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Abstract 

Objectives: Molecular mechanisms linking autonomic dysfunction with poorer clinical 

outcomes in critical illness remain unclear. We hypothesized that baroreflex dysfunction 

alone is sufficient to cause cardiac impairment through neurohormonal activation of 

(NADPH oxidase-dependent) oxidative stress resulting in increased expression of G-protein 

coupled receptor kinase (GRK)-2, a key negative regulator of cardiac function. 

Design: Laboratory/clinical investigations. 

Setting:  University laboratory/medical centers.  

Subjects: Adult rats; wild-type/NAPDH oxidase subunit-2 (NOX-2) deficient mice; elective 

surgical patients. 

Interventions: Cardiac performance was assessed by transthoracic echocardiography 

following experimental baroreflex dysfunction (BD, sino-aortic denervation) in rats and 

mice. Immunoblots assessed GPCR recycling proteins expression in rodent cardiomyocytes 

and patient mononuclear leukocytes. In surgical patients, heart rate recovery after cardio-

pulmonary exercise testing, time/frequency measures of parasympathetic parameters were 

related to the presence/absence of BD (defined by spontaneous baroreflex sensitivity of 

<6ms.mmHg-1).  The associations of BD with intraoperative cardiac function and outcomes 

were assessed.  

Measurements and Main Results: Experimental BD in rats and mice resulted in impaired 

cardiac contractility and upregulation of GRK-2 expression. In mice, genetic deficiency of 

gp91 NADPH-oxidase (NOX-2) subunit prevented upregulation of GRK-2 expression in 

conditions of BD and preserved cardiac function. BD was present in 81/249 (32.5%) patients, 

and was characterized by lower parasympathetic tone and increased GRK-2 expression in 
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mononuclear leukocytes. BD in patients was also associated with impaired intraoperative 

cardiac contractility. Critical illness and mortality were more frequent in surgical patients 

with BD (relative risk: 1.66 [95%CI:1.16-2.39]; p=0.006). 

Conclusions: Reduced baroreflex sensitivity is associated with NOX-2 mediated upregulation 

of GRK-2 expression in cardiomyocytes and impaired cardiac contractility. Autonomic 

dysfunction predisposes patients to the development of critical illness and increases 

mortality.  
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Introduction  

Maintenance of biologic variability is strongly associated with health and preservation of 

organ function. (1) Physiologic variability is modulated by the autonomic nervous system, 

perturbations of which occur at the onset of pathophysiologic insults resulting in critical 

illness regardless of etiology. Several features of established critical illness are compatible 

with a direct mechanistic role for autonomic dysfunction in causing multi-organ dysfunction, 

although patient data exploring this hypothesis remain limited. Prolonged bed rest (even in 

healthy volunteers) induces rapid detrimental changes in baroreflex autonomic control, (2) 

which is associated with excess morbidity and mortality during critical illness. (3) A key 

feature of experimental baroreflex dysfunction is reduced vagal activity, (4-6) which may 

also contribute to the phenotype of critically ill patients.(7) Concomitantly, impaired 

cardiometabolic responses to beta-adrenoceptor stimulation are robust negative prognostic 

biomarkers for survival in established critical illness. (8) However, unifying molecular 

mechanisms directly linking dysautonomia and cardiovascular dysfunction are lacking.  

Neurohormonal dysregulation in disease states where biological variability is altered results 

in alterations in G-protein coupled receptor signalling, which regulate G protein-coupled 

receptor (GPCR) trafficking through phosphorylation-dependent and independent 

mechanisms.(9) Impaired GPCR signaling and trafficking is responsible for the loss of 

inotropy observed in experimental models of cardiac failure. GPCR-kinase 2 (GRK2) 

expression increases when cardiomyocytes are subjected to oxidative stress.(10) 

Neurohormonal activation associated with the loss of biologic variability may contribute to 

cardiac oxidative stress, since elevated plasma angiotensin generates reactive oxygen 

species (ROS) via activation of NADPH-oxidase (NOX-2) in cardiovascular pathology. (11) 
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NOX-derived, ROS-induced ROS release may disrupt mitochondrial electron transport chain 

or alter mitochondrial ionic homeostasis. (12) 

 

In this study we tested the hypothesis that baroreflex dysfunction predisposes to the 

development of impaired cardiac contractility reported in established critical illness through 

altered expression of G-protein coupled receptor kinases and increased oxidative stress. To 

determine whether laboratory observations were clinically translational, we also identified 

impaired baroreflex sensitivity and associated parasympathetic dysfunction in patients 

undergoing major elective surgery to assess whether similar GPCR and autonomic 

dysfunction phenotypes were present in patients at risk of developing critical illness 

postoperatively.   
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METHODS 

Detailed methods are described in the online supplement, including summaries 

demonstrating adherence to STROBE and ARRIVE guidelines. All research involving human 

participants was approved by Institutional Review Boards. Patients who underwent 

cardiopulmonary exercise testing as part of their enrollment in clinical trials at University 

College London Hospital (POM-O trial (13)) and Derriford Hospital, Plymouth (COMPETE-C 

trial (14); Supplementary Material) were assessed. 

