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Bayesian model of the dynamics of motion integration

in smooth pursuit and plaid perception

Abstract. In this thesis, a model of motion integration is described which is based on a
recursive Bayesian estimation process. The model displays a dynamic behaviour
qualitatively similar to the dynamics of the motion integration process observed
experimentally in smooth eye pursuit and plaid perception. The computer simulations of
the model applied to smooth pursuit eye movements confirm the psychophysical data
both in humans and monkeys, and the physiological data in monkeys. The temporal
dynamics of motion integration is demonstrated together with its dependence on
contrast, size of the stimulus and added noise. A new theoretical approach to explaining
plaid perception has been developed, based on both the application of the model and a
novel geometrical analysis of the plaid’s pattern. It is shown that the results from
simulating the model are consistent with the psychophysical data about the plaid
motion. Furthermore, by formulating the model as an approximate version of a Kalman
filter algorithm, it is shown that the model can be put into a neurally plausible,
distributed recurrent form which coarsely corresponds to the recurrent circuitry of visual
cortical areas V1 and MT. The model thus provides further support for the notion that
the motion integration process is based on a form of Bayesian estimation, as has been
suggested by many psychophysical studies, and moreover suggests that the observed
dynamic properties of this process are the result of the recursive nature of the motion

estimation.
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Chapter 1. Introduction.

One of the main questions of brain research which has been highly studied for many
years is how humans and animals perceive the world around them, through their sense
of vision. One reason why this question has been intensely studied is because the areas
of the brain which respond to visual stimulation are easily accessible and, at least in the
primate brain, appear to be organised in a systematic way. It is also easy to stimulate a
human or animal subject with visual stimuli whilst measuring brain responses to the
stimuli. Vision is also arguably the most important of our senses, especially taking into
account the amount of the information which it provides. One of the central questions in
vision research is how motion is perceived, i.e. how the speed and direction of motion
of moving objects is detected, both in the case of single objects moving individually and

multiple objects moving relative to each another.

1.1. Functional aspects of the motion perception.

There are different functional aspects of motion perception, and presumably some of
them involve different neural mechanisms. Motion integration, perception of pattern
motion, relative motion estimation between objects (time to collision), depth perception.
motion proprioception, image segmentation are some of the main ones. The model
presented here attempts to describe the first two functional aspects of motion
perception, i.e. general motion integration as reflected on smooth eye pursuit, and the
perception of pattern (plaid) motion. It does so by focusing mainly on the temporal
dynamics of motion integration, i.e. how the perception of motion, in particular the

perceived direction of motion, changes with time in the case when the perceived object



keeps a constant velocity. Such temporal dynamics could be a valuable source of

information about the underlying mechanisms defining the perception of motion.

The perception of motion is a function of highest interest and it is possible to
distinguish between “perceiving relative motion between the objects” from “perceiving
change of position relative to the retina”, as the latter case is considered simpler. It is
not that different mechanisms are assumed to be involved, but, even if they are it is
necessary to examine the simplest possible case first. Thus in this thesis the estimation
of relative speeds between the objects is not considered. It is interesting to mention
though, that there could be motion perceived even if there is no change of the position
onto the retina or, vice versa, there could be no perception of motion even if the position
on the retina has been changed. An instance for the former exceptional case is the visual
afterimage in the dark when there is perceived sense of motion without any change of
position on the retina (Yasui and Young, 1975). The latter case is shown by the work of
Rogers and Graham (1979) where a differential image motion in dot patterns did not
lead to the perception of motion, but to depth perception. However, these are cases of
exceptional conditions. In order to study the motion perception in a simplified way the
case is taken here when the change in the position is relative to the retina only.
Furthermore, the interest is focused on the simplest, but still not fully resolved problem
of visual motion integration, i.e. the combination of the different motion signals coming
from a coherently moving object. A more detailed description of the motion integration

problem is presented in the next section.

1.2. Introduction to the problem of visual motion integration

The organisation of the visual processing areas of the brain is now quite well
understood, at least in primates, and at least in respect of the early stages of processing

which occur after the light stimuli activate nerve cells in the retina. Visual information
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is transmitted from the eye to the cerebral cortex via the activity of the retinal ganglion
cells. An individual retinal ganglion cell, one of the 1.5 million or so in the human eye,
receives input from about 150 million retinal photoreceptors. Each ganglion cell is
activated by light coming from a specific and very small region of the visual space (the
area which is covered by our normal field of vision), which is referred to as its
"receptive field" of that cell. In fact an individual ganglion cell will only respond if the
light stimulus, a small spot of flashing light say, is located precisely in this specific area
of the visual space, of diameter about 0.5 degrees.

So the brain actually perceives the world via a mosaic of about 1.5 million of
overlapping regions, each of which corresponding to a very small part of the visual
space. A major question in vision research is how these many small pieces of visual
information are integrated to produce our visual perception of the whole visual space.
This is of special interest in the case of visual motion perception, where the problem is
referred to as that of "motion integration".

The part of the brain which first uses the visual data from the retinal ganglion
cells is called the primary visual cortex (denoted as area V1 in the primate brain). This
is located at the back of the skull, actually at the furthest point from the eyes, in the
occipital region of the cerebral cortex. The retinal ganglion cells project their electrical
activity to the neurons located in V1, which are therefore in turn activated in response to
a light stimulus. The cells in V1 are activated by several ganglion cells with receptive
fields which are contiguously located in the visual space. Thus they respond to a light
stimulus which occurs in a specific area of the visual space, which is somewhat larger
than an individual ganglion cell, say of diameter between 0.5 and 1 degree.

A neuron in V1 is activated most strongly when it is stimulated by a bar of light
which moves in a particular direction, and with a particular orientation, across the cell's

receptive field, as shown in Figure 1 (Hubel and Wiesel, 1962, 1965). It has been shown
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that there were cells in the retina responding particularly to changes in stimulus

direction and velocity independently from other physical dimensions of the stimulus

such as contrast, shape or size (Barlow and Hill, 1963; Barlow and Levick, 1965).

direction of motion

bar of light

Figure 1. A bar of light with an orientation of 45°, moving upwards to the right, across the elongated,

1-2° diameter receptive field of a V1 neuron.

Thus the activity of a V1 cell is tuned to both the orientation and the direction of
motion of the bar of light, although some cells respond almost equally to motion of the
bar in the opposite direction (Hubel and Wiesel, 1959). The activity of the cell is only
weakly tuned to speed, although the activity will rapidly diminish if the bar moves with
a speed higher than a specific threshold, corresponding to the fastest moving images to
which our eyes can respond.

A phenomenon which was observed some years ago in relation to the activity of

V1 cells is called the "aperture effect” (Wallach, 1935 (English translation in Wuerger
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et al, 1996); Fennema and Thompson, 1979; Marr and Ullman, 1981). This
phenomenon can be illustrated using a simple experiment. Make a roughly circular hole
of about 2 cm diameter in a piece of plain paper or card. Hold a plain pencil behind the
card, so that you can see only the middle section of the pencil through the hole, with the

remainder of the pencil hidden from view by the card, as shown in Figure 2a.

eye pencil

card

f a~ a
> qf X

— L

Figure 2. A simple experiment to illustrate the "aperture effect”; a) experimental set-up; b) moving the

pencil.

Holding the pencil so that it is vertical, and whilst viewing it through the hole in
the card, move the pencil (or the paper) first horizontally back and forth, then upwards
and to the right and back at about 45°, then downwards to the right and back at around

45°, always keeping the pencil oriented vertically, as shown in Figure 2b.
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What can then be observed is that when only the central section of the pencil is
visible through the aperture in the card, it appears to move in the same way, namely
horizontally back and forth, in all three cases. This exactly illustrates the case of a V1
neuron when a vertically oriented bar of light (the pencil) moves across its receptive
field (the hole in the card). Thus V1 neurons respond only to the "local" motion of the
light bar, that is the motion seen "through” their receptive field regardless of the global
motion of the light bar. In other words, the detected velocity would be only the one that
is orthogonal to the edge of the bar, even if the possible actual velocities of that same
edge could be anywhere between approximately +90° to - 90° from the orthogonal
velocity.

It follows that the perception of the global motion of objects which we see
cannot be the result of the activity of individual V1 neurons, but must result from the
combination, or integration, of information from many such neurons. It is presumed that
this combination of information takes place at a stage of processing, or brain area,
where the projections of the activities of many V1 neurons converge. One such area,
amongst several, is called the medial temporal (MT) area in primates, which lies
adjacent to V1 in the occipital region of the cerebral cortex of the brain. It has been first
discovered in 1971 by Dubner and Zeki.

Neurons in MT are highly tuned to velocity in a similar fashion as the motion
detectors in V1, however, the receptive fields of the MT neurons are roughly 10 times
bigger than the ones of V1 motion detectors (Albright and Desimone, 1987). As
expected for a larger receptive field, it has been shown that the MT neurons are more
sensitive to higher speeds than those in V1 (Mikami er al., 1986; Churchland et al..
2005). However, the spatial range over which the MT neurons measure motion is the
same as in V1, despite the difference in RF sizes and the velocity preferences (Pack er

al., 2003; Churchland ez al., 2005; Pack et al., 2006). The input to MT comes mainly
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from layers 4B and 6 of the striate cortex (Maunsell and van Essen, 1983). It seems
generally accepted that the MT area plays a crucial role in the motion integration
process, combining the input of a large number of V1 neurons with visio-spatially
adjacent receptive fields (Rodman and Albright, 1989; Stoner and Albright, 1992;
Movshon and Newsome, 1996).

To see how this might result in the MT neuron being responsive to the global
motion of a moving stimulus, such as a light bar, and also its speed of motion, let us go
back to the "aperture effect” experiment with the pencil and card. It should be the same
experiment as before, but this time the pencil is positioned in such a way so its tip is
seen through the hole, not just its middle section as before. What could be seen is that
the global motion of the pencil is now very clear from the motion of the tip of the pencil
seen through the aperture, compared to the case when only the edges of the pencil were
visible.

Continuing the analogy with V1 neurons and their receptive fields, this simple
experiment suggests that if the end of the light bar passes through the receptive field of
a VI cell, it may respond in a different way which depends on the direction of motion of
the end point of the bar. Thus such a neuron will respond to the global motion of the
light bar, not just its local motion. V1 neurons have been found which respond best if
the end of a light bar stimulus is within the receptive field of the neuron, and many of
the cells which project to the area MT have this "end-stopped” property (Hubel and
Wiesel, 1965; Pack et al., 2003). The end-stopped cells suppress the 1-D motion signals
in favour of 2-D feature detection. When an end of an edge passes the active part of the
receptive field of an end-stopping cell the response of it is maximal and at the same time
the end-stopping cells could be orientation sensitive.

One way to explore the idea that combining information from both "ordinary”

V1 neurons, which suffer from the aperture effect, and "end-stopped" neurons which



may respond to the direction of motion of the stimulus end-points, is to see what

happens when humans observe simple moving visual stimuli which span across the
receptive fields of many V1 neurons and which contain both simple moving straight
edges (like the middle section of the pencil) and moving end-points (like the tip of the
pencil). We say that the V1 neurons which are "seeing" only moving straight edges
provide only "1-D" local motion direction information, whereas those whose receptive
fields contain a moving end-point are providing "2-D" motion direction information.
Such a stimulus is a light rhombus moving horizontally against a dark

background, two versions of which are illustrated in Figure 3.

Figure 3. Rhomboid motion stimuli

Clearly, as the straight edges of these stimuli cover a much larger area of the
visual space than the end-points, what could be expected is that, since V1 neuron
receptive fields are evenly distributed in the central, or foveal, region of the visual field,
a much larger number of V1 neurons will respond to edge, or 1-D motion of the four
sides of the rhombus than to end point, or 2-D motion of the four tips of the rhombus. It
could be assumed that an MT neuron integrates the information in an even-handed way
from all the VI neurons projecting to it, both 1-D and 2-D information. Thus the

information received by the MT neuron will be dominated initially by the many more
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V1 neurons which are responding to the local 1-D motion of the edges, as illustrated in

Figure 4.

local 1-D edge motion (+30°)

local 2-D end-point
motion (0°)

B
>

global motion (0°)

local 1-D edge motion (-30°)

Figure 4. Dominance of 1-D local edge motion compared to the 2-D end point motion

for a horizontally moving stimulus.

If the integration operation performed by the MT neurons is a simple averaging
of the motion information from the convergent VI neurons, it is clear from the diagram
above that the average motion computed by the MT neuron will be in the horizontal (0°)
direction, corresponding to the global motion of the stimulus.

Consider now the case of a stimulus which is the same as the one above, but

tilted by 15°. This is illustrated in Figure 5.
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local 1-D edge motion (+15°)

> local 2-D end-point

global motion (0°) motion (0°)

local 1-D edge motion (-45°)

Figure 5. Dominance of 1-D local edge motion compared to the 2-D end point motion

for a horizontally moving stimulus tilted at 15 degrees.

In this case, a simple averaging of the convergent 1-D and 2-D motion
information by the MT neuron will result in a global motion of about -15°. This clearly
does not correspond to the real global motion of the stimulus, which is horizontal (0°).
In psychophysical experiments with eye movement recordings of monkeys and also
humans, when presented with similar stimuli, it has been shown that their eyes follow
initially the non-veridical direction, which is then subsequently corrected to the true
one. Thus it has been suggested (Masson and Stone, 2002, Wallace ef al., 2002) that the
observed changes in direction of the eye movements reflect the dynamics of the motion
integration in the brain. The model presented in this thesis tries to capture and replicate
this kind of dynamics in processing of the 1-D and 2-D motion signals. In the next
section the phenomena of the motion integration as reflected by the smooth pursuit eye

movements is described in more detail.



1.3. Motion perception in smooth eye pursuit.

Rashbass (1961) showed for the first time that in the case of two targets moving in the
opposite directions, when one of them was moving with a constant velocity, the other
with a jump, the result was a smooth eye movement following the former and a saccade
following the latter. In addition, the smooth eye movement tended to be the preferred
one when the both targets were presented simultaneously. Smooth pursuit eye
movements are the rotations of the eye which an observer performs in order that a
moving target object is held in an approximately stationary position on the foveal region
of the retina so that it could be processed at a highest level of acuity. This is a valuable
phenomenon for studying motion perception as it is relatively easy to access
experimentally, in terms of the ease of measurement and manipulation of both the inputs
to the process, the motion of the visual target, and the outputs, the eye movements. In
particular, there has been a substantial effort to understand the neural mechanisms
which underlie one of the earliest stages of processing in the oculomotor system, in
which the local retinal motion information is integrated to provide accurate global
information on motion of the object, the image of which must be held steady on the
retina. As it has been described in the previous section, some local information about
the global motion of the object is potentially inaccurate owing to the ambiguity
introduced by the aperture effect. To ensure that object motion is accurately tracked by
the oculomotor system, all the available local information, both unambiguous (2-D) and
ambiguous (1-D) must be integrated, in order to provide an estimate of the object
motion which will drive the eye movement in the correct target direction.

When human or monkey subjects observe presentations of the first of the two visual
stimulus shown in Figure 4 under experimental conditions, and the smooth eye pursuit
is monitored, during the first 70 ms or so of the subject tracking the stimulus motion

with their eyes, eye motion for this stimulus is in the correct, horizontal direction
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(Masson and Stone, 2002, Wallace et al., 2002). For the second, tilted stimulus

presented in Figure 5, however, the eye motion in this initial period is in an incorrect
direction, that is approximately the direction defined by vector-averaging of the motion
vectors of the edges. After this short period of erroneous eye motion, which results
presumably from the brain sending a wrong global stimulus motion direction signal to
the eye movement system, eye motion converges back to the correct global stimulus
motion of 0° and remains there henceforth.

These experiments would seem therefore to support the theory that motion
information in the primate brain, in particular in MT, is computed by averaging the local
1-D and 2-D motion information coming from V1 neurons, at least in the initial period
of stimulus motion.

It has been shown (Wallace ef al., 2002) that there are certain factors influencing
the dynamics of the velocity estimation and the magnitude of the bias toward the non-
veridical direction. One of the main factors is the contrast of the stimulus, where the
lower the contrast, the bigger the bias toward the non-veridical direction is. Besides, the
time delay necessary for the veridical velocity to be recovered becomes longer for the
lower contrast. The size of the stimulus is another factor influencing the magnitude of
the non-veridical bias. The longer the edges of the tilted rhombus are, the stronger the
initial bias is.

So why and how does the eye movement return to tracking the stimulus in the
correct direction? Clearly the computation of the global stimulus motion direction in
MT by a simple averaging operation of local motion signals from V1 is not the whole
story. The theory which is put forward in this thesis is that the computation of the global
motion direction is not simply an averaging of local motion signals but is based on a
recursive Bayesian estimation process, and it is the recurrent nature of the motion

estimation which causes a gradual shift in the estimated global motion from an



erroneous, direction of motion, biased by the predominantly 1-D local motion signals,
towards the true direction of motion. When applied to the smooth pursuit experimental
data obtained from Wallace er al., 2002, the model was able to replicate qualitatively
the observed dynamics of the velocity estimation and the effect of contrast and size of
stimulus on the magnitude of the non-veridical bias. Furthermore, the effect of contrast
on the time delay for the correction of the bias was also replicated by the model.

A similar experimental paradigm of non-veridical perception in the early stages
of the motion integration was found in a different type of stimulus, the so-called plaid
pattern. More detailed information about the results from psychophysical experiments
with plaids and the performance of the proposed model in relation to them is presented

in the next section.

1.4. Motion perception in coherent plaid patterns.

When two sinusoidal gratings with different orientations are superimposed and moving
together this could lead to the perception of a coherent motion of the plaid pattern which
is formed. Adelson and Movshon (1982) first described the conditions necessary for the
coherent perception as opposed to the perception of the motion of the two separate
component gratings. They found that the gratings should have similar spatial
frequencies, contrasts and speeds, also not to differ in depth relative to each other in
order to create a coherently moving pattern.

The velocity of the pattern motion is defined by the so-called “intersection of
constraints” (10C) rule (Fenemma and Thompson, 1979), The velocity "constraint” line
corresponding to a moving edge defines all the possible velocities with which the edge

could move whilst, when viewed through a circular aperture, on a perceptual level all
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these velocities would result in the same actually perceived velocity, i.e. that which is in
the direction orthogonal to the edge itself An example for such a constraint line is

presented in Figure 6.

Velocity constraint line

Figure 6. The velocity constraint line formed from all possible velocities of the moving bar, which
would result in the same perceived velocity, in a direction orthogonal to the edge of a bar, when viewed

through a circular aperture.

For two superimposed gratings forming a plaid with coherent motion, there is a single
direction of motion defined by the point in velocity space at the intersection of the two
velocity constraint lines corresponding to the two gratings. This is the intersection of
constraints (I0C) direction. An example for the TOC direction of two gratings, forming

a plaid pattern, is presented in Figure 7.



Figure 7. a) Two gratings A and B are presented, with their velocities shown, respectively, by a red and
blue vector. b) When overlapped. A and B form the plaid pattern AB with direction of the resultant
coherent motion shown by a purple vector (I10C). c) The intersection of the two constraint lines defines
the IOC direction (toward the small blue circle), which in this case is much different from the direction of
motion corresponding to the vector average (VA)of the two grating velocities (toward the small blue

square).

In Figure 7 the velocities of the gratings A and B, presented by a red and blue
arrow respectively, form a direction of motion of the plaid pattern AB defined by the
intersections of constraints rule and denoted by a purple arrow. The main features of the
plaid pattern consist of white and black high and low intensity areas, commonly called
in the literature ‘blobs’. The perceived direction of motion of the plaid pattern, and of
the blobs, is always in the 10C direction. The IOC direction in this example is very
different from the vector-average (VA) direction, formed by comuting the vector
average of the two grating velocities.

Depending on whether or not there is a difference between the VA and 10C

directions, plaids are divided in two types: Type | plaids and Type Il plaids. Type | and




Type 1l plaids have different relative positions of the velocity vectors of the two
gratings with regard the |OC vector. According to a classification by Ferrera and Wilson
(1990) a Type | plaid is formed when the velocity vectors of the gratings are positioned
on either side of the I0C vector, as in the case shown in Figure 8a. When the grating
velocity vectors are symmetric about the I0C vector, they form a Type | symmetric
plaid, in which case the VA and 10C velocity vectors overlap (Figure 8a). In the case of
Type II plaids the two grating velocity vectors both lie on one side of the IOC vector

(Figure 8b). In this case the VA and 10C velocity vectors can differ substantially both in

length (speed) and direction.

b Type Il

Figure 8. a) a Type | plaid in which the two velocity vectors of the gratings lie on either side of the I0C
vector. b) a Type 11 plaid in which the velocity vectors of the gratings are both positioned on one side of
the 10C vector

Although it is known that in general the perceived motion of a coherently
moving plaid pattern is in the IOC direction, psychophysical experiments with Type 11
plaids have revealed that for short presentations of such a stimulus, the direction of the
plaid motion could differ significantly from the 10C direction (Ferrera and Wilson,

1990, 1991, Yo & Wilson, 1992).



In the experiments of Yo and Wilson (1992), for example, when observing a
moving Type I plaid for a short period of approximately 100ms, the human participants
reported a perceived direction of plaid motion which was closer to the VA direction
than to the IOC direction. Furthermore, the perceived directional bias found to be
dependant on the contrast of the two gratings which formed the plaid, was also found in
the experiments on the smooth pursuit eye movements for the case of the tilted rhombus
(Masson and Stone, 2002, Wallace ef al., 2002).

As in the case of the smooth pursuit eye movement experiments cited above
(Masson and Stone, 2002, Wallace er al., 2002), it is shown below that the motion
integration model presented in this thesis is able to simulate qualitatively the results of
the perceived bias for Type Il plaids (Yo & Wilson, 1992, Burke and Wenderoth, 1993,
Bowns, 1996).

In the next section a number of models of motion integration which have been
proposed are discussed, and the novel form of motion integration model which will be
presented in this thesis is described in relation to these other models of motion

integration.

1.5. Models of motion integration.

The simplest idea of how MT neurons might combine the inputs of the VI motion
detectors is related to the assumption that a MT neuron simply sums the spatially
distributed inputs from detectors in V1 with similar preferred direction. Pack er al.,
(2006) showed that everywhere in the receptive field of a MT neuron the preferred
direction matches that of the V1 neurons which form the inputs to the MT neuron.
Although an input summation matches well the ability of MT neurons to increase the
signal-to-noise ratio, nevertheless it is not enough to explain how the motion integration
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could be achieved. The main reason for that difficulty comes from the aperture problem,

because even simple summation of the input could be strongly biased. Consequently,
the models of motion integration have to solve conceptually the aperture problem.

There are two main types of models which address this problem. The first one
(Adelson and Movshon, 1982, Heeger ef al.. 1996, Simoncelli and Heeger, 1998)
follows the idea of a two-stage processing of the motion signals Only the 1-D motion
signals from V1 are measured at the first stage, and then combined non-linearly (so as to
extract the 2-D information) at the second stage, presumably in the MT area, in order to
estimate the true velocity, following the 10C rule. As proposed by Adelson and
Movshon (1982), in the case of a coherently moving plaid the model uses in the first
stage the 1-D motion signals from the component gratings, which are further combined
in the second stage in such a way as to obtain the true IOC velocity of the pattern. The
model does not take into account, or make use of, in the first stage of processing, any
2-D information which the moving pattern would contain, i.e the 2-D motion present in
the movement of the blobs of the pattern. This kind of model could be referred to as an
integrationist one according to a classification suggested by Pack and Bom (2008),
which discriminates between integrationist versus selectionist models. The selectionist
models involve a selective process which is needed to first define the 2-D measurements
from the image that are most reliable and then to include them in the final computation.
They assume a competitive processing of 1-D (direction filters) and 2-D (end-stopping
neurons) motion signals in V1, which is again generalised on a second, presumably MT
level (Pack er al., 2003). The selectionist models therefore assume that the initial bias
toward the vector-averaged |1-D edge motion direction is compensated for by the 2-D
cues, however time is necessary for the 2-D features to override the effect of the 1-D
features. The integrationist models, on the other hand, relate the time delay in the

perception of the veridical velocity to the integration process which is accomplished in
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area MT. This model classification is a very general one and not always strict as the
models are not necessarily mutually exclusive.

There is psychophysical and physiological evidence supporting both types of
models, however the exact nature of the motion integration is still unclear. Weiss et al.,
(2002) proposed a Bayesian model, which explained well a wide range of
psychophysical data related to motion integration and misperception of the veridical
velocity, including the misperception of the plaid motion. However the explanation they
have given was based on the Adelson and Movshon (1982) two-stage model, taking into
account the 1-D component grating velocities only.

The novel motion integration model presented in this thesis is a Bayesian
Kalman filter algorithm, in which the first step is mathematically identical to the model
presented in Weiss ef al., (2002). The Bayesian approach has been applied widely in the
recent years in many areas of perception and proved to be quite successful. For instance,
the Bayesian model of Weiss e al. (2002), described in more details in Weiss’ thesis
(1998) as well, could explain a spectrum of perceptual phenomena, including the barber
pole illusion, biases toward VA direction for stimuli as the ones described above (tilted
rhombus and plaids), the contrast effect on the bias toward VA, and others. The
Bayesian approach takes into account the probability distributions of the 1-D and 2-D
motion signals and also assumes a prior probability distribution for the perceived
motion of the stimulus. In the case of the Weiss er al. (2002) model the chosen prior
distribution for the stimulus motion favours ‘slow’ stimulus speeds, and thus takes the
form of a Gaussian distribution with zero mean and small variance. The reason for such
a choice is the need to solve the aperture problem, by favouring the solution with the
slowest speed, from the whole family of speeds corresponding to the velocity constraint
line of a moving edge (Heeger and Simoncelli, 1993). This slowest speed is in the

direction orthogonal to the moving edge. In fact the response of the direction-tuned
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neurons in the brain is strongest to the orthogonal velocity of the moving edge (Hubel
and Weisel, 1959).

In the Kalman filter based motion integration model presented here, the prior
probability distribution for the perceived stimulus velocity corresponds to the
probability distribution of the initial velocity estimate in the algorithm, which was also
assumed to be a Gaussian distribution with zero mean and small variance. The Kalman
filter based model concentrates however on the dymamical aspects of the motion
integration as a source of knowledge about the underlying mechanisms of the
integration itself, by focusing on the recursive nature of the velocity estimation process,
which starts from the prior velocity estimate and computes a sequence of updated
estimates as each new measurement is made of the spatial and temporal changes in
image luminance.

The model presented in this thesis is therefore novel compared to other models
in that it attempts to explicitly replicate the motion integration dynamics as it is seen in
the initial velocity misperception of the tilted rhombus and Type II plaids during smooth
pursuit and plaid perception respectively, by combining the Bayesian approach with
Kalman filter algorithm. In addition, reveals that the misperception of the direction of
motion of coherent Type Il plaids can be explained in terms of the 1-D and 2-D motion
of the prominent features of the plaid, the so-called blobs, rather than in terms of the
1-D motion of the component gratings, as originally proposed by Adelson and Movshon
(1982) and adhered to by many subsequent researchers (for the many corresponding
citations, please refer to the later sections of this thesis). Thus, whilst it may seem to the
reader that the plaid stimuli considered in the thesis are somewhat outdated, the work
reported here reveals that the central problem of how motion in plaid patierns is
perceived is still essentially unresolved, even after nearly thirty years of research. The

thesis makes a significant original contribution to the resolution of the problem, by
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demonstrating a simple gradient-based. Kalman filter model. the behaviour of which is
explained theoretically in terms of the 1-D and 2-D motion of the plaid blobs, and which
closely replicates many of the experimental results on Type Il plaid misperception.

It is important to note that the presented Kalman filter based motion integration
model is a strictly computational model, i.e. it reflects an abstract level approach, and
any concepts regarding its neural plausibility should be taken on an abstract
computational level as well, that is, in terms of abstract rather than biophysical forms of
neural computation. In this context, the model is however presented in two
mathematical forms, one form corresponding to the standard Kalman filter formulation;
and a second form in which certain steps of the standard algorithm were approximated
in order to simplify the computations involved. In particular, the approximated form of
the model resulted from the attempt to create a more neurally plausible form (in the
abstract neural computational sense) of the algorithm, by avoiding the calculation of
inverse matrices. This form of the algorithm also allowed the presentation of the model
in a distributed recurrent form, similar to how supposedly the brain might organise the
recurrent flow of motion information between the primary visual cortex (V1) and the
medial temporal area (MT). However, it was beyond the scope of the current work to
demonstrate neural plausibility in a more specific and biophysical way, involving
comparison with what is known about the anatomy and physiology, and about the neural
responses and cell parameters, in areas V1 and MT.

Similarly, the parameters of the stimulus used in the simulations, the size of the
background, speed of motion and size of the ‘receptive fields’, were not based strictly
on known or assumed values of biological neuronal parameters. However, as it will be
shown in Chapter 4, the choice of the parameters are quite reasonable in that they show
a high level of consistency with the experimental data, not only in qualitative but also in

a quantitative sense.
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As with all models of natural physical phenomema, the model contains "free
parameters”, the choice of values for which can influence the behaviour of the model to
a greater or lesser extent. In fact, for the presented model, there is only one such free
parameter, i.¢. the ratio of the variance of the measurement noise associated with the
observation of the spatial and temporal changes in the luminance intensity of the
stimulus, and the variance of the prior distribution of the perceived stimulus velocity,
which in terms of the Kalman filter corresponds to the distribution of the initial velocity
estimate. The values of these variances were chosen from a wide range after extensive
preliminary testing, and were systematically selected in relation to the specific stimulus
simulation parameters, which were subsequently held constant for all the reported
model simulations. Once the optimal values for the variances were chosen from what
was actually quite a small range of possible values for the selected stimulus simulation
parameters, these values of variance. and hence the variance ratio "free parameter”, was
held constant throughout both of the main sets of model simulations, for the smooth
pursuit and the plaid perception experiments. This could be cosidered as a
demonstration of the robustness of the model, since each set of model simulations
involved two quite different visual stimuli, a tilted rhombus in smooth pursuit and plaid
patterns in plaid perception. More details on the methodology of the choice of the model

parameters will be presented in Chapter 4.

1.6. Original contributions and structure of the thesis.

The main results and original contributions of this thesis are:
» An abstract-level recursive estimation model of the dynamics of motion
integration based on the Kalman filter algorithm, the behaviour of which closely
replicates the main characteristics of the dynamics of the misperception of

stimulus velocity, in particular those observed experimentally in the smooth
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pursuit of moving rhomboid stimuli and in the perception of motion of coherent
Type Il plaids, including the effects of stimulus changes on the dynamics: (i)
changes in contrast and size of the stimulus in smooth pursuit experiments; and
(ii) changes in contrast, size and relative grating angles in the plaid motion
perception experiments.

An approximate version of the model algorithm which eliminates the need for
the computation of inverse matrices, thus forming a version of the model which
is more suited for neural computation. The results from the approximate and the
standard algorithm are demonstrated to be very similar, again closely replicating
the experimentally observed data. In fact, the approximate version version of the
model computes a first velocity estimate, which is different from the standard
model and thus also from the estimate of Weiss et al. (2002) model, but more

closely replicates the experimentally observed initial non-veridical bias in

smooth eye pursuit for the high-contrast rhombus case, which could not be
replicated by either the standard model or the Weiss et al. (2002) model.

A complete geometrical analysis of the main features of the plaid pattern, the so
called ‘blobs’, which has not been presented previously in the literature, and
which is used to (i) theoretically predict the observed simulation behaviour of
the motion integration model; and (ii) provide an alternative and novel
theoretical explanation of the misperception of Type 1l plaid motion to that of
Adelson and Movshon (1982), based on the geometry and the 1-D (edge) and 2-
D (end-point) motion of the blob features.

A demonstration of the possible analogy between the misperception of the plaid

velocity based on blob geometry, and the direction bias in smooth pursuit for

tilted rhombus.stimuli, showing that the edges of the blobs in the plaid could



play a perceptually similar role to the edges of the tilted rhombus in the smooth

pursuit.

» Predictions for the possible motion misperception of certain forms of
asymmetric Type | plaids, i.e. those in which the IOC and VA directions of
motion are substantially different.

» Proposals for possible physiological experiments involving Type II plaids and

predictions for their potential outcomes.

The thesis has the following structure. Following this introductory chapter, the
mathematical formulation of the standard and the approximate versions of the Kallman
filter based motion integration models are presented in Chapter 2. The rest of the thesis
is divided into two main parts. The first part, comprising Chapters 3, 4, and 5, describes
on the application of the model to the experimental data on the dynamics of motion
integration in smooth eye pursuit. The second part, comprising Chapters 6, 7, 8, and 9,
describes the application of the model to the experimental data on plaid motion
perception. Finally Chapter 10 gives the general conclusions of the thesis and outlines
some future work possibilities. Appendix A includes a general introduction to the basic
principles of the Kalman filter algorithm. Appendices B and C contain copies of the two

published papers which resulted from the work described in the thesis.
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Chapter 2. A Bayesian model of motion integration

based on the Kalman filter.

2.1. A motion integration model based on the optimal Kalman

filter.

A model for motion integration is proposed in this thesis which is based on a recursive
Bayesian estimation algorithm, commonly known as the Kalman filter after its
originator (Kalman, 1960), and uses a spatially distributed set of local observations of
spatial and temporal changes in the image intensity to estimate global image velocity.
For those readers who are unfamiliar with the Kalman filter, an intuitive, simplified
explanation of its operation is given in Appendix A. Also introduced in Appendix A is

the notation used in the following sections to describe the algorithm and the model.

At each local position (x,y) in the visual space, identified with the receptive field
positions of V1 neurons, it is assumed that observations are made of the change in the

intensity of the image /(x, y,#)over a small change in time Af, and over a small spatial
change in the two cardinal directions(x,y), i.e./, ():. wt), I(x,y,t) and I (x,y,0),

defined by

L(x,y,0) = [I(x,p,t + A1)~ I(x,p,0)]/ At
I (x,y.0) =[1(x+Ax, y,0)— I(x,y,0)]/ Ax
I (x,y,t) £ [!(x. y+Ay, 1) - I(x, _1-’_.!)] [ Ay

There is a basic assumption in the formulation of the motion estimation problem

regarding the intensity constancy. It is assumed that image intensity changes with time
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at a location (x,y) are only the result of the image motion. Then it follows that, if
v, and v, are the x and y components of the image velocity vector v,

I(x,y,01)=I(x+Ax, y+ Ay, 1 + A1)

=I(x+Atv_,y+ Ay 1+ A1) ()

The right hand side of (1) can be approximated by its first order Taylor series
expansion, giving
I, y,0) = I(x,y,0)+v I (x,y,1) +v I (x, y,0) +1,(x, y,1) (2)

This equation can be rewritten as
= VI
I(x,y.6)= —[!,{x. v,t) I‘.(X.}-'..H][ }* n(x,y.1) (3)
V.,

where 7(x,y.f) is a zero mean, Gaussian distributed noise with variance o,

representing the measurement error (Fennema and Thompson, 1979; Heeger and

Simoncelli, 1993: Weiss ef al., 2002).

