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Abstract The field of lipidomics focuses upon the non-

targeted analysis of lipid composition, the process of which

follows similar routines to those applied in conventional

metabolic profiling, however lipidomics differs with

respect to the sample preparation steps and chosen ana-

lytical platform applied to the sample analysis. Conven-

tionally, lipidomics has applied analytical techniques such

as direct infusion mass spectrometry and more recently

reverse phase liquid chromatography–mass spectrometry,

for the detection of mono-, di-, and tri-acyl glycerols,

phospholipids, and other complex lipophilic species such

as sterols. The field is rapidly expanding, especially with

respect to the clinical sciences where it is known that

changes of lipid composition, especially phospholipids, are

commonly associated with many disease processes. As a

proof of principle study, a small number of Escherichia

coli isolates were selected on the basis of their sensitivity to

a second generation fluoroquinolone antibiotic, known as

Ciprofloxacin (E. coli isolates 161 and 171, non-ST131

isolates, which are resistant and sensitive respectively:

E. coli isolates 160 and 173, ST131 sequence isolates

which are resistant and susceptible respectively). It has

been proposed that Ciprofloxacin may be a surface active

drug that interacts at the surface-water interface of the

phospholipid bi-layer where the head groups reside. Fur-

ther, antibiotic resistance through intracellular exclusion is

known to result in remodelling of the phospholipid mem-

brane. Therefore, to study the effects of Ciprofloxacin on

both susceptible and resistant bacterial strains, lipid pro-

filing would present an informative approach. Control and

antibiotic challenged cultures for each of the isolates were

compared for changes in metabolite and lipid composition

as detected by FT-IR spectroscopy and RP-UHPLC–MS,

and appraised with a variety of chemometric data analysis

approaches. The developed bacterial lipidomics workflow

was deemed to be highly reproducible (with respect to the
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employed technical and analytical routines) and led to the

detection of a large array of lipid classes as well as high-

lighting a range of significant lipid alterations that differed

in regulation between susceptible and resistant E. coli

isolates.

Keywords Lipidomics � Escherichia coli � Ciprofloxacin

hydrochloride � Antibiotic-resistance � Fourier transform

infrared spectroscopy � Liquid chromatography–mass

spectrometry

1 Introduction

The popularity of metabolomics and the closely related

discipline of lipidomics has risen greatly over the past

decade, across an ever growing range of disciplines and

applications, including, gene function analysis (Fiehn et al.

2000; Roessner et al. 2001), environmental perturbation

(Kaplan et al. 2004; Allwood et al. 2006, 2010), diseases of

clinical significance (Kolak et al. 2007; Mattila et al. 2008;

Orešič et al. 2008; Sreekumar et al. 2009; Kenny et al.

2010), and to a large number of organisms including plants

(Lisec et al. 2006; De Vos et al. 2007), fruits, vegetables and

grains (Allwood et al. 2009; Biais et al. 2009; Tikunov et al.

2010), microbes (Koek et al. 2006; Winder et al. 2006, 2008;

Van Der Werf et al. 2008; Lowe et al. 2010), and mammals

(Griffin and Kauppinen 2007; Sreekumar et al. 2009; Kenny

et al. 2010; Velagapudi et al. 2010; Dunn et al. 2007, 2008,

2011). The metabolome and lipidome perhaps represents the

ultimate phenotype of cells, controlled by gene expression

and the modulation of protein function, which in turn are

controlled by the environment and genome mutation (Fiehn

2002; Saito and Matsuda 2010). The field of lipidomics

focuses upon the non-targeted analysis of lipid composition,

the process of data collection and statistical analysis follows

very similar routines to those applied in conventional met-

abolic profiling, however lipidomics differs with respect to

the sample preparation steps and chosen analytical platform

applied to the sample analysis. Conventionally, lipidomics

has applied analytical techniques such as direct infusion

mass spectrometry (DIMS; Goodacre et al. 2002; Han and

Gross 2005; Allwood et al. 2006) and less commonly

reverse phase liquid chromatography–mass spectrometry

(RP-LC–MS; Kolak et al. 2007; Mattila et al. 2008; Wedge

et al. 2011), for the detection of mono-, di-, and tri-acyl

glycerols, phospholipids, and other complex lipophilic spe-

cies such as sterols and ceramides.

Given the influence and importance of microbes upon

many areas of biological, clinical and environmental

research, they are indeed a very significant target for

metabolomics and lipidomics. Many studies have focused

upon the polar central metabolism of microbes (Koek et al.

2006; Winder et al. 2008; MacKenzie et al. 2008),

including applications in several systematic studies to

increase our level of understanding on the control of central

metabolism at the levels of the transcriptome, proteome

and metabolome, with such studies typically focusing upon

model organisms such as Escherichia coli K-12 (Mori

2004) and Saccharomyces cerevisiae (Castrillo et al. 2007;

Herrgård et al. 2008). Further to E. coli being a commonly

employed model species (Mori 2004; Riley et al. 2006), it

is also of great significance as an enteric pathogen (Kaper

et al. 2004), requiring antibiotic treatments in mammals to

clear the gastric infection and alleviate symptoms of gas-

troenteritis. Understanding the actions of antibiotics, which

are frequently poorly described, at the levels of the me-

tabolome and lipidome using model bacteria such as E. coli

is of importance to elucidate the mechanisms of action of

antibiotics in current use and those under development.

