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Assessing the security of cryptographic
primitives for infinite groups

Mathew J. Walter

Project Advisor: Dr. Matthew Craven, School of Engineering, Computing, and
Mathematics, University of Plymouth, Drake Circus, Plymouth, PL4 8AA

Abstract
This paper considers the application of group theory to cryptography using a non-
abelian infinite group (the braid group). The practical application of cryptographic
protocols are determined by their security and feasibility. Both research papers and
experiments will be used to measure feasibility and security of the protocol, with the in-
tention of ultimately deeming the protocol either effective or ineffective. Having secure
cryptography is vital to providing anonymity, confidentiality and integrity to data and
as the quantum threat creeps towards us, the ever greater importance of new secure
cryptography is becoming clear.
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Introduction

The focus of this paper is to assess the security of possible future cryptographic pro-
tocols which implement infinite non-abelian groups.

The most common cryptographic systems such as RSA [1] and Diffie-Hellman [2]
are applied in all manners of ones’ life, from securing online bank transfers to com-
munication networks. Whilst these methods have so far kept us secure, the power
of computing machinery over the last few years has made it theoretically possible
for susceptible attacks. Mathematicians have considered these methods becoming
increasingly less secure. Particularly with the ongoing development of the quantum
computer and quantum algorithms, such as Shors algorithm [3] which can break RSA
under increasingly larger parameters. This is due to the complexity of these number
theory based protocols, for example RSA has a brute force complexity strength that
is exponential [4] and it may be the case that this complexity level is not sufficient for
security in the quantum world.

In response, there is ongoing research into developing cryptographic algorithms us-
ing non-commutative platforms. This is because many of these protocols have greater
than exponential (such as factorial) levels of security complexity making them far more
difficult to attack. We have seen many interesting proposed cryptosystems involving
different non-abelian groups and different ‘hard problems’.

This paper will be examining the most popular non-abelian public exchange proto-
cols (Ko-Lee’s 2000 paper [5] and AAG’s 1999 paper [6]). Interestingly, most of the
research is very modern and many of these ideas are still in their early years. These
protocols will be examined from a multitude of different angles including: using mod-
ern research papers that have attempted to attack these protocols, looking back into
the history of group theory Mathematics (1969) at the possible mathematical meth-
ods for attacking the hard problems from Garside (which could prove effective in the
modern world) and where there is a gap in knowledge using our own experimental
data to estimate values such as the complexity and effect of parameter sizes on the
cryptosystems. To do so, one will produce code to implement AAG and build attacking
experiments in the programming language Sage.

Finally, when satisfactory evidence has been acquired we shall be making an as-
sessment of the protocols considering various attacks, suggesting modification where
appropriate and examining whether these protocols are secure relative to modern in-
formation and research. One will be able to consider whether these protocols may be
suitable for the future cryptography.
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1 Groups

A group is a non-empty set of elements with a binary operation which can be denoted
∗, forming an algebraic structure which must satisfy four axioms:

1. Closure - elements of a set which are acted upon by the group operator shall
always produce a member of the same set. For example, the positive integers
{1, 2, 3, . . . , } are closed under addition of positive numbers but not under sub-
traction (addition of negative numbers).

2. Associativity - in the case of elements which are grouped with parentheses, the
order of which you perform the binary operations is not of significance i.e. for all
a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

3. Inverse - each element must have an inverse element, if ‘a’ is an element then
a−1 is the inverse. ∃e ∈ G : aa−1 = e, for all a ∈ G.

4. Identity - by combining an element with its inverse the resultant is an identity
element. The identity element is denoted e or 1. The identity element alone is the
trivial subgroup of any group. For example if a is an element e∗a = a. If the binary
operator is addition the identity element is 0. If the operator is multiplication the
identity element is 1.

Groups must also contain at least one element. A group with just one unique element is
named the trivial group. Groups can also hold other properties such as commutativity,
these are called abelian groups.

1.1 Subgroups

It may also be useful to define a subgroup. A subset of a group is also a subgroup if
and only if:

1. The subset is closed under the group operation.

2. The identity of the subset is the identity of the group.

3. Each element of the subset has an inverse that is also in the subset.

If a subset H of G is a subgroup of G, this is usually denoted H ≤ G.
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1.2 Presentation of a Group

A mathematical way to represent a group is through defining a group by a presentation.
In order to do so, one must specify a set S of generators and a set R of relations. In
its simplest form, a presentation is written {S|R}. For an example of a presentation of
a group see (1) below.

〈A〉 = {aεji1 , . . . , a
εj
in
|aij ∈ A, εj ∈ {1,−1} , n ∈ N} (1)

It is important for one to understand that when the binary operator is addition 30 = 0
and it is not the case that 30 = 1, which would only be correct if the group operator
was multiplication. For example,

< a >=< 3 >= {30, 31, 32, 33} = {0, 3, 3 + 3, 3 + 3 + 3} = {0, 3, 6, 9}.

But what is a generator? In a group {G, ∗}, a generator is a subset of elements or
a single element, which under the group operator * can produce all elements of the
group G.

Example 1. Find all generators of the group Z8 = {0, 1, 2, 3, 4, 5, 6, 7} under addition.

N Elements generated by N Order Is N a generator of Z8?
0 0 1 No
1 0,1,2,3,4,5,6,7 8 Yes
2 2,4,6,0 4 No
3 3,6,1,4,7,2,5,0 8 Yes

Table 1: Testing various elements of Z8 to check if they are generators.

It is clear that for an element to be a generator it needs to have an order of 8. Rather
than writing out and checking all possible generators one may observe a pattern; if the
generator is relatively prime to 8 then it generates Z8. Therefore 1, 3, 5, 7 are generators
of Z8.

1.3 Examples of Groups and Subgroups

Cyclic Groups: Let G be a group with operation ∗. Pick a single element a ∈ G. If
the group is generated solely by a then it is called a cyclic group (G =< a >). Cyclic
subgroups, H < G, are those generated by a generator of G, and must obey the
axioms for a subgroup as detailed in Section 1. The group generated by a under the
operation multiplication is written as

< a >= {. . . , a−3, a−2, a−1, 1, a, a2, a3, . . .} = {an|n ∈ Z},

whereas the group generated by a under the operation addition is

< a >= {. . . ,−3a,−2a,−a, 0, a, 2a, 3a, . . .} = {na|n ∈ Z}.

Example 2. An example of an infinite cyclic group is the group Z under addition with
a single generator of 1. Then, < 1 >= {. . . ,−2,−1, 0, 1, 2, . . .}.
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Example 3. An example of a finite cyclic group is the group Zn under addition for n 6=
∞. The group is cyclic and can be generated by 1; i.e., G =< 1 >= {0, 1, 2, . . . , n−1}.
The group generated by 1 will cycle through the numbers 0 to n− 1.

Example 4. By observing the symmetries (reflection, rotation) of a regular polygon one
can create a group, the Dihedral group. An anti-clockwise rotation of the shape by 2π/n
radians (where n is the number of vertices) is a symmetry (denoted ‘r’). In general a
sequence of ‘a’ rotations is denoted ra. The second symmetry is reflection, denoted f .
For an n-sided polygon there are n distinct reflections. Generators (transformations)
such as a reflection followed by a rotation, can be combined to find the remaining
symmetries. A reflection and 4 rotations would be fr4. To obtain all the remaining
symmetries one would have to reflect the shape then perform n − 1 rotations (frn−1)
(Fig.1).

1

2
3

4
5

2
1

5
4

3

2
1

2

4
3

Initial position (e) Single reflection (f) (r2f)

Figure 1: Symmetries of the dihedral group.

An interesting property of the dihedral group is that it is non-abelian when n ≥ 3,
i.e., rf does not equal fr. The notation for Dihedral groups is Dn where n is the
number of sides of the polygon; alternatively, it may be denoted as D2n where 2n is the
number of symmetries in the group. The Dihedral group is then given by

Dn = {e, r, r2, . . . , rn−1, f, rf, r2f, . . . , rn−1f}. (2)
One possible presentation of a finite dihedral group is

Dn = {rf |rn = e, f 2 = e, rfr = f}. (3)

One possible presentation of an infinite dihedral group is

D∞ = {rf |f 2 = e, rfr = f}. (4)

In Table 2, the Cayley table clearly shows and compares combinations of gener-
ators in a Dihedral group. To compute the elements, take any two generators and
multiply them together as a product of generators i.e. to compute the product of e and
r2 simply multiply e ∗ r2 to obtain r2.

2 Free Groups

2.1 Notation

In order to examine groups more formally one must be comfortable with some of the
key notation and definitions used in group theory. Some useful definitions are as fol-
lows: let X be an arbitrary subset from the group G. A word in the set X is a sequence
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e r r2 r3 r4 f rf r2f r3f r4f
e e r r2 r3 r4 f rf r2f r3f r4f
r r r2 r3 r4 e rf r2f r3f r4f f
r2 r2 r3 r4 e r r2f r3f r4f f rf
r3 r3 r4 e r r2 r3f r4f f rf r2f
r4 r4 e r r2 r3 r4f f rf r2f r3f
f f rf r2f r3f r4f e r r2 r3 r4

rf rf r2f r3f r4f f r r2 r3 r4 e
r2f r2f r3f r4f f rf r2 r3 r4 e r
r3f r3f r4f f rf r2f r3 r4 e r r2

r4f r4f f rf r2f r3f r4 e r r2 r3

Table 2: Cayley table to show all the permutations of D5.

of elements from the subset X. We can denote this w = y1, · · · , yn, yi ∈ X and see that
yi are the elements in X. Note yi’s do not have to be distinct. The length of the word is
the number of elements in the word denoted |w| i.e. for the word w = σ3σ4 there is two
elements thus |w| = 2. Later L, L1 and L2, will also be used to define a words length,
L denoting the length of the word, L1 denoting the lowest possible bound for the length
of a word and L2 denoting the greatest possible upper bound length of a word. A word
can also be empty denoted ε i.e. it has no letters.

For an arbitrary set X closed under inversion, consider all the inverses of X, X−1 =
{x−1|x ∈ X}. Then x and x−1 can be defined as literals in X. The intersection of the
two literals is the identity element and the union of the two literals of X, X±1 = X ∪X−1
contains the set of all literals in X.

A word is said to be reduced if it contains no subword of the type xx−1 or x−1x,
where x ∈ X ∪X−1. To describe this reduction process one needs to obtain a reduced
word from an arbitrary word, to do so one needs to delete all subwords. For example
if all the subword elements commute, and the word in question is w = aba−1c then the
word can be reduced by deleting the sub-word aa−1 which yields the reduced word
w = bc.

2.2 Free Group Definition

Starting with the formal definition extracted from Myasnikov, Shpilrain and Ushakov’s
group-based cryptography book [7]:

Definition 2.1. A group G is called a free group if there exists a generating set X of G
such that every non-empty reduced group word in X defines a non-trivial element of
G.

A free group G, commonly denoted F (S), must have a generating set S. The
generators are not related, other than the relation between a generator and its inverse.
This set S is defined as the basis. The group elements of F (S) are made up of finite
sequences of symbols from the basis S; i.e., σ2σ5 = s where s is an element (word)
in G with the operation of concatenation. All group elements must be reduced. In the
case of free groups the identity element is the empty sequence, i.e., the element of s
which contains no symbols and has length zero.
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3 Braid Groups

In this chapter we shall be examining braid groups from an algebraic and geometric
perspective, along with the presentation of the braid group, the braid monoid, the word
problem, pure braids and some of Garside’s work on the fundamental braid and left
canonical form [8].

3.1 Algebraic and Geometric Perception

Braid groups are used in many applications of science. They are non-abelian groups
(for n ≥ 3 as B2 is an infinite cyclic group, it is isomorphic to Z and thus non-abelian)
and thus make an interesting platform for new cryptosystems. To describe braids from
a geometric perspective, consider taking n equal length and equally spaced parallel
lines (strands) in R3 all with initial positions on axes perpendicular to the strands i.e.
they could have the initial positions (0, 0, 0), (0, 1, 0), (0, 2, 0), . . ., (0, n, 0). If we then
extended these strands across a plane (in our example, the XY plane) where strings
can cross but no strands can intersect one another or turn back, we would have a
simple example of a braid. Where these strands cross each other is of great interest
and by studying these permutations of crossings one can devise a braid group. Figure
2 shows a braid in the braid group aligned horizontally.

Figure 2: A geometric example of a braid.

Braid groups can have an infinite number of strands and as braid groups are groups
they must of course follow the axioms of a group. One such axiom is that they possess
an operator called the composition: this is equivalent to attaching one end of braid A
to one end of braid B. Other properties include being associative, having inverses and
having a trivial braid or identity braid in which no strands cross, this is illustrated in
Figure 3 below.

