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SSVEP-based Brain-computer Interface for Music using a Low-

density EEG System 

In this paper, we present a bespoke brain-computer interface (BCI), which was 

developed for a person with severe motor-impairments, who was previously a 

Violinist, to allow performing and composing music at home. It uses steady-state 

visually evoked potential (SSVEP) and adopts a dry, low-density, and wireless 

electroencephalogram (EEG) headset. In this study, we investigated two 

parameters: (1) placement of the EEG headset and (2) inter-stimulus distance and 

found that the former significantly improved the information transfer rate (ITR). 

To analyse EEG, we adopted canonical correlation analysis (CCA) without 

weight-calibration. The BCI for musical performance realised a high ITR of 

37.59 ± 9.86 bits min-1 and mean accuracy of 88.89 ± 10.09%. The BCI for 

musical composition obtained an ITR of 14.91 ± 2.87 bits min-1 and a mean 

accuracy of 95.83 ± 6.97%. The BCI was successfully deployed to the person 

with severe motor-impairments. She regularly uses it for musical composition at 

home, demonstrating how BCIs can be translated from laboratories to real-world 

scenarios. 

Keywords: brain-computer interface (BCI); dry electroencephalogram (EEG); 

computer music; musical composition; musical performance 

Word count: 6910 words (5797 words excluding references) 

1.   Introduction 

Brain-computer interfaces (BCIs) for musical applications aim to interface brain waves 

directly with composition tools, instruments, algorithmic composers, and music players, 

to name but a few (Eaton et al., 2015; Grierson & Kiefer, 2014; Miranda, 2014). It is 

beneficial for patients who are suffering from locked-in syndrome, which is the loss of 

all or most motor abilities, because it provides a means of creative expression, which is 

shown to have positive effects on mental well-being (Leckey, 2011). It also allows 

creative practitioners to communicate with musical applications through a novel 

mechanism of control. Steady-state visually evoked potential (SSVEP) has been widely 
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adopted by BCIs due to its ease of use and high communication rates (Vialatte et al., 

2010; Y. -T. Wang et al., 2011). However, several challenges arise when trying to 

translate such BCIs from laboratories to real-world scenarios. These include bulky 

equipment to detect neural activity, poor signal quality among commercial sensors, and 

environmental factors like light and sound, to name but a few.  

Electroencephalogram (EEG) has been popularly used in BCIs because of its 

non-invasiveness and portability (Nicolas-Alonso & Gomez-Gil, 2012). SSVEP-based 

BCIs are generally tested with research-grade wet sensors (Bin et al., 2009; Chen et al., 

2015b), which provide low impedances in the range of 5 - 10kΩ, that is excellent signal 

quality for non-invasive detection. However, using wet sensors for real-world scenarios 

imposes hindrances. Contrarily, dry EEG sensors are more convenient as they are 

directly placed on the head without additional substances like gel, but suffer from lower 

signal to noise ratio (SNR). Researchers have explored using dry EEG for SSVEP (Chi 

et al., 2011; Liu et al., 2019; Mihajlović et al., 2012; Spüler, 2017; Xing et al., 2018). 

Furthermore, some studies have detected EEG from non-hair bearing areas such as the 

neck, behind the ears, face, and below the hairline (Carmona et al., 2020; Floriano et al., 

2019; Y. -T. Wang et al., 2012, 2017). 

In this study, we specifically develop a bespoke SSVEP-based BCI for an 

individual with severe motor-impairments, who was previously a Violinist, to allow 

composing music at home. It utilises a dry, wireless, low-density, and portable EEG 

headset, which detects brain waves through four different electrodes within the 10-20 

international system (Jasper, 1958) — Cz, Pz, O1, and O2. Compared to other studies 

that use dry EEG (Chi et al., 2011; Liu et al., 2019; Mihajlović et al., 2012; Spüler, 

2017; Xing et al., 2018), this system uses a smaller number of electrodes, presents a 

stand-alone system, and applies the BCI for novel musical applications.  
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The objective of this paper is to develop BCI-based performance and 

composition tools for a person with a severe motor-impairment condition, such that the 

system can be used independently in the absence of specialists or engineers. To our 

knowledge, this is the first study that addresses this task of using BCIs to compose 

music at home. For this reason, all BCI-related operations are encapsulated into one 

stand-alone application. In this paper, we adopt joint frequency-phase modulation 

(JFPM) (Chen et al., 2015b) to present the visual stimulus and canonical correlation 

analysis (CCA) (Bin et al., 2009; Lin et al., 2007) to analyse EEG.  