Antibiotics are commonly targeted to specific proteins, for

example, fluoroquinolones such as Ciprofloxacin, are tar-

geted to the bacterial DNA topoisomerase II (DNA gyrase)

and DNA topoisomerase IV enzymes which function to

relax supercoiled DNA and perform important processes in

partitioning chromosomal DNA respectively (Greenwood

2000). Therefore, to study the effects of Ciprofloxacin on

the metabolism of bacteria, especially those that are sen-

sitive to the antibiotic, it would be logical to employ an

analytical technique that measures the central metabolome

(Koek et al. 2006; Winder et al. 2008). Such an approach

would be capable of detecting changes in nucleotide

metabolism and how they impact upon other areas of pri-

mary metabolism, potentially revealing direct consequen-

tial effects on metabolism due to the antibiotic mode of

action. However, with the ever growing problem of bac-

terial resistance to antibiotics and the emergence of bac-

teria with resistance to multiple antibiotics (Tomasz 1994;

Wiener et al. 1999; Sáenz et al. 2004), for example

Methicillin-resistant Staphylococcus aureus (MRSA;

Diederen and Kluytmans 2006), it is perhaps more

important to focus studies on bacterial modes of resistance.

Since bacterial resistance to antibiotics is commonly

dependent on the ability of the bacteria to exclude the

antibiotic from the cell by membrane remodelling via

aminoacylation or cell wall modification by peptidoglycan

cross-linking (RajBhandary and Söll 2008; Roy and Ibba

2008), or alternatively by removal of the antibiotic from

the cytoplasm to the extracellular matrix through energy

dependent membrane export (Poole et al. 1993; Okusu

et al. 1996), it may be of great relevance to alternatively

analyse the lipidome of bacteria.

Much research has been previously undertaken on the

optimisation of bacterial growth and metabolic quenching,

as well as the development of suitable GC–MS
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methodologies for the analysis of central metabolism in

E. coli as well as other bacterial species and yeasts (Winder

et al. 2008; MacKenzie et al. 2008). Therefore, the prin-

ciple aim of this investigation was to establish and validate

a method for FT-IR fingerprinting and RP UHPLC–MS

profiling of lipids in antibiotic challenged E. coli, taking

into consideration sample extraction and analysis steps.

FT-IR spectroscopy is a constantly developing analytical

technique often used routinely as a method in bacteriology

being applied to species level identification and discrimi-

nation, as well as a tool to follow phenotypic responses to

abiotic and biotic perturbation (Winder et al. 2006; Preis-

ner et al. 2007; Wehlri et al. 2013). RP LC–MS employing

C18 column chemistries is the standard approach applied to

the analysis of free and membrane lipids in the field of

lipidomics. Therefore both FT-IR and RP UHPLC–MS

were deemed appropriate analytical tools to apply to the

study of changes in lipid quantity and composition in

response to antibiotic challenge in bacteria.

As a proof of principle study, a small number of E. coli

isolates were selected on the basis of their sensitivity to

Ciprofloxacin. The isolates chosen are clinically relevant,

being recently recovered from cases of urinary tract

infection, and included strains from the globally dissemi-

nated ST131 clone (Lau et al., 2008). E. coli isolates 160

and 173, of the ST131 clone, which are classified as

resistant and sensitive respectively, as well as E. coli iso-

lates 161 and 171, non-ST131 strains, which are classified

as resistant and intermediate resistant respectively, were

selected to provide a range of E. coli responses to challenge

with Ciprofloxacin. It has been proposed that Ciprofloxacin

may be a surface active drug that interacts at the surface-

water interface of the phospholipid bi-layer where the head

groups reside (Merino et al. 2003). Further, since antibiotic

resistance through intracellular exclusion is known to result

in remodelling of the phospholipid membrane, the devel-

oped FT-IR fingerprinting and RP-UHPLC–MS lipid pro-

filing approach was deemed to provide an informative

method to study the effects of Ciprofloxacin on both sus-

ceptible and resistant bacterial responses.

2 Materials and methods

2.1 Chemicals

All chemicals used were of analytical reagent or a higher

purity grade. All reference standards were of 99 % mini-

mum purity. All materials were purchased from Sigma-

Aldrich (Gillingham, UK) unless otherwise stated. Cipro-

floxacin hydrochloride was obtained from Discovery fine

chemicals (Dorset, UK), a stock solution was prepared by

dissolving 100 mg in 50 ml of sterile distilled water,

further dilutions were also made with sterile distilled water.

HPLC grade methanol, chloroform and water were pur-

chased from Sigma-Aldrich (Gillingham, UK). Formic acid

(BDH Aristar 1) was purchased from VWR International

(East Grinstead, UK).

2.2 Escherichia coli isolates

Four clinical E. coli isolates were donated by Dr. Mathew

Upton from the Manchester Royal Infirmary. The isolates

were selected on the basis of sequence type and sensitivity

towards quinolones. A sensitive isolate (isolate 173) and a

resistant isolate (isolate 160) of the ST131 clone, as well as

two isolates that were resistant and partially-resistant to

quinolones, isolates 161 and 171 respectively (non-ST131

strains), were selected for the lipidomic analysis.

