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Key Points: 

 Recent sources of DPb were evident in the Celtic Sea despite a 4–fold reduction  in 

European surface waters since leaded fuel prohibition 

 Enhanced DPb in MOW, transported >2500 km across the NE Atlantic, demonstrate an 

extend of anthropogenic activities in environment 

 Sediments represent an important source of DPb to overlying waters exceeding the 

atmospheric flux of Pb 

 

Abstract 

Anthropogenic activities have resulted in enhanced lead (Pb) emissions into the environment 

over the past century, mainly through the combustion of leaded gasoline. Here, we present the 

first combined dissolved (DPb), labile (LpPb) and particulate (PPb) Pb dataset from the Eastern 

North Atlantic (Celtic Sea) since the phasing out of leaded gasoline in Europe. Consequently, 
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DPb concentration in surface waters has decreased by 4-fold over the last four decades. We 

demonstrate that anthropogenic Pb is transported over long distances (> 2500 km). Moreover, 

estimates of the benthic DPb flux exceeded the atmospheric flux of Pb in this region, suggesting 

sediments are an important Pb source. A strong positive correlation between DPb, PPb and LpPb 

indicates a dynamic equilibrium between all phases and the potential for particles to ‘buffer’ the 

DPb pool. This study provides insights into Pb biogeochemical cycling and demonstrates the 

impact of anthropogenic actions on the  environment. 

 

 

1 Introduction 

Lead (Pb) is one of few elements for which the impact of human activity on the marine 

environment is clearly evident. Anthropogenic perturbation of the natural oceanic Pb 

biogeochemical cycle dates back to 1850 (Kelly et al. 2009) with leaded gasoline and coal 

combustion serving as major sources of Pb to the atmosphere (Wu & Boyle 1997; Kelly et al. 

2009). Anthropogenic Pb is initially transported in the atmosphere in the form of fine aerosol 

particles that can travel long distances, and deposited in remote areas resulting in enhanced 

surface water concentrations (Véron & Church 1997; Kumar et al. 2014). Anthropogenic Pb 

entirely masked signals of naturally sourced Pb (suggested as 2.2 pmol kg-1 (Henderson & 

Maier-Reimer 2002)) during the Pb emission peak in 1970 – 80’s (Boyle et al. 2014). To date, 

leaded gasoline has been virtually phased out (except in 3 countries, as of March 2017, UNEP), 

and Pb concentrations have decreased significantly from  170 to < 15 pmol kg-1 in surface 

waters (Boyle et al. 2014; Schaule & Patterson 1983), with recent evidence of natural lead 

signatures re-emerging in the North Atlantic (Bridgestock et al. 2016).  
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Historic signals of Pb released to the marine environment can be used to investigate the 

reactivity and cycling of this element, to trace long-range ocean circulation patterns (Lee et al. 

2015; Fine 2010). Pb has previously been applied as a tracer of historically polluted waters in the 

Indian (Lee et al. 2015) and Pacific Oceans (Chien et al. 2017) and ventilated surface waters of 

the Western North Atlantic (Boyle et al. 2014). Anthropogenic perturbation of natural Pb 

concentrations in the ocean has been described as an ‘evolving global experiment’ (Boyle et al. 

2014) that not only demonstrates the magnitude of human impact on the environment but also 

provides insights into potential pathways of pollutants in the ocean.  

Lead is a particle reactive element in marine waters and is typically removed through 

scavenging. However, the role of particulate matter and the physico-chemical processes that 

influence the fate of dissolved Pb (DPb) and facilitate long-range transport are poorly 

constrained. A slow release of DPb from particles and a rapid isotopic exchange with particulate 

matter that can influence the fate of particulate Pb (PPb) transported to the ocean has recently 

been reported (Chen et al. 2016). Therefore, in order to gain insights into biogeochemical cycling 

of Pb in the marine environment, both phases should be considered. 

Here we report and evaluate the first extensive seasonal study of DPb, PPb and leachable Pb 

(LpPb) distributions in North West European Shelf Sea since the phase-out in Europe of leaded 

gasoline use in 1980 - 2011 (European Communities, 1978). This study provides insights into the 

dynamic relationship between dissolved and particulate phases and demonstrates the widespread 

influence of human activities on the marine environment. 