 

Rodent Experiments 

All experiments were performed in accord with the UK Animals (Scientific Procedures) Act 

(1986) and ARRIVE guidelines (see Supplementary tables 2, 3 for summary of numbers and 

experiments). Male juvenile Sprague Dawley rats (Charles River, UK) and NOX-2 deficient 

and wild-type mice developed on a C57BL/6J background (King's College London British 

Heart Foundation Centre, London, United Kingdom) were used.  In a randomized manner, 

carotid sinus and aortic depressor nerves were sectioned bilaterally (sino-aortic 

denervation: SAD) in aseptic conditions under isoflurane anesthesia. (15) In sham-operated 

rats and mice, nerves were exposed and left intact. All experimental data were analyzed on 

an intention-to-treat basis, and thus all nerve ablations were considered as achieving SAD.  

Transthoracic echocardiography 

Transthoracic echocardiography (Vevo 770, Visualsonics, Canada-mice; Vivid 7; GE 

Healthcare, UK- rats) was performed under isoflurane anesthesia at 4-6 days and 3 weeks 

after SAD or sham surgery. Bolus doses of dobutamine were administered to assess cardiac 

contractility. All measurements were obtained by an investigator blinded to the identity of 
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the experimental groups.  

 

Blood pressure measurements 

Tail cuff blood pressure measurements were made non-invasively (CODA, Kent Scientific, 

Torrington, VT, USA) under 2% isoflurane anaesthesia.  All measurements were obtained by 

an investigator blinded to the identity of the experimental groups. 

 

Immunoblots 

Using antibodies against GRK2 (C-9) (Santa Cruz, sc-13143; (16)) GRK5 (C-20) (Santa Cruz, sc-

565; (17)), pan-arrestin (Abcam, ab2914; (18)), β-Arrestin 1 (D8O3J; Cell Signalling 

Technology, #12697), β-Arrestin 2 (C16D9; (Cell Signalling Technology,#3857) and phospho-

Troponin I (Cardiac) (Ser23/24) antibody (Cell Signalling Technology, #4004),  respective 

proteins were immunodetected from cell lysates prepared from cardiac ventricular tissue in 

rats and mice 2-3 weeks after the surgeries or mononuclear cells obtained from patients 

and prepared using Ficoll density gradient centrifugation. Proteins were resolved on SDS-

PAGE gels. Densitometry determinations were calculated as the ratio between the protein 

and α-tubulin or phosphofructokinase protein expression.  

 

Quantitative PCR 

RNA was extracted from rodent left ventricles using the RNeasy Maxi Kit (Qiagen, Crawley, 

UK). Total RNA (2 µg) was reverse-transcribed using a Taqman reverse transcriptase kit. 

cDNA (20 ng) was added to each well of a polymerase chain reaction array for quantitative 

polymerase chain reaction performed (Masterplex® realplexthermal cycler; Eppendorf, 
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Germany). The comparative Ct method (2-∆∆Ct) was used, with hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) or cyclophilin as the housekeeping gene. For samples 

obtained from sham-operated and SAD animals, evaluation of (2-∆∆Ct) was defined as the 

fold change in gene expression relative to the rat cerebral cortex. Primers are detailed in 

Supplementary Table 4. 

Patient studies 

Assessment of Baroreflex sensitivity 

Using a validated sequence method (one beat lag) technique (19), spontaneous baroreflex 

sensitivity was measured in surgical patients who had previously undergone 

cardiopulmonary exercise testing from optimally damped intra-arterial pressure recordings 

(Lidco Plus, London, UK) obtained immediately preoperatively. No minimum thresholds 

were used for changes in systolic blood pressure or pulse interval; events were accepted 

provided the correlation coefficient between systolic blood pressure and pulse interval 

exceeded 0.85. To avoid bias, all cardiopulmonary exercise and autonomic data analyses 

were undertaken by investigators blinded to clinical outcomes. Baroreflex values associated 

with increased mortality in multiple-organ dysfunction syndrome were stratified patients as 

having low/abnormal or normal BRS.(3)  

 

Assessment of parasympathetic vagal activity 

To determine parasympathetic (vagal) activity, two principle methods were employed. 