2.3 Preparation of Escherichia coli cultures, their

antibiotic challenge and determination of minimal

inhibitory concentration (MIC)

Preparation of E. coli inoculates, their culture, challenge

with Ciprofloxacin and determination of MIC are described

in full detail within the Supplementary methods (Sects.

1.1–1.3) and are also presented within Fig. 1. For both the

determination of MIC and also generation of samples for

metabolic fingerprinting and profiling, all cultures were

generated on a single day, with a single batch of culture

media and were incubated in a common orbital shaker. In

the case of larger experiments where sample numbers

demand the generation of cultures in multiple batches

(across days and even weeks), it is recommended that a

minimum of one sample class is maintained within all cul-

ture batches, therefore providing a measure of variance

associated with the different days/batches of culture gener-

ation. Further, by generating inoculums and culture media as

a single lot for all experimental batches, as well as preparing

a single source of both quenching and extraction solvents,

biological and technical variation between the experimental

batches will be minimised. In total 24 cultures were gener-

ated (4 E. coli strains 9 2 treatments (control and antibiotic

challenged) 9 3 biological replicates). The experiment was

designed to test technical (sample quenching) and analytical

reproducibility, with having only a minimal number of

biological replicates generated within a single culture batch,

the experimental design does not permit a measure of the

biological reproducibility of the employed methods.

2.4 Escherichia coli sample collection and quenching

for metabolic fingerprinting and lipid profiling

The sample collection and quenching of metabolism

methods were adapted from the procedures developed by
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L 
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Control: 10 µL water
18 h incubation

Take 2 mL from 
supernatant (Leakage)

Reconstitute in 1 mL.

Pre chilled (-20 ºC)
methanol:chloroform solution 

(1:1)

13363 g

18 mL LB
Test: 1 mL drug
Control: 1 mL water
18 h incubation

High throughput screening (HTS)
FT-IR spectroscopic analysis was
carried out using a Bruker Equinox
55 infrared spectrometer (Bruker
Ltd., Coventry, UK). equipped with
an HTX™ module according to the
method of Winder et al. (2006). FT-
IR spectra were recorded directly
from the dried cell biomass in
transmission mode.

Bioscreen Spectrophotometer 
(Labsystems, Basingstoke, UK).
Temperature 37°C, continuous 
medium shake, OD 600 nm, 
measurement interval 10 min.

UHPLC-LTQ-Orbitrap XL MS, m/z 100-1000,
calibrated following manufacturers recommendations
(ESI+ and ESI-). Reverse phase gradient (Hypersil
Gold C18 100 x 2.1mm 1.9 µm particle size: Thermo-
Fisher Ltd.). Gradient programme was adjusted to
run time of 24 min).

8 classes:
ST131 :
160 (control, 0.02 mg/L), 173 (control, 0.02 mg/L)
non-ST131 :
161 (control, 0.3 mg/L), 171 (control, 0.3 mg/L)

Bioscreen
Plate

(1)

(2)

(3)

Vortex and shake for 15 min

4800 g (-8 ºC) for 3 min.

Collect the 

polar phase

Add 0.5 mL

Cold HPLC water

150µL from the 
non-polar phase

Take 100 µLCentrifuge

Evaporate at room 
temperature

Reconstitute in 
methanol:water (8:2)

according to the OD.
Vortex, mix and centrifuge

Analytical vial

Fig. 1 Schematic of sample generation including (1) bioscreen

analysis to determine the MIC of ciprofloxacin and produce the

growth curves of pathogenic E. coli. (2) FT-IR analysis of samples.

(3) LC–MS analysis of samples after quenching with cold (-48 �C)

methanol and extraction with (1:1) methanol:chloroform
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Winder et al. (2008) (Fig. 1), a full description of which is

available in the Supplementary methods Sect. 1.4. All

bacterial cultures were collected on a single day. Due to

limitations in sample handling capacity, quenching was

performed upon randomised batches of six samples at a

time and the procedure requires approximately 20 min per

a batch, therefore the antibiotic treatment of each ran-

domised batch was staggered across 20 min intervals, thus

maintaining that each culture is challenged by the antibi-

otic for precisely 18 h. By quenching the samples across

randomised batches an indication of the procedures tech-

nical reproducibility can be obtained.

2.5 Fourier transform infrared (FT-IR) spectroscopy

High throughput screening (HTS) FT-IR spectroscopic

analysis was carried out using a Bruker Equinox 55

infrared spectrometer (Bruker Ltd., Coventry, UK) equip-

ped with an HTXTM module according to the method of

Winder et al. (2006). Preparation of samples, FT-IR sample

plates and acquisition of spectra are fully described in the

Supplementary methods Sect. 1.5. Each biological sample

was repeat spotted on the FT-IR plate and analysed in

triplicate to provide an indication of analytical variance.

2.6 Sample extraction for UHPLC–MS lipid profiling

The bacterial samples were extracted applying metha-

nol:chloroform (1:1), followed by addition of water so that

polar and non-polar metabolites could be isolated via phase

separation. The method is fully described in the Supple-

mentary methods Sect. 1.6 and was adapted from the

methods described in Winder et al. (2008), which were

originally conceived by Bligh and Dyer (1959). The

extraction method leads to the capture of both free and

membrane lipids within the chloroform phase of the

extract, all of which are amenable to separation and

detection by RP-UHPLC–MS approaches.