BCI studies that adopt CCA generally collect training data from users to 

calibrate weights (Nakanishi et al., 2014). In this study, we adopt CCA without weight-

calibration (explained in section 3.4). This does not require user-training sessions and 

thus, improving the usability of BCIs (Lin et al., 2007; Bin et al., 2009; Nakanishi et al., 

2015; Yger et al., 2016). Additionally, this paper investigates 2 parameters — (1) size 

of and distance between flashing regions in the visual stimulus and (2) placement of the 

EEG headset. On one hand, Duszyk et al. (2014) demonstrated that there is a linear 

relationship between the size of the flashing region and SSVEP amplitude. It also stated 

that inter-stimulus distance does not have a significant effect on SSVEP magnitude. On 

the other hand, Ng et al. (2012) observed a relationship between inter-stimulus distance 

and classification accuracy. There were methodological differences between the two 

studies — one directly measured SSVEP amplitude and the other used a classifier. We 

understand that the design of visual stimulus has been covered by many studies in the 

literature. However, these studies were conducted using wet electrodes which have low 

impedance. Hence, this paper evaluates two different designs for the visual stimulus — 

one with large flashing squares and the other with smaller flashing squares.  

Furthermore, Y. Wang et al. (2006) investigated the effect of electrode location 
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for SSVEP by using subject-specific electrode placements. Therefore, in this paper, we 

examine whether the placement of the EEG headset has an effect on the communication 

rate of the BCI. We are using a commercial and low-cost EEG headset which has a 

fixed structure with instructions on how to place the headset on the subject’s head. 

However, we investigate if minor adjustments in the placement, which are generally not 

discussed by headset manufacturers, produce an impact on the communication rate of 

the BCI. We conduct experiments to investigate this phenomenon.  

For practical reasons, we could not visit the individual with motor-impairments 

to perform extensive tests. Therefore, we conducted experiments with other subjects to 

investigate parameters before the final deployment.  

2.   BCI Design 

As BCIs are considerably different from conventional musical interfaces (with respect 

to communication rates and ease of use), design considerations were taken to allow the 

person with severe motor-impairments to perform and compose music solely by using 

the BCI. Due to the restricted communication rate, there needs to be a trade-off between 

flexibility and time taken for composition. We have developed multiple BCI systems 

with varying degrees of flexibility for composition. For instance, in one system, the user 

is allowed to choose from several musical pitches, but not control other musical 

parameters like rhythm. This provides high flexibility to compose melodies. In another 

system, the user can choose from a fixed set of musical loops that comprise a variation 

in multiple musical parameters. However, the choice is limited to the loops available at 

that time. 

The operations carried out by the BCI are categorised into 4 sub-operations — 

providing the visual stimulus, recording EEG signals, analysing the obtained data, and 
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producing audio/musical output. The specifications of the laptop used in the paper are 

17.3 inches,           pixels display, 60 Hz refresh rate, HP ProBook 470 G4 

Motherboard i7-7500U, Windows 10, 8 GB RAM, Intel i7 2.7 GHz, NVIDIA graphics 

GeForce 930MX, and Integrated HD graphics 620. 

In this paper, there are 2 types of 6-target BCIs — performance and 

composition. Under performance, we designed one BCI called Violin. Under 

composition, we designed two BCIs called Violin composer and Violin loops composer, 

as shown in figure 1. 

For Violin, the user can choose from six different musical pitches from the C 

minor pentatonic scale — C4, D#4, F4, G4, A#4, C5. This BCI allows the user to play a 

musical instrument. It does not allow the user to compose music, but simply allows 

them to trigger musical samples and perform with the instrument. 

 

 

(a) Violin composer 

(b) Violin loops composer 

Figure 1: Two BCIs for composition. 

 

 

The next two BCIs enable the user to compose music. The user's compositions 

would be stored on their computer. Violin composer enables the user to create a melody. 

As shown in figure 1a, the user can make a choice from four different musical pitches, 

which are randomly displayed by the computer. If the user wishes to choose a note that 

is not on the screen, the shuffle option can be chosen, which would display a fresh set of 

four musical pitches. After a choice is made by the user, it is added to the composition 
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stack. Afterwards, the composition up to that instant of time is played back and a new 

set of musical pitches is displayed. The range of musical pitches is from G3 to G5. We 

decided to display a random set of pitches instead of an ordered set so that the user need 

not wait for very long periods for the “ideal” pitch. Instead, the user can either choose a 

pitch from the displayed options or shuffle if none of them are preferable. The remove 

option can be chosen to delete the most recent choice made in the composition. The 

duration of each note in the composition is constant. A separate configurations 

programme was developed to allow the user to set the duration of each note and the 

number of notes occurring in the composition. 

For Violin loops composer (as shown in figure 1a), the user can choose from 

musical loops. In this context, a musical loop is a short section of pre-recorded sound 

material that can be directly used in a composition. Hence, the user can use a musical 

phrase directly instead of individually entering the notes. This approach was adopted to 

make the interface more interesting for the user and address the low communication 

rates of BCIs. In this BCI, the user navigates through 18 screens to develop an entire 

composition. The set of musical choices are unique for each screen. In other words, they 

depend on the timeline of the composition. This enables the user to build an entire 

composition from the start. The play option allows the user to play the composition until 

that instant of time and the remove option can be used to delete the most recent choice. 