Firstly, heart rate recovery following exercise was measured as part of patients undergoing 

preoperative symptom-limited maximal cardiopulmonary exercise testing, with on-line 
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breath-by-breath gas analysis monitoring. The anerobic threshold (AT), measured as body 

mass-corrected oxygen consumption (ml.kg-1.min-1) was used as a marker of aerobic fitness 

(20). AT was determined by the modified V slope method and confirmed with the 

ventilatory equivalents method. Abnormal heart rate recovery following exercise was 

defined according to BRS values and related to previous studies that demonstrated the 

negative prognostic power of a heart rate reduction of ≤12 beats per minute from peak 

exercise to that measured one minute after cessation of exercise. (21) Secondly, Holter 

recordings were made preoperatively in a quiet environment using three-lead 

electrocardiographic recordings (Lifecard CF digital Holter monitors, Spacelabs Healthcare, 

Hertford, UK). Data cleaning and analysis was undertaken masked to cardiopulmonary 

exercise testingdata. Valid segments of recordings were identified from patients. Data 

quality criteria were in accordance with Task Force guidelines.(22) We assessed both time- 

and frequency domain measures from 5 min recordings in non-ventilated patients, although 

time-domain measures are preferable when only short-term recordings are possible since 

these are highly reproducible over time in a non-laboratory setting. (23)  Two time-domain 

measures of parasympathetic activity were assessed: the square root of the mean of the 

sum of the squares of the successive differences between adjacent beat-to-beat intervals 

(root mean square of the successive differences, RMSSD); and the proportion of number of 

pairs of successive beat-to beat intervals that differ by more than 50 ms, divided by total 

number of beat-to-beat intervals (pNN50). Spectral analysis of high frequency (HF) values, 

indicative of parasympathetic activity, was also performed (Spacelabs analysis software). To 

avoid bias, all autonomic data analyses were undertaken by investigators blinded to 

cardiopulmonary exercise test results and clinical outcomes. 
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Intraoperative cardiac performance 

To assess the impact of baroreflex dysfunction on cardiac performance, we re-examined 

hemodynamic data from the COMPETE-C trial. (14) Comparison of intraoperative 

hemodynamic changes between groups measured by esophageal Doppler flow (CardioQTM, 

Deltex Medical, Chichester, UK) was restricted to those patients who underwent open 

laparotomy at timepoints free of acute surgical or anesthetic interventions.  

 

Patient outcomes 

Severity of postoperative complications in the COMPETE-C trial were categorized by two 

independent analyzers, according to the Clavien-Dindo grade (Supplementary Table 6). 

Diagnostic criteria for sepsis, critical care utilization and time to discharge have previously 

been reported by the COMPETE-C investigators. 

 

Statistical methods 

The primary outcome in the patient study was length of hospital stay stratified according to 

the presence or absence of heart rate recovery as defined by low BRS. Pre-defined 

secondary outcome measures were severe (>grade 3 Clavien-Dindo) complications, 

postoperative sepsis and requirement at any point for admission to critical care. Power 

calculations for the clinical study design are provided in online supplement. Experimental 

rodent studies were designed in accordance with ARRIVE. For continuous data, normality of 

distribution was assessed and, where appropriate, analysed with ANOVA. Nonparametric 

data were analysed with the Mann–Whitney U-test. Length of hospital stay was estimated 

using the Kaplan-Meier method and analysed using the Cox proportional hazard model 
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(taking into account autonomic phenotype and randomization arm in the COMPETE-C trial). 

All reported p values are two-sided. Statistical analyses were performed using NCSS 8 

(Kaysville, UT). Median values (interquartile range) are presented, unless stated otherwise. 

Significance was accepted at p values ≤0.05. 

 

RESULTS 

Baroreflex dysfunction results in impaired cardiac contractility  

We first determined whether baroreflex dysfunction (3 weeks after SAD surgery) impairs 

cardiac function. We chose the 3 week timepoint to reflect the typical period over which 

chronic critical illness becomes established. Baroreflex dysfunction was induced by bilateral 

sectioning of aortic and carotid sinus nerves (hereafter, termed SAD: sino-aortic 

denervation).  Rats which underwent SAD surgery appeared clinically unwell as adjudged by 

their appearance (mild piloerection, hunched) in the first 3 days following nerve ablation. 