 

2 Study region, materials and methods 
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Full details of the study region, sampling and methods are provided in the supporting 

information (SI) (S1). Briefly, samples for trace metal analysis were collected during three 

different seasons; November – December 2014 (DY018), April 2015 (DY029), and July – 

August 2015 (DY033) in the Celtic Sea continental margin (Fig. 1), on board RRS Discovery. 

Sampling consisted of two off-shelf transects along a canyon (T1_C, stations C01 – C07, C15) 

and nearby spur (T2_S, stations S08 – S09) and one on-shelf transect in the Celtic Sea (stations 

CS2, CCS, J02 – J06, Site A). Trace metals samples were collected following GEOTRACES 

protocols (Cutter et al. 2010). Dissolved Pb and Mn (DMn), filtered using a 0.2 μm cartridge 

filter, (Sartobran) were preconcentrated using an automated system (SC-4 DX SeaFAST pico; 

ESI) and analysed by high-resolution inductively coupled plasma-mass spectrometry (HR-ICP-

MS; Thermo Fisher Element II XR) (Rapp et al. 2017). Dissolved Fe (DFe) (0.2 μm filtered) was 

analyzed by flow injection with chemiluminescence detection (Obata et al. 1993) as detailed in 

(Birchill et al. 2017). Particulate Pb was collected on clean 25 mm Supor® polyethersulfone 

membrane disc filters (Pall, 0.45 μm) and subjected to (Milne et al. 2017) a 25% acetic acid-

hydroxylamine hydrochloride leach (LpPb) (Berger et al. 2008) and sequential acid digestion 

(PPb)(Ohnemus et al. 2014).  All particulate samples were analysed using ICP-MS (Thermo 

Fisher X Series 2) as detailed in Milne et al (2017). Dissolved aluminium (DAl) (0.2 μm filtered) 

was analyzed using spectrofluorometry following (Hydes & Liss 1976). Evaluation of the 

accuracy and efficiency of these methods was carried out using Certified Reference Materials 

with the results showing good agreement (SI, Table 1). Some data points were identified as 

outliers and were excluded from consideration (SI, S2). Radium (Ra) isotopes were extracted 

from large seawater volumes (60 – 100 L) by adsorption onto manganese acrylic fibers (Sun & 

Torgersen 1998). Ra activities were analyzed at sea by Radium Delayed Coincidence Counting 
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following standard methodology (Annett et al. 2013; Garcia-Solsona et al. 2008; Moore 2008; 

Moore & Arnold 1996). Water mass distribution was quantified using extended Optimum 

Multiparameter analysis (extOMP) (Karstensen & Tomczak 1998; Hupe & Karstensen 2000; 

Pollard et al. 2004)). The propagation time of MOW from the Gulf of Cadiz was calculated 

analogously to (Waugh et al. 2003) using CFC-12 data available in the GLODAPv2 data product 

(Olsen et al. 2016). Aerosol samples were digested using HF and HNO3 following the method 

adapted from (Morton et al. 2013) and analysed by the ICP-MS (Thermo Fisher).  

 

3 Results and discussion 

The DPb concentrations for the Celtic Sea region are illustrated in Figure 2 (and SI, Fig. S1) 

and ranged between 29.6 and 122.2 pmol kg-1. Off-shelf distributions revealed elevated DPb 

concentrations (50.8 ± 3.0 pmol kg-1 (n = 20)) in the seasonal mixed layer (SML) along the 

canyon transect in November in comparison to other seasons. These elevated DPb concentrations 

were also seen at stations S08 and S09 along the spur transect. Below the SML, DPb 

distributions were generally consistent along both transects in all seasons and decreased down to 

38 pmol kg-1 in the upper waters and increased at depths  600 – 1550 m to 47.2 ± 5.4 pmol kg-1 

(n = 91). In deeper waters, DPb concentrations decreased to 37.0 ± 3.2 pmol kg-1 (n = 39). On the 

continental shelf, DPb concentrations were generally higher in comparison to the off-shelf 

transects and ranged between 36.1 – 122.2 pmol kg-1. Elevated DPb concentrations were 

measured in surface waters in April (96.8 pmol kg-1) and July (99.1 pmol kg-1) in comparison to 