Figure 3: A vertically aligned trivial braid.

For describing braids, we use the notation σ to show a crossing in the strands.
σ1 is therefore the crossing of the first and second braid in a clockwise (left to right)
direction, to cross in the opposite direction/anticlockwise using the same strings we
would denote this σ−11 and this is the inverse of σ1. To cross the second and third string
in a clockwise direction we would denote this σ2. The generators for a braid group are
therefore σ1, σ2, σ3, · · · , σn−1 assuming n strings. The elements of a braid group are
words made up of letters σ±1i where |i| ≤ n − 1. Figure 4 gives an example of a braid
with positive and negative generators.
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Figure 4: The braid word σ1σ2σ−11 .

3.1.1 Presentation of the Braid Group

Braids are difficult to examine in their natural state and therefore mathematicians
sometime re-write these as matrices. For example, one such linear algebra represen-
tation of a braid group is the Burau representation [9] which adopts the use of matrices
to describe braid groups. Another example is the Lawrence-Krammer presentation
[10].

There are many ways to present a braid group. A common representation is using
an Artin group (or generalised braid group) suggested by Emil Artin [11]. He denotes
braid groups as Bn where n is the number of strands. Artin also first suggested the
generators be denoted σi. The Artin presentation of a braid group on n strands is:

Bn =

〈
σ1, . . . , σn−1 :

σiσj = σjσi for |i− j| ≥ 2
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2

〉
(5)

From the relation σiσj = σjσi for |i − j| ≥ 2 if two strand crossings do not share
strands then they commute. With regards to the second relation, Figure 5 shows
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2. Artin stated these two relations were sufficient
to describe a braid group, but it is yet to be proven that these two relations are the only
relations required.

Figure 5: The braid group relations (from [12]).

3.1.2 Pure Braids

Regardless of how many crossings are formed with other braids and the position of
those crossings, if the start of the strands and end of the same strands are in a po-
sition which is perfectly adjacent to each other, one can say the braid is pure. For
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an example, consider in R3 two parallel braid strands L1 and L2 with length 1 unit. If
the start of the braid strands are positioned on the x-axis where L1’s initial position is
(1, 0, 0) and L2 is at (2, 0, 0) and extended across the positive XY plane (regardless of
crossings), for a braid to be pure, L1 must end at position (1, 1, 0) and L2 must end at
position (2, 1, 0). See Figure 6 for a further example: note the start and finish braid
position.

Figure 6: An example of a pure braid.

3.1.3 The Positive Braid Monoid

When computing braids we may only require positive braid elements. In which case
one could use the braid monoid. A monoid holds similar properties to a group except
a monoid does not contain inverse elements. It is made up of the positive powers of
Artin generators. We can denote the braid monoid B+

n and present it as:

B+
n =

〈
σ1, . . . , σn−1 :

σiσj =
+ σjσi for |i− j| ≥ 2

σiσi+1σi =
+ σi+1σiσi+1 for 1 ≤ i ≤ n− 2

〉+

(6)

The braid monoid is homogeneous. That is, if two positive braids are equivalent the
length (order) of both words is the same.

3.1.4 The Word Problem

Braid groups can also have multiple representations of the same word in which braid
strands can cross at different positions and a different number of times, making them
look different from a geometric and non-normalised algebraic perspective but still the
two words can be equivalent. If this is the case we can use the symbol ≡ to mean
two words are equal in the braid group but not necessarily equal in the sense that the
two words are not made from the same generators in the exact same positions of the
word. However very often both = and ≡ symbols are used interchangeably. From this
one can form an argument; are two braid words equivalent? This ‘decision problem’ is
commonly known as the word problem. The word problem (along with the conjugacy
problem) was first posed by Max Dehn in 1911 [13]. Dehn proposed given an arbitrary
word in group G, decide if the word is equal to the identity element of G. Fortunately,
on the n strand braid group containing elements (words) of size L, the word problem
for this group is solvable in polynomial time with a known algorithm having a run time
of O(L2n) [6]. This polynomial-time algorithm computes the left canonical form of a
braid word and hence provides a feasible solution to the braid group word problem.

440



The Plymouth Student Scientist, 2020, 13, (1), 432-475

3.2 The Fundamental Braid

Suggested by Garside [8], a relevant example of a positive braid from the braid monoid
B+
n is the fundamental braid which is denoted ∆n. The fundamental braid can be

observed geometrically as a half twist of the trivial braid where any two strands cross
positively exactly once (see Figure 7). One can define the fundamental braid by:

∆n = (σ1 . . . σn−1)(σ1 . . . σn−2) . . . σ1 (7)

Note ∆1 = σ1. From the above, any example of the fundamental braid may be com-
puted by simply inputting values of n into the form. For example∆5 = σ1σ2σ3σ4σ1σ2σ3σ1σ2σ1.
The fundamental braid can also be written

∆n = ∆n−1σn−1σn−2 . . . σ1. (8)

For example:
∆2 = ∆1σ1 = σ1 , ∆3 = ∆2σ2σ1 = σ1σ2σ1

∆4 = ∆3σ3σ2σ1 = σ1σ2σ1σ3σ2σ1

∆5 = ∆4σ4σ3σ2σ1 = σ1σ2σ1σ3σ2σ1σ4σ3σ2σ1.

It should now be clear that both equations, (7) and (8) generating ∆5 give the same
fundamental word although expressed differently algebraically. It is possible to trivially
convert between the two using the braid relations to see (7) and (8) are equal in the
braid group. A positive braid is called a simple braid if it is a leftover factor from the
divisor of the fundamental braid. It is also referred to as a permutation braid. From
a geometric perspective a braid which only has positive crossings and every pair of
strands crosses at most once is a permutation braid.

Figure 7: The fundamental, or half-twist, braid ∆4.

Lemma 3.1 ([14]). In B+
n as well as in Bn we have ∆σi = σn−i∆.

Proof. For Bn this is obvious from the half twist (∆) in Figure 7.

3.3 Garside Normal form or Left Normal Form

Consider a horizontally aligned braid. If no crossings can be moved from the right half
of the braid to the left half without changing the word then one can say the braid is
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left-weighted. As it is possible to write a word in many different ways using different
generators in different positions, there needs to exist a standard so that every braid
admits a unique representation (a normal word). From the fundamental braid and
permutation braids one can express words in the Garside normal form [8], also known
as the greedy normal form (greedy referring to the maximum number of elements from
the word being written as the fundamental braid). If a braid is expressed in its normal
form, with an additional condition where the permutation braids on the left are as large
as possible then this braid is in left normal form, which makes this representation
unique. It is important to be able to express elements of a group in their normal form
in order to obtain a unique presentation of all the elements. Hence solving the word
problem which allows one to compare braids.

Theorem 4.3.1 [8] For every braid w ∈ Bn, there is a unique presentation
given by:

w = ∆r
nP1P2 . . . Pk (9)

where r ∈ Z is the infimum of w or inf(w). Note the infimum is the greatest
lower bound of a set and the supremum is the least upper bound of a set
(the number of permutation braids i.e. sup(w) = k). Pi are permutation
braids where Pk 6= ε and P1P2 . . . Pk is a left-weighted decomposition.

Example 5. Using Sage, this example computes the left-normal form of a braid w =
σ1σ

−1
3 σ2 ∈ B4.
First, replace all negative power generators σ−1i by ∆−1n Pi. Therefore, as w admits

a decomposition with a negative letter, replace σ−13 by ∆−14 σ2σ1σ3σ2σ1 to create:

w = σ1 ·∆−14 σ2σ1σ3σ2σ1 · σ2

First check:

σ−13 = ∆−14 σ2σ1σ3σ2σ1 = σ−11 σ−12 σ−13 σ−11 σ−12 σ−11 σ2σ1σ3σ2σ1

Using the two braid group relations rearrange:

σ−11 σ−12 σ−13 σ−12 σ−11 σ−12 σ2σ1σ3σ2σ1

We can first cancel σ−12 σ2 and then cancel σ−11 σ1:

σ−11 σ−12 σ−13 σ−12 σ3σ2σ1

We can then exchange σ−12 σ−13 σ−12 with σ−13 σ−12 σ−13 :

σ−11 σ−13 σ−12 σ−13 σ3σ2σ1

Cancel σ−13 σ3 and then cancel σ−12 σ2:

σ−11 σ−13 σ1

Finally rearrange, cancel σ−11 σ1 and hence:

σ−13 = σ−13 = ∆−14 σ2σ1σ3σ2σ1.
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After replacing all the negative power generators σ−1i by ∆−1n Pi. Use Lemma 3.1 to
move all appearances of ∆n to the left and hence move ∆−14 to the start of the word.
As n = 4 and i = 1, this yields:

w = ∆−14 σ3σ2σ1σ3σ2σ1σ2

After decomposing the positive part into a left-weighted decomposition (left-weighted
due to the order of the permutation braids):

w = ∆−14 · σ2σ1σ3σ2σ1 · σ1σ2

Check using Sage:

Input: B = BraidGroup(4)

W = B([1,-3,2])

W.left_normal_form()

Output:(s0^-1*s1^-1*s2^-1*s0^-1*s1^-1*s0^-1, s1*s0*s2*s1*s0,

s0*s1)

The complexity, also known as the canonical length of w is given by len(w) =
sup(w) − inf(w). The canonical length of w is denoted len(w). Therefore in Exam-
ple 5 the canonical length is 2− (−1) = 3. This notation is used heavily throughout the
length based attacks (Section 5.4).

4 Braid Group Cryptosystems

When Ko-Lee et al.[5] were deciding on a non-abelian platform group to operate their
cryptographic protocol, they needed to choose a platform group which met certain
criteria. Commonly accepted criteria are given by Myasnikov, Shpilrain and Ushakov
[7, p. 38–39].

1. Perhaps the most obvious criterion for a group to be cryptographically secure
would be suggesting the ‘hard problem’ be sufficiently ‘difficult’ for an adversary
to solve. For braid groups we can use the properties of non-commutativity to
our advantage to create a hard problem. This problem is the group conjugacy
search problem. The conjugacy search problem is a decision problem in which
given two words a and b in group G, determine whether or not they represent
conjugate elements in G. The CSP is a very practical and well known hard prob-
lem for application in cryptosystems. It is clear the conjugacy search problem
needs to be ‘difficult’. It also seems necessary to mathematically define the term
‘difficult’. For this, the conjugacy search problem should not be solvable with
modern computers in sub-exponential time.

2. A natural avenue may now be to question: how would we know if the conju-
gacy search problem for a given group is ‘difficult’? Bringing us on to the second
criterion. The group must be well studied and known so that mathematicians
have had a chance to evaluate whether the conjugacy search problem has a
subexponential-time solution by a deterministic algorithm. For the case of braid
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groups there are many hard problems. These include but are not limited to the
conjugacy decomposition problem [13], the Markov problem [5] and the conju-
gacy search problem [13]. These problems can be exploited to design ‘trap door’
one-way functions. Mathematicians have spent many years trying to develop
algorithms that can solve the conjugacy search and decision problem but have
been unsuccessful in solving it in polynomial time O(nc) with a deterministic algo-
rithm. Further, proving a group to have conjugacy search problem unsolvable in
subexponential-time is very difficult (hence the importance of using a well-studied
group).

3. Next, the word problem in G (deciding whether two words in the generators rep-
resent the same element in G) should have a fast solve time, i.e., either linear
(O(n)) or quadratic (O(n2)) time. This means there should be an efficient com-
putable normal form for elements of G. For braid groups the word problem is
solved quickly by an algorithm which computes the canonical form. The canoni-
cal form of a braid is described in an ordered list called a tuple (r;P1, P2, · · · , Pk)
where r is an integer and Pi’s are permutations. Here (r;P1, P2, · · · , Pk) =
∆r
nP1P2 . . . Pk. By converting to canonical form the computer can handle the

data more efficiently and it removes any difficulty in using the words in the de-
scription of groups. The complexity of transforming a word into a canonical form
is O(|W |2n), where |W | is the word length in Bn [15].

4. The next criterion is that G should be a group of super-polynomial growth. This
means that as the number of elements of length n increases, the size of G should
grow faster than any polynomial in n. This is to prevent brute force attacks by key
space exhaustion. Braid group cryptography is thought to become stronger as n
increases. Fortunately, the braid groups Bn are of exponential growth if n ≥ 3 [5].