During the subsequent 3 weeks, SAD rats gained less weight (Figure 1A). Using a protocol 

(Figure 1B) similar to that used in humans (24), we found that established SAD assessed 3 

weeks after the surgery was associated with an impaired inotropic response (Figure 1C). The 

increase in cardiac output as a result of preserved contractile response to dobutamine was 

only observed in sham-operated rats.  Dobutamine elicited a relative tachycardia in SAD rats 

yet failed to elicit an inotropic response (Supplementary Figure 1).   

 

Enhanced cardiac GRK expression following baroreflex dysfunction. 

In view of the loss of the beta-1 adrenoceptor response to dobutamine in both human 

critical illness (8) and our baroreflex dysfunction model, we hypothesized that cardiac 
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impairment is due to impaired GPCR signaling similar to that observed in experimental 

models of cardiac failure. (25) Protein expression of both GRK-2 (Figure 2A) and β-arrestin-1 

(Figure 2B) was upregulated in SAD rat ventricular cardiomyocytes, whereas no change was 

seen in GRK-5 expression (Figure 2C, D). SAD is known to be associated with transient (but 

not chronic) - elevations in the level of circulating angiotensin. (26) We therefore 

hypothesised that angiotensin is likely to be responsible for producing cardiac dysfunction in 

SAD model through angiotensin-induced reactive oxygen species (ROS) generation, via 

activation of NOX-2.(11) We found that expression of angiotensin-II receptor 1a is 

upregulated in conditions of baroreflex dysfunction (Figure 2E). 

 

NOX2 activity triggers GRK2 expression in conditions of baroreflex dysfunction 

We next tested the hypothesis that SAD impairs cardiac function through angiotensin -

induced oxidative stress, via activation of NADPH-oxidase (NOX-2). Transthoracic 

echocardiography showed that NOX2 deficiency prevents cardiac impairment that 

developed in wild-type SAD mice (Figure 3A), where a significant 20% reduction in ejection 

fraction was observed (Figure 3B) despite similar blood pressures between genotypes 

(Figure 3C). In the failing heart, PKA activity is altered as a result of dysfunctional beta-

adrenoreceptor signalling.(9) This results in decreased troponin I phosphorylation 

(ser23/24), which was lower in wild-type mice following SAD (Figure 3D). Quantitative PCR 

of cardiomyocytes showed that both GRK-2 (Figure 3E) and GRK-5 (Figure 3F) mRNA was 

only upregulated in wild-type mice ten days after SAD, but not in NOX2-deficient murine 

cardiomyocytes. Protein expression of GRK-2, but not GRK-5, mirrored the transcriptomic 

changes observed in wild-type murine cardiomyocytes following SAD (Figure 3G). We also 
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observed differences in beta-arrestin 1 mRNA transcription in NOX2-deficient murine 

cardiomyocytes following SAD (Figure 3I-J) 

 

Baroreflex dysfunction is associated with impaired vagal activity in patients at risk of 

developing postoperative critical illness 

Impaired baroreflex sensitivity is associated with generalized autonomic dysfunction, 

including reduced parasympathetic (vagal) activity in both laboratory models (6) and 

patients.(7) We confirmed that baroreflex dysfunction is associated with impaired vagal 

activity in this patient population (Figure 4A-E) by assessing five measures of 

parasympathetic activity in patients with normal and low (≤6ms.mmHg-1) spontaneous 

baroreflex sensitivity values. First, we assessed exercise-induced heart rate recovery in a 

cohort of matched patients with similar aerobic exercise capacity (Table 1). Patients with 

low BRS had heart rate recovery values (Figure 5A) similar to those defined by epidemiologic 

(21) and physiologic (27) studies that have identified heart rate recovery ≤12bpm as a 

robust independent prognosticator for worse clinical outcomes.  No pre-defined medical 

(cardiovascular) co-morbidities were associated with heart rate recovery ≤12bpm, including 

diabetes mellitus (Table 1). Three different time-domain measures of parasympathetic 

activity obtained from Holter recordings made preoperatively were similarly consistent, with 

impaired BRS associated with lower values for RR-interval (Figure 4B), RMSSD (Figure 4C) 

and pNN50 (Figure 4D). Spectral analysis of the high frequency component of heart rate 

variability also showed lower values for patients with BRS≤6ms.mmHg-1 (Figure 4E). In a 
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second separate patient cohort (Plymouth), the thresholds defined by BRS from the 

derivation cohort gave similar HRR values (Figure 4F). Thus, every parasympathetic measure 

undertaken demonstrated that low vagal activity was strongly associated with impaired 

baroreflex sensitivity. 

