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Abstract 

  

In vitro models are emerging tools for reducing reliance on traditional toxicity tests, especially in areas where 

information is sparse. For studies of fish, this is especially important for extrahepatic organs, such as the 

intestine, which, until recently, have been largely overlooked in favour of the liver or gill. Considering the 

importance of dietary uptake of contaminants, the rainbow trout (Oncorhynchus mykiss) intestine-derived cell 

line RTgutGC was cultured, to test its suitability as a high-throughput in vitro model. Benzo[a]pyrene (B[a]P) is 

an important contaminant and a model polycyclic aromatic hydrocarbon (PAH). Over 48 h exposure, a range of 

endpoints and xenobiotic metabolism rates were examined at three different pH levels indicative of the in vitro 

(pH 7.5) and in vivo (pH 7.7) and hind-gut (pH 7.4) regions as a function of time. These endpoints included (i) 

cell viability: acid phosphatase (APH) and lactate dehydrogenase (LDH) assays; (ii) glucose uptake; (iii) 

cytochrome P450 enzyme activity: 7-ethoxyresoorufin-O-deethylase (EROD) assay; (iv) glutathione transferase 

(GST) activity; (v) genotoxic damage determined using the comet assay. Absence of cell viability loss, in parallel 

with decrease in the parent compound (B[a]P) in the medium and its subsequent increase in the cells suggested 

active sequestration, biotransformation, and removal of this representative PAH. With respect to genotoxic 

response, significant differences were observed at both the sampling times and the two highest concentrations of 

B[a]P. No significant differences were observed for the different pH conditions. Overall, this in vitro xenobiotic 

metabolism system appears to be a robust model, providing a basis for further development to evaluate 

metabolic and toxicological potential of contaminants without use of animals. 

Keywords: 3Rs; rainbow trout; RTgutGC; dietary exposure; B[a]P; comet assay 
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1 Introduction 

Aquatic toxicity and bioaccumulation studies are important components of environmental hazard and risk 

assessment of chemicals. The behaviour of a compound in the environment is primarily assessed using 

bioaccumulation studies in aquatic organisms, bioaccumulation being the result of absorption, distribution, 

metabolism, and excretion (ADME) processes [1]. For most regulatory assessments, broad suites of in vivo 

toxicity tests continue to provide basic information for the decision-making process. The time and resources 

necessary to support this approach run counter to the demands being faced at present. Furthermore, there is 

mounting pressure to minimise animal usage and to use animal-free approaches in initial testing strategies, 

where possible [2– 5]. For many years, assays using cell lines derived from fish have been proposed as 

alternatives to animal use in aquatic toxicity testing with excellent reviews on the topic available [6–11]. More 

recently, they have been proposed as in vitro-in vivo toxicity extrapolation tools [12–15], in addition to adding 

information complimentary to adverse outcome pathway (AOP) predictions [16]. 

 

In vitro systems are most useful if they have predictive power for in vivo outcomes and, as such, should be 

developed based on physiological comparability to the organ of choice. In essence, the cell culture system should 

mimic a particular tissue and represent a simplified, miniaturised copy of the organ or tissue of interest. These 

systems offer the possibility of addressing and answering fundamental questions; facilitating high-throughput 

toxicity screening; and providing reproducible results, due to a standardised and well-characterised (although 

artificial) environment. The results of such experiments can subsequently be extrapolated to complex natural 

systems, thereby providing a tremendous reduction in reliance on traditional animal tests. The models allow 

studies at the cellular and subcellular levels to be carefully probed. One of the driving forces of their widespread 

adoption is their potential ability to aid in the reduction and replacement of animal experiments during toxicity 

assessments. As such, they have become popular for characterising initial mechanisms of action of toxicity, since 

the primary interaction between chemicals and biota occurs at the cellular level. Early manifestations of toxicity 

can be used to evaluate pollutant exposure [7] and have previously been reported as a sensitive and reliable 

assessment tool in aquatic systems [10, 17]. These studies have primarily focused on the use of typical 

xenobiotic-metabolising organs, such as the liver and gill in rainbow trout (Oncorhynchus mykiss), a model fish 

species [11, 13, 14, 18–22], but are readily available from numerous fish species [23]. 

 

There is growing concern over the presence of genotoxic, carcinogenic, and reproductive contaminants in the 

aquatic environment [24]. Genotoxic compounds could potentially affect the short- and long-term survival of the 

species while also posing risks to human health via the food chain [25, 26]. Genotoxicity could be linked to 

various phylogenetic endpoints [26–29]. It is therefore important to characterise thoroughly the metabolic 

capabilities and properties of a model system before it is widely accepted to assess the toxic potential of 
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environmental contaminants. Despite the identification and localisation of P450-dependent enzymes in the fish 

intestine and similarly in the liver, indicating their dual metabolic activity [30, 31], in vitro models of the 

intestinal system are relatively few. In aquatic systems, one cell line originating from the intestine of rainbow 

trout is readily available (RTgutGC; [32]). In early work, major histocompatibility genes were identified in this 

cell line [33]. Later work demonstrated trans-epithelial electrical resistance (TEER) comparable to values 

measured in vivo; apical localisation of tight junction proteins; and the induction of Na+/K+-ATPase mRNA 

following exposure to saltwater buffer [34]. Recent work published by our laboratory has demonstrated the 

direct comparability of this model to existing ex situ gut sac preparation methods when exposed to copper, a 

ubiquitous environmental contaminant [35]. However, the suitability of this cell line for toxicological assessment 

and as an in vitro animal replacement tool needs to be further examined using more general environmental 

contaminants, especially organic contaminants which require metabolic activation, to establish its sensitivity and 

comparability before incorporation into a regulatory framework.  

 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the aquatic environment, with their metabolism well 

studied in a variety of fish and mammals. This is due in large part to the observation that the compound 

benzo[a]pyrene (B[a]P) requires metabolic activation to bind to DNA and other biomolecules to induce biological 

response. The mutagenic and carcinogenic properties of this compound are initiated by cytochrome P450-

dependent monooxygenase activity [30, 36] and, due to its lipophilic nature, it is likely that fish are exposed to 

large doses via the diet [37–40]. Indeed, a recent study reports that the intestine is the first barrier for PAH 

uptake from the diet [41]. 