5. Finally, it should be impossible to recover through inspection the conjugator x
from x−1wx or else the problem would become trivial. We could disguise ele-
ments by writing in normal form. i.e. we have seen from Section 3.3, σ−11 σ−12 σ−11 σ−13

may be expressed as ∆−14 σ1σ2. Braids can be converted to normal form, thus
concealing elements.

Subject to this, assessment, braid groups appear a suitable candidate for cryptography.

4.1 Diffie-Hellman

Before we examine some braid group cryptosystems we will take a brief detour to
cover the idea of Diffie-Hellman [2]. Diffie-Hellman is a key establishment protocol
(KEP) that conventionally uses number theory as elements of the protocol. A key
establishment protocol is a multi-party algorithm where a secret key can be shared
between authorised parties for encryption and decryption. The beauty of Diffe-Hellman
is that both authorised parties can agree on a secure key for encryption over the public
domain, meaning even with a hostile party intercepting the messages, without the
unshared secure private keys the hostile party is unable to decrypt the messages
without solving a ‘hard’ problem. This problem is very similar to the discrete logarithm
problem [16]. The original Diffie-Hellman uses the multiplicative group of integers
modulo N . The algorithm works as follows:

444



The Plymouth Student Scientist, 2020, 13, (1), 432-475

1. Alice and Bob must first agree on two things, a modulus N , thus agreeing on a
finite cyclic group G. Then they agree on a generator g ∈ G. This is all done in
the public domain. Often these are pre-agreed to save time and it is best to use
a large prime number for N .

2. Alice agrees on a private key a ∈ N that only she will know. This is kept in the
private domain, and she sends ga to Bob.

3. Bob agrees on a private key b ∈ N that only he knows. This is kept in the private
domain and he sends gb to Alice.

4. Alice computes (gb)a = gba.

5. Bob computes (ga)b = gab.

As integers are commutative under multiplication, the powers (private keys) are
identical, that is ab = ba, thus Alice and Bob have agreed on a secure shared key to
encrypt future communications gab.

Any eavesdropper would have to solve either ga for the power a, or gb for b (while
only knowing g, G, ga and gb). This is considered to be a hard problem when using a
good choice of G and g. This hard problem (although this is not yet proven and may
never be!) is called the Diffie-Hellman problem and can be considered the same for
practical purposes.

4.2 AAG and Ko-Lee Et Al. Cryptosystem

Section 4 concluded that the use of the braid group as a platform group could be a
successful option for creating infinite group based cryptographic protocols. Throughout
the rest of Section 4 we shall examine and refer to the work of Ko-Lee et al. [5] (2000)
and Anshel-Anshel-Goldfeld [17] (revised in 2003).

4.2.1 Anshel-Anshel-Goldfeld Key Exchange Method

The remarkable advantage for this key establishment protocol is that providing the two
groups meet the criteria detailed in Section 4 neither the subgroups nor the platform
group need to be abelian, unlike Ko-Lee et al. [5] (where we will see that the subgroups
must commute). The key exchange is as follows. Let G be a group (in our case a
braid group) G = 〈g1, . . . , gn|R〉. Alice and Bob are two parties that need to securely
communicate with each other and so need to agree on a shared secret key in the
public domain. Alice and Bob agree on parameters:

• N = the number of elements in Alice’s and Bob’s tuples.

• L = the length of the private keys.

• L1, L2 = the minimum and maximum bounds respectively for the length of a word
in a tuple.

Alice and Bob then perform the following actions, referring to [18].

445



The Plymouth Student Scientist, 2020, 13, (1), 432-475

1. Alice chooses a number (N ) of words in generators of G to form an N -tuple
(ai)

N
i=1 = (a1, . . . , aN) each word in (ai) must have a length between L1 and L2.

She then publishes (ai)
N
i=1 in the public domain;

2. Bob chooses a number (N ) of words in generators of G to form an N -tuple
(bi)

N
i=1 = (b1, . . . , bN) each word in (bi) must have a length between L1 and L2. He

then publishes (bi)
N
i=1 in the public domain;

3. Alice chooses a private key A = aε1µ1a
ε2
µ2
. . . aεLµL where µi ∈ {1, . . . , N} (this is to

record the position of the word in the tuple (ai)
N
i=1 to be used later) and εi ∈ ±1

for all i = 1, . . . , L (this adds more complexity, essentially doubling tuple size with
minimal computational effort);

4. Bob chooses a private key in a similar way, B = bδ1ν1b
δ2
ν2
. . . bδLνL where νi ∈ {1, . . . , N}

and δi ∈ ±1 for all i = 1, . . . , L;

5. Alice then computes the tuple of conjugates

A−1(bi)
N
i=1A = {A−1b1A, . . . , A−1bNA}

and transmits to Bob;

6. Bob then computes the tuple of conjugates

B−1(ai)
N
i=1B = {B−1a1B, . . . , B−1aNB}

and transmits to Alice;

7. Alice then computes the common private key K by multiplying by her private key:

A−1 · ((B−1a1B), . . . , (B−1anB))

= A−1(B−1aε1µ1B . . . B−1aεLµLB)

= A−1(B−1aε1µ1 . . . a
εL
µL
B) = A−1B−1AB = K

8. Similarly, Bob then computes the common private key K:

B−1 · ((A−1b1A), . . . , (A−1bnA))

= B−1(A−1bδ1ν1A . . . A
−1bδLνLB)

= B−1(A−1bδ1ν1 . . . b
δL
νL
A) = B−1A−1BA = K−1

9. Bob then computes the inverse of K−1:

(B−1A−1BA)−1 = A−1B−1AB = K.

K is the established shared key for encryption and A−1B−1AB is called the commu-
tator. Once K is established we can construct a public key cryptosystem (Subsec-
tion 4.2.3). Original parameters were suggested by Anshel in 2001 [19]. These pa-
rameters are n = 80, N1 = N2 = 20, L1 = 5, L2 = 8, L = 100. Note that the AAG relies
on a variation of the simultaneous conjugacy search problem, called the subgroup-
restricted conjugacy search problem (SR-SCSP) and one can say the security of the
AAG protocol is partially based, but not equivalent, on the assumption that SR-SCSP
is hard.
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Example 6. Using Sage and a self-engineered AAG protocol application (see appen-
dices). This example indicates the sizes of braids under small parameters using pa-
rameters n = 10, N1 = N2 = 5, L1 = 3, L2 = 5, L = 8.

1. Alice and Bob generate tuples and publish them:

Input: At

Output: [s2^-1*s0^-1*s1*s0*s7, s7*s5^-1*s8^-1,

s7^-2*s3^-1*s2*s1^-1, s2*s3*s6*s7, s6^-1*s3^-1*s2]

Input: Bt

Output: [s8, s8^-1*s2, s1^-1*s3^-1*s2*s1*s3,

s5^-1*s4*s0^-1, s2*s5^-1*s6*s0^-1*s7^-1]

2. Alice chooses her private key and computes the inverse:

Input: A_priv

Output: s7^-2*s3^-1*s2*s1^-1*s2^-1*s3*s6*s1*s2^-1*s3*s7^2

*s1*s2^-1*s3*s7*s0^-1*s1^-1*s0*s2*s1*s2^-1*s3*s7^2*s2

*s3*s6*s7*s2^-1*s0^-1*s1*s0*s7

Input: A_privinv

Output: s7^-1*s0^-1*s1^-1*s0*s2*s7^-1*s6^-1*s3^-1*s2^-1

*s7^-2*s3^-1*s2*s1^-1*s2^-1*s0^-1*s1*s0*s7^-1*s3^-1*s2*s1^-1

*s7^-2*s3^-1*s2*s1^-1*s6^-1*s3^-1*s2*s1*s2^-1*s3*s7^2

3. Bob also chooses a private key and computes the inverse:

Input: B_priv

Output: s1^-1*s3^-1*s2*s1*s3*s8*s0*s4^-1*s5*s2*s3^-1

*s1^-1*s2^-1*s3*s1*s2^-1*s8*s1^-1*s3^-1*s2*s1*s3

Input: B_privinv

Output:s3^-1*s1^-1*s2^-1*s3*s1*s8^-1*s2*s1^-1*s3^-1*s2

*s1*s3*s2^-1*s5^-1*s4*s0^-1*s8^-1*s3^-1*s1^-1*s2^-1*s3*s1

4. Alice and Bob generate their tuple of conjugates:
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Input: A_conj

Output:[s7^-1*s0^-1*s1^-1*s0*s2*s7^-1*s6^-1*s3^-1*s2^-1

*s7^-2*s3^-1*s2*s1^-1*s2^-1*s0^-1*s1*s0*s7^-1*s3^-1*s2*s1^-1

*s7^-2*s3^-1*s2*s1^-1*s6^-1*s3^-1*s2*s1*s2^-1*s3*s7^2*s8

*s7^-2*s3^-1*s2*s1^-1*s2^-1*s3*s6*s1*s2^-1*s3*s7^2*s1*s2^-1

*s3*s7*s0^-1*s1^-1*s0*s2*s1*s2^-1*s3*s7^2*s2*s3*s6*s7*s2^-1

*s0^-1*s1*s0*s7, s7^-1*s0^-1*s1^-1*s0*s2*s7^-1*s6^-1*s3^-1

*s2^-1*s7^-2*s3^-1*s2*s1^-1*s2^-1*s0^-1*s1*s0*s7^-1*s3^-1*s2

*s1^-1*s7^-2*s3^-1*s2*s1^-1*s6^-1*s3^-1*s2*s1*s2^-1*s3*s7^2

*s8^-1*s2*s7^-2*s3^-1*s2*s1^-1*s2^-1*s3*s6*s1*s2^-1*s3*s7^2

*s1*s2^-1*s3*s7*s0^-1*s1^-1*s0*s2*s1*s2^-1*s3*s7^2*s2*s3*s6

*s7*s2^-1*s0^-1*s1*s0*s7, s7^-1*s0^-1*s1^-1*s0*s2*s7^-1

*s6^-1*s3^-1*s2^-1*s7^-2*s3^-1*s2*s1^-1*s2^-1*s0^-1*s1*s0

*s7^-1*s3^-1*s2*s1^-1*s7^-2*s3^-1*s2*s1^-1*s6^-1*s3^-1*s2*s1

*s2^-1*s3*s7^2*s1^-1*s3^-1*s2*s1*s3*s7^-2*s3^-1*s2*s1^-1

*s2^-1*s3*s6*s1*s2^-1*s3*s7^2*s1*s2^-1*s3*s7*s0^-1*s1^-1*s0

*s2*s1*s2^-1*s3*s7^2*s2*s3*s6*s7*s2^-1*s0^-1*s1*s0*s7,s7^-1

*s0^-1*s1^-1*s0*s2*s7^-1*s6^-1*s3^-1*s2^-1*s7^-2*s3^-1*s2*

s1^-1*s2^-1*s0^-1*s1*s0*s7^-1*s3^-1*s2*s1^-1*s7^-2*s3^-1*s2

*s1^-1*s6^-1*s3^-1*s2*s1*s2^-1*s3*s7^2*s5^-1*s4*s0^-1*s7^-2

*s3^-1*s2*s1^-1*s2^-1*s3*s6*s1*s2^-1*s3*s7^2*s1*s2^-1*s3*s7

*s0^-1*s1^-1*s0*s2*s1*s2^-1*s3*s7^2*s2*s3*s6*s7*s2^-1*s0^-1

*s1*s0*s7,s7^-1*s0^-1*s1^-1*s0*s2*s7^-1*s6^-1*s3^-1*s2^-1

*s7^-2*s3^-1*s2*s1^-1*s2^-1*s0^-1*s1*s0*s7^-1*s3^-1*s2*s1^-1

*s7^-2*s3^-1*s2*s1^-1*s6^-1*s3^-1*s2*s1*s2^-1*s3*s7^2*s2

*s5^-1*s6*s0^-1* s7^-3*s3^-1*s2*s1^-1*s2^-1*s3*s6*s1*s2^-1

*s3*s7^2*s1*s2^-1*s3*s7*s0^-1*s1^-1*s0*s2*s1*s2^-1*s3*s7^2

*s2*s3*s6*s7*s2^-1*s0^-1*s1*s0*s7]
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Input: B_conj