 

Baroreflex dysfunction in patients is associated with elevated expression of GRK2 in 

circulating mononuclear leukocytes 

As baroreflex dysfunction recapitulates many features of cellular dysfunction synonymous 

with established critical illness, we next tested whether we could find evidence for this in 

circulating leukocytes which are exposed to a similar neurohormonal environment as 

cardiomyocytes- as has been shown in cardiac failure patients.(9) GRK2 expression in 

circulating mononuclear cells has been shown to parallel expression of this GPCR recycling 

protein in cardiac (left ventricular) tissue biopsies in patients with both heart failure (28) 

and systemic arterial hypertension.(29) We found that parasympathetic dysfunction was 

associated with increased GRK2 expression in circulating mononuclear cells (Figure 4G) 

obtained preoperatively from surgical patients (Figure 4H).   

 

Autonomic dysfunction is associated with failure to increase cardiac contractility 

intraoperatively. 

We next asked whether autonomic dysfunction may explain the failure to achieve optimal 

hemodynamic performance following major surgery, which is associated with increased 

morbidity and prolonged hospital stay.(8) The COMPETE-C trial (14) failed to find any benefit 

of stroke volume optimization intraoperatively, and we therefore considered whether a 
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failure to increase cardiac contractility in patients with autonomic dysfunction may account 

for this. We therefore evaluated the relationship between autonomic dysfunction and 

intraoperative hemodynamic function by re-analyzing data from the COMPETE-C trial, 

where intraoperative hemodynamic data was collected in patients who had undergone 

preoperative cardiopulmonary exercise testing. Using the same threshold values we 

obtained for heart rate recovery as a surrogate for baroreflex dysfunction (Figure 4F), low 

HRR (≤10bpm) was observed in 81/249 (32.5%) patients who underwent preoperative 

cardiopulmonary exercise testing as part of the screening process for the COMPETE-C trial. 

Having established the prevalence of autonomic dysfunction as defined by abnormal heart 

rate recovery in this cohort (blinded to perioperative details), we next assessed the 

intraoperative hemodynamic performance of those patients who subsequently completed 

the COMPETE-C randomized controlled trial protocol (Table 2; n=175). Despite similar 

perioperative heart rates (Figure 5A) and mean arterial pressure (Figure 5B), cardiac 

contractility, measured using the esophageal Doppler, did not alter in patients with 

autonomic dysfunction (Figure 5C). The failure of patients with parasympathetic autonomic 

dysfunction to achieve optimal hemodynamic performance was associated with an excess of 

serious (Clavien-Dindo grade ≥3) postoperative complications (relative risk: 2.60 

(95%CI:1.18-5.74); p=0.014), more frequent episodes of sepsis (relative risk:2.70 [1.49-4.93]; 

p=0.001), increased use of critical care resources (relative risk:2.22 [1.15-4.30]; p=0.016) and 

prolonged hospital stay (unadjusted relative risk:1.42 (95%CI: 1.05-1.92); p=0.02; Figure 5D). 

Cox regression analysis showed that the association between prolonged hospital stay and 

parasympathetic autonomic dysfunction remained when controlling for hemodynamic 

therapy (relative risk:1.59 (95%CI: 1.13-2.24); p=0.006). Parasympathetic autonomic 
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dysfunction was also associated with higher mortality, extending to 600 days 

postoperatively (hazard ratio: 1.16 [0.84-1.60]; p=0.007; Figure 5E). 

 

DISCUSSION 

Autonomic dysfunction is associated with every stage of critical illness although its role as a 

trigger of this maladaptive state, rather than merely being a marker, has remained largely 

unexplored. By taking an integrative experimental approach, we found that by solely 

disrupting afferent autonomic signalling results in profound clinically-relevant, cellular 

features synonymous with the cardiac phenotype of critical illness. Patients with pre-

existing autonomic dysfunction (as measured by assessment of baroreflex and 

parasympathetic activity) undergoing elective major surgery manifest a similar phenotype, 

characterized by molecular and physiologic signatures of impaired cardiac contractility.  This 

dysautonomic phenotype is linked to an excess of infectious complications. This autonomic 

re-interrogation of the COMPETE-C trial explains an apparent disconnect between limited 

intraoperative cardiac performance and postoperative outcome.  

 

Cardiac dysfunction is a key feature of critical illness that correlates with poor outcomes. 