Equation (3) can be thought of as an observation equation for the unknown
image velocity vector v, in which the intensity derivatives /,,/, and /, are all measured
(observed) values, and be rewritten in the discrete time form as a sequence of
observations of the unknown vector v, , i.e.

h=C,v,+n, 4)
where

h, = 1(x,y,1)
G 2-[Lxyt) L(xy0)]
1= kAt

and where 7, is the zero mean, Gaussian distributed noise sequence with variance o",

representing the measurement error in the observation equation. Note that time is
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expressed in the algorithm in terms of number of iterations of the basic time step Ar,
i.e. 1 = kAt

The process of estimating the velocity vector v becomes one of maximising the
posterior probability density function p(v,,....v, |A,,...,h,) with respect to{v,,...,v,}.
Bayes' rule defines the posterior probability of a certain event given a set of
observations related to this event, as the product of the likelihood of the observations
given the event and the prior probability of the event, normalised by the probability of
the observations. It is expressed as

p(h;:----eh_.\- l v“,..._.v_._,- }p('&'ﬂq.... Vy )

T S &)
PWossVy | By 2ed)
It could be written
Pt by [ Vs ) = | 2 (B —Civ) (6)
k=l
and assuming that the image velocity is constant,
P(y-maVy) = P(¥,) (7)
Thus Bayes’ rule becomes
PWyseenVy | Bseers ) < pO)] | 2y, (B = Civ,)
k=1
(8)

1 —— — 1 & ,
ec exp{-;(v‘, _"n); ' I(vo _rn)“?z(ht '_Clvi)!{hk -Cv )}
| k=1

Fa i

where \_-D-and F, are prior estimates of the mean and covariance matrix of the
probability distribution of the image velocity vector v, .

Rather than find the maximum of this posterior distribution directly, the process
can be formulated as a recursive estimation procedure, ie in the form of a Kalman filter

estimation algorithm (see Appendix A for an intuitive explanation of the derivation of

this algorithm and for details of the notation used in its description):

d
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1. initialisation:

2. update of the estimate between observations (this captures the dynamics of the
stimulus — in this case the stimulus velocity is constant and so the estimate is unchanged

between observations):

Pl‘ :ﬁi:

k+1
3. update of the estimate at observation k

vi =v; "+ K, (B, -Cv;™)
B=P"'-KCR
K, =B CrHCECT+97)"

where K, is the so called Kalman gain. We can rewrite the Kalman gain as

i I PO g
K, =[(Z) ‘+C.fci?1 <-1‘G— 9)

3

If we assume that ' = crf, 1, ., where I, denotes the 2x2 identity matrix, then

1 - ' ol l
K, =[—14+C,C, _ITI_]C;' =
o, o’ G
. (10)
LA CTCTET
O-F
Substituting for C¢ in (10), we get
] o |
P+ T
. o, I, |
K, = | |3 J (11)
LT P |




If v-u, the prior estimate of the mean of the probability distribution of the image velocity
vectorv, , is chosen to be zero in the initialisation step in the Kalman filter estimation
algorithm, then the first estimate update step of the algorithm gives

v =Kk, (12)

Substituting for X, and 4, in this equation yields

r+Z. 11
o, I,
W = I (13)
o’ | |1,
L, r+Z.| L
=

If the estimation process described above is generalised to the case where there are n
observation equations for the unknown image velocity vector v at » spatial locations, i.e.

in the definitions

h = 1,(x,y,1+ A1)

G 2[L(xy.t) 1(xy.0)]

h, is now an n vector representing the local observations of the temporal derivatives of
the image intensity at » spatial locations (x,y). and C; is correspondingly an n x 2
matrix of the local observations of the spatial derivatives of the image intensity at the n
spatial locations (x, y), then the equation for the initial estimate of the velocity vector

becomes

Z(ff)+§-;; Y (1.1,) [ZU,",)]
S(r) Se)z| 200

%,

(14)

in which the summations are over the local spatial and temporal derivatives of the image

intensity at the » locations, and the measurement noise variance o is assumed to be the

same for all » locations.
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The above equation (14) is the same as that derived by Weiss ef al. (2002) for
the velocity estimate v_ of their “ideal observer” as the mean of the posterior distribution

(equation (1) of Weiss et al., 2002). Thus, if the initial estimate of the covariance matrix
of the probability distribution of the velocity vector v, is given as P =&/, in the
initialisation step of the Kalman filter estimation algorithm then the algorithm will
compute a velocity estimate v, in it first step which corresponds to the velocity estimate

v’ of the “ideal observer” of Weiss et al. (2002).

However, in the model of motion integration proposed here, it is assumed that
the estimation algorithm continues to use successive observations of the temporal and
spatial changes in image intensity in order to recursively update the estimates of the

velocity vector v; and its covariance matrix P, as expressed in the Kalman filter

algorithm. This implies that the Kalman filter algorithm will take some time to converge
to an optimal (least squares) estimate of the mean and covariance of the image velocity
vector v, based on this sequence of observations. The main proposal made in this thesis
is that the dynamical behaviour of this recursive estimation process corresponds to the
dynamics of the motion integration process which is seen experimentaily in the initial
period of motion perception both for smooth eye pursuit and plaid motion perception. It
is shown in later chapters that the dynamics of the recursive estimation process reflects
several key characteristics of the experimentally observed integration process dynamics.

It is clear however from the above analysis that the velocity estimate given by
the first step of the Kalman filter algorithm coincides with the optimal velocity estimate

of the ideal observer of Weiss et al. (2002). Therefore, if the “free parameter” (Weiss et
al., 2002) of the optimal estimate (14), the o/ o ratio, is set in the algorithm to the
same value as in the “ideal observer of Weiss er al., our model of the motion integration

process will also suffer from the fact that it will predict that a stimulus consisting of a

horizontally moving high contrast “thin” rhombus will not result in any initial offset
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bias in the pursuit eye motion, contrary to the experimental observations of Wallace er
al. (2005). However, in the following section, where the computer simulations of the

Kalman filter estimation algorithm based model are described, we show that for certain

values of the &/ o, ratio, the high contrast “thin™ rhombus will result in an offset bias.

In the next section, it is shown how the Kalman filter based model can be
formulated so that it is amenable to implementation as a neural computation process.
This results in an approximate, sub-optimal recursive estimation process which
nevertheless retains its close relationship to the experimentally observed integration
process. In fact, in the approximate, neural computation based form, simulations of the
model show that the closeness of fit of the behaviour of the model to the experimental
data improves over the optimal Kalman filter based form of the model. It is then
described how this neural computation based model might be mapped onto the neural
circuitry involved in the interaction between the V1 and MT areas of cortex, in a way
that mimics the distributed, recurrent nature of the VI-MT circuitry. This is important
since the VI-MT circuitry has been identified by many researchers as the location for
the motion integration processing stage of the oculomotor system (Groh ef al., 1997;
Simoncelli, 2003; Simoncelli and Heeger, 1998; Pack and Born, 2001; Pack et al,

2003; Pack et al., 2004)

2.2. A motion integration model based on an approximate

version of the Kaiman filter.

Computations in neural networks are generally assumed, in their simplest form, to be
modelled by the weighted summation of a set of input signals, corresponding to the

inner product

y=a-x

4]




where a is the vector of weights, x is the vector of inputs, and y is the scalar output of

the computation. This inner product is then usually followed by some form of

nonlinearity which ensures that the outputs of the network are always zero or positive,

consistent with the non-negative firing rates of neurons in a biological neural network.
This simple model can be extended to the case where y is a vector of outputs

y=4-x

where A is a matrix of weights, and moreover to the case where Y, 4 and X are all

matrices, i.e. the matrix product equation

Y=4-X

in which the ij th element of the matrix Y is computed from the i th row of A and the j th

rowof X, i.e. y, =a,-x,.

All of the computations performed in the Kalman filter algorithm described in the
previous section consist of such vector and matrix computations and therefore the
algorithm can in principle be directly implemented in the form of a neural network
computation, albeit a complex one. However there is one problem with this. Some of
the matrices used in the Kalman filter algorithm are inverses of the matrices made up
from the model parameters or measured variables. As far as the author is aware there is
no way of computing the inverse of a matrix using an artificial neural network. Thus to
make the algorithm "neurally plausible”, by which is meant amenable to computation by
an artificial neural network, it is necessary to avoid computation of matrix inverses.

[t is clear from the description of the Kalman filter algorithm in the previous
section, that a neural computational implementation of the model based on this
algorithm would require the computation of an inverse matrix in order to calculate the

Kalman gain matrix K, (equation 9):

K& = [(ﬂih‘ rt +(_1er‘ Lw]—l Cj ) L;
o

o
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As discussed above, such a calculation is not plausible as a neural computation, and
therefore it is necessary to find a version of the algorithm which avoids this matrix
inversion.

In the case of » local observations, each subject to a different, mutually
independent measurement noise, with different variances o7, i=1,...,n, equation (9)
becomes

K =0 40, 3 C G (15)
in which the measurement noise covariance matrix is denoted by
Y £ diag(c?), i=1,...n. To avoid the two matrix inversions in (15), firstly the

covariance matrix of the velocity estimate is approximated by a diagonal matrix, i.e.
(16)

This assumes that the estimate of the velocity vector is uncorreiated in the x and y

directions. Then the first matrix inverse term in (15) is given by

eyt [1(a2 ) 0

In order to avoid the second matrix inverse in (15), we must consider the term

7 =1 I O-! ¥ i
aric= ' I (18)
—1I I _I’
Z G': A=y z O':
It is assumed that this matrix can also be approximated by a diagonal matrix, i.e.
1
2L, 0
1T el I O-.-_ .
GL (= ! (19)
0 D=1,




lhus the second matrix inversion in (15) becomes the inversion of a diagonal matrix,

the inverse of which is given by

. . ‘o 0
B +C2GT =[t o FM* (20)
0 (a\-)i
where
(a2
(,), £ — 1 (21)
I+(o; 7Y — 12,
T
. (O_El)i-l
(@,), = . (22)

l+(c2, )Y L1,
: O,

With this approximation for the matrix inverse in (15), the Kalman gain matrix

can be written in an approximate form which does not require any matrix inversion, i.e.

fl.l ]L,n
gsi]® % (23)
=N <3

A k i_] [-\ .

o} ol

In order to update the diagonal elements of the approximate covariance matrix
P™ defined in equation (16), it is noted that the “ar observation k" update equation of
the Kalman filter algorithm for the covariance matrix can be written as

P: - Hl—} - Kl("‘l l|p*-i-—l

(a2 ) 0
:[ e 2 k= (24)
0 [rr,a._\ }J
Z._l_;-’ ZL; ]
> el il S [(J;‘)f" 0 }
= 4 2 k-1
| 0 (o )
—1I 1 —I Py 7k
ZO__ xJ” yd Z;O'__- y.i




Again setting the off-diagonal elements to zero results in the two independent
update equations for the variances of the velocity estimate in each of the cardinal

directions, i.e.

2 k-1
(@2 ) = Tea)t 25)
4 k=1 ‘;-
I+(ap.x)k :Zof xi
')l—l
(07, )= e (26)

B
1+(a2 )i 'Z-&? P,

This approximate form of the algorithm produces a model of the motion
integration process which avoids the need to compute a matrix inverse in the calculation
of the Kalman gain matrix, and is therefore implementable as a neural computation.

It should be noted here that the temporal and spatial derivatives of the intensity,

I,(x,y.t), I(x,y,t) and/ (x.y.r), appear in the algorithm in the form of either
squared terms: /%, 1.7, 17, or the products: /.1,,1 I,,1 1, . As observed in Heeger and
Simoncelli (1993), there are no known cells in V1 with receptive fields which behave as

xn?

products of derivatives, i.e. 1./,,1 ], I 1, . However such products can be expressed in

the form
1
11 :Z{U +1,) =1, -1,)"}
11 %{u +1,) =(1,- 1,7} 27)
|
L1 =2{d,+1) -(,~ 1)}

and therefore all of the required functions of intensity derivatives in the model can be
expressed as the outputs of squared linear filters of the image intensity (Heeger and
Simoncelli, 1993). This both simplifies the implementation of the model in a neural
computational form, and allows the possibility of mapping it physiologically onto the

V1-MT neural circuitry.
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Whilst the above approximations make the model amenable to implementation
in the form of a neural network computation, the algorithm is now further simplified to
make it suitable for implementation in a distributed, recurrent neural computational
form. Instead of continuously updating the variances of the velocity estimate as just

described, the diagonal elements of the prior covariance F, in equations (21) and (22)
are now used to calculate the elements of the M, matrix at every “update at observation

k" step of the algorithm, i..

0.3 0
(at)& = ( PII)‘ 11
I+, N2 (28)
t
0.2 . 0
(@,),= (Tph j (29)
I+, 02

in which, from the initial “update between observations” step of the algorithm,
(07 =(0;.) and(c},) =(o} );. the diagonal eclements of B,. This of course
affects the calculation of the Kalman gain matrix using equation (23). But it avoids the
need to update the elements of the covariance matrix as described in equations (24)-(26)

In summary, the approximate form of the Kalman filter estimation algorithm

which forms the basis of the proposed "neurally-plausible” implementation of the

motion integration model is described as follows:

1. initialisation:

»

P} =P, =diag[ (a2 )5, (02} |

2. update of the velocity estimate between observations

(a) before the first observation



(0;.) =(o,,)

(0, =(0,,)

(b) between subsequent observations

3. update of the velocity estimate at observation &

k -]

%= 1-:'" + K, (A, —C}_v: <)

where
!c_i lr(:_n
i o; o ol (&), 0 |
Ai — ‘," ~ P m— '
1, fen 0 (a),
o} o’
(2 .)
(@,), = =
Lifo? )Y -=
RyXe
o (o;,)]
(@), = = .
' gp— |}
l+(05, 08 2.5

a,

The elements (@, ), " and («,),” of the M, matrix might be thought of as normalised

forms of the prior varianceslaj_r ), and {fT ), of the velocity estimate.




2.3. A distributed, recurrent version of the model based on the

approximate Kalman filter.

In this section it is shown that the "neurally-plausible” implementation of the motion
integration model described in the previous section, leads to a distributed, recurrent
neural computational version of the motion integration model.

In this version of the model, local observations of the spatial and temporal
derivatives of the image intensity are made at a distributed set of spatial locations in the
visual space, and are used together with the current global velocity estimate to form a
corresponding set of local updates to the current estimate. The local update signals are
then summed, and used to calculate a new global estimate of the velocity. The new
global velocity estimate is then broadcast to each spatial location where it is again used
to calculate a local update signal to the global estimate.

To describe in more detail this form of the model, we first define a local

“update’” signal for each spatially local observation window as

}‘IJ 1!‘.1 ]!:.r Jl‘II'I,J ¥l
o; o’ o’
{e:-l-}r ES i L ¢ i \":_I {30)
| Ll o
o’ o’ o}

It then follows that the “ar observation k" update equation for the velocity estimate in

the approximate Kalman filter algorithm

vi =vi '+ K, (h, -Cv{™) (31
where
x| !t.n
o) o’ 0
]\‘ == ‘(!* 1 n 1!‘ i (\at)i
I\.l 1\.» 0 (a’\ J.l
o} o’

3
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can be written in terms of the local update signals as

vi=u T MY (), (32)

Thus the global update of the velocity estimate is expressed as a summation of local
estimate update signals.

This results in a distributed version of the motion integration model, wherein: (i)

for each spatially distributed observation window a local update signal (e[™) is

computed based on the squared local temporal and spatial derivatives I°_,7° . I’

it | B

the variance of the local measurement noise o,”, and the current velocity estimate v~

(equation (30)) : (ii) the local update signals are summed and used to create a new
velocity estimate v, (equation(32)).

Clearly, the behaviour of this distributed, recurrent form of the motion
integration model will be identical to that of the motion integration model based on the
approximate Kalman filter estimation algorithm, as described in Section 2.2. In Figure 9
a neural network is described in diagrammatic form which is capable, in principle, of

implementing the distributed, recurrent version of the motion integration model.
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Figure 9. Neural network implementation of the distributed, recurrent form of the motion integration
model. The set of distributed networks Ni each implement equation (30), with v:'{ entering each

network as a modulating term. The remainder of the network implements equation (32), with the weight
matrix of M corresponding to the matrix M, defined in equation (20). The recurrent feedback path
represents the update of the velocity estimate at the next step of the algorithm.

2.4. Summary.

In this chapter the mathematical form of the proposed Kalman filter based
motion integration model was presented. The relationship of the change of the intensity
of the image with time and the velocity was used as a basic equation. After that the
Taylor series approximation was applied in order to derive the equation relating the x
and y components of the velocity vector, which are unknown and the temporal and

spatial derivatives of the intensity (/,,/, and /) which are observed, plus added

Gaussian noise. The posterior probability of the velocity was expressed by the Bayes’

rule which combines the likelihood probability function and the prior. Then the

50




maximum of that posterior distribution was obtained using a Kalman filter estimation
algorithm, in which the estimation of the current velocity takes into account the
information from the previous steps of estimation.

A version of the model based on an approximate version of the Kalman filter
algorithm was also presented in this chapter. There were three main changes as
compared to the optimal Kalman filter algorithm. First, to avoid the matrix inversion
when calculating the Kalman gain, the covariance matrix of the velocity estimate was
approximated by a diagonal matrix. This assumes that the components v, and v, are
independent. The second change involved the assumption that the spatial intensity
derivatives on the x and y axes were independent as well. This assumption simplifies the
matrix which contains the local measurements of the intensity derivatives. Both
approximations led to a simpler calculation of the Kalman gain, avoiding the need for
computing matrix inversions. The third main change was related to the prior covariance
P,, which initial value was kept constant for every update of the M; matrix. This
assumption simplifies the algorithm and allows it to be represented in a distributed,
recurrent neural computational form, which was represented in a diagrammatic form in

Figure 9.




Chapter 3. Motion integration in smooth eye pursuit.

3.1. Smooth eye pursuit.

Smooth eye pursuit is a good experimental paradigm for studying the motion integration
process by taking into account the latency and accuracy of the eyes response.
Especially, the initiation of pursuit after the onset of the target seems most informative
for studying the integration mechanisms (Lisberger and Westbrook, 1985). First, there is
a latency of the eye response till the change of the target position accumulates to a
certain extent. This change or error which needs to be compensated for accumulates to
some degree and then it triggers the compensatory eye movements. Afier the eye
movements start it is shown experimentally that during this motion the information
about the change of the position of the target is not upgraded. It is an “open-loop”
system. It takes another time delay to have the new information about motion change
reflected in the eye movements. In other words, if an unpredictable or sharp change in
position occurs during the latency period the eye movements are not able to respond
immediately to it.

From the time of onset motion of the visual target stimulus which is to be
tracked, the time delay is of about 100 ms before the visually driven eye pursuit motor
response begins. As already mentioned previously, some of the motion signals may not
accurately reflect the target motion, owing to the aperture effect, as is the case with
edges moving in the non-orthogonal direction to themselves. Experimental evidence
from human and non-human primates indicates that, as a result, the initial eye pursuit
movement has both an on-axis component, i.e. in the direction of the object motion, and
an off-axis bias which reflects the inaccuracies in the local motion signals (Masson &

Stone, 2002; Pack and Born, 2001).
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The experimental evidence suggests that the integration process begins as soon
after the onset of the target motion as a visual motion signal is available, i.e. at the
latency of transfer of the retinal motion signal to the site of the neural integration
process. As mentioned earlier, there is strong evidence that visual area MT could be the
main one for the motion integration process (Rodman and Albright, 1989; Stoner and
Albright, 1992; Movshon and Newsome, 1996). Physiological experiments (Pack and
Born, 2001) suggest that this latency is about 70-80 ms for the cells in MT area of alert
monkeys to respond. At this point in time the eye pursuit has yet to start owing to its
~100ms latency, so the error between the target motion and the eye motion increases
without compensation from any eye movement (Lisberger and Westbrook, 1985).
However, the experimental data of Wallace er al. (2005) and of Bom er al. (2006),
suggests that the integration process is already starting to correct for the inaccurate off-
axis motion signals, and this can be observed in the eye movement within ~70 ms after
it begins. This is before the error signal induced by the inaccurate off-axis eye
movement can be compensated for by the oculomotor feedback system, owing to the
~100 ms delay in this system. Their results could be interpreted as follows: for the first
70 ms or so, the eye movements are driven by a simple uncorrected pooling of both the
unambiguous (2-D) and ambiguous (1-D) local motion measurements, with the 2-D
measurements of the target object velocity only starting to dominate after this period. As
a result, the correction of the off-axis direction error of the eye movements starts
approximately after 60-80 ms from the onset of the target, but before the end of the 100
ms latency of the open-loop The bias error in the eye movement then decays to zero
over a further period of 200 - 300 ms (see Figure 3 of Wallace et al., 2005). This
temporal evolution toward an accurate representation of target object motion is
consistent with several experimental results: from human direction judgments

(Lorenceau et al., 1993); the human ocular following response (Masson and Castet,
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2002; Masson et al, 2000), smooth pursuit in monkeys (Pack and Born, 2001) and
humans (Lindner and Iig, 2000:; Masson and Stone, 2002, Wallace er al., 2005), and the

responses of MT neurons in alert monkeys (Pack and Born, 2001; Pack ez al., 2004).

3.2. Bayesian estimation models applied to smooth eye

pursuit.

Weiss et al. (2002) proposed an optimal Bayesian probabilistic model of motion
integration in which an optimal estimate of the target object velocity is computed using
the likelihoods of the local velocity measurements distributed over the visual space
(Simoncelli et al., 1991; Simoncelli, 2003). They used a priori distribution for the target
object velocity which assumes a human preference for the assumption of slow speeds,
and formulated this as a Gaussian prior centred on zero. The idea of using a slow speed
preference was initially adopted by Heeger and Simoncelli (1991) in their motion
itegration model. The prior probability distribution centred at zero is analogous to the
assumption that the aperture problem is solved by preference to the slowest speed, i.e.
the velocity orthogonal to the edge, as discussed in Section 1.5. Support for this idea
comes from physiology where it is well known that the preference of the 1-D detectors
of direction is toward the orthogonal to the edge direction of motion (Hubel and Weisel,
1959). Weiss et al. (2002) also assumed an additive measurement noise which was
independently Gaussian distributed, with zero mean and known variance. This had the
effect of making the local likelihood functions dependent on stimulus contrast. They
computed the posterior distribution of the velocity as the product of the likelihoods over
all the spatial locations (assuming that the likelihoods are independent) multiplied by
the prior. The authors show that their model reflects several of the main characteristics
of human motion perception, as observed in a range of psychophysical studies, both
their own experiments which use “fat” and “thin” rhombus figures at high and low
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contrast, and those of others (Burke and Wenderoth, 1993; Bowns, 1996; Stone et al.,
1990; Stone and Thompson, 1990; Lorenceau ez al., 1993) using mainly moving plaid
patterns. For fixed values of measurement noise variance and prior variance (or more
specifically, a fixed ratio of these quantities), and for a moving “thin” rhombus
stimulus, at low contrast the posterior velocity distribution has a maximum (mean) close
to the vector average of the local velocities. At high contrast, this maximum occurs at,
or near, the veridical target object velocity given the intersection of the constraint lines
provided by the local velocity measurements.

The model of Weiss ez al. (2002) was not intended to replicate the experimental
data from the smooth eye pursuit experiments cited above, and is not capable of
reproducing the dynamics of the motion integration process as observed in these
experiments. Moreover, their model, which is tuned to replicate their human perceptual
experiments, would predict that a stimulus consisting of a horizontally moving high
contrast “thin” rhombus would not result in any offset bias in the pursuit eye motion,
whereas the experimental data of Wallace er al. (2005) indicates that there is always an
offset bias in the initial eye motion of ~30° even in the case of a “thin” rhombus of high

contrast and slow speed.

3.3. Non-Bayesian models applied to smooth eye pursuit.

The neural process of integration of the local motion signals is generally supposed to
involve two stages. The first stage, which is usually attributed to neural mechanisms in
primary visual cortex (V1), involves the extraction of directionally selective motion
information. Since V1 neurons are subject to the ambiguities introduced by 1-D motion
stimulus signals, a second stage, attributed to the medial temporal area of cortex (MT),
is perceived to be the location of the neural mechanisms for integration of the local

motion signals and the resolution of the ambiguities introduced by the 1-D signals. One
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model based on this two stage process supposes a feed-forward mechanism which
achieves the integration process by differential weighting of the feed-forward
projections of the 1-D and 2-D signals (Simoncelli and Heeger, 1998). However, this
model would not account for the temporal dynamics of the motion integration process
observed in the above cited smooth pursuit experimental data.

An alternative model (Pack er al., 2003) suggests that the dynamics of the
integration process might be determined by the properties of visual neurons early in the
visual pathway, in particular a temporal delay in the emergence of end-stopping in
direction-selective neurons. In this formulation, the temporal evolution of 2-D motion
signals for pursuit and those that have been observed in MT neurons (Pack and Bomn
2001; Pack ef al., 2004) reflect a change in the “weighting” applied to the outputs of V1
direction-selective neurons, whereby the activity of 2-D related end-stopping neurons
eventually suppresses that of the 1-D contour-related neurons, and the motion signals
from the 2-D terminators becomes dominant. It is suggested that this mechanism might
also explain the perceptual dominance of a contour-based vector average for stimuli of
low contrast (Weiss et al., 2002), since end-stopping is weak or absent for such stimuli
(Polat er al., 1998; Sceniak er al., 1999). This is also consistent with the experimental
observations of Wallace e al. (2005) on pursuit initiation in humans, in which the effect
of lowering the stimulus contrast is an increase in the off-axis bias in the initial transient
eye movement and a lengthening of the time taken for this bias to reduce to zero. Note
however that for the low contrast stimulus, the off-axis motion is eventually eliminated,
albeit with a time constant up to nearly three times that for the high contrast stimulus,
indicating that the suppressive mechanism, if this is indeed the case, does still operate
although more weakly. As pointed out in Born er al. (2006), the suggested role of the
end-stopping cells is also physiologically very plausible given the fact that neurons in

layer 4B of V1, which is the source of the main projection from V1 to MT (Maunsell

56



and Van Essen, 1983; Shipp and Zeki, 1989), are strongly end-stopped (Sceniak ef al.,

2001).

3.4. Other Bayesian motion integration models.

Other Bayesian models of motion integration and estimation have also been previously
proposed (Koechlin ef al, 1999; Rao, 2004) but have not been applied to motion
integration in smooth eye pursuit.

Koechlin er al(1999) focus mainly on the segmentation mechanism of a
population of neurons, where the Bayesian inference is derived from the lateral
connectivity and is used to modify the feedforward signals. For instance, in Koechlin er
al. (1999) the experiment with a tilted moving bar requires two separate sets of units
(neurons); one of them detecting the orthogonal motion, and another one encoding the
veridical bar-end direction. Based on the lateral connectivity and Bayesian inference,
the signal from the units detecting the bar-end velocity propagates along the contour of
the bar and with the time suppresses the signal from the non-veridical orthogonal
velocity detectors.

This mechanism differs substantially from the model presented here. In the
model presented here a pooling of the signals is performed on a higher level
(supposedly MT area), where the information from the detectors signaling non-veridical
motion orthogonal to the edges, are overpowered with time by the non-ambiguous,
veridical information from the detectors of the motion of the ends of the bar, as a result
of the recursive nature of the velocity estimation algorithm.

The work of Rao (2004) is primarily concemed with the problem of
implementing the Bayesian approach in a recurrent neural network. The examples given

related to motion perception are concerned with Bayesian decision making in a visual
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motion detection and discrimination task. rather than the problem of motion velocity
estimation based on the integration of local motion signals as addressed in this thesis.

The model presented in this thesis differs substantially from these other models
which employ a Bayesian approach. In contrast to the Koechlin er al.(1999) model, the
mode! presented here does not use Bayesian inference based on propagation of the 2-D
motion signals from the end-points of the bars via the lateral neural connectivity to
allow, after a propagation delay, these signals to override the 1-D edge motion signals,
thus implementing the dynamics of motion integration. Instead, the model uses the
recursive nature of the Kalman filter estimation algorithm to directly model the motion
integration dynamics. In principle, this can then be thought of in biological neural
network terms as implementing the dynamics via the recurrent connections between V1
and MT rather than the lateral connections in V1. That is, the model can be envisaged in
the form where the prior global stimulus velocity estimate is formed initially in MT and
distributed to local velocity detectors in V1. These local detectors then use the current
global estimate to form local error signals which are projected to MT, where they are
used to update the global velocity estimate, which is in turn fed back to VI local
detectors in a recurrent process. This recurrent, distributed version of the motion
integration model was fully described in Section 2.3 and illustrated in Figure 9.

The model presented here also differs from the recurrent neural network
implementation of the Bayesian process described by Rao (2004) which. as already
noted, does not address the motion integration process at all. Rather, Rao describes how
Bayesian computation in general can be carried out in a recurrent neural circuit, and
how the feedforward and recurrent connections may be selected to perform Bayesian
inference for arbitrary hidden Markov models. He illustrates the approach using two
tasks: discriminating the orientation of a noisy visual stimulus and detecting the

direction of motion of moving stimuli.
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3.5. Summary.

In this chapter a review of motion integration in smooth eye pursuit was presented. It
was shown that the aperture effect from the detectors of direction of motion of the edges
could lead to a significant bias in the eye movement’s direction during the pursuit.
Instead of moving into the veridical direction of motion, the eyes tend to follow the
direction orthogonal to the edge of the target stimulus. The first phase of the pursuit,
during the open-loop seems to be critical, as then the error is the strongest and it is
shown that during that time the eye movements could not be corrected or influenced
from any external change. On the contrary, as it has been shown in Wallace er
al. (2005), an internal correction occurs, which takes into account the influence of the
veridical information from the 1-D cues over 2-D cues of the image.

Also in this chapter both Bayesian and non-Bayesian models of motion
integration were reviewed. Some of these models have been applied to the smooth eye
pursuit experimental data, but are not intended or able to capture the dynamics of the

integration process evident in this data.
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Chapter 4. Simulation of smooth eye pursuit
experiments using the Kalman filter based motion

integration model.

4.1. Simulations using the optimal Kalman filter version of the

model.

In this chapter it will be shown that the Kalman filter based motion integration model
described in Chapter 2 captures qualitatively the temporal dynamics of the integration
process in smooth eye pursuit. As has been described, the model is based on the concept
that the integration process computes a Bayesian estimate of the target object velocity
using the local observations of target motion provided by the directionally selective
neurons in V1, the estimation process being carried out recursively, in the form of a
Kalman filter (Kalman, 1960). In this chapter it is shown that the dynamics of this
recursive estimation process closely replicates the dynamics of the motion integration
process, as measured experimentally, under a variety of conditions involving changes in
shape and contrast of the stimulus.

A computational version of the motion integration model was constructed using
Matlab (version 7.3.0.267, The MathWorks) and computer simulations of the model
were performed on stimuli similar to the ones used in psychophysical experiments
(Wallace er al., 2005). Two visual stimuli were used in the computer simulation
experiments: (i) a square diamond with main axes at 0° and 90°, and (ii) an elongated
tilted diamond (or “thin rhombus™) with the main axis at 45° and internal angles of 10°
and 170°. The stimuli were presented as solid figures on a visual space consisted of 200

by 200 pixels. Each of the stimuli was contained within a square area of 50 by 50 pixels.



Figure 10 shows an example of the tilted rhombus as used in the simulations.

/
S

Figure 10. An example of a tilted rhombus stimulus as used in the simulations. Illustrated is a 100x100
pixel visual space (a 200x200 pixel visual space was actually used). The solid stimulus was confined
within an area of 50x50 pixels contained in this background array. The square areas of 10x10 pixels
covering the stimulus show the relative size of the individual local motion detectors used for calculating

the spatial and temporal derivatives.

The visual space was further divided into 400 uniformly spaced and sized, non-
overlapping square windows each of size 10 by 10 pixels. Thus the stimulus itself was
contained within an area covered by 5x5 windows. In each window, the observations of
temporal and spatial derivatives of image intensity were calculated as the image moves
at a constant velocity in the horizontal direction from the left to the right of the visual

space. Temporal and spatial derivatives 1 (x,3.7), I (x,y,t)and I (x,y,1) were
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computed using small spatial and temporal shifts Ax, Ay,and Arof the stimulus. In
practice, for the specific results presented here, for computing 7 _(x,y,f) or I_‘_{_x,_v,t),
the square 10x10 pixel windows were shifted by one pixel in either the x or y direction
respectively within a single presentation time step of the stimulus; the intensity value
within each window was summed and subtracted from the new intensity value within
the window after the shift. For computing the temporal derivative 7 (x,y,r), the
summed intensity value within a single window for two consecutive time steps of the
presentation of the stimulus were subtracted from each other.

Having fixed the parameters of the stimulus presentation method, i.e. the size of
the stimulus within the pixel array representing the visual space and the size of the local
motion detector windows, as described above, the only free parameter of the model is
the covariance ratio 0'2.’0';, the ratio of the measurement noise variance and the
variance of the prior estimate of the velocity. The method used to choose this parameter
is illustrated in Figure 11.

In Figure 11, the initial estimated velocities (i.e. after the first step of the

algorithm) in the x and y directions, v_,v,, for the tilted thombus are shown for a wide
range of values of o’ /o, and for three levels of contrast of the stimulus: 0.25, 0.5 and
1.0. The values of the standard deviation of the prior velocity estimate o, were kept

within a small range of values between 0.04 and 0.07, and the measurement noise
standard deviation o was varied between 0.01 and 3.
From Figure 11c in particular it can be seen that the values of the log covariance

ratio ” /o, systematically determine the dependence of the estimated direction bias
on contrast. When the logarithm of the ¢ / o, ratio is greater than 5.0 or less than -1.0

the variation of the estimated direction bias with contrast becomes considerably reduced

compared to say a log covariance ratio of 2.0, for which the variation in bias with
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contrast is greatest. It was therefore decided to choose a range of values of o* faf,

which covered this range of contrast dependence, in order to explore the full range in

the subsequent simulations of the dynamics of the direction bias.
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Figure 11. a,b) The initial estimates of the x and y velocity components of the tilted rhombus
for 12 different values of the covariance ratio ¢’ /o’ presented in a logarithmic scale. The true

speed/direction of the rhombus is 2 pixels per time step in horizontal (x) direction. ¢) The initial estimate
of the non-veridical direction bias, computed from the data in a) and b). d) Values of the covariance ratio

o’ /a; plotied against their logarithmic representation.

The values of o, g,, 6/0,, and In(¢* /5,?) chosen to span this range in the simulations

are given in Table | below. Thus In(¢?/5,’) varies between ~ -1.0 and 5.0.
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0.04 0.07 0.6 -1.1
0.1 0.04 p Al 1.8
0.2 0.04 5 32
0.5 0.04 12.5 5.05

Table 1. The values of o/ 0O, used in the model simulations

Figure 12 shows the results from the computer simulation of the model in
estimating the angular direction of the rhombus (0° = horizontal motion) of both the
square diamond and thin rhombus stimuli, for three values of contrast: max (image
intensity = 1), half (intensity = 0.5) and quarter (intensity = 0.25), and for the four

different values of the ratio o/ o, given in Table 1, as a function of the number of

iterations of the Kalman filter algorithm.