November (72.6 pmol kg-1) whereas DPb was persistently elevated in bottom waters (up to 120.6 

pmol kg-1) across all seasons. No correlation of DPb with macronutrients was observed.  
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Surface waters DPb concentrations of  42 pmol kg-1 (n = 103) from 2014 – 2015 collected 

along the shelf break showed at least a 4-fold decrease in concentration in comparison to 

previous reports from the study region (Fig. 2 and SI, Table 2) (Brügmann et al. 1985; Cotté-

Krief et al. 2002; Helmers & Van der Loeff 1993; Lambert et al. 1991; Muller et al. 1994) and 

generally lower in comparison to other European shelf environments over the last 4 decades 

(Kremling & Streu 2001; Laumond et al. 1984; Monteiro et al. 2015; Pohl et al. 2011; Prego et 

al. 2013; Waeles et al. 2008). Reduced DPb concentrations over the last two decades are a 

success of the leaded gasoline phase-out process. However, these concentrations exceeded 

predicted natural levels of Pb (Henderson & Maier-Reimer 2002) by at least an order of 

magnitude, indicating that the vast majority of Pb has an anthropogenic origin. Thus, the 

elevated DPb concentrations we report in surface waters indicate the presence of recent 

anthropogenic Pb sources to the European coastal environment despite the prohibition of leaded 

gasoline. 

 

3.1 Long range transport in MOW 

Elevated DPb concentrations of 47.1 ± 5.5 pmol kg-1 (n = 85) were a persistent feature in the 

depth range  550 – 1500 m (27.30 – 27.75 kg m-3 σ0) in the Celtic Sea slope region. This DPb 

maximum coincided with salinity (35.74) (Fig. 3a) and DAl (17.3 ± 2.6 nmol kg-1, n = 89) 

maxima (SI, Fig. S2), signatures of Mediterranean Outflow Water (MOW) (Measures & Edmond 

1988; Rolison et al. 2015). Surface waters in the Mediterranean Sea, where MOW is formed, 

received enhanced atmospheric Pb inputs during the period of leaded gasoline use, with 

maximum Pb concentrations of 500 pmol kg-1 reported (Boyle and Moss, in prep.). 
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Mediterranean waters also receive enhanced aeolian fluxes of Al from Saharan dust. Following 

deep water formation in the Levantine Basin and Gulf of Lions, the saline deep Mediterranean 

waters, high in Pb (40 -  80 pmol kg-1) (Rolison 2016) and Al (125 – 170 nmol kg-1, (Rolison et 

al. 2015)), exit the Strait of Gibraltar as bottom waters and mix with ENACW (García-Ibáñez et 

al. 2015). The MOW spreads across NE Atlantic at a depth  500 – 1500 m and propagates along 

the continental slope towards the Celtic Sea continental shelf break. The mean propagation time 

of MOW from the Gulf of Cadiz to the Celtic Sea slope region is  5 years (SI, S3 and Fig. S3). 

The presence of MOW at intermediate depths in the study region has previously been reported 

(Lambert et al. 1991; Cotté-Krief et al. 2002) and was confirmed by the extOMP analysis (Fig. 3 

b). The core of the MOW (up to 55%) was identified at  1000 m depth with a Gaussian decay 

(20% at 500 m and 1500 m). MOW mixed with Subarctic Intermediate Waters (SAIW) and East 

North Atlantic Central Water (ENACW) (SI, Fig. S4) in the respective depth range. Labrador 

Sea Water (LSW) was identified at depths below the MOW where it contributed > 60% in its 

core centered at 1800 m depth. The deepest waters consisted of LSW and denser North East 

Atlantic Deep Waters (NEADW) (SI, Fig. S4).   