(30) An inability to mount an appropriate cardio-metabolic response to beta-adrenoceptor 

stimulation (using a dobutamine challenge test) is associated with increased mortality in 

critical illness (8, 24). Interestingly, autonomic dysfunction recapitulates this maladaptive 

phenotype, both in surgical patients with established autonomic dysfunction 

intraoperatively and in animal model with experimentally-induced autonomic dysfunction. 

Established cardiac failure is characterized at the molecular level by significant up-regulation 
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of GRK2 (31), a member of the GRK family of serine/threonine protein kinases that 

phosphorylate and desensitize GPCRs, which mediate the effects of beta-adrenoceptor 

stimulation. (9) In contrast, acute (32) and chronic inflammation associated with rheumatoid 

arthritis (33) have been linked with downregulation of GRK2 levels in monocytes.  Following 

agonist activation, GRKs rapidly phosphorylate GPCRs; through binding of arrestins to the 

phosphorylated receptors, the receptor is uncoupled from the G protein. (34) Prolonged 

agonist stimulation leads to persistent homologous receptor desensitization and hence the 

loss of receptor responsiveness. GRK2 inhibits pro-contractile signalling pathways by 

phosphorylating the beta-adrenoceptors and promoting beta-arrestin binding. (9) Mice 

lacking β-arrestin lose cardioprotective mechanisms that counteract prolonged mechanical 

stretch (35). Thus, the impaired baseline function and inotropic responses to beta-

adrenoceptor stimulation in the rat SAD model of baroreflex dysfunction are consistent with 

increased expression of GRK2 in cardiomyocytes. The upregulation of β-arrestin expression 

most likely reflects compensatory cell survival signaling strategy in the rat SAD model, 

triggered through activation of common GPCR pathways as a result of baroreflex 

dysfunction -induced activation of the angiotensin system. Consistent with this hypothesis, 

we also found no compensatory increase in β-arrestin in the murine SAD model, where a 

lower ejection fraction was observed in the wild-type mice with cardiac contractility was 

found to be markedly worse than in the rat model. However, in the murine SAD model we 

also found a compensatory upregulation of GRK5(36) in wild-type mice; increased levels of 

GRK-5 correlate positively with lower morbidity/mortality in human heart failure.(37) 

Resting plasma levels of angiotensin and vasopressin in sino-aortic denervated rats were 

previously found to be similar to that of sham-operated animals; however, various stressors 
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elicit marked increases in the plasma levels of both hormones. (38) We found that 

transcription of  angiotensin-II receptor type 1 is upregulated in SAD rats, consistent with 

the observation that expression of this receptor is positively correlated with blood pressure 

throughout multiple neuroendocrine tissues  in the spontaneously hypertensive rat. (39) 

Angiotensin infused at levels that do not alter systemic arterial blood pressure induce 

NOX2–mediated cardiac hypertrophy within two weeks  (40) NOX-2 activation also 

contributes to myocardial hypertrophy induced by other humoral factors commonly 

upregulated in critical illness.(11) Impaired contractility via excessive activation of NOX2 

may be due to increased expression of L-type calcium channels (41) and/or pathological 

changes in mechanosensitive stretch-induced calcium release.(42) Pathologically excessive 

activation of NOX-2 by angiotensin actions in the sarcolemma and T-tubules impairs ROS-

induced sensitization of the ryanodine receptor which regulates release of calcium from the 

sarcoplasmic reticulum to enhance calcium-induced calcium release. (42) Thus, pathologic 

activation of NOX-2 may prevent optimal calcium release in response to stretch, a critical 

mechanism which controls cardiac function as described by the Frank–Starling law of the 

heart. In the context of critical illness, deficiency of gp91phox attenuates myocardial 

depression following endotoxemia, (43) which also triggers rapid and profound alterations 

in baroreflex control.(44) In this study we employed both rat and mouse SAD models.  Sino-

aortic denervation in mice increases blood pressure variability dramatically (45) although 

some studies have reported, in contrast to other species, an increase in resting arterial 

blood pressure early after SAD.(5) This may affect cardiac contractility independently of 

other direct (neurohormonal) alterations in cardiac physiology. Thus, timing appears to be 

an important factor in the expression of a variable cardiovascular phenotype reported 
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following SAD in mice, and we, therefore, chose the 2-3 week timepoint as this appears to 

be compatible with the development of established critical illness. Other protective 

mechanisms through which the autonomic nervous system provides the neural conduit to 

enable inter-organ crosstalk cannot be excluded, including the prevention of gut barrier 

failure (46). Nevertheless, both mouse and rat SAD models demonstrated similar pattern of 

myocardial GRK2 upregulation, suggesting that this cellular pathophysiological process 

occurs independently of blood pressure changes. Consistent with this assertion, our results 

demonstrate that patients with parasympathetic autonomic dysfunction also exhibited 

elevated GRK2 expression in circulating mononuclear cells, independent of blood pressure. 

