
School of Art, Design and Architecture

Faculty of Arts, Humanities and Business

2022-03-24

You Only Hear Once: A YOLO-like Algorithm for Audio You Only Hear Once: A YOLO-like Algorithm for Audio

Segmentation and Sound Event Detection Segmentation and Sound Event Detection

Satvik Venkatesh

David Moffat

Eduardo Reck Miranda School of Art, Design and Architecture

Let us know how access to this document benefits you

General rights General rights
All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies.
Please cite only the published version using the details provided on the item record or document. In the absence of an open
licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Take down policy Take down policy
If you believe that this document breaches copyright please contact the library providing details, and we will remove access to
the work immediately and investigate your claim.
Follow this and additional works at: https://pearl.plymouth.ac.uk/ada-research

Recommended Citation Recommended Citation
Venkatesh, S., Moffat, D., & Miranda, E. (2022) 'You Only Hear Once: A YOLO-like Algorithm for Audio
Segmentation and Sound Event Detection', Applied Sciences, 12(7). Available at: https://doi.org/10.3390/
app12073293
This Article is brought to you for free and open access by the Faculty of Arts, Humanities and Business at PEARL. It
has been accepted for inclusion in School of Art, Design and Architecture by an authorized administrator of PEARL.
For more information, please contact openresearch@plymouth.ac.uk.

https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/
https://pearl.plymouth.ac.uk/ada-research
https://pearl.plymouth.ac.uk/foahb-research
https://forms.office.com/e/bejMzMGapB
https://pearl.plymouth.ac.uk/about.html
https://pearl.plymouth.ac.uk/ada-research?utm_source=pearl.plymouth.ac.uk%2Fada-research%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3390/app12073293
https://doi.org/10.3390/app12073293
mailto:openresearch@plymouth.ac.uk

Citation: Venkatesh, S.; Moffat, D.;

Miranda, E.R. You Only Hear Once:

A YOLO-like Algorithm for Audio

Segmentation and Sound Event

Detection. Appl. Sci. 2022, 12, 3293.

https://doi.org/10.3390/

app12073293

Academic Editor: Sławomir K.

Zieliński

Received: 8 March 2022

Accepted: 22 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

You Only Hear Once: A YOLO-like Algorithm for Audio
Segmentation and Sound Event Detection
Satvik Venkatesh 1,* , David Moffat 1,2 and Eduardo Reck Miranda 1

1 Interdisciplinary Centre for Computer Music Research, University of Plymouth, Plymouth PL4 8AA, UK;
dmof@pml.ac.uk (D.M.); eduardo.miranda@plymouth.ac.uk (E.R.M.)

2 Plymouth Marine Laboratory, Plymouth PL1 3DH, UK
* Correspondence: satvik.venkatesh@plymouth.ac.uk

Abstract: Audio segmentation and sound event detection are crucial topics in machine listening that
aim to detect acoustic classes and their respective boundaries. It is useful for audio-content analysis,
speech recognition, audio-indexing, and music information retrieval. In recent years, most research
articles adopt segmentation-by-classification. This technique divides audio into small frames and
individually performs classification on these frames. In this paper, we present a novel approach
called You Only Hear Once (YOHO), which is inspired by the YOLO algorithm popularly adopted in
Computer Vision. We convert the detection of acoustic boundaries into a regression problem instead
of frame-based classification. This is done by having separate output neurons to detect the presence
of an audio class and predict its start and end points. The relative improvement for F-measure of
YOHO, compared to the state-of-the-art Convolutional Recurrent Neural Network, ranged from 1%
to 6% across multiple datasets for audio segmentation and sound event detection. As the output of
YOHO is more end-to-end and has fewer neurons to predict, the speed of inference is at least 6 times
faster than segmentation-by-classification. In addition, as this approach predicts acoustic boundaries
directly, the post-processing and smoothing is about 7 times faster.

Keywords: audio segmentation; sound event detection; you only look once; deep learning; regression;
convolutional neural network; music-speech detection; convolutional recurrent neural network; radio

1. Introduction

Audio segmentation and sound event detection have similar goals—to detect acoustic
classes and their respective boundaries within an audio stream. They provide information
regarding the content of audio and the temporal occurrences of audio events. It is helpful
for indexing audio archives, target-based distribution of media, and as a pre-processing
step for speech recognition [1]. In addition, detecting audio events in real-time is beneficial
for self-driving automobiles [2], surveillance [3], bioacoustic monitoring [4], and intelligent
remixing [5].

The literature has commonly adopted two approaches to audio segmentation—
(1) distance-based segmentation and (2) segmentation-by-classification [6]. The first
approach directly finds regions of high acoustic change through Euclidean distance or
Bayesian information criterion [7]. The method divides audio into segments based on the
peaks of acoustic change. Subsequently, the audio classes within each of these segments are
detected. However, recent research has generally adopted the second approach, which is
segmentation-by-classification. It presents sound event detection as a supervised learning
task. This approach divides an audio file into frames, typically in the range of 10–25 ms,
and classifies each frame individually. Effectively, we detect the onset and offset of each
audio event by classification.

Data to train a machine learning model for event detection require precise labels that
mention the acoustic boundaries and classes. Annotating such datasets is a time-consuming

Appl. Sci. 2022, 12, 3293. https://doi.org/10.3390/app12073293 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12073293
https://doi.org/10.3390/app12073293
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5244-3020
https://orcid.org/0000-0003-4885-7276
https://orcid.org/0000-0002-8306-9585
https://doi.org/10.3390/app12073293
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12073293?type=check_update&version=2

Appl. Sci. 2022, 12, 3293 2 of 16

and expensive process. Therefore, researchers have explored data-centric approaches
such as artificial data synthesis to generate large-scale training data [8,9]. Furthermore,
researchers have explored weak label and semi-supervised learning to tackle the scarcity of
labelled data [10,11]. Datasets such as AudioSet [12] are annotated with weak labels, which
indicates that a sound event is present in the audio clip, but does not specify the timing
within the audio. Hershey et al. [13] emphasised the benefit of temporally strong labels to
improve the performance of audio classifiers.

The architectures for audio segmentation have evolved from traditional machine learn-
ing models such as the Gaussian mixture model to deep neural networks. Bidirectional
Long short-term memory (B-LSTM) networks have been effective in segmenting temporal
data [14]. Lemaire et al. [15] showed that the non-causal temporal convolutional neural
network was more effective than the B-LSTM. However, the Convolutional Recurrent Neu-
ral Network (CRNN) obtains state-of-the-art performance on many sound event detection
datasets because it combines the advantage of 2D convolutions and recurrent layers [16,17].

There has been a growing interest in the community to adopt end-to-end deep learning
for information retrieval from audio. Raw audio waveforms have been explored instead
of features such as mel spectrograms for the input [18,19]. However, with regards to
an end-to-end setup, there has been less attention given to the output of such networks.
Traditionally, in segmentation-by-classification, the neural network classifies each audio
frame. Subsequently, a post-processing step converts the neural network’s output into
human-readable labels. The disadvantage is that this post-processing is slow because each
audio frame has to be serially processed. Therefore, in an ideal end-to-end setup, the neural
network would output human-readable labels by directly predicting the boundaries of
acoustic classes.