 

Development of an in vitro cell-based model from the intestine of fish that mimics its mechanical, structural, 

absorptive, transport, and other pathophysiological properties has the potential to accelerate toxicity screening 

by providing a high-throughput platform to assess the ecotoxicological potential of a compound. This 

concurrently aims to reduce the number of animals used in traditional toxicity tests, in line with “3Rs” 

(replacement, reduction and refinement) principles. The primary objective of this study was to test whether the 

RTgutGC cell line can be used as robust environmental monitoring tool. As the bottleneck in in vitro toxicological 

studies is reported by ECVAM to be functional metabolism [42], we focussed on characterising metabolism and 

evaluating genotoxic damage within this system, building up from our previous study, which included thorough 

morphological and histological characterisation of this cell line [35]. In this work, uptake of a known 

genotoxicant and carcinogen, B[a]P), was verified using Gas Chromatography-Mass Spectrometry (GC-MS) 

quantification of the removal of the parent compound and immunofluorescence identification in the cells. 

Furthermore, external pH is known to partly determine the cytoplasmic or intracellular pH and can have a 

subsequent effect (beneficial or detrimental) on enzymatic activity, reaction rate, protein stability, and other 

biological cascade processes, across numerous taxonomic groups. Following initial characterisation of the 
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activity, therefore, B[a]P exposures were also carried out using three exposure solutions with varying pH (L-15 

medium pH 7.5 and a L-15: saline exposure of pH 7.7 and 7.4) as detailed in our earlier studies [35]. Using B[a]P 

as model environmental contaminant, we probed the ability of this cell line for active xenobiotic metabolism, the 

resulting genotoxicity, and its comparability to information available in the literature. 

 

2 Materials and methods 

2.1 Experimental design 

Prior studies, including our own, have established the comparability of this intestinal in vitro model to native 

tissue cultured as monolayers on Transwell inserts [34, 35]. In this study, we focused on the metabolic activity of 

the system following exposure to a known carcinogen, B[a]P, as mentioned above. Experiments were carried out 

in two stages, with stage I testing whether the cell line carries out active uptake of B[a]P, using epifluorescence 

microscopy and an analytical technique. Following confirmation of uptake of this compound, basic 

characterisation of the response of the cell line to this agent was carried out (i.e., cell viability assessed with the 

acid phosphatase assay (APH) and lactate dehydrogenase (LDH) release). In stage II, parallel studies determined 

glucose depletion, CYP1A activity (EROD assay) and GST activity. In addition, genotoxic response was 

determined using the alkaline single cell electrophoresis or comet assay. As this study was carried out to 

ascertain the potential of this method to act as a screening tool for environmental contaminants, these 

experiments were not carried out on Transwell inserts as done in our earlier studies [35] and are instead 

representative of cells grown as monolayers on 12-well plates. 

2.2 Chemicals and medium 

All reagents and chemicals used in the experiments were obtained from ThermoFisher (UK) or Sigma-Aldrich 

(UK) unless otherwise indicated. B[a]P was obtained from Sigma (B1760; CAS:50-32-8). Stock solutions of B[a]P 

(500 µM in 100% cell culture grade DMSO) were prepared prior to the initiation of experimentation, aliquoted, 

and stored at -20°C. For each experimental repeat or new assay, a new aliquot was used. Secondary saline 

exposure solutions used a modified Cortland saline solution previously described [28]; two pH values of a saline 

solution were chosen to represent the mid (pH 7.7) and posterior intestine (pH 7.4). Unconditioned unmodified 

L-15 medium was also run in parallel (pH 7.5). As pH can vary over time, the cell culture experiment was set up 

as per the exposure scenario. Briefly, exposure stocks made in L-15 medium, L-15 medium: saline (pH 7.7 and 

7.4) were added to each well of a 12-well plate and monitored over 48 h. Sampling was done at 24 and 48 h, with 

exposure samples checked both using pH test strips (Sigma-Aldrich) and with a pH meter (FisherBrand Hydrus 

B500) at incubation temperature (21 °C). There were no significant differences between the pH values (pH 7.7 

+/- 0.06 and 7.4 +/-0.08) of exposure solutions (p = 0.65) without cells and so the experiment was also repeated 
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with RTgutGC cells. Data are presented as the pooled means of all exposure solutions with the average 

breakdown of pH 7.7 and 7.4 as follows: at 24 h, 7.5 ± 0.13 and 7.4 ± 0.04 and at 48 h, 7.5 ± 0.11 and 7.4 ± 0.02, 

respectively. There were no significant differences between pH values when compared to initial exposure 

medium: saline stocks (p = 0.88). As such, experiments were not additionally buffered during the exposure 

period. 

2.3 Cell line maintenance 

The rainbow trout gastrointestinal cell line RTgutGC [32] was a kind gift from Dr. Lucy Lee (University of the 

Fraser Valley, Abbotsford, BC, Canada). The cell line was routinely cultured in 75 cm2 culture flasks at room 

temperature (21 °C) in L-15 culture medium supplemented with 10% foetal bovine serum (FBS). Cells were 

seeded normally at a density of 5×104 cells/mL, and became confluent after 7-9 days. Trypan blue (1:1 ratio to 

cells) was used to assess cell viability prior to experimental set up and samples with viability <95 % were 

discarded. Unless otherwise indicated, experiments were carried out on 12-well plates at a seeding density of 

10×104 cells/mL and cells were allowed to attach and become confluent over a three-day period. A half medium 

exchange (L-15 without FBS) occurred on the day prior to exposure (FBS reduced to <5 %). On the day of 

exposure, half of the medium was exchanged for the exposure stocks of B[a]P (1:1 split). Through consecutive 

medium exchanges, the final FBS concentration in the medium used throughout the biochemical assay analysis 

was <2.5 % (not accounting for cellular usage). 

2.4B[a]P concentration in medium and cell samples; determination by GC-MS 

Two preliminary investigations were carried out to determine whether the cell line could take up this 

prototypical PAH. Firstly, RTgutGC uptake of B[a]P was confirmed using an epifluorescence microscope, where 

cells were seeded onto Nunc Lab-Tex R II chamber slide system (C7057; Sigma-Aldrich, UK), allowed to become 

confluent, and washed twice with DPBS prior to exposure. Following exposure, cells were incubated in varying 

concentrations of B[a]P (0-50 µg/L) for 24 and 48 h in the dark, fixed with 4% formal saline, and cells stained 

with DAPI for 30 s (1 µg/L; Sigma-Aldrich, UK). Images were obtained using a Nikon epifluorescence microscope 

(Eclipse 80i) with camera attachment (DS-Qi1Mc). Images were captured and processed using the NIS elements 

application suite (Nikon) where brightness and contrast were adjusted. Upon examination, the epifluorescence 

microscopy showed that B[a]P was notably detected in the RTgutGC cells at all concentrations, without 

exception. 