3.   Materials and Methods 

3.1.   Visual Stimulus Presentation 

This paper adopts JFPM (Chen et al., 2015b) to present the visual stimulus. Each 

flashing region is encoded with 2 unique attributes — phase and frequency. Generally, 

in SSVEP, the highest amplitude is elicited for low stimulation frequencies (Chen et al., 

2014), which is essential for high-impedance headsets. Hence, our system is a 6-target 
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BCI with SSVEP frequencies lying in the range of 6.0 Hz to 9.0 Hz equally spaced at 

0.6 Hz, as shown in figure 2. 

 

 

Figure 2: An illustration of the visual stimulus. Frequency and phase values of each 

region are mentioned (frequency is above and phase is below). 

 

 

 In order to utilise hardware-accelerated rendering and vertical synchronisation 

(VSync), the visual stimulus is implemented with the help of Open Graphics Library 

(OpenGL). Vertex shader and fragment shader programmes were written in OpenGL 

shading language (GLSL). The vertex shader specifies the coordinates of the flashing 

squares and the fragment shader varies the luminance of the region. The luminance   is 

varied by equation 1 with the help of sinusoidal stimulation (Manyakov et al., 2013). 

   
 

 
{      (    )   }                                           (1) 

where   is the stimulation frequency,   is the time, and   is the phase. Rhodes (2010) 

explains the importance of frame-rate independence during software development. This 

will be useful for deploying the BCI on multiple platforms that may have varying 

refresh rates. Hence, in this programme, the value of   is updated every 1 ms. OpenGL 

textures were used to load graphical icons of musical notation in the BCI as shown in 

figure 1b. 

3.2.   Record EEG 

EEG signals were recorded from the head with the help of a customised Quick-20 

headset manufactured by Cognionics, Inc. The headset comprises 4 electrodes — Cz, 

Pz, O1, and O2 as shown in figure 3. In addition to the occipital and parietal electrodes, 
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Cz was added to the set of electrodes because it is commonly chosen as the reference 

electrode in SSVEP studies (Chen et al., 2015b; Y. -T. Wang et al., 2017). Due to 

design for manufacturing considerations, we were restricted to choosing electrode 

positions from the 10-20 international system. Therefore, we were unable to choose 

electrodes like Oz or POz, which might pick higher amplitudes of SSVEP signals. The 

sampling rate of the headset is 500 Hz. The headset provides the option to calculate the 

impedance of electrodes with the help of a carrier wave, which is superimposed with the 

EEG signals at 125 Hz. Data is transmitted from the headset to the laptop through 

Bluetooth. A dedicated computer thread was written to receive data from the headset. 

 

 

 

 

 

(a) Electrode positions of the EEG headset. 

(b) Components of the EEG headset. 

Figure 3: Dry, wireless, and portable EEG headset. 

 

The Cognionics website
1
 suggests that for these dry sensors, impedances lie in 

the range of           . The following steps were taken to obtain good signal 

quality. After the headset was applied, the electrodes were adjusted to obtain an 

impedance of under        . One useful characteristic of these electrodes is that their 

contact improves with time (this was verified with the obtained impedance values). 

                                                 

1 Cognionics: http://www.cognionics.com/wiki/ 
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Subsequently, the electrodes were lightly pressed against the head at regular intervals of 

time. In all circumstances, for all electrodes, we were able to obtain an impedance of 

less than        within 10 minutes. After this, the carrier wave was disabled to allow 

an effective bandwidth of 0 to 125 Hz for the EEG signals. 

3.3.   Data Analysis 

Lin et al. (2007) proposed the idea of using canonical correlation analysis (CCA) for 

SSVEP to improve communication rates of BCIs. CCA is a multivariate statistical 

technique that quantifies the relation between 2 sets of variables (Härdle & Simar, 

2003). Using this technique, multiple EEG channels can be used for analysis and 

therefore, it improves the accuracy of BCIs (Bin et al., 2009; Lin et al., 2007). Let   be 

a matrix comprising samples recorded by the EEG headset as shown in equation 2. 

   (

                    
                    

    
                    

)                                (2) 

where   is the number of EEG samples considered for analysis. For instance, if the 

analysis window is 2 s, N is 1000 because the sampling rate of the headset is 500 Hz.  

Furthermore, each region in the visual stimulus corresponds to a matrix of 

reference signals  , which consists of the fundamental frequency   as shown in 

equation 3 (Bin et al., 2009). 

   (   [
    

  
]    [

    

  
]        [

  (   )  

  
]    [

  (   )  

  
])          (3) 

where   is the stimulation frequency,    is the number of harmonics, and   is the 

sample index of the EEG recording. Chen et al. (2015a) showed that 5 was an optimal 

value for    and therefore, in this study, we set    to 5.  

 X and Y are two multi-dimensional variables as defined in equations 2 and 3 

respectively. Considering their linear combinations to be       and      , CCA 
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finds the weight vectors    and    such that the correlation between   and   is 

maximised. Correlation between   and   is defined by equation 4. 

 

 (   )   
∑ (    ̅) (    ̅) 

   

(   )    
                                               (4) 

where      , and      ,  (   ) is the correlation between   and  ,    belongs 

to  ,    belongs to  , N is the number of samples,  ̅ is the mean of  ,  ̅ is the mean of 

 ,    is the standard deviation of  , and    is the standard deviation of  . For a detailed 

explanation of CCA, refer to studies by Bin et al. (2009); Härdle & Simar (2003); Lin et 

al. (2007). 