2.7 UHPLC–MS analysis

All samples were analysed on the Accela UHPLC system

(Thermo-Fisher Ltd. Hemel Hempsted, UK) coupled to an

electrospray LTQ-Orbitrap XL hybrid mass spectrometry

system (ThermoFisher, Bremen, Germany) adapting the

methods previously described by Wedge et al. (2011) and

provided in full detail in the Supplementary methods Sect. 1.7.

2.8 Processing of raw UHPLC–MS profiles and lipid

identification

The UHPLC–MS raw data profiles were deconvolved using

the freely available XCMS software (http://masspec.

scripps.edu/xcms/xcms.php), the data were quality assured

as described in (Dunn et al. 2008; Wedge et al. 2011) and

normalised by peak sum for each sample (i.e. TIC nor-

malisation). The putative identification of lipid features

was performed applying the PUTMEDID-LCMS set of

workflows (Brown et al. 2011), and a table of the putative

lipid assignments is available in the supplementary infor-

mation (Table S2). Detailed descriptions of deconvolution,

quality assurance and putative lipid identification are pro-

vided in Supplementary methods Sect. 1.8.

2.9 Statistical analyses

Statistical analyses were performed applying the multi-

variate method of principal component-discriminant func-

tion analysis (PC-DFA). PC-DFA scores plots were

employed for data visualisation and loadings plots to

indicate the most significant metabolic features. Further

feature selection was performed on the UHPLC–MS data

for each individual bacterial isolate, comparing the

response between the antibiotic treated and non-treated

controls. First, a multivariate method known as partial least

squares (PLS) regression was applied, this resulted in a

filtered list of the most significant features ordered by the

magnitude of their PLS regression coefficients from largest

to smallest. Secondly, a univariate approach, known as

ANOVA (p \ 0.05), was applied to the significant PLS

regression coefficient lists. Finally, a list of the 50 most

significant features, ordered according to the magnitude of

their PLS regression coefficients (from high to low), which

also had an ANOVA p value of \0.05, was produced for

each bacterial strain. Full descriptions of the statistical

methods are provided in Supplementary methods Sects. 1.9

and 1.10.

3 Results and discussion

3.1 Determination of the Ciprofloxacin minimal

inhibitory concentration (MIC)

So that the lipidomics approach under development did not

lead to the detection of lipid changes associated with the

death of bacterial cells as opposed to detecting lipid altera-

tions that may contribute to the ability of the bacteria to

exclude and remove the antibiotic, thus mediating antibiotic

resistance, it was first necessary to establish the MIC of each

bacterial isolate when cultured in Lysogeny Broth (LB) and

challenged by Ciprofloxacin. Each of the four E. coli clinical

isolates were cultured in LB media and challenged with

Ciprofloxacin solutions ranging from 0.0025 to 100 mg/l in

concentration. Bacterial growth curves were generated by

measuring the OD 600 nm across an 18 h growth period
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(Fig. 2). It was determined that the E. coli isolates 161 (non-

ST131) and 160 (ST131), regarded as fully resistant, were

not inhibited in growth even at Ciprofloxacin concentrations

as high as 100 mg/l. For the intermediate-resistant E. coli

isolate 171 (non-ST131) the Ciprofloxacin MIC was deter-

mined to fall between 0.25 and 0.5 mg/l. Whereas for the

sensitive E. coli isolate 173 (ST131) the Ciprofloxacin MIC

was determined to fall between 0.02 and 0.03 mg/l. Based

upon these results, the concentrations of antibiotic were

selected for the challenge of bacteria for sample generation

for metabolic fingerprinting and lipid profiling. For the

E. coli ST131 isolates 160 and 173, in order to permit direct

comparison of metabolic responses, a common antibiotic

concentration of 0.02 mg/l was selected based upon it being

the MIC of the sensitive isolate 173. For the non-ST131

isolates 161 and 171, again in order to permit direct com-

parison of metabolic responses, a common antibiotic con-

centration of 0.3 mg/l was selected based upon it being

intermediate to the MIC of 0.25–0.5 mg/l of isolate 171, and

as being of a great enough concentration to lead to an

inhibitory effect upon growth without resulting in total

bacterial death (Fig. 2).

a b

c d

e

Isolate number Sequence type Quinolone phenotype
MIC range determination 

(mg/L)*

Selected dose to 

challenge the 

bacteria (mg/L)

160 ST131 Fully resistant No effect 0.02

173 ST131 Sensitive 0.03−0.02 0.02

161 non-ST131 Fully resistant No effect 0.3

171 non-ST131 Intermediate resistant 0.5−0.25 0.3

* Ciprofloxacin hydrochloride  highest dose used is 100 mg/L.
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Fig. 2 OD 600 growth curves from 0 to 18 h post antibiotic

challenge to indicate minimal inhibitory concentrations (MIC) of

Ciprofloxacin hydrochloride against Escherichia coli ST131 strains

a 160 (resistant) and b 173 (sensitive) and non-ST131 strains c 161

(resistant) and d 171 (intermediate resistance), e table of predicted

MIC (mg/l Ciprofloxacin)
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3.2 Fourier transform infrared (FT-IR) spectroscopy

based metabolic fingerprinting

FT-IR spectroscopy is an established and constantly

developing analytical technique, which enables the

extremely rapid (seconds per sample), high-throughput

(1,000 s of samples per day) and non-destructive analysis

of a wide-range of sample types (Ellis and Goodacre 2006;