Note that here and for all simulations presented in the thesis, in displaying the
temporal dynamics, time is represented in terms of number of iterations, i.e. steps, of the
Kalman filter algorithm which can not be gquantitatively related to any real time
measurements, for instance milliseconds. Therefore the comparison of the simulation
results with the experimental results must be made qualitatively and in a relative manner
with respect to the variation in simulation parameters, e.g. contrast levels, rather than
quantitatively, ie in terms of real values of direction bias or actual decay times., This is
analagous to the manner in which the psychophysical results are often compared within

a specific experimental setting.
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Figure 12 . Resulis from the computer simulations of the motion integration model based on the optimal
Kalman filter algorithm, showing the estimated angular direction of the stimulus motion (0° = horizontal

motion), for horizontally moving diamond and rhombus stimuli, for three different values of contrast, and

for four different values of the ratio ¢/ 0" increasing from the top row to the bottom row of plots. Note
r
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the change in the vertical scale in the plots in the first two rows. The values of o / o, used are given in

Table 1.

Each iteration shown in the graphs in Figure 12 corresponds to five iterations/steps of
the Kalman filter algorithm, and the estimated angular direction shown is the average of
the estimated direction over these five iterations (thus in each plot the total number of
iterations of the algorithm is thirty five).

The averaging was necessary because of sampling effects appearing as a result
of the approximate and coarse way of calculating the image intensity derivatives usinf
the 10x10 pixel non-overlapping windows. Figure 13 shows an example of the
estimated component velocities before the averaging process, in the worst case situation
of the approximate version of the algorithm (see following section), illustrating the
widest observed range of variation of the estimate values between the individual steps
of the Kalman filter algorithm. It was found that averaging over five steps of the
algorithm was sufficient in all cases to provide a smooth variation in velocity estimates

and hence in the estimates of direction, as shown in Figure 12.
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Figure 13. An example for the variation of the estimate component velocity values between the

individual steps of the Kalman filter algorithm for the worst case of the approximate version of the

Kalman filter algorithm, and for a log covariance ratio ln(‘%; ) = 3.2 before the averaging over every 5

steps.




The simulation results, presented in Figure 12 have a small, but non-zero peak

offset bias for all values of o/ o, (note the change in the vertical scale in the plots in

the first two rows). The value of o /g, is increased from the top to the bottom row in

Figure 12, and results in a corresponding increase in the offset bias in the estimated
direction. This offset bias is however very small in the case of the lowest value of the

o /o, ratio (top row of plots) for both the diamond and thin rhombus shapes (< 0.25°

-

for the diamond and < 3° for the thin rhombus). In each case, the peak offset bias is
followed by a temporal decay of this bias to an asymptotic value of close to 0°.

These characteristics of the model dynamics, as shown in Figure 12, i.e. an
initial offset bias followed by a regular temporal decay of this bias to zero, are also the
main characteristics of the dynamics of the motion integration process, as observed
experimentally by Wallace er al. (2005). Their data show (see their Figures 5 and 6,
which are presented here as Figures 14 and 15, respectively) a peak tracking direction
error followed by a temporal decay toward an asymptotic value corresponding to the
true target motion direction (0°).

Moreover, the model simulations show (Figure 12) that decreasing the contrast of the

stimulus, for any fixed value of the ratio o/, results in an increase in both the peak

offset bias in the estimated velocity and the time constant for the decay of the bias to
zero. This is again in close qualitative agreement with the data of Wallace er al. (2005),
(here shown as Figure 14) in which the initial tracking bias was reduced from ~44° to
~30° when the contrast was increased from 10% to 40%, after which there was little
further reduction. Similarly, increasing the target contrast resulted in a decrease in the
decay time constant from ~168 ms at 10% contrast to an asymptotic value ~60 ms for

contrasts >40%.
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Figure 14. (FIG. 5 from Wallace et al., 2005 with the original legend).. Smooth pursuit responses to a
10°/s object motion: effects of object contrast. Layout is the same as for Fig. 2. A: mean velocity profiles
of pursuit eye movements driven by a type II diamond drifting rightward for a range of object contrasts.
For this experiment, the background was set to a gray level corresponding to the mean luminance level. B:
mean tracking direction errors as a function of time for a single contrast condition (90%, top) and for a

range of object contrasts (bottom). The same color code is used for 4 and B.
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Overall, the model simulation results show a qualitatively, and in specific
instances quantitatively, high level of correspondence with the experimental results of
Wallace et al. (2005), in particular in respect of the variation of both the peak offset bias

in the target velocity and the decay of this bias to zero, with contrast level.

4.2. Simulations using the approximate, neurally plausible

version of the model.

The simulation experiments described in Figure 12 were repeated with the motion
integration model based on the approximate form of the Kalman filter estimation

algorithm, as described in section 3 above, where for simplicity o, =o for all i, and

2
(c?

.)o =(a},)s =&, . The results are shown in Figure 16.
As in Figure 12, the value of o/o, in Figure 16 increases from the top row to

the bottom, and results in a corresponding increase in the peak offset bias in the
estimated direction for both types of stimuli. There is again a small, but non-zero peak

offset bias in the case of the diamond stimulus, which is less than 1° in all but the case

of the highest value of o/o,and the lowest contrast (lower lefi-hand plot).
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Figure 16. Results from the computer simulations of the motion integration model as in Figure 12, but

for the model based on the approximate Kalman filter algorithm.
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For the thin rhombus stimulus however, there is a substantial peak offset bias
(>30°) for all values of o';‘crp (note that there is no change in the vertical scale in the
plots in the first two rows as there is in Figure 12). This is in contrast to the simulations
described in Figure 12 for the optimal Kalman filter based model, where such values of

direction error are obtained only for the highest value of /o, (lower right-hand plot

in Figure 12).

Comparing the model simulation results for the thin rhombus stimulus (right-
hand column of plots) with Figures 5 and 6 of Wallace ef al. (2005) (here shown as
Figures 14 and 15), it can be seen that the peak direction error in the model simulation
now corresponds more closely to that described by Wallace ef al. than is the case for the

model based on the optimal Kalman filter. In particular, in the case of all values of
o /o, used, the peak direction error of the model has a variation with contrast of
between 30° and 40°. This is in close agreement with the variation in peak direction

error abserved by Wallace et al., which was between 30° and 45° (Figures 6A and 6B of

Wallace ef al. (2005), presented here as Figure 15A and 15B)

It can also be seen from Figure 16 that the decay time constant of the direction
error also increases with both the value of the o/o, ratio and with reducing the
contrast, as in the case of Figure 12, and again closely mimics qualitatively the variation
in decay time constant with contrast observed experimentally by Wallace er al. (Figure

6C of Wallace er al. (2005), here Figure 15C). In this case, however, compared to the

optimal filter based model (Figure 12), the time constants are generally larger.
Interestingly, the model mimics a significant characteristic of the Wallace ef al. data, in
that the time constants stay approximately constant for all but the lowest levels of
contrast where they increase substantially (~50% increase — see Figure 6C of Wallace er

al. (2005), here as Figure 15C). The model results also display this feature of the
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experimental data for all but the lowest value of the o/ o ratio, as seen in the three

lower right-hand plots of Figure 16. Overall, in the case of the approximate filter based
version of the model there is a higher level of correspondence between the simulation
results and the experimental results of Wallace et al. (2005), than in the case of the
optimal filter based version of the model.

A further set of simulation experiments were carried out with the model based
on the approximate Kalman filter, using the thin rhombus with varying length, in order
to see the effect of the relative influence of 1-D versus the 2-D local motion
measurements. In principle, a longer stimulus will contain a larger proportion of 1-D
cues, compared to 2-D cues, and thus should result in an increase in the peak offset bias
in the direction estimate and a longer time of decay of this bias to zero. This prediction
was confirmed experimentally in a study for smooth pursuit initiation in monkeys (Born
et al., 2006). They showed that the directional error is more pronounced and lasts longer
for the longer length tilted bars.

The model simulation results are presented in Figure 17, using only one level of

covariance ratio o/ &, equal to 5 (In(c™ fo-;) =3.2). for simplicity. When the length of

the long diagonal of the ‘thin’ rhombus increases, both the peak directional error and the
decay time increase, approaching the value of the vector average direction for the
longest stimulus used. These results compare well in a qualitative sense with those of

Born et al. (2006) (see their Figure 4, which is shown here as Figure 18).
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Figure 17. Results from the computer simulations of the motion integration model based on the

approximate Kalman filter algorithm, for four different sizes of the thin rhombus and three values of

contrast. The sizes are: 10, 20, 30 and 50 pixels length for the main diagonal and a constant size of 3
p u .

pixels for the short diagonal. The value of ¢ / o, ratio used was equal to 5 ( }m_n’{_'.. y=32).
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Figure 18 (FIG. 4 from Born et al., 2006 with the original legend). Results of varying bar length. 4:
average eye velocity perpendicular to the direction of target motion for bars of different lengths for
monkey H. Each thick line is the average of _900 trials; thin lines represent SE. B: initial (from 0 to 40 ms
after pursuit onset) perpendicular eye acceleration as a function of bar length for 3 different monkeys (C,
green; H, red; G, black) for bars that were either tilted (solid lines) or not (dashed lines). The error bars
indicate SE. C: time course of the angular deviation for bars of different lengths in monkey H (same data
as in A). The thick lines represent the direction of the mean vector and the thin lines represent the 95%
confidence interval about the mean direction. The cyan circles plot the P values of a 2-sample test
(Watson-Williams test) at successive time points comparing the deviation induced by the longest tilted
bar (solid black line) with the nontilted bar of the same length (dashed black line). The time at which the
difference becomes nonsignificant (arrows) was defined as the duration of the deviation. The significance
criterion, P = 0.01, is represented by the horizontal dash-dot line. Symbols near the bottom of the plot
correspond to a P < 107, D: time constants of the best-fitting single-exponential decay as a function of
bar length for the same 3 monkeys (colors as in B). Error bars indicate 95% confidence intervals
determined using a bootstrap procedure (see METHODS). The filled blue circle indicates the best-fitting
time constant for the population data for 60 MT cells recorded from 2 alert macaque monkeys. The fit
was to the angular deviation of the mean neuronal direction vector in response to fields of tilted bars, each
bar being 3° long (Fig. 2C from Pack and Born 2001).




4.3. Summary.

In this chapter the resuits were shown of the model simulations using a square diamond
shape stimulus and a thin 45° tilted rhombus stimulus. For the tilted rhombus, moving
in a horizontal direction, the results were qualitatively similar to the Wallace et al.
(2005) psychophysical data, i.e. the error bias in the velocity estimation was bigger for

the lower contrast stimuli. At the same time the bias depends directly on the ratio o/ o,

The results obtained from the approximate version of Kalman filter algorithm
for both the horizontally moving rhombus and square diamond were closer

quantitatively to the Wallace ef al. (2005) data. The directional bias for all levels of the

o /o, ratio was stronger than the one calculated with the optimal Kalman algorithm.

The bias and the time decay constant were the biggest for the case of the lowest contrast
of the stimuli, which was strongly with accordance with the Wallace er al. (2005)
results. This approximated algorithm gives better results than the optimal one, as it

predicts a directional bias even for the case of low o/ o, ratio and high contrast, which

is in conformation with the experimental data on smooth pursuit. In the discussion of
these results in the following Chapter, it will be pointed out how they differ from the
study of Weiss ef al.. (2002), which is the closest to the work presented here.

The other important result described in this chapter regarding the approximate
version of the Kalman filter algorithm, is the direct dependence of the directional bias
on the stimulus length. It shows that the algorithm needs time to take into account the
relative strength of the information provided from the 1-D and 2-D motion detection.

The simulation results of the model as performed by both optimal and
approximate versions of the Kalman filter gave similar qualitative results and they were
in accordance with the psychophysical data on smooth pursuit regarding the initial non-

veridical bias of the tracking eye movements. In general, the bias showed direct
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dependence on the ratio o /o, , and on the stimulus size, and an inverse relationship

with the stimulus contrast. These results are in accordance with the psychophysical data
of Wallace et al. (2005) and Born er al. (2006).

The difference, between the approximate and the optimal version appeared
mainly in the effect of the ratio o/, on the direction bias. Whereas in the case of the
approximate version the bias was significant for all levels of o /0o, for the optimal

algorithm the bias was less sensitive to the values of this ratio, This suggests that for the

approximate version it is easier to obtain a directional bias for all contrast levels and

o/ o, ratios, which is closer to the psychophysical data on smooth eye pursuit.
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Chapter 5. Discussion of the application of the motion

integration model to smooth eye pursuit.

5.1. Simulation results.

The aim in this part of the thesis has been to develop a theoretical, neurally plausible
computer simulation model of the motion integration process which is intrinsic to the
control of eye movements in the smooth pursuit of moving target stimuli. In particular
psychophysical data for initiation of smooth pursuit eye movements suggest that the
integration of local measurements of the velocity of the stimulus starts before the
closing of the oculomotor control loop and is correcting for inaccurate, ambiguous local
motion signals prior to the onset of any compensatory eye movement (Wallace ef al.,
2005; Bomn et al., 2006). This data also demonstrates a dynamical behaviour for the
correction of the off-axis directional error in the global motion signal used to initiate eye
movement, presumably reflecting the dynamics of an underlying motion integration and
global velocity calculation process in the brain and the subsequent correcting eye
movements. To develop the model, a recursive Bayesian estimation of the global
stimulus velocity was used, based on the local 1-D and 2-D motion measurements. The
estimation process was implemented as a Kalman filter algorithm for optimally
determining the posterior distribution of the global velocity estimate.

This algorithm makes some basic assumptions about the nature of the motion
observation process, notably that it is linear and subject to additive Gaussian distributed
measurement noise. These assumptions were used in the original description of the
Kalman filter (Kalman, 1960), and has subsequently been commonly used in
engineering problems because it leads to a tractable solution to the estimation problem.
This was pointed out by Weiss et al. (2002), who made the same linearity and Gaussian

78



measurement noise assumptions in the formulation of their motion integration model. It
is also assumed that (i) the stimulus is moving with constant velocity, as in the
psychophysical experiments, and (ii) changes in image intensity at any location in visual
space are due only to motion of the stimuli, the so-called "standard principle of intensity
conservation”, a standard assumption in several models of motion processing (Heeger
and Simoncelli, 1993; Weiss et al., 2002).

Given these assumptions the simulation results from the Kalman filter based
motion integration model have been shown to closely match the experimental data of
smooth pursuit. In particular it was shown that such a model has a dynamic behaviour,
the result of the recurrent Bayesian estimation process, which possesses qualitatively the
same characteristics as the experimentally observed dynamics of the motion integration
process during the initial stages of smooth eye pursuit (Wallace ef al., 2005; Born ef al.,
2006). Specifically, the variations in the stimulus contrast in the model simulations lead
to changes in the peak directional error and the time constant for the decay of this error
to zero which are qualitatively consistent with the changes in the dynamics of the
directional error induced by similar contrast variations in the experimental situation
(Wallace ef al, 2005). Similar consistent results were obtained from the model in
response to changes in stimulus length and the corresponding ratio of 1-D and 2-D local
motion measurements (Born et al., 2006). These results strongly suggest that the brain
may be using some form of Bayesian estimation process to correct for the presence of
ambiguous 1-D local motion cues in the calculation of a veridical global stimulus
velocity for smooth eye pursuit.

Furthermore, the neural plausibility of the model was demonstrated, in terms of
the feasibility, in principle, of its implementation using neural computational methods,
i.e. avoiding the computation of matrix inversions as in the optimal Kalman filter based

model. This required the development of an approximate version of the Kalman filter
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which eliminated the need for matrix inversion. The simulation results from the motion
integration model based on the approximate Kalman filter algorithm presented here
show an even closer correspondence with the experimental data, suggesting that the
brain may possibly be adopting a form of sub-optimal Bayesian approach to the

estimation of stimulus velocity in the integration of local motion cues.

5.2. The origin of motion integration dynamics in the

initiation of smooth eye pursuit.

For some time it has been unclear as to the origin of the temporal dynamics which have
been observed in the initiation of smooth eye pursuit in both humans and monkeys
(Masson and Stone, 2002, Wallace ef al., 2005) and the associated dynamic response
properties of monkey MT neurons (Pack and Born, 2001; Born ef al., 2002). One recent
proposal has been that it is the consequence of a delayed response of end-stopped cells
resulting in a change in the “weighting” applied to the outputs of V1 direction-selective
neurons as end-stopping eventually suppresses contour-related motion signals and
emphasizes those from terminators (Pack ef al., 2003; Born et al., 2006). However this
suggestion has not resulted in the development of a specific model which can be tested
against the behaviourally and physiologically observed dynamics.

It has also been proposed that the independent computation of Fourier and non-
Fourier motion signals followed by the computation of their vector average will lead to
a dynamic response in motion integration owing to the delay in computing non-Fourier
motion signals relative to Fourier motion signals (L6ffler and Orbach 1999; Wilson et
al.. 1992). The phenomenon of non-Fourier motion perception, the visual perception of
motion that cannot be explained simply on the basis of the autocorrelation structure of
the visual stimulus, is well recognised, and is generally considered to be due to
nonlinear preprocessing of the visual stimulus prior to standard motion analysis. A
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Fourier motion stimulus is one whose spatiotemporal luminance function has directional

motion energy, and thus, can be identified as moving from its autocorrelation structure,
e.g. by a Reichardt motion detector. For n = 2, 3, 4,..., an n-th-order, non-Fourier,
motion stimulus is a stimulus whose spatiotemporal luminance function has directional
motion energy only if it is first passed through a polynomial of order », and not of lower
order. Thus motion of a second order, non-Fourier stimulus can be detected by first
subjecting the stimulus to a squaring operation, or full-wave rectification. The effect of
this nonlinear pre-processing is thus to translate "texture-defined"” motion, motion
defined by translations of some texture property such as contrast or spatial frequency,
into luminance motion so that it becomes accessible to standard motion analysis (Chubb
& Sperling, 1988). There are several examples of texture-defined motion which may be
readily perceived by human observers, yet cannot supposedly be analysed by
luminance-based motion models (Chubb and Sperling, 1988, 1989; Cavanagh & Mather
1989; Benton & Johnston 1997). However, more recently it has been shown that the
motion of several texture-defined motion stimuli can be detected by luminance-based
mechanisms (Benton et al, 2001).

The model of Loffler and Orbach (1999) closely follows that of Wilson et al.
(1992), with additional components which increase physiological plausibility. In the
model of Loffler and Orbach (1999), two parallel pathways, Fourier and non-Fourier,
extract the motion of luminance boundaries and texture boundaries respectively. The
Fourier pathway extracts motion using directionally-tuned Reichardt detectors. In the
non-Fourier pathway, the responses of model V1 simple cells are squared and then
filtered at a second stage, presumably by cells in area V2. These filters are tuned to a
lower spatial frequency and oriented orthogonal to the initial V1 cell filters to extract
texture boundaries. Qualitatively the same motion extraction steps then follow as for the

Fourier pathway. Finally, the signals of the Fourier and non-Fourier pathways are
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combined, supposedly at the level of MT pattern detection cells. Thus the non-Fourier
pathway in the model has three qualitative differences from the Fourier pathway. First,
the second stage filters do not operate on the local contrast differences of the stimulus
itself, but on the squared responses of the initial filters of the stimulus. Second, this
second stage filtering is carried out by lower spatial frequency filters with orientation
tuning which is perpendicular to the orientation tuning of the initial filters. Third, the
second stage filters have opposite polarity: they exhibit off-centre characteristics.

In support of the two-pathway model, the time-delay present in the non-Fourier
pathway relative to the Fourier pathway has been found to be approximately 60 ms (Yo
and Wilson, 1992), which is consistent with the observed dynamics of motion
integration. Recent work by Barthélemy er al. (2008) also shows that the Fourier and
non-Fourier motion signals display different contrast dynamics, which may underlie the
variation of the dynamics of motion integration with contrast in such a model.

Loffler and Orbach (1999) tested their model on stimuli corresponding to
stationary terminators, plaids, and moving terminators. Although they did not simulate
the temporal dynamics of their model explicitly, they make a prediction for the
dynamics of direction perception of briefly presented terminator stimuli, which suggests
an initial directional bias approximately equal to the output of the Fourier pathway
alone. As far as the author is aware, the model has not been used to explain the
dynamics of motion integration in smooth pursuit initiation, and it is not clear whether
or not the results of Wallace ef al. (2005) and Born er al. (2006), in particular the
variation in magnitude and decay time of the directional bias with stimulus shape and
length could be readily explained by this model, since such variations would appear to
have littie or no effect on the time delay of the non-Fourier pathway. Furthermore, as
pointed out in Smith er al. (2005), there is no clear evidence of a separate cortical

pathway for the computation of non-Fourier “pattern”™ motion cues, such as in areas V2



or V3, which do not apparently make an important separate contribution to the
behaviour of pattern direction selective neurons in MT.

A number of models of motion integration have been based on the idea of the
spatial propagation of 2-D motion signals from line terminators and their suppression of
the ambiguous 1-D motion signals. The model of Lidén and Pack (1999) employs
recurrent networks to spatially propagate motion signals across model MT cells, the
propagation dynamics providing a good qualitative fit to the temporal dynamics of
motion integration as observed in MT (Pack and Born, 2001). Similarly, the motion
integration and segmentation model of Grossberg et al (2001) uses feedback
connections between model MT and MST cells to select winning directions and
suppress losing directions on a top-down matching process, resulting therefore in a
temporal dynamics. It also uses lateral connectivity in MT cells to amplify 2-D feature
tracking signals and suppress 1-D ambiguous direction signals, in a manner similar to
that of Lidén and Pack (1999). Neither of these two models has been used to simulate
the smooth pursuit initiation data of Wallace ef al. (2005), but in principle could provide
an explanation of the dynamic nature of this data. Indeed, Lidén and Pack (1999) have
used their model to simulate the perception of a horizontally oriented line translating at
45° relative to its orientation. The model initially signals horizontal motion, and then
gradually recovers the true line motion direction by propagating unambiguous motion
signals generated by the terminators along the contour of the line. The model dynamics
is therefore based on the dynamics of the spatial propagation of the motion signals,
which the authors relate anatomically to the lateral connectivity between motion
selective cells in MT. Some evidence exists for laterally extending fibres in MT (Van
Essen, Maunsell & Bixby 1981), but further detailed physiological examination of these
connections and their propagation delays would be necessary to reveal whether or not

the dynamics conveyed by this connectivity is consistent with the psychophysically
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(Wallace et al., 2005) or physiologically observed (Born er al., 2006) dynamics of the
perceptual bias in the initiation of smooth pursuit.

The model of motion disambiguation proposed by Bayerl and Neumann (2004)
also suggests that the dynamics of motion integration results from the spatial
propagation of signals in MT, and whilst it has not been used to explain specifically the
data on smooth pursuit initiation, such propagation dynamics would similarly predict
the observed dynamics of smooth pursuit initiation. An additional feature of this model
compared to that of Lidén and Pack (1999) is that it uses feedback from MT to V1 to
attentionally gate by excitatory modulation the unambiguous V1 motion signals, and
thus takes some account of the recurrent nature of the MT-V 1 circuitry.

In the Bayesian estimation framework, Koechelin er al. (1999) describe a model
of motion integration based on the V1-MT circuitry that also employs mechanisms of
recurrent lateral interactions. Their model proposes a multiplicative combination of
feed-forward input and the result of lateral integration, which leads to the proposal that
the model represents a neural implementation of Bayesian motion estimation.

Also using a Bayesian approach, a recursive extension of the Bayesian model of
motion estimation of Weiss e al. (2002) has recently been proposed (Montagnini ef al.,
2007). They used human experimental data on smooth pursuit eye movements in
response to dot and line stimuli to derive, respectively, the variances of two likelihood
functions, one for the 1-D cues and one for the 2-D cues. These likelihood functions are
used together with the same prior as in Weiss ef al. (2002) in a recursive version of the
Weiss e/ al. model, to produce a discrete evolution of velocity estimates. They show
that the temporal evolution of the velocity estimates expressed in terms of tracking
error, coarsely matches their experimental data for mean eye velocity and different
target stimulus speeds. However they have not attempted to explain the observations of

Wallace et al. (2005) on smooth pursuit initiation.
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In contrast to the above models, the model proposed in this thesis uses a neurally
plausible recursive estimation process based on an approximate form of the Kalman
filter, and has been specifically addressed to the issue of motion integration dynamics in
the initiation of smooth eye pursuit. As has been shown, the model proposed here
demonstrates the main characteristics of the experimentally observed dynamics, and the
dependence of the model dynamics on contrast qualitatively replicates the
experimentally observed contrast variation in the motion integration dynamics (Wallace
et al., 2005; Bomn e al., 2006). It has also been possible to show similar qualitative
agreement between the model simulations and the experimental data of Born er al
(2006), for the dependence of the motion integration dynamics on stimulus length.

An important feature which distinguishes the model proposed here from several
of the others described above is that it does not depend on the concept of lateral
propagation of unambiguous motion signals along line contours in order to achieve a
veridical estimation of motion direction in the presence of ambiguous direction cues.
Rather, it is suggested here that true motion perception is achieved through a recursive
estimation process which produces successively improved velocity estimates by
eliminating the initial estimation errors introduced by the ambiguous motion signals of
local detectors. It is suggested that this can be achieved by the divergent feedback
connections which are known to exist from MT motion selective cells back to V1 cells,
and which connect to a retinotopic area of V1 which corresponds to the receptive field
size of the MT cell (Shipp and Zeki, 1989). At the present time, more is known about
these connections than is about the lateral connections in MT, in particular the fast
transmission times of VI-MT connections (Raiguel er al., 1989; Schmolesky er al,
1998: Hupe et al. 2001). It is very clear however that much further work will be needed,
in relating the models to their proposed physiological and anatomical basis in the visual

system, before it becomes clear as to whether the origin of motion integration dynamics
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lies predominantly in: (i) the delayed activation of end-stopped cells (Pack et al., 2003;
Born et al., 2006); (ii) separate Fourier and non-Fourier motion pathways (L6ffler and
Orbach 1999); (iii) lateral connectivity in MT (Lidén and Pack, 1999; Bayerl and
Neumann, 2004; Koechelin ef al., 1999) ); (iv) feedback connectivity between MT and
MST (Grossberg et al., 2001); or (v) feedback connectivity between V1 and MT.

The model proposed here provides support for the notion that motion integration
in the brain might be based on a Bayesian estimation process, as has been suggested by
many psychophysical studies, and suggests that the observed motion integration
dynamics, and their dependence on stimulus contrast and length, may result from the
recursive nature of this motion estimation process. The model also reflects the recurrent
MT-V1 circuitry, the pooling of information from local V1 motion detectors, the
convergence of the polled local motion signals in projections to MT, and the divergent
feedback of MT velocity signals to V1 cells. However far more work needs to be done
before the recurrent MT-V1 circuitry can be shown to be capable of supporting the kind
of recursive Bayesian estimation algorithm inherent in the model.

It is also clear that the proposed model, along with all the models reviewed here,
is limited by its ability to explain the dynamics of motion integration in the initiation of
smooth eye pursuit only in relation to intensity-based motion stimuli, and not moving
targets defined in other ways, e.g. cyclopean targets defined by means of random-dot
stereograms. We note however that although it is likely that different neural pathways
are involved in luminance motion and stereomotion perception, it is possible that the
roles played by the pooling of local motion detectors, and by moving stereoscopic line

terminators are similar in both cases (Donnelly et al., 1997; Patterson et al., 1998).




5.3. The effect of the free parameter o /o,.

The free parameter in the model, o /o,, the ratio of standard deviations of the

probability density functions of the measurement noise and the prior velocity estimate,
has been varied as shown in Table 1, in order to demonstrate the dependence of the
model behaviour on this parameter. As has been pointed out by Stocker and Simoncelli
(2006), Bayesian models of visual motion perception are difficult to validate
quantitatively owing to the fact that it is hard to attribute precise values to these
variables. Even though a reasonable estimate of the prior velocity estimate can be made
on theoretical grounds, or based on the statistics of natural visual stimuli, uncertainty in
the value of the measurement noise variance remains. It is interesting however to note
that this variance always appears in the model as a divisive modulation of the squared

. o . o ooy A% \
image intensity derivatives, that is, as—~,—2- Thus we can think of the

-
o O

i i

measurement noise variance in neural terms as a signal which increases or decreases the

magnitude of the output of the squared linear filter representation of the neurons which

code for /°,,.I° ,. The obvious suggestion for a neural implementation of the model is

that the influence of the measurement noise variances in the Bayesian formulation could
be identified with the divisive normalisation role of the intracortical connections
between orientation hypercolumns (Carandini et al., 1997). Thus neurons reporting the
directional derivatives (or their orientated versions) of the image intensity would be
suppressed by the activity of neurons in the surrounding spatial region which were
responding to stimuli with a different orientation/direction, as observed physiologically
(Morrone, Burr and Maffei, 1982), indicating an increased uncertainty in the focal
motion measurement consistent with a decrease in signal to noise ratio for this
measurement. If this approach is adopted, there is no need for a precise measurement of

the measurement noise variance, which in any case is highly unlikely to be represented
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in any V1 neuronal responses, but instead the divisive role of this variance is used in the
model to mimic the effect of divisive normalisation via intracortical lateral connections

(Heeger, 1992; Carandini and Heeger, 1994; Heeger ef al. 1996; Carandini et al., 1997)

5.4. Predictions of the model.

The recursive nature of the calculation of the velocity estimate in the model suggests
that blanking of the stimulus for short periods of time will not result in the
reintroduction of an offset directional error in the eye movement when the stimulus
reappears at the end of the blanking period. This follows from the fact that the update of
the velocity estimate, as expressed in equation (31), depends on the error
signal (h, —C,v;™") . Owing to the definitions of A, and C, (following equation (4)) in the
absence of any stimulus during the blanking period, both % and C, will be zero. Thus

no updates of the velocity estimate will take place during the blanking period, and at the
end of the period the original velocity estimate will be used in further updates. Thus the
estimation procedure will continue as if it had not been interrupted. This “prediction” of
the model has already been confirmed by the experiments of Masson and Stone (2002),
in which the motion of a tilted elongated diamond stimulus (thin rhombus) was
transiently blanked for a period of 90 ms during steady state pursuit. They observed a
small decrease in the eye velocity in the veridical direction during the blanking period
and a transient increase in this velocity immediately after the blanking period ended, but
no post-blanking reappearance of an offset direction error. The small decrease in the eye
motion in the veridical direction could be explained by a slow decay of the velocity
estimate in the model in the absence of any updating, which would maintain the
directional component of the estimate but decrease its magnitude. The update of the
estimate post-blanking would then rapidly correct for any magnitude error without

introducing any directional error.



S.5. Summary.

This chapter was a discussion on the application of the presented model to the smooth
eye pursuit experimental data. The simulation results and other models were discussed
in regard to the origin of the motion integration dynamics. The role of the free
parameter ¢ /o, was examined in terms of image intensity derivatives normalization
with suggestion about the possible role of the lateral connectivity in VI area in this
process. Finally, some predictions of the model were derived, in particular about the

interruption of the stimulus presentation during the smooth pursuit initial stage.
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Chapter 6. Motion integration in the perception of

plaid patterns.

6.1. Models of motion integration in the perception of plaid

motion.

The problem of how the visual system combines the motion of two moving gratings to
form the percept of a coherent moving plaid pattern is still unsolved after nearly thirty
years of research. It has long been known that the plaid motion can be computed by a
velocity space construction, known as the "intersection-of-constraints" (IOC) (Fennema
& Thompson, 1979). The intersection-of-constraints rule was described in the
introduction of the thesis (Figure 6 and 7); nevertheless it will be briefly restated: the
motion of an edge viewed through an aperture has a family of possible velocities, which
form a so-called constraint line of velocities. The intersection of the constraint lines
corresponding to the motion of all the edges forming an object gives the point in
velocity space which defines the true velocity vector of the object. Based on this rule,
Adelson & Movshon (1982) proposed a two-stage model for the analysis of plaid
motion in which the one-dimensional (1-D) motions of the plaid's two component
gratings are first determined, and then combined in a weighted summation
corresponding to the TOC construction. This model has dominated research in the area
for almost thirty years, despite the psychophysical (Welch, 1989; Derrington & Suero,
1991; Derrington & Badcock, 1992; Stone, Watson & Mulligan, 1990) and
physiological (Movshon et al., 1985; Movshon & Newsome, 1996; Tinsley er al., 2003)
evidence being equivocal. In particular, the available evidence is based entirely on
experiments using symmetric Type I plaids (Ferrera & Wilson, 1990), for which the
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plaid velocity vector lies between the velocity vectors of the two component gratings,

which have equal magnitude. The strongest evidence against the Adelson and Movshon

(1982) model was obtained when Type II plaids, the velocity vector of which lies
outside of the velocity vectors of the two component gratings, were used in
psychophysical experiments (Yo & Wilson, 1992). These experiments demonstrated
that the direction of the plaid motion during the initial period (up to ~60 ms) of stimulus
presentation is misperceived, with a strong bias in the perceived direction towards the
vector sum (VS) direction of the velocities of the component gratings. Whilst it is
possible that the Adelson and Movshon (1982) model is correct for Type I plaids, and
that another mechanism is responsible for Type II plaid motion perception, this would

seem highly unlikely.

Subsequent to the Yo and Wilson (1992) experiments, and prior experiments
which showed identified misperceptions in the direction and speed of Type Il plaids
(Ferrera and Wilson, 1990, 1991), several models have been proposed which attempt to
explain these misperceptions. Wilson, Ferrera and Yo (1992) suggested a model,
subsequently extended by Wilson and Kim (1994), which consisted of two parallel
processing pathways, one signalling the direction of the component gratings (presumed
to be mediated by neurons in area V1 of visual cortex) and the other (presumed to be
end-stopped neurons in area V2) signalling, after a hypothesised delay of ~77 ms, the
direction of "the motion of illusory lines formed by the nodes of the Type II pattern”
(Yo and Wilson, 1992). The signals of the first pathway are combined (by neurons in
extrastriate area MT to which both V1 and V2 neurons project) to form a cosine-
weighted sum of the component grating velocities. The signals of the second pathway
are derived after full-wave rectification of the stimulus and orientation filtering at a
lower spatial frequency than that of the component gratings (postulated to take place in

V2). A cosine-weighted sum of the two pathways is then followed by competitive
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feedback inhibition in order to predict the perceived plaid direction. The delay in the
second pathway accounts for the initial misperception of the plaid direction towards the
vector sum direction of the component gratings' velocities. Whilst this model offers a
compelling explanation of the observed misperception, it is deficient in several respects,
as discussed in Alais er al.. (1997), who carried out experiments on the effect of the size
and number of plaid features, or "blobs", the "nodes of the Type II pattern” referred to
above, on the misperception. They concluded that a more likely explanation is based on
"a feature sensitive mechanism which responds to the motion of plaid features and
which is tuned to their various qualities” (Alais ef al. 1997). The plaid blobs which they
examined and refer to are the high luminance regions which are formed at the
intersection of the component gratings and which, in particular for Type Il plaids, are

the most visually salient features in the plaid pattern for a human observer.