Output:[s3^-1*s1^-1*s2^-1*s3*s1*s8^-1*s2*s1^-1*s3^-1*s2

*s1*s3*s2^-1*s5^-1*s4*s0^-1*s8^-1*s3^-1*s1^-1*s2^-1*s3

*s1*s2^-1*s0^-1*s1*s0*s7*s1^-1*s3^-1*s2*s1*s3*s8*s0*s4^-1

*s5*s2*s3^-1*s1^-1*s2^-1*s3*s1*s2^-1*s8*s1^-1*s3^-1*s2*s1

*s3,s3^-1*s1^-1*s2^-1*s3*s1*s8^-1*s2*s1^-1*s3^-1*s2*s1*s3

*s2^-1*s5^-1*s4*s0^-1*s8^-1*s3^-1*s1^-1*s2^-1*s3*s1*s7

*s5^-1*s8^-1*s1^-1*s3^-1*s2*s1*s3*s8*s0*s4^-1*s5*s2*s3^-1

*s1^-1*s2^-1*s3*s1*s2^-1*s8*s1^-1*s3^-1*s2*s1*s3,s3^-1

*s1^-1*s2^-1*s3*s1*s8^-1*s2*s1^-1*s3^-1*s2*s1*s3*s2^-1

*s5^-1*s4*s0^-1*s8^-1*s3^-1*s1^-1*s2^-1*s3*s1*s7^-2*s3^-1

*s2*s1^-2*s3^-1*s2*s1*s3*s8*s0*s4^-1*s5*s2*s3^-1*s1^-1

*s2^-1*s3*s1*s2^-1*s8*s1^-1*s3^-1*s2*s1*s3,s3^-1*s1^-1

*s2^-1*s3*s1*s8^-1*s2*s1^-1*s3^-1*s2*s1*s3*s2^-1*s5^-1*s4

*s0^-1*s8^-1*s3^-1*s1^-1*s2^-1*s3*s1*s2*s3*s6*s7*s1^-1

*s3^-1*s2*s1*s3*s8*s0*s4^-1*s5*s2*s3^-1*s1^-1*s2^-1*s3*s1

*s2^-1*s8*s1^-1*s3^-1*s2*s1*s3,s3^-1*s1^-1*s2^-1*s3*s1

*s8^-1*s2*s1^-1*s3^-1*s2*s1*s3*s2^-1*s5^-1*s4*s0^-1*s8^-1

*s3^-1*s1^-1*s2^-1*s3*s1*s6^-1*s3^-1*s2*s1^-1*s3^-1*s2*s1

*s3*s8*s0*s4^-1*s5*s2*s3^-1*s1^-1*s2^-1*s3*s1*s2^-1*s8

*s1^-1*s3^-1*s2*s1*s3]

5. Alice and Bob both respectively compute their private keys K1 and K3:

Input: K1 = A_privinv * B_conj

Output: s7^-1*s0^-1*s1^-1*s0*s2*s7^-1*s6^-1*s3^-1*s2^-1

*s7^-2*s3^-1*s2*s1^-1*s2^-1*s0^-1*s1*s0*s7^-1*s3^-1*s2

*s1^-1*s7^-2*s3^-1*s2*s1^-1*s6^-1*s3^-1*s2*s1*s2^-1*s3

*s7^2*s3^-1*s1^-1*s2^-1*s3*s1*s8^-1*s2*s1^-1*s3^-1*s2*s1

*s3*s2^-1*s5^-1*s4*s0^-1*s8^-1*s3^-1*s1^-1*s2^-1*s3*s1

*s7^-2*s3^-1*s2*s1^-1*s2^-1*s3*s6*s1*s2^-1*s3*s7^2*s1

*s2^-1*s3*s7*s0^-1*s1^-1*s0*s2*s1*s2^-1*s3*s7^2*s2*s3*s6

*s7*s2^-1*s0^-1*s1*s0*s7*s1^-1*s3^-1*s2*s1*s3*s8*s0*s4^-1

*s5*s2*s3^-1*s1^-1*s2^-1*s3*s1*s2^-1*s8*s1^-1*s3^-1*s2*s1*s3
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Input: K3 = (B_privinv * A_conj)^{-1}

Output: s7^-1*s0^-1*s1^-1*s0*s2*s7^-1*s6^-1*s3^-1*s2^-1

*s7^-2*s3^-1*s2*s1^-1*s2^-1*s0^-1*s1*s0*s7^-1*s3^-1*s2

*s1^-1*s7^-2*s3^-1*s2*s1^-1*s6^-1*s3^-1*s2*s1*s2^-1*s3

*s7^2*s3^-1*s1^-1*s2^-1*s3*s1*s8^-1*s2*s1^-1*s3^-1*s2*s1

*s3*s2^-1*s5^-1*s4*s0^-1*s8^-1*s3^-1*s1^-1*s2^-1*s3*s1

*s7^-2*s3^-1*s2*s1^-1*s2^-1*s3*s6*s1*s2^-1*s3*s7^2*s1

*s2^-1*s3*s7*s0^-1*s1^-1*s0*s2*s1*s2^-1*s3*s7^2*s2*s3*s6

*s7*s2^-1*s0^-1*s1*s0*s7*s1^-1*s3^-1*s2*s1*s3*s8*s0*s4^-1

*s5*s2*s3^-1*s1^-1*s2^-1*s3*s1*s2^-1*s8*s1^-1*s3^-1*s2*s1*s3

4.2.2 The Ko-Lee Et Al. Key Agreement Method

This system is a braid group version of Diffie-Hellman: consider the non-commutative
braid groupBl+r and two naturally commuting subgroups LBl andRBr, where LBl, RBr ∈
Bl+r. The subgroup LBl is generated by {σ, . . . , σl−1} and RBr by {σl+1, . . . , σl+r−1}.
The subgroups LBl and RBr commute with each other because the elements have
positions which are separated by at least an element (i.e. braids from RBr and LBl

do not share the same strands). As the two subgroups do not share the same strands
one can apply the first braid relation in Figure 5 to allow commutativity between the
subgroups. Both subgroups and the braid w ∈ Bl+r are made public.

Note that the two subgroups LBl and RBr are commuting element-wise and thus
ab = ba for all a ∈ LBl, b ∈ RBr. However aiai+1 6= ai+1ai. Finally, note, that all braids
are exchanged in left normal form, so it is not immediately obvious how to determine
a and b when given the braid ab. Alice and Bob are two parties that need to securely
communicate with each other:

1. Alice chooses an element (Alice’s private key) a ∈ LBl and trivially computes the
inverse a−1 ∈ LBl. She then computes Y1 = awa−1 before sending Y1 to Bob
(where w is the public tuple);

2. Bob chooses an element (Bob’s private key) b ∈ RBr and computes b−1 ∈ RBr.
He then computes Y2 = bwb−1 before sending Y2 to Alice;

3. Alice receives Y2 and computes the shared key

a(Y2)a
−1 = a(bwb−1)a−1 = K;

4. Bob receives Y1 and computes the shared key

b(Y1)b
−1 = b(awa−1)b−1 = a(bwb−1)a−1 = K.

Since a ∈ LBl and b ∈ RBr, ab = ba. Thus

a(Y2)a
−1 = a(bwb−1)a−1 = b(awb−1)b−1 = b(Y1)b

−1 = K.

An adversary, Eve, who captures the public elements Y1 = awa−1 and Y2 = bwb−1

can compute combinations of Y1Y2. For example,

Y1Y2 = (awa−1)(bwb−1) = (awb)(a−1wb−1)
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but none of these combinations are equal toK = a(bwb−1)a−1 due to non-commutativity
in the subgroups.

Just like the discrete log problem is considered near equal to the Diffie-Hellman
problem, this problem can be considered near equal to the generalised search prob-
lem or more accurately the subgroup-restricted conjugacy search problem due to it
being very similar in complexity [5], this will be examine later. Furthermore, just as an
attacker Eve would have to find x and y from gx and gy in Diffie-Hellman, in the case
above Eve would have to find a−1 or a from y = awa−1, and b or b−1 from Y2 = bwb−1.

4.2.3 The Ko-Lee Et Al. Cryptosystem Method

Once the key agreement has been performed it is possible to construct a public key
cryptosystem using an ideal hash function (a one-to-one function) from the braid group
to the message space H : Bl+r → {0, 1}k.

1. To encrypt Bobs’s message m ∈ {0, 1}k with the public key (x, y) where Y =
awa−1 obtained from Alice, Bob must randomly choose a braid (his private key)
b ∈ LBr. Then generate ciphertext (c,d) where c = bwb−1 and d = H(bY b−1)⊕m.
Note ⊕ is the ‘exclusive or’ function commonly denoted ‘XOR’.

2. For Alice to decrypt the ciphertext, she computes m = H(aca−1)⊕ d.

As a and b commute:

aca−1 = abwb−1a−1 = bawa−1b−1 = byb−1

Hence
H(aca−1)⊕ d = H(byb−1)⊕H(byb−1)⊕m = m.

Example 7. In this interpretation of the key agreement system from Ko-Lee ([5]), Bob
and Alice intend to use a binary message encryption protocol. Bob wishes to transmit
the message “Hello Alice” to Alice. In binary “Hello Alice!” translates to

01001000 01100101 01101100 01101100 01101111 00100000 01000001

01101100 01101001 01100011 01100101 00100001.

Bob has both his own public key Y2 = bwb−1 = σ1σ2σ
−1
1 and Alice’s public key

Y1 = awa−1 = σ3σ2σ
−1
3 available to him in the public domain. In this example we have

chosen Y1 and Y2 at random using the properties discussed in Section 4.2.2. Bob then
creates a ciphertext (c, d) where c is his public key Y2 = σ1σ2σ

−1
1 and d is computed as:

d = H(b(Y )b−1)⊕m = H(b(Y1)b
−1)⊕m = H(σ1(σ3σ2σ

−1
3 )σ−11 )⊕m

We first translate the shared symmetric key into a tuple with integer representation,
b(Y1)b

−1 = [1, 3, 2,−3,−1] and then convert from ASCII text to binary:

00110001 00100000 00110011 00100000 00110010 00100000 00101101

00110011 00100000 00101101 00110001
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After computing:
d = H(b(Y1)b

−1)⊕m

= 0100100001010100010011000101111101001111000100100110000101

00000101011010010000110100100000010000

Bob can now transmit the cipher text (Y2, d) to Alice.
Alice has received (c, d) = (Y2, d) = (σ1σ2σ

−1
1 , H(abwa−1b−1)⊕m) and now needs to

decrypt m. She proceeds thus:

m = H(a(Y2)a
−1)⊕ d = H(a(bwb−1)a−1)⊕ d

= H(σ3(σ1σ2σ
−1
1 )σ−13 )⊕ d = H(σ1(σ3σ2σ

−1
3 )σ−11 )⊕ d.

Computing (σ1(σ3σ2σ
−1
3 )σ−11 ) into a tuple and then into binary gives:

00110001 00100000 00110011 00100000 00110010 00100000 00101101

00110011 00100000 00101101 00110001

Therefore, computing H(a(Y2)a
−1)⊕ d gives:

00110001 00100000 00110011 00100000 00110010 00100000

00101101 00110011 00100000 00101101 00110001⊕ 010010000101

01000100110001011111010011110001001001100001010000010101101

0010000110100100000010000

= 01001000011001010110110001101100011011110010000001000001011

0110001101001011000110110010100100001

= ‘‘Hello Alice!’’

5 Attacks on the Group Cryptosystems

5.1 Summit Set Attacks

Ko-Lee et al. and AAG’s protocol both implement the basis of the Conjugacy Search
Problem as a trapdoor. Although it seems appropriate to note that neither of these
protocols have been proven to use the CSP directly [5]. It is therefore tangible to
suggest, the security of these cryptographic protocols rely on the confidence that the
conjugacy search problem is not yet solvable in sub-exponential time. However if an
algorithm was formulated with the capability to solve the CSP in less than 2O(n) time,
it is possible these braid group crypto-protocols could be deemed insecure. In fact
experimental data has suggested the problem is feasibly solved in polynomial time,
although as of yet no algorithm exists! [20]

The basis for one such promising algorithm, endeavouring to solve the conjugacy
search problem in 2O(n) time, was from work based on Garside’s finite subsets in 1969
[8]. Garside formulated an algorithm that could compute a set of conjugates called the
Summit Set. Garside’s raw algorithm was inefficient and the sets created contained far
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too many elements for solving the conjugacy search problem. However it was a good
basis in which to develop smaller sets within the summit set.

In 1994, two mathematicians El-Rifai and Morton [21] published a paper contain-
ing an advancement to solving the CSP made by computing a smaller subset of the
summit set called the Super Summit Set (SSS). Simply put, the idea suggested as-
sociating a finite set of conjugates (with conditions) with every braid then performing
the exhaustive search in that level. This significantly weakened the conjugacy search
problem and hence weakened the security of using braid group cryptosystems relying
on CSP. However the super summit set was still exponential in size with respect to n,
hence the time complexity to compute the set was O(n!) [22] thus still not feasible for
large n. After some refinement by Franco and González-Meneses in 2003 [23], the
subset was further reduced to in size to the Ultra Summit Set (USS) - the computation
of this set has unknown complexity but is efficient in practice (by [9]). This deems the
CSP even more vulnerable, since the subset size is reduced.