This study has a number of clinical implications. The autonomic phenotype we describe 

provides a rapidly testable, integrative, patient-centered physiological paradigm to enhance 

the clinical stratification of risk, elucidate mechanisms of established therapeutics and 

devise novel interventional targets. The BRS values reported herein are remarkably similar 

to those previously found to predict increased risk of mortality following multiple-organ 

dysfunction syndrome.(3) We provide mechanistic translational data that provides a biologic 

rationale that helps explain why inferior cardiac performance during stressor situations may 

lead to further clinical complications. Interestingly, several pharmacologic agents have 

reversed/attenuated this pathological autonomic phenotype in other clinical areas, for 

example heart failure- another syndrome similarly characterized by persistent 

neurohormonal activation and a pro-inflammatory state.(47) Our data also provide 

mechanistic insights into the results of recent exploratory trials which demonstrated better 

outcomes in critical illness, even though underlying mechanisms remained poorly 

understood. For example, beta-1 adrenoceptor blockade (48) and alpha-2 agonism (49) 
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exert significant autonomic effects that, in part, can reverse/prevent several features of the 

cardiac phenotype that develops during critical illness. Avoiding pharmacological and/or 

therapeutic interventions that promote dysautonomia and consequently increase iatrogenic 

complications is likely to be beneficial, including the avoidance of prolonged bed rest by 

adopting early mobilization of critically ill patients (50).   

Laboratory and clinical epidemiologic data demonstrated that augmented vagal 

(parasympathetic) activity limits cardiovascular morbidity and mortality. (51) Importantly, 

the presence of parasympathetic autonomic dysfunction in the human surgical study cohort 

was not associated with pathologies traditionally linked to autonomic dysfunction such as 

diabetes mellitus. This is perhaps unsurprising given the link between autonomic 

parasympathetic dysfunction and all-cause mortality.  Epidemiologic data demonstrating an 

association between hypertension and hospitalization for sepsis (52) is also consistent with 

the autonomic phenotype described here. 

 

In summary, we suggest that baroreflex autonomic dysfunction mimics key cardiovascular 

aspects of critical illness. These findings offer the potential for novel therapeutic paradigms 

that could limit the excess morbidity and mortality associated with critical illness. Similarly, 

avoiding or reducing iatrogenic, off-target consequences of treatments that provoke or 

sustain autonomic dysfunction may also be beneficial.  
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Figure legends 

Figure 1.  Cardiac performance in experimental afferent autonomic dysfunction in rats.  

(A) Loss of weight following sino-aortic denervation (SAD). (B) Summary of dobutamine 

protocol to assess cardiac performance at three weeks following SAD. (C) Dobutamine-

induced increases in left ventricular ejection fraction are observed in sham operated rats 3 

weeks after nerve ablation surgery. Data are presented as mean ± SE (n=4-6 rats per group). 

Asterisk indicates p<0.05; n.s. – not significant. 

 

Figure 2. GPCR signalling protein expression in left ventricular tissue following 3 weeks of 

experimental afferent autonomic dysfunction. (A) Representative immunoblot for rat 

cardiomyocyte GRK-2 (B) cardiomyocyte β-arrestin-1. (C) cardiomyocyte GRK-5 protein 

expression. (D) Group densitometry data for GRK2, β-arrestin-1 and GRK5 in sham and SAD 

rat left ventricular tissue, referenced to α-tubulin (mean±SE).  (E) Quantitative PCR showing 

upregulation of ATII-1R mRNA expression in SAD rat ventricular cardiomyocytes (referenced 

to LN229 neuronal cell line expression). *Significant difference (P<0.05); n=4-6/group. 

 

Figure 3. Afferent autonomic dysfunction promotes GRK2 over-expression via activation of 

NOX-2. (A) Representative M-mode echocardiography image showing impaired baseline 

contractility 26 days after sino-aortic denervated in a wild-type mouse, but preserved 

cardiac contractility 26 days after sino-aortic denervation in a representative NOX2 mutant 

mouse. (B) Population data for ejection fraction in wild-type or NOX-2-/- mouse following 

either sham or sino-aortic denervation procedure. 3-5/experimental group; mean±SE. 