In order to output human-readable labels directly, sound event detection must be
transformed from a classification problem to a regression problem. Phan et al. [20] proposed
random regression forests for sound event detection and classification. Xu et al. [21] adopted
a regression approach for speech enhancement. However, most studies in the literature
adopt frame-based classification, where the neural network classifies each frame separately.
In this study, we present a novel neural network architecture inspired by the You Only Look
Once (YOLO) algorithm [22]. YOLO gained attention in the Computer Vision community
for object detection. It transformed bounding box prediction from a classification problem
to a regression one. Using this approach, it obtained speedups of around 3× without
compromising accuracy. We present a system called You Only Hear Once (YOHO) that
predicts the boundaries of acoustic classes through regression.

YOLO has been adopted in the audio domain by visualising spectrograms as images.
Zsebők et al. [23] adopted YOLO for automatic bird song and syllable segmentation.
Segal et al. [24] presented a system called SpeechYOLO which treated audio fragments as
objects. They adopted YOLO for keyword spotting tasks. Algabri et al. [25] investigated
object detection techniques such as YOLO and CenterNet [26] for phoneme recognition.
However, the novelty of the YOHO paradigm is that it converts frame-based classification
into a regression problem by gradually reducing the temporal dimension through many
convolutional layers. This makes the output of the network closer to human-readable
labels, therefore reducing the need for post-processing. Separate neurons were used to
detect the onset and offset of audio classes. We apply our system to audio segmentation
and sound event detection tasks, where the literature has predominantly used frame-based
classification. Furthermore, we present a multi-output system, which detects acoustic
classes that can overlap with each other.

We evaluate the YOHO algorithm for multiple audio event detection tasks. First, we
explore music-speech detection in broadcast signals. We also compare our results with state-
of-the-art algorithms on the Music Information Retrieval Evaluation eXchange (MIREX)
competition dataset 2018 [27]. Second, we test our model on the TUT sound event detection
dataset, which represents common sounds related to human presence and traffic. It was
the dataset used in the Detection and Classification of Acoustic Scenes and Events (DCASE)

Appl. Sci. 2022, 12, 3293 3 of 16

competition 2017 [28]. Third, we evaluate our model on the Urban-SED dataset [9], which
is a synthetic dataset for environmental audio. In all three cases, the YOHO algorithm
performed better and faster than the CRNN. All the code associated with this project is
available in this GitHub repository (https://github.com/satvik-venkatesh/you-only-hear-
once, accessed on 2 March 2022).

2. You Only Hear Once (YOHO)
2.1. Motivation

In this paper, we intend to make the neural network output labels that are closer
to human-readable labels. This way we make the pipeline more end-to-end. Figure 1
illustrates a comparison between segmentation-by-classification and the YOHO paradigm.
For both paradigms, a mel spectrogram of shape 801× 64 is fed as input. In segmentation-
by-classification, each time step is classified as music, speech, both, or none. Subsequently,
these classifications are converted to human readable labels. However, in YOHO, each
block of 0.307 s is processed through regression. One neuron detects the presence of an
acoustic class. If the class is present, one neuron predicts the start point of the class and
one neuron detects the end point of the class. Subsequently, during post-processing, these
blocks of 0.307 s are merged to form a final prediction. Using this technique, the number
of time steps is reduced from 801 to 26, which makes the network significantly faster,
generalise better, and more end-to-end. More details on the implementation are given in
the below subsections.

Segmentation-by-Classification YOHO

801 x 2

0.2, 4.3, Music
3.6, 6.0, Speech

0.2, 0.307, Music 0.307, 0.614, Music 3.684, 3.991, Music
3.684, 3.991, Speech

0.2, 4.3, Music
3.6, 6.0, Speech

26 x 6

Figure 1. A comparison of segmentation-by-classification and YOHO.

2.2. Network Architecture

The network architectures used by different versions of YOLO [22,29] were large
and not suitable for our smaller training datasets. Therefore, we adapted the MobileNet
architecture [30] for our task. We modified the final layers of MobileNet to realize the YOHO
algorithm. MobileNet has also been employed for audio classification by YamNet [31],
which only detects audio classes, but not their segmentation boundaries.

As shown in Table 1, YOHO is purely a convolutional neural network (CNN). We
divide the table into two parts—the upper half comprising the original layers of the
MobileNet architecture and the bottom half containing the layers that we have added. We
use log-mel spectrograms as input features. The input dimension depends on the duration
of the audio example and specifications of the mel spectrogram. Here, we explain the

https://github.com/satvik-venkatesh/you-only-hear-once
https://github.com/satvik-venkatesh/you-only-hear-once

Appl. Sci. 2022, 12, 3293 4 of 16

network for music-speech detection, whose input contains 801 times steps and 64 frequency
bins. After reshaping the mel spectrogram to 801 × 64 × 1, we perform a 2D convolution
with a stride of 2. Hence, the time dimension and frequency dimension are reduced by
half. The MobileNet architecture uses many depthwise-separable convolutions [32] with
3 × 3 filters followed by pointwise convolutions with 1 × 1 filters. All convolutions except
the final layer were fitted with ReLu activations and batch normalization [33]. Each time
we adopt a stride of 2, there is a reduction in the time and frequency dimensions. As shown
in the lower half of Table 1, we gradually reduce the number of filters from 1024 to 256.

Table 1. The neural network architecture for YOHO. The upper half of the table comprises the original
layers of MobileNet. The bottom half contains the layers that we have added. Conv2D and Conv1D
stand for 2D and 1D convolutions, respectively. The convolutions use a stride of 1 unless mentioned
otherwise and ‘dw’ stands for depthwise convolution.

Layer Type Filters Shape/Stride Output Shape

Reshape - - 801 × 64 × 1

Conv2D 32 3 × 3/2 401 × 32 × 32

Conv2D-dw - 3 × 3 401 × 32 × 32

Conv2D 64 1 × 1 401 × 32 × 64

Conv2D-dw - 3 × 3/2 201 × 16 × 64

Conv2D 128 1 × 1 201 × 16 × 128

Conv2D-dw - 3 × 3 201 × 16 × 128

Conv2D 128 1 × 1 201 × 16 × 128

Conv2D-dw - 3 × 3/2 101 × 8 × 128

Conv2D 256 1 × 1 101 × 8 × 256

Conv2D-dw - 3 × 3 101 × 8 × 256

Conv2D 256 1 × 1 101 × 8 × 256

Conv2D-dw - 3 × 3/2 51 × 4 × 256

Conv2D 512 1 × 1 51 × 4 × 256

5× Conv2D-dw
Conv2D

-
512

3 × 3
1 × 1

51 × 4 × 256
51 × 4 × 256

Conv2D-dw - 3 × 3/2 26 × 2 × 512

Conv2D 1024 1 × 1 26 × 2 × 1024

Conv2D-dw - 3 × 3 26 × 2 × 1024

Conv2D 1024 1 × 1 26 × 2 × 1024

Conv2D-dw - 3 × 3 26 × 2 × 1024

Conv2D 512 1 × 1 26 × 2 × 512

Conv2D-dw - 3 × 3 26 × 2 × 512

Conv2D 256 1 × 1 26 × 2 × 256

Conv2D-dw - 3 × 3 26 × 2 × 256

Conv2D 128 1 × 1 26 × 2 × 128

Reshape - - 26 × 256

Conv1D 6 1 26 × 6

Appl. Sci. 2022, 12, 3293 5 of 16

Subsequently, we flatten the last two dimensions. The final layer is a 1D convolution
with six filters. The output shape is 26 × 6, where 26 stands for the number of time steps.
This layer is similar to a convolutional implementation of sliding windows [34] along the
time dimension. At each time step, the first neuron performs a binary classification that
detects the presence of an acoustic class. The second and third neurons perform regression
for the start and endpoints for the respective acoustic class. Figure 2 illustrates the output
layer of the YOHO algorithm.