3.4.   Classification 

There are two ways in which CCA can be used for BCIs — with and without weight-

calibration. The literature has generally adopted the former technique, where the user 

trains the system with few trials before actually using it. Weight vectors are calculated 

over these trials and then averaged. This requires the user to spend additional time 

training the system (Bin et al., 2009; Chen et al., 2015a, 2015b). In the second 

technique, which is without weight-calibration, solely the highest correlation value for 

that specific trial is calculated. The user's choice   is the maximum correlation value 

calculated among all target frequencies as shown in equation 5 (Bin et al., 2009).  

                                                                  (5) 

where   is the correlation value for each target  . 

The reader is referred to studies by Lin et al. (2007); Bin et al. (2009); Nakanishi 

et al. (2015); Yger et al. (2016) for more information on CCA without weight-

calibration. The advantage of this technique is that it does not require any time to 

“train” the system. As we were designing the system for a person with severe motor-
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impairments, it was not suitable to conduct user-training sessions before using the 

system. During initial experiments, we tried to conduct user-training sessions with the 

person. However, the person found it time-consuming and tiring. Furthermore, the 

training session expects the person to precisely look at specific regions at specified 

times, which was challenging for the person. Therefore, this paper uses CCA without 

weight-calibration. CCA calculations were implemented with Eigen
2
, which is a C++ 

template library for linear algebra. 

3.5.   Relax Time 

For Violin, the 6 choices presented on the screen were constant. Hence, a relax time of 1 

s was given for the user to shift the gaze from one region to another. For Violin 

composer and Violin loops composer, the choices presented on the screen were not 

constant. Thus, the user was given a relax time of 6 s to view and make a musical 

choice. As this is a prolonged relax time, the user may not expect the squares to start 

flashing. In order to prevent this, a preparation time of 0.3 s was given after the relax 

time, during which the icons disappeared and only the borders of the flashing squares 

were visible. Figure 4 illustrates this process through a flow diagram. 

 

 

 

Figure 4: Flow diagram of the BCI composer system. 

                                                 

2 Eigen: http://eigen.tuxfamily.org/index.php?title=Main_Page 
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3.6.   Audio Output 

Each BCI choice had one sound file associated with it. The audio output was played 

during the relax time. All sound files were stored in Waveform Audio File Format 

(WAVE or commonly known as WAV). Cross-fading was implemented to have smooth 

transitions between sound samples. Non-musical choices like remove, play, and shuffle 

had sound files that uttered the corresponding commands. The composition made by the 

user was stored as a WAV file in the computer, which can be played by any music 

player. 

3.7.   Stimulus Design and EEG Headset Placement 

3.7.1.   Design of the Visual Stimulus 

There were two different stimuli evaluated in this paper, termed as stimulus A and 

stimulus B. Stimulus A had bigger flashing squares and smaller inter-stimulus distance 

and stimulus B had smaller flashing squares and bigger inter-stimulus distance. Inter-

stimulus distance is defined as the distance between two consecutive flashing squares. 

Moreover, it is important to note that the size of the flashing squares and inter-stimulus 

distance are interdependent. If stimulus size is increased, the inter-stimulus distance 

automatically reduces and vice versa. This is due to the fact that the size of the laptop 

screen is fixed. The motivations behind exploring different sizes of flashing squares and 

inter-stimulus distance were: (1) Larger flashing squares might elicit higher magnitudes 

of SSVEP, (2) larger inter-stimulus distance would have less interference between 

consecutive flashing squares.  

In stimulus A, each flashing region was a square of side 7.62 cm (384 pixels). 

The horizontal and vertical distances between stimuli were 3.84 cm (192 pixels) and 

2.16 cm (108 pixels) respectively. Additionally, the visual angle was calculated by 

using equation 6 (Baird, 1970; McCready, 1985). 
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)                                                      (6) 

where   is the visual angle,   is the size of the object, and   is the distance between the 

eye and the object. For our experiments, the user was seated at a distance of 

approximately 70 cm from the screen and hence,   is equal to 70 cm. 

The flashing region subtended a visual angle of      . The horizontal and 

vertical gap between stimuli subtended an angle of       and       respectively. Ng et 

al. (2012) stated that an inter-stimulus distance in the range of    and    improves BCI 

performance. Therefore, in stimulus B, each flashing region was reduced to a square of 

side 4.60 cm (230 pixels) and it subtended an angle of       with the eye. It had equal 

horizontal and vertical distances of 6.98 cm (350 pixels) and therefore, subtended an 

angle of       with the eye. 

3.7.2.   Placement of EEG Headset 

The headset adopted by this paper detects EEG from two electrodes in the occipital 

region and one electrode in the parietal area. As we are using the same headset for all 

users (who may have unique head sizes), the electrodes may not reach the required 

locations on the head. User manuals provided by Cognionics suggested that the ground 

dry pad sensors are to be placed on the middle region of the forehead. We considered 

this set-up to be placement A, as shown in figure 5a. 