Examining in chronological order. Garside’s method was to construct two finite
subsets Ix, Iy ∈ Bn. For which when Ix = Iy, x braid is conjugate to y braid (recall that
if x and y are two elements of group G, they are conjugate if there exists an element a
such that axa−1 = y). For notation this can be written x ∼ y meaning “x is conjugate to
y”. Ix is also denoted SS(x) and is called the summit set of x. To construct such sets,
we will initially consider constructing the set Ix. First let x be an arbitrary element from
the braid group Bn (in the context of attacks, x is an element obtained from the public
tuple). For this element x, the objective is to create the subset Ix of the conjugacy
class of x. For every x ∈ Bn, the subset Ix must be non-empty, finite and only depends
on the conjugacy class of x. There must also be an efficient algorithm to compute a
representative x ∈ Ix and a conjugating element a such that axa−1 = x. Noting for the
application of crypto-attacks x and x are both in the public domain. Finally there must
be an algorithm which can construct the whole set Ix from any representative x ∈ Ix.
More formally Ix = SS(x), the summit set of x is the set of conjugates of x having
maximal infimum.

To solve the CDP and CSP for two elements of the braid Bn one can use different
algorithms based on this approach:

1. Find the representatives x ∈ Ix and y ∈ Iy.

2. As described above, use an algorithm which constructs the whole set for Ix from
any representative x ∈ Ix to compute further elements of Ix. While keeping note
of the conjugating elements. Similarly, compute the whole set of Iy with the same
method also keeping note of these conjugating elements.

3. At this point one should have both complete sets Ix and Iy along with the re-
spected conjugating elements. We can now compare the sets, comparing the
elements x with the elements in set Iy. There are two possibilities during this
comparison, either x ∈ Iy proving x ∼ y or, x /∈ Iy and x and y are therefore not
conjugate. Not only are we now able to determine the conjugates (solving the
CDP) but because we kept note of the conjugators we also have the respected
conjugators (solving the CSP), and in crypto applications this would reveal the
private keys.
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5.2 Super Summit Set

The super summit set SSS(x), is defined to be the set of all braids x = axa−1 for every
a such that length(x) is minimal. With a computable set, the conjugacy problem is
solved as:

SSS(x) = SSS(x)⇐⇒ x = axa−1

The Super Summit Set is a smaller set than the Summit Set, it has a much greater
infimum and smaller supremum. Creating bounds which reduce the size of the Summit
Set. Therefore the conjugates of x have minimal canonical length len(x).

To create super summit sets, we follow a similar procedure as summit sets de-
scribed in Section 5.1, denoting our Ix = SSS(x). We first require an element x ∈
SSS(x), one then follows a series of cyclings and decyclings until another element in
the SSS(x) is found. Repeated cyclings will achieve the maximum infimum of the set
whilst decylings will achieve the minimum supremum, as one requires a set with the
greatest infimum and smallest supremum both cycling and decycling can be performed
simultaneously. For example, if an element x ∈ Bn such that inf(x) is not equal to the
maximum infimum in the conjugacy class of x, then performing repeated cyclings will
increase the infimum. By cycling we can conjugate x to another element of maximal
infimum. Once an element of maximal infimum has been obtained, if the supremum
in not minimal in the conjugacy class one can use decycling to reduce its supremum.
Simply put, to find SSS(x):

1. Find a conjugate x of x (x ∈ SSS(x)) and find a conjugate of y of y, y ∈ SSS(y)
using cycling and decycling. Remembering prior to each iteration of cycling and
decycling the Garside normal form needs to be calculated.

2. Starting with the conjugate x, we compute each further element of SSS(x) using
conjugation. If x is equal to y, x and y conjugates have been found.

Definition 5.1. [22] Let = ∆Px1 . . . xr ∈ Bn be given in Garside normal form and
assume r > 0.

The cycling of x, denoted by c(x) is:

c(x) = ∆Px2 . . . xrτ
−P (x1),

where τ is the involution which maps σi to σn−i, for all 1 ≤ i ≤ n.
The decycling of x, denoted by d(x) is:

d(x) = xr∆
Px1x2 . . . xr−1 = ∆P τP (xr)x1x2 . . . xr−1.

If r = 0, we have c(x) = d(x) = x.

Properties: c(x) = (τ−P (x1))
−1x(τ−P (x1)), d(x) = xrxx

−1
r

inf(x) ≤ inf(c(x)), sup(x) ≥ sup(d(x))

Simply put, these properties mean to cycle an element of positive canonical length
one needs to move the first permutation braid x1 to the end of the word. To decycle
an element of positive canonical length one only needs to move the final permutation
braid xr to the start of the word.
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5.2.1 Cycling

Cycling of a braid x is usually denoted ∂+(x). Let x = ∆px1 . . . xr ∈ Bn be given in
Garside’s normal form, r being the final element assuming r > 0. To compute the
cycling of x we start by moving the first permutation braid of x to the end of the word,
in this case moving x1 to the end of the word (after xr) and applying the involution
mapping (sometimes called the shift map), σi to σn−i . Therefore the cycling of x is:

x = ∆px2 . . . xrτ
−p(x1)

Example 8. This example shows a cycling of the element (an element of positive
canonical length) P = σ1σ

2
2σ3σ1σ

2
2 with the intention of increasing the infimum. Then

the answer is confirmed with a Sage example.
First convert P to left canonical form as detailed in Section 3.3, more simply for this

example re-write P element by element i.e. re-write σ2
2 = σ2σ2.

P = (σ1σ2)(σ2σ3σ1σ2)(σ2);

Then inf(P ) = 0 and sup(P ) = 3. Performing the first cycling, moving x1 (in our
example σ1σ2) to the end of the word:

c(P ) = (σ2σ3σ1σ2)(σ2)(σ1σ2) = (σ2σ3σ1σ2)(σ2σ1σ2)

Next apply the second braid relation swapping σ2σ1σ2 with σ1σ2σ1, then put into left
canonical form:

c(P ) = (σ2σ3σ1σ2)(σ1σ2σ1) = (σ2σ3σ1σ2σ1)(σ2σ1)

Then the inf(c(P )) = 0 and sup(c(P )) = 2. After one further cycling: check the braid is
in left canonical form, then as before moving x1 (in our example σ2σ3σ1σ2σ1) to the end
of the word:

c2(P ) = (σ2σ1)(σ2σ3σ1σ2σ1)

Then, for this example, re-write into left canonical form by completing the following
actions. Re-arrange the permutation braids:

(σ2σ1σ2)(σ3σ1σ2σ1)

Apply the second braid relation swapping σ2σ1σ2 with σ1σ2σ1:

(σ1σ2σ1)(σ3σ1σ2σ1)

Swap σ3 and σ1 using the first braid relation to give (σ1σ2σ3)(σ1σ1σ2σ1). Finally, perform
the second braid relation swapping σ1σ2σ1 with σ2σ1σ2:

(σ1σ2σ3σ1σ2σ1)(σ2) = ∆4σ2

Now in left canonical form one can see inf(c2(P )) = 1 and sup(c2(P )) = 2.

Input: p = BraidGroup(4)

Input: P = p([1, 2, 2, 3, 1, 2, 2])

Input: P.left_normal_form()

Output: [1, s0*s1, s1*s0*s2*s1, s1]

Input: P.super_summit_set()

Output: [s0*s1*s0*s2*s1*s0*s1]
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Note that if the infimum is not maximal in the conjugacy class (as was the case in
Example 8), we can cycle elements, in which there exists a positive integer k1 such that
inf(ck1(x)) > inf(x). If the supremum is not minimal in the conjugacy class, we can
decycle elements, in which there exists a positive integer k2 such that sup(dk2(x)) >
sup(x). Applying this to Example 8, note inf(c2(P )) > inf(P ) our intention.

Proposition 5.1. [22] A sequence of at most rm cyclings and decyclings applied to x
produces a representative x ∈ SSS(x). Where m is the length of ∆ in Artin generators
and r is the canonical length of x.

5.2.2 Decycling

Decycling of a braid x is usually denoted ∂−(x). Let x = ∆px1 . . . xr ∈ Bn be given in
Garside’s normal form, where r > 0. To compute the decycling of x start by moving
the last permutation braid of x to the front of the word, in this case moving xr to the
start of the word (before ∆px1). Therefore the decycling of x is:

x = xr∆
px1 . . . xr−1

Alternatively, one may want to return the product of a decycling in left normal form.
For which case move xr in front of the fundamental braid and then applying the invo-
lution τ to xr. Therefore the decycling of x can also be obtained as:

x = ∆P τP (xr)x1x2 . . . xr−1

5.2.3 The Cycling and Decycling Combination

To summarise creating the super summit set: Given x find an element in the SSS(x);
then compare the infimum and supremum of x ∈ Bn with the maximum infimum in the
conjugacy class of x and the minimum supremum in the conjugacy class of x. If the
inf(x) is not equal to the infimum of x in the conjugacy class then perform a cycling or
multiple cyclings to increase the inf(x). By performing these cyclings one can cycle to
another element x̂ of maximal infimum. After a finite number of cyclings we obtain an
element in the SSS(x).

If the sup(x) of this element is not minimal in the conjugacy class of x perform
decyclings to a similar effect as cycling, however instead of increasing inf(x) we shall
be decreasing sup(x). Apply both cycling and decycling for elements that do not have
maximum infimum in the conjugacy class of x and do not have the minimum supremum
in the conjugacy class of x, to obtain an element that does meet these two conditions
(an element in the SSS(x)). Note the decompositions of cycling and decycling are not,
in general, Garside normal forms and hence the left normal form should be computed
after every iteration.
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Figure 8: Geometric interpretation of cycling and decycling, from [22].

From Figure 8, starting with a braid b we can perform cycling/decycling to reduce
its canonical length and hence its complexity. If b is not a braid that belongs to SSS(b)
then it will not have minimal complexity/length and cycling/decycling can be performed.
Eventually after a finite sequence of cyclings/decyclings we end up with a minimal
complexity/length braid b which lies in SSS(b).

Once braid b is found, one needs to find the rest of the set SSS(b) by an exhaustive
search of b under conjugation by simple braids a. This is done by considering all
conjugates aba−1; when a braid that has the same complexity as b is found we keep it
and add it to SSS(b).

Figure 9: Geometric interpretation of cycling and decycling, the graph of SSS(σ1) in
B4, from [22].

Example 9. This example shows a comparison in size of the two sets SS(x) and
SSS(x)for the element x = ∆4σ1σ1 ∈ B4. The summit set of x is:

SS(x) = {∆4 · σ1σ3, ∆4 · σ1 · σ1, ∆4 · σ3σ3}.

However, the super summit set of x is:

SSS(x) = {∆4 · σ1σ3}.

5.3 Ultra Summit Set

Although SSS(x)) is a considerably smaller subset of the SS(x), there exists a subset
that contains fewer elements than the SSS(x)). This set is called the Ultra Summit
Set (USS(x)) this is the set where sup(SSS(x) ≥ sup(USS(x)) and inf(SSS(x)) ≤
inf(USS(x)). The USS(x) consists of the conjugates of x in the SSS(x), which satisfy
ck1(y) = y for some integer k1 > 0. The USS(x) consists of a finite set of disjoint orbits,
closed under cycling, decycling and the operator τ . For clarification when a group G
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acts on a set x it permutes the element x so that x moves around in a fixed circular
path called an orbit. For example, from the permutation group G =< (123) > we can
obtain the orbit {(123),(132),e}. Any further permutations would return a previously
obtained element. Formally in set theory one can define an orbit:

Definition 5.2. Let G be a group acting on a set X. The orbit of an element x ∈ X is
defined as

Orb(x) := {y ∈ X : ∃g ∈ G : y = g ∗ x},

where * denotes the group action. That is, Orb(x) = G∗x. Thus the orbit of an element
is all its possible destinations under the group action.

To find an element in the USS(x)we use an analogous algorithm to the super sum-
mit set algorithm. However to compute the USS rather than the SSS take the element
x ∈ USS(x) and perform cyclings. When cycling the element, two integers k1 and k2
can be obtained where k1 < k2, which satisfy

ck1(x) = ck2(x).