Enhanced DPb concentrations were also observed on GEOTRACES transects at 

corresponding density layers (27.22 – 27.82 kg m-3 σ0): in the Gulf of Cadiz (49.0 ± 2.6 pmol kg-

1, n = 14, GA04 (Rolison 2016)), north (46.1 ± 6.1 pmol kg-1, n = 18, GA01) and south of Gulf 

of Cadiz (55.1 ± 5.5 pmol kg-1, n=10, GA03, (Noble et al. 2015)) (SI Fig. S5 for station 

locations) and are in agreement with our observations. Our study region is 2500 km away from 

the Strait of Gibraltar, therefore the concentration of DPb and DAl might be expected to decrease 

through scavenging and/or dilution processes during transit. Whilst DAl concentrations 

decreased from 27.8 ± 7.2 (Gulf of Cadiz) to 17.3 ± 2.6 nmol kg-1 mainly due to dilution, DPb 
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concentrations remained unchanged (SI, Fig. S6). We suggest the following processes, that 

maintain elevated DPb during MOW transit: i) sedimentary input from the European continental 

slopes. This mechanism has been suggested in the Philippine Sea (Chien et al. 2017), and local 

sediment resuspension events as MOW propagates along the Bay of Biscay continental slope 

have previously been observed (McCave & Hall 2002). ii) Reversible Pb sorption onto particle 

surfaces. This mechanism has been suggested to supply DPb to North Pacific deep waters (Wu et 

al. 2010). Pb isotope exchange between these two phases has been demonstrated (Chen et al. 

2016; Sherrell et al. 1992) and the potential of particle reversible sorption has been determined 

with thorium isotopes (Bacon & Anderson 1982). Potentially, DPb (< 0.2 μm) may be released 

from particles in the form of small, low specific density inorganic particles (colloids 0.02 – 0.2 

μm) with longer residence time. iii) Dissolution of PPb within MOW. Our results show that there 

was a strong correlation between PPb and the leachable, easily exchangeable LpPb phase (r2 = 

0.99, n = 205, SI, Fig S6), the major portion of PPb was in LpPb form (78 ± 10%, n = 205) while 

overall the majority of the total Pb pool (PPb + DPb) was in the DPb fraction (70 ± 18%, n = 

171), thus implying a significant role of  particles in DPb distributions.  

However, partial mixing with other historically Pb polluted waters: such as eastern North 

Atlantic ventilated surface waters and LSW masses transported at intermediate depths across the 

North Atlantic also need to be considered. Low-salinity, and high-oxygen LSW underlies the 

warm, saline MOW (Talley & McCartney 1982). Our extOMP confirmed a layering of the water 

masses with MOW at a core depth 27.60 kg m-3 transiting into the LSW core at 27.79 kg m-3 (SI, 

Fig S3) and a potential of vertical mixing of bottom layers of MOW with LSW. In waters 

identified as LSW by our extOMP analysis (27.75 – 27.86 kg m-3 σ0). Within LSW, DPb and 

DAl concentrations decreased to 42.8 ± 4.2 pmol kg-1 (n = 42) and 15.8 ± 1.0 nmol kg-1 (n = 40) 
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respectively, along with salinity (34.98 – 35.4) and temperature (from 8.8 ± 1.5 to 5.1 ± 1.0 o C). 

However, these values were higher in comparison to DPb (36.9 ± 7.4 pmol kg-1, n = 60), DAl 

(13.0 ± 1.2 nmol kg-1, n = 60), salinity (34.94 – 35.2) and temperature (4.3 ± 0.6 oC) observed 

within LSW (27.68 – 27.81 kg m-3 σ0) in the NW Atlantic (GA02 section, 2010) (Mawji et al. 

2015). Densities of MOW and LSW are too similar to differentiate completely, we were thus 

unable to identify the exact contribution of each water mass. Our findings however, indicate a 

potential of MOW penetration into deeper waters, altering properties of LSW. Therefore, we 

conclude that the DPb maximum in the Celtic Sea region was a result of anthropogenically 

perturbed MOW masses reaching NW European continental margins. This historical signal can 

be traced over long distances (> 2500 km) at intermediate depths across NE Atlantic basin. 