 

 

 

 

                  

(a) EEG headset deployed according to placement A. 
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(b) EEG headset deployed according to placement B 

(c) Rear view for placement A 

(d) Rear view for placement B 

 

Figure 5: Two different headset placements on a subject. The images have been used 

with the permission of the subject. 

 

 

In placement B, the ground dry pad sensors were placed as high as possible on 

the forehead, but making sure that the sensors were not placed on hair (as shown in 

figure 5b). In other words, it is placed just below the hairline. Effectively, in placement 

B, the central, parietal, and occipital electrodes move further behind compared to 

placement A. 

Note that the headset has a fixed structure with four electrodes — Cz, Pz, O1, 

and O2. For placement A and B, we did not adopt any special measures to precisely 

calculate the position of each electrode with reference to the 10-20 international system, 

because it was not the goal of the study. However, we aim to find out if minor 

deviations from the manufacturer’s recommendations in placing the EEG headset 

impacts performance. As we are adopting a dry and high-impedance EEG headset, 

signals may be sensitive to minor adjustments. 

3.7.3.   Configurations 

In order to evaluate the two parameters mentioned above, there were 4 different 

configurations of the BCI — C1: placement A and stimulus A, C2: placement A and 

stimulus B, C3: placement B and stimulus A, and C4: placement B and stimulus B. 
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(a) Electrode positions for placement A 

(b) Electrode positions for placement B 

Figure 5: Rear view of a subject wearing the headset for both placements. 

 

3.8.   Offline Experiment 

As mentioned earlier, we were unable to visit the individual with severe motor-

impairments to perform extensive tests. This was due to the following reasons. Our 

laboratory and the individual were located in different cities. Furthermore, most of our 

time with the person was dedicated to understanding her expectations from the 

composer system, explaining the BCI system to her, and enabling her carer to set-up the 

system for her independently, without our supervision. Therefore, our BCI system was 

optimised and tested separately on 6 subjects. 

All experimental procedures were approved by the University’s ethics 

committee. 6 healthy subjects (5 males and 1 female) in the age range of 23 to 55 years 

participated in the experiments. All subjects were experienced with the process of 

musical composition and had a normal or corrected-to-normal vision. The experiment 

was conducted in a dark room. Subjects were asked to minimise body movements and 

keep electronic gadgets away. During the experiment, subjects were requested to avoid 

eye blinks. However, there were no methods adopted to detect unintentional eye 

movements.  

The laptop screen was placed approximately 70 cm away from the user. Initially, 

one of the four configurations was randomly chosen and the system was set-up 

accordingly. Six targets were present on the screen. A green colour visual cue indicated 

which target the subject was supposed to look at, which was randomly chosen by the 
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computer. The cue appeared for 0.7 s and the users were asked to immediately shift 

their gaze to the corresponding region. Subsequently, for the preparation time, only 

borders of the 6 regions were visible for 0.3 s. 

After 1 s (           ), all regions flashed at their respective frequencies for 4 

s. Each test case consisted of six appearances (or six trials) of visual cues (that is, one 

for each target) in random order. After two test cases, subjects were asked to close their 

eyes and rest for few minutes. For each configuration, four test cases were acquired 

from each user. The same procedure was followed for all four configurations and hence, 

a total of sixteen test cases was obtained from all users. 

3.9.   Data Processing 

In EEG recordings, we observed high magnitude under 1 Hz and a peak at 50 Hz. High-

pass and notch filters at 4 Hz and 50 Hz respectively were applied on EEG data. Both 

were Butterworth filters and zero-phase filtering was performed. The filter was 

designed in MATLAB and code generator was used to translate the code to C++ for the 

JUCE application. In visual-based BCIs, a visual latency of 7 to 15 ms is generally 

observed (Russo & Spinelli, 1999). Therefore, this study discarded the first 20 ms of 

EEG data after the onset of the stimulus. 

3.10.   SNR 

In order to compare the four configurations, SNR values were calculated. For each EEG 

channel, fast Fourier transform (FFT) was performed to obtain the amplitude spectrum 

 ( ) for a data length of 4 s, where   stands for frequency. For a SSVEP frequency , 

SNR was defined as the ratio of the amplitude spectrum at   and the average of   

neighbouring frequencies, as shown in equation 7 (Y. Wang et al., 2006; Y. -T. Wang et 

al., 2017). 
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∑   (     )  (     )  
   

                                        (7) 

where    is the frequency resolution (0.6 Hz in this paper) and   is equal to 6. Among 

the 4 EEG channels, the maximum SNR value was taken for comparison. The SNR 

values were averaged over all SSVEP frequencies. 

3.11.   Performance Evaluation 

In order to evaluate the performance of the BCI, classification accuracy and ITR were 

calculated. Accuracy is defined as the ratio of the number of correct predictions and the 

total number of trials. For example, if the green colour visual cue highlights the fourth 

target, the user's brain waves are analysed through CCA and a prediction is made. If the 

fourth region is predicted by the analysis, then it is a correct prediction. Otherwise, it is 

a wrong prediction. For each trial, only the order in which the targets occur was 

randomised. Therefore, within each trial, all the six targets are highlighted exactly once. 