Following microscopic verification of uptake of B[a]P, cells were seeded at the aforementioned densities and 

allowed to become confluent in T-175 cm2 tissue culture flasks (660160; Greiner Bio One, UK). Controls, i.e., 

flasks without cells but with B[a]P-spiked unconditioned L-15 medium were processed alongside each 

experimental repeat to quantify adsorption to plastic ware (n = 4). The B[a]P analysis was based on a protocol 

previously developed and validated in our laboratory [43]. The aqueous medium samples (10 mL) were pipetted 
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from the cell culture bottle into 15 mL analytical/chromatography glass vials (Sigma-Aldrich, UK) and 

dichloromethane (2 mL, 650463, Sigma-Aldrich, UK) added. Cell samples were scraped into pre-weighed glass 

vials to standardise reporting of data to the literature. B[a]P-d12 (100 ng in 20 µL  acetone) was then added as an 

internal standard. The medium was collected as above, due to the fact that DCM was shown to dissolve the 

polystyrene cell culture flasks during preliminary characterisation. Following thorough shaking, the mixtures 

were stored in the dark at 4C. Immediately prior to analyses, the DCM layers were removed into glass micro-

vials. Residual water was removed by adding pre-cleaned anhydrous sodium sulphate to the extract. Cell samples 

were transferred by scraping into pre-weighed vials and spiked with the internal standard B[a]P-d12 (100 ng in 

20 µL acetone). Dichloromethane (2 mL) was added and the cells were extracted in a sonication bath for 20 min. 

The supernatants were finally dried with pre-cleaned anhydrous sodium sulphate. Aliquots (1 µL) of the sample 

extracts were analysed using an Agilent Technologies 7890A GC system interfaced with an Agilent 5975 series 

Mass Selective detector (Agilent Technologies, United Kingdom). A Restek Rxi-1MS (crosslinked poly dimethyl 

siloxane) capillary column (30 m) with a film thickness of 0.25 µm and internal diameter 0.25 mm was used for 

separation, with helium as a carrier gas (maintained at a constant flow rate of 1 mL/min). Extracts were injected 

splitless, with the injector maintained at 250 °C. The oven temperature programme was 40 °C for 2 min and then 

increased at 15 °C/min to a final temperature of 250 °C, where it was held for 4 min. The mass spectrometer was 

operated in electron impact mode (at 70 eV) with the ion source and quadruple analyser temperatures fixed at 

230 °C and 150 °C, respectively. Samples were screened for B[a]P and B[a]P-d12 using selected ion monitoring, 

with target ions 252 (253 and 126 for confirmatory purpose) and 264, respectively. Prior to sample extract 

analyses, the system was calibrated using authentic standards. With each batch of samples, a solvent blank, a 

standard mixture, and a procedural blank were run in sequence for quality assurance purposes. In addition, 

B[a]P adsorption to plastic ware during cell sample exposure was quantified and accounted for during analysis. 

B[a]P concentrations were calculated based on the internal standard. 

 

2.5 Cellular assays to evaluate cytotoxic action 

2.5.1 Lactate dehydrogenase (LDH) activity 

The method for release of LDH into the culture medium was adapted from early methods used in our laboratory 

[35, 44], which were modifications of an earlier protocol [45]. Following experimental setup in a 12-well plate as 

previously outlined, a 50 µL aliquot of medium (following B[a]P exposure) was added to each well of a 96 well-

micro plate in triplicate on ice, followed by 250 µl of reaction buffer (50 mM TRIS/HCL and 0.14 mM NADH; pH 

7.5). The plate was incubated at room temperature (22 °C) for 5 min and the reaction started with the addition of 

25 µl of 12.1 mM sodium pyruvate dissolved in 50 mM TRIS/HCl buffer (pH 7.5). Plates were mixed thoroughly, 

and enzyme activity recorded for 25 min at 25 °C in a micro-plate reader (FLUOstar Omega, BMG Labtech, UK) at 
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340 nm. LDH was calculated using the Beer-Lambert law and LDH enzyme concentration expressed as LDH 

release (nmol min−1 mL−1 mg protein−1). 

2.5.2 Determination of cell viability 

Cell viability was assessed as per methodology previously established for mammalian cell lines, based on the 

quantification of cytosolic acid phosphatase activity (APH assay) [46]. Briefly, monolayer cultures (10,000 cells 

per well) were treated with B[a]P for 48 h over a range of concentrations. Following treatment, cells were 

washed thrice with DPBS and re-suspended in 100 µL DPBS prior to the addition of 100 µL fresh prepared 

reaction buffer protected from light (2 mg/mL p-nitrophenyl phosphate (Fisher) in 0.1 % v/v Triton-X-100 in 0.1 

M sodium acetate buffer, pH 4.8). Following incubation for 2 h at room temperature (21°C) under gentle rotating 

(50 rpm), 1 M sodium hydroxide (10 µL), was added to each well and absorbance was recorded at 405 nm using 

an automated 96-well plate reader (FLUOstar Omega, BMG Labtech UK). Samples were run in triplicate, in 

addition to a blank buffer control which was subtracted prior to calculations. Viability was expressed as 

percentage of control (unexposed cells in L-15 medium) after correction for fluorescence from the incubation 

buffer. 

 

2.5.3 Determination of glucose activity 

Glucose concentrations in the intestinal cell line were determined using an enzyme glucose kit (GAG020; Sigma) 

as per the manufactures instructions. The method was modified to allow for use with a micro-plate reader in a 

96-well assay format as previously reported for spheroids in our laboratory [44]. Briefly, an aliquot (40 µL) of 

medium was added to each well in triplicate of a 96-well plate and assay reagent (Glucose Oxidase/Peroxidase 

reagent + o-dianisidine reagent), 80 µl, was added and mixed. A glucose standard curve was run on each plate to 

account for interplate variability. The plate was incubated for 37 °C for 30 min, protected from light. The reaction 

was stopped by the addition of 12 N H2SO4, 80 µL, and the absorbance measured on a micro-plate reader 

(FLUOstar Omega, BMG Labtech UK) at 540 nm. Results were expressed as µmol−1 mL−1 min, and the rate of 

glucose uptake calculated (from 0 - 24 h). 