 

4.2 Sediment release of a particle reactive element 

Persistently enhanced DPb (65.9 – 120.6 pmol kg-1) and PPb concentrations (149.4 – 805.8 

pmol kg-1) were observed in bottom waters in all seasons at Site A and in November on the 

continental slope at C03-C04 stations (DPb: 52.5 ± 5.6 pmol kg-1, n = 7, PPb: 29.3 ± 13.9 pmol 

kg-1, n = 8) (Fig. 4). After atmospheric deposition to surface waters, Pb is scavenged and 

transferred to the seafloor (Bastami et al. 2015; Marani et al. 1995). Tidal currents, wind driven 

waves and storm events cause resuspension of sediments (Kalnejais et al. 2007), thereby 

supplying Pb-enriched particles to the water column. This mechanism has been reported for deep 

ocean (Noble et al. 2015; Lee et al. 2015), coastal (Annibaldi et al. 2009; Chien et al. 2017), 

estuarine (Rivera-Duarte & Flegal 1994), and river systems (Ferrari & Ferrario 1989), and 

observed in sediment chamber experiments (Kalnejais et al. 2007; Zago et al. 2000).  
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At Site A, the enhanced DPb and PPb concentrations towards the seafloor coincided with 

persistently elevated turbidity signals (Fig. 4). This indicates particle resuspension at bottom 

depths and subsequent DPb and PPb remobilization from the sediments to the overlying waters. 

This benthic supply is further supported by an increased 223Raxs and 224Raxs short-lived isotopes 

(3.66 and 11.4 days respectively) near the seafloor (Fig 4), indicating recent sedimentary 

influence. Similar feature was observed on the continental slope along the canyon transect in 

November where salinity maximum decreased towards the continental shelf break from 35.74 

(C01) to 35.61 (C04) ( 1000 m depth), yet DPb concentrations within the MOW depth range 

remained unchanged (Figs. 2a and 3a). Maintained DPb and elevated PPb concentrations 

coincided with increased 223Raxs and 224Raxs signals and the highest turbidity signal in all 

sampling seasons (Fig. 4 and SI, Fig. S7). This further confirms a sedimentary source of DPb and 

PPb to overlying waters.  

Although, benthic Pb remobilization has been previously suggested by (Noble et al. 2015) and 

(Chien et al. 2017), these studies reported merely DPb fraction. According to our knowledge, this 

is the first clear evidence of the sedimentary Pb source supported by PPb and Ra measurements 

observed directly in field. Furthermore, our results showed a strong positive correlation between 

both DPb and PPb (r2 = 0.98, n = 12), and DPb and LpPb (r2 = 0.98, n = 12) at Site A and 

C03/C04 stations respectively (SI, Fig. S8) indicating a dynamic equilibrium between phases. 

Although, little is known about biogeochemical processes facilitating DPb sedimentary release, 

we suggest that the benthic remobilization could be enabled through: association with iron-

manganese precipitates (Kalnejais et al. 2007; Allen et al. 1990; Bastami et al. 2015; Fernex et 

al. 1992) and reductive dissolution of Fe(II) and Mn(II) species in sediments (Fernex et al. 1992). 

This mechanism is supported by elevated DFe and DMn concentration towards the seafloor at 
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Site A (SI Fig. S9) but not at stations C03/C04. Potentially, DPb may be released in form small 

colloids deposited onto sediments (Muller 1996; Sen & Khilar 2006 and references therein). 

These Pb-enriched resuspended fine particles dispersed in solution have a longer residence time 

in comparison to bulk sediment particles (Kalnejais et al. 2007; Ferrari & Ferrario 1989).  

We determined a sedimentary Pb flux to overlying waters of 27 - 41 x 10-9 moles Pb m-2 d-1 (n 

= 3) at Site A in April (SI, S4) using short-lived Ra isotopes (Moore 2000). To our knowledge, 

this is the first benthic Pb flux estimation measured directly in the field. Furthermore, this 

sedimentary Pb flux exceeded by more than double an order of magnitude the atmospheric flux 

(0.03 – 12.2 x 10-9 moles Pb m-2 d-1) observed at a nearby Penlee Point Atmospheric Observatory 

in 2015 (Fig. 1 and SI, S5 (Arimoto et al. 2003)). The sedimentary DPb flux was likely a result 

of historically deposited Pb accumulation in sediments, whilst the recent relatively low 

atmospheric Pb flux reflects the implementation of strict European air emission regulations. We 

therefore stress that sediments containing legacy Pb may serve as an important, if not major, 

source of Pb to overlying waters in future. 

 

4.3 Recent Pb sources in the European coastal regions 

Persistently higher DPb concentrations (36.1 – 122.2 pmol kg-1) were measured on the 

continental shelf in all sampling seasons, in comparison to the off-shelf transects (Fig. 2). 