For each configuration, the total number of trials was 24 (                       ). 

ITR has been defined by equation 8 (Chen et al., 2014; Wolpaw et al., 2002).   

     
  

 
[             (   )     (

   

   
)]                         (8) 

where   is the trial time in seconds,   is the number of flashing regions, and   is the 

mean accuracy averaged over all targets. The relax time for Violin is 1 s. For Violin 

composer and Violin loops composer, the relax time and preparation adds up to 6.3 s. 

These durations were added to the trial time while calculating ITR. 

4.   Results 

4.1.   SNR 

Two-way repeated measures ANOVA was performed to compare the configurations. 

The two factors for analysis were the parameters — placement and stimulus. The 

significance level was set at 0.05. SNR values of C3 and C4 (placement B) were higher 
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than C1 and C2 (placement A). The mean SNRs for the configurations were     

          ,                ,                , and                . 

Placement had a significant effect on SNR (       ) and stimulus did not have a 

significant effect on SNR (       ). Figure 6 shows the SNR for different 

configurations. 

 

 

 

 

Figure 6: The maximal SNR across all stimulation frequencies for different 

configurations. 

 

 

4.2.   Classification Accuracy 

For all four configurations, one-way repeated measures ANOVA showed that there 

were significant differences in accuracy for different data lengths (       ). Figure 7 

shows the classification accuracy of the four configurations for different data lengths. 

C3 and C4 (placement B) performed better than C1 and C2 (placement A) for all four 

data lengths — 1 s, 2 s, 3 s, and 4 s. Two-way repeated measures ANOVA was 

performed for these data lengths. The two factors were placement and stimulus. The 

significance level was set at 0.05.  
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Figure 7: Classification accuracy for different data lengths. Note that the accuracies for 

all the BCI systems are equal, but their ITRs can vary because of different relax times. 

 

 

The accuracy values for all four data lengths is given in table 1. For data lengths 

— 2 s, 3 s, and 4 s, the placement of the EEG headset had a significant effect on 

performance (      ). Furthermore, there was no significant interaction between the 

factors (      ). Hence, placement B considerably improves the performance of the 

BCI. 

 

Table 1: Accuracy of different configurations and data lengths. † indicates that there 

was a statistically significant difference for placement and * indicates that there was a 

statistically significant difference for the stimulus size. 

 

 

4.3.   ITR 

4.3.1.   Violin 

C1, C3, and C4 obtained their highest ITRs for a data length of 2 s, which are    

                       ,                          , and          

               . C2 obtained its highest ITR for a data length of 3 s, which was 

                      . Figure 8a shows the ITR of Violin for different 

configurations. 
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(a) ITR for different data lengths in Violin. 

(b) ITR for different data lengths in Violin composer and Violin loops composer. 

Figure 8: ITRs of both BCIs for different configurations. 

 

4.3.2.   Composer 

C1 and C2 obtained their highest ITRs for a data length of 4 s, which was    

                      and                         . C3 and C4 obtained their 

highest ITRs for a data length of 3 s, which was                           and 

                        . Figure 8 shows the ITRs of the BCIs for different 

configurations. 

4.3.3.   Optimal Configuration 

In this paper, C3 and C4 consistently obtained higher ITRs than C1 and C2. 

Considering other factors such as increasing the number of flashing regions in future 

research and smaller stimuli causing less visual fatigue, C4 was chosen as the optimal 

configuration. Table 2 shows the accuracy and ITR values of individual subjects for 

both types of BCIs using C4. 

 

 

 

Table 2: Accuracy and ITR values of all subjects for Violin (data length is 2 s) and the 

composer BCIs (data length is 3 s) that adopt C4: placement B and stimulus B. 
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4.4.   Online Experiment 

Violin was tested by asking the user to choose all options successively in a clockwise 

manner, starting from the first option. For Violin composer, subjects were asked to 

choose the duration of note and length of melody by using the configurations 

programme. After doing so, they composed a melody. While composing, if the BCI 

detected a wrong choice or the user did not like the choice after listening to it, the 

remove option was used. For Violin loops composer, subjects composed an entire song 

by using the BCI. All songs and melodies composed by using the BCIs were sent to the 

users after the experiment.  

There were no measures taken to calculate accuracy or ITR for the online 

experiment because of the complex control flow of the BCI. This was due to the 

following reasons. Generally, accuracy and ITR in BCI spellers are calculated by asking 

the user to type a specific sentence. However, we asked the users to compose music 

using the BCI and this cannot be fixed beforehand. Additionally, the remove option in a 

BCI speller is used if a word was typed incorrectly. However, in our system, the user 

used the remove option also if they did not like the sound of it, after listening to the 

composed melody. Due to the above reasons, we were not able to calculate the accuracy 

and ITR during the online experiments. 