Speech
(Yes/No)

Speech
start

Speech
stop

Music
(Yes/No)

Music
start

Music
stop

Speech
(Yes/No)

Speech
start

Speech
stop

Music
(Yes/No)

Music
start

Music
stop

Speech
(Yes/No)

Speech
start

Speech
stop

Music
(Yes/No)

Music
start

Music
stop

Ti
m

e
st

ep
s

Audio classes

Figure 2. An illustration of the output layer of the YOHO algorithm. This network is for music-speech
detection. To increase the number of audio classes, we add neurons along the horizontal axis.

In this context, we are dealing with two acoustic classes—music and speech. Therefore,
the output has six neurons at each time step. For example, if the length of an audio example
is 8 s, each time step in the output corresponds to 0.307 s because there are 26 divisions.
We applied sigmoid activations for all neurons in the output layer. Hence, we normalized
the regression outputs between 0 and 1. Moreover, even if the input shape of the neural
network is different, for example 257 × 40, the neural network and the parameters of
convolutional layers still remain exactly the same. The only difference would be the output
shape of the neural network, which depends on the number of time steps in the input and
the number of unique audio classes in the output.

2.3. Loss Function

Generally, neural networks such as the CRNN that use segmentation-by-classification
adopt binary cross-entropy as the loss function. As we modeled the problem as a regression
one, we used the sum squared error. Equation (1) shows the loss function for each acoustic
class c.

Lc(ŷ, y) =

(ŷ1 − y1)

2+

(ŷ2 − y2)
2 + (ŷ3 − y3)

2, if y1 = 1
(ŷ1 − y1)

2, if y1 = 0

(1)

where y and ŷ are the ground-truth and predictions respectively. y1 = 1 if the acoustic class
is present and y1 = 0 if the class is absent. y2 and y3, which are the start and endpoints for
each acoustic class are considered only if y1 = 1. In other words, (ŷ1 − y1)

2 corresponds to
the classification loss and (ŷ2 − y2)

2 + (ŷ3 − y3)
2 corresponds to the regression loss. The

total loss L is summed across all acoustic classes.

2.4. Example of Labels

Table 2 shows an example of the output for the YOHO algorithm. The total length of
the audio is 8 s. Within the example, Music occurs from 0.2 to 4.3 s and Speech occurs from
3.6 to 6.0 s. Note that each row in Table 2 corresponds to one time step, which is equal to

Appl. Sci. 2022, 12, 3293 6 of 16

0.307 s. In addition, the regression values are normalized from 0 to 1. For example, if music
starts at 0.2 s, the value is divided by 0.307 to get 0.65 as shown in the first row of Table 2.

Table 2. An example of labels for the YOHO algorithm. Music occurs from 0.2 to 4.3 s and Speech
occurs from 3.6 to 6.0 s. Note that start and stop values are considered only when the respective
audio class is present. The dimensions of the output are 26 × 6. Note that each time step/row in
the table corresponds to 0.307 s. The start and stop values are normalised on the range of 0 to 1. For
instance, in the first time step, music’s start point would be rescaled from 0.2 to 0.65.

Speech
(Yes/No)

Speech
Start

Speech
Stop

Music
(Yes/No)

Music
Start

Music
Stop

0 - - 1 0.65 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
0 - - 1 0.0 1.0
1 0.7 1.0 1 0.0 1.0
1 0.0 1.0 1 0.0 1.0
1 0.0 1.0 1 0.0 0.975
1 0.0 1.0 0 - -
1 0.0 1.0 0 - -
1 0.0 1.0 0 - -
1 0.0 1.0 0 - -
1 0.0 1.0 0 - -
1 0.0 0.5 0 - -
0 - - 0 - -
0 - - 0 - -
0 - - 0 - -
0 - - 0 - -
0 - - 0 - -
0 - - 0 - -

2.5. Other Details

We trained the network with the Adam optimizer, a learning rate of 0.001, a batch size
of 32, and early stopping [35]. In some cases, we used L2 normalization, spatial dropout,
and SpecAugment [36]. We used log-mel spectrograms as features for the neural network.
The parameters of spectrograms were unique for each dataset. Section 3 contains the details
for each case.

To evaluate the systems, we adopted the sed_eval toolbox [37], which is common in the
literature for audio segmentation and sound event detection. The python toolbox is openly
available (https://tut-arg.github.io/sed_eval/, accessed on 17 March 2022) and presents a
convenient interface to calculate metrics such as overall F-measure, error rate, class-based
F-measures, and so on. The specifications of segment-based metrics for experiments in this
paper are mentioned along with the relevant results in Section 4.

2.6. Post-Processing

For music-speech detection, the output of the CRNN would be 801 × 2, corresponding
to 801 times steps and two acoustic classes. On the other hand, the output for the YOHO
network is 26 × 6. A post-processing step parses the output of the neural network to create
human-readable labels. Subsequently, smoothing is performed over the output to eliminate
the occurrence of spurious audio events. Two smoothing approaches are common in the

https://tut-arg.github.io/sed_eval/

Appl. Sci. 2022, 12, 3293 7 of 16

literature—median filtering [14] and threshold-dependent smoothing [15]. We adopted
the latter approach. In this technique, if the duration of the audio event is too short or if
the silence between consecutive events of the same acoustic class is too short, we remove
the occurrence.

For music-speech detection, the minimum silence between consecutive music events
or consecutive speech events was set to 0.8 s. The minimum duration for a music event
was set to 3.4 s and for a speech event was 0.8 s. For environmental sound event detection,
if the silence between consecutive audio events of the same acoustic class was less than
1.0 s, it was smoothed. We did not set any threshold for the minimum duration of an audio
event for this task.

2.7. Models for Comparison

In this sub-section, we present two additional models, which are slight deviations
from the YOHO architecture—CNN and CRNN. The motivation behind these models is to
investigate which aspects of YOHO are actually advantageous. The feature-extraction for
all these models is the same, which make them directly comparable. The CNN model aims
to create a segmentation-by-classification version of the YOHO architecture. As you can
see in Table 1, some Conv2D-dw layers adopt a stride of [2, 2]. These strides were set to
[1, 1] instead of [2, 2] and max-pooling was adopted to reduce the frequency dimension
by half. This way, the time resolution of the network does not reduce through its depth.
Note that using a stride of [1, 2] would have produced a similar effect of maintaining the
time resolution and reducing the frequency resolution. However, TensorFlow currently
does not support rectangular strides for depthwise convolutions and hence, we adopted
max-pooling. The number of parameters in the CNN was 3.9 million, which is the same as
the network for YOHO.

In the CRNN model, the first 13 layers were identical to the YOHO network. We
skipped the convolutional layers where the number of filters became larger than 256 because
the network became too large to fit into the RAM. Following the convolutional layers, we
had two B-GRU layers with 80 units each. The number of parameters for the CRNN was
1.3 million, which is less than the YOHO network. Increasing the number of convolutional
layers only worsened the performance of the CRNN. Therefore, it was optimal to have a
CRNN with fewer parameters.