2.6 Determination of 7-ethoxyresorufin-O-deethylase (EROD) activity 

EROD activity, used as a marker of CYP1A function, was performed using a well-established methodology [21], 

with modifications specifically developed in our laboratory. In preliminary experiments, a positive-control 

CYP1A inducer (β-naphthoflavone (β-NF), CAS 6051-87-2; 50 µL; final well concentration, 0.36 µM), CYP1A 

inhibitor (100 µM -naphthoflavone; CAS 604-59-1) and a solvent control (0.1% DMSO; final well concentration) 

were added to each well (dissolved in serum free L-15 medium) and incubated at 21 °C for 48 h. EROD activity 

was assessed as below prior to B[a]P exposure, to ensure CYP1A activity in this cell culture model. 
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After establishment of CYP1A activity, RTgutGC cells were exposed to B[a]P for 24 - 48 h in a black 96-well plate 

in order to determine the ability of this compound to induce EROD activity in this intestinal culture system 

(seeding density, 10 × 104 cells/well). Exposure was initiated by removing the culture medium (150 µL) from 

confluent RTgutGC cells (leaving 50 µL in 96 well plate) and replacing it with 50 µL exposure medium (L-15 or L-

15:saline) to which varying B[a]P concentrations had already been added.  

Following incubation, 50 µL reaction buffer (serum free L-15 containing 16 µM 7-ethoxyresorufin (7-ER), 18 µM 

dicoumarol; final well concentrations; pH 7.4) was added to each well (final volume, 150 µL) and the production 

of resorufin measured using a fluorescence plate reader (FLUOstar Omega, BMG Labtech UK; excitation = 544 

nm; emission = 590 nm) immediately following the addition of the medium and every minute thereafter for 60 

min. Standard curves of resorufin (0 - 256 pmol well−1) were run for each individual plate (150 µL volume). Total 

protein content of the cell extract was determined with the fluorescamine assay [47] with modifications [48] 

with bovine serum albumin (BSA) used as standard (1 - 0.0078 mg/mL). Following fluorescence recording, each 

well was rinsed thrice with PBS, and re-suspended in 100 µL PBS and frozen for 45 min at -80 °C. After defrosting 

at room temperature, fluorescamine solution (0.3 mg/mL in acetone, 50 µL) was added to each well and 

incubated for 10 min in the dark. Fluorescence was recorded at 390 nm excitation and 460 nm emission, 

respectively. EROD activity was subsequently expressed as picomoles of resorufin per min per miligram of 

protein (pmol/min/mg protein) with each sample run at a minimum in triplicate on each plate. 

 

2.7 Determination of glutathione transferase (GST) activity 

Total GST activity following B[a]P exposure was assayed in the RTgutGC cellular lysate with CDNB as substrate 

as described in the manufacturer’s instructions (CS0410; Sigma). Results were expressed as µmol−1 mL−1 min. 

2.8 Determination of genotoxicity 

Genotoxic response of the RTgutGC cells following B[a]P was assessed using single gel electrophoresis and 

performed using protocols previously established in our laboratory using various fish cell lines [27–29]. B[a]P 

requires metabolic activation by cytochrome P450 enzymes to induce genotoxicity and as such this assay could 

be considered as a surrogate for the indirect measurement of metabolic activation in this cell line. As such, cells 

were cultured as normal until 100% confluent and exposed to a range of B[a]P concentrations. In each 

experiment, cell viability was assessed using the Trypan blue dye exclusion assay. Only samples with viability 

>90% were used. 

In brief, prior to the experimental exposure, slides were pre-coated with normal melting point agarose 

(NMPA; 1.5% in 1X TAE buffer) and allowed to set. Cells were removed from the wells using trypsin and a subset 

re-suspended in 1.5% low-melting-point agarose (LMPA; 0.75% in PBS), coversliped, and dried at 4 °C. Slides 

were immersed in lysis solution (2.5 M NaCL, 100 mM EDTA, 10 mM Tris, 1 % N-lauryl-sarcosine, 1 % Triton X-
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100, 10% DMSO, pH adjusted to 10 with NaOH) for 1 h at 4 °C and then placed in pre-chilled electrophoresis 

buffer to unwind (1 mM EDTA, 0.3 M NaOH, pH 13). Electrophoresis was performed at 25 V, 620 mA for 25 min 

(1.25 V/cm) (Compac-50 HTP Comet Assay Tank, Cleaver Scientific, UK). Following electrophoresis, slides were 

transferred to neutralisation buffer (0.4 M Tris, adjusted to pH 7 with HCl) for min, rinsed (×3) with distilled 

water, and allowed to air dry. Slides were scored using an epifluorescence microscope (DMR; Leica 

Microsystems, Milton Keynes, UK) and imaging system (Comet IV, Perceptive Imaging, UK) where 50 cells per 

microgel (100 cells per slide) were analysed per treatment. Slides were coded and randomised to ensure 

unbiased scoring. Comet assay software packages record a number of different parameters, with % tail DNA 

considered the most reliable [49]. Hence, comet assay results are reported as mean % tail DNA. 

2.9 Statistical analysis 

In all experiments, ”n” refers to the number of non-parallel passages of the cell line. Statistical analysis was 

preformed using R, Version 3.1.3 [50]. Data was tested for normality using the Shaprio-Wilk test (SW) or 

Anderson Darling normality test (AD), with homogeneity of variance evaluated using Levene’s test (L) and 

manual examination of QQ-plots. Where assumptions were met, data was analysed using a t-test or two way 

ANOVA with Tukey’s pairwise comparisons as Post-hoc. When assumptions of normality were not met, the non-

parametric Kruskal Wallis test was used followed by Dunn’s pairwise comparison with Bonferroni correction for 

multiple comparisons. Data was presented as mean ± standard deviation unless otherwise indicated. Box and 

whisper plots were used to display the data giving a summary of the variables in question in the form of median 

values, quartiles, range and possible extreme values (outliers). Significance was set at p < 0.05 (*), although in 

some instances for highlight significant results, p < 0.001 (***) is also reported. 

3 Results 

3.1 B[a]P concentration in medium and cell samples, determined by GC-MS 

Three experimental exposures of plastic-ware (without cells) and the RTgutGC cell line exposed to 0.2 µM (∼5.4 

µg/L) B[a]P were carried out, where concentration was measured in cells and medium at 24 and 48 h to 

elucidate variation in adsorption and absorption of B[a]P to plastic-ware and individual intestinal cells. Each 

experiment was performed in duplicate, with results presented as the mean ± standard deviation (n = 3). A 

representative chromatograph of cell dichloromethane extract is presented in Fig. 1a with the signal of the B[a]P 

ion m/z 252 (single ion monitoring) in the cell extract presented in Fig. 1b. B[a]P uptake in the cell culture model 

was calculated with respect to a concurrent experiment elucidating adsorption of B[a]P to the cell culture 

plastic-ware (∼ 12%) and uptake rates in cells corrected for this fraction. An average measurement of 0.0057 ± 

0.0020 B[a]P µg/g in cells was recorded at 24 h, with 0.0071 ± 0.0036 B[a]P µg/g recorded at 48 h. An 

independent samples t-test was conducted to compare differences in B[a]P in cells and medium over time, with 
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criteria for normality met by the samples (p = 0.71). The degree of Ba]P uptake was markedly different in the 

cells (n = 3, CV = 34 %, 18 % difference between 24 and 48 h) but was not statistically significant (t = -0.45, p = 

0.69). When B[a]P depletion was examined in the medium (n = 3, CV = 59 %, 58 % difference between 24 and 48 

h), there was a marked difference in B[a]P present in the medium, but again this is not significant (t = 1.34, p = 

0.31) (Fig. 1c). 