Elevated DPb concentrations of 72.6, 96.8 and 99.1 pmol kg-1 were observed in surface waters at 

Site A in November, April and July respectively (Fig. 4) and indicated recent Pb inputs. Reduced 

salinity in April and July in surface waters (SI, Fig. S10) and a strong inverse correlation of DPb 

with salinity r2 = -0.94 (April) and r2 = -0.98 (July) suggest a fluvial source of DPb. On the 
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continental slope, enhanced SML DPb concentrations were also observed along the canyon 

(T1_C) transect in November (50.8 ± 3.0 pmol kg-1, n = 20) and at S08 and S09 stations on the 

spur (T2_S) transect. Lower DPb concentrations were observed during other seasons; 39.6 ± 6.9 

pmol kg-1 (n = 23, T1_C) and 35.0 ± 4.2 pmol kg-1 (n = 30, T2_S) in April and 35.2 ± 3.8 pmol 

kg-1 (n = 9, T1_C) and 37.4 ± 4.9 pmol kg-1 (n = 6, T2_S) in July (Fig. 2). Although the exact 

source of enhanced DPb measured in November could not be identified, enhanced Pb in surface 

waters suggests a recent input of DPb to European coastal waters regardless of the 

implementation of strict environmental policies in Europe. 

 

5 Conclusions 

Our observations demonstrate the widespread impact of anthropogenic activities on the 

marine environment. The elevated Pb signal is transported long distances (> 2500 km) at 

intermediate depths across the North East Atlantic as a consequence of anthropogenic Pb flux 

over the past century. Considering implementation of strict environmental regulations in Europe 

this oceanic Pb signal is similar to CFCs in that it is predicted to decrease overtime. However, 

taking into account the residence time of Pb in the deep ocean of 100 – 200 years, presence of 

recent Pb sources and the ‘re-supply’ of Pb to the water column from sediments containing 

legacy Pb, we expect the Pb signal to remain in the marine environment throughout this century, 

if not longer. We also emphasize consideration of the particulate phase in the interpretation of 

future oceanic DPb distributions due to a close relationship between these two phases. 
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Figure 1. Station locations across canyon T1_C (white and red circles), spur T2_S (green circles) transects and on-shelf 

transect (black circle) during three research expeditions in November (DY018), April (DY029) and July (DY033). Blue 

diamond represents PPAO station. Map generated using GeoMapApp, http://www.geomppapp.org (Ryan et al. 2009). 
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Figure 2. Upper panel: dissolved lead distribution plots (a) along the canyon transects (T1_C, left), (b) along the spur transects (T2_S, middle), (c) and along the 

on-shelf transect (left) in November (DY018) (top), April (DY029) (middle) and July (DY033) (bottom). Bottom panel: (d) example of dissolved aluminium 

distribution plots from November (DY018) along the canyon (T1_C) transect (left) and spur (T2_S) transect (right). For the full dissolved aluminium results 

please see SI, Fig. S1. Black lines represent MOW density range contour plots. (e) Reduction of DPb concentrations in the Celtic Sea slope region over the last 

40 years. Data are from: (Brügmann et al. 1985)  green circles, (Lambert et al. 1991) blue triangles, (Cotté-Krief et al. 2002) yellow squares, and this study is 

represented by the S08 station in April (DY029) by red diamonds. 
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Figure 3. Upper panel (a): salinity distribution plots along the canyon transects (T1_C, left) and along the spur 

transects (T2_S, right) in November (DY018) (top), April (DY029) (middle) and July (DY033) (bottom). Bottom 

panel (b): the percentage distribution of MOW along the canyon (T1_C) and spur (T2_S) transects in November 

(DY018) (left), April (DY029) (middle) and July (DY033) (left). For the full OMP results see SI, Fig. S3. 
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 Figure 4. Upper panel: depth profiles of DPb (circles), PPb (triangles), LpPb (squares), turbidity (diamonds) and 
224Raxs (crosses) at Site A in November (DY018) (left), April (DY029) (middle) and July (DY033) (left). Bottom 

panel: depth profiles of DPb (circles), PPb (triangles), 224Raxs (squares) and turbidity (black line) at station C03 (left) 

and C04 (right) in November (DY018). 
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