The output shape for the CNN and CRNN was 801× 2, performing binary classifi-
cation for music and speech at each time step. We compared the performance of YOHO
with these two additional models on the in-house test set for music-speech detection. We
also compared the inference times of these models. A summary of the architectures for
comparison can be found in Table 3.

Table 3. Models for comparison on the in-house test set for music-speech detection.

Model Remarks

YOHO The architecture is explained in Section 2.2.

CNN [2, 2] strides in convolutions are replaced by [1, 1] strides, followed by max-pooling of
[1, 2] to maintain the time resolution.

CRNN Only Conv2D and Conv2D-dw layers until 256 filters are included from Table 1. After
this, two B-GRU layers with 80 units each are added.

3. Datasets

In this paper, we evaluate the robustness of the YOHO algorithm on multiple datasets.
This section explains the different datasets and how we adapt the YOHO algorithm for
each of them.

Appl. Sci. 2022, 12, 3293 8 of 16

3.1. Music-Speech Detection

Music-speech detection aims to detect the boundaries of music and speech in audio
signals such as radio and TV programs. The neural network performs multi-output de-
tection to allow the simultaneous occurrence of music and speech. The number of output
neurons at each time step is six because we are detecting two acoustic classes. We obtained
5 h of audio from the MuSpeak dataset [38]. In addition, we collected 18 h of audio from
BBC Radio Devon, which was manually annotated by the authors. Both datasets were
roughly split into 50% for training, 30% for validation, and 20% for testing.

There are many openly available datasets with separate files of music and speech,
such as MUSAN [39], GTZAN [40,41], Scheirer and Slaney dataset [42], and Instrument
Recognition in Musical Audio Signals (IRMAS) [43], to name a few. However, the problem
with such datasets is that they are not mixed in the style of TV or radio programmes.
Broadcast audio is generally well-mixed with instances of speech over background music,
one song fading out and a new song fading in, and so on. In a previous study [17], we
presented an approach that artificially synthesises large training sets for music-speech
detection. This technique automatically mixes separate files of music and speech in the
style of a radio DJ. Various parameters such as audio fade curves and audio ducking are
randomised to obtain a variety of synthetic examples. In the current paper, we included
46 h of synthetic examples in the training set. Table 4 shows a brief overview of the contents
of each split in the dataset. For a detailed explanation of the training sets and experimental
setup, please refer to this study [17].

Table 4. Contents of train, validation, and test datasets for music-speech detection. Real-world radio
data was collected from BBC Radio Devon and annotated by the authors. MuSpeak [38] already
contains annotations for music and speech. 46 h of artificial radio-like examples were synthesised by
the method presented in this study [17].

Dataset Division Contents

Train 46 h of synthetic radio data + 9 h from BBC Radio Devon + 1 h 30 min from
MuSpeak

Validation 5 h from BBC Radio Devon + 2 h from MuSpeak

Test 4 h from BBC Radio Devon + 1 h 42 min from MuSpeak

All the audio files were resampled to 16 kHz. They were converted to mono by
averaging the channels before pre-processing. Subsequently, we extracted 64 log-mel
bins with a hop size of 10 ms and a window size of 25 ms. The frequencies for the mel
spectrogram ranged from 125 Hz to 7.5 kHz. We adopted audio features similar to those
used by YamNet [31]. Note that we did not use any regularization such as L2 normalization,
spatial dropout, or SpecAugment for this dataset because the training set is large.

We evaluate the model on two different test sets. The first one being our in-house test
set, which contains approximately 4.5 h of audio from BBC Radio Devon and MuSpeak [38].
The second one was the MIREX music-speech detection dataset, which contains 27 h of
audio from various TV programs.

3.2. TUT Sound Event Detection

The TUT Sound Event Detection dataset focuses on environmental sound detec-
tion [28]. It was adopted for the third task of the DCASE challenge 2017. It primarily
consists of street recordings with traffic and other activity. Each audio example is 2.56 s.
There were six unique audio classes—Brakes Squeaking, Car, Children, Large Vehicle,
People Speaking, and People Walking. Thus, to predict the existence of the six classes, plus
start and end times, we required 18 output neurons. The more recent DCASE challenges
use additional techniques such as semi-supervised learning and source separation, which
is not the focus of this study. Hence, we used the dataset from 2017 that contains only
strongly labeled data.

Appl. Sci. 2022, 12, 3293 9 of 16

The total size of the dataset is approximately 1.5 h. The dataset comes with a four-fold
cross-validation setup. The size of this dataset is significantly smaller than the one used for
music-speech detection and may not be large enough for our deep learning architecture.
Therefore, we applied L2 normalization of 0.001 on the first Conv2D layer. In addition, we
included L2 normalization of 0.01 and spatial dropout of 0.1 on all the subsequent Conv2D
layers. For data augmentation, we incorporated SpecAugment [36], which randomly drops
a sequence of frequency bins or time steps from the input. Note that there were slight
differences in our implementation of SpecAugment. We did not use any time warping
because it becomes complicated to redefine labels for audio events. In addition, we applied
SpecAugment on batches instead of individual examples to save computational time.

The database contained stereo audio files with a sampling rate of 44.1 kHz. These were
downmixed to mono before pre-processing. Subsequently, we extracted 40 log-mel bands
in the range of 0 to 22,050 Hz. The hop size was 10 ms and the window size was 40 ms.
We adopted audio features similar to the baseline system [28] for the task, except that we
used a smaller hop size. As the input of the network contains 2.56 s of audio, the input
shape is 257 × 40 corresponding to 257 times steps and 40 mel bins. The output shape of
the network is 9 × 18, corresponding to 9 times steps and 6 acoustic classes. Note that each
time step in this case is 0.284 s, which is different from 0.307 s for music-speech detection.
In both cases, we used the same network and the same sequence of convolutional layers.
The convolutions with a stride of 2 reduces the temporal dimension by half. Hence, due
to different input sizes, the number of time steps is 9 in one case and 26 in the other case.
There were no special measures taken to estimate the duration of each time step beforehand.
However, in most cases it was somewhere around 0.3 s, due to the hop and window sizes
selected for feature extraction.

3.3. Urban-SED

The Urban Sound Event Detection dataset is a purely synthetic dataset generated by
using scaper [9]. Each audio example was 10 s. There were ten unique audio classes—Air
Conditioner, Car Horn, Children Playing, Dog Bark, Drilling, Engine Idling, Gun Shot,
Jackhammer, Siren, and Street Music. The total size of the dataset is about 30 h and contains
pre-defined splits for training, validation, and testing. As there were ten audio classes, the
number of output neurons in YOHO was 30.

We used the same audio features as explained in Section 3.2. For this dataset, we did
not use any SpecAugment because the training set was larger. The L2 normalization and
spatial dropout were identical to those used in Section 3.2. As the input of the network
contains 10 s of audio, the input shape is 1001 × 40 corresponding to 1001 times steps and
40 mel bins. The output shape of the network is 32 × 30, corresponding to 32 times steps
and ten acoustic classes.