Allwood et al. 2008). FT-IR is also relatively inexpensive

and therefore readily lends itself as a rapid first-round

Fig. 3 FT-IR spectroscopy principle component-discriminant func-

tion analysis (PC-DFA) of 18 h Ciprofloxacin challenged and control

Escherichia coli. a PC-DFA scores plot (DF1 vs. DF2). PC-DFA

loadings plots derived by comparisons of Ciprofloxacin challenged

and control samples for each respective isolate b ST131 strain 160

(resistant), c ST131 strain 173 (sensitive), d non-ST131 strain 161

(resistant), e non-ST131 strain 171 (intermediate resistance). Within

the figures key, C refers to control samples, 0.02 and 0.3 refer to the

antibiotic dose (mg/l), the 95 % confidence Interval (CI) is given in

brackets
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screening method (Allwood et al. 2008) prior to more

expensive and labour intensive approaches. Whilst FT-IR

does not provide high levels of functional information, it

does enable the collection of a holistic fingerprint that can

indicate quantitative changes in peptide, carbohydrate and

lipid levels. Therefore, FT-IR could be employed as a first

round step where comparisons of non-treated and antibiotic

exposed samples are made for numerous bacterial strains

and antibiotic combinations. The FT-IR data would then be

applied to classify the bacterial strains response as resis-

tant, intermediate resistant, or fully susceptible. An

informed selection may then be made to identify which

bacterial strains and antibiotic combinations present the

most interesting metabolic phenotypes to study in more

depth with the lower throughput and financially more

expensive chromatography-MS based approaches. The

FT-IR data may also be consulted in order to select an

appropriate method of chromatography with respect to

analysing changes in lipid or polar metabolite composition.

To visualise the distribution of samples on the basis of

their IR metabolic fingerprints, a PC-DFA scores plot was

generated (Fig. 3a). It was observed that E. coli isolates 160

and 173 (ST131), cluster in close proximity to the negative

side of the DF1 axis. E. coli isolate 161 (non ST131) was

observed to separate from the ST131 isolates largely along

the DF2 axis, which agrees with the results of a previous

FT-IR study (AlRabiah et al. 2013, 2014). Interestingly,

E. coli isolate 171 (non ST131), which is classed as inter-

mediate resistant, was distantly clustered from all of the other

isolates on the positive side of the DF1 axis. The E. coli

isolates classed as fully resistant (isolate 160 and 161),

revealed very little variance between control and Ciproflox-

acin challenged samples, suggesting that on the level of the

metabolic fingerprint, very little metabolic change occurs as a

result of antibiotic challenge. The sensitive E. coli isolate 173

and the intermediate resistant isolate 171 both showed a clear

separation between the control and Ciprofloxacin challenged

sample clusters, with the Ciprofloxacin challenged samples

clustering to the negative side of the DF2 axis.

As a next step, the PC-DFA loadings were derived on the

basis of the wavelengths responsible for the separation of the

control samples from the Ciprofloxacin challenged samples

for each respective E. coli isolate. The fully resistant E. coli

isolates, 160 and 161, despite being of different sequence

type, ST131 and non-ST131 (resulting in their control sam-

ples being clearly clustered from each other in the PC-DFA

scores plot), revealed very similar spectral changes associ-

ated with Ciprofloxacin challenge, suggesting a similar

metabolic shift in the response of the two isolates (Fig. 3b,

d). The most pronounced spectral changes due to Cipro-

floxacin challenge in the fully resistant isolates included

peaks at 1,645 and 1,705 cm-1 corresponding to the amide

spectral region indicating alterations in protein content in

response to Ciprofloxacin challenge. The sensitive E. coli

isolate 173 and the intermediate resistant isolate 171 also

revealed similar spectral changes associated with Cipro-

floxacin challenge (Fig. 3c, e). The most pronounced spec-

tral changes due to Ciprofloxacin challenge in these isolates

included peaks at 1,653 and 1,700 cm-1 again corresponding

to the amide spectral region. Although the preliminary

sample screening approach revealed significant protein

alterations, this is perhaps unsurprising given that Cipro-

floxacin and other fluoroquinolones are predicted to target

enzymatic proteins such as DNA topoisomerase II and IV,

therefore it may be expected that alterations in protein con-

tent would dominate the alterations observed in the lipid,

polysaccharide and mixed spectral regions of the IR spectra.

Given the tight clustering of samples of the same experi-

mental class within the PC-DFA scores plot (Fig. 3a), it was

clear that the within experiment technical reproducibility of

sample growth and collection was high and therefore likely

suited to UHPLC–MS lipid profiling.

3.3 Reverse phase ultra high performance liquid

chromatography–mass spectrometry (UHPLC–MS)

based lipid profiling

Following UHPLC–MS analysis in both ESI positive and

negative ionisation modes, peak deconvolution was per-

formed using the freely available XCMS software (http://

masspec.scripps.edu/xcms/xcms.php) (Dunn et al. 2008;

Wedge et al. 2011), producing a MS Excel based XY

matrix of mass spectral features (with related accurate m/z

and retention time variable pairs) 9 sample, with peak area

inputted where the mass spectral feature was detected in

each sample. In the UHPLC–MS ESI positive mode and

negative mode datasets a total of 2,933 and 1,505 mass

spectral features were deconvolved respectively, features

showing greater than 20 % relative standard deviation

within quality control (QC) samples were removed as were

features detected in the first 0.5 min of LC (void volume),

resulting in a total of 2,642 and 1,317 features in ESI

positive and negative modes respectively.