*Significant difference (P<0.05). (C) Similar mean arterial pressure (measured by tail-cuff 
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occlusion) in anesthetized wild-type or NOX-2-/- mice. (D) Immunoblot showing reduction in 

phospho-troponin (Ser23/24) in wild-type cardiomyocytes 10 days after bilateral sino-aortic 

denervation. (E)  Quantitative PCR demonstrating upregulation of GRK2 mRNA expression in 

SAD wild-type cardiomyocytes (referenced to expression in mouse brain cortex samples). 

*Significant difference (P<0.01); n=4/group. (F)  Quantitative PCR demonstrating 

upregulation of GRK5 mRNA expression in SAD wild-type cardiomyocytes, same samples as 

shown in panel E (referenced to expression in mouse brain cortex samples). *Significant 

difference (P<0.01); n=4/group. (G) Representative immunoblot for GRK2 in murine wild-

type or NOX-2-/- ventricular cardiomyocytes, ten days after sham surgery or sino-aortic 

denervation (SAD).  Population data show change in GRK2 protein levels for SAD wild-type 

or NOX-2-/- ventricular cardiomyocytes, as relative change over mean sham protein levels (* 

P=0.07, unpaired t-test, n=4-6/group). (H) Representative immunoblot for GRK5 in murine 

wild-type or NOX-2-/- ventricular cardiomyocytes, ten days after sham surgery or sino-aortic 

denervation (SAD). (I) Quantitative PCR for β-arrestin 1 mRNA expression in SAD wild-type 

cardiomyocytes (referenced to expression in mouse brain cortex samples). *Significant 

difference (P<0.05); n=4/group. (J) Quantitative PCR for β-arrestin 2 mRNA expression in 

SAD wild-type cardiomyocytes (referenced to expression in mouse brain cortex samples). No 

significant differences were found between groups. 

 

Figure 4. Cardiopulmonary exercise performance to detect established preoperative 

baroreflex dysfunction.  

(A) Analysis of heart rate changes to determine heart rate recovery (HRR) as measure of 

parasympathetic cardiac activity in surgical patients undergoing preoperative 
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cardiopulmonary exercise testing. (B) Heart rate recovery in surgical patients undergoing 

preoperative cardiopulmonary exercise testing, stratified by normal or low spontaneous 

baroreflex sensitivity. (C) RR-(pulse) interval in surgical patients, stratified by normal or low 

spontaneous baroreflex sensitivity. (D) Root mean square of the successive differences 

(RMSSD) in surgical patients, stratified by normal or low spontanenous baroreflex 

sensitivity. (E) pNN50 in surgical patients, stratified by normal or low spontanenous 

baroreflex sensitivity. Asterisk denotes p≤0.01. (F) High frequency spectral analysis 

component of heart rate in surgical patients, stratified by normal or low spontanenous 

baroreflex sensitivity. (G) Heart rate recovery profiles in surgical patients enrolled into 

COMPETE-C hemodynamic trial, obtained following preoperative cardiopulmonary exercise 

testing (stratified by normal or low spontaneous baroreflex sensitivity). (H) Immunoblot for 

GRK2 protein expression in isolated mononuclear cells obtained from 3 consecutively 

recruited surgical patients undergoing preoperative cardiopulmonary exercise testing. (I) 

Group data for patient immunoblots performed in 10 separate subjects demonstrating each 

heart rate recovery phenotype (5/group). Median (25-75th centile) heart rate recovery 

values shown below the bars for patients with HRR threshold values stratified by original 

BRS data.*Significant difference (P<0.05). 

 

Figure 5.  Perioperative cardiovascular performance in patients with autonomic dysfunction.  

(A) Heart rate during perioperative period; blue-normal HRR, red- HRR<10bpm as defined in 

Figure 4A. (B) Mean arterial pressure during perioperative period. (C) Cardiac contractility 

(peak velocity) is impaired intraoperatively in patients with parasympathetic autonomic 

dysfunction defined by low HRR. (D) Prolonged hospital stay is observed in patients with 
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preoperative parasympathetic autonomic dysfunction, regardless of intraoperative 

hemodynamic management (relative risk: 1.59 (95%CI: 1.13-2.24); p=0.006).  GDT- patients 

randomized in COMPETE-C trial to goal directed therapy; AD: preoperative parasympathetic 

autonomic dysfunction. Values expressed as mean (SD). (E) Postoperative mortality is higher 

in patients detected to have parasympathetic autonomic dysfunction preoperatively after 

600 days follow-up (p<0.001), by log rank test. 
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