3.2 Cellular assays to evaluate cytotoxic action 

3.2.1 LDH release 

Three experiments were run to investigate damage to the cellular membrane via the LDH assay following B[a]P 

treatment (0.02 - 100 µM) over a 48 h exposure period. Data was analysed using a two way ANOVA (with pH, 

time and concentration as factors) due to assumptions being met (AD: p = 0.14; L: p = 0.08). No significant 

difference was identified between concentrations (p = 0.52), pH (p = 0.13) or time (p = 0.59). 

3.2.2 Cell viability 

Deleterious effects on cell viability measured using the APH assay was investigated in three non-parallel 

experiments following B[a]P exposure (0.02 - 100 µM) over a 48 h period. Due to non-normality, data was 

analysed using the Kruskal Wallis test with Bonferroni corrections and revealed no significant differences 

between concentrations, pH or exposure time. 

3.2.3 Glucose activity 

Following a lack of significant differences between sampled time points for cell LDH activity and cell viability, 

questions arose regarding sampling time points. We hypothesized that later sampling times may obscure earlier 

responses by the cell, and that minimal activity at 24 h (in terms of the biochemical assays) reflects cellular 

activity at plateau/ saturation. Transepithelial transport is an energy-consuming process; hence, trends in 

glucose levels may be used as an indicator of cells’ increased energy requirements, or may indicate when B[a]P 

absorption/uptake is likely to occur. For this purpose, three experiments were evaluated for variation in glucose 

measured in the medium following exposure to a range of B[a]P concentrations (0, 0.02, 0.2, and 2 µM) over a 

period of 24 h. Samples were taken at 0, 1, 2, 4, and 24 h. A Shapiro-Wilk test revealed that the distribution of 

glucose within each group was normally distributed following a log transformation, while a Levene’s test 

revealed homogeneous variances. Following pre-processing of data, a two way analysis of variance (ANOVA) on 

the outlined factors yielded significant variation among the conditions of pH (F = 3.63, p < 0.05) and time (F = 

3.84, p < 0.001). A post hoc Tukey test on pH revealed significance was driven by parallel pH alone (7.5 and 

7.4)(p < 0.05), while significance over time was driven by differences in mean over time when compared to the 

24 h time point (p < 0.05). Although there were no significant differences between B[a]P concentrations (p = 
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0.12), a trend in glucose depletion in medium samples (Fig. 2) was seen where parallel pH values concurrently 

see the highest glucose depletion at 2 µM B[a]P (Table I). This is opposite to the higher pH of 7.7 which sees this 

occur at a B[a]P concentration of 0.2 µM. 

3.3 EROD activity 

Initially, preliminary experiments were carried out to confirm the presence of CYP1A in the RTgutGC cell line 

using the EROD assay. RTgutGC cells grown in wells (black) 96 well plates (5 d) were first exposed to the control 

CYP1A inducer β-naphthoflavone at a range of 0.36 - 2.6 µM in addition to simultaneous co-exposure with the 

CYP1A inhibitor α-naphthoflavone. Data was log transformed as it did not meet assumptions of normality and 

homogeneous distributions. The significant induction and inhibition of CYP1A activity in the presence of βNF 

concentrations (induction) and co-exposures of βNF with α-NF (inhibitor; 100 µM) are shown in Table 2. 

Inhibition ranges from 54 % in singularly exposed samples (α-NF) to up to 94% in co-exposes relative to solvent 

control (without α-NF). The active inhibition of CYP1A supports the presence of this cytochrome in the cell line 

and as a consequence was subsequently exposed to B[a]P. 

Following the exposure of B[a]P to cells, EROD induction was determined at 24 and 48 h. As with the 

preliminary experiment, data was log transformed due to non-normality. A typical dose response curve was 

observed (Fig 3) with a maximal induction of EROD activity in L-15 medium recorded at a concentration of 0.2 

µM B[a]P following 48 h exposure. However, this trend is more variable under saline conditions, where maximal 

EROD response was recorded at 10 µM following 48 h exposure under pH 7.7 and pH 7.4, respectively. This 

maximal induction corresponds to an inhibition of EROD activity of 80% (0.395 ± 0.12 pmol/min/mg protein) 

and 83% (0.312 ± 0.14 pmol/min/mg protein) for pH 7.7 and 7.4 when compared to L-15 medium alone (1.95 ± 

0.12 pmol/min/mg protein), a trend which is visible within all concentrations. Although significant differences 

were observed between pH’s (ANOVA; n = 3, p < 0.001), concentration (ANOVA; n = 3, p < 0.05) and incubation 

time (ANOVA; n = 3, p < 0.001), Tukey’s post hoc test revealed significance was limited to differences between 

medium and saline exposures (p < 0.001). 

3.4 GST activity 

Three experiments were carried out to analyse GST activity following 24 h and 48 h exposure to a range of B[a]P 

concentrations in L-15 medium and a 1:1 ratio of L-15 medium to Cortland saline (pH 7.7 and pH 7.4 

respectively). GST data were normally distributed (AD; p = 0.15) with homogenous variances (L; p = 0.39). 

Application of a two way ANOVA revealed pH as the only significant factor with significant (p < 0.05) differences 

identified in parallel pHs of 7.5 (L-15 medium) and pH 7.4, respectively. An example of GST activity in the 

RTgutGC cell line following B[a]P is presented in Fig. 4. 
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3.5 Genotoxicity 

Five experiments were conducted to elucidate the genotoxic response to B[a]P, using our multi-factor 

experimental design. Due to non-normal data and non-homogenous variances, data was arcsin transformed. 

Significant differences were identified between the two sampling time points (ANOVA, p < 0.001) and between 

some B[a]P concentrations but not all. Significant differences (with respect to solvent controls/exposure 

solutions) were only observed in the upper concentrations of 10 and 50 µM (Fig. 5) at both 24 and 48 h. No 

significant differences were observed between the three pH values/solvents investigated (p = 0.58). 