As you can see in table 3, the composer BCI had a high mean accuracy of 

95.43% for an analysis window of 3 s. Therefore, the feedback from most users was that 

the BCI generally selected the correct option. We also tested all the BCI systems — 

Violin, Violin composer, and Violin loops composer on the person with motor 

impairments. She successfully used all the musical systems. First, the carer deployed the 

EEG headset on the person with motor impairments. Subsequently, she was asked 

which of the three musical systems she would like to play. Although the person with 

motor impairmnets could not provide an answer through speech, there were subtle 
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means of communication such as nodding and smiling which the carer could 

understand. Later, the configurations program was set by the carer, which specified the 

duration of note and length of melody. Then, the person with motor impairments played 

and composed music with the BCI system. 

As mentioned earlier, most of our time with the person was dedicated to 

understanding her expectations from the composer system, explaining the BCI system 

to her, and enabling her carer to set-up the system for her independently, without our 

supervision. Therefore, we were unable to calculate the ITR of her using the system due 

to time and funding constraints. However, her feedback was that the system listened to 

the choices made by her. 

5.   Concluding Discussions 

In this paper, we presented a portable high-speed BCI that used a dry, low-density, and 

wireless EEG headset. It was applied to three musical systems — Violin, Violin 

composer, and Violin loops composer. It was a bespoke system developed for a person 

with severe motor-impairments to allow composing music at home. It adopted JFPM 

(Chen et al., 2015b) and CCA (Bin et al., 2009; Lin et al., 2007) for visual stimulation 

and EEG data analysis respectively. For relax times of 1 s and 6.3 s, the system obtained 

an ITR of                        and                        respectively. The 

mean accuracies were              and             respectively. The ITR 

obtained in this paper surpasses the performances in studies that use dry electrodes (Chi 

et al., 2011; Mihajlović et al., 2012; Y. -T. Wang et al., 2017). The improvement in 

performance is attributed to an optimal placement of the EEG headset. However, Xing 

et al. (2018) obtained a higher ITR than this paper but used a greater number of 

electrodes. Our BCI’s performance can be improved by increasing the number of 

electrodes and the electrode density in the occipital and parieto-occipital region. 
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Furthermore, multiple studies have shown that calibration or user-training improves the 

performance of BCI systems (Nakanishi et al., 2014; Wong et al., 2020). As we 

developed a bespoke BCI-based musical system for one user, it would be beneficial to 

have some user-training sessions in future research. This way, communication rate of 

the BCI could be boosted. 

This paper found that headset placement significantly improved the performance 

of the BCI. This encourages researchers to explore different headset placements and 

find an optimal one for their task. If they are adopting dry EEG, minor adjustments in 

placement may significantly alter communication rates. The guidelines provided by the 

manufacturer need not be optimal for the placement of the EEG headset. Moreover, in 

this study inter-stimulus distance did not have a significant effect, however, we 

analysed only two different designs for the visual stimulus. The difference in their 

performances was not significant, however, a variety of designs need to be tested to 

confirm the relationship between inter-stimulus distance and performance of the BCI. 

The optimal configuration for the BCI was C4: placement B and stimulus B. The BCI 

was successfully delivered to the person with motor-impairments. Video and text-based 

user manuals were created to enable the carer to set-up the BCI. We witnessed the carer 

set-up the BCI and the person use all the three musical systems to compose music. The 

configurations programme was set-up by the carer communicating with the individual. 

Figure 9 is a picture of the person using the BCI. We have been in touch with the 

person, and she regularly composes music using the BCI.  
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Figure 9: A picture of the individual using the BCI to compose music. 

 

 

 

Future research would explore alternative headset designs with more electrodes 

in the occipital and parieto-occipital region. For instance, an electrode combination of 

POz, Oz, O1, and O2 might be more suitable for SSVEP. As this paper adopted a dry 

and wireless EEG headset, other consumer grade systems (Hairston et al., 2014) such as 

the Emotive EPOC, Advanced Brain Monitoring’s B-Alert X10, and g.NAUTILUS 

RESEARCH by g.tec, to name but a few, can be adopted for our BCI-based musical 

systems. In this paper, we ensured that the impedance of the electrodes was under 

      . Therefore, if a reader wishes to reproduce this work on another commercial-

grade EEG headset, the impedance needs to be below        to ensure reasonable 

signal quality. Furthermore, researchers have proposed alternative stimulation 

paradigms like steady-state motion visual evoked potential (SSMVEP) (Yan et al., 

2017), which might be more convenient due to the absence of flashing stimuli and be 

more interesting for musical systems. 
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List of Tables 

 

 

Table 1: Accuracy of different configurations and data lengths. † indicates that there 

was a statistically significant difference for placement and * indicates that there was a 

statistically significant difference for the stimulus size. 

 

Data Length 

Accuracy (%) 

C1 C2 C3 C4 
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Table 2: Accuracy and ITR values of all subjects for Violin (data length is 2 s) and the 

composer BCIs (data length is 3 s) that adopt C4: placement B and stimulus B. 