6.2. Bayesian model of motion integration in plaid perception.

In this part of the thesis, the aim is to demonstrate that the misperception of the plaid
direction, its dependence on the angular separation and contrast of the component
gratings, and its decrease with lengthening stimulus duration, can all be fully explained
by a two-stage model which is based on the detection of both the one-dimensional (1-D)
and two-dimensional (2-D) motion of the blobs, and their combination by a recursive
Bayesian velocity estimation process This is the same model, which has already been

presented in Chapters 2 and 3 and applied successfully on smooth eye pursuit dynamics.

In the first stage of the model, local motion detectors respond to both the 1-D
and 2-D motion of the blobs within the plaid. It is hypothesised that these detectors are
based on the complex and hypercomplex (end-stopped) neurons in VI (Hubel & Weisel,

1965; Pack, Livingstone, Duffy, and Born, 2003). This stage of the model differs from
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that of Wilson ef al. (1992) in that: (i) the 1-D motion signals are derived not from the
motion of the component gratings but from the edge motion of the blobs; (ii) there is no
requirement for the separate combination or any explicit weighting, cosine or otherwise,
of the 1-D signals; (iii) the 2-D motion signals are derived directly from the
terminations (end-points) of the blobs, without the requirement for full-wave
rectification (squaring) of the plaid stimulus. In the second stage of the model, the 1-D
and 2-D motion signals are combined using a recursive Bayesian least squares
estimation process, which might be postulated to occur in the recurrent VI-MT
circuitry. This also differs from the Wilson ef al. (1992) model in that cosine weighting
of the 1-D and 2-D signals is not required, nor is there the need for a final stage of

competitive inhibition.

In the next Chapter of the thesis, the specific geometric properties of the blobs
which, it is claimed, play the main role in the perception of plaid motion are examined
in detail. In particular it is shown that the shape of the blobs, specifically the extent of
their elongation, is defined by the angular difference in the directions of motion of the
component gratings, and that the orthogonal direction of motion of the longer edges of
the elongated blobs is given by the mean of the directions of motion of the component
gratings. It is also shown that as the blobs become more elongated, the orthogonal
direction of motion of the longer edges of the blobs tends towards the VS of the
directions of motion of the component gratings. Although the blobs have been
implicated in the perceptual process by several authors (Wilson ef al., 1992; Burke and
Wenderoth, 1993; Wenderoth, Alais, Burke and van der Zwan, 1994; Alais, Wenderoth
and Burke, 1994, 1997), as far as the author is aware this is the first time that the
geometric properties of the blobs and their relationship to the directions of motion of the

component gratings have been precisely defined.
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It is then shown theoretically how these particular properties of the blobs can
lead to the misperception of Type Il plaid direction which has been observed
psychophysically (Yo and Wilson, 1992; Burke and Wenderoth, 1993). To demonstrate
this more fully, a computer simulation of the model is used to mimic the observed
misperception, and show that the magnitude of the direction bias, its dependence on
angular separation and contrast, and the convergence of the perceived plaid direction
towards the veridical direction with increasing stimulus presentation duration, are all

accurately predicted by the model.

Finally a discussion is included of how the model differs from the two-stage
model of Adelson and Movshon (1982), yet is consistent with the available
physiological and psychophysical evidence, and how it relates to a recent Bayesian
extension of the Adelson and Movshon model (Weiss and Adelson, 1998; Weiss ef al.,

2002), and the models proposed by Bowns (1996, 2006).

6.3. Summary.

A brief overview of the main models relating to plaid motion was presented in this
chapter. It includes the wide accepted idea of the ‘intersection-of-constraints’ rule
(Adelson and Movshon, 1982) versus the numerous psychophysical results showing the
violation of the same rule. It was briefly described how the model presented here tries to
explain these contradictory results and replace the intersection-of constraints rule with

one based on the detection of the dominant local motions in the image.



Chapter 7. Application of the motion integration model

to plaid perception.

7.1. Geometric analysis of the plaid blobs.

The high luminance regions of the plaid, i.e. the blobs, which are formed at the
intersections of the component gratings, can be precisely defined by representing the
plaid as the product of two gratings rather than as a sum of two gratings, its normal form
of representation. Typically a plaid is described by the sum of two sine or cosine

gratings, i.e. the spatiotemporal luminance intensity function of the stimulus is defined

by

I(x, y,1) =sin(®,) +sin(®,) (33)
where @, =27s,(xcos8, + ysiné +v(); s = spatial frequency (cycles/®); 8 = direction
of motion (°); and »= speed (°/sec), for the i th. grating, i {l,2}. Using a simple

trigonometric identity, this expression can be rewritten as,

I(x, y.t)=2sin((@, + @,)/ 2)cos((®, — @,) / 2) (34)

i.e. as the product of two anti-phase gratings, henceforth referred to as the product
gratings to distinguish them from the component gratings used in the summation form
(equation (33)) of the plaid. The two product gratings comprise: (i) a sine grating which
moves in the directiong=(f, +6,)/2, and which has a spatial frequency

s, =s(cos@, +cosd,)/2cos¢ , and a speed r,=(n +p—‘,)t:»osg!'/(cc'st‘?1 +c0sé,); and (ii) a

cosine grating which moves in the direction @=¢-90, has a spatial frequency




Figure 19, Three examples (a-c) of the representation of a plaid {centre) as the sum (left) or the product
(right) of two gratings. The velocity space diagram above each plaid shows the velocity vectors for each
component grating, v, and v, together with the 10C and vector sum velocity vectors v, and v .. The

arrows on the gratings and plaids also show their directions of motion, with the dashed arrow on the plaid

showing the vector sum direction.

s, =s(cosf, —cos@,)/2cos@, and a speed r =(r,—r,)cos@/(cosf —cosd,). For

simplicity it is assumed henceforth thats, =5, =5.



Derrington and Ukkonen (1999) used this representation to describe a specific
instance of a plaid with component gratings oriented symmetrically about the vertical
and a specific relationship between the spatial frequency of the gratings and their
orientations. In this case they obtain a vertically oriented, horizontally moving product

grating and horizontally oriented, stationary product grating.

Figure 19 shows three examples of equivalent plaid representations in terms of
their component and product gratings. These clearly demonstrate that the high
luminance regions, or blobs, in the plaid which occur at the intersections of the
component gratings are precisely defined by the anti-phase modulation of one product
grating by the other. In particular, where the spatial frequencies of the product gratings
differ substantially (Figs. 19a and 19¢), the blobs are readily seen to correspond to the
luminance peaks of the higher frequency product grating modulated by the lower
frequency product grating. The shape of the blobs, in terms of the ratio of their long and

short edges. is thus determined by the ratio of the spatial frequencies of the product

gratings, which can be expressed in terms of the angular difference 6, -6, in the

directions of the component gratings as
s, /s, =1/tan((6, - 6,)/2) (35)

The direction of motion of the blobs (and therefore the IOC direction of the plaid) is

given by the VS direction of the two product gratings.

Since Type 1 plaids (e.g. Figure 19a) are the major interest, and in order to
simplify the presentation, the main characteristics of the blobs will be derived here only
for this case, although similar equations describing the characteristics of Type I plaids
(e.g. Figures 19b and 19c), can be easily obtained. For Type II plaids, the 10C velocity
vector lies outside of the two component grating velocity vectors. In this case, the ratio

of the speeds of the component gratings,r, /r,, must be greater than one, and the
difference in their directions of motion, &, —#,, must be less than 90°. It follows from

(35) that, as the difference in the direction of motion of the two component
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gratings, &, —6, <90 , decreases, the ratio of the spatial frequencies of the product
gratings, .s“/a‘v, will increase, and the blobs will become more elongated in shape.
Moreover, the shape of the blobs only depends on the difference between the directions
of the two component gratings, 6, —#,, and not on the ratio of their speeds. It can be
seen from (35) that s,2>2s when 0 <§-6,<9, and s, =5,when
9 <6,-6,<180 . Also s,/s, increases as the difference between the component
grating angles decreases, to a theoretical limit of «owhen 6, =#6,, and s, /s, increases as
the difference between the component grating angles increases, to a theoretical limit of

sowhen 6, —6, =180 . It also follows from (35) thats, > s, and thus the motion of the

longer edges of the blobs orthogonal to their orientation will be in the direction

¢ =(6,+6,)/ 2, the mean of the directions of motion of the component gratings.

Most importantly, the difference between the orthogonal direction of motion of

the longer edges of the high luminance regions, ¢, and the vector sum (VS) direction of

the velocities of the component gratings, denoted by 6, , can be expressed as:

= mtan(ﬁ_"i’:_‘ L] (36)

(r,e’r'.)-bl-.\"

When the angle 6, — &, is greater than 90°, this expression changes to:

@ -6, =arctan Gigdtl 3 . (37)
‘ (n/in)-1 s

.

due to the fact that the product gratings change their places (the edge of the high

intensity regions which used to be the longer one when (8, —6, ) < 90° now becomes the
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shorter one). In particular, the case when the component gratings speeds form an angle
greater than 90° is an interesting one, as then the plaid which is formed is Type I, for
which the IOC vector lies between the component gratings” velocity vectors. However,
the relationship in (37) is similar to that in (36). This means that for asymmetric Type I
plaids our model would predict analogous behaviour for the estimated angle as in the
case of Type Il plaids. This should be especially true for the case when the difference in
the directions of the IOC and VS vectors is of similar magnitude to that in the case of
Type 11 plaids, which as described above are perceived non-veridically. Examples will
be shown later of the predicted direction misperception for Type I plaids under certain

conditions.

Equation (36) shows that, for a fixed ratio of component grating speeds, 7, /r,, as the
difference between directions of the two component gratings, 6, — 6, , decreases, and the
shape of the blobs become more elongated, the angular difference between the
orthogonal direction of motion of the longer blob edges and the VS direction of the
component gratings will decrease. It is also worth noting that for a fixed difference in
the directions of the component gratings, 6, — &, , as the speed ratio 7 / r, increases, the
angular difference expressed by (36) will increase, causing the orthogonal direction of

motion of the longer edges of the blobs to move away from the VS direction of the

component gratings.

7.2. Theoretical predictions of the model.

The geometric analysis of the blobs, as expressed by equations (35) — (37) give rise to
theoretical predictions about the behaviour of the model in response to Type I and Type

[1 plaids. In the first stage of the model, it is proposed that local motion detectors signal




both the 1-D (edge) and 2-D (end-point) motion of the blobs present within the plaid.
Thus in the case of Type 1l plaids, for which the blobs are elongated, the majority of the
local motion detectors will respond to the 1-D motion of the longer edges of the blobs.
Since a local motion detector signals the velocity of 1-D edge motion in the direction
orthogonal to the orientation of the edge, owing to the aperture effect (Wallach, 1935;
Wuerger, Shapley and Rubin, 1996, Marr and Ullman, 1981), the majority of the local
motion detectors will signal motion in the orthogonal direction of motion of the long
edges of the blobs. The geometric analysis of the previous section shows that for a fixed
ratio of component grating speeds, 7, / r, , as the difference between the directions of the
two component gratings, &, —&,, decreases and the shape of the blobs become more
elongated, the orthogonal direction of motion of the longer edges of the blobs, ¢, will
tend towards the VS direction of the component gratings. Thus the majority of the local

motion detectors will signal motion in a direction which is increasingly biased, as

6, — 6, decreases, towards the VS direction.

In the second stage of the model, it is proposed that the outputs of the local
motion detectors are combined using a recursive Bayesian estimation process. The
estimate formed in the first iteration of the estimation process will thus form the model's
prediction of the perceived plaid velocity in a short initial period of stimulus
presentation. As has been already discussed, this estimate will be dominated by the
majority of local motion detectors which signal the orthogonal motion of the blobs in

the ¢ direction. It has also been shown, in equations (35) and (36) respectively, that as
the difference between component grating directions, &, —,, decreases: (i) the long
edge of the blob will become longer and therefore drive an increasing majority of local
motion detectors; and (ii) the orthogonal motion of the blobs in the ¢ direction
approaches the VS direction of the component gratings. Hence it follows that, as the

angle between the component gratings decreases, the first velocity estimate formed by
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the model, and therefore the initial plaid velocity predicted by the model, will be

increasingly biased towards the ¢ direction, which itself will approach the VS direction
of the component gratings. This is precisely what Yo and Wilson (1992) observed in

their psychophysical experiments.

For example, consider one of the Type Il plaids used by Yo and Wilson in their

experiments. The parameters of the component gratings of this plaid are: 6, =70.5",
6,=48.2",v,=1.33, and v, =2.67. Then, for these values: 6, -6, =223 ,6,,.=0.2,
Vi =39, 6,=556, v, =40, $=594", ¢-6,=3.8 and 5,/5, =5.1. The blobs

are thus elongated (edge ratio of 5:1) and move orthogonally to their longer edges in a
direction which is less than 4° from the VS direction of the component gratings. In Yo
and Wilson's experiment, the perceived direction of the plaid motion in the initial period
of presentation was observed to be approximately 60°. This is close to the VS direction

of 55.6°, and almost exactly equal to the orthogonal direction ¢ =59.4" of motion of the

longer edges of the blobs.

The velocity estimate formed by the model during subsequent iterations of the
recursive estimation process will also be influenced by the majority of local motion
detectors which signal the orthogonal direction ¢ of the longer edges of the blabs,
although this influence will gradually decrease with each iteration (see the simulation
model description below). Thus for long stimulus presentations the perceived direction
of the plaid motion predicted by the model will continue to be biased, but to a lesser

extent, in the direction ¢ =(6, +6,)/2, the mean of the component gratings' directions.

This is precisely what Ferrera and Wilson (1990) observed, i.e. that the perceived
direction of the plaid motion has a small residual bias, after approximately 150ms of

presentation time, of between 8° and 10° towards the mean of the component gratings'
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directions, in this case for plaids with component grating separations of between 22.3°
and 51.6°. A similar residual bias was observed by Burke and Wenderoth (1993). They
found in addition that as the difference in component grating directions decreased from
40° to 10°, the residual bias increased from 2° to 17°. This dependence of the residual
bias on the difference in component grating directions was observed for a constant value

of ¢=(6,+6,)/2. Hence they argued that the bias could not be due to the orthogonal

direction of motion of the elongated blobs which remained constant in this experiment.
In the model however the strength of both the initial and the residual bias is determined
by the length of the long edges of the blobs, since this determines the number of local
motion detectors which signal the orthogonal 1-D motion of the blob edges in the ¢
direction. Since the elongation of the blobs increases with decreasing difference in the
direction of motion of the component gratings, as shown by (35), it follows that the
residual bias will always be towards the ¢ direction, but will increase as the difference

in component grating directions decreases.

The theoretical predictions of the model, presented above, are largely qualitative
in nature, but will be confirmed in a more quantitative form in the next chapter, where
we describe the results from using of the computational version of the model, as
described in Chapter 2, to simulate the perceptual experiments of Yo and Wilson

(1992), Bowns (1996) and Burke and Wenderoth (1993).

7.3. Summary.

In this chapter the basis of the application of the model to plaid perception was
presented. First, the geometric analysis of the plaids’ blobs was performed by using the
product gratings, instead of the component gratings which are usually used to represent

the plaids. The goal of this analysis was to define better the distribution of the 1-D and
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2-D motion cues represented within the plaid in order to make clear their importance for
the model. It was shown that the shape and size of the blobs depends on the angle
between the component gratings directions of motion and on the spatial frequencies of
the product gratings. The predictions of the model regarding the effect of the 1-D
motion signals from the edges of the blobs were shown to correspond to the

psychophysical data on the subject.
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Chapter 8. Simulation of plaid perception experiments

using the motion integration model.

8.1. Description of the model’s behavior.

To quantify the predictions of the model and, in particular, to demonstrate the
convergence of the estimated direction of the Type II plaid motion towards the true 10C
direction, a computational version of the model described in Chapter 2 will be used to
simulate the psychophysical experiments of Yo and Wilson(1992), Bowns (1996) and
Burke and Wenderoth (1993). In particular the optimal Kalman filter based model will
be used, rather than the approximate version of the model. However given the closely
related results which were obtained from these two versions of the model when applied
to smooth eye pursuit, similarly closely related results might be expected from the two

models when applied to plaid motion perception.

As has already been described, the bias in the initial estimate of the plaid direction
results from the large number of local motion detectors for which the measured

derivatives /_,/ ,I correspond to the 1-D motion of the longer edges of the blobs. For

these detectors many solutions to the corresponding gradient-based equations (3) are
possible, corresponding to the aperture effect (Wallach, 1935; Wuerger, Shapley and
Rubin, 1996, Marr and Ullman, 1981). The zero-valued initial velocity estimate
provides a constraint on the estimate formed by the first step of the algorithm, which
results in an best-fit solution being selected for which the magnitude of the velocity
estimate is smallest. This corresponds to the solutions to (3) for each local motion
detector for which the selected velocity is in the direction orthogonal to the longer edges
of the blobs. Thus the estimate formed in the first step of the algorithm will be strongly

biased in this direction, with the strength of the bias dictated by the number of motion
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detectors signalling the direction. As has been shown, the bias will be stronger as the
difference between the directions of the component gratings decreases, since this results
in a greater elongation of the blobs.

In contrast, measurements of [,/ ./, from the local motion detectors which

signal the 2-D motion of the end-points of the blobs result in a unique (within the noise)
solution to the corresponding set of gradient equations (3). This solution corresponds to
the VS direction of the product gratings, and thus, equivalently, to the veridical, I0C
direction of the plaid. These local motion detectors will therefore influence the estimate
of plaid direction towards the IOC direction, both in the initial step of the algorithm and
in all further steps. However, lowering the contrast of the plaid stimulus, or equivalently
reducing the signal to noise ratio in equation (3), will result in a weaker influence of this
solution, and thus allow a greater bias in the estimated direction of the plaid towards the
VS direction.

As the number of iterations of the recursive estimation algorithm increases, the
effect of the 1-D local motion detectors will decrease relative to that of the 2-D motion
detectors, since the velocity estimate formed in each iteration of the algorithm becomes
the "prior" estimate for the next iteration. This gradually relaxes the effect of the zero
prior constraint on the solution to (3) corresponding to the set of outputs of the 1-D
motion detectors, allowing the solution to (3) corresponding to set of outputs of the 2-D
motion detectors to increasingly influence the velocity estimate in each iteration.

In the following section simulations of a computational version of the model will
show that, in accordance with the above theoretical predictions, the model also yields
quantitative predictions of the perceived direction of plaid motion which closely
resemble the experimentally obtained data of Yo and Wilson (1992), Bowns (1996) and
Burke and Wenderoth (1993). Also a more general set of simulation results will be

given for the estimated velocities of plaids corresponding to a range of different
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component angular differences and speed ratios. The stimuli used in the simulations
were sinusoidal plaids filtered by a circular Gabor filter with a diameter of 80 pixels.
The variance of the measurement noise was set equal to 0.1, and the velocity estimation
covariance was set equal to 0.04. Both these values were kept constant throughout all

the simulations described in the following sections.

8.2. Simulation of the experiments of Yo and Wilson (1992)

and Bowns (1996).

Figures 20a - 20f show the results obtained from the computational model when
simulating the psychophysical experiments of Yo and Wilson (1992) and Bowns
(1996). Yo and Wilson (1992) used as stimulus three different Type Il plaids (see their
Figure 2), although the results were not given for all three plaids for each of the
experiments. The main experiments, which are simulated here, recorded the perceived
direction of plaid motion as functions of presentation duration and pattern contrast.

Their results on presentation duration are given for the plaid with the following

parameters: 8, =70.5, 6,=482, =133, r,=267, s5,=5,=1.5, §

1  =08,=22.3",
G- =02°, 1, =402, 6,,=556, r,,=3.93. For the product plaid representation,
these parameters give: ¢=594", ¢—6,, =38, r,=2.0, r, =35, 5,=15, 5,=03

and s,/s,=5.0. Note that both the speed and spatial frequency of the higher spatial

frequency product grating are similar to those of the component gratings.
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Figure 20. a-c: Simulations of the computational model for three cases of Type 2 plaids used in the
experiments of Yo and Wilson (1992):
a. 6, =70.5,0, =482 v, =1.33,v, =2.67.6,,. =02 .6, =556 ;
b. 6, =84.3,6, =36.9 %, =0.25,v, = 2,0, =0 6,y =41.7 ;
¢. 6,=852,6,=336,v,=04,v,=4,8,,.=0,6, =378 .
and for three different stimulus contrast levels, The results illustrate the dependence on stimulus contrast

of the initial and final estimates of plaid direction, and of the convergence rate of the estimate towards the

true 10C plaid direction. Presentation duration is represented by the number of iterations of the algorithm.
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d-e: Vector space diagrams showing the model simulation results for Experiment 3 of Bowns (1996). The

initial v, and final v_ plaid velocity estimates from our model are shown together with the component

grating velocity vectors v, and v,, and the vector sum and [OC velocity vectors.

For this plaid (Yo and Wilson, 1992), two observers reported a perceived
direction of motion of approximately 60° after 60 ms of presentation, reducing to 15°
and 30° respectively after approximately 90 ms, and to 0° (the IOC direction) after 150
ms. The reduction in the bias was gradual rather than occurring discontinuously as
might be expected if additional 2-D motion information became available after some
fixed time delay, as was suggested in the Wilson er al. (1992) model. When the plaid
contrast was varied, with values of 5%, 50% and 100%, the observed initial bias at 60
ms was 60°, 40° and 30° respectively, and the length of time for the bias to reduce
lengthened considerably with decreasing contrast. For a contrast of 5-10%, a substantial
bias of approximately 25° was observed after | sec of presentation. These experimental
results can be compared with the graph shown in Figure 20a, which shows the results of
simulating the experiments with the motion integration model. As the graph shows, the
bias in the model’s estimated direction at the first iteration, for the three values of
contrast, 25%, 50% and 100%, are remarkably similar to the initial perceived bias
observed experimentally. We note also that the convergence time decreases
substantially with increasing contrast, and that there is a considerable steady-state bias
for all contrasts of up to 25° for this plaid, again as observed experimentally. Figures
20b and 20c show the same simulations for the other two plaids used by Yo and Wilson
(1992), but for which they did not report the results so fully as for the first plaid. These
graphs show similar characteristics of the variation in magnitude and convergence rate
of the direction bias with contrast as in Figure 20a, but with the steady-state bias
reducing with increasing difference in the directions (47.4° and 51.6° respectively) of

the component gratings in Figure 20b and 20c, to between 4° and 10°. In Ferrara and
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Wilson (1990), the perceived steady-state bias for similar Type Il plaids was
approximately 6°.

In Bowns (1996), a number of experiments were carried out which attempted to
establish whether or not the misperception of the plaid direction observed by Yo and
Wilson (1992) generalises to all Type 11 plaids and is due to a temporal delay in Fourier
and non-Fourier motions processing as proposed in the parallel pathway model of
Wilson er al (1992). The simulations described here are of their Experiment 3, which
used Type Il plaids very similar to those used by Yo and Wilson (1992). The component
gratings for these plaids had the same spatial frequencies (1.3 cycles/®) and orientations
(202° and 225°) but differed in the ratio of their speeds, which ranged from 1:0.45 to
1:0.75, with the speed of one of the component gratings held constant at 3.13 °/sec. The
experiments used a simple forced choice response which required subjects to report
either a plaid direction to the right or to the left of "the vertical", i.e. 90°. The
component grating directions and speeds were such that the vector sum direction
remained virtually constant, varying from 29° to 32° to the left of the vertical, for the
varying speed ratios, whereas the I0C direction varied from 28° to 2° to the right of the

vertical.

The experiments revealed that for the two speed ratios at the extreme ends of the
above range, subjects reported a perceived direction of plaid motion which shifted from
100% in the vector sum direction (i.e. left of vertical), for a speed ratio of 1:0.75, to
100% in the 10C direction (i.e. right of vertical), for a speed ratio of 1:0.45. This was
interpreted in Bowns (1996) as: "a rather surprising complete reversal of the perceived
motion in the direction of the IOC".

The simulations now described are for the cases of the two plaids at the extremes
of the ranges of speed ratios referred to above. This experimental data was also

simulated by Weiss and Adelson (1998) - see the discussion of their model in section
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9.1. The simulation results obtained from the computational model are described in
Figure 204 (for a speed ratio of 1:0.75) and 20e (for a speed ratio of 1:0.45) in the form
of vector space diagrams. As these Figures show, changing the ratio of the component
grating speeds from 1:0.75 to 1:0.45 is sufficient to move the both the estimate formed
in the first step of the estimation algorithm, v, , and the steady- state estimate, v_, of the
perceived plaid direction from being on the left of the vertical (VS side) to being on the
right of the vertical (I0C side).

The difference in the directions of the first step velocity estimate v, for the two
speed ratios is 21° (108° vs. 87°). However the difference in the first step direction bias
estimate (relative to the IQC direction) is only 5° (20° from [OC vs. 25°). For the
steady-state velocity estimate v, , the estimated direction differs by 24° (102° vs. 78°)
for the two speed ratios, but the difference in the estimated bias is only 2° (14° from
10C vs. 16°).

Thus the change in the estimated bias is small with this change in speed ratio,

both in the first step of the algorithm and after convergence, and we suspect that the

change in the perceived bias is also small. The simple forced choice response of left or
right of the vertical appears however to have resulted in an interpretation in Bowns
(1996) that there is a large change in bias which leads to a reversal in the perception of
the plaid motion direction from the 10C to the vector sum direction.

An alternative interpretation is suggested by the simulation results (see Figures
20d and 20e), i.c. that the value of the perceived bias for the two speed ratios is almost
the same, but that the change in speed ratio results in a shift in the IOC direction
towards the VS direction, causing the perceived motion direction to switch from right

side of the vertical to the left side.
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8.3. Simulation of the experiments of Burke and Wenderoth
(1993).

Figure 21 shows the results obtained using the computational model to simulate the
psychophysical experiments of Burke and Wenderoth (1993), in which they used Type
I1 plaids to study the dependence of the steady-state misperception of plaid direction on

the angular difference between the component grating directions.
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Figure 21. Results from simulations of the computational model for the plaids used in the experiments
of Burke and Wenderoth (1993), showing in (a) and (b) both the perceived plaid direction obtained in the
experimental study (Asymbols) and the plaid direction estimated by the model (® symbols). In (a) the
mean component direction is constant equal to 295°, and in (b) the mean component direction varies and
is shown by the black dashed line. The graphs (2) and (b) show that the plaid direction estimated by the

model varies with the difference in component grating direction and displays in both cases the same trend




in the variation as observed in the Burke and Wenderoth (1993) study, although with a slightly greater
bias towards the mean component direction of up to 9°. From the original diagram for the experimental
results in this study, perceived errors were in the region of £3°,

The plaids were constructed using component gratings with angular differences of 10°,
20°, 30° and 40°. The true plaid direction was 270° and the stimulus was presented for
10 sec. Two experiments were carried out: in the first, the component directions were
chosen so that the mean was constant at 295°; in the second, one component direction
was kept constant at 315°. Figures 21a and 21b show the results from each experiment,
both the perceived plaid direction obtained in the Burke and Wenderoth (1993) study
(A symbols) and the direction estimated by the model (e symbols). In Figure 21a the
mean component direction is 295°, and in Figure 21b this direction varies and is shown

by the dashed line.

The graphs in Figure 21 show that the estimated plaid direction from the model
simulation varies with the difference in component grating direction and displays in
both cases the same trend in the variation as observed in the Burke and Wenderoth
(1993) study, although with a slightly greater bias towards the mean component
direction of up to 9°. Importantly the model shows in Figure 21b the same non-linear
variation of the estimated direction with component separation as was observed

experimentally for the perceived direction.

8.4 Robustness of the model

In the above cited experiments and those that are described later in Chapter 9, the
stimuli were presented in a circular windows with the following diameters: Yo and

Wilson (1992) - diameter = 8°; Bowns (1996) - diameter = 3°; Stone, Watson, and
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Mulligan (1990) - diameter = 54° ; Champion, Hammett,and Thompson (2007) -
diameter = 6° ; Alais, Wenderoth, and Burke (1997) - diameter = 3°, 6° and 12°.
Information on the size of the stimulus used in the experiments of Burke and Wenderoth
(1993) is not given in their paper. In the simulations described in Sections 8.2 and 8.3
and in Chapter 9, the image is displayed in a circular aperture of diameter 200 pixels;
thus the size of the 10 x 10 pixel window used in the model corresponds to between
0.15° and 0.6°. This is in close accordance with an average receptive field diameter
measurement, for V1 cells in humans, of approximately 0.25° at the fovea, rising
linearly to approximately 0.6° at 6° eccentricity (Smith, Singh, Williams and Greenlee,
2001).

Since the simulation results presented here closely match the experimental
results in each of these experiments, it can be inferred that the model results are robust
if the 10 x 10 pixel window represents a receptive field diameter of between 0.15° and
0.6°, which is the approximate physiological range for V1 cells.

The computational model breaks down when the simple algorithm used to calculate the
image intensity derivatives fails to produce acceptably accurate results. This happens
when the spatial frequency of the stimulus is sufficiently high that the spatial period
falls within a single window, i.e. is less than 10 pixels, corresponding to a frequency of
0.1 cycles/pixel, or between 6.7 cycles/® (corresponding to window size of 0.15° and a
stimulus aperture diameter of 3°) and 1.6 cycles/° (corresponding to a window size of
0.6° and a stimulus aperture diameter of 12°). Thus, for the simulations of the Alais ef a/
( 1997) experiments described in Chapter 9, in which the aperture diameter is 3°, the

result for a stimulus of 6 cycles/® was not simulated.

It is important to note that the free parameter of the model o /o was held

constant for all the simulation results described in this Chapter, i.e. for the Yo and
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Wilson (1992), the Bowns (1996), and the Burke and Wenderoth (1993) experiments,

and the general simulation experiments in the next Section.

8.5. General simulation experiments.

The model was also simulated for a set of different speeds and directions of the
components gratings. The range of the directional difference between the components
was between 10° and 170° degrees. The first grating was oriented toward 180° and kept
constant. The difference between the directions of the two gratings was gradually
increased by 10° for each subsequent experiment thus varying the angular difference
between 10° and 170° degrees. The speeds of the components varied from 1 to 5
pixels/iteration. The data is presented in Figure 22, which shows the results for four
different directions of the components, with angles between them equal to 10°, 60°, 90°
and 170°. The symbols on the plot correspond to VS direction (red triangle), IOC (red
circle), the orthogonal direction to the long edge of the blob (black dot), initial estimated
direction for the low contrast plaid (green square), initial estimated direction for the
high contrast plaid (blue star) and the final estimation (40 iterations) for the high
contrast stimuli (blue pentagram). The speed ratio is presented in a logarithmic scale.
When the direction angle between the components is equal to 10° (Figure 22a) the
results show that the bias is toward the VS direction which approximates the direction
orthogonal to the long edge of the blob in this case. As the ratio of the component
speeds increases, the IOC direction moves away from the VS direction, and hence the
predicted bias increases. These results are thoroughly in agreement with the
experimental data. Note that for the case of 60° angular difference (Figure 22b) the
difference between the VS and 10C is generally smaller and more dependent on the

speeds ratio than in the case shown in Figure 22a.
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Figure 22. Simulations of the model! for 4 different angles (10, 60, 90, 170°) between the directions of

the components of the plaid. The first component grating’s velocity was oriented at 180° and kept

constant. The second grating’s velocity direction varied between 190° and 350°. The speed ratio is in

logarithmic scale. The absolute values of the speeds varied between 1 and 5 pixels/ step. The symbols are:
\ VS (VA)direction;  TOC direction; ® Orthogonal direction to the long edge of the blob:

Initial estimation of the velocity direction for low contrast; Initial estimation of the direction of

the velocity for high contrast; Final estimation of the velocity direction for high contrast.

The psychophysical experiments are consistent with this result, i.e. that the perceived
bias is particularly bigger for angles between components close to 10°. For angles of
90°, as expected the estimation is in the 10C /VS direction, which overlap in this case
(Figure 22¢). The results are also presented for the angle of 170° (Figure 22d) as it
shows the model’s predictions for Type | plaids in this most extreme case of the
simulations. As far as the author is aware, there is no evidence from psychophysical

experiments confirming a bias toward the non-veridical direction, i.e. VA instead of
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10C for the Type 1 plaids. However, the simulations of the model presented here predict
a substantial bias in the initial velocity estimate for the low contrast case, suggesting
that for low contrast and short presentation time there should be an experimentally
perceived bias for such asymmetric Type | plaids. As a conformation for the
requirement of short stimulus presentation in order to detect a non-veridical bias for
Type 1 asymmetric plaids, it can be noticed in Figure 22d that the final estimate is much
closer to the 10C direction compared to the results in Figure 22a. This leads to a
possible conclusion that the conversion time to the veridical velocity is shorter for Type
[ plaids as compared to Type II plaids.

There are differences between the case when the angle between the components
is equal to 10° (Figure 22a) and 170°, even if the blob’s size and shape are the same.
The first difference is between the magnitudes of the IOC speeds for both cases. For
angles >> 90° and different components speeds, which is the asymmetric Type | plaid,
the ratio between the IOC and VS speeds could be much bigger than for the case of 10°.
For instance, for speeds of 1 and 2 pixels/iterations of the components, the ratio (10C
speed)/ (VS speed) is equal to 2 for 10° between the components, but for 170° the same
ratio is equal to 17. This means that the veridical speed becomes much larger in
comparison with the speed of the edge of the blob. In particular, for the angle of 170°,
which is presented in Figure 22d, the motion in the IOC direction is almost parallel to
the orientation of the blob's long edge and therefore contributes less to the orthogonal
motion of this edge. This is a possible explanation of why there was no evidence of a
bias in Type I plaids from psychophysical experiments. The bias presented in our
simulation results could be also just an artifact resulting from the insensitivity of the
simulation set-up to detect higher speeds, which would lead to a smaller effect of the
1OC speed on the simulation results as compared to the 1-D motion effect of the blob

edge. However, if the higher 10C speed results in a more pronounced 1-D motion of the
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edge (as a projection of a bigger vector, even if the angle of projection is relatively
small due to the almost parallel orientation of 10C vector toward the edge of the blob)
according to the simulation results in Figure 22d it could be speculated that under
certain conditions such a bias could be found and they are: 1) low contrast, 2) as short as
possible presentation, 3) bigger angle between the components directions of motion
(155-175°) and 4) a speed ratio significantly smaller than 1 (which corresponds to zero
in the logarithmic scale in Figure 22d). However, as far as the author is aware, such
psychophysical data have not been produced so far, i.e. for Type | asymmetric plaids

with angles between the components (directions of motion) greater than 90°.

8.6. Summary.

In this chapter a more detailed description was presented of how the model calculates
velocity from the pool of 1-D and 2-D motion signals in the case of a plaid stimulus.
Furthermore, it was shown that the model simulations of plaid perception, presented in
detail in this chapter, showed a close resemblance to the psychophysical data of Yo and
Wilson (1992), Bowns (1996) and Burke and Wenderoth (1993). In addition, the model
was applied to a wide range of possible velocities of the component gratings of the
plaids, thus representing the results for both Type I and Type II plaids. For Type 1l
plaids the simulation results were in agreement with the experimental data. For Type |
plaids however, the model predicts a possible bias toward the non-veridical direction for

a well-chosen set of conditions.
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Chapter 9. Discussion of the application of the motion

integration model to plaid perception.