Then x̂ = ck1(x) ∈ USS(x), since ck2−k1(x̂) = x̂. The element x must be equal
when k1 cyclings have been performed to x as to when k2 cyclings have been per-
formed to x ∈ SSS(x). When this property has been satisfied we have an element of
the USS, x̂ ∈ USS(x). Each element is an orbit under cycling. It is therefore clear,
each member of the USS are the elements of the SSS that are enclosed in orbit under
cycling. The reason iterated cycling of any representative of SSS(x) and USS(x) must
eventually become periodic is because the set SSS(x) and USS(x) is finite. Concern-
ing the complexity of this algorithm, the number of times one needs to cycle (K2) until
obtaining an element in the USS is not yet known.

Definition 5.3. [22] Given x ∈ Bn, y ∈ USS(x). A permutation braid s 6= 1 is minimal
for y with respect to USS(x) if s−1ys ∈ USS(x), and no proper prefix of s satisfies this
property.

Algorithm 4.71. is from Gebhardt (2005) [24] of an algorithm computing the Ultra
summit set Ux of x.

Algorithm 4.71. Given an element x of a Garside group.
Compute x ∈ Ux, set U = Tx and U0 = U .
If x = δk for some K then
return {δk}
end if
While U 6= U0 do
Let y1, . . . , ym ∈ U such that U = U0 ∪ Ty1 ∪ . . . ∪ Tym. Set U0 = ∅
for y ∈ {y1, . . . , ym} do
Compute Cy and set U = U ∪ Uc∈cyTyc
end for
end while
return U
As discussed in section 5.1, if Ux = Uy the two elements x and y of G are conjugate

in G. Or if Ux ∩ Uy 6= ∅.
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Example 10. This example taken from Gebhardt [24] demonstrates a comparison of
size between the SSS and USS of a braid. We will then confirm this with Sage. Let
x = σ1σ3σ2σ1 · σ1σ2 · σ2σ1σ3 ∈ B4. Then |USS(x)| = 6 while |SSS(x)| = 22.

Input: X = BraidGroup(4)

Input: x = X([1, 3, 2, 1, 1, 2, 2, 1, 3])

Input: x.super_summit_set()

Output: [s0*s2*s1*s0^2*s1^2*s0*s2, s1*s2*s1*s0^2*s1*s2^2*s1,

(s0*s1)^2*s0*s2^2*s1*s0, s0*s1*s0^2*s1*s2^2*s1*s0,

s1*s0*s2*s0*(s1*s2)^2*s1, s0*s1*(s0*s2)^2*s1*s0^2,

s0*s1^2*(s0*s2)^2*s1*s0, s0*(s1*s2*s1)^2*s1*s0,

s0*s1*s2*s1^2*s2^2*s1*s0, s0*s2*(s1*s0)^2*s0*s1*s2,

s0*s1*s0*s2^2*s1*s0^2*s1, (s1*s2*s1)^2*s0^2*s1,

s1*(s0*s2)^2*s1*s0^2*s1, s0*(s1*s2)^2*s1^2*s0*s2,

s0*s1*(s0*s2)^2*s1^2*s0, s0*s2*s1*s0*(s0*s1)^2*s2,

s1*s2*s1*s0^2*s2*s1^2*s2, (s0*s1*s0)^2*s2^2*s1,

(s1*s2)^2*s1*s0^2*s1*s2, s1*s2*s1^2*s0*s2*s0*s1*s2,

s2*s1^2*s0*s2*s0*s1*s2*s1, s1*s2*s1*s0^2*(s1*s2)^2]

Input: len(x.super_summit_set())

Output: 22

Input: x.ultra_summit_set()

Output: [[s0*s2*s1*s0^2*s1^2*s0*s2, s0*s1^2*(s0*s2)^2*s1*s0,

s1*(s0*s2)^2*s1*s0^2*s1], [s0*(s1*s2)^2*s1^2*s0*s2,

s2*s1^2*s0*s2*s0*s1*s2*s1, s1*s0*s2*s0*(s1*s2)^2*s1]]

Input: len(x.ultra_summit_set())

Output: 6

Example 11. This example considers a property of the USS(x) Again let x = σ1σ3σ2σ1 ·
σ1σ2 · σ2σ1σ3 ∈ B4.

Note that USS(x) consists of two closed orbits under cycling (USS(x) = O1 ∪ O2).
Each orbit contains 3 rigid elements, rigid meaning that the left normal form changes
only in the obvious way under cycling and decycling.

O1 = {σ1σ3σ2σ1 · σ1σ2 · σ2σ1σ3, σ1σ2 · σ2σ1σ3 · σ1σ3σ2σ1, σ2σ1σ3 · σ1σ3σ2σ1 · σ1σ2},

O2 = {σ3σ1σ2σ3 · σ3σ2 · σ2σ3σ1, σ3σ2 · σ2σ3σ1 · σ3σ1σ2σ3, σ2σ3σ1 · σ3σ1σ2σ3 · σ3σ2}.

Note the property that O2 = τ(O1). For example if we take the first element of O1,
σ1σ3σ2σ1 and apply the involution (τ ) which maps σi to σn−i, for all 1 ≤ i ≤ n. In this
example n = 4. The first element of O1 becomes σ3σ1σ2σ3, i.e., the first element of O2.

Example 12. This final example brings together the USS content and performs a USS
attack on the AAG system. A considerable difference from this attack to one which
would be implemented in a real world scenario is that the braid group size in this
example is very small (B5) making it easier to find the SSS and USS.
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Assume Alice and Bob intend on sending secure messages using AAG’s protocol
and have performed the necessary algorithm for an AAG protocol (simulated by the
Sage code given in the appendix).

First the attacker (Eve), captures the public tuple of conjugates from Alice (or Bob)
denoted A conj and she captures Alice’s public tuple, Bt. This process is trivial as Bt
and A conj are in the public domain. Eve selects a single conjugate from A conj which
we denote A conjx. Eve starts by computing the USS of A conjx and the USS of Bt. It
is important to note that each element of Bt is scrambled for the additional level of se-
curity and thus it is not obvious from inspection the element Bt[i] for any 0 ≤ i ≤ N − 1.
After computing the USS of Bt and A conjx as per the algorithm:

Input = I_x = A_conjx.ultra_summit_set()

print(’The USS of A_conjx below’)

print(I_x)

I_y = Bt[N-1].ultra_summit_set()

print(’The USS of Bt below’)

print(I_y)

Output = The USS of A_conjx below:

[[s0^-1*s1^-1*s2^-1*s3^-1*s0^-1*s1^-1*s2^-1* s0^-1

*s1^-1*s0^-1*s2*s1*s0*s3*s2*s1*s0, s0^-1*s1^-1

*s2^-1*s3^-1*s0^-1*s3*s2],[s0^-1*s1^-1*s2^-1*s3^-1

*s0^-1*s1^-1*s2^-1*s0^-1*s2*s3*s2*s1*s0]]

The USS of Bt below:

[[s0^-1*s1^-1*s2^-1*s3^-1*s0^-1*s3*s2, s0^-1*s1^-1

*s2^-1*s3^-1*s0^-1*s1^-1*s2^-1*s0^-1*s1^-1*s0^-1*s2

*s1*s0*s3*s2*s1*s0],[s0^-1*s1^-1*s2^-1*s3^-1*s0^-1

*s1^-1*s2^-1*s0^-1*s2*s3*s2*s1*s0]]

After some period of time (which depends on the complexity of the braid), Eve
should have the two ultra summit sets, Ix and Iy. Eve then applies a function that
returns the intersection of the two sets. Eve should then detect one element (x) in
each set being identical; i.e., x ∈ Ix and Iy.

Input: it = [x for x in E if tuple(x) in set(map(tuple, F))]

print(it)

Output: [[s0^-1*s1^-1*s2^-1*s3^-1*s0^-1*s1^-1*s2^-1*s0^-1*s2

*s3*s2*s1*s0]]

As the intersection of the two USS’s has been computed to be non-empty, we have
located an element in Bt. To find the conjugators we use a similar algorithm to the one
above. However, this time instead of discarding the conjugators we remember and
return them as A priv. Then compute the inverse, A privinv.
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Input: A_priv = A_conjx.conjugating_braid(Bt)

A_priv

Output: s0*s1*s2*s1*s3*s2*s1*s0^2*s2*s1*s0*s3*s2*s1*s0^2*

(s1*s0*s2*s1*s3)^2*s2*s1*s0*(s0*s1*s2*s1*s0*s3*s2)^2

*s1*s0^2*s1*s0*s2*s1*s3*s2*s1*s0^2*s1*s2*s1*s0*s3*s2

*s1*s0^2*s1*s0*s2*s1*s3*s2*s1*(s1*s0*s2*s3*s2*s1*s0

^2)^3*s1*s0*s2*s1*s3*s1*s0*s2*s3*s2*s1*s0*s1*s2*s3

Input: A_privinv = (A_priv)^-1

Output: s3^-1*s2^-1*s1^-1*s0^-1*s1^-1*s2^-1*s3^-1*s2^-1*s0

^-1*s1^-1*s3^-1*s1^-1*(s2^-1*s0^-1*s1^-1*s0^-2*s1^-1

*s2^-1*s3^-1)^3*s2^-1*s0^-1*s1^-2*s2^-1*s3^-1*s1^-1

*s2^-1*s0^-1*s1^-1*s0^-2*s1^-1*s2^-1*s3^-1*s0^-1*s1

^-1*s2^-1*s1^-1*s0^-2*s1^-1*s2^-1*s3^-1*s1^-1*s2^-1

*s0^-1*s1^-1*s0^-2*s1^-1*(s2^-1*s3^-1*s0^-1*s1^-1*s2

^-1*s1^-1*s0^-1)^2*s0^-1*s1^-1*s2^-1*(s3^-1*s1^-1*s2

^-1*s0^-1*s1^-1)^2*s0^-2*s1^-1*s2^-1*s3^-1*s0^-1*s1

^-1*s2^-1*s0^-2*s1^-1*s2^-1*s3^-1*s1^-1*s2^-1*s1^-1

*s0^-1

Finally we shall check we have obtained the valid private keys:

Input: A_privinv * Bt * A_priv == A_conjx

Output: True

We have obtained Alice’s private keys and therefore successfully attacked and bro-
ken the AAG cryptosystem with small parameters using the USS attack. For the SSS
attack the same procedure applies. However, we choose not to demonstrate a SSS
attack as there are a large number of elements in this set, making it impractical to list
the SSS. See Section 6.1.1 for details of general sizes of super summit sets under
various parameters.

5.4 The Length Based Attack

In this section the length based attack (LBA) on the AAG protocol is considered. As
discussed in Subsection 4.2.1, the AAG protocol uses the subgroup-restricted simul-
taneous conjugacy problem (SR-SCSP), a variation of the simultaneous conjugacy
search problem. AAG therefore relies on the assumption that the SR-SCSP is hard,
although this is yet to be proven.

Interestingly, although in previous subsections attacks have been discussed, the
only attack that breaks the SR-SCSP directly is the length based attack. LBA is con-
sidered an heuristic computer science attack for SR-SCSP, whilst computing the sets
SSS(x) or USS(x) is a mathematical attack aimed at breaking SCSP [25]. This attack
was first introduced by Hughes and Tannenbaum in [26]. After several modifications
it has been shown to break AAG protocol (with the original parameters) with a high
success rate.

In this section evidence is also presented for a more vigilant approach in selecting
private keys, this is necessary for AAG to be unsusceptible to the length based attack,
thus showing keys generated uniformly randomly are insecure.
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The LBA is a heuristic procedure for finding Alice and Bob’s private keys. In
this subsection the notation of Subsection 4.2.1 is applied to keep some level of
consistency throughout this paper. Therefore recall Alice and Bob’s public N-tuple
(ai)

N
i=1 = (a1, . . . , aN) and (bi)

N
i=1 = (b1, . . . , bN). Alice and Bob also choose a private

key for example A = aε1µ1a
ε2
µ2
. . . aεLµL and B = bε1µ1b

ε2
µ2
. . . bεLµL. Finally recall Alice then com-

putes the tuple of conjugates A−1(bi)Ni=1A = {A−1b1A, . . . , A−1bNA} = {b′1, · · · b′N2} =
b′ and transmits this publicly to Bob. Bob also computes the tuple of conjugates
B−1(ai)

N
i=1B = {B−1a1B, . . . , B−1aNB} = {a′1, · · · a′N2} = a′ and transmits to Alice.