 

Subject 

Accuracy (%) ITR (          ) 

2 s 3 s 2 s 3 s 

S1 95.83 100.00 44.76 16.67 

S2 91.67 91.67 39.56 12.76 

S3 95.83 100.00 44.76 16.67 

S4 95.83 100.00 44.76 16.67 

S5 70.83 83.34 20.73 9.98 

S6 83.34 100.00 30.96 16.67 

Mean 88.89 ± 10.09 95.83 ± 6.97 37.59 ± 9.86 14.91 ± 2.87 
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List of Figures 

 

 

(a) Violin composer 

 

(b) Violin loops composer 

Figure 1: Two BCIs for composition. 
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Figure 2: An illustration of the visual stimulus. Frequency and phase values of each 

region are mentioned (frequency is above and phase is below). 
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(a) Electrode positions of the EEG headset 

 

 

(b) Components of the EEG headset. 

 

Figure 3: Dry, wireless, and portable EEG headset. 
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Figure 4: Flow diagram of the BCI composer system. 
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(a) EEG headset deployed according to placement A. 

 

 

 

(b) EEG headset deployed according to placement B. 
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(c) Rear view for placement A. 

 

 

 

(d) Rear view for placement B. 

 

 

Figure 5: Two different headset placements on a subject. The images have been used 

with the permission of the subjects. 
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Figure 6: The maximal SNR across all stimulation frequencies for different 

configurations. Error bars indicate the standard deviation. 
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Figure 7: Average classification accuracy for different data lengths. The error bars 

indicate the standard deviation. Note that the accuracies for all the BCI systems are 

equal, but their ITRs can vary because of different relax times. 
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(a) ITR for different data lengths in Violin. 

 

(b) ITR for different data lengths in Violin composer and Violin loops composer. 

 

Figure 8: ITRs of both BCIs for different configurations. 
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Figure 9: A picture of the individual using the BCI to compose music. 
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Figure captions 

 

Figure 1 (a): Violin composer 

Figure 1 (b) Violin loops composer 

Figure 1: Two BCIs for composition. 

 

Figure 2: An illustration of the visual stimulus. Frequency and phase values of each 

region are mentioned (frequency is above and phase is below). 

 

Figure 3 (a) Electrode positions of the EEG headset 

Figure 3 (b) Components of the EEG headset. 

Figure 3: Dry, wireless, and portable EEG headset. 

 

Figure 4: Flow diagram of the BCI composer system. 

 

Figure 5 (a) EEG headset deployed according to placement A. 

Figure 5 (b) EEG headset deployed according to placement B 

Figure 5 (c) Rear view for placement A 

Figure 5 (d) Rear view for placement B 

Figure 5: Two different headset placements on a subject. The images have been used 

with the permission of the subject. 

 

Figure 6: The maximal SNR across all stimulation frequencies for different 

configurations. The error bars indicate the standard deviation. 
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Figure 7: Average classification accuracy for different data lengths. The error bars 

indicate the standard deviation. Note that the accuracies for all the BCI systems are 

equal, but their ITRs can vary because of different relax times. 

 

Figure 8 (a) ITR for different data lengths in Violin. 

Figure 8 (b) ITR for different data lengths in Violin composer and Violin loops 

composer. 

Figure 8: ITRs of both BCIs for different configurations. 

 

Figure 9: A picture of the individual using the BCI to compose music. 
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List of Alternative Text for figures 

 

Figure 1(a): A screenshot of the Violin composer interface. It has six buttons for the 

user to choose from, among which four are musical notes, one is to delete, and one is to 

shuffle. 

Figure 1(b): A screenshot of the Violin loops composer interface. It has six buttons for 

the user to choose from, among which four are musical loops, one is to delete, and one 

is to play. 

 

 

Figure 2: Six square buttons present on the screen. Within each button, the 

corresponding frequency and phase is written. 

 

Figure 3(b): An illustration of the electrode positions based on the 10-20 International 

system. 

Figure 3(b): A picture of the EEG headset. The different components of the headset are 

labelled. 

 

Figure 4: Flow diagram of the BCI composer system 

 

Figure 5(a): A person wearing the EEG headset. 

Figure 5(b): A person wearing the EEG headset. 

Figure 5(c): Rear view of a person wearing the EEG headset. 

Figure 5(d): Rear view of a person wearing the EEG headset. 
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Figure 6: A bar chart showing the SNR for each configuration. The SNR of C3 and C4 

are considerably higher than C1 and C2. 

 

Figure 7: A line chart with time on the x-axis and accuracy on the y-axis. The 

accuracies of C3 and C4 are the highest. C1 is lower and C2 is much lower. 

 

 

 

Figure 8(a): A line chart with time on the x-axis and ITR on the y-axis. The ITRs of C3 

and C4 are the highest. C1 is lower and C2 is much lower. 

Figure 8(b): A line chart with time on the x-axis and ITR on the y-axis. The ITRs of C3 

and C4 are the highest. C1 is lower and C2 is much lower. 

 

 

Figure 9: A person wearing an EEG headset and is looking at a computer. 
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