9.1. Comparison with the Adelson and Movshon (1982) model.

The original two-stage model (Adelson and Movshon, 1982; Movshon er al., 1985)) has
dominated research in plaid motion perception for almost thirty years, leading to an
almost universal view that the first stage of plaid motion analysis involves the detection
of the 1-D motion of the component gratings, carried out by "component-direction
selective” neurons in V| (see the review by Pack and Born (2008)). It is important to
note however that the available evidence is almost entirely based on using symmetric
Type | plaids, in which the component gratings move with equal speeds. For the
psychophysical experiments of Movshon ef al. (1985) the difference in directions of the
component gratings was 120°, for their physiological experiments in cat and monkey
V1 and in monkey MT (Movshon er al., 1985) the angular difference was 90°, and for
Movshon and Newsome's (1996) physiological experiments in monkey V1 the
difference was 90° or 45°. For such plaids, a neuron in primary visual cortex (V1)
which responds optimally to the motion of a single grating, produces little response to a
plaid moving in its optimal direction, as would be predicted from the orientations of the
component gratings if the neurons were only responding to the 1-D motion of the

gratings (Movshon er al., 1985).

The model proposed in this thesis suggests that neurons in V1 respond both the
1-D and 2-D motion of the blob features of the plaid, and in the case of Type Il plaids
are driven by the 1-D edges and 2-D end-points of the elongated blobs. Moreover, it is

proposed that the 2-D blob motion is detected by end-stopped cells in V1, as observed
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by Pack e al. (2003). This model leads to theoretical and simulation results which
closely mimic the physiological observations of perceived direction for such plaids. So
how does the model explain the "component-selective” responses for V1 neurons in the
case of Type 1 plaids, as observed by Movshon er @/ (1985) and Movshon and
Newsome (1996), in particular as the neurons observed by Movshon and Newsome

(1996) were apparently mostly of the end-stopped variety ?

For Type | plaids in which the difference in the component grating directions is
90°, the blobs take the form of small square regions of high luminance which are
aligned in the same orientations as the component gratings. Therefore, a neuron which
is optimally responsive in the direction of the plaid motion, and with a long, narrow
receptive field oriented orthogonally to the plaid direction, will respond sub-optimally
to the two lines of blobs, each moving at 45° to the optimal direction for the neuron, in
exactly the same way as if it were responding to the component gratings themselves, as
shown by Tinsley er al, 2003. Little or no 2-D motion signal in the direction of the
plaid would be detected due to the absence of well defined end-points in the stimulus, in
contrast to the case of Type Il plaids with elongated blobs. It is significant however that
Movshon and Newsome (1996) observed a degree of "pattern-selective” response in two
of the nine neurons they measured. Thus, for such neurons and for symmetric Type |
plaids, it is not possible to distinguish whether the neurons are responding to the
component gratings or to the lines of small square blobs ("blob-lines") present in the
plaid moving in the same directions as the component gratings. The lines formed by the
blobs are certainly more perceptually salient to the human observer than the individual

component gratings.

In the model proposed here, the outputs of the local motion detectors signalling
the two orthogonal 1-D motion of the "blob-lines" described above will be combined in

the second stage by the estimation algorithm to yield the VS of the two directions,
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which corresponds exactly to the direction of motion in the case of a Type | plaid. Note
that no initial or steady-state perceived direction bias was observed for Type I plaids by
Ferrera and Wilson (1990) or Yo and Wilson (1992). It is also possible that the 2-D
motion of the individual blobs may be signalled by V1 neurons with short, wide
receptive fields, as observed by Tinsley et al. (2003). The combination of the outputs of
the 2-D motion detectors and the 1-D motion detectors in the second stage of the model

would reinforce the computation of the velocity estimate in the true plaid direction.

In summary, it is argued here that for symmetric Type I plaids, with a difference
between the component grating directions of around 90°, the 1-D motion detectors in
V1 will respond in exactly the same way to the blob-lines as to the component gratings.
Since the blob-lines and the component gratings are indistinguishable, in terms of their
orientation, direction, spatial frequency and speed, it is impossible for any experiment
with such Type I plaids to distinguish between a model in which the first stage responds
to the 1-D motion of the component gratings and one in which the first stage responds to
the 1-D motion of the blob-lines. Since, in addition, the direction of a symmetric Type |
plaid is given by the simple averaging (VA) of the 1-D motion directions, it is
impossible to distinguish between a model in which the second stage computes the [OC
direction from one in which the second stage computes the VS direction. The
conclusion is therefore that the psychophysical experiments (Welch, 1989; Derrington
& Suero, 1991; Derrington & Badcock, 1992) using symmetric Type 1 plaids, which
have apparently confirmed the two-stage model of Adelson and Movshon (1982), are
wholly inadequate in this respect. In contrast, the psychophysical experiments with
Type 11 plaids (Yo and Wilson, 1992) strongly challenge the Adelson and Movshon

model.

It is worth noting here that the theoretical analysis of the plaid blobs in Section

7.1 of the thesis indicates, for asymmetric Type | plaids with an angular separation of
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component directions of >90° (e.g. the plaid in Figure 19¢), that a similar elongation of
the blobs occurs, and that the longer edges increase in length as the angular separation
increases. Also the orthogonal direction of the longer edges of the blobs approaches the
VS direction. The motion integration model predicts a significant bias in the perceived
direction of plaid motion towards the VS direction for certain conditions as low contrast
and short presentation, which could be of comparable magnitude to that observed for
Type Il plaids. As far as the author is aware, no psychophysical or physiological

experiments have been carried out for such Type | plaids.

9.2. Comparison with the Weiss ef al. (2002) model.

A recent model of motion integration (Weiss and Adelson, 1998; Weiss et al,
2002) aimed at extending the Adelson and Movshon (1982) model to accommodate the
Yo and Wilson (1992) results. According to Weiss and Adelson (1998) and Weiss ef al
(2002), their model captures the uncertainty in the 1-D motion of the component
gratings in the case of low contrast by using a Bayesian estimation process. The
Bayesian formulation of the model results in the identification of a distribution of 1-D
and 2-D velocity measurements which correspond to local likelihood functions. The
model therefore represents the |-D motion of each of the component gratings,
corresponding to the first stage of the Adelson and Movshon model, as a pair of “fuzzy"
(Weiss and Adelson, 1998) constraint lines in velocity space, the degree of fuzziness
being dependent on contrast. The estimate of the plaid direction is then given by the
mean/maximum of the posterior probability distribution, which is computed from the
product of the local likelihoods and the prior distribution for the velocity estimate. The
latter is assumed to be Gaussian with zero mean according to a "slow and smooth"

(Weiss and Adelson, 1998; Weiss ef al, 2002) hypothesis based on suggestions that




human observers prefer the slowest motion consistent with the visual input (Ullman,
1979).

In fact, the model described by Weiss and Adelson (1998) and Weiss et al (2002)
is identical to the first step of the recursive Kalman filter estimation algorithm in the
model which has been presented here, and therefore produces an identical, biased first
step estimate of plaid direction. There appears therefore to be a contradiction between
the explanation in Weiss and Adelson (1998) of the behaviour of the model in
predicting plaid motion, which is solely in terms of the 1-D motion of the component
gratings, and the explanation which was presented here in Sections 7.2 and 8.2, which is
in terms of the 1-D and 2-D motion of the edges and end-points of the blobs. The
explanation in Weiss er al (2002) is essentially the same as that in Weiss and Adelson
(1998) but less detailed and with no supporting diagrams.

To resolve this contradiction, first consider the plaid used to produce the
simulation results shown in Figure 20a, and previously discussed in Sections 7.2 and
8.2. This plaid is also used in Weiss and Adelson (1998) and Weiss e al (2002) as their

main example for demonstrating the misperception of the direction of Type II plaids.

The parameters of the component gratings of this plaid are, as given before: 6, =70.5 ,
6,=482",r=133, and r,=2.67, yielding the following  values:

6,-0,=22.3 0. =02, 1. =39, 6,5 =556, 1, =4.0, $=59.4', r,=2.03,
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Figure 23. Velocity space diagrams of the plaid used in the experiments of Yo and Wilson (1992) and
for which the model simulation results are shown in Figure 20a. a) diagram illustrating the plaid, clearly

showing the elongated blobs; b) velocity space diagram on which the velocity vectors, v, and v, of the

component gratings, together with their constraint lines, the IOC and vector sum velocity vectors v,

and v, and the velocity estimate from our model for the first step,v,,, are shown (0° is vertically

upward in this diagram). The inset diagram. is redrawn from Figure 15d of Weiss and Adelson (1998); c)

velocity space diagram showing the velocity vectors corresponding to the motion of the longer and

shorter edges of the blobs in the plaid, v, andv,, together with their constraint lines, the IOC and vector
sum velocity vectors, and the velocity estimates from our model for the first step, v, , the fifth step v,

and in the steady-state v__ . An explanation of the diagrams is given in the text.




r,=3.46, ¢—6, =38 and s, /s? =5.1. For a contrast of 50%, the model calculates the

initial estimate of the plaid velocity vector v,

as: speed r,=184 and
directiond,, =40 .
Figure 23a illustrates the plaid, clearly showing the elongated blobs. Figure 23b is

a velocity space diagram on which the velocity vectors of the component gratings,

v,and v,, together with their constraint lines, the initial velocity estimate, v,,, and the
10C and vector sum velocity vectors, v, and v, respectively, are shown (0° is

vertically upward in this diagram). The velocity space diagram in Figure 15d of Weiss
and Adelson (1998) is redrawn as an inset in Figure 23b.

In their Figure 15d, the latter authors indicate the magnitude of the vector average
(VA) velocity of the component gratings, rather than the vector sum velocity. Although
the direction of these two velocity vectors are the same, the magnitude (speed) of the
vector average velocity is half that of the vector sum velocity.

Weiss ef al (2002) explain the bias in the perceived direction towards the vector
sum/average direction by the statement that "the vector average velocity [speed] is
much slower than the 10C solution and hence it is favored [by the zero prior] at low
contrasts". They assume that the Bayes estimate of plaid velocity is based on "local
likelihoods [which] are 'fuzzy' constraint lines" (Weiss and Adelson, 1998) defined by
the component grating velocities. Thus any bias in the estimate towards a speed slower
than the 10C speed, as a consequence of the zero prior, will automatically result in a
shift of the direction of the estimated velocity away from the 10C direction and towards
the vector sum/average direction, i.e. the velocity estimate will be constrained to fall
along, or close to, the dashed line depicted in Figure 23b.

The explanation of the perceived direction bias in Weiss ef al (2002) and Weiss
and Adelson (1998) is thus based on the Adelson and Movshon (1982) model of plaid

perception, in which only the 1-D motion of the component gratings are detected in the
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first stage of analysis of the plaid motion, and their model is presented as a Bayesian
extension of this model. This is clearly reflected in their explanation since they indicate
that their model forms local likelihoods as "fuzzy" constraint lines defined by the 1-D
motion of the component gratings. However their model, as is the case with the model
presented here, undoubtedly detects both the 1-D and 2-D motion that is present in the
stimulus in the form of the motion of the edges and end-points of the blobs, as is clearly
demonstrated by their depiction (in Figure 3 of Weiss er a/ (2002)) of the likelihood
functions generated by their model for a moving diamond stimulus. It is surprising
therefore that no reference is made to the likelihood functions formed from the 2-D
motion in the plaid stimulus, and their role in forming the estimate.

An alternative explanation for the perceived plaid motion is offered here, which is
based on the 1-D and 2-D motion of the edges and end-points of the blobs. This is
illustrated in Figure 23c. Here the velocity vectors are shown corresponding to the

orthogonal motion of the longer and shorter edges of the blobs in the plaid,
bl a[n e

respectively, and their constraint lines, together with the IOC and vector sum velocities,
Vo and v, respectively, of the component gratings. Also shown are the velocity
estimates from the model for the first step (v, =1.83; 6,=40), the fifth step
(v, =2.38; 6, =25"), and in the steady-state (v, =2.62; €_ =18).

It is clear that the initial estimate v, lies very close to the velocity vector v,,
corresponding to the orthogonal motion of the long edge of the blob, and to the

maximum of the likelihood function (the "fuzzy" constraint line) for v,. Subsequent

velocity estimates in further iterations of the recursive algorithm get closer to this

maximum, and also to the velocity vectorv,, .. Note that the effective prior for each step

in the estimation algorithm is given by the velocity estimate in the previous step, which
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together with the influence of the likelihood function corresponding to the 2-D velocity

of the end-points of the blobs, v,,., leads to the convergence of the estimate towards the

1OC velocity.

9.3. Further support for the motion integration model.

To reinforce the account of the model behaviour given above, a further piece of
evidence is now provided that the first stage of plaid motion perception is based on the

1-D and 2-D motion of the blobs rather than the 1-D motion of the component gratings.

Stone er al. (1990) investigated the effect on the perceived plaid direction of
making the contrasts of the component gratings unequal. They based their investigation
on the Adelson and Movshon (1982) model, assuming their first stage in which the 1-D
velocities of the component gratings were detected to be correct. They hypothesised that
the low contrast grating would be detected at a lower speed than the true value and that
if this erroneous value were used in a second stage 10C calculation of plaid direction, a
significant contrast-dependent error in the perceived plaid direction would result. They
used a Type I plaid with angular separation of the component gratings of 120°, and
changes in the ratio of the speeds of the component gratings to vary the true direction of

the plaid whilst maintaining a constant plaid speed.

In this way they found that the perceived plaid direction was biased towards the
direction of the higher contrast grating and this bias increased for increasing contrast
ratio, and also for decreasing total contrast (the sum of the grating contrasts). At 5%
total contrast, the average observed bias varied between 0°, at a contrast ratio of 1, to
~16°, at a contrast ratio of 4:1. A maximum bias of 20° was observed for a total contrast
of 10% and a contrast ratio of 8:1. The modified Adelson and Movshon (1982) model

proposed by Stone ef al. (1990) using perceived rather than actual component speeds
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appeared to give qualitatively similar results to those observed (see their Figure 11,

which is presented here as Figure 24).

_(A) Data _ (B) Modet
] 10% 20%
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Figure 24 (Fig. 11 from Stone et al., 1990). Simulated vs actual bias. (A) This panel is a plot of the
same data as in Fig. 7 from Stone et al., 1990 (for four different contrasts: 5, 10, 20, 40%) averaged over
four subjects and over symmetric contrast-ratio pairs. (B) This panel shows simulations of the model in

Fig. 9 Stone et al.. 1990 under the same conditions as (A).

However, similar experiments by Champion, Hammett and Thompson (2007)
appeared to invalidate the modified 10C model of Stone et al. (1990), since it would
also predict a bias towards the direction of the low contrast component at high
component grating speeds due to an increase in the perceived speed of low-contrast
gratings for grating speeds above ~12 deg/s (Champion ef al., 2007). Champion et al..
observed an increasing bias with component speed which was always towards the
direction of the high contrast component except for the very lowest component grating
speeds, but a decrease in the bias at the highest component speeds (above 12 deg/s),
consistent with their observed switch in the contrast-related misperception of grating
speed for higher speed gratings. It should be noted however that Champion er al. used
plaids of total contrast equal to 90%, compared to the total contrast values of between
5% and 40%. They also used component gratings with angular separation of 90°,

compared with the 120° angular separation used by Stone ef al.
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Figure 25. The two plaids used the model simulations of the experiments of Stone ef al (1990).

showing the effect of the spatial frequency of the component gratings on blob size and number, Both
plaids correspond to an angular separation of component gratings of 120°, 60° either side of the vertical
(0°) and for each the contrasts of the component gratings are in the ratio of 4:1. For the plaid in a. the

spatial frequency of the component gratings is twice that for the plaid in b.

Champion ef al. also suggest that their results are inconsistent with the Bayesian
[OC model of Weiss ef al. (2002), since that model relies upon the perceived speed of

the gratings being smaller for lower contrast, and hence higher uncertainty, owing to the

128



greater influence of the "slow" prior. Champion ef al. also claim that their results are
inconsistent with several other models of plaid perception including the 1-D and 2-D
parallel pathways model of Wilson et al. (1992), and the blob tracking model of Alais,
Wenderoth and Burke (1994).

Applying the model proposed here to this data (Figure 25) shows that it replicates
the misperception of the direction of plaid motion towards the direction of the higher
contrast grating, but that the magnitude of the bias in the estimated direction is
dependent on the spatial frequency of the component gratings. The case of a plaid with a
separation of component gratings of 120° , 60° either side of the vertical (0°) and a
contrast ratio of 4:1 is shown in Figure 25a. It is clear that the salient feature of this
plaid is a set of "blob-lines" which are formed from a joining-up of the plaid blobs. The
direction of motion of the blobs is the VS of the component gratings, i.e. the plaid
direction of 0° but the orthogonal direction of motion of the blob-lines is 300°, the
direction of the higher contrast component grating. The estimated plaid direction
computed by the model is 308°, giving a bias of 52°away from the 10C direction of 0°
towards the higher contrast grating direction, much greater than that measured by Stone
et al. (1990), where the direction error was up to 20° for this contrast ratio (4:1).
However, this result was obtained for a grating spatial frequency and a viewing aperture
shown for the plaid illustrated in Figure 25a, corresponding to ~14 cycles of the

component gratings being present within the viewing aperture.

If the gratings' spatial frequency and the viewing aperture are changed to
approximate that used by Stone ef al. (1990) and Champion ef al. (2007), approximately
6 cycles of the component gratings are present in the viewing aperture, as illustrated by
the plaid in Figure 25b. The blob lines are still clearly visible but the size of the blobs is
greater by about a factor of two. In this case, the estimated plaid direction computed by

the model is 342° giving a bias towards the direction of the higher contrast grating of
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18°, comparable to that measured by Stone er al. (1990) for this contrast ratio (4:1). The

bias computed by the model for the contrast ratio of 2:1 was 7°, which is consistent with
the Stone ef al. result of approximately 7° for the 5% contrast case, and with the results
of Champion ef al. (2007) who used a contrast ratio of 2:1 and obtained a maximum

bias of approximately 7°.

The above example illustrates the importance, both in psychophysical experiments
and in modelling, of the choice of the spatial frequency of the component gratings in
relation to the viewing angle/aperture of the stimulus. The model results would suggest
that if the psychophysical experiments of Stone e¢f al. (1990) or Champion ez al. (2007)
had been carried out using a higher component grating spatial frequency, a far greater
bias towards the higher contrast grating would have been obtained. owing to the greater
salience of the 1-D motion of the blob-lines in the direction of the higher contrast
grating, compared to that of the 2-D motion of the blobs themselves, when viewing the

plaid.

Alais et al. (1997) investigated the effect of blob size and number on perceived plaid
direction, in this case for Type Il plaids. They showed, by varying both spatial
frequency and viewing aperture size, that there is a large effect of blob size on the
perceived direction bias, of up to 14.1°, due to changes in the component spatial
frequency, but a small effect of blob number, of about 5°, obtained by changing aperture
size whilst spatial frequency is held constant. The motion integration model was used to
simulate their experiments, keeping the viewing aperture constant and varying the
spatial frequency of the component gratings. Three values of spatial frequency were
used: 0.6, 0.3 and 0.2 cycles/pixel. For the sake of comparing the simulation results with
the experimental results, it was assumed that these spatial frequencies correspond to the

experimental values of 3.0, 1.5, and 1.0 cycles/®.
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Figure 26. Results from simulations of the computational model for the plaids used in the experiments
of Alais ef al (1997) showing the perceived plaid direction as a function of spatial frequency obtained in
the experimental study, for the 3® aperture case ( Asymbols) and the plaid direction estimated by the
model {® symbols). The estimates of the plaid direction are very similar to the perceived values (within
4°) and show the same trend, with a decrease in the misperceived direction bias as the spatial frequency of
the component gratings increases. From the original diagram for the experimental results in this study,
perceived errors were in the region of £2°,

Figure 26 shows the results from Alais er al. (1997) (their Figure 5) giving the
perceived direction as a function of spatial frequency for the 3° aperture case (e
symbols), together with the steady state direciion estimates from the model
( A symbols), for each of the component grating spatial frequencies. The 6.0 cycles/®
case was not simulated owing to the limitations of the mode} in dealing with such high
frequencies due to the particular choice of window size. As can be seen from Figure 26 ,

the estimates of the plaid direction are very similar to the perceived experimental values




and, importantly, show the same trend, with a decrease in the misperceived direction

bias as the spatial frequency of the component gratings increases.

It is not clear how a model of plaid perception based on the Adelson and Movshon
(1982) model might account for the dependence of the misperception of plaid direction
on component grating spatial frequency, as observed by Alias et al. (1997) and
modelled here. Varying the spatial frequency of the component gratings should have no
effect on the computation of the 1-D velocity of the gratings, or on the [OC calculation,
even in the case of where uncertainty in the component directions is taken into account
as in the Bayesian IOC model of Weiss ef al. (2002) and Weiss and Adelson (1998). On
the other hand, our model, which depends on both the 1-D and 2-D motion of the blobs,
is entirely consistent with the Alais er al. (1997) results. As noted by them: "These
results provide further support for the existence of a feature-sensitive mechanism which
responds to the motion of plaid features and which is tuned to their various qualities".

The model presented in this thesis provides just such a mechanism.

9.4. Other approaches based on a feature tracking mechanism

Other approaches based on a feature tracking mechanism have been proposed which are
related to the mechanisms that have been described here. In particular, Bowns (1996)
proposed a feature tracking explanation for the misperception of Type Il plaids as
observed by Yo and Wilson (1992) which is based on specific plaid features, "avgL",
"minL" and "maxL" which she introduces, and which clearly relate to the blob features
that were defined in Section 7.1.

In Figure 6 of Bowns (1996), here presented as Figure 27, these features and their
motion are illustrated for a plaid in which the directions of motion of the two

component gratings differ by 10° (directions of 90° and 100°). According to the analysis
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presented in Section 7.1 of this thesis, the blobs in this plaid, which appear to
correspond approximately in shape to the maxL feature, have an edge ratio of 1:0.09,
i.e. the blobs are highly elongated, and the longer edges move in an orthogonal direction
of 95°, almost exactly equal to the vector sum direction of 93°. For a component grating
speed ratio of 1:0.5, the model simulation gives for this plaid an initial direction
estimate of 90°and a final direction estimate of 65°, i.e. 25° to the right hand (I0C =
19°) side of the vertical, implying that in a forced choice decision of left or right of the
vertical, as in the Bowns (1996) experiments, a consistent IOC choice would be likely.
At this point the reader is referred back to the description and simulations of Bowns'
1996 experiments in Section 8.2. A different explanation is however given in Bowns
(1996) for consistent [OC result; namely that, as stated in the legend to her Figure 6
"there are no edges that move in the vector sum direction for this plaid". Hence it is
concluded that the choice will always be in the IOC direction.

In Figure 7 of Bowns (1996), presented here as Figure 28, avgl, maxL and minL
are again illustrated for a plaid in which the directions of motion of the two component
gratings differ by 80° (directions of motion of 90° and 170°). In the legend to the Figure
it is stated again that "there are no edges that move in the vector sum direction for this
plaid". However, for this plaid the analysis given in Section 7.1 shows that the blobs are
not elongated, having an edge ratio of 1:0.84, which would predict a velocity estimate
close to the IOC direction. Also for this a plaid, the IOC direction (108°) is close to the
vector sum direction (114°), and both are thus to the left of the vertical. The model
simulation gives initial and final velocity estimates for this plaid which are both
approximately equal to the IOC direction, thus predicting, in a forced choice of left or
right of the vertical, a decision of left (vector sum), corresponding to the outcome in the

actual experiment, as indicated in the legend to Figure 7 of Bowns (1996).
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T1: Density Map
T 3: Contour Map

C1=180 C2=190

Figure 27 (Figure 6 from Bowns (1996) together with the original legend). (a) A density plot of
the plaid with the first component oriented at 180 deg and the second component oriented at 190 deg. The
actual stimulus was circular for all stimuli as described in the Methods Section 2. (b) avgL changed over
time by showing tl as a density plot and t3 as a contour map. (c) and (d) show similar plots for maxL and
minL, respectively. Possible motion directions are indicated by large white arrows. There are no edges
that move in the vector sum direction for this plaid. This is consistent with the results; subjects perceived
this plaid moving in the IOC direction for 100% of the presentations. The displacement direction of all

regions shown in Figs 6-8 corresponds to the 10C direction.



T1:Density Map
T3: Contour Map

C1=180 C2=260 Avg

d)

Figure 28 (Figure 7 from Bowns (1996) with the original legend). (a) A density plot of the plaid with
the first component oriented at 180 deg and the second component oriented at 260 deg. The plots are
similar to those shown in Figure 6. Again there are no edges that move in the vector sum direction for this

plaid. and the results are 100% consistent with the 10C predictions.

Finally, in Figure 8 of Bowns (1996), which is shown here as Figure 29, avgl,
maxL and minL are illusirated for a plaid in which the directions of motion of the two

component gratings differ by 40° (directions of motion of 90° and 130°).
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T1:Density Map
T 3: Contour Map

C1=180 C2=220

Figure 29 (Figure 8 from Bowns (1996) with the original legend). (a) A density plot of the
plaid with the first component oriented at 180 deg and the second component oriented at 220 deg. This is
a plaid from the middle of the set of plaids used. Although the regions are all shown to be displaced in the
IOC direction, (b) shows a significant edge shift in the vector sum direction (see white arrows). This is
consistent with the results, subjects performed variably to this plaid with one subject perceiving it in the

[OC direction and the other in the vector sum direction

In this case, the legend to Figure 29, originally copied from Bowns (1996)
indicates that whilst neither of the features maxL or minL have edges moving in the
vector sum direction, avgl. has an edge which moves in this direction. The inference is

made that the presence of this motion resulted in subjects performing variably with this



plaid, one perceiving it in the I0C direction (right of the vertical) and one in the vector
sum direction (left of the vertical). The analysis of this plaid, with a speed ratio of 1:0.5,
gives a blob edge ratio of 1:0.36, i.e. the blobs are somewhat elongated, and their long
edges move in an orthogonal direction of 110°, close to the vector sum direction of
103°. The model estimates a plaid velocity direction in the first step of the estimation
algorithm of 95° (5° to the left of the vertical) and a final estimate of 73° (17° to the
right of the vertical). The 10C direction is 67°.

The results from the model simulations of the full range of plaids used in Experiment 2
of Bowns (1996), of which those discussed above are a subset, are shown in Figure 30.
The plots in Figure 30 show the initial and final estimated plaid directions as a function
of the angular difference between the component grating directions for these plaids. The
shaded area in the centre of the graph indicates the range of component grating angular
differences which resulted in an inconsistent choice by subjects between "vector sum
direction" and "IOC direction” for the corresponding plaids. These results, and the
discussion above, suggest that the reason for the observed variability between subjects
in their choice of 10C or vector sum direction (Bowns, 1996) lies in the variability of
subjects in terms of the dependence of their direction perception on the duration of the
stimulus. As Yo and Wilson (1992) showed, subjects can display considerable
differences in this dependence. In Figure 6 of Yo and Wilson, one subject (HRW)
reported a direction bias of 30° after ~90 msec. stimulus duration, from an initial bias of
60° at ~60 msec. Another subject (HJ) reported a direction bias of 15° after ~90 msec.,
from approximately the same initial bias at 60 msec. Significantly, the stimulus duration
used in the Bowns (1996) experiments was 80 msec, which would imply that a
significant variation in perceived bias between subjects at this duration was possible. A

similar variability to that reported by Yo and Wilson (1992) would therefore probably
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be sufficient to cause the difference in direction choice between the two subjects in the

Bowns (1996) experiments.
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Figure 30. Results from simulations of the computational model for the plaids used in Experiment 2 of
Bowns (1996), showing the initial and final estimated plaid directions as a function of the angular
difference between the component grating directions for these plaids. The shaded area in the centre of the
graph indicates those component grating angular differences which resulted in an inconsistent choice by
subjects between "vector sum direction” and "1OC direction” for the corresponding plaids (see the text in

the Discussion section for a further discussion of these results).

Whilst the explanation given here contrasts with that of Bowns (1996), her
explanation does clearly indicate that there is present in the plaid pattern both motion in
the VS direction (in terms of the analysis given here, the orthogonal 1-D motion of the
longer edges of the blobs) and in the 10C direction (in terms of the analysis given here,
the 2-D motion of the blob end-points). She uses this fact to propose that the variation
between subjects may result from a competition between these two sets of motion
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information. The analysis given here suggests however that a Bayesian process which
using both information sets can also predict this resuit.

Another analysis of Type 11 plaid misperception based of the motion of features in
the plaid was presented in Bowns (2006). Here a squaring operation is performed on the
plaid and two "components” are identified: "sqHF" and "sqLF" which are derived from
the squared plaid. The description in Bowns (2006) shows that the "components™ are in
fact two gratings formed from the squared plaid pattern, a high spatial frequency grating
and a low spatial frequency grating, with spatial frequencies and orientations defined in
the Appendix. They clearly relate to the product gratings, and have the same
orientations and direction of motion as these, as illustrated in Figure 1(d) of Bowns
(2006). Examples of the values for the direction of motion of the sqHF and sqLF are
also given for three Type Il plaids, which were also used in Bowns (1996), showing that
the direction of motion of the sqHF "component” is close to the VS direction. This led
to the proposal that the direction of motion of the "components" provided a better
overall predictor of the misperceived direction of these plaids than either the VS
direction, as suggested by Yo and Wilson (1992), or the IOC direction, as suggested by
Adelson and Movshon (1982). The analysis and simulation results presented here
clearly concur with this conclusion, as the predictions based on the motion of the blob
edges show. However, Bowns also suggests that there is no motion energy in the plaids
in the IOC direction, so that a full explanation of the misperception would "a model that
incorporates both squaring and the IOC". The model presented in this thesis however
incorporates both the 1-D motion of the blob edges, which contain motion energy close
to the VS direction, and the 2-D motion of the blob end-points, which contain motion
energy in the IOC direction. Used together in a recursive Bayes estimation framework,
it has been shown that the model closely predicts a wide range of results on perceived

direction of plaid motion.
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9.5. New research directions suggested by the model.

New directions for experimental investigation are suggested by the motion integration
model, including monitoring the response to Type 1l plaid motion of end-stopped cells
(Hubel and Weisel, 1965; Pack er al., 2003) in layer 4b of area V1, the layer which
contains the majority of V1 neurons projecting to MT. The model predicts that such
experiments for Type Il plaids will show that these neurons signal the 2-D motion of the
high luminance regions, i.e. the blobs, in the plaid Additionally, studies of the dynamic
response of MT neurons to Type II plaids have, as far as the author is aware, not been
done, although a stimulus consisting of a field of short bright bars (Lorenceau, Shiffrar,
Wells, and Castet, 1993) mimics the high luminance regions in Type II plaids. For this
bar-field stimulus, Pack and Born (2001) showed that MT neurons initially respond
primarily to the component of motion perpendicular to a contour's orientation, but over
a period of approximately 60 ms the responses gradually shift to encode the true
stimulus direction, regardless of orientation. Thus the responses of the MT cells closely
parallel the psychophysical responses of human observers to the motion of Type II
plaids (Yo and Wilson, 1992). Similar studies in which the responses of MT neurons
are selectively inhibited, by lesioning or reversibly cooling (Hupé, James, Payne,
Lomber, Girard and Bullier, 1998; Supér and Lamme, 2007) might also be able to test
the hypothesis that the local 1-D and 2-D local motion signals are combined to provide
the perception of plaid motion via a recursive estimation process, which, it is
hypothesised here, is implemented in the recurrent interaction between V1 and MT, an
interaction which has been strongly implicated in the perceptual awareness of visual

motion (Lamme and Roelfsema, 2000; Sterzer, Haynes and Rees, 2006).
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9.6. Summary.

In summary, the discussion in this chapter on the application of the motion integration
model of plaid perception covered the comparison with the Adelson and Movshon
(1982) model. An alternative explanation of their psychophysical results has been
presented as well.

Furthermore, a comparison with the Weiss ef al. (2002) model was given, where
again the concept of a first-stage components’ motion processing was analysed in detail
together with specific examples. Additional support for the motion integration model
has been provided in the last sections of the chapter. The case of a plaid with
components of different contrast has been examined. Furthermore, the analysis of the
effect of the number and size of the blobs on the plaid perception was presented.
together with supporting psychophysical data and model simulations. Finally, new

research directions were proposed.
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Chapter 10. General conclusions and future research

10.1 Summary of the main conclusions of the thesis.

In this work a Bayesian model of motion integration using a Kalman filter algorithm
was presented. The model aimed to describe the dynamics of motion integration which
has been observed in the numerous psychophysical experiments regarding both eye
smooth pursuit and plaid motion perception. The dynamics of the perception of the
object motion starts with a biased or non-veridical value of velocity and it takes some
time for the veridical value of velocity to be perceived. The dynamics of the estimation
thus proves to be a good source of information about the underlying mechanisms of
combining the 1-D and 2-D local motion signals in order to estimate the veridical
motion of the object.

The behavior of the model on the smooth pursuit data was very close to the
psychophysical experimental results (Lorenceau et al,, 1993; Masson and Castet, 2002;
Masson et al. 2000; Pack and Born, 2001; Lindner and llg, 2000; Masson and Stone,
2002, Wallace et al., 2005; Pack er al., 2004).By simulating the smooth pursuit data it
was possible to show the effects of different stimulus contrasts and sizes on both the
initial biased value of velocity and the temporal dynamics. The model captured well the
dynamics of the smooth pursuit eye movements, which reflected the supposed
underlying motion integration mechanisms. As discussed, there are algorithmically
similar models (Weiss er al., 2002), but they have not applied specifically to the
dynamics of the smooth pursuit data.

Based on the idea of similarity of the motion integration mechanisms
underlying both the eye smooth pursuit dynamics and the plaid motion perception
dynamics, it was possible to propose a new explanation of the motion integration
processing in plaid perception. The application of the model to the controversial data of

Type Il plaid perception showed that the perceptual phenomena could be fully explained
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by taking into account the geometrical properties of the high intensity regions of the
plaids, the so-called blobs. It was shown that contrary to the well-known two-stage
model of Adelson and Movshon (1982), involving the detection of the motion of the
component gratings followed by application of the 10C rule, the proposed model was
able to estimate the veridical as well the biased plaid velocity without explicitly taking
computing the velocities of the component gratings in the first stage. Instead, the model
uses the 1-D and 2-D motions of the high intensity features of the plaids, the blobs.

In this sense the presented model and its explanation of plaid motion
misperception, although mathematically similar to the model of Weiss et al. (2002), can
be distinguished from it conceptually. The explanation for the non-veridical bias toward
the VA direction, according to the present model, was based on finding the relationship
of the blob long edge orientation and the VA direction of motion of the component
gratings. It was shown by a detailed geometrical analysis of the blobs' size and
orientation that for the cases with the strongest perceived non-veridical direction bias
for Type Il plaids, the shape of the blobs were substantially elongated and the
orthogonal direction of motion of the longer edge of the blob was close to the VA
direction. This is the case when the directions of motion of the component gratings are
oriented relative to each other with a small angle (up to about 20°).