4 Discussion 

In the aquatic environment, diet is one of the most important routes of exposure to the common contaminant 

B[a]P. Previous studies have demonstrated its presence in the diet and tissue of numerous organisms in addition 

to its biotransformation by lower organisms and subsequent food chain transfer [26, 39]. Studies have also 

confirmed active uptake and metabolism of this compound via the diet of fish [51, 52], vertebrates [53] and 

mammals [54]. To our knowledge, the current study represents the first report of xenobiotic metabolism, using 

this ubiquitous contaminant (i.e. B[a]P), in the intestinal RTgutGC cell line. For metabolic comparability of any in 

vitro model system to native tissue, the inducing compounds must first be shown to cross the membrane barrier 

which may lead to alterations in the intracellular availability of the inducer. Indeed, should detoxification occur 

via a particular pathway, this will lead to a subsequent decrease in the availability of inducer necessary to elicit a 

measurable response. The uptake of B[a]P was shown in the RTgutGC cell line through chemical analysis of 

substrate depletion. In addition, metabolic induction via the cytochrome P450 pathway (EROD activity) was also 

confirmed. The increase of B[a]P in cells after 48 h exposure in combination with decreased B[a]P measured in 

the medium suggest active enterocytic transport and transformation of B[a]P in this model, although it was not 

feasible during the study to identify the metabolites produced. We hypothesise that the cells eject B[a]P back into 

the medium in a non-toxic form as a means to prevent resorption of this compound, a process common in animal 

systems. Supporting evidence for this also comes from the lack of significant induction of cell damage via loss of 

viability and lack of damage to the cellular membrane (LDH assay) even at high concentrations in the present 

study. This phenomenon has also been seen in other human in vitro intestinal models [55]. Given how close this 

trend is to intestinal responses in fish, it would be interesting to measure the metabolite formation in the 

medium and identify the degree to which transformation under in vitro conditions differs to results from in vivo 

or ex vivo methods (e.g. [40]). 

Glucose absorption across the cells (lining the intestine) is the result of active transport, facilitated diffusion 

and metabolic utilisation. This glucose uptake is driven by the concentration gradient across the cell membrane. 

In this respect, low levels of glucose are typically present in the cytoplasm due to rapid phosphorylation by 

hexokinases, and so the transport will occur in the influx or uptake direction. Transepithelial transport is an 

energy consuming process, with the depletion of glucose indicative of increased cellular requirements. During 
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B[a]P exposure, limited glucose present at 24 h in all exposure solutions but especially medium is suggestive of 

an energy intensive process being undertaken. Indeed, the steep decline in glucose over the first 4 h suggests 

rapid uptake of this compound (glucose) from the medium into the cell for basic cellular maintenance. However, 

B[a]P uptake is likely a passive process and the suggestion that this toxic compound is potentially absorbed 

during this process may have some merit, given that the presence of a concentration gradient for B[a]P uptake 

has been previously observed in the catfish intestine [40, 56]. We postulate that at 24 h, the minimal presence of 

glucose in the medium/apical lumen would result in limited transport of B[a]P from the medium into the cells 

and should demonstrate a decrease in cytotoxicity and other biochemical parameters. Based on this supposition, 

it is unsurprising that cytotoxic activity (as measured by LDH and APH assays) is not significantly different over 

time (24 and 48 h), pH values, or concentrations, as limited uptake would have likely occurred via this pathway. 

This trend in the absence of cytotoxic activity following B[a]P exposure has also been observed in other in vitro 

models, such as the Caco-2 cell line [55] although the range of this study was substantially higher (1 - 300 µM). 

Prior studies in our laboratory have established that modification of the pH of the saline exposure solution can 

have a significant impact on the uptake of copper by the RTgutGC cell line [35], and we hypothesized that this 

trend would also occur under other exposure scenarios which were demonstrated in the current study. 

Interestingly, differences in glucose removal due to pH of exposure solutions identified differences between 

parallel pHs of 7.5 (medium) and 7.4 (L-15:medium). Previous research has reported that the transport of 

glucose is mainly affected by the amount of sodium in the intestinal lumen of rats and that the absorption of 

sodium is impaired at lower (7.0) and higher (8.5) pH [57]. With respect to the current study, minimal 

differences in sodium concentrations in the exposure matrix were observed (69 nM for L-15 medium and 44 nM 

for saline: medium respectively), suggesting that phenomenon may differ between experimental models. In 

human systems, the transport of water across the epithelial cells of the intestine has been attributed to osmotic 

gradients and sodium transport [58]. If we examine osmatic gradients in the exposure matrices, a difference 

emerges whereby 274 mOsm was recorded in the control matrix of L-15 medium and 204 mOsm in the saline: 

medium solution (irrespective of pH) suggesting that this may play an important role in the observed trend, but 

is now wholly responsible for the observed response. As such, we suggest that there may be a further component 

in this transport scenario given that if osmotic differences were the only driving force of this observed trend, 

then significant differences would have been observed between both saline: medium solutions rather than just 

one (pH 7.4). 

In the present study, the potential of β-NF to induce, and α-NF to inhibit, P450 enzyme activity was assessed 

in the RTgutGC cell line using the EROD assay. The EROD assay, a broad marker for CYP1A families, requires the 

uptake, metabolism, and excretion of the substrate for any activity to be detected and as a consequence is 

suggestive of active CYP1A metabolism in any test system. In the current study, treatment of the cells with α-NF 

resulted in significant induction of EROD activity while co-exposure with α-NF led to an inhibition of EROD 

activity suggestive of the retention of active xenobiotic metabolism pathways in this in vitro model. In addition, 



 

16 

concentrations of the compounds required to induce this activity are comparatively minimal when compared to 

the literature. In microsomal fractions (S9) derived from the intestine of fish [40, 59, 60], a range of 0.4-40 

pmol/min/mg protein has been reported, while in the primary culture of enterocytes of porcine origin, a basal 

value of 9 pmol/min/mg protein has been reported [61]. In contrast, liver microsomal fractions (S9) typically 

record a range of three times higher at a minimum with a range of <0.1-98 pmol/min/mg protein, irrespective of 

animal origin [62, 63]. In each instance, the concentration range required to induce EROD activity in microsomal 

fractions is quite variable (∼1-100 µM β-NF) for intestinal cultures. Differences in basal EROD activity are not 

uncommon between or among fishes and several reasons related to the biology of fishes and physical 

environments can result in these differences [64]. It should be noted that when our study is compared to another 

human derived in vitro intestinal model (e.g. Caco-2; [55]), a response was elicited in terms of EROD activity at a 

much lower concentration (3.6 µM versus 50 µM) β-NF in the widely used Caco2 model. Indeed, this trend is also 

repeated in the inhibition of CYP1A following α-NF exposure, where EROD activity was inhibited using a dose of 