Note each b′ is a sequence of conjugations of bi by the conjugator (private key) A:

bi

↓
a−ε1µ1

bi a
ε1
µ1

↓
a−ε2µ2

a−ε1µ1
bi a

ε1
µ1
aε2µ2 (10)

↓
· · ·
↓

b′i = a−εLµL
. . . a−ε2µ2

a−ε1µ1
bi a

ε1
µ1
aε2µ2 . . . a

εL
µL

The conjugating sequence is the same for each bi - in fact, the only element that differs
is bi. Clearly, if we were given the bottom row of (10) and had an algorithm which could
reverse the sequence back to the top by peeling away generator after generator we
could recover bi and the conjugator A (private key). This is the intention of the length
based attack. More formally:

for elements a, b ∈ Bn l(a−1ba) > l(b). (11)

Here l represents a length function which will allow one to set the conjugating element
to a minimisation problem and solve using a heuristic optimisation method. There
are multiple length functions available, at present the most suitable seems to be the
geodesic length (the length of the shortest path in the corresponding Cayley graph)
function denoted by | · |. This seems to be the best candidate because although there
is no known efficient algorithm for computing | · | for practical purposes one can approx-
imate | · | using a method proposed in [27]. It is clear that as the length of a and b grows
then 2|a| = |b|− |a−1ba| which is smaller than 2|a| this also means that |a−1ba| > |b| and
the difference is large.

The other choice that needs to be made is the heuristic approach/algorithm used.
There are several to choose from each with their own advantages and disadvantage.
One of these algorithms is defined below [25].

Here c = (c1, . . . , ck) is an arbitrary tuple of braids and |c| is its total length i.e.
Σk
i=1|ci|. The algorithm below enumerates all possible sequences of conjugations de-

creasing the length of a tuple. We maintain set S which contains tuples in the algo-
rithm.

Algorithm 6.4. LBA with backtracking [25]

1) Initialise a set S = {(b′, e)}, where e is the identity of Bn.
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2) If S = ∅ then output FAIL.

3) Choose a pair (c, x) ∈ S with minimal |c|. Remove (c, x) from S.

4) For each i = 1, . . . , N1, ε = ±1 compute δi,ε = |c| − |ca
ε
a |.

5) If δi,ε > 0 then add (ca
ε
a , xaεi) into S.

6) If caεa = a then output xaεi .

7) Otherwise goto step 2.

5.4.1 Peaks

Unfortunately condition (11) is not the only condition needed to satisfy the success of
all LBA’s. Below is an example where this condition alone is not satisfactory, taken
from [25].

Example 13. Consider B80 and two braids a1 = σ−139 σ12σ7σ
−1
3 σ−11 σ70σ25σ

−1
24 and a2 =

σ42σ
−1
56 σ8σ

−1
18 σ19σ73σ

−1
33 σ

−1
22 , which we think of as elements from Alice’s public set. It is

easy to check that

a−11 a−12 a1 = σ−17 · a−12 · σ7 = σ−17 · σ22σ33σ−173 σ
−1
19 σ18σ56σ

−1
42 · σ7

and
a−11 a−12 a1a2 = σ7σ

−1
8 .

Hence |a1| = 8, |a−11 a−12 | = 16, |a−11 a−12 a1| = 10 and |a−11 a−12 a1a2| = 2. Now let b =
(b1, . . . , bN) be a random tuple of braids thought of as Bob’s public set. As seen before,
for the majority of the braids conjugation increases the length by almost twice the
length of the conjugator. Hence, for generic tuple b the following length growth would
be expected:

b

↓
|a−ε1s1

b aε1s1| ≈ |b|+ 8N

↓
|a−ε2s2

a−ε1s1
b aε1s1a

ε2
s2
| ≈ |b|+ 16N

↓ (12)
|a−ε2s3

a−ε2s2
a−ε1s1

b aε1s1a
ε2
s2
aε3s2| ≈ |b|+ 10N

↓
|a−ε4s4

a−ε3s3
a−ε2s2

a−ε1s1
b aε1s1a

ε2
s2
aε3s2a

ε4
s4
| ≈ |b|+ 2N

Clearly, the length based attack fails for such an element A because to guess the
first correct conjugator it is required to increase tuple length substantially (from |b|+2N
to |b| + 10N). The reason for the attack failure in the previous example is that Alice’s
private key (a1, a2) forms a peak. The formal definition of a peak is as follows:

Definition 5.4. [25] (Peak) Let G = 〈X;R〉, lG a length function on G, and H =
〈w1, . . . , wk〉. We say that a word w = wi1 . . . win is an n-peak in H relative to lG if
there is no 1 ≤ j ≤ n− 1 such that

lG(wi1 . . . win) ≤ lG(wi1 . . . wij).
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We say that w = wi1 . . . win is m-hard if there exist s ∈ {1, . . . , n} such that for each
j = 1, . . . , k,

lG(wi1 . . . wis+k1) ≤ lG(wi1 . . . wis+kj)

and m is the maximal number with such property.

Figure 10: 1) Commutator-type 4-peaks [a1, a2] from Example 13
2) Conjugator-type 2-peak as in Example 13 for a−11 a−12 a1.

6 Analysis of AAG and Ko-Lee

This section examines the security of two protocols (AAG and Ko-Lee) considering the
super summit, ultra summit and length based attacks. With regards to research papers
and experiments, from self-engineered code in Sage, the complexity and conditions
required to provide secure protocols can be examined. Finally this section makes
suggestions as to how the protocols can be securely modified with current information.

6.1 Assessment of Ko-Lee and AAG Against Attacks

As discussed in Section 4, the word problem in a braid group can be solved by trans-
forming an arbitrary word into its canonical form. The complexity required to transform
a word into a canonical form is O(|W |2n), where |W | is the length of the word in Bn

[15]. This quadratic complexity results in the calculation of the canonical form of a
braid being practical for computers. Further, a left weighted canonical form allows the
computer to handle the data more efficiently and protects the conjugates from being
recovered by inspection. The braid group is also a group with super-polynomial growth
which prevents against brute force attacks. It therefore seems braid groups could be
practically used for future cryptography. Finally the last criterion a secure cryptosystem
should yield is it contains a hard trap door problem. A weak trap door problem with low
complexity would result in an ineffective cryptographic protocol.

AAG is based on the Subgroup-Restricted Simultaneous Conjugacy Search Prob-
lem (SR-SCSP), a variation of the Simultaneous Conjugacy Search Problem (SCSP),
and hence the security of AAG is partially based (but not equivalent to) on the as-
sumption that SR-SCSP is hard. The work [17] does not contain any information on
theoretical operating characteristics of the PKC although implementation code of the
AAG protocol, allows one to estimate its security based on various attacks.
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Table 3: Performance of the left canonical form conversion algorithm [5].

With regards to Ko-Lee’s protocol the hard problem is based on (although not equiv-
alent) to the Generalised Conjugacy Search Problem but with current information one
can assume that the hard problem has the security of the GCSP and that the GCSP is
equivalent in security to the CSP. With regard to the complexity of this protocol, there
are two parameters of interest: p (canonical length), n (braid index). The message
length is pn log(n) and the encryption and decryption are computed in O(p2n log(n))
operations. Finally the security level against brute force attacks was determined to be
O((n!)p) = O(exp(pn log(n))) from which the parameters n and p rapidly increase the
security level (although the speed is quadratic in p and linear in n log n, and so increas-
ing n rather than p increases the security level without sacrificing computational speed
[5]). Refer to Table 3 for further information on brute force attack hardness with respect
to parameter sizes.

Table 4: The operating characteristics of the Ko-Lee PKC [5].

Concerning standards by which to compare the two protocols, we will compare
AAG and Ko-Lee with current encryption methods such as RSA. The encryption and
decryption algorithms of RSA are polynomial O(b3), the word problem for RSA cryp-
tography is not required and the RSA brute force attack hardness is exponential O(2b)
(where b is the number of bits in n). The best published asymptotic running time al-
gorithm for solving the integer factorisation problem upon which RSA is based is the
general number field sieve (GNFS) algorithm, which, for a b-bit number n, is:

O

(
exp

3

√
64

9
b(logb)2

)
(13)
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Providing a sub-exponential solution to the integer factorisation problem [4]. With that
considered it seems appropriate so far to use AAG and Ko-Lee protocols for encryp-
tion as the encrypt and decrypt times are both manageable sizes for a computer just
as RSA however AAG and Ko-Lee protocols have greater than exponential (factorial)
brute force attack sizes. This then suggests why AAG and Ko-Lee may be more secure
than RSA through a brute force complexity perspective and as computer performance
advances more secure encryption methods like AAG and Ko-Lee may be required
to replace lower brute force complexity methods. However this high level of security
complexity only stands effective if the trap door hard problems for these protocol’s are
equally secure.

To conclude brute force attacks are not practicable against AAG and Ko-Lee which
leaves one other option to successfully attack AAG and Ko-Lee and deem both these
protocols insecure; that is to attack the hard problem successfully. The following sub-
sections contain attacks which intend to do just that, they attack the various trap door
hard problems embedded within the cryptosystem.

6.1.1 Super Summit Attack on Ko-Lee and AAG

First it is important to consider that the multiple conjugacy problem that AAG relies on
may be easier than the original conjugacy search problem [22].

The SSS uses an algorithm to compute the sets by cycling and decyclying ele-
ments. The number of cyclings and decyclings required by the SSS algorithm to solve
the conjugacy problem is proportional to the canonical length of the braid, therefore
the number of steps in this algorithm is linear in the complexity of the braid. Although
the number of simple braids of length n is n!, so the cost to enumerate all simple braids
grows faster than exponential, hence creating an exponentially large set. This results
in a non-feasible algorithm for large values of n, which we confirm from Figure 11. The
graph shows the means of the super summit set size and time to compute the SSS for
different values of n from the experiment.

For this paper many experiments were performed using the Plymouth University
high-performance computer (HPC cluster). After implementing the AAG protocol in
Sage computer programming language, experimentation’s by changing the parame-
ters and calculating the time and size of the ultra summit and super summit set were
conducted. As expected the experiments were held back by the slow time it took to
calculate the SSS and due to this we were not able to gather huge amounts of data for
the SSS in the limited time available. However it can be confidently concluded that the
SSS is not suitable for attacking AAG under a large n parameter in almost all cases.

Interestingly there was a single case of AAG under the original parameters that the
SSS managed to successfully attack although it should be stressed that this was an
isolated case likely due to a randomly generated trivial braid choice (this brings into
question the importance of randomly generated braids and setting conditions on braids
generated in this way). It is therefore important to note that in rare cases the SSS may
be able to break AAG but from a probabilistic perspective SSS is very unlikely to break
AAG under its original parameters. By Figure 11 the complexity of SSS can be esti-
mated to be exponential or greater. Given more time one may be able to improve this
experiment by running the SSS for a greater period of time or/and utilise the parallel
computation capability on the HPC cluster.

Due to the poor efficiency of computing the SSS (the set being exponentially large)
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for large n it is appropriate to rule out the SSS as a feasible AAG attack. With regards
to a SSS attack against Ko-Lee’s protocol, we refer to an extract from Ko-Lee’s work:
“The adversary may try to use a mathematical solution to the conjugacy problem by
Garside, Thurston, Elrifai-Morton and Birman-Ko-Lee. But the known algorithms find
an element a ∈ Bl+r, not in LBl. Hence the attack using the super summit set will not
be successful.” [5]

Figure 11: SSS estimated complexity.

Subject to this assessment we can assume AAG and Ko-Lee are both secure
against SSS attacks (for large values of n when applying AAG).

6.1.2 Ultra Summit Attack on Ko-Lee and AAG

Figure 11 demonstrates the SSS having exponential complexity and is therefore un-
suitable for attacks however the ultra summit set is much smaller than the super summit
set in practice (although this has not yet been mathematically proven) [22] and may
lead to a suitable solution to the CSP. Furthermore, Figure 12 from an experiment
comparing the size of the SSS and USS also shows further evidence of the USS be-
ing a much smaller set than the ultra summit set. Unfortunately due to a slow SSS
compute time we have limited data up to n = 8. This experiment could be improved by
increasing the time spent performing the experiments or making use of more than one
core on the HPC cluster.
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Figure 12: A comparison of the SSS and USS.

From the experimental data and suggestions from Garber [22] it seems that the
average complexity using USS may be polynomial (Fig. 13). However the conjugacy
search problem yet remains secure since the size of the summit sets may be exponen-
tial in general and it is difficult to obtain good bounds on the cardinality. The number
of times one needs to apply cycling/decycling (the value of K2 in Section 5.3 for find-
ing an element in USS(x)) is unknown in general. If one could find the mathematical
bounds and prove the USS is polynomial in size, it is possible to state with confidence
that the CSP is unsecure for use in cryptography. Further, note that even if the USS
is polynomial this does not guarantee the USS attack is feasible against AAG protocol
operating under a large n, as the USS complexity could be n2 polynomial resulting in a
feasible USS size for many values of n or n1000 polynomial resulting in a feasible USS
size for only the very small values of n and so the effectiveness is dependent upon on
the power n is raised to.