Following deconvolution, the putative identification of

lipid features was performed applying the PUTMEDID-

LCMS set of workflows (Brown et al., 2011) (Table S2).

An initial appraisal of the putatively identified lipid species

suggested that the phospholipids of E. coli are predomi-

nantly phosphatidyl cholines (PCs) and/or phosphatidyl

ethanolamines (PEs). Given previous reports that state the

major lipid classes of E. coli are represented by PEs,

phosphatidyl glycerols (PGs) and Cardiolipins, with minor

contributions made by phosphatidyl serines (PSs) and

phosphatidic acids (PAs) (Ames 1968), it is perhaps

tempting to speculate that the major lipid species detected

in this study are more likely to be PEs than PCs. The PC
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and/or PE phospholipids were largely detected in ESI

positive ionisation mode although a smaller number were

also observed in ESI negative mode. Further, a small

number of PAs were observed in ESI positive and negative

modes and a number of PGs were observed predominantly

in ESI negative mode. Further to phospholipids, a large

number of acylglycerols and free fatty acids were detected,

as well as further diverse lipid species such as sterols,

ceramides and sphingolipids. The putative level of identi-

fication provided by this approach can be categorised as

identification levels 2 and 3 according to the Metabolomics

Standards Initiative guidelines (Sumner et al. 2007).

As a first step towards the appraisal of the UHPLC–MS

datasets, PC-DFA was applied and score plots were gener-

ated (Fig. 4) in order to visualise the distribution of the

various samples and sample groups in relation to each other.

The central positioning of the QC samples through the 0 axes

of both DF1 and DF2 (Fig. 4a, c), indicate that after decon-

volution and quality control steps, the QC samples still

represent an average data point, and that the levels of ana-

lytical and technical reproducibility were high. Similar to

observations within the FT-IR dataset when subjected to

PC-DFA (Fig. 3), the UHPLC–MS datasets also indicated

that alterations due to Ciprofloxacin challenge within the

resistant bacterial isolates (isolates 160 and 161), resulted in

only a small level of sample separation within the PC-DFA

score plots for both ESI positive (Fig. 4a, b) and negative

(Fig. 4c, d) ionisation modes. Perhaps of the greatest signifi-

cance was the clear differentiation between control and Cip-

rofloxacin challenged samples of the sensitive E. coli isolate

173 and the intermediate resistant E. coli isolate 171, with

lipid changes due to Ciprofloxacin challenge being associated

Fig. 4 UHPLC–MS principle component-discriminant function ana-

lysis (PC-DFA) of 18 h Ciprofloxacin challenged and control

Escherichia coli. PC-DFA scores plot (DF1 vs. DF2) of UHPLC–

MS ESI ? mode data a with QCs included and b with QCs removed,

PC-DFA scores plot (DF1 vs. DF2) of UHPLC–MS ESI- mode data

c with QCs included and d with QCs removed. Within the figures key,

C refers to control samples, 0.02 and 0.3 refer to the antibiotic dose

(mg/l), the 95 % confidence interval (CI) is given in brackets
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with a trajectory across the DF1 axis for both ESI positive

(Fig. 4a, b) and negative (Fig. 4c, d) ionisation modes. The

PC-DFA scores plots of the UHPLC–MS datasets overall

indicate that whilst there are alterations in lipid profiles of the

resistant bacterial isolates (isolates 160 and 161) when chal-

lenged by Ciprofloxacin, these are overall minimal in nature

compared to the vast alterations in lipid profiles resulting from

Ciprofloxacin challenge within the sensitive and intermediate

resistant isolates (isolates 173 and 171 respectively).

Following PC-DFA, the next objective was to select which

lipids were significantly altered between control and Cipro-

floxacin challenged samples for each bacterial isolate inde-

pendently, by applying significance testing. Two significance

tests were applied and a consensus drawn between them.

Firstly, a PLS algorithm was applied to the data and the mass

spectral features were sorted by the magnitude of their corre-

sponding PLS coefficient values. Secondly, the ANOVA sta-

tistical test was applied to all mass spectral features. Finally,

starting with the mass spectral feature with the highest PLS

coefficient, the top 50 were selected whose p-value computed

by ANOVA was less than 0.05 (Table S3 and S4). For each

bacterial isolate, the significant features were sorted according

to retention time, since certain lipid species were represented by

multiple mass spectral features, the top 50 list was next reduced

to just the major ion (most intense) observed for each putatively

identified lipid species. The top 50 mass spectral features lists

for each isolate and ESI polarity, after having been reduced in

this manner, were next compiled and a total list of significant

lipid mass spectral features across all bacterial isolates was

obtained. As a next step, trend plots were generated for each of

the significant lipid features, which were then grouped

according to their response to Ciprofloxacin: lipid features that

were commonly up- or down-regulated across both resistant

and sensitive E. coli isolates (Fig. S1); lipid features that were

up- or down-regulated specifically in susceptible or in resistant

isolates (Fig. 5); lipid features that were differentially regulated

between resistant and sensitive isolates (Fig. 6).