4. Results
4.1. Music-Speech Detection
4.1.1. In-House Test Set

Table 5 shows the results on our in-house test set. F-measure was calculated using
the sed_eval [37] module with a segment size of 10 ms. We compare the results of YOHO
with the CNN and CRNN models explained in Section 2.7. In addition, we compare the
performance with CNN and CRNN architectures published in previous research [8,17]. All
the deep learning models were trained using the same training set. YOHO obtains the
highest F-measure for overall, music, and speech. YOHO significantly outperforms the
CNN, which is the segmentation-by-classification version of the model. It is important to
note that both models follow the same process for feature extraction and have the same
number of parameters. This shows that our regression approach of predicting the acoustic
boundaries directly is effective. The other CNN [17] used larger kernel sizes such as 9 and
11, which may have improved the F-measure of Speech.

Appl. Sci. 2022, 12, 3293 10 of 16

YOHO also outperforms the three CRNN architectures. CRNN [8] used a kernel size
of 7 and CRNN [17] used kernel sizes of 3, 11, and 11. In addition, CRNN [17] used layer
normalisation [44] instead of batch normalisation [33]. Therefore, we show that YOHO
outperforms a variety of CRNN architectures in the literature.

Table 5. Results on our in-house test set for music-speech detection. The F-measures for overall,
music, and speech are presented as percentages. The values in bold indicate the largest number in
each column.

Algorithm Foverall Fmusic Fspeech

YOHO 97.22 98.20 94.89
CRNN 96.79 97.84 94.26
CNN 93.89 97.96 85.13

CRNN [17] 96.37 97.37 94.00
CRNN [8] 96.24 97.30 93.80
CNN [17] 95.23 97.72 89.62

4.1.2. MIREX Music-Speech Detection

Table 6 shows the results on the MIREX music-speech detection dataset. YOHO
obtains the highest overall F-measure, which makes it the state-of-the-art for music-speech
detection. The music F-measure for a CRNN [8] slightly surpassed the YOHO algorithm by
0.1%. However, YOHO obtained the highest F-measure for speech.

Table 6. Evaluation on the MIREX music-speech detection dataset 2018. The results of other studies
were obtained from the MIREX website [27]. The F-measures are presented as percentages. The
values in bold indicate the largest number in each column.

Algorithm Foverall Fmusic Fspeech

YOHO 90.20 85.66 93.18
CRNN [8] 89.53 85.76 92.21
CRNN [17] 89.09 85.01 92.16
CNN [45] - 54.78 90.9

Logistic Regression [45] - 38.99 91.15
ResNet [45] - 31.24 90.86

MLP [46] - 49.36 77.18

4.2. TUT Sound Event Detection

Table 7 shows the results on the TUT sound event detection dataset. It also contains
the results of the top three performers in the competition. For this competition, they
adopted error rate [37] as the main metric. Note that a lower error rate indicates better
performance of the algorithm. Furthermore, a segment size of 1 s was adopted to calculate
segment-based metrics. The first place in the competition was the CRNN architecture [47].
They used 3× 3 kernels followed by B-GRU layers with 32 units. Their model was optimised
by a random hyper-parameter search [48] for number of layers and units. The second
place in the competition adopted a multi-input CNN with 3× 3 kernels and a bespoke
feature extraction process. The third place adopted a B-GRU model. Note that all three
models adopt segmentation-by-classification. YOHO obtained a better error rate than
the CRNN [47], CNN [49], and B-GRU [50] models. To ensure that the improvement
in performance was not attributed to data augmentation, we re-trained the best CRNN
network [47] with SpecAugment. However, it worsened the performance of the algorithm.
This may be because the CRNN uses segmentation-by-classification. Therefore, masking
series of time steps leads to noise in the labels. However, the YOHO algorithm is relatively
robust to this issue as it directly predicts boundaries through regression.

Our results are not state-of-the-art on this dataset. Vesperini et al. [51] adopted a
Capsule Neural Network (CapsNet) and binaural short-time Fourier transform (STFT) for

Appl. Sci. 2022, 12, 3293 11 of 16

feature extraction and obtained an error rate 0.58. Luo et al. [52] presented a Capsule Neural
Network Recurrent Neural Network (CapsNet-RNN) that obtained an error rate of 0.57.
However, these optimisations were beyond the scope of this study. It is important to note
that YOHO is a paradigm and not an architecture. We show that regression outperforms
segmentation-by-classification for multiple models. Future research can explore how
YOHO can be optimised by adopting a CapsNet-style architecture.

Table 7. Results on the TUT sound event detection dataset. The value in bold indicates the algorithm
with the lowest error rate.

Algorithm Error Rate

CapsNet-RNN [52] 0.57
CapsNet [51] 0.59

YOHO 0.75
CRNN [47] 0.79
CNN [49] 0.81

B-GRU [50] 0.83

4.3. Urban-SED

Table 8 shows the results on the Urban-SED dataset for overall F-measure. A com-
parison of class-wise performance is also presented in Figure 3. The YOHO algorithm is
compared with the CRNN and CNN model presented by Salamon et al. [9]. YOHO obtains
the highest overall F-measure. Among class-wise F-measures, YOHO obtains the highest
for Children Playing, Dog Bark, Drilling, Gun Shot, Siren, and Street Music. CRNN obtains
the highest for Air Conditioner and Engine Idling. CNN obtains the highest for Car Horn
and Jackhammer.

As you can see in Table 8, Martín-Morató et al. [53] adopted sound event envelope
estimation on a CRNN model to improve the overall F-measure to 64.7%, compared to
59.5% obtained by YOHO. In future research, YOHO’s performance can be improved by
incorporating techniques like envelope estimation. In addition, weakly supervised sound
event detection with envelope estimation has further improved the performance of the
CRNN on this dataset [54].

Table 8. Segment-based overall F-measure on the Urban-SED dataset. The value in bold indicates the
algorithm with the highest F-measure.

Algorithm Foverall

CRNN with envelope estimation [53] 64.70
YOHO 59.50

CNN [9] 56.88
CRNN [9] 55.96

4.4. Speed of Prediction

In this section, we compare the inference times of YOHO, CNN and CRNN models for
music-speech detection. This experiment was performed on the in-house test set explained
in Section 3.1. To calculate the inference time, the prediction was made over the entire test
set. Later, the inference time was divided by the number of hours of audio to obtain the
average time taken per hour of audio. As we are adopting Google Colab for experiments,
we ensured that all models were tested within the same runtime session. This way, we
ensure that the same computing resources were given to YOHO, CNN, and CRNN. While
training the models in earlier runtime sessions, we had stored their weights on Google
Drive. When running the experiment to calculate inference times, these weights were
loaded from Google Drive. Note that separate runtime sessions were used to calculate
inference times over CPU and GPU as shown in Figure 4, however the same session was
used for inter-model comparison. Some important aspects of the system configuration

Appl. Sci. 2022, 12, 3293 12 of 16

were—Intel Xeon CPU processor, 12 GB RAM, and Tesla P100 GPU (only when GPU
was used).

air
_co

nd
itio

ne
r

car
_ho

rn

chi
ldr

en
_pl

ay
ing

do
g_b

ark
dri

llin
g

en
gin

e_i
dlin

g

gu
n_s

ho
t

jac
kh

am
mer

sir
en

str
ee

t_m
usi

c

OVER
ALL

0

10

20

30

40

50

60

70

80

90

F-
m

ea
su

re
 (%

)

CRNN CNN YOHO

Figure 3. Segment-based F-measures for each class on the Urban-SED dataset calculated using
segment-size of 1 s.