Figure 13: Estimating the complexity of the USS from experimental data.
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6.2 Further Sage Experiments

In further experiments with the ultra summit set, analysis was performed on the other
parameters under increasing n to determine if these increases effected the size of the
USS and time taken to compute the set. Unfortunately subject to computing restraints
we were not able to collect sufficient quantities of data to make confident predictions.
However we did observe some patterns which needed to be backed up with more data.
First, checking L = 6, 8, 10 for which, as L is increased the size and time to compute
the USS increases. This is intuitive as increasing the length of the conjugating element
(the private key) increases the braid length, hence more possible conjugating elements
and therefore a bigger ultra summit set. Furthermore as L and n increase the size and
time to compute the USS also appears to be more volatile and the deviation from
the mean increases. There was also an anomaly whereby the parameters L = 6 and
n = 14 generated a significantly large USS of 40830 elements and further investigation
should be given to why some braids generate much smaller and larger USS sets than
expected. Performing the same experiment thirty times (for the USS) and taking a
mean assisted in correcting the anomalies.

With further regards to anomalies, we also encountered a trivial example in which
the original AAG parameters were broken with a USS attack in 2.14 seconds! This
again further emphasises the importance of more research to determine why some
braids generate much smaller as well as larger USS sets than expected and fur-
ther modifications should include ways to generate non trivial (easily computed USS)
braids. This instability is a serious threat to the practical use of braid group cryptog-
raphy because unless one can find a way to constrain the generation of the braids to
be non-trivial, or be easily computed by the USS, there shall always exist instances
where braids can be trivially broken. These trivial braids may only occur in rare cases,
perhaps in 1/100 braids or even 1/1000, but the reality is a frequency of 1/100 trans-
missions being successfully attacked is not acceptable.

Then consideration was made for increasing all the parameter N and L1 = 5 to
L1 = 10 and L2 = 8 to L2 = 13 and determining through intuition that after increasing
the value of all parameters the size and time to compute the USS increases, although
we did not have sufficient data to show this. Furthermore under small parameters (n ≤
11) the size of the USS and SSS does not differ significantly. It is only when n holds
larger values is there a significant increase in the size and time taken to compute the
USS. This demonstrates that by increasing these parameters it increases the difficulty
of attacking AAG with the USS attack but consider it may significantly increase the
AAG protocol compute time and hence render the AAG protocol impractical.

6.3 USS Analysis Summary and Modifications

With the experimental data one could now make the assumption that USS has poly-
nomial complexity, and is therefore insecure for the parameters initially suggested by
AAG. This would result in the USS attack posing a credible threat to AAG. Further
to the experiments Mathematicians have also suggested the USS may be polynomial
[22]. That said, we are still unable to put solid bounds on the complexity of the USS,
it could be a very high powered polynomial, in which case it is possible AAG is secure
just by increasing the parameter n to increase the time required for a successful attack.
This conclusion therefore depends on the choice of assumptions, if considering only
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that USS complexity has not formally been mathematically bounded one could naively
assume the CSP and its variations are still secure against the USS attack. However
if considering the experimental data collected we can approximate the USS has poly-
nomial complexity (at least for all the randomly generated braids in this experiment) in
which case one could deem AAG insecure against ultra summit set attacks, particular
for low parameters such as AAG’s original parameters.

Due to similar conditions described in Ko-Lee’s paper with regards to why the super
summit attack would be unsuccessful, the same conditions apply to the USS, therefore
the attack using the ultra summit set will also not be successful in its original form.
Although, outside the scope of this paper, it is worth noting, Hughes was able to utilise
the left super-summit-set, an invariant under conjugation, to attack this PKC [28].

Fortunately AAG and Ko-Lee protocols rely on the assurance that CSP is hard, and
so if braid groups eventually are determined not to be relevant in cryptography, it may
still be possible to implement these group based cryptography protocols with another
platform group and/or another hard problem [22].

A modification to the USS suggested by Gebhardt and Gonzalez-Meneses [29] to
find a polynomial-time solution to the CSP, was to replace the cycling and decycling by
an operation denoted cyclic sliding (SC(x)). The sets of SC(x) and their elements
naturally satisfy all the properties that were shown for the USS but often with better
properties such as it yielding a simpler algorithm to solve the CSP (hence the algorithm
is also easier to implement). Further, for elements of canonical length 1, cycling and
decycling are trivial operations, but SC is not. Generally the set SC(x) is smaller than
the USS(x) although it still may be exponential in the length of x.

6.4 Nielsen-Thurston Trichotomy

One possible cause for the unexpected variations in Ultra Summit Set sizes may be
the geometrical properties of the braid. One can classify braids into reducible or irre-
ducible, for irreducible braids we can further classify the braid into periodic or pseudo-
Anosov. This is the Nielsen-Thurston trichotomy (reducible, periodic and pseudo-
Anosov). Determining which braid falls into which classification is one of the main
algorithmic decision problems regarding braids. Fortunately there is a quadratic time
algorithm (w.r.t. braid length) that can solve this decision problem for braids [30]. As
the problem ultimately determines whether or not a given non-periodic braid is re-
ducible (or pseudo-Anosov), the problem is also often referred to as the reducibility
problem.

Determining whether the braid a is periodic is rather trivial, to do so, a is periodic
if and only if its nth power or its (n − 1)st power is a power of the half-twist ∆. There
exists a polynomial-time algorithm for solving the CSP for the case of periodic braids
suggested by Birman, Gebhardt and Gonzalez-Meneses [31]. To determine the clas-
sification of the other two types of braid requires a more complex algorithm outside the
scope of this paper. It is possible that the class of the braid may be a cause for the ex-
treme unexpected values of some braids, as for the case of reducible braids one has to
make an unknown number of cyclings and decyclings. For the case of pseudo-Anosov
braid there exists a small power of a pseudo-Anosov braid which is conjugate to a rigid
braid and an algorithm solving the CSP for rigid braids in polynomial time does not yet
exist. For example, when we broke AAG under the original parameters with the USS
in 2.14 seconds it is possible this braid may have had a reducible or pseudo-Anosov
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classification. Below is an example of three different types of braids using Sage to
return the Thurston classification of a braid.

Input: B = BraidGroup(3)

b = B([1, 2, -1])

b.thurston_type()

Output:’reducible’

Input: a = B([2, 2, -1, -1, 2, 2])

a.thurston_type()

Output:’pseudo-anosov’

Input: c = B([2, 1, 2, 1])

c.thurston_type()

Output:’periodic’

6.5 Length Based Attack on Ko-Lee and AAG

From Hughes and Tannenbaum [26], one needs not to efficiently solve the conjugacy
problem in order to break a braid-based cryptosystem. Furthermore using heuristic
alogrithms to solve the conjugacy problem can be very effective under certain parame-
ters, and the attack (based on the observation that representatives of conjugate braids
in the super summit set are likely to be conjugate by a permutation braid (a particu-
larly simple braid)) demonstrated weaknesses of both Ko-Lee and the AAG protocol
for random instances. We have therefore realised the importance of both parameter
sizes and for the case of length based attacks consideration should be made when
choosing random private keys. This has led to further research into generating secure
keys. It is also important to consider that length based attacks will not solve every
instant of conjugates but provides a probabilistic way of solving the CSP in certain
cases. The probabilistic attack depends on the specific length function employed. For
braid groups, there are a number of suitable length functions that allow this attack to
be mounted. We comment that length-based attacks need to be modified in practice,
to ensure (for example) that we do not get stuck in short loops.

Another reason for carefully choosing random braid is not to choose a braid where
the normal form of a product ab yields too much information about a and b. Fur-
ther problems arise due to many of the random braid sequences already being left
weighted. Possible modifications/solutions have been suggested (i.e. insert small per-
mutations into the middle of the word) for choosing random keys, however there is also
a general worry that seemingly contradictory security requirements arise from different
attacks. For example, the length attack implies that the generators in the Commuta-
tor protocol should have a small length but that makes the Conjugacy problem easier.
As explained before, the Conjugacy problem can be too easy if random sequences of
simple words are chosen, but it is difficult to guarantee a large length otherwise. A
good optimisation is required to prevent against both length based attacks as well as
USS attacks. Length Based Attacks are a credible threat to AAG and Ko-Lee under
large L1 and L2 parameters, however certain braids can form peaks causing a failure
in the attack.
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The length based attack gives a probabilistic solution to the conjugacy problem but
can also be used to solve other hard problems such as the group membership problem
and the decomposition problem. Moreover length based attacks are applicable in any
group that has a reasonable length function, e.g., Thompson group [32].

A modification to the length based attacks which increased the success rate in ex-
perimentation is to use a length based attack with memory [22]. In the original length
based attack we only remember the best conjugator in each iteration however the
problem is that sometimes a prefix of the correct conjugator is not the best congujag-
tor at some iteration and so it is thrown out. Hence this algorithm then fails. In the
memory length based approach we remember a given number (which is the size of
the memory) of possible conjugators of this length. Then in the next step we add one
more conjugate to the memory and we again choose the best conjugator among all
possibilities. This results in the correct conjugator usually being found in the first place
of the memory if the attack has been successful. This modified length based attack is
a threat to AAG and Ko-Lee as the success rate of length based attacks with memory
increase as the memory increases and this has been seen from experimentation [22].

LBA experiments were performed by Myasnikov and Ushakov [25] where the fol-
lowing parameters were chosen n = 80, N1 = N2 = 20, L = 50 and the parameters L1

and L2 were varied to demonstrate the success rate with longer subgroup generators.
Different algorithms were used for performing the length based attack. There were 100
problems generated for each set of parameters. Table 5 shows their results.

Table 5: Success rate of the length based attack (%) [25].

From Table 5 there is a high success rate for large lengths of words (L1 and L2 val-
ues) in the public tuple. One can also see how the LBA on small values of L1 and L2 is
ineffective and the success rate increases as L1 and L2 values increase. Furthermore
success rates of over 50% were also observed when cutting peaks contained in uni-
formly random generated keys. More information on how to cut peaks can be found in
[25]. Note also the authors make a reasonable suggestion that the success rate could
be improved with greater computing power. From this data one can assume Ko-Lee
and AAG protocol is not secure against LBA’s for large L1, L2 parameters.

7 Conclusion and Further Work

This paper has examined AAG and Ko-Lee from a number of different perspectives,
including implementation and the experimentation of AAG as a practical application to
cryptography.

It has been observed that L and n are the driving parameters to increasing com-
plexity. With n being the most effective way to increase complexity without increasing
the time taken to generate the braids. With regards to the attacks, this paper has
seen how some attacks have proved effective at attacking AAG and Ko-Lee protocols
under certain conditions. Further observing how the SSS is not effective at break-
ing AAG due to the size and time taken to compute the set using Garside’s methods.
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However through experimentation and research papers we have seen how the con-
siderably smaller USS may be polynomial in complexity and therefore can be effective
at attacking AAG for the original AAG parameters. It has been shown how Ko-Lee
and AAG can both be attacked with a high probability of success rate by a computer
science length based attack for high parameter values of L1 and L2. Then considering
instances where this attack may not be so successful (peaks). Furthermore one has
also seen the security contradiction where by increasing the canonical length of the
generators in the AAG protocol will decrease the probability of a successful attack us-
ing USS, however this will in turn increase the probability of a successful attack using
the length based attacks and vice-versa.

Furthermore, this paper has suggested modifications to reduce the probability of
a successful attack, and how modifications and increasing parameters may still hold
some effectiveness against current attacks. Although there will be a limit to just in-
creasing parameters as this will eventually become impractical. Therefore we expect
to continue seeing research papers being published with modifications increasing the
security of the protocols along with further papers attempting to attack these modified
systems.

Concluding, AAG and Ko-Lee as originally suggested cannot be considered secure.
Further investigation should be given to why some braids generate much smaller and
larger USS sets than expected and why it was possible to have been able to break
AAG under the original parameters in some instances. Further modifications should
include ways to generate non trivial (easily computed USS) braids.

Although the search for the future of cryptosystems in braid groups under the con-
jugacy search problem may now seem a vain inefficacious attempt (and that very well
could be the case), there has still been huge developments in the group based math-
ematical community with regards to group based cryptography leading one to believe
perhaps in another platform group, that satisfies the Myasnikov, Shpilrain and Ushakov
criteria (as we laid out in Section 4) or/and, with another hard problem may lie the fu-
ture of cryptography.

The code used in this paper may be found at the following link: http://math-sciences.
org/?page_id=1357
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