The main conclusion of this analysis was that the motion of the edges of the
blobs played a more important perceptual role in plaid motion detection, as 1-D motion
signals, than the motion of the component gratings. It was shown that the relative length
of the blob edges is important not only in relation to the 1-D motion cues from the blobs
themselves, but also in relation to the visual angle of viewing the stimulus, This led to a
further conclusion that depending on the visual angle and spatial frequency of the
gratings forming the plaid, the most dominant perceptual feature in some cases would

be not the separate blobs, but the lines of blobs which they form, which is in complete
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agreement with the concept used in the model of analyzing the high intensity features of
an image.

The model also gave a new explanation of the psychophysical results for some
specific experimental conditions, which seemed very inconsistent within the
participants, who were reporting very different directions of motion of specific Type 11
plaids (Bowns 1996). One of the main contributions of the thesis is therefore the
conclusion that plaid motion perception can be treated generally as dependant on the
visible features of the plaids, i.e. blobs and lines of blobs, and not on the component
gratings themselves. This departs substantially from the apparently well-accepted idea
that the motion of the component gratings, computed in the first stage of an integration
mechanism is essential to the motion perception process (Adelson and Movshon, 1982),
as distinct from the idea presented in the thesis that the dominant visible features of the
plaid play the most significant role, for all plaid types.

Two versions of the Bayesian model of the dynamics of motion integration were
presented in the thesis: a standard form of the Kalman filter algorithm (Section 2.1) and
an approximate version (Section 2.2). The latter version of the model was created in
order to make the algorithm computationally closer to a neural network implementation.
The main simplification of the algorithm aimed to avoid matrix inversions when
calculating the Kalman gain, and for that purpose the covariance matrix of the velocity
estimate was approximated by a diagonal matrix. Another simplification involved the
assumption that the spatial intensity derivatives in the x and y directions were
independent. This led to the approximation of the matrix computing the covariance of
the local measurements of the intensity spatial derivatives by a diagonal form. Together
these approximations led to a simpler calculation of the Kalman gain by avoiding the

matrix inversion.
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A further modification to the algorithm, by which the covariance matrix of the

velocity estimate £’ was not updated in each step of the algorithm, but was maintained

at its initial value P . This version of the algorithm allows it to be represented in a

distributed, recurrent neural network form.

Both the standard and approximate versions of the algorithm gave very similar
simulation results, which were presented in the simulation experiments for the data on
smooth pursuit eye movements. The same similarity held true for the simulation results
for plaid motion perception, however in the thesis only the results for the standard form

of the algorithm were presented.

10.2. Critical reflection on the presented work.

The very simple form of the local motion detectors, i.e. non-overlapping square
windows, used in the simulations, and also of the method for calculating the spatial and
temporal derivatives of the image intensity, although successful for the limited type of
stimuli considered in this study, would be candidates for improvement in order to
develop the model further. The simple form of the motion detector windows and the
simplicity of the spatial and temporal intensity derivative calculations led, in the case of
the smooth pursuit eye movement simulations, to a variable estimation of the velocity,
in particular in the approximate version of the algorithm, which depended on the spatial
shift (speed of stimulus), the size of the window and size of the stimulus. This appeared
as a periodic, approximately constant amplitude variation of the velocity estimate
(Figure 13). This problem was solved simply by averaging the velocity estimate for
several steps of the algorithm, the number of the steps used for the averaging depending
on the ratio of window size and the speed of stimulus. A more sophisticated solution
would have been to use overlapping. circular windows, with spatial Gaussian filters for

the local motion detector windows, and Gaussian derivative filters (
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or other methods ( e.g. Johnston et al, 2003) for the calculation of the

spatial derivatives. However, this issue did not seem to cause a major problem as the
general results of the algorithm proved to be robust and consistent both with regard to
the psychophysical data and also between the simulations themselves in eye smooth
pursuit and plaid motion perception.

The approximate, more neurally plausible version of the algorithm gave results
which were very similar to the standard version, and in some cases appeared to give
results which were closer to the psychophysical data. However, very little work was
done specifically on how the neural network circuits suggested by the approximate
version of the model (Figure 9) would carry out the calculation and integration of the
local motion signals, which was treated as a subject of future investigation. The
modifications made to the standard version of the algorithm which led to the
approximate version are also somewhat crude, with assumptions which need further
investigation and depth of understanding. A more sophisticated approach to a neural
network implementation of the Kalman filter algorithm might use the recent work of
Linsker (2008).

Another desirable aspect of the present work would have been the possibility of
conducting some psychophysical experiments, even if relatively simple, in order to
confirm or not some of the predictions made from the model, in particular the
predictions about the asymmetric Type [ plaids, described in Section 8.5. Unfortunately

this was beyond the scope of the facilities and of the time available to the project.

10.3. Future development of the model and predictions.

New directions for further experimental investigation have been suggested in previous
Chapters of the thesis. The validity of the motion integration model in terms of its use of

both 1-D and 2-D motion signals derived from the plaid blob features could be tested
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physiologically by monitoring the response of end-stopped cells (Hubel and Weisel,
1965; Pack et al., 2003) in monkey subjects to the coherent motion of Type I plaids, in
particular in layer 4b of area V1, which is known to contain the majority of V1 neurons
projecting to MT. The prediction would be that such experiments for Type Il plaids will
show that the end-stopped cells would signal the 2-D motion of the high luminance
regions, i.e. the blobs, in the plaid. Additionally, it would be interesting to investigate
the dynamic response of MT neurons to Type Il plaids, which have, as far as the author
is aware, not been done. The study closest to this was performed with a stimulus
consisting of a field of short bright bars (Lorenceau, Shiffrar, Wells, and Castet, 1993),
which could mimic the response of the high luminance regions in Type II plaids. Also
Pack and Born (2001) studied the response of MT neurons to such a bar-field stimulus
and demonstrated a dynamic response, initially responding to the component of motion
perpendicular to a contour’s orientation, but over a period of approximately 60 ms the
responses gradually shifting to encode the true stimulus direction, thus closely
paralleling the psychophysical responses of human observers to the motion of Type 11

plaids (Yo and Wilson, 1992).

The hypothesis put forward here that the local 1-D and 2-D local motion signals
are combined via a recursive estimation process involving the recurrent interaction
between V1 and MT might also be tested by studies of the responses of monkey
subjects in either smooth pursuit or plaid motion perception experiments, in which the
responses of MT neurons are selectively inhibited, by lesioning or reversibly cooling

(Hupé, James, Payne, Lomber, Girard and Bullier, 1998; Supér and Lamme, 2007)

Further predictions from the model relate to Type | asymmetric plaids. It was
possible to explain why there would be no significant bias for the majority of Type |
asymmetric plaids, and at the same time to predict such a bias for some specific cases of

Type | plaids which have low contrast, a specific range of angles between component
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gratings and specific ratio of component grating speeds, presented for short durations as

in the case of Type Il plaids. Psychophysical experiments with such Type I plaids have

not, to the author’s knowledge, been carried out to date.

Further predictions were made regarding the choice of the spatial frequency of the
component gratings in relation to the viewing angle/aperture of the stimulus, used in
both psychophysical and physiological experiments. The model results would suggest
that if the psychophysical experiments of Stone et al. (1990) or Champion et al. (2007)
had been carried out using a higher component grating spatial frequency, a far greater
bias towards the higher contrast grating would have been obtained, owing to the greater
salience of the 1-D motion of the blob-lines in the direction of the higher contrast
grating, compared to that of the 2-D motion of the blobs themselves, when viewing the
plaid. This would be interesting and a valuable test of the model and its conceptual use

of plaid blob features in plaid motion perception.

It was also suggested that physiological experiments with varying sizes of blobs
and orientations of Type Il plaids, would show specific dynamics in the response of
neurons in V1 and MT areas. More specifically, the stimuli for experiments which
measure neural responses in V| should have relatively bigger blob size in order to avoid
the effect of the merging of the blobs into lines, leading to an apparent response to the
component gratings' velocities rather than to the velocities of the blob edges.

The model could be extended in at least two possible directions. One is to make
it closer to the known neural properties and circuits, e.g. more close to the biological
reality. In particular the distributed version of the model presented in Section 2.3 could
be examined in relation to the known recurrent circuitry between motion sensitive
neurons in V1 and MT.

Another approach for future development of the mode! could be to keep it on a

similar abstract level, but develop the algorithm and apply it to the related but more
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difficult problem of image segmentation. A possible approach might be to create a
model which is capable of simultaneously building multiple Kalman filter based motion
integration sub-models, by selectively combining local motion signals according to the
similarity of their measurements with a global velocity vector. Where the velocity
vector of a local motion signal differs substantially in speed and direction with the
globally estimated velocity vector, this local motion signal can be assigned to a sub-
model corresponding to a separate segregated object. Spatial information on the form of
potential objects would be necessary in order to make such an assignment in an

effective way. Substantial theoretical and simulation work would need to be carried out

in order to investigate and develop such a model.
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Appendix A
Intuitive explanation of the Kalman filter algorithm

The Kalman filter is a form of recursive least squares estimation. It is based an
algorithm which recursively forms the posterior probability distribution of an unknown
variable, conditional on a sequence of noisy observations of the variable. As each
observation is made, it is used to update the current conditional probability distribution,
which is generally assumed to be of Gaussian form. The best estimate of the unknown
variable is then the mean of the distribution, since this value maximises the conditional
posterior probability. The variance of the estimate corresponds to the variance of the

posterior distribution.

As a simple example, assume that a sequence of observations/measurements 4, are
made of an unknown variable v, . Each observation of v, is corrupted by measurement

noise, i.e.
h =v, +n, (A.1)

where 7, is assumed to be a Gaussian distributed random noise sequence with zero

mean and variance o . The objective is to obtain the best estimate of v, from the
sequence of observations, in the case where a new estimate is made after each
observation, based on the previous estimate. Thus the estimation is made recursively. In
this example, the unknown variable v, is assumed to remain constant, i.e.

Vig =V, =V (A2)
However, in the general case, the variable can change at each step, according to a
dynamic equation:

R AA (A.3)

The estimation algorithm begins (k = 0) by making a prior assumption of the probability

distribution of v,. Assume that this is a Gaussian distribution with mean value

2

v, =0and variance o,

the so-called prior distribution. The best prior estimate of v,
is the mean (maximum) of the prior distribution, ¥, =0. The variance of the best
estimate of v, is thus the variance of the prior distribution, o7, .
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In the following description of the Kalman filter algorithm, we denote

v/ - the estimate of v, , based on the observations up to and including the j th one

P/ - the variance of the estimate of v, , based on the observations up to and including

the j th one.

The algorithm is thus initialised with the mean and variance values of the prior

distribution:
1.':: = 1:] =)
R\“ = O'f, 0

Next the first observation A, is made. The conditional probability distribution p(v, | 4,)

has a mean value, based on the value A of the observation, of:

= p.0 y >
V, = —— = = [\,h[
G-:_u +0
where
KI, :_' 30-.;-;3 =
{Tp 0 +0

This latter equation can be rewritten as:

TR , 2
0, =0, K‘frf,l‘_
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(A4)

(A.5)

(A.6)

(A.7)



The best estimate v of v, is given by the mean of the distribution p(v, |k ), ie. by ¥,

and its variance is given by the variance of p(v, | /).

Thus we can write the estimate update step at first observation, using the above

equations, as:

v =Kh
B'=R'-KF’
K, =P'/(B’+0c%)

Next the estimate and its variance are updated between the first and second
observations, based on the assumption that the unknown variable remains constant, i.e.

v,,, =V, =v. Thus

Next a second observation A, is made. The aim now is to obtain the parameters of the
conditional probability distribution p(v, | 4, h,). The mean of this distribution is based

on the mean of p(v, | &) and the new abservation value 4, , and is given by:

]

_ O'2 o, 1
v, 27—1‘1‘; +—~_—'{""—1‘h3 (A.8)
o, +0 o, t0o
whilst its variance o, is given by:
| 1 i
S P (A.9)
6, O, O

The best estimate of v; of v,, that maximises p(v, | 4.4,)is thus the mean, ¥,, the

expression for which can be rewritten from (A.8) as:

-

a 1 - .
V, =V AL (=) = Ky (B - V) (A.10)
G, +0° '




K, =l (A.11)

Similarly the variance of this estimate can be rewritten from (A.9) and (A.11) as:

ol,=0.,-K,0!

p.id pl pd

(A.12)

Thus we can write the estimate update step at second observation, using the above

equations (A.10) to (A.12), as
vi =v, + K, (h —v})
PA = Prl - K:P:I

KJ:})EI;(RJI_E_O_I)

As before, this estimate and its variance are updated between the second and third

observations, based on the constancy assumption for the unknown variable. Thus

This set of update equations are then repeated for the third observation A, and for all

subsequent observations. Reviewing the update equations (A.10) to (A.12), it can

readily be seen that the algorithm can be written in a general form as:

1. Initialisation
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3. Update of estimate based on 4 th observation

vi =v, + K, (b, —v,")
111 =~ ﬂi—-i _KlP:—[
Ki :ﬁi—lf{ﬁihl +0,3)

A diagram of the general form of the algorithm, in which the unknown variable v, is

assumed to change dynamically between observations, is shown Figure A.1, illustrating

the algorithm's recursive form.
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A = backward
shift operator
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k— k-1

L

Figure A.l Diagram of the Kalman filter algorithm for the general case, where the
dynamics and observation of the unknown variable are described by
Via =6V, b, =C,v, +7, . In the case described in the text, the unknown variable is

constant, i.e.v,,, =v, =v.
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Abstract

In this study, we describe a model of motion integration in smooth eye pursuit based
on a recursive Bayesian estimation process, which displays a dynamic behaviour
qualitatively similar to the dynamics of the motion integration process observed
experimentally, both psychophysically in humans and monkeys, and physiologically
in monkeys. By formulating the model as an approximate version of a Kalman filter
algorithm, we have been able to show that it can be put into a neurally plausible,
distributed recurrent form which coarsely corresponds to the recurrent circuitry of
visual cortical areas V1 and MT. The model thus provides further support for the
notion that the motion integration process is based on a form of Bayesian estimation,
as has been suggested by many psychophysical studies, and moreover suggests that
the observed dynamic properties of this process are the result of the recursive nature

of the motion estimation.
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1 Introduction

Smooth pursuit eye movements are the rotations of the eye which an observer
performs in order that a moving target object is held in an approximately stationary
position on the foveal region of the retina so that it can be subjected to visual
processing at a high level of acuity. This is a valuable phenomenon for theoretical
brain studies as it is relatively easy to access experimentally, in terms of the ease of
measurement and manipulation of both the inputs to the process, the motion of the
visual target, and the outputs, the eye movements. It is likely that the neural
mechanism involved in smooth pursuit eye motion is an oculomotor feedback control
mechanism in which the motion of the image of the target on the retina is used as a
driving signal for the generation of eye movements which aim at minimising this
motion signal. As with any such feedback control mechanism, under steady state
conditions the response properties of the system tend to be dominated by the feedback
gain, and any knowledge about the neural circuits in the feed-forward pathway is
impossible to obtain without breaking the feedback loop in some way. Since this is
experimentally infeasible, other ways have been sought by many researchers of
revealing the successive stages of neural processing involved in the system and their

interactions.

In particular, there has been a substantial effort to understand the neural mechanisms
which underlie one of the earliest stages of processing in the oculomotor system, in
which the local retinal motion information is integrated to provide accurate global
information on motion of the object, the image of which must be held steady on the
retina. It is well known that owing to the small receptive field size of early visual
neurons in the retina, thalamus and primary visual cortex, some local information
about motion of the object is potentially inaccurate owing to the ambiguity introduced
by the so-called “aperture effect” (Wallach, 1935 (English translation in Wuerger et
al, 1996); Fennema and Thompson, 1979; Marr and Ullman, 1981). The ambiguity
results not from the “aperture™ per se, but is owing to the fact that the small receptive
field may only give access to a one-dimensional motion stimulus, eg a single contour

edge, which will behave identically for a range of stimulus motion directions,
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corresponding to a constraint line in velocity space. If the stimulus within the aperture
has two-dimensional information, e.g. two contour edges forming a comer, then
unambiguous directional information is available for the stimulus, since the
intersection of the corresponding two constraint lines uniquely defines the motion
direction. To ensure that object motion is accurately tracked by the oculomotor
system, all the available local information, both unambiguous (2-D) and ambiguous
(1-D) must be integrated, in order to provide an estimate of the object motion which

will drive the eye movement in the correct target direction.

In order to study the neural mechanisms involved in this integration process, several
researchers have investigated the short period at the initiation of pursuit eye
movement in which the ocular-motor feedback control system effectively operates in
“open-loop” mode, owing to the time delay involved in the transmission of
information to the ocular motor plant and its inherent response dynamics (Lisberger
and Westbrook, 1985). From the time of onset motion of the visual target stimulus
which is to be tracked, there is a time delay of about 100 ms before the visually driven
eye pursuit motor response begins. As already mentioned, for certain visual stimuli,
some of the signals which convey local motion of the target image do not accurately
reflect the target motion, owing to the aperture effect. Experimental evidence from
human and non-human primates indicates that, as a result, the initial eye pursuit
movement has both an on-axis component, ie in the direction of the object motion,
and an off-axis component which reflects the inaccuracies in the local motion signals
(Masson & Stone, 2002; Pack and Born, 2001).

The experimental evidence suggests that the integration process begins as soon after
the onset of the target motion as a visual motion signal is available, ie at the latency of
transfer of the retinal motion signal to the site of the neural integration process. In
particular, if the neural mechanisms of the integration process are located in visual
area MT, physiological experiments (Pack and Born, 2001) suggest that this latency is
about 70-80 ms in monkeys. At this point in time the eye movement response has yet
to start owing to its ~100ms latency, so the error between the target motion and the

eye motion increases without compensation from any eye movement (Lisberger and
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Westbrook, 1985). However, the experimental data of Wallace et a/ (2005) and of
Born et al (2006), suggest that the integration process is already starting to correct for
the inaccurate off-axis motion signals, and this can be observed in the eye movement
within ~70 ms after it begins. This is before the error signal induced by the inaccurate
off-axis eye movement can be compensated for by the oculomotor feedback system,
owing to the ~100 ms delay in this system. Their results indicate that for the first 70
ms or so the eye movement is driven by a simple uncorrected pooling of both the
unambiguous (2-D) and ambiguous (1-D) local motion measurements, with the 2-D
measurements of the target object velocity only starting to dominate after this period.
The off-axis direction error in the eye movement then decays to zero over a further
period of 200 - 300 ms (see Figure 3 of Wallace er al, 2005). This temporal evolution
toward an accurate representation of target object motion is consistent with several
experimental results: from human direction judgments (Lorenceau ef al, 1993); the
human ocular following response (Masson and Castet, 2002; Masson e/ al 2000),
smooth pursuit in monkeys (Pack and Born, 2001) and humans (Lindner and llg,
2000; Masson and Stone, 2002, Wallace er al, 2005), and the responses of MT
neurons in alert monkeys (Pack and Born, 2001; Pack e al, 2004).

The neural process of integration of the local motion signals is generally supposed to
involve two stages. The first stage, which is usually attributed to neural mechanisms
in primary visual cortex (V1), involves the extraction of directionally selective motion
information. Since V1 neurons are subject to the ambiguities introduced by 1-D
motion stimulus signals, a second stage. attributed to the medial temporal area of
cortex (MT), is perceived to be the location of the neural mechanisms for integration
of the local motion signals and the resolution of the ambiguities introduced by the 1-D
signals. One model based on this two stage process supposes a feed-forward
mechanism which achieves the integration process by differential weighting of the
feed-forward projections of the 1-D and 2-D signals (Simoncelli and Heeger, 1998).
This model does not apparently account however for the temporal dynamics of the

motion integration process observed in the above cited experimental data.
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An alterative model (Born e al, 2006) suggests that the dynamics of the integration
process might be determined by the properties of visual neurons early in the pursuit
pathway, in particular a temporal delay in the emergence of end-stopping in direction-
selective neurons (Pack et al, 2003). In this formulation, the temporal evolution of 2D
motion signals for pursuit and those that have been observed in MT neurons (Pack
and Born 2001; Pack et al, 2004) reflect a change in the “weighting” applied to the
outputs of V1 direction-selective neurons, whereby the activity of 2-D related end-
stopping neurons eventually suppresses that of the 1-D contour-related neurons, and
the motion signals from the 2-D terminators becomes dominant. It is suggested that
this mechanism might also explain the perceptual dominance of a contour-vector
average for stimuli of low contrast (Weiss et al, 2002), since end-stopping is weak or
absent for such stimuli (Polat et al, 1998; Sceniak ef al, 1999). This is also consistent
with the experimental observations of Wallace ef al (2005) on pursuit initiation in
humans, in which the effect of lowering the stimulus contrast is an increase in the off-
axis bias in the initial transient eye movement and a lengthening of the time taken for
this bias to reduce to zero. Note however that for the low contrast stimulus, the off-
axis motion is eventually eliminated, albeit with a time constant up to nearly three
times that for the high contrast stimulus, indicating that the suppressive mechanism, if
this is indeed the case, does still operate although more weakly. As pointed out in
Born er al (2006), the suggested role of the end-stopping cells is also physiologically
very plausible given the fact that neurons in layer 4B of V1, which is the source of the
main projection from V1 to MT (Maunsell and Van Essen, 1983; Shipp and Zeki,
1989), are strongly end-stopped (Sceniak et al, 2001).

An alternative model, which also captures the dynamics of the integration process, is
proposed here. Our model is based on the concept that the integration process
computes a Bayesian estimate of the target object velocity using the local
observations of target motion provided by the directionally selective neurons in VI.
We implement the estimation process recursively, in the form of a Kalman filter
(Kalman, 1960), and show that the dynamics of this recursive estimation process

closely replicates the dynamics of the motion integration process, as measured
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experimentally, under a variety of conditions involving changes in shape and contrast

of the stimulus.

The application of Kalman filtering in modeling smooth pursuit eye movements is not
new. Shibata er a/ (2005) address how the remarkably high level of accuracy (zero-
lag) of the primate smooth pursuit system, as identified experimentally, might be
modeled by a predictive controller together with fast learning of the target motion
dynamics, using a form of Kalman filter for target-state estimation and prediction.
Whilst their model thus addresses a different problem from ours, it is however of
relevance to our model in the following sense. The velocity estimation process in our
model depends on an internal generative model of target velocity. In our simulations,
and the experiments they seek to replicate, the target motion is constant, and therefore
the internal model reflects this. When the target motion is changing dynamically, our
model would need to incorporate a process for fast learning of this dynamics, in order
to produce an accurate estimate of the target velocity, and the Shibata et al (2005)

model would provide this.

Bayesian models of motion integration and estimation have also been previously
proposed (Koechlin et al, 1999; Weiss et al, 2002; Rao, 2004). In particular, Weiss er
al (2002) proposed an optimal Bayesian probabilistic model of motion integration in
which an optimal estimate of the target object velocity is computed using the
likelihoods of the local velocity measurements distributed over the visual space
(Simoncelli et al, 1991; Simoncelli, 2003). They used a priori distribution for the
target object velocity which assumes a human preference for the assumption of slow
speeds, and formulated this as a Gaussian prior centred on zero. They also assumed an
additive measurement noise which was independently Gaussian distributed, with zero
mean and known variance. This had the effect of making the local likelihood
functions dependent on stimulus contrast. They computed the posterior distribution of
the velocity as the product of the likelihoods over all the spatial locations (assuming

that the likelihoods are independent) multiplied by the prior.
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The authors show that their model reflects several of the main characteristics of
human motion perception, as observed in a range of psychophysical studies, both their
own experiments which use “fat” and “thin” rhombus figures at high and low contrast,
and those of others (Burke and Wenderoth, 1993; Bowns, 1996; Stone ef al, 1990:;
Stone and Thompson, 1990; Lorenceau et al, 1993) using mainly moving plaid
patterns. For fixed values of measurement noise variance and prior variance (or more
specifically, a fixed ratio of these quantities), and for a moving “thin” rhombus
stimulus, at low contrast the posterior velocity distribution has a maximum (mean)
corresponding to the vector average of the local velocities. At high contrast, this
maximum occurs at, or near, the veridical target object velocity given the intersection

of the constraint lines provided by the local velocity measurements.

The model of Weiss ez al (2002) was not intended to replicate the experimental data
from the initial eye pursuit experiments cited above, and indeed is not capable of
reproducing the dynamics of the motion integration process as observed in these
experiments. Moreover, their model, tuned to replicate their human perceptual
experiments, would predict that a stimulus consisting of a horizontally moving high
contrast “thin” rhombus would not result in any offset bias in the pursuit eye motion,
whereas the experimental data of Wallace er al (2005) would indicate that there is
always an offset bias in the initial eye motion of ~30° even in the case of a “thin”

rhombus of high contrast and slow speed.

2 A model of the motion integration process based on the Kalman filter

estimation algorithm

We show that the motion integration process can be modelled as a recursive Bayesian
estimation algorithm, based upon a spatially distributed set of local observations of
spatial and temporal changes in the image intensity. Thus, at each local position (x,y)
in the visual space, identified with the receptive field positions of V1 neurons, we

assume that observations are made of the change in the intensity of the image

I(x,y,t)over a small change in time Af, and over a small spatial change in the two

cardinal directions (x,y), i.e./, (x,y,7), I,(x,y.t)and I (x, y,1) , where we define
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I,(x,y,0) 2 [ I(x, p,t + At) = I (x, 1)/ At
I(x,y,0)2[1(x+ Ax, y,0) - I(x, y,1)]/ Ax
I(x,y,0) 2[I(x,y+Ay.0) = I(x,y.1)]/ Ay

As is standard in the formulation of the motion estimation problem, we assume that
image intensity changes with time at a location (x,y) are only the result of motion of
the image. Then it follows that, if v, and v, are the x and y components of the image
velocity vector v,

I(x,y,1)=I(x+Ax, y+ Ay, t + At)

1
=I(x+Atv, ,y+Atv t+Af) M

If we approximate the right hand side of (1) by its first order Taylor series expansion,

we get
I(x, p,0) = I(x, p, ) +v I (x, . 0) +v [ (x, y,0)+ [ (x, y,1) (2)

We can then rewrite this equation as

v
vl

Lixy.)==[L(xy.1) 1, (x.y.r)ﬂ “:'w;(x,y.x) (3)

- - . - - - - - i
where 7(x, y,t) is a zero mean, Gaussian distributed noise process with variance o°,

representing the measurement error. (Weiss ef al, 2002; Heeger and Simoncelli,

1992; Fennema and Thompson, 1979).

We can think of equation (3) as an observation equation for the unknown image
velocity vector v, in which /, L, and J; are all measured (observed) values, and rewrite

it in the discrete time form as a sequence of observations of the unknown vector vy, ie

h, =C,v, +n, 4)

where we define
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h, = 1(x,y,1)
G 2-[L@yn Lxyn]
1= kAt

and where 7, is a zero mean, Gaussian distributed noise sequence with variance o,

representing the measurement error in the observation equation.

The process of estimating the velocity vector v becomes one of maximising the
posterior probability density function p(v,,...,v, | &,.... h, ) with respect to{v‘,....,vh_}.

Bayes’ rule gives us that

PVgreas Vi | ooy ) = Pz P [ VooV ) (Vs V) (5)
plhnay)
We can write
PRy By | Vysens Vy ) = n P, (h-Cyv) (6)
k=]
and if we assume that the image velocity is constant
P(Vgse V) = P(¥,) (7
Thus Bayes’ rule becomes
.
PVose-sVy | Bysenis Iy ) o p(v, )H Py, (h,—Cyv,)
k=]
(8)

=

I —_ - | & . \T .
oc exP{“E(""o '_Vn)’ A }(“'n -vo)_;‘_gg(h: -Cv, )’ (A, —Cyv, )}

where v,and F, are, respectively, prior estimates of the mean and covariance matrix

of the probability distribution of the image velocity vector vy
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Rather than find the maximum of this posterior distribution directly, we formulate the
process as a recursive estimation procedure, ie in the form of a Kalman filter

estimation algorithm:

1. initialization:

K =F

2. update of the estimate between observations (this captures the dynamics of the
stimulus — in this case the stimulus velocity is constant and so the estimate is

unchanged between observations):

i £
Foa=F
3. update of the estimate at observation k
vi =vi'+ K, (h,—-C,v™)
R I
K =P 'C P CT+e’L)
where /; denotes the 2x2 identity matrix.

Alternatively we can write the so-called Kalman gain term K, as

g - 1
K, =[(B-)' +C,1C,—1"C,r = ©)
a o

If we assume that B!~ =&, then

11
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1 - 7 1
Kr =[—1, +C—‘]‘('.i' == !(ﬂi- =
o, 3 o
: (10)
:[%‘{3 “"(Iaf (‘iTlCai
Substituting for Cx in (10), we get
3 -}
BsZs LT
- o, 4
K, = , (11)
5. OF 2,
)(J 1‘_ s

If we chose 17_0 the prior estimate of the mean of the probability distribution of the

image velocity vector vx , to be zero in the initialisation step in the Kalman filter
estimation algorithm, then the first estimate update step of the algorithm gives

v, =Kh, (12)

Substituting for K; and A, in this equation yields

- N T
‘.'l e _1 62 !‘ {’ [l_‘f.}

If we generalize the estimation process described above to the case where we have n
observation equations for the unknown image velocity vector v at » spatial locations,

ie in the definitions
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h 2 1(x,y.t+Al)
C,2[Lxy0) I(xy.0)]

hi is now an n vector representing the local observations of the temporal derivatives of
the image intensity at » spatial locations (x,y), and Cy is correspondingly an n x 2
matrix of the local observations of the spatial derivatives of the image intensity at the
n spatial locations (x,y), then the equation for the initial estimate of the velocity vector

becomes

"'=Z(I )+;‘{ L 2(L1) (14)
| > (L1,) Z(;)% > (1,1)

in which the summations are over the local spatial and temporal derivatives of the

image intensity at the n locations, and we assume that the measurement noise variance

o’ is the same for all » locations.

The above equation (14) is precisely that derived by Weiss ef al (2002) for the
velocity estimate v of their “ideal observer”, as the mean of the posterior distribution
(equation (1) of Weiss et al, 2002). In other words, if the prior estimate of the

covariance matrix of the probability distribution of the velocity vector v, is given

as P =o.l,then the initial step of the Kalman filter estimation algorithm will

compute a velocity estimate v} which corresponds to the velocity estimate v° of the

“ideal observer” of Weiss ef al (2002). However, in our model of motion integration
for smooth pursuit, we assume that the integration process continues to use successive
observations of the temporal and spatial changes in image intensity in order to

recursively update the estimates of the velocity vector v, and its covariance matrix
P}, as expressed in the Kalman filter algorithm. This implies that the Kalman filter

algorithm will take some time to converge to an optimal (least squares) estimate of the

mean and covariance of the image velocity vector v, based on this sequence of

13
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observations. We postulate that the dynamical behaviour of this recursive estimation
process corresponds to the dynamics of the integration process in the initial period of
motion pursuit, and show below that the recursive estimation process dynamics
reflects several key characteristics of the experimentally observed integration process

dynamics.

It is clear however from the above analysis that the velocity estimate given by the first
step of the Kalman filter algorithm coincides with the optimal velocity estimate of
Weiss et al’s ideal observer. Therefore, if the “free parameter”™ (Weiss ef al, 2002) of

the optimal estimate (14), the o/ o ratio, is set in the algorithm to the same value as

in the “ideal observer of Weiss ef al, our model of the motion integration process will
also suffer from the fact that it will predict that a stimulus consisting of a horizontally
moving high contrast “thin” rhombus will not result in any initial offset bias in the
pursuit eye motion, contrary to the experimental observations of Wallace et al (2005).
However, in the following section, where we describe our computer simulations of the

Kalman filter estimation algorithm as a model of the motion integration process, we

show that for certain values of the o/ o, ratio, the high contrast “thin” rhombus will

result in an offset bias.

In the later sections of the paper, we show how the Kalman filter based model can be
formulated so that it is amenable to implementation as a neural computation process.
This results in an approximate, sub-optimal recursive estimation process which
nevertheless retains its close relationship to the experimentally observed integration
process. In fact in the approximate, neural computation based form, our simulations
show that the closeness of fit of the behaviour of the model to the experimental data
improves over the optimal Kalman filter based form of the model. We also discuss
how this neural computation based model might be mapped onto the neural circuitry
involved in the interaction between the V1 and MT areas of cortex, in a way that
mimics of the distributed, recurrent nature of the V1-MT circuitry. This is important
since the VI-MT circuitry has been identified by many researchers as the location for
the motion integration processing stage of the oculomotor system (Groh et al, 1997,

14
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Simoncelli, 2003; Simoncelli and Heeger, 1998; Pack and Born, 2001; Pack et al,
2003; Pack et al, 2004)

3 Simulation experiments using the Kalman filter based motion integration
model

As in Wallace er al (2005), two visual stimuli are used in the computer simulation
experiments of our motion integration model, in our case as solid figures: (i) a square
diamond with main axes at 0° and 90°, and (ii) an elongated tilted diamond |(or “thin
rhombus™) with the main axis at 45° and internal angles of 10° and 170°. These
stimuli are presented on a visual space which is represented by a set of 200 by 200

pixels. Each of the stimuli is contained in a square area of 50 by 50 pixels.

The visual space is further divided into 400 uniformly spaced and sized, non-
overlapping square windows each of size 10 by 10 pixels. Thus the stimulus is
contained within an area covered by 25 windows. In each window, the observations of
temporal and spatial derivatives of image intensity are calculated as the image moves

at a constant velocity in the horizontal direction from the left to the right of the visual
space. Temporal and spatial derivatives 7, (x,y.7). /. (x,y,0)and I (x,y,1) are

computed using small spatial and temporal shifts Ax, Ay,and Az of the stimulus.

Figure 1 shows the results from the computer simulation of the model in estimating
the angular direction of the rhombus (0° = horizontal motion) of both the square
diamond and thin rhombus stimuli, for three values of contrast: max (image intensity

= 1), half (intensity = 0.5) and quarter (intensity = 0.25), and for four different values

of the ratio o /o ,(shown in Table 1), as a function of the iterations of the Kalman

filter algorithm. Each iteration shown corresponds to five iterations of the Kalman
filter algorithm, and the estimated angular direction shown is the average of the
estimated direction over these five iterations (thus in each plot the total number of

iterations of the algorithm is thirty five).
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Figure 1. Results from the computer simulations of the motion integration model based on the optimal
Kalman filter algorithm, showing the estimated angular direction of the stimulus (0° = horizontal

motion), for horizontally moving diamond and rhombus stimuli, for three different values of contrast,

and for four different values of the ratio &/ O, increasing from the top row to the bottom row of

plots. Note the change in the vertical scale in the plots in the first two rows. The values of ¢/ &, used

are given in Table 1.
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0.04 0.07 0.6

0.1 0.04 2.5
0.2 0.04 5.0
0.5 0.04 12.5

Table 1. The values of ¢/ & » used in the model simulations

There is a small, but non-zero peak offset bias for all values of o/, (note the

change in the vertical scale in the plots in the first two rows). The value of o/, is

increased from the top to the bottom row in Figure 1, and results in a corresponding

increase in the offset bias in the estimated direction. This offset bias is however very

small in the case of the lowest value of the o /o s ratio (top row of plots) for both the

diamond and thin rhombus shapes (< 0.25° for the diamond and < 3° for the thin
rhombus). In each case, the peak offset bias is followed by a temporal decay of this

bias to an asymptotic value of close to 0°.