3.4 A wide selection of E. coli lipid species are altered

by challenge with Ciprofloxacin, with many

showing differential regulation between sensitive

and resistant E. coli isolates

After the statistically significant lipids had been grouped

according to their response under Ciprofloxacin challenge,

the patterns of response were considered taking into

account the putative assignment of the lipid species and the

levels of saturation within the fatty acid components of the

lipid species, in order to identify potentially significant

trends within the results. Figure S1 reveals a series of lipid

alterations that were grouped as showing common

responses between both resistant and sensitive isolates.

Typically, higher levels of lipid up-regulation were

observed within the sensitive isolate 173 and intermediate

resistant isolate 171, with the lipids being putatively

assigned as PAs, PGs, PAs or PGs, and PGs or DGs (Di-

acyglycerides). Again, for the lipid species that were down-

regulated, typically higher levels of down-regulation were

observed in the sensitive isolate 173 and intermediate

resistant isolate 171, with the lipids being putatively

assigned as PC or PE or PE-NmE (n-Methyl PE) and one

lipid putatively assigned as a highly unsaturated DG with

total chain composition of 40:10 or 38:7 (dependent on the

potential ESI adduct that is formed). The phospholipids

that were generally up-regulated, according to their puta-

tive assignments, had more saturated fatty acids (typically

one or two unsaturated bonds) than the phospholipids that

were down regulated which typically had two-to-four

unsaturated bonds within the fatty acids.

The lipid features that were up- or down-regulated

specifically in susceptible or in resistant isolates are pre-

sented in Fig. 5. The lipids that were significantly up-reg-

ulated in the sensitive isolates generally showed a higher

level of up-regulation within the fully sensitive isolate 173

than the intermediate resistant isolate 171. A total of five

phospholipids assigned as PEs or PCs were up-regulated,

the putative assignments suggest high levels of saturation

within the phospholipid fatty acids, with only one or two

unsaturated bonds being present. The lipids that were sig-

nificantly down-regulated specifically in the sensitive iso-

lates generally showed similar levels of down-regulation

between the fully sensitive isolate 173 and the intermediate

resistant isolate 171. A small number of phospholipids fell

within this response grouping and were putatively assigned

as PCs or PEs and PAs or PSs. A lyso-PC and Cholesteryl-

beta-D-glucoside were also observed to be down-regulated.

Only a small number of lipids were altered specifically

within the resistant isolates 160 and 161, all of which were

highly down-regulated upon challenge with Ciprofloxacin,

these ions were putatively assigned as DGs and PAs.

Perhaps the most interesting series of lipid alterations

observed within the investigation, were those that were

differentially regulated between the sensitive and resistant

isolates (Fig. 6). A large number of phospholipids were

found to be down-regulated in the resistant isolates (iso-

lates 160 and 161) and up-regulated in the sensitive and

intermediate resistant isolates 173 and 171. Most com-

monly the significant lipids were down-regulated in the

b Fig. 5 UHPLC–MS trend plots of lipids significantly altered in

response to Ciprofloxacin: Lipids differentially regulated between

susceptible and resistant isolates. a Significantly up-regulated in

susceptible isolates. b Significantly down-regulated in susceptible

isolates. c Significantly down-regulated in resistant isolates. Error

bars represent the standard error within the non averaged data for

each experimental class
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resistant isolates and up-regulated in the sensitive isolate,

with the majority of the significant lipids being putatively

assigned as PCs or PEs and PAs. A small number of DGs

also fell within this response class, with putative assign-

ments suggesting potentially high levels of un-saturation

within the fatty acid components. Interestingly, an ion

putatively assigned as Cholesteryl 11-hydroxy-eicosatet-

raenoate was extremely highly up-regulated, but only

within the intermediate resistant isolate 171, perhaps

indicating an alternative mode of antibiotic exclusion to

that observed within the resistant isolates 160 and 161. In

comparison, only a very small number of lipids were

observed to be up-regulated within the resistant isolates

and down-regulated within the sensitive isolate. One such

ion was putatively assigned as a PG with highly saturated

fatty acids and the other as being either a PA or PG again

with highly saturated fatty acids.

Several trends have emerged within the LC–MS lipi-

domics dataset with the most significant perhaps being that

all phospholipids were assigned as PCs or PEs and PAs or

PGs in class, with their putative assignments suggesting

high levels of saturation within the fatty acids. Alterna-

tively, a large number of ions putatively assigned as DGs

were shown to be significant, many of the putatively

assigned DGs possessed more unsaturated fatty acids than

those observed for the phospholipids. Typically the levels

of up- or down-regulation observed for the sensitive isolate

173 and intermediate resistant isolate 171 were much

higher than the levels of regulation observed within the

resistant isolates, as indicated also by PC-DFA (Fig. 4).

Perhaps of further interest, is that the majority of statisti-

cally significant lipids, were up-regulated in the sensitive

isolate whilst being down-regulated in the resistant isolates,

with only small numbers of significant lipids revealing the

converse trend. It appears that the resistant isolates are

largely characterised by down-regulation of PCs or PEs in

response to Ciprofloxacin challenge, whereas the sensitive

isolates show high levels of up-regulation of PCs or PEs in

response to Ciprofloxacin challenge, perhaps suggesting

that high levels of lipid membrane modulation are taking

place as the antibiotic enters and takes effect upon the

bacterial cell. The developed experimental design has

accounted that the only difference between control and

Ciprofloxacin challenged samples for each respective strain

is the presence of the antibiotic. Therefore it is tempting to

make the assumption that all lipid changes are in direct

response to the effects exerted on the bacterial cell by the

antibiotic. However, previous research has shown that fatty

acid alterations can occur as a response to environmental

changes including temperature, pH, and osmotic pressure, a

phenomena known as phenotypic shift (Crompton et al.