Figure 4 compares the inference times of YOHO, CNN and CRNN models for music-
speech detection on the in-house test set. The CNN and CRNN models were explained in
Section 2.7. YOHO and the CNN had exactly the same number of parameters, which is
3.9 million. The only difference is that the CNN adopts frame-based classification instead
of regression. The CRNN model had 1.3 million parameters, which was less than the CNN
and YOHO. On the CPU, the prediction time of YOHO was 14 times faster than the CNN
and 5 times faster than the CRNN. On the Graphical Processing Unit (GPU), the prediction
time of YOHO was 6 times faster than the CNN and 4 times faster than the CRNN. The
increase in prediction speed is because YOHO has to predict only 26× 6 neurons, whereas
the CNN and CRNN have to predict 801× 2 neurons. Despite the CRNN having fewer
parameters, YOHO is significantly faster.

YOHO CNN CRNN
0

1

2

3

4

5

6

Ti
m

e
(s

)

Inference on GPU

YOHO CNN CRNN
0

50

100

150

200

250

Inference on CPU
Prediction
Smoothing

Figure 4. Average time taken to make predictions on 1 h of audio for music-speech detection. ‘Prediction’
refers to the time taken by the network to make predictions. ‘Smoothing’ is the post-processing step to
parse the output of the network. The GPU used for inference was the Tesla P100.

As YOHO outputs outputs acoustic boundaries directly, the post-processing and
smoothing for YOHO was 7 times faster than the CNN and CRNN. Note that the smoothing
is performed only on the CPU.

Appl. Sci. 2022, 12, 3293 13 of 16

5. Discussion

The results in Section 4 show that YOHO has multiple advantages over the state-of-
the-art CRNN architecture. We examined the model for two different tasks—music-speech
detection and environmental sound event detection. Music-speech detection is relatively
a simpler task because of a larger and diverse training set. Additionally, there are only
two acoustic classes to predict. On the other hand, environmental sound event detection
was harder because of smaller and lower quality training sets. In addition, the number of
acoustic classes was greater. However, in both scenarios, YOHO generalised better than
CRNN and CNN. YOHO obtained state-of-the-art performance for music-speech detection
on the MIREX 2018 competition dataset. We understand that YOHO has not obtained
state-of-the-art performance on TUT Sound Events and Urban-SED datasets. However, it is
important to note that the purpose of this study is to shift the paradigm from frame-based
classification to regression for audio segmentation and sound event detection. There is a
vast body of research involving CNN and CRNN architectures. It is not within the capacity
of this study to incorporate all these optimisations for YOHO. As this is the first study that
explores this paradigm, we believe that optimisations such as weak label learning [11] and
envelope estimation [53] will improve YOHO’s performance.

We also explored the idea of creating a regression-based CRNN that adopts the YOHO
paradigm. We replaced the Conv1D layer with a B-GRU block. However, this slightly
worsened the performance of the algorithm. This is because the YOHO network has many
convolutional layers that reduces the temporal resolution from 801 to 26. Hence, the B-GRU
blocks may not be effective on such a small number of time steps. However, alternative
structures such as CNN-transformers [55] may be a promising avenue to explore.

YOHO was significantly quicker than the CNN and CRNN models because it had to
predict fewer outputs and computationally cheaper post-processing. As explained in the
paper, the output produced by YOHO is more end-to-end. For example, the output dimen-
sions in music-speech detection is 26 × 6 for YOHO versus 801 × 2 for the CRNN. This
corresponds to 156 output neurons for YOHO and 1602 for the CRNN. Furthermore, the
CRNN needs to convert frame-based classifications to time boundaries. However, YOHO
directly outputs the time boundaries. Due to the above reasons, YOHO is significantly
quicker. Due to faster inference, YOHO is more suitable for real-time applications such as
surveillance, self-driving automobiles, bioacoustic monitoring, and real-time remixing.

6. Conclusions

In this paper, we proposed a novel paradigm called YOHO for audio segmentation
and sound event detection. It obtained state-of-the-art performance for music-speech
detection and surpassed the CRNN and CNN’s performance for environmental audio.
YOHO presents sound event detection differently from the traditional segmentation-by-
classification approach. We primarily adapted the MobileNet architecture [30] to develop
the YOHO paradigm. Future developments in the network architecture for YOHO would
lead to improvements in performance. For instance, adding skip connections through
ResNets [56] or by including Inception blocks [57]. Furthermore, there is scope to create
hybrid architectures such as CNN-transformers [55] by adopting the YOHO paradigm.

Although YOHO’s output is more end-to-end by predicting acoustic boundaries di-
rectly, it is limited by the time-resolution of the input, which is the mel spectrogram. It
would be interesting to explore YOHO with raw audio, which would make the sound
event detection pipeline completely end-to-end. Moreover, the YOHO approach is rele-
vant to related tasks such as singing voice detection. Furthermore, recent studies have
successfully combined sound event detection with source separation and semi-supervised
learning [10,58]. Future work could explore how YOHO would perform in these scenarios.

Appl. Sci. 2022, 12, 3293 14 of 16

Author Contributions: Conceptualization, S.V. and D.M.; methodology, S.V. and D.M.; software, S.V.;
investigation, S.V.; writing—original draft preparation, S.V.; writing—review and editing, D.M. and
S.V.; supervision, D.M. and E.R.M.; project administration, E.R.M.; funding acquisition, E.R.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by Engineering and Physical Sciences Research Council (EPSRC)
grant EP/S026991/1.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data provided by BBC Radio Devon is copyrighted material
and cannot be shared. Synthetic radio data for music-speech detection can be generated by using
techniques in this paper [17]. MuSpeak [38] is an openly available annotated dataset for music-speech
detection, which can be utilised by researchers for validation and testing. TUT Sound Events 2017 and
Urban-SED datasets are publicly available. The code associated with this paper is openly available in
this GitHub repository (https://github.com/satvik-venkatesh/you-only-hear-once/, accessed on
2 March 2022).

Acknowledgments: The authors would like to thank Blai Meléndez Catalán for helping us evaluate
our model on the MIREX music-speech competition dataset. We thank Justin Salamon for providing
insights on the Urban-SED dataset [9] and details of the results presented in Figure 3. Research in this
paper was conducted on Google Colab and we are thankful for their service.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

B-GRU Bidirectional Gated Recurrent Unit
B-LSTM Bidirectional Long Short-Term Memory
BBC British Broadcasting Corporation
CapsNet Capsule Neural Network
CapsNet-RNN Capsule Neural Network Recurrent Neural Network
CNN Convolutional Neural Network
CRNN Convolutional Recurrent Neural Network
DCASE Detection and Classification of Acoustic Scenes and Events
GPU Graphical Processing Unit
MIREX Music Information Retrieval Evaluation eXchange
MLP Multi-Layer Perceptron
RAM Random Access Memory
STFT Short-Time Fourier Transform
Urban-SED Urban Sound Event Detection
YOHO You Only Hear Once
YOLO You Only Look Once

References
1. Butko, T.; Nadeu, C. Audio segmentation of broadcast news in the Albayzin-2010 evaluation: Overview, results, and discussion.

