14

City 2 3 4 5 6 7 8 9 10 11 12 13 14
Cost 153 510 706 966 581 455 70 160 372 157 567 342 398

Table 4 shows the cost of all edges adjacent to city 1, using these costs the variance
was calculated in R using the var function, this was repeated for all cities in each
instance. Note that city 1 is omitted from Table 4, this is because it is not possible for
the salesman to travel from city 1 to city 1 so the associated cost within the cost matrix
is∞.

Comparing Hill Climbing and Branch and Bound

Due to the limited number of instances the BB algorithm was able to be successfully
applied to, it is difficult to draw a strong comparison between the HC and BB algo-
rithms. In order to enhance the data available, the HC algorithm was also run on the
sub-instances defined in Section 7.

The HC algorithm was run 100 times on each sub-instance, however, as these sub-
instances are not official TSP instances there are no published known optimum solu-
tions. Because of this, the solution provided from the BB algorithm was used within
the HC algorithm to identify when the optimum solution was identified to allow for com-
parable results to be generated. If this was not done there would be no way of fairly
identifying how long it took the HC algorithm to find the optimum solution between the
sub-instances and the complete instances.
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Figure 40: Comparison between HC and BB algorithms

Figure 40 shows the (log adjusted) times taken to find the optimum solution for both
the HC and BB algorithms on the Burma14 and GR21 instances in addition to the
sub-instances generated from each instance. These sub-instances were of size

{6, 7, 8, 9, 10}.

A logarithm transformation was applied to the times to allow difference in time to be
seen more clearly. It is clear from Figure 40 that, in all cases, the HC algorithm is faster
than the BB algorithm. It can also be seen that, as the size of the instance grows, the
difference between the time taken for each algorithm to find the solution grows too.
It is also worth noting that, in all sub-instances the starting city for the BB algorithm
was city 1, while for the complete instances the initial city chosen was the optimum city
found for that instance in Section 7.

This approach was taken to enable a fair comparison between the times taken to
solve the complete instances ATT48 and Burma14 on both algorithms, as the optimum
approach was taken in generating each plotted value. However, as Figure 39 shows,
we cannot assume that starting from the city with the least variances in adjacent edge
costs will result in the quickest time to find the solution. So, for simplicity the decision
was made to start form city 1 in all sub-instances.

8 Discussion and Conclusions

Discussion

Page 77 provided some insight into the performance of the HC algorithm across a
range of instances, and indicated that there was a relationship between the number of
cities in the instance and the time taken for the HC algorithm to identify the shortest
tour. However, by observing Figure 32 and Figure 33 and comparing the times taken
to solve ATT48 and Berlin52 we can infer that the time taken to solve is not entirely
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dependant on the number of cities in the instance. Indeed, on average, Berlin52 was
solved faster than ATT48. This could imply that there are other features of instances
which impact the efficiency of the algorithm employed. This concept was investigated
in more detail in Section 7, looking at the BB algorithm.

After noticing that the BB algorithm was able to solve Burma14 and GR21 quickly, but
unable to solve GR17 in over 24 hours, it was clear that the features impacting the
performance of the BB algorithm were having a far greater impact than the features
affecting the HC algorithm. In order to try and identify why only these two instances
could be solved within a reasonable space of time, they were run through the algorithm
again using every possible starting city. Rather than answering any questions however,
this process only raised more. Figure 39 shows how, for Burma14, there appears to be
a relationship between the time taken to solve and the variance in edge costs adjacent
to the starting city. The same investigation into GR21 displayed no clear pattern.

From this, we can surmise that there may be features present in different instances
which have a substantial impact on the time taken for a BB algorithm to solve them.
This inference is supported by the existence of ongoing research into the relationships
between features of different instances of the TSP and how different algorithms are
affected by these features [26].

Conclusion

Throughout this article we have introduced the Travelling Salesman Problem and the
relevant components of graph theory and computational complexity theory to allow
us to understand the TSP and why it is such a difficult problem. Two approaches to
solving the TSP were proposed, each with their own merits and drawbacks.

The Hill Climbing algorithm, an amalgamation of random search heuristics, was initially
investigated. Before being applied to the TSP it was known that the HC algorithm was
an approximation algorithm designed to give an estimate of the optimum solution within
a short space of time, but with no way of guaranteeing the optimum solution had been
found. The written algorithm was explained in detail, specifying the four heuristics
applied: the city swap, 2-opt, 3-opt and the enhanced city swap. It was also proposed
that the efficiency of the algorithm was dependant on the initial tour generated.

The Branch and Bound algorithm was also proposed as an approach to solving the
TSP. The BB algorithm is known as an exact algorithm because it is guaranteed to
find the optimum solution; however, this guarantee comes at the expense of time. The
process of branching and bounding in search of the optimum solution was explained
and it was proposed that the choice of bounding criterion would have a substantial
impact on the time taken for the algorithm to run.

The HC algorithm was applied to a variety of instances, ranging in size and metric
(edge weight type) where the known optimum solutions were used to stop the algorithm
after finding the optimal solution. This allowed analysis to be conducted on the time
taken to solve each instance, from initial analysis it was clear that there is, in general,
a relationship between time taken to solve and instance size. However, beyond this
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relationship it was also visible that other features of the instances impacted efficiency
of the HC algorithm. By applying a linear regression model we were able to show the
strength of this relationship. Using this model, we would also able to predict how long
the algorithm would probably need to be run for to find the solution to larger, potentially
unsolved problems.

After applying the HC algorithm the BB algorithm was applied to the same instances,
although with limited success. It was quickly noted that the BB algorithm was not
able to solve the majority of instances within a reasonable space of time. With only
two instances successfully solved by the BB algorithm analysis was conducted to try
and identify what affected the algorithms success. Initially the effect of changing the
bounding criterion was considered, and, as expected this was shown to have a dra-
matic impact on the time taken to find the optimal solution. Beyond this, limited analysis
was conducted on the relationship between the BB algorithm and the size of the in-
stance being solved. However, as only two instances had been solved this could only
be conducted by creating sub-instances and solving these.

This investigation revealed the expected results, that the size of the instance did ap-
pear to impact the time taken to solve, and that as the number of cities increased so
too did the time. In an effort to better understand the algorithm and the instances which
were successfully solved, each possible city for both instances was considered as the
starting city. Burma14 revealed a relationship between the variance in the edge costs
adjacent to the starting city and the time taken to solve. However, this relationship was
not present in GR21, and so there is clearly more to be considered when it comes to
the BB algorithm.

Both algorithms revealed significant performance changes when the initial conditions
were modified. For the HC algorithm, the modified initial condition was the initial tour
generated. Using a logical initial tour decreased the time taken to solve all instances
tested. The BB algorithm displayed a relationship between the bounding criterion and
the time taken to solve.

Overall, we were able to show that the HC algorithm is consistently faster than the
BB algorithm at finding the optimum solution. However without knowing the optimum
solution beforehand it would be impossible to know, for certain, when the HC algorithm
had found the global optimum solution to a given problem. On the other hand the BB
algorithm took longer but guaranteed the optimum solution.

We can conclude that, operationally, the HC algorithm would be the more reliable algo-
rithm as it is faster and we can predict its performance prior to applying the algorithm
based upon the size of the instance. However if used in conjunction with the BB al-
gorithm, it may be possible to validate the output of the HC algorithm given enough
time.

Sample code may be downloaded from http://math-sciences.org/datasets.
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