200 µM α-NF (83% inhibition) [55]. In contrast, the current study recorded this trend using a dose of 100 µM α-

NF which inhibited EROD activity in this cell line by 94%. Our data would suggest that this difference in basal 

EROD activity, previously observed between and among fishes, also extends to in vitro models and requires 

further investigations in order to identify differences in the biology and physical growth environments which 

cause these differences. In humans, the matrix in which PAHs such as B[a]P is transported has a significant 

influence across the intestinal epithelium barrier [65], and it could be argued that this would also hold true for 

exposures in other animal models. In vitro digestion models have been developed to assess the bioaccessibility of 

toxicants, such as PAHs, and account for pH variation in transport from the lumen to the enterocyte along the 

length of the intestine (incorporating three different intestinal regions) in humans. With respect to influence of 

pH variation for transport, the current study offers evidence to support its presence. Although a typical Gaussian 

or dose response curve was present for all exposure solutions, (e.g., the data gives a maximum EROD response at 

a given exposure and drops thereafter), maximal induction varied between the two solutions irrespective of pH 

(medium versus medium: saline), with L-15 demonstrating the highest CYP1A induction following B[a]P 

exposure. As mentioned previously, the availability of transporters to uptake and transform B[a]P may vary 

between the two exposure solutions, in line with the variation in osmotic gradients and sodium concentrations. 

Further studies are required to elucidate the role of these confounding factors influencing transformation of 

B[a]P. 

As previously mentioned, few studies have determined xenobiotic-conjugating enzymes in intestinal regions 

of fish. Consequently, less information is available for the presence of conjugating enzymes in the fish intestine 

[60]. To evaluate whether this intestinal in vitro model can carry out xenobiotic conjugation, total GST activity 

was assessed, using a commercial kit. Our data support the hypothesis that conjugation of B[a]P occurs, to a form 

that was more readily excreted into the medium (supported through the reduction of B[a]P in the medium after 

48 h exposure). GST activity was found to differ between pH of solutions, but not over time or concentrations. As 
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previously observed, modification of the exposure pH in the RTgutGC model can mimic uptake rates of the mid 

and posterior intestine following exposure to copper, a ubiquitous environmental contaminant [35]. Due to 

limited data on intestinal metabolism enzymes in fish, extrapolation from human studies is necessary. GSTs are 

known to demonstrate patterns of expression similar to those of the P450s in small intestine, whereby 

expression levels decrease from the proximal intestine to the distal intestine. This trend in varying metabolic 

activity and transport rates between regions of the intestine has been suggested in rainbow trout for some metal 

contaminants [66–69]. In this respect, the data presented demonstrates the sensitivity and comparability of this 

cell line to in vivo observed responses. It should also be noted that although recordings of total GST activity in 

this RTgutGC cell line is equivalent to 44 ± 10 mol/min/mg protein (which is four times higher than GST data 

reported for catfish intestine [60]), this result is not surprising. In the analysis of biotransformation activities of 

the channel catfish Ictalurus punctatus, James et al. [60] reports on the cytostolic GST activity from microsome 

preparations of the intestine, rather than the total GST activity in the intestine. Microsomal preparations are 

unlikely to represent a full range of metabolism, in addition to potential species differences. 

Genotoxic response is a cell-specific process, with toxicant exposure required to reach a threshold level 

before DNA repair systems are initiated. Studies which report on the induction of DNA damage following chronic 

and sub-lethal exposure to B[a]P are abundant in isolated organs [70–72] and cell lines [38, 73, 74]. Indeed, 

intestinal uptake and metabolism in the literature is well covered in both mammalian [74–76] and aquatic 

models [40, 77, 78] making this an ideal compound with which to establish the robustness of the fish based 

intestinal in vitro model. Toxic response is thought to occur primarily through the metabolic activation of PAHs 

to reactive intermediates and aryl hydrocarbon receptor (AHR)-dependent alterations in gene expression. 

Previous reports have seen significant differences in genotoxicity measured in blood cells (~2-22 % tail DNA) 

over a 50 d experimental period in rainbow trout [71]. In the current study, while % tail DNA ranged between 2-

45% for different pH and exposure durations, significant differences were recorded at much lower 

concentrations compared to prior studies. Comparable trends for the induction were also observed for the EROD 

assay. Despite this causal relationship, no correlation existed between these two parameters (data not included). 

A large proportion of chemical carcinogens such as B[a]P require metabolic activation which are typically 

initiated by sequential reactions catalysed by P450 enzymes and epoxide hydrolase leading to the formation of 

the ultimate carcinogen, which subsequently interacts with the DNA of the target tissue to initiate damage (e.g. 

tumorigenesis). It is probable that a direct inhibition of P450 may lead to a decrease in enzyme activity and, as a 

consequence, decreased DNA damage, unless this inactivation results in a concurrent increase in ROS production. 

The decrease in DNA damage level as determined by % Tail DNA in the comet assay could also result from 

enhanced DNA adduct formation, if oxidative enzyme activity is enhanced or if activities of DNA repair enzymes 

are reduced. These could lead to hindered migration of DNA strands in the tail region. We did not measure DNA 

damage induced by ROS or adduct formation in the current study. The hypothesis that induction and suppression 

of CYP1A activity can result in oxidative stress is supported by the results of in vivo studies in the marine fish, 
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bird and reptile species exposed to the planar polychlorinated biphenyl (PCB) 3,3’,4,4’-tetrachlorobiphenyl (TCB) 

[79–81]. It is encouraging to see a comparable in vitro to in vivo result highlighting the complexity of this 

intestinal culture system. Mechanisms of toxicity (with respect to B[a]P and other toxicants) with respect to 

dietary route of uptake, however, needs further elucidation. 

In the present study, a low (2-8%) average % tail DNA for the untreated cells (negative controls) was 

observed. This observation is broadly in line with several studies carried out in our laboratory using other fish 

cell lines grown as monolayers [27–29]. There is however currently not consensus agreement among scientists 

regarding expected levels of DNA migration in control or untreated cells. OECD testing guidelines state that DNA 

migration in negative control cells should be as low as possible, preferably <6 % for mammalian liver cells under 

in vivo conditions [82], which is in line with observations made in the present study. In this context, OECD 

guidelines also suggest that detection of cross-linking agents is not the primary aim of the comet assay neither 

this assay is appropriate to detect aneugenic potential of chemicals [82]. It should, however, also be noted that 

the OECD guidelines do not mention control levels of DNA damage in cell lines used under in vitro conditions. Yet 

the guidelines do recommend that each laboratory have its own negative control historical data for specific 

experimental conditions. The levels of % tail DNA in the untreated single seeded cells in the present study is in 

line with our historical control (unpublished) data.  This supports the OECD guidelines which suggest that the % 

tail DNA in negative controls should be within the pre-established laboratory background range for each 

individual tissue and sampling time [82].     