2014). Therefore, with respect to the current study, it must

be considered that whilst some of the observed changes in

lipid composition in response to Ciprofloxacin may be the

result of the antibiotics interaction with the phospholipid

membrane, or in the case of resistant strains, the antibiotics

exclusion via membrane transport, other lipid alterations

may be indirect responses due to the antibiotic altering

environmental conditions such as pH within the bacterial

culture resulting in phenotypic shift.

Given that previous research has suggested that the major

phospholipid species detected in E. coli are PEs (Arnes

1968), it is perhaps unsurprising that the majority of lipids

that were significantly altered by Ciprofloxacin challenge

within this study were putatively assigned as being PEs or

PCs. This may suggest that Ciprofloxacin treatment is spe-

cifically affecting PEs or PCs, or alternatively that these are

the major lipid species of E. coli and thus are more likely to

have changes in their levels detected due to their higher

concentrations and that the alternate species of phospholip-

ids may be close to or under the detection limit of the

employed LC–MS instrumentation. However, if the latter

was the case, then perhaps one would expect to also observe

alterations in the other major lipid classes of E. coli, namely

PGs and Cardiolipins (Arnes 1968). Several previous

investigations, although based upon extracted liposomes

(Bensikaddour et al. 2008) or extracted membrane lipids

(Leying et al. 1986; Merino et al. 2003) of E. coli, rather than

on the bacterial cells within culture as performed in this

study, also suggested that Ciprofloxacin interacts at the

water-phospholipid head group interface of the lipid mem-

brane as revealed by atomic force microscopy (Merino et al.

2003) and also by combination of quasi-elastic light scat-

tering and steady-state fluorescence anisotropy, combined

with attenuated total reflectance (ATR)-FT-IR and 31P NMR

spectroscopy (Bensikaddour et al. 2008), with the studies

suggesting that re-modulation of the phospholipid fatty acids

takes place rather than a conversion of headgroup thus

forming a different class of phospholipid. Taking these

observations into account, it is clearly of much importance

that for the approach applied in this study utilising the high

sensitivity of LC-LTQ Orbitrap MS to investigate lipid

alterations within the ‘‘true’’ bacterial cell to be of greater

value, it will be of massive significance to develop online

LC–MS/MS methods and offline MSn (van der Hooft et al.

2011, 2012; Rojas-Cherto et al. 2012; Roux et al. 2012)

analyses of pre-fractionated samples, in order to not just

unambiguously assign a lipid identification, but also to

identify the levels of saturation and positions of unsaturated

b Fig. 6 UHPLC–MS trend plots of lipids significantly altered in

response to Ciprofloxacin: Lipids specifically regulated in susceptible

or resistant isolates. a Up-regulated in susceptible isolates and down

regulated in resistant isolates. b Up-regulated in resistant isolates and

down regulated in susceptible isolates. Error bars represent the

standard error within the non averaged data for each experimental

class
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bonds within fatty acids. Once developed, such methods and

their unrivalled abilities to unambiguously confirm the

identifications of the lipids and elucidate unsaturated fatty

acid bond positions will provide the highest levels of infor-

mation currently possible and will aid greatly our under-

standing of the effects of Ciprofloxacin modulation of fatty

acid structure within the putatively assigned PE and PC

phospholipids.

4 Concluding remarks

The LC–MS workflow developed for the analysis of lipid

species within E. coli when under the challenge of an

antibiotic such as Ciprofloxacin, has been shown to be a

technically and analytically reproducible method that is

useful for discovery phase studies on bacterial modes of

antibiotic resistance. Further, by combining a lipid profil-

ing approach with alternative metabolomics platforms

suited to profiling primary metabolism (e.g. GC–MS:

Winder et al. 2008), the approach may be highly successful

for studying the mechanisms underlying antibiotic modes

of action within sensitive isolates, as well as mechanisms

of resistance. Further, within this study, the developed

workflow has been shown to identify a range of interesting

and potentially clinically significant lipid alterations in

E. coli upon challenge with Ciprofloxacin. However, to

obtain a more satisfactory level of information, the next

step is the development of online RP-UHPLC–MS/MS and

offline direct infusion MSn methods with the LTQ-Orbitrap

XL MS system for identification of lipid species across all

classes. Such an approach will allow identification of

phospholipid classes and fatty acid constituents by

employing orthogonal Retention Time information and

MS/MS spectral fragmentation compared to analytical

standards. By further employing online fraction collection

and performing MS3[5 level experiments employing col-

lision induced dissociation and/or higher energy collision

dissociation methods then the positions of the unsaturated

bond positions within the fatty acid constituents of phos-

pholipids may potentially be identified. The current study

has suggested the great potential of LC–MS lipidomics for

the study of antibiotic modes of action or bacterial modes

of resistance, although greater abilities to unambiguously

identify the lipid species are required to maximise the

biological information content obtained by such a non-

targeted lipidomics approach.
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