EURASIP J. Audio Speech Music Process. 2011, 2011, 1. [CrossRef]
2. Elizalde, B.; Raja, B.; Vincent, E. Task 4: Large-Scale Weakly Supervised Sound Event Detection for Smart Cars. 2017. Available

online: http://dcase.community/challenge2017/task-large-scale-sound-event-detection (accessed on 2 March 2022).
3. Radhakrishnan, R.; Divakaran, A.; Smaragdis, A. Audio analysis for surveillance applications. In Proceedings of the IEEE

Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 16–19 October 2005;
pp. 158–161.

4. Salamon, J.; Bello, J.P.; Farnsworth, A.; Robbins, M.; Keen, S.; Klinck, H.; Kelling, S. Towards the automatic classification of avian
flight calls for bioacoustic monitoring. PLoS ONE 2016, 11, e0166866.

5. Ramirez, M.M.; Stoller, D.; Moffat, D. A Deep Learning Approach to Intelligent Drum Mixing with the Wave-U-Net. J. Audio Eng.
Soc. 2021, 69, 142–151. [CrossRef]

6. Theodorou, T.; Mporas, I.; Fakotakis, N. An overview of automatic audio segmentation. Int. J. Inf. Technol. Comput. Sci. (IJITCS)
2014, 6, 1. [CrossRef]

https://github.com/satvik-venkatesh/you-only-hear-once/
http://doi.org/10.1186/1687-4722-2011-1
http://dcase.community/challenge2017/task-large-scale-sound-event-detection
http://dx.doi.org/10.17743/jaes.2020.0031
http://dx.doi.org/10.5815/ijitcs.2014.11.01

Appl. Sci. 2022, 12, 3293 15 of 16

7. Huang, R.; Hansen, J.H. Advances in unsupervised audio classification and segmentation for the broadcast news and NGSW
corpora. IEEE Trans. Audio Speech Lang. Process. 2006, 14, 907–919. [CrossRef]

8. Venkatesh, S.; Moffat, D.; Kirke, A.; Shakeri, G.; Brewster, S.; Fachner, J.; Odell-Miller, H.; Street, A.; Farina, N.; Banerjee, S.;
et al. Artificially Synthesising Data for Audio Classification and Segmentation to Improve Speech and Music Detection in Radio
Broadcast. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto,
ON, Canada, 6–11 June 2021; pp. 636–640.

9. Salamon, J.; MacConnell, D.; Cartwright, M.; Li, P.; Bello, J.P. Scaper: A library for soundscape synthesis and augmentation.
In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY,
USA, 15–18 October 2017; pp. 344–348.

10. Turpault, N.; Serizel, R.; Shah, A.; Salamon, J. Sound Event Detection in Domestic Environments with Weakly Labeled Data
and Soundscape Synthesis. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2019 Workshop
(DCASE), New York, NY, USA, 25–26 October 2019; p. 253.

11. Miyazaki, K.; Komatsu, T.; Hayashi, T.; Watanabe, S.; Toda, T.; Takeda, K. Weakly-supervised sound event detection with
self-attention. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Barcelona, Spain, 4–8 May 2020; pp. 66–70.

12. Gemmeke, J.F.; Ellis, D.P.; Freedman, D.; Jansen, A.; Lawrence, W.; Moore, R.C.; Plakal, M.; Ritter, M. Audio set: An ontology and
human-labeled dataset for audio events. In Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), New Orleans, LA, USA, 5–9 March 2017; pp. 776–780.

13. Hershey, S.; Ellis, D.P.; Fonseca, E.; Jansen, A.; Liu, C.; Moore, R.C.; Plakal, M. The benefit of temporally-strong labels in audio
event classification. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Toronto, ON, Canada, 6–11 June 2021; pp. 366–370.

14. Gimeno, P.; Viñals, I.; Ortega, A.; Miguel, A.; Lleida, E. Multiclass audio segmentation based on recurrent neural networks for
broadcast domain data. EURASIP J. Audio Speech Music Process. 2020, 2020, 1–19. [CrossRef]

15. Lemaire, Q.; Holzapfel, A. Temporal Convolutional Networks for Speech and Music Detection in Radio Broadcast. In Proceedings
of the 20th International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, 4–8 November 2019.

16. Cakır, E.; Parascandolo, G.; Heittola, T.; Huttunen, H.; Virtanen, T. Convolutional recurrent neural networks for polyphonic
sound event detection. IEEE/ACM Trans. Audio Speech Lang. Process. 2017, 25, 1291–1303. [CrossRef]

17. Venkatesh, S.; Moffat, D.; Miranda, E.R. Investigating the Effects of Training Set Synthesis for Audio Segmentation of Radio
Broadcast. Electronics 2021, 10, 827. [CrossRef]

18. Dieleman, S.; Schrauwen, B. End-to-end learning for music audio. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 6964–6968.

19. Lee, J.; Park, J.; Kim, T.; Nam, J. Raw Waveform-based Audio Classification Using Sample-level CNN Architectures. In
Proceedings of the Machine Learning for Audio Signal Processing Workshop, Neural Information Processing Systems (NeurIPS),
Long Beach, CA, USA, 4–9 December 2017.

20. Phan, H.; Maaß, M.; Mazur, R.; Mertins, A. Random regression forests for acoustic event detection and classification. IEEE/ACM
Trans. Audio Speech Lang. Process. 2014, 23, 20–31. [CrossRef]

21. Xu, Y.; Du, J.; Dai, L.R.; Lee, C.H. A regression approach to speech enhancement based on deep neural networks. IEEE/ACM
Trans. Audio Speech Lang. Process. 2014, 23, 7–19. [CrossRef]

22. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788.

23. Zsebők, S.; Nagy-Egri, M.F.; Barnaföldi, G.G.; Laczi, M.; Nagy, G.; Vaskuti, É.; Garamszegi, L.Z. Automatic bird song and syllable
segmentation with an open-source deep-learning object detection method–a case study in the Collared Flycatcher. Ornis Hung.
2019, 27, 59–66. [CrossRef]

24. Segal, Y.; Fuchs, T.S.; Keshet, J. SpeechYOLO: Detection and Localization of Speech Objects. arXiv 2019, arXiv:1904.07704.
25. Algabri, M.; Mathkour, H.; Bencherif, M.A.; Alsulaiman, M.; Mekhtiche, M.A. Towards deep object detection techniques for

phoneme recognition. IEEE Access 2020, 8, 54663–54680. [CrossRef]
26. Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850.
27. Schlüter, J.; Doukhan, D.; Meléndez-Catalán, B. MIREX Challenge: Music and/or Speech Detection. 2018. Available online:

https://www.music-ir.org/mirex/wiki/2018:Music_and/or_Speech_Detection (accessed on 2 March 2022).
28. Mesaros, A.; Heittola, T.; Diment, A.; Elizalde, B.; Shah, A.; Vincent, E.; Raj, B.; Virtanen, T. DCASE 2017 challenge setup: Tasks,

datasets and baseline system. In Proceedings of the Workshop on Detection and Classification of Acoustic Scenes and Events,
Munich, Germany, 16 November 2017.

29. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

30. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

31. Plakal, M.; Ellis, D. YAMNet. 2020. Available online: https://github.com/tensorflow/models/tree/master/research/audioset/
yamnet/ (accessed on 2 March 2022).