Varieties of physio-chemical and biological factors are known to influence the induction of spontaneous levels 

of DNA damage as determined by the comet assay [25]. It is generally assumed that metabolic rate of fish cells 

(maintained at relatively reduced temperatures) is lower than mammalian cells [26]. As such, therefore, lower 

induction of spontaneous DNA damage in fish cells is not surprising. It is also possible that spontaneous levels of 

DNA damage are cell line-specific phenomena under specific experimental conditions. Although there is limited 

studies available, one mammalian study using the model Caco-2 cell line (derived from human colon carcinoma) 

also observed similar levels of induction in negative controls and a comparable range in treated cells when they  

were exposed to a PAH [73]. This supports the idea that the observed trend could be related to the tissue of 

origin for the cell line. The results of this study would suggest a need for the expansion and inclusion of 

recommendations for specific cells originating from different organs including for the comet assay [25]. Due to 

limited availability of intestine derived cell lines, it is also interesting to note the comparable observed trends 

between the two systems (i.e., fish and mammalian) and to postulate on the commonalities of organs performing 

similar functions. A prior study by Raisuddin and Jha [29] reported that fish cells were more sensitive compared 

to mammalian cells following exposure to environmentally relevant compounds. This sensitivity could however 

depend on the mechanisms of actions of the contaminants, the endpoints measured, the exposure duration and 

the protocol adopted [27].  
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In the aquatic environment, studies related to fundamental interaction between xenobiotic metabolism, 

transport and resultant toxicity in the intestine has been very limited. This is important not only for deep 

understanding but also to implement 3Rs principles. Some studies, however, do exist for B[a]P, which has 

allowed a comparative response between in vivo exposure and the in vitro model. Irrespective of the species, the 

intestine is a complex organ with varying degrees of metabolic activity throughout its length [78, 83, 84]. While 

cell lines offer some benefits, the complexity of the intestinal system requires careful cultivation to create a 

comparable and usable in vitro model. The present study highlights the existence of an active, highly efficient 

intestinal barrier against toxic dietary components and our evidence suggests the maintenance of cellular 

systems responsible for the metabolism of xenobiotics. More work is required to fill the knowledge gap including 

incorporation of transcriptomic and proteomics approaches that will enable a greater understanding of the 

preserved and active systems. Quantifying the degree to which the cell line response varies from the whole 

organism will hopefully provide weight of evidence in support of the use of this animal alternative model for 

chemical compounds with different mode or mechanisms of actions.  

Overall, using the RTgutGC cell line as an in vitro model for fish intestine, we demonstrated that cultured 

enterocytes are capable of reducing the absorption of B[a]P via metabolism and suggest a redirected 

transportation pathway of metabolites back into the medium or lumen compartment. RTgutGC monolayers, 

which may be grown in a Transwell system as shown by us [35] to better mimic tissue complexity, represent a 

new and exciting tool to start probing mechanisms of toxicity and genotoxicity of a large suite of compounds and 

identify molecular initiating events (MIE) potentially allowing for reduction in the number of traditional animal 

tests. In the absence of any well validated model and lack of fish intestinal cell line, this model could potentially 

support a cost-effective, high-throughput, sensitive assessment of genotoxic potential for the contaminants 

which enter the body via the dietary route. Determination of the relative sensitivity of the RTgutGC cells, using a 

wide range of contaminants and endpoints with the well-established mammalian (i.e., Caco-2 cells) model will 

also help to further establish the usefulness of this fish model. This will provide insights of potential links 

between environmental and human health while supporting 3Rs principles.  
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Figure legends and table captions  

 

Fig. 1 Measurement of B[a]P present in culture medium and RTgutGC cells after 24 and 48 h of incubation in the 

dark (21C) at one dose, 0.2 µM B[a]P (determined from solubility in environment). Values are expressed as mean 

of the B[a]P corrected dose (accounting for adsorption to plastic ware) and standard deviation, with n=3 non-

parallel passages. Inset into the figure is the autofluoresence of B[a]P (50 µM) in the RTgutGC cell line following a 

24 h incubation. Scale bar is 20 µm. 

 

Fig. 2 Glucose measured in medium (pH 7.4) demonstrating a declining trend over time irrespective of B[a]P 

concentrations. 

 

Fig. 3 Ethoxyresorufin-O-deethylase (EROD) activity in RTgutGC cells grown and exposed in L-15 medium with 

0.1 % DMSO to a range of B[a]P. Data is expressed as pmol of resorufin per min per mg protein and is 

representative of three individual experiments (non-parallel passages). No significant differences were observed 

between concentrations on transformed data, but significant differences were observed between the two 

sampling time points (p < 0.001). 

 

Fig. 4 Glutathione transferase (GST) activities in the RTgutGC cell line at pH 7.5, 7.7, and 7.4 after 24 h exposure. 

No significant differences were observed between concentrations or time but where observed between pH’s of 

exposure solutions (p < 0.05). 

 

Fig. 5 Genotoxic response of the RTgutGC cell line to concentrations of B[a]P in two different media at three 

different pH values. Significant differences were found between 24 h (a) and 48 h (b) and between the solvent 

controls and the upper B[a]P concentrations (*** is equivalent to a p < 0.001). No significant difference was 

found between the pH values. 

 

Table 1 Rate of glucose depletion as determined from the medium of the RTgutGC cells over a 24 h period. Rates 

are calculated relative to the decrease in µg glucose in the medium from the initial sampling point at 0 h up to 24 

h. Data is presented as the mean ± standard error of the mean due to unequal sample size. As can clearly be seen, 

in both normal medium pH (7.5) and saline pH 7.7, glucose is almost completely depleted after 24 h. 

 

Table 2 Mean EROD activity with standard error values (due to uneven sample sizes) of ethoxyresorufin-O-

deethylase (EROD) levels in the RTgutGC cell line cultured in L-15 medium and exposed to 0.1% DMSO in L-15 

medium (solvent control), β-naphthoflavone (CYP1A inducer), α-naphthoflavone (CYP1A inhibitor) or β-
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naphthoflavone + α-naphthoflavone. Concentrations of α-naphthoflavone chosen to inhibit CYP1A activity were 

derived from James et al. [78]. 
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