These characteristics of the model dynamics, as shown in Figure 1, ie an initial offset
bias followed by a regular temporal decay of this bias to zero, are also the main
characteristics of the dynamics of the motion integration process, as observed
experimentally by Wallace et a/ (2005). Their data show (see their Figures 5 and 6) a
peak tracking direction error followed by a temporal decay toward an asymptotic
value corresponding to the true target motion direction (0°). Moreover, the model

simulations show (Figure 1) that decreasing the contrast of the stimulus, for any fixed

value of the ratio /o, results in an increase in both the peak offset bias in the

p‘!
estimated velocity and the time constant for the decay of the bias to zero. This is again
in close qualitative agreement with the data of Wallace er al/ (2005), in which the

initial tracking bias was reduced from ~44° to ~30° when the contrast was increased

from 10% to 40%, after which there was little further reduction. Similarly, increasing
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the target contrast resulted in a decrease in the decay time constant from ~168 ms at

10% contrast to an asymptotic value ~60 ms for contrasts >40%.

Overall, the model simulation results show a qualitatively, and in specific instances
quantitatively, high level of correspondence with the experimental results of Wallace
et al (2005), in particular in respect of the variation of both the peak offset bias in the

target velocity and the decay of this bias to zero, with contrast level.

4 A npeurally plausible model of the motion integration process based on an

approximate form of the Kalman filter estimation algorithm

It is clear from the description of the Kalman filter algorithm in section 2 above, that
the implementation of the model based on this algorithm would require the
computation of an inverse matrix in (9), in order to calculate the Kalman gain matrix
K, . Such a calculation is not plausible as a neural computation, and therefore it is

necessary to find an approximate, sub-optimal version of the algorithm which avoids

this matrix inversion.

in the case of » iocal observations, each subject to a different, mutuaily independent

measurement noise, ie with different variances, equation (9) becomes
K, =AY +CTC,I'CE (15)

in  which the measurement noise covariance matrix is denoted by
3 2 diag(o?), i =1,...,n. To avoid the matrix inversion in (15), we first approximate

the covariance matrix of the velocity estimate by a diagonal matrix, i.e.

Rl-l A |:(O';‘_r )I_ 0 :l (16)

0 (90
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This assumes that the estimate of the velocity vector is uncorrelated in the x and v

directions. Then the first term in the matrix inverse in (15) is given by

it VN 0
(s B a7
0 1/(o,,h
The second term is
Z‘_1[.\-}f Z.L]tlfl'!
TE P ;o i (-"_.‘h o .
C.EZC, = [ I (18)
TF _I?,
'ZO-IA o ZOT
We now assume that this can also be approximated by a diagonal matrix, ie
Z—‘T I’ 0
+ Tl . O,
cizie, - 1 (19)
0 —1I,
2

Thus the matrix inversion in (15) becomes the inversion of a diagonal matrix, the

inverse of which is given by

= P “ - ((zz)i 0 A :
l(_’t:* I) !"*'(—trs (1rz=|: 0 (a-l)t}:"ut (20)
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With this approximation for the matrix inverse in (15), the Kalman gain matrix can be

written in an approximate form which does not require any matrix inversion, i.e.

[r_l [r.r.r
K, =M o o 23
=M, I, I, (23)
o} ol

In order to update the diagonal elements of the approximate covariance matrix P,
defined in equation (16), we note that the “at observation k" update equation of the

Kalman filter algorithm for the covariance matrix can be written as

P: = PA‘_I = KAC&P.\FI

. 2 e ’0 "’ (24)
0 (o, )

i 4 i px/k

U C 9

1p 1
ZG'E !r-= zo_:' qu.v.t [(J: = 0 j|

Again setting the off-diagonal elements to zero results in the two independent update

equations for the variances of the velocity estimate in each of the cardinal directions,

i.e.

” (Tpede (25)
p.x
1+(e2 7Y ;? L,

(c,,) 26)

This approximate form of the algorithm produces a model of the motion integration

process which avoids the need to compute a matrix inverse in the calculation of the

20
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Kalman gain matrix, and therefore implementable as a neural computation. We note

here that the temporal and spatial derivatives of the intensity, 7, (x,y.7), I (x,y.1)

and/ (x,y.t), appear in the algorithm in the form of either squared terms:

=

17, 1.7,17, or the products: I,1,,1,1,,1,1,. As observed in Heeger and Simoncelli

(1993), there are no known cells in V1 with receptive fields which behave as products

of derivatives, ie 1.1,,1 1,.1 1, . However such products can be expressed in the form
LI = +1) (I, ~1))
= ;-Z{( _r+ _,} ( r _1-) J

1 .
LI =={( +1Y - -I1)*) 27
s 4{(r+r) (r :)I ( )

_11 2 2
1], —11(-’_}."‘1,) ~{L L) }

and therefore all of the required functions of intensity derivatives in the model can be
expressed as the outputs of squared linear filters of the image intensity (Heeger and
Simoncelli, 1993). This both simplifies the implementation of the model in a neural
computational form, and allows the possibility of mapping it physiologically onto the

V1-MT neural circuitry.

Whilst the above approximations make the model amenable to neural implementation,
we now further simplify the algorithm to make it suitable for implementation in a
distributed, recurrent neural form. This will further enhance the possibility of
mapping the model onto the recurrent MT-V1 neural circuitry. Instead of
continuously updating the variances of the velocity estimate as just described, we now

use the diagonal elements of the prior covariance P, in equations (21) and (22) to
calculate the elements of the M, matrix at every “update at observation k” step of the

algorithm, ie

PN
(@), =— Tt

!J
1+(a2 ) D). —F (28)

g
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(0,,)1
2 (1] ;3:
l+(o2 )Y 2

o}

(a,), = (29)

in which, from the initial “update between observations” step of the algorithm,
(0;.) =(o,.) and (0},)] =(o; ), the diagonal elements of F,. This of course

affects the calculation of the Kalman gain matrix using equation (23). But it avoids

the need to update the elements of the covariance matrix as described in equations
(24)-(26).

In summary, the approximate form of the Kalman filter estimation algorithm which
forms the basis of our neural model of the motion integration process is described as

follows:

1. initialization:

R;r e }::) = diug[(o’_ilj )E(cri,)g]

2. update of the velocity estimate between observations
(a) before the first observation
1] 0

'I-'] = 1". )

(6;.)) =(0,.)

(a7, =(,,)

(b) between subsequent observations

bl — U‘
Vi = Vi

3. update of the velocity estimate at observation &
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": = v: T K (b - Ctv: ™)

where
I;_] ].\',ﬂ
o 7 0': n 0
K=M]| M, 2| @
i _.!2.1 0 (e, )i
o) .
(0,2—’ )l]
(ax )l U £ : 12
1+(o, )?Z 0'
a: . (]
(), = ok E
1+(o2, )fz at:

We can think however of the elements (a,);'and (a,);” of the M, matrix as

normalised forms of the prior variances (o, )sand (o7, ,); of the velocity estimate.

5 Simulation experiments with the motion integration model based on

approximate Kalman filter estimation algorithm

We have repeated the simulation experiments described in Figure 1 with the motion

integration model based on the approximate form of the Kalman filter estimation

algorithm, as described in section 4 above, where for simplicity we set o, = o for all 7,

2 \0 _ .2 N0 __ 2 g - 2 3
and (o,,), = (6,,)0 =0, . The results are shown in Figure 2.

As in Figure 1, the value of o/, increases from the top row to the bottom, and

results in a corresponding increase in the peak offset bias in the estimated direction
for both types of stimuli. There is again a small, but non-zero peak offset bias in the

case of the diamond stimulus, which is less than 1° in all but the case of the highest

value of o /o ,and the lowest contrast (lower left-hand plot). For the thin rhombus

stimulus however, there is a substantial peak offset bias (>30°) for all values of

23
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o /o, (note that there is no change in the vertical scale in the plots in the first two

rows as there is in Figure 1). This is in contrast to the simulations described in Figure

| for the optimal Kalman filter based model, where such values of direction error are

obtained only for the highest value of o/ o, (lower right-hand plot in Figure 1).

Comparing the model simulation results for the thin rhombus stimulus (right-hand
column of plots) with Figures 5 and 6 of Wallace et al (2005), it can be seen that the
peak direction error in the model simulation now corresponds more closely to that

described by Wallace et al than is the case for the model based on the optimal Kalman
filter. In particular, in the case of all values of o/ o, used, the peak direction error of

the model has a variation with contrast of between 30° and 40°. This is in close
agreement with the variation in peak direction error observed by Wallace et al, which
was between 30° and 45° (Figures 6A and 6B of Wallace et al (2005))

It can also be seen from Figure 2 that the decay time constant of the direction error

also increases with both the value of the o/ c, ratio and with the contrast, as in the

case of Figure 1, and again closely mimics qualitatively the variation in decay time
constant with contrast observed experimentally by Wallace er al/ (Figure 6C of
Wallace et al (2005)). In this case, however, compared to the optimal filter based
model (Figure 1), the time constants are generally larger. Interestingly, the model
mimics a significant characteristic of the Wallace et a/ data, in that the time constants
stay approximately constant for all but the lowest levels of contrast where they
increase substantially (~50% increase — see Figure 6C of Wallace er al (2005)). The
model results also display this feature of the experimental data for all but the lowest

value of the o/ ratio, as seen in the three lower right-hand plots of Figure 2.
Overall, in the case of the approximate filter based version of the model there is a
higher level of correspondence between the simulation results and the experimental

results of Wallace er a/ (2005), than in the case of the optimal filter based version of
the model.
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Figure 2. Results from the computer simulations of the motion integration model! as in Figure 1, but

for the model based on the approximate Kalman filter algorithm.

(3]
Lh




Dimova, K. D. & Denham, M. J. (2009). A neurally plausible model of the dynamics of motion
integration in smooth eye pursuit based on recursive Bayesian estimation. Biological Cybernetics,
100(3):185-201

We carried out a further set of simulation experiments with the model based on the
approximate Kalman filter using the thin rhombus with varying length, in order to see
the effect of the relative influence of 1-D versus the 2-D local motion measurements.
In principle, a longer stimulus will contain a larger proportion of 1-D cues, compared
to 2-D cues, and thus should result in an increase in the peak offset bias in the
direction estimate and a longer time of decay of this bias to zero. This prediction was
confirmed experimentally in a study for smooth pursuit initiation in monkeys (Born ez
al, 2006). They showed that the directional error is more pronounced and lasts longer
for the longer tilted bars. Our simulation results are presented in Figure 3, using only

one level of noise for simplicity.
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Figure 3. Resulis from the computer simulations of the motion integration model based on the
approximate Kalman filter algorithm, for four different sizes of the thin rhombus and three values of

contrast, The sizes are: 10, 20, 30 and 50 pixels length for the main diagonal and a constant size of 3

pixels for the short diagonal. The value of 0"/ &, ratio used was equal to 5.

When the length of the long diagonal of the ‘thin’ rhombus increases, both the peak

directional error and the decay time increase, approaching the value of the vector
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average direction for the longest stimulus used. These results compare well in a

qualitative sense with those of Born er al (2006) (see their Figure 4).

6 A distributed recurrent model of the motion estimation process based on the

approximate Kalman filter estimation algorithm

We now show that the model of the motion integration process based on the
approximate version of the Kalman filter algorithm described above, leads to a
distributed model of the motion integration process. In this form of the model, local
observations of the spatial and temporal derivatives of the image intensity are made at
a distributed set of spatial locations in the visual space, and are used together with the
current global velocity estimate to form a corresponding set of local updates to the
current estimate. The local update signals are then summed, and used to calculate a
new global estimate of the velocity. The new global velocity estimate is then
broadcast to each spatial location where it is again used to calculate a local update
signal to the global estimate. This leads naturally to a recurrent, distributed form of
the motion integration process, which as we show below can be mapped in a coarse

sense onto the recurrent neural circuitry which exists between V1 and MT.

To describe this form of the model, we first define a local “update” signal for each

spatially local observation window as

frl":i 1_\-2‘1- 111 v
a_?_ 0_2 O_E
(61—1 )‘ i ] L i ‘: V*_I (30)
' 11 i 14 !I.JI}'.I [:.' '
0_2 0_2 0_2

It then follows that the “ar observation k™ update equation for the velocity estimate in

the approximate Kalman filter algorithm

v:‘ —_-1':_r+Kk(h,.—('iV:_‘) (31)
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where
Ir,i I:_n
R 0 0
K=M]| " , M 2 2
!l.ln 11'_» 0 (a_\' )i'
a

can be written in terms of the local update signals as

v =vi7+ M, Z (ef™), (32)

Thus the global update of the velocity estimate is expressed as a summation of local

estimate update signals.

This results in a distributed version of the motion integration model, wherein: (i) for

each spatially distributed observation window a local update signal (e/™), is computed

based on the squared local temporal and spatial derivatives I° .1° .I°,, , the

variance of the local measurement noise o,’, and the current velocity estimate v,

(equation (30)) : (ii) the local update signals are summed and used to create a new

velocity estimate v, (equation (31)).

This distributed, recurrent form of the motion integration model is illustrated in Figure
4, in which we also suggest a mapping of the model onto the V1-MT recurrent
circuitry. This mapping proposes that feedforward information is provided to MT
from V1 neurons with spatially distributed receptive fields, which consists of : (i) the

local estimate update signals (e:" )' ; (ii) the local measurements of the spatial

derivatives of image intensity /°_,/°  , modulated by the local measurement noise

variance o, i¢ ,—== . The latter information is necessary for the computation
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Figure 4. The distributed, recurrent form of the motion integration model based on the approximate
Kalman filter estimation algorithm. a. Feedforward of the local update signals and modulated local
spatial derivatives of the image intensity from neurons in V1 with receptive fields corresponding to the

local spatial windows. b. Feedback of the global estimate of velocity of the image.

of the elements of the matrix M, , ie for the “normalisation” of the MT-derived prior

2

- 2 0
variances(o, ), and (o,

,)o according to equations (21) and (22). The recipient

neurons in MT then compute a new velocity estimate by summing the local update

signals and applying the normalisation M,. These neurons then project the new

velocity estimate back to the local V1 neurons to allow them to calculate new local
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update signals based on a new set of observations of the local spatial and temporal

2

derivatives I*. ,I* I

- & C Al 'Y L Al ¥ B

Clearly, the behaviour of this distributed, recurrent form of the motion integration
model, will be identical to that the motion integration model based on the
approximate Kalman filter estimation algorithm, as described in section 5 and

illustrated in Figures 2 and 3.

7 Discussion

7.1 Model results

Our aim was to develop a theoretical, neurally plausible computer simulation model
of the motion integration process which is intrinsic to the control of eye movements in
the smooth pursuit of moving target stimuli. In particular psychophysical data for
initiation of smooth pursuit eye movements suggest that the integration of local
measurements of the velocity of the stimulus starts before the closing of the
oculomotor control loop and is correcting for inaccurate, ambiguous local motion
signals prior to the onset of any compensatory eye movement (Wallace er al, 2005;
Born et al, 2006). This data also demonstrates a dynamical behaviour for the
correction of the off-axis directional error in the global motion signal used to initiate
eye movement, presumably reflecting the dynamics of an underlying motion
integration and global velocity calculation process in the brain and the subsequent
correcting eye movements. To develop our model, we used a recursive Bayesian
estimation of the global stimulus velocity, based on the local 1-D and 2-D metion
measurements. We implemented the estimation process as a Kalman filter algorithm
for optimally determining the posterior distribution of the global velocity estimate.
This algorithm makes some basic assumptions about the nature of the motion
observation process, notably that it is linear and subject to additive Gaussian
distributed measurement noise. We also assume that, as in the psychophysical
experiments, the stimulus is moving with constant velocity and changes in image

intensity at any location in visual space are due only to motion of the stimuli.




Dimova, K. D. & Denham, M. J. (2009). A neunrally plausible model of the dynamics of motion
integration in smooth eye pursuit based on recursive Bayesian estimation. Biological Cybernetics,
100(3):185-201

Given these assumptions the simulation results from the Kalman filter based motion
integration model are shown to closely match the experimental data. In particular we
show that such a model has a dynamic behaviour, the result of the recurrent Bayesian
estimation process, which possesses qualitatively the same characteristics as the
experimentally observed dynamics of the motion integration process during the intitial
stages of smooth eye pursuit (Wallace er al, 2005; Bom er af, 2006). Specifically, we
show that variations in the stimulus contrast in our model simulations lead to changes
in the peak directional error and the time constant for the decay of this error to zero
which are qualitatively consistent with the changes in the dynamics of the directional
error induced by similar contrast variations in the experimental situation (Wallace et
al, 2005). Similar consistent results are obtained from the model in response to
changes in stimulus length and the corresponding ratio of 1-D and 2-D local motion
measurements (Born ef al, 2006). These results strongly suggest that the brain may be
using some form of Bayesian estimation process to correct for the presence of
ambiguous 1-D local motion cues in the calculation of a veridical global stimulus

velocity for smooth eye pursuit.

Furthermore, we aimed at demonstrating the neural plausibility of our model, both in
terms of its computation using neurally plausible functions, ie avoiding the
computation of matrix inversions as in the optimal Kalman filter based model, and in
respect of its physiological plausibility in relation to the presumed underlying neural
substrate of the V1-MT recurrent circuitry. This first required the development of an
approximate version of the Kalman filter which avoided the use of matrix inversion.
The simulation results from the motion integration model based on the approximate
Kalman filter algorithm presented in our study, show an even closer correspondence
with the experimental data, suggesting that the brain may well be adopting a neural
network based, sub-optimal Bayes approach to the estimation of veridical stimulus
velocity in the integration of local motion cues. We were also able to show that our
neurally plausible model was capable, albeit in a relatively coarse way, of being
mapped onto the recurrent neural circuitry connecting cortical areas V1 and MT.
These areas have been specifically identified by a number of researchers as the

physiological substrate for the processing of information for smooth eye pursuit and
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for the integration of local motion cues (Komatsu and Wurtz, 1988, 1989; Groh e al,
1997; Simoncelli, 2003; Simoncelli and Heeger, 1998; Born ef al, 2000, Pack and
Born, 2001; Pack er al, 2003; Pack et al, 2004). We showed that the approximate
Kalman filter algorithm can be formulated as a distributed sub-optimal recurrent
estimation process which at least coarsely corresponds to the distributed architecture
of the VI-MT circuitry. In particular, the convergent nature of the connections from
the small subset of neurons in layer 4B of V1, less than 0.5% or ~40-60 cells in an
orientation hypercolumn (Shipp and Zeki, 1989) which project to MT is suggested by
the approximately ten times larger receptive field size of MT neurons compared to V1
neurons (Livingstone et al, 2001). The feedback projections from MT to layer 4B of
V1 are widely divergent and have terminal connections which suggest that an MT cell
which receives input from V1 layer 4B neurons has the opportunity to influence at
least all of those V1 neurons which project to it (Rockland and Knutson, 2000).

It is important to emphasise here that, at this stage of its development, we make no
claims for the biological plausibility of our model; that is, how it relates to the specific
properties of V1 and MT nerve cells and their connections, for example the
transmission delays in the V1-MT recurrent circuitry. In fact we have explicitly
avoided any such attempt, which would require a far deeper analysis of how recurrent
algorithms of the kind embodied in our model might be implemented by specific
biological processes. In this paper we only seek to show that the distributed, recurrent
form of the model’s algorithm makes possible a coarse mapping of the recursive
algorithm onto the convergent/divergent nature of the VI-MT recurrent circuitry, and
thereby has possible implications for the role of feedback connections from MT to
V1, an important aspect of the physiology of the biological system.

7.2 The origin of motion integration dynamics in the initiation of smooth eye pursuit

For some time it has been unclear as to the origin of the temporal dynamics which
have been observed in the initiation of smooth eye pursuit in both humans and
monkeys (Masson and Stone, 2002, Wallace et a/, 2005) and the associated dynamic
response properties of monkey MT neurons (Pack and Born, 2001; Born et al, 2002).
One recent proposal has been that it is the consequence of a delayed response of end-
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stopped cells resulting in a change in the “weighting” applied to the outputs of V1
direction-selective neurons as end-stopping eventually suppresses contour-related
motion signals and emphasizes those from terminators (Pack ef al, 2003; Born et al,
2006). However this suggestion has not resulted in the development of a specific
model which can be tested against the behaviourally and physiologically observed

dynamics.

Another suggestion which has been made to explain the dynamics of motion
integration, in perceptual pattern coherence, is based on the computation of a delayed
intersection-of-constraints (I0C) based 2-D signal from local 1D motion signals
(Adelson and Movshon, 1982; Movshon ef al, 1985). In the model of Simoncelli and
Heeger (1998) such an 10C computation is achieved by an appropriate feed-forward
weighting of local motion signals. However, this model lacks any temporal dynamics
and would need to be substantially extended in order to account for the observed

dynamics of motion integration in the initiation of smooth eye pursuit.

It has also been proposed that the independent computation of Fourier and non-
Fourier motion signals followed by the computation of their vector average will lead
to a dynamic response in motion integration owing to the delay in computing non-
Fourier motion signals relative to Fourier motion signals (L&ffler and Orbach 1999;
Wilson et al. 1992) The time-delay has been found to be approximately 60 ms (Yo
and Wilson, 1992), which is consistent with the observed dynamics of motion
integration. Recent work by Barthélemy er al (2008) also shows that the Fourier and
non-Fourier motion signals display different contrast dynamics, which may underlie
the variation of the dynamics of motion integration with contrast in such a model.
Loffler and Orbach (1999) developed a model based on this idea to explain the
psychophysical results on the perception of plaid motion, which they tested on stimuli
corresponding to stationary terminators, plaids, and moving terminators. Although
they did not simulate the temporal dynamics of their model explicitly. they make a
prediction for the dynamics of direction perception of briefly presented terminator
stimuli, which suggests an initial directional bias approximately equal to the output of

the Fourier pathway alone. As far as we are aware the model has not been used to
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explain the dynamics of motion integration in smooth pursuit initiation, and it is not
clear whether or not the results of Wallace et al (2005) and Born et al (2006), in
particular the variation in magnitude and decay time of the directional bias with
stimulus shape and length could be readily explained by this model, since at least in
such variations would appear to have little or no effect on the time delay of the non-
Fourier pathway. Furthermore, as pointed out in Smith ez a/ (2005), there is no clear
evidence of a separate cortical pathway for the computation of non-Fourier “pattern™
motion cues, such as in areas V2 or V3, which do not apparently make an important
separate contribution to the behaviour of pattern direction selective neurons in MT.

A number of models of motion integration have been based on the idea of the spatial
propagation of 2-D motion signals from line terminators and their suppression of the
ambiguous [-D motion signals. The model of Lidén and Pack (1999) employs
recurrent networks to spatially propagate motion signals across model MT cells, the
propagation dynamics providing a good qualitative fit to the temporal dynamics of
motion integration as observed in MT (Pack and Born, 2001). Similarly, the motion
integration and segmentation model of Grossberg et al (2001) uses feedback
connections between model MT and MST cells to select winning directions and
suppress losing directions on a top-down matching process, resulting therefore in a
temporal dynamics. It also uses lateral connectivity in MT cells to amplify 2-D feature
tracking signals and suppress |-D ambiguous direction signals, in a manner similar to
that of Lidén and Pack (1999). Neither of these two models has been used to simulate
the smooth pursuit initiation data of Wallace er a/ (2005), but in principle could
provide an explanation of the dynamic nature of this data. Indeed, Lidén and Pack
(1999) have used their model to simulate the perception of a horizontal line translating
at 45° relative to its orientation. The model initially signals horizontal motion, and
then gradually recovers the true line motion direction by propagating unambiguous
motion signals generated by the terminators along the contour of the line. The model
dynamics is therefore based on the dynamics of the spatial propagation of the motion
signals, which the authors relate anatomically to the lateral connectivity between
motion selective cells in MT. Some evidence exists for laterally extending fibres in
MT (Van Essen, Maunsell & Bixby 1981), but further detailed physiological
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examination of these connections and their propagation delays would be necessary to
reveal whether or not the dynamics conveyed by this connectivity is consistent with
the psychophysically (Wallace er al, 2005) or physiologically observed (Born ef al,

2006) dynamics of the perceptual bias in the initiation of smooth pursuit.

The model of motion disambiguation proposed by Bayerl and Neumann (2004) also
suggests that the dynamics of motion integration results from the spatial propagation
of signals in MT, and whilst it has not been used to explain specifically the data on
smooth pursuit initiation, such propagation dynamics would similarly predict the
observed dynamics of smooth pursuit initiation. It would further predict that the
spatial distance of MT cells from unambiguous 2-D motion features will directly
influence the time for the decay of the perceptual directional bias to zero. An
additional feature of this model compared to that of Lidén and Pack (1999) is that it
uses feedback from MT to VI to attentionally gate by excitatory modulation the
unambiguous V1 motion signals, and thus takes some account of the feedback

connections of the MT-V1 circuitry.

In the Bayesian estimation framework, Koechelin er al (1999) describe a model of
motion integration based on the VI-MT circuitry that also employs mechanisms of
recurrent lateral interactions. Their model proposes a multiplicative combination of
feedforward input and the result of lateral integration, which leads to the proposal that

the model represents a neural implemention of Bayesian motion estimation.

Also using a Bayesian approach, a recursive extension of the Bayesian model of
motion estimation of Weiss et al (2002) has recently been proposed (Montagnini et al,
2007). They used human experimental data on smooth pursuit eye movements in
response to dot and line stimuli to derive, respectively, the variances of two likelihood
functions, one for the 1-D cues and one for the 2-D cues. These likelihood functions
are used together with the same prior as in Weiss et al (2002) in a recursive version of
the Weiss et a/ model, to produce a discrete evolution of velocity estimates. They
show that the temporal evolution of the velocity estimates expressed in terms of

tracking error, coarsely matches their experimental data for mean eye velocity and
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different target stimulus speeds. However they have not attempted to explain the

observations of Wallace et al (2005) on smooth pursait initiation.

In contrast to the above models, the model we propose uses a neurally plausible
recursive estimation process based on an approximate form of the Kalman filter, and
has been specifically addressed to the issue of motion integration dynamics in the
initiation of smooth eye pursuit. As we have shown, our model demonstrates the main
characteristics of experimentally observed dynamics, and the dependence of the
model dynamics on contrast qualitatively replicates the experimentally observed
contrast variation in the motion integration dynamics (Wallace ef a/, 2005; Bomn et al,
2006). We were also able to show similar qualitative agreement between the model
simulations and the experimental data of Bomn ef al (2006), for the dependence of the

motion integration dynamics on stimulus length.

An important feature which distinguishes our model from many others described
above is that it does not depend on the concept of lateral propagation of unambiguous
motion signals along line contours in order to achieve a veridical estimation of motion
direction in the presence of ambiguous direction cues. Rather, we suggest that true
motion perception is achieved through a recursive estimation process which produces
successively improved velocity estimates by eliminating the initial estimation errors
introduced by the ambiguous motion signals of local detectors. We suggest that this
can be achieved by the divergent feedback connections which are known to exist from
MT motion selective cells back to V1 cells, and which connect to a retinotopic area of
V1 which corresponds to the receptive field size of the MT cell (Shipp and Zeki,
1989). At the present time, more is known about these connections than is about the
lateral connections in MT, in particular the fast transmission times of VI-MT
connections (Raiguel et al, 1989; Schmolesky et al, 1998; Hupe et al 2001). It is very
clear however that much further work will be needed, in relating the models to their
proposed physiological and anatomical basis in the visual system, before it becomes
clear as to whether the origin of motion integration dynamics lies predominantly in:
(i) the delayed activation of end-stopped cells (Pack er al, 2003: Bom er al, 2006); (ii)
separate Fourier and non-Fourier motion pathways (Loffler and Orbach 1999); (iii)
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lateral connectivity in MT (Lidén and Pack, 1999; Bayerl and Neumann, 2004;
Koechelin et al, 1999) ); (iv) feedback connectivity between MT and MST (Grossberg
et al, 2001); or (v) feedback connectivity between V1 and MT.

However our model does provide support for the notion that motion integration in the
brain might be based on a Bayesian estimation process, as has been suggested by
many psychophysical studies, and suggests that the observed motion integration
dynamics, and their dependence on stimulus contrast and length, may result from the
recursive nature of this motion estimation process. The model also reflects the
recurrent MT-V1 circuitry, the pooling of information from local V1 motion
detectors, the convergence of the polled local motion signals in projections to MT,
and the divergent feedback of MT velocity signals to V1 cells. However far more
work needs to be done before we could show that the recurrent MT-V1 circuitry is
biologically capable of supporting the kind of recursive Bayesian estimation

algorithm inherent in our model.

We are also aware that our model, along with all the models we have reviewed here,
is limited by its ability to explain the dynamics of motion integration in the initiation
of smooth eye pursuit only in relation to intensity-based motion stimuli, and not
moving targets defined in other ways, eg cyclopean targets defined by means of
random-dot stereograms. We note however that although it is likely that different
neural pathways are involved in luminance motion and stereomotion perception, the
roles played by the pooling of local motion detectors and moving stereoscopic line
terminators appear similar in both cases (Donnelly er al, 1997; Patterson er al, 1998),
and therefore similar motion estimation processes involving Bayesian inference may

be involved.

7.3 The effect of the free parameter o /o,

We have varied the free parameter in our model, o /o,, the ratio of standard

deviations of the probability density functions of the measurement noise and the prior
velocity estimate, as shown in Table 1, in order to demonstrate the dependence of the

model behaviour on this parameter. As has been pointed out by Stocker and
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Simoncelli (2006), Bayesian models of visual motion perception are difficult to
validate quantitatively owing to the fact that it is hard to attribute precise values to
these variables. Assuming that a reasonable estimate of the prior velocity estimate can
be made on theoretical grounds, or based on the statistics of natural visual stimuli,
uncertainty in the value of the measurement noise variance remains. It is interesting

however to note that this variance always appears in our model as a divisive

2 2
modulation of the squared image intensity derivatives, that is, as —~,—2~. Thus we

o}

i i

can think of the measurement noise variance in neural terms as a signal which

increases or decreases the magnitude of the output of the squared linear filter

representation of the neurons which code for / 2”.,1 1_‘.',. The obvious suggestion for a

neural implementation of our model is that the influence of the measurement noise
variances in the Bayesian formulation could be identified with the divisive
normalisation role of the intracortical connections between orientation hypercolumns
(Carandini and Heeger, 1997). Thus neurons reporting the directional derivatives (or
their orientated versions) of the image intensity would be suppressed by the activity of
neurons in the surrounding spatial region which were responding to stimuli with a
different orientation/direction, indicating an increased uncertainty in the local motion
measurement consistent with a decrease in signal to noise ratio for this measurement.
If we adopt this approach, we have no need of a precise measurement for the
measurement noise variance, which in any case is highly unlikely to be represented in
any V1 neuronal responses, but instead we mimic the effect of the divisive role of this
variance in the model by the effect of divisive normalisation via intracortical lateral

connections.

7.4 Predictions of the model

The recursive nature of the calculation of the velocity estimate in our motion
integration model suggests that blanking of the stimulus for short periods of time will
not result in the reintroduction of an offset directional error in the eye movement
when the stimulus reappears at the end of the blanking period. This follows from the
fact that the update of the velocity estimate, as expressed in equation (31), depends on
the error signal (h, —C,v,”"). Owing to the definitions of A and C,(following
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equation (4)) in the absence of any stimulus during the blanking period, both 4, and
C, will be zero. Thus no updates of the velocity estimate will take place during the

blanking period, and at the end of the period the original velocity estimate will be
used in further updates. Thus the estimation procedure will continue as if it had not
been interrupted. This “prediction™ of the model has already been confirmed by the
experiments of Masson and Stone (2002), in which the motion of a tilted elongated
diamond stimulus (thin rhombus) was transiently blanked for a period of 90 ms during
steady state pursuit. They observed a small decrease in the eye velocity in the
veridical direction during the blanking period and a transient increase in this velocity
immediately after the blanking period ended, but no post-blanking reappearance of an
offset direction error. The small decrease in the eye motion in the veridical direction
could be explained by a slow decay of the velocity estimate in our model in the
absence of any updating, which would maintain the directional component of the
estimate but decrease its magnitude. The update of the estimate post-blanking would

then rapidly correct for any magnitude error without introducing any directional error.

A further, physiological prediction of the model, in terms of our proposed coarse
mapping of the recursive estimation process onto the VI1-MT circuitry, is that as the
estimated velocity converges to the true velocity, the local update signals from the V1
neurons which project these signals to MT will reduce in magnitude to nearly zero.
This, we admit, would probably be difficult to test. Firstly only a small number of V1
neurons project to MT, from layer 4B (<0.5%) and layer 6 (<0.05%) in monkey VI
(Shipp and Zeki, 1989), which means that it would be difficult to find and record from
such neurons. Also, many of the cells will be projecting directional information about
the stimulus from V1 to MT (Rust et al, 2006; Livingstone et al, 2001) as suggested
in the model, so a very small number of V1 cells may be projecting local estimation

update signals, according to the model.
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A model of plaid motion perception based on recursive
Bayesian integration of the 1-D and 2-D motions of plaid

features.
Kameliya D. Dimova & Michael J. Denham

Centre for Theoretical and Computational Neuroscience, University of Plymouth,

Plymouth, PL4 844, UK

Abstract. We describe a theoretical and computational model of the perception of plaid
pattern motion which fully accounts for the majority of cases in which misperception of
the direction of motion of Type Il plaids has been observed [Yo, C. & Wilson, H. (1992)
Perceived direction of moving two-dimensional patterns depends on duration, contrast,
and eccentricity. Vision Res. 32, 135—147]. The model consists of two stages: in the first
stage local motion detectors signal both the one-dimensional and two-dimensional motion
of the high luminance features (blobs) in the plaid pattern; in the second stage these local
motion signals are combined using a recursive Bayesian least squares estimation process.
We demonstrate both theoretically and using simulations of the computational model that
the estimated direction of the plaid motion for Type Il plaids is initially dominated by the
1-D motion of the longer edges of the elongated blobs, which is in a direction close to the
vector sum direction of the component gratings. The recursive estimation process which
combines the local motion signals in the second stage of the model results in a dynamic
shift in the estimated plaid direction towards the direction of the 2-D motion of the blobs,

which corresponds to the veridical plaid direction.