32. Sifre, L. Rigid-Motion Scattering for Image Classification. Ph.D. Thesis, Ecole Normale Superieure, Paris, France, 2014.

http://dx.doi.org/10.1109/TSA.2005.858057
http://dx.doi.org/10.1186/s13636-020-00172-6
http://dx.doi.org/10.1109/TASLP.2017.2690575
http://dx.doi.org/10.3390/electronics10070827
http://dx.doi.org/10.1109/TASLP.2014.2367814
http://dx.doi.org/10.1109/TASLP.2014.2364452
http://dx.doi.org/10.2478/orhu-2019-0015
http://dx.doi.org/10.1109/ACCESS.2020.2980452
https://www.music-ir.org/mirex/wiki/2018:Music_and/or_Speech_Detection
https://github.com/tensorflow/models/tree/master/research/audioset/yamnet/
https://github.com/tensorflow/models/tree/master/research/audioset/yamnet/

Appl. Sci. 2022, 12, 3293 16 of 16

33. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning (ICLR), San Diego, CA, USA, 7–9 May 2015; pp. 448–456.

34. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition, localization and detection
using convolutional networks. In Proceedings of the 2nd International Conference on Learning Representations (ICLR), Banff,
AB, Canada, 14–16 April 2014.

35. Yao, Y.; Rosasco, L.; Caponnetto, A. On early stopping in gradient descent learning. Constr. Approx. 2007, 26, 289–315. [CrossRef]
36. Park, D.S.; Chan, W.; Zhang, Y.; Chiu, C.C.; Zoph, B.; Cubuk, E.D.; Le, Q.V. Specaugment: A simple data augmentation method

for automatic speech recognition. In Proceedings of the Interspeech, Graz, Austria, 15–19 September 2019; pp. 2613–2617.
37. Mesaros, A.; Heittola, T.; Virtanen, T. Metrics for polyphonic sound event detection. Appl. Sci. 2016, 6, 162. [CrossRef]
38. MuSpeak Team. MIREX MuSpeak Sample Dataset. 2015. Available online: http://mirg.city.ac.uk/datasets/muspeak/ (accessed

on 2 March 2022).
39. Snyder, D.; Chen, G.; Povey, D. Musan: A music, speech, and noise corpus. arXiv 2015, arXiv:1510.08484.
40. Tzanetakis, G.; Cook, P. Marsyas: A framework for audio analysis. Organised Sound 2000, 4, 169–175. [CrossRef]
41. Tzanetakis, G.; Cook, P. Musical genre classification of audio signals. IEEE Trans. Speech Audio Process. 2002, 10, 293–302.

[CrossRef]
42. Scheirer, E.; Slaney, M. Construction and evaluation of a robust multifeature speech/music discriminator. In Proceedings of

the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Munich, Germany, 21–24 April 1997;
Volume 2, pp. 1331–1334.

43. Bosch, J.J.; Janer, J.; Fuhrmann, F.; Herrera, P. A Comparison of Sound Segregation Techniques for Predominant Instrument
Recognition in Musical Audio Signals. In Proceedings of the 13th International Society for Music Information Retrieval Conference
(ISMIR), Porto, Portugal, 8–12 October 2012; pp. 559–564.

44. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450.
45. Marolt, M. Music/Speech Classification and Detection Submission for MIREX 2018. Music Inf. Retr. Eval. eXchange MIREX.

2018. Available online: https://www.music-ir.org/mirex/abstracts/2018/MM2.pdf (accessed on 2 March 2022).
46. Choi, M.; Lee, J.; Nam, J. Hybrid Features for Music and Speech Detection. Music Inf. Retr. Eval. eXchange (MIREX). 2018.

Available online: https://www.music-ir.org/mirex/abstracts/2018/LN1.pdf (accessed on 2 March 2022).
47. Adavanne, S.; Virtanen, T. A Report on Sound Event Detection with Different Binaural Features. In Proceedings of the Detection

and Classification of Acoustic Scenes and Events (DCASE), Munich, Germany, 16 November 2017.
48. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305
49. Jeong, I.Y.; Lee, S.; Han, Y.; Lee, K. Audio Event Detection Using Multiple-Input Convolutional Neural Network. In Proceedings

of the Detection and Classification of Acoustic Scenes and Events (DCASE), Munich, Germany, 16 November 2017.
50. Lu, R.; Duan, Z. Bidirectional GRU for Sound Event Detection. In Proceedings of the Detection and Classification of Acoustic

Scenes and Events (DCASE), Munich, Germany, 16 November 2017.
51. Vesperini, F.; Gabrielli, L.; Principi, E.; Squartini, S. Polyphonic sound event detection by using capsule neural networks. IEEE J.

Sel. Top. Signal Process. 2019, 13, 310–322. [CrossRef]
52. Luo, L.; Zhang, L.; Wang, M.; Liu, Z.; Liu, X.; He, R.; Jin, Y. A System for the Detection of Polyphonic Sound on a University

Campus Based on CapsNet-RNN. IEEE Access 2021, 9, 147900–147913. [CrossRef]
53. Martín-Morató, I.; Mesaros, A.; Heittola, T.; Virtanen, T.; Cobos, M.; Ferri, F.J. Sound event envelope estimation in polyphonic

mixtures. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton,
UK, 12–17 May 2019; pp. 935–939.

54. Dinkel, H.; Wu, M.; Yu, K. Towards duration robust weakly supervised sound event detection. IEEE/ACM Trans. Audio Speech
Lang. Process. 2021, 29, 887–900. [CrossRef]

55. Kong, Q.; Xu, Y.; Wang, W.; Plumbley, M.D. Sound event detection of weakly labelled data with CNN-transformer and automatic
threshold optimization. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28, 2450–2460. [CrossRef]

56. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.

57. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

58. Turpault, N.; Serizel, R.; Wisdom, S.; Erdogan, H.; Hershey, J.R.; Fonseca, E.; Seetharaman, P.; Salamon, J. Sound Event Detection
and Separation: A Benchmark on Desed Synthetic Soundscapes. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 840–844.

http://dx.doi.org/10.1007/s00365-006-0663-2
http://dx.doi.org/10.3390/app6060162
http://mirg.city.ac.uk/datasets/muspeak/
http://dx.doi.org/10.1017/S1355771800003071
http://dx.doi.org/10.1109/TSA.2002.800560
https://www.music-ir.org/mirex/abstracts/2018/MM2.pdf
https://www.music-ir.org/mirex/abstracts/2018/LN1.pdf
http://dx.doi.org/10.1109/JSTSP.2019.2902305
http://dx.doi.org/10.1109/ACCESS.2021.3123970
http://dx.doi.org/10.1109/TASLP.2021.3054313
http://dx.doi.org/10.1109/TASLP.2020.3014737

	You Only Hear Once: A YOLO-like Algorithm for Audio Segmentation and Sound Event Detection
	Recommended Citation

	Introduction
	You Only Hear Once (YOHO)
	Motivation
	Network Architecture
	Loss Function
	Example of Labels
	Other Details
	Post-Processing
	Models for Comparison

	Datasets
	Music-Speech Detection
	TUT Sound Event Detection
	Urban-SED

	Results
	Music-Speech Detection
	In-House Test Set
	MIREX Music-Speech Detection

	TUT Sound Event Detection
	Urban-SED
	Speed of Prediction

	Discussion
	Conclusions
	References