Keywords. Plaid, motion, Bayes, computational model, blobs




1. Introduction

The problem of how the visual system combines the motion of two moving gratings to
form the percept of a coherent moving plaid pattern is still unsolved after nearly thirty
years of research. It has long been known that the plaid motion can be computed by a
velocity space construction, known as the intersection-of-constraints (I0C) (Fennema &
Thompson, 1979). Based on this, Adelson & Movshon (1982) proposed a two-stage
model for the analysis of plaid motion in which the one-dimensional (1-D) metions of the
plaid's two component gratings are first determined, and then combined in a weighted
summation corresponding to the 1OC construction. This model has dominated research in
the area for almost thirty years, despite the psychophysical (Welch, 1989; Derrington and
Suero, 1991; Derrington and Badcock, 1992; Stone, Watson and Mulligan, 1990) and
physiological (Movshon, Adelson, Gizzi and Newsome, 1985; Movshon and Newsome,
1996; Tinsley, Webb, Barraclough, Vincent, Parker and Derrington, 2003) evidence
being equivocal. In particular, the available evidence is based entirely on experiments
using symmetric Type I plaids (Ferrera and Wilson, 1990), for which the plaid velocity
vector lies between the velocity vectors of the two component gratings, which have equal
magnitude. The strongest evidence against the Adelson and Movshon (1982) model was
obtained when Type 11 plaids, the velocity vector of which lies outside of the velocity
vectors of the two component gratings, were used in psychophysical experiments (Yo and
Wilson, 1992). These experiments demonstrated that the direction of the plaid motion
during the initial period (up to ~60 ms) of stimulus presentation is misperceived, with a
strong bias in the perceived direction towards the vector sum (VS) of the velocities of the
component gratings. Whilst it is possible that the Adelson and Movshon (1982) model is
correct for Type I plaids, and that another mechanism is responsible for Type Il plaid

motion perception, this would seem highly unlikely.



Subsequent to the Yo and Wilson (1992) experiments, and prior experiments
which showed identified misperceptions in the direction and speed of Type Il plaids
(Ferrera and Wilson, 1990, 1991), several models have been proposed which attempt to
explain these misperceptions. Wilson, Ferrera and Yo (1992) suggested a model,
subsequently extended by Wilson and Kim (1994). which consisted of two parallel
processing pathways, one signalling the direction of the component gratings (presumed to
be mediated by neurons in area V1 of visual cortex) and the other (presumed to be end-
stopped neurons in area V2) signalling, after a hypothesised delay of ~77 ms, the
direction of "the motion of illusory lines formed by the nodes of the Type Il pattern” (Yo
and Wilson, 1992). The signals of the first pathway are combined (by neurons in
extrastriate area MT to which both V1 and V2 neurons project) to form a cosine-weighted
sum of the component grating velocities. The signals of the second pathway are derived
after full-wave rectification of the stimulus and orientation filtering at a lower spatial
frequency than that of the component gratings (postulated to take place in V2). A cosine-
weighted sum of the two pathways is then followed by competitive feedback inhibition in
order to predict the perceived plaid direction. The delay in the second pathway accounts
for the initial misperception of the plaid direction towards the vector sum direction of the
component gratings' velocities. Whilst this model offers a compelling explanation of the
observed misperception, it is deficient in several respects, as discussed in Alais,
Wenderoth and Burke (1997), who carried out experiments on the effect of the size and
number of plaid features, or blobs, the "nodes of the Type 1l pattern” referred to above,
on the misperception. They concluded that a more likely explanation is based on "a
feature sensitive mechanism which responds to the motion of plaid features and which is
tuned to their various qualities” (Alais, Wenderoth and Burke, 1997). The plaid blobs
which they examined and refer to are the high luminance regions which are formed at the
intersection of the component gratings and which, in particular for Type Il plaids, are the

most visually salient features in the plaid pattern for a human observer.




In this paper we show that the misperception of the plaid direction, its dependence

on the angular separation and contrast of the component gratings, and its decrease with
lengthening stimulus duration, can all be fully explained by a two-stage model which is
based on the detection of both the one-dimensional (1-D) and two-dimensional (2-D)

motion of the blobs, and their combination by a recursive Bayesian velocity estimation

Process.

In the first stage of our proposed model, local motion detectors respond to both
the 1-D and 2-D motion of the blobs within the plaid. We hypothesise that these detectors
are based on the complex and hypercomplex (end-stopped) neurons in V1 (Hubel &
Weisel, 1965; Pack, Livingstone, Duffy, and Born, 2003). This stage of the model differs
from that of Wilson et al (1992) in that: (i) the 1-D motion signals are derived not from
the motion of the component gratings but from the edge motion of the blobs; (ii) there is
no requirement for the separate combination or any explicit weighting, cosine or
otherwise, of the 1-D signals; (iii) the 2-D motion signals are derived directly from the
terminations (end-points) of the blobs, without the requirement for full-wave rectification
(or squaring) of the plaid stimulus. In the second stage of the model, the 1-D and 2-D
motion signals are combined using a recursive Bayesian least squares estimation process,
which we postulate to occur in the recurrent V1-MT circuitry. This also differs from the
Wilson et al (1992) model in that cosine weighting of the 1-D and 2-D signals is not
required, nor is there the need for a final stage of competitive inhibition.

In the remainder of the paper, we first examine in detail the specific geometric
properties of the blobs which, we claim, play the main role in the perception of plaid
motion. In particular we show that the shape of the blobs, specifically the extent of their
elongation, is defined by the angular difference in the directions of motion of the

component gratings, and that the orthogonal direction of motion of the longer edges of

the elongated blobs is given by the mean of the directions of motion of the component



gratings. We also show that as the blobs become more elongated, the orthogonal direction
of motion of the longer edges of the blobs tends towards the vector sum of the directions
of motion of the component gratings. Although the blobs have been implicated in the
perceptual process by several authors (Wilson et al, 1992; Burke and Wenderoth, 1993;
Wenderoth, Alais, Burke and van der Zwan, 1994; Alais, Wenderoth and Burke, 1994,
1997), as far as we are aware this is the first time that the geometric properties of the
blobs and their relationship to the directions of motion of the component gratings have
been precisely defined. Related plaid features and their properties have been described by
Bowns (1996, 2006), with similar properties, and we compare these in our discussion
(section 4) with the blob features which we have defined.

Next we show theoretically how these particular properties of the blobs can be
used to predict the misperception of the direction of Type II plaids which has been
observed psychophysically (Yo and Wilson, 1992; Bowns, 1996; Burke and Wenderoth,
1993). To demonstrate this more fully, we use a computational version of our model to
simulate the observed misperception, and show that the magnitude of the direction bias,
its dependence on angular separation and contrast, and the convergence of the perceived
plaid direction towards the veridical direction with increasing stimulus presentation
duration, are all accurately predicted by the model.

Finally we discuss how our model differs from the two-stage model of Adelson
and Movshon (1982), yet is consistent with the available physiological and
psychophysical evidence, and how it relates to a recent Bayesian extension of the
Adelson and Movshon model (Weiss and Adelson, 1998: Weiss, Simoncelli and Adelson,

2002), and the models proposed by Bowns (1996, 2006).




2. Model Description

2.1 Geometric analysis of the plaid blobs.

The high luminance regions of the plaid, i.e. the blobs, which are formed at the
intersections of the component gratings, can be precisely defined by representing the
plaid as the product of two gratings rather than as a sum of two gratings, its normal form
of representation. Typically a plaid is described by the sum of two sine or cosine gratings,
i.e. the spatiotemporal luminance intensity function of the stimulus is defined by
I(x, y,1)=sin(®w,) +sin(@, ) (1)

where @, =27xs,(xcos6, + ysiné, +rt); s, = spatial frequency (cycles/®); 6, = direction of
motion (°); and r,= speed (°/sec), for the 7 th. grating, i €{l,2}. Using a simple
trigonometric identity, this expression can be rewritten as,

I(x, y.t) =2sin((@, +@,)/ 2)cos((w, —@,)/ 2) (2)
i.e. as the product of two anti-phase gratings, henceforth referred to as the product
gratings to distinguish them from the component gratings used in the summation form (1)
of the plaid. The two product gratings comprise: (i) a sine grating which moves in the
direction ¢ =(6, +6,)/ 2, and which has a spatial frequency
s, =(5,c080, +5,cos6,)/2cos ¢, and a speed 7, = (1, +r,)cos@/(cosd, +cosf,) ; and (i)
a cosine grating which moves in the direction ¢ =¢—90", has a spatial frequency
s, =(s,c0s6, ~s,cosf,)/2cos @, and a speed 7, =(r, —r;)cos@/(cos, —cosb,) . For

simplicity we have assumed henceforth that s, =5, = 5.

Derrington and Ukkonen (1999) used this representation to describe a specific
instance of a plaid with component gratings oriented symmetrically about the vertical and
a specific relationship between the spatial frequency of the gratings and their orientations.
In this case they obtain a vertically oriented, horizontally moving product grating and

horizontally oriented, stationary product grating.




{Figure I about here}

Figure 1 shows three examples of equivalent plaid representations in terms of
their component and product gratings. These clearly demonstrate that the high luminance
regions, or blobs, in the plaid which occur at the intersections of the component gratings
are precisely defined by the anti-phase modulation of one product grating by the other. In
particular, where the spatial frequencies of the product gratings differ substantially (Figs.
la and Ic), the blobs are readily seen to correspond to the high luminance bands of the
higher frequency product grating modulated by the lower frequency product grating. The
shape of the blobs, in terms of the ratio of their long and short edges, is thus determined

by the ratio of the spatial frequencies of the product gratings, which can be expressed in

terms of the angular difference €, —&, in the directions of the component gratings as
5, /5, =V/tan((6, —6,)/2) (3)
The direction of motion of the blobs (and therefore the 10C direction of the plaid) is

given by the vector sum direction of the two product gratings.

We are mostly concerned here with Type 1l plaids (e.g. Figure 1a), so in order to
simplify the presentation we will derive the main characteristics of the blobs only for this
case, although similar equations describing the characteristics of Type I plaids (e.g.
Figures 1b and Ic), can be easily obtained. For the Type 11 property, that the IOC velocity

vector lies outside of the two component grating velocity vectors, to hold the ratio of the

speeds of the component gratings, 7,/ r, . must be greater than one, and the difference in
their directions of motion, &, —#, , must be less than 90°. It follows from (3) that, as the
difference in the direction of motion of the two component gratings, 6, —6, <90°,

decreases, the ratio of the spatial frequencies of the product gratings, s, /s, , will

increase, and the blobs will become more elongated in shape. Moreover, the shape of the

blobs only depends on the difference between the directions of the two component
gratings, &, —&,, and not on the ratio of their speeds. It also follows from (3) that 5, > s_,




and thus the motion of the longer edges of the blobs orthogonal to their orientation will

be in the direction ¢ = (6, +6,)/2, the mean of the directions of motion of the
component gratings.
Most importantly, we can express the difference between the orthogonal direction

of motion of the longer blob edges, ¢, and the vector sum direction of the two

component gratings, denoted by &, , as

é_g“ — arctan {M &] (4)

(rl/r,__}+l's‘
This shows that, for a fixed ratio of component grating speeds, r,/r, , as the difference

between directions of the two component gratings, &, —&, , decreases, and the shape of

the blobs become more elongated, the angular difference between the orthogonal
direction of motion of the longer blob edges and the vector sum direction of the
component gratings will decrease. It is also worth noting that for a fixed difference in the
directions of the component gratings, £, —6, , as the speed ratio 7, / r, increases, the
angular difference expressed by (4) will increase, causing the orthogonal direction of
motion of the longer edges of the blobs to move away from the vector sum direction of

the component gratings.

2.2 Theoretical predictions of the model.

The geometric analysis of the blobs, as expressed by equations (2) - (4), allow us to make
theoretical predictions about the behaviour of our model in response to Type I plaids. In
the first stage of the model, we propose that local motion detectors signal both the 1-D
(edge) and 2-D (end-point) motion of the blobs present within the plaid. Thus in the case
of Type Il plaids, for which the blobs are elongated, the majority of the local motion
detectors will respond to the 1-D motion of the longer edges of the blobs. Since a local

motion detector signals the velocity of 1-D edge motion in the direction orthogonal to the



orientation of the edge, owing to the aperture effect (Wallach, 1935; Wuerger, Shapley
and Rubin, 1996, Marr and Ullman, 1981), the majority of the local motion detectors will
signal motion in the orthogonal direction of motion of the long edges of the blobs. The

geometric analysis of the previous section shows that for a fixed ratio of component

grating speeds, 7,/ r,, as the difference between the directions of the two component
gratings, &, — @, . decreases and the shape of the blobs become more elongated, the
orthogonal direction of motion of the longer edges of the blobs. ¢, will tend towards the

vector sum direction of the component gratings. Thus the majority of the local motion

detectors will signal motion in a direction which is increasingly biased, as
6, — 6, decreases, towards the vector sum direction of the component gratings.

In the second stage of the model, we propose that the outputs of the local motion
detectors are combined using a recursive Bayesian estimation process. The estimate
computed in the first iteration of the estimation process will thus form the model's
prediction of the perceived plaid velocity in a short initial period of stimulus presentation.
As we have already discussed, this estimate will be dominated by the majority of local
motion detectors which signal the orthogonal motion of the blobs in the ¢ direction. We
have also shown, in equations (3) and (4) respectively, that as the difference between

component grating directions, &, —6, . decreases: (i) the long edge of the blob will

become longer and therefore drive an increasing majority of local motion detectors; and
(ii) the orthogonal motion of the blobs in the ¢ direction approaches the vector sum
direction of the component gratings. Hence it follows that, as the angle between the
component gratings decreases, the first velocity estimate formed by the model, and
therefore the initial plaid velocity predicted by the model, will be increasingly biased

towards the ¢ direction, which itself will approach the vector sum direction of the




component gratings. This is precisely what Yo and Wilson (1992) observed in their

psychophysical experiments.

For example, consider one of the Type Il plaids used by Yo and Wilson in their
experiments. The parameters of the component gratings of this plaid are: 6, =70.5",

6, =482 ,r, =133, and r, =2.67. Then, for these values: 6, -0, =22.3",6,,. =0.2°,
Tow =39, 6,5 =556, 1y, =40, $=594", §—6,, =3.8 and s, /s, =5.1. The blobs are
thus elongated (edge ratio of 5:1) and move orthogonally to their longer edges in a
direction which is less than 4° from the vector sum direction of the component gratings.
In Yo and Wilson's experiment, the perceived direction of the plaid motion in the initial
period of presentation was observed to be approximately 60°. This is close to the vector
sum direction of 55.6°, and almost exactly equal to the orthogonal direction ¢ =59.4" of
motion of the longer edges of the blobs.

The velocity estimate formed by the model during subsequent iterations of the
recursive estimation process will also be influenced by the majority of local motion
detectors which signal the orthogonal direction ¢ of the longer edges of the blobs,
although this influence will gradually decrease with each iteration (see the simulation
model description below) leading to convergence to a steady-state velocity estimate. Thus
for long stimulus presentations the perceived direction of the plaid motion predicted by
the mode! will continue to be biased, but to a lesser extent, in the direction
¢ =(6,+6,)/ 2, the mean of the component gratings' directions. This is precisely what
Ferrera and Wilson (1990) observed, i.e. that the perceived direction of the plaid motion

has a small residual bias, after approximately 150ms of presentation time, of between 8°

10



and 10° towards the mean of the component gratings' directions, in this case for plaids
with component grating separations of between 22.3° and 51.6°. A similar residual bias
was observed by Burke and Wenderoth (1993). They found in addition that as the
difference in component grating directions decreased from 40° to 10°, the residual bias
increased from 2° to 17°. This dependence of the residual bias on the difference in

component grating directions was observed for a constant value of ¢ = (6, +6,) /2.

Hence they argued that the bias could not be due to the orthogonal direction of motion of
the elongated blobs which remained constant in this experiment. In our model however
the strength of both the initial and the residual bias is determined by the length of the
long edges of the blobs, since this determines the number of local motion detectors which
signal the orthogonal 1-D motion of the blob edges in the¢ direction. Since the
elongation of the blobs increases with decreasing difference in the direction of motion of
the component gratings, as shown by equation (3), it follows that the residual bias will
always be towards the ¢ direction, but will increase as the difference in component
grating directions decreases.

The theoretical predictions of the model, presented above, are largely qualitative in
nature, but will be confirmed in a more quantitative form in section 3 of the paper, where
we describe the results from using of a computational version of our model to simulate
the perceptual experiments of Yo and Wilson (1992), Bowns (1996) and Burke and

Wenderoth (1993). The form of the computational model is described in the next section.

2.3 Computational model description

To quantify the predictions of our model and, in particular, to demonstrate the

convergence of the estimated direction of the Type Il plaid motion towards the true 10C




direction, we will use a computational version of the model to simulate the

psychophysical experiments of Yo and Wilson(1992) and Burke and Wenderoth (1993).

A detailed description of the model has been given previously (Dimova and
Denham, 2009), where the model was used to explain the initial direction bias in the
velocity of smooth eye pursuit eye movements (Masson and Stone, 2002; Wallace, Stone
and Masson, 2005). Briefly, the input to the model is the luminance function I(x, y.1) of
equation (1), describing the plaid pattern and its motion, which is presented in a 200 x
200 pixel visual space. Local motion detectors measure the spatial and temporal

derivatives 7_,7,,1, of I(x,y.t) in a number of 10 x 10 pixels, non-overlapping windows

uniformly distributed across the visual space, using a simple spatial and temporal shift
mechanism. These measurements are then related to the pattern velocity vector [:‘ ] by

the gradient-based equation {Fennema and Thompson, 1979):

I, i]&]w 5)

where 77 is additive zero mean, normally distributed measurement noise. A recursive

algorithm, well-known as the Kalman filter (Kalman, 1961), is used to determine a least
squares estimate of the velocity vector based on the set of measurements from the local
motion detectors, as the best-fit solution to the corresponding set of gradient-based
equations (5). The velocity estimate in the estimation algorithm is initialised to zero,
which corresponds assigning a zero mean, a priori velocity distribution in the Bayesian

formulation of the estimation algorithm.

As we have described, the bias in the first velocity estimate formed by the model
results from the large number of local motion detectors for which the measured

derivatives /_,/,, I, correspond to the 1-D motion of the longer edges of the blobs. For

these detectors many solutions to the corresponding gradient-based equations (5) are

possible, corresponding to the aperture effect (Wallach, 1935; Wuerger, Shapley and
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Rubin, 1996, Marr and Ullman, 1981). The zero-valued initial velocity estimate provides
a constraint on the estimate formed by the first step of the algorithm, which results in an
best-fit solution being selected for which the magnitude of the velocity estimate is
smallest. This corresponds to the solutions to (5) for each local motion detector for which
the selected velocity is in the direction orthogonal to the longer edges of the blobs. Thus
the estimate formed in the first step of the aigorithm will be strongly biased in this
direction, with the strength of the bias dictated by the number of motion detectors
signalling the direction. As we have shown, the bias will be stronger as the difference
between the directions of the component gratings decreases, since this results in a greater

elongation of the blobs.

In contrast, measurements of 7./ ./, from the local motion detectors which signal

the 2-D motion of the end-points of the blobs result in a unique (within the noise)
solution to the corresponding set of gradient equations (5) . This solution corresponds to
the vector sum direction of the product gratings, and thus, equivalently. to the veridical,
I0C direction of the plaid. These local motion detectors will therefore influence the
estimate of plaid direction towards the IOC direction, both in the initial step of the
algorithm and in all further steps. However, lowering the contrast of the plaid stimulus, or
equivalently reducing the signal to noise ratio in equation (5) , will result in a weaker
influence of this solution, and thus allow a greater bias in the estimated direction of the

plaid towards the vector sum direction of the component gratings.

As the number of iterations of the recursive estimation algorithm increases, the
effect of the 1-D local motion detectors will decrease in relation to that of the 2-D motion
detectors. since the velocity estimate formed in each iteration of the algorithm becomes
the prior estimate for the next iteration. This gradually relaxes the effect of the zero prior

constraint on the solution to (5) corresponding to the set of outputs of the 1-D motion
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detectors, allowing the solution to (5) corresponding to the set of outputs of the 2-D

motion detectors to increasingly influence the velocity estimate at each iteration.

In the following section we will show by simulations of the computational version
of the model that, in accordance with the above theoretical predictions, the model also
yields quantitative predictions of the perceived direction of plaid motion which closely
resemble the experimentally obtained data of Yo and Wilson (1992), Bowns (1996) and
Burke and Wenderoth (1993).

3. Simulation Results

3.1 Simulation of the Type II plaid experiments of Yo and Wilson (1992) and Bowns
(1996)

In Figures 2a - 2f, we show the results obtained using the computational model to
simulate the psychophysical experiments of Yo and Wilson (1992) and Bowns (1996).
Yo and Wilson (1992) used as stimulus three different Type 11 plaids (see their Figure 2),
although the results were not given for all three plaids for each of the experiments. The
main experiments, which we simulate here, observed the perceived direction of plaid

motion as functions of presentation duration and pattern contrast. Their results on
presentation duration are given for the plaid with the following parameters: 6 =70.5",
6,=482, =133, 7,=2.67, 5,=5,=15,6,-6,=223", 6, =02, . =4.02,

6 =55.6", 1, =3.93 . For the product plaid representation, these parameters give:
$=594",6-6,,=38,r,=20,r,=35,5,=15,5,=03 and s, /s, =5.0. Note that
both the speed and spatial frequency of the higher spatial frequency product grating are

similar to those of the component gratings.

For this plaid, two observers reported a perceived direction of motion of
approximately 60° after 60 ms of presentation, reducing to approximately 15° and 30°

respectively after 90 ms, and to approximately 0° (the IOC direction) after 150 ms. Note



that the reduction in the bias was apparently gradual rather than occurring
discontinuously as might be expected if additional 2-D motion information became
available afier some fixed time delay, as was suggested in the Wilson et al (1992) model.
When the plaid contrast was varied, with values of 5%, 50% and 100%, the observed
initial bias at 60 ms was 60°, 40° and 30° respectively, and the length of time for the bias
to reduce lengthened considerably with decreasing contrast. For a contrast of 5-10%. a

substantial bias of approximately 25° was observed after 1 sec of presentation.

{Figure 2 about here}

We can compare these experimental results with the graph shown in Figure 2a, which
shows the model results for this plaid. As the graph shows, the bias in the estimated
direction at the first iteration for the three values of contrast, 25%., 50% and 100%, are
remarkably similar to the initial perceived bias observed experimentally. We note also
that the convergence time decreases substantially with increasing contrast, and that there
is a considerable steady-state bias for all contrasts of up to 25° for this plaid. again as
observed experimentally. Figures 2b and 2c show the same simulations for the other two
plaids used by Yo and Wilson (1992), but for which they did not report the results as
fully as for the first plaid. These graphs show similar characteristics of the variation in
magnitude and convergence rate of the direction bias with contrast as in Figure 2a, but
with the steady-state bias reducing with increasing difference in the directions (47.4° and
51.6° respectively) of the component gratings in Figure 2b and 2c, to between 4° and 10°.
In Ferrara and Wiison (1990), the perceived steady-state bias for similar Type 11 plaids

was approximately 6°.




In Bowns (1996), a number of experiments were carried out which attempted to

establish whether or not the misperception of the plaid direction observed by Yo and
Wilson (1992) generalises to all Type II plaids and is due to a temporal delay in Fourier
and non-Fourier motions processing as proposed in the parallel pathway model of Wilson
et al (1992). Here we have simulated their Experiment 3 which used Type Il plaids very
similar to those used by Yo and Wilson (1992). The component gratings for these plaids
had the same spatial frequencies (1.3 cycles/®) and orientations (202° and 225°) but
differed in the ratio of their speeds, which ranged from 1:0.45 to 1:0.75, with the speed of
one of the component gratings held constant at 3.13 °/sec. The experiments used a
simple forced choice response which required subjects to report either a plaid direction to
the right or to the left of "the vertical”, i.e. 90°. The component grating directions and
speeds were such that the vector sum direction remained virtually constant , varying from
297 to 32° to the left of the vertical, for the varying speed ratios, whereas the 10C

direction varied from 28° to 2° to the right of the vertical.

The experiments revealed that for the two speed ratios at the extreme ends of the
above range, subjects reported a perceived direction of plaid motion which shifted from
100% in the vector sum direction (i.e. left of vertical), for a speed ratio of 1:0.75, to
100% in the 10C direction (i.e. right of vertical), for a speed ratio of 1:0.45. This was
interpreted in Bowns (1996) as: "a rather surprising complete reversal of the perceived
motion in the direction of the IOC".

We simulated the cases of the two plaids at the extremes of the ranges of speed
ratios referred to above. The experimental data was also simulated by Weiss and Adelson

(1998) - see our discussion of their model in section 4. The simulation results from our
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model are described in Figure 2d (for a speed ratio of 1:0.75) and 2¢ (for a speed ratio of
1:0.45) in the form of vector space diagrams. As these Figures show, changing the ratio
of the component grating speeds from 1:0.75 to 1:0.45 is sufficient to move the both the

estimate formed in the first step of the estimation algorithm, v,, , and the steady- state
estimate, v,, of the perceived plaid direction from being on the left of the vertical (vector

sum side) to being on the right of the vertical (I0C side).

The difference in the directions of the first step velocity estimate v_, for the two

speed ratios is 21° (108° vs. 87°). However the difference in the first step direction bias
estimate (relative to the IOC direction) is only 5° (20° from [OC vs. 25°). For the steady-

state velocity estimate v_, the estimated direction differs by 24° (102° vs. 78°) for the

two speed ratios, but the difference in the estimated bias is only 2° (14° from IOC vs.
16°).

Thus the change in the estimated bias is small with this change in speed ratio,
both in the first step of the algorithm and after convergence, and we suspect that the
change in the perceived bias is also small. The simple forced choice response of left or
right of the vertical appears however to have resulted in an interpretation in Bowns
(1996) that there is a large change in bias which leads to a reversal in the perception of
the plaid motion direction from the 10C to the vector sum direction.

We suggest an alternative interpretation, supported by our simulation results (see
Figures 2d and 2e), that the value of the perceived bias for the two speed ratios is almost
the same, but that the change in speed ratio results in a shift in the [OC direction towards
the vector sum direction, causing the perceived motion direction to switch from right side

of the vertical to the lefi side.




In the Discussion section we will describe also our simulation results for the set of

plaids used in Experiment 2 of Bowns (1996), with angular differences between

component gratings in a range between 10° and 90°, and a speed ratio of 1:0.5.

3.2 Simulation of the experiments of Burke and Wenderoth (1993)

In Figure 3, we show the results obtained using the computational model to simulate the
psychophysical experiments of Burke and Wenderoth (1993), in which they used Type Il
plaids to study the dependence of the steady-state misperception of plaid direction on the
angular difference between the component grating directions. The plaids were
constructed using component gratings with angular differences of 10°, 20°, 30° and 40°.
The true plaid direction was 270° and the stimulus was presented for 10 sec. Two
experiments were carried out: in the first, the component directions were chosen so that
the mean was constant at 295°; in the second, one component direction was kept constant
at 315°. Figures 3a and 3b show the results from each experiment, both the perceived
plaid direction obtained in the Burke and Wenderoth (1993) study ( Asymbols) and the
direction estimated by the model (® symbols). In Figure 3a the mean component direction

is 295°, and in Figure 3b this direction varies and is shown by the dashed line.
{Figure 3 about here}

The graphs in Figure 3 show that the estimated plaid direction from the model
simulation varies with the difference in component grating direction and displays in both
cases the same trend in the variation as observed in the Burke and Wenderoth (1993)
study, although with a slightly greater bias towards the mean component direction of up
to 9°. Importantly the model shows in Figure 3b the same non-linear variation of the
estimated direction with component separation as was observed experimentally for the

perceived direction.



3.3 Robustness of the model

In the above cited experiments and those that are described later in the Discussion, the
stimuli were presented in a circular windows with the following diameters: Yo and
Wilson (1992) - diameter = 8°; Bowns (1996) - diameter = 3°; Stone, Watson, and
Mulligan (1990) - diameter = 5.4° ; Champion, Hammett.and Thompson (2007) -
diameter = 6° ; Alais, Wenderoth, and Burke (1997) - diameter = 3°, 6° and 12°. We do
not have any information on the size of the stimulus used in the experiments of Burke and
Wenderoth (1993). In the simulations described in Section 3.2 and in the Discussion, we
display the image in a circular aperture of diameter 200 pixels; thus the size of our 10 x
10 pixel window corresponds to between 0.15° and 0.6°. This is in close accordance with
an average receptive field diameter measurement, for V1 cells in humans, of
approximately 0.25° at the fovea, rising linearly to approximately 0.6° at 6° eccentricity
(Smith, Singh, Williams and Greenlee, 2001).

Since our results closely match the experimental results in each of these
experiments, we can infer that our model results are robust if the 10 x 10 pixel window
represents a receptive field diameter of between 0.15° and 0.6°, which is the approximate
physiological range for V1 cells.

Our model breaks down when the simple algorithm we use to calculate the image
intensity derivatives fails to produce acceptably accurate results. This happens when the
spatial frequency of the stimulus is sufficiently high that the spatial period falls within a
single window, ie is less than 10 pixels, corresponding to a frequency of 0.1 cycles/pixel,
or between 6.7 cycles/® (corresponding to window size of 0.15° and a stimulus aperture

diameter of 3°) and 1.6 cycles/® (corresponding to a window size of 0.6° and a stimulus




aperture diameter of 12°). Thus, for the simulations of the Alais et al ( 1997) experiments

described in the Discussion, in which the aperture diameter is 3°, we did not simulate the

result for a stimulus of 6 cycles/®.

It is important to note that the parameters of the model were held constant for all
the simulation results described in this Section, i.e. for the Yo and Wilson (1992), the

Bowns (1996), and the Burke and Wenderoth (1993) experiments.

4. Discussion

The original two-stage model (Adelson and Movshon, 1982; Movshon et al, 1985)) has
dominated research in plaid motion perception for almost thirty years, leading to an
almost universal view that the first stage of plaid motion analysis involves the detection
of the 1-D motion of the component gratings, carried out by component-direction
selective neurons in V1 (see the review by Pack and Born (2008)). It is important to note
however that the available evidence is almost entirely based on using symmetric Type |
plaids, in which the component gratings move with equal speeds. For the psychophysical
experiments of Movshon et al (1985) the difference in directions of the component
gratings was 120°, for their physiological experiments in cat and monkey V1 and in
monkey MT (Movshon et al, 1985) the angular difference was 90°, and for Movshon and
Newsome's (1996) physiological experiments in monkey V1 the difference was 90° or
45°, For such plaids, a neuron in primary visual cortex (V1) which responds optimally to
the motion of a single grating, produces little response to a plaid moving in its optimal
direction, as would be predicted from the orientations of the component gratings if the

neurons were only responding to the 1-D motion of the gratings (Movshon et al, 1985).




Our proposed model suggests that neurons in V1 respond both the 1-D and 2-D motion of
the blob features of the plaid, and in the case of Type 1l plaids are driven by the 1-D
edges and 2-D end-points of the elongated biobs. Moreover, we suggest that the 2-D
motion is detected by end-stopped cells in V1, as observed by Pack et al (2003). As we
have discussed above, this model leads to theoretical and simulation results which closely
mimic the physiological observations of perceived direction for such plaids. So how does
the model explain the component-selective responses for V1 neurons in the case of Type

I plaids, as observed by Movshen et al (1985) and Movshon and Newsome (1996), in
particular as the neurons observed by Movshon and Newsome (1996) were apparently
mostly of the end-stopped variety ?

For Type | plaids in which the difference in the component grating directions is
90°, the blobs take the form of small square regions of high luminance which are aligned
in the same orientations as the component gratings. Therefore, a neuron which is
optimally responsive in the direction of the plaid motion, and with a long, narrow
receptive field oriented orthogonally to the plaid direction, will respond sub-optimally to
the two lines of blobs, each moving at 45° to the optimal direction for the neuron, in
exactly the same way as if it were responding to the component gratings themselves, as
shown by Tinsley et al, 2003. Little or no 2-D motion signal in the direction of the plaid
would be detected due to the absence of well defined end-points in the stimulus, in
contrast to the case of Type Il plaids with elongated blobs. It is significant however that
Movshon and Newsome (1996) observed a degree of pattern-selective response in two of

the nine neurons they measured. Thus, we suggest, for such neurons and for symmetric

Type | plaids, it is not possible to distinguish whether the neurons are responding to the




component gratings or to the lines of small square blobs (which we will refer to as blob-

lines) present in the plaid moving in the same directions as the component gratings. The
lines formed by the blobs are certainly more perceptually salient to the human observer
than the individual component gratings.

in our model, the outputs of the local motion detectors signalling the two
orthogonal 1-D motions of the blob-lines described above will be combined in the second
stage by the estimation algorithm to yield the vector sum of these two motions, the
direction of which corresponds exactly to the IOC direction of motion in the case of a
Type | plaid. Note that no initial or steady-state perceived direction bias was observed for
Type I plaids by Ferrera and Wilson (1990) or Yo and Wilson (1992). It is also possible
that the 2-D motion of the individual blobs may be signalled by V1 neurons with short,
wide receptive fields, as observed by Tinsley et al (2003). The combination of the outputs
of the 2-D motion detectors and the 1-D motion detectors in the second stage of the
model would reinforce the computation of the velocity estimate in the true plaid
direction.

In summary, we argue that for symmetric Type I plaids. with a difference between
the component grating directions of around 90°, the 1-D motion detectors in V1 will
respond in exactly the same way to the blob-lines as to the component gratings. Since the
blob-lines and the component gratings are indistinguishable, in terms of their orientation,
direction, spatial frequency and speed, it is thus impossible for any experiment with such
Type I plaids to distinguish between a model in which the first stage responds to the 1-D
motion of the component gratings and one in which the first stage responds to the 1-D

motion of the blob-lines. Since, in addition, the direction of a symmetric Type I plaid is
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given by the simple averaging (vector average) of the 1-D motion directions, it is
impossible to distinguish between a model in which the second stage computes the I0C
direction from one in which the second stage computes the vector average direction. We
therefore conclude that the psychophysical experiments (Welch, 1989; Derrington and
Suero, 1991; Derrington and Badcock, 1992) using symmetric Type | plaids, which have
apparently confirmed the two-stage model of Adelson and Movshon (1982), are wholly
inadequate in this respect. In contrast, the psychophysical experiments with Type I
plaids (Yo and Wilson, 1992) strongly challenge the Adelson and Movshon model.

It is worth noting here that our theoretical analysis of the plaid blobs indicates, for
asymmetric Type 1 plaids with an angular separation of component directions of >90°
(e.g. the plaid in Figure 1c), that a similar elongation of the blobs occurs, and that the
longer edges increase in length as the angular separation increases. Also the orthogonal
direction of the longer edges of the blobs approaches the vector sum direction of the
component gratings. Hence our model predicts for such plaids a significant bias in the
perceived direction of plaid motion towards the vector sum direction of the component
gratings and away from the true IOC direction, of comparable magnitude to that observed
for Type 11 plaids. As far as we are aware, no psychophysical or physiological
experiments have been carried out for such Type | plaids.

A recent model of motion integration (Weiss and Adelson, 1998; Weiss et al,
2002) aimed at extending the Adelson and Movshon (1982) model to accommodate the
Yo and Wilson (1992) results. According to Weiss and Adelson (1998) and Weiss et al
(2002), their model captures the uncertainty in the 1-D motion of the component gratings

in the case of low contrast by using a Bayesian estimation process. The Bayesian
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formulation of the model results in the identification of a distribution of 1-D and 2-D

velocity measurements which correspond to local likelihood functions. The model
therefore represents the 1-D motion of each of the component gratings, corresponding to
the first stage of the Adelson and Movshon model, as a pair of "fuzzy" (Weiss and
Adelson, 1998) constraint lines in velocity space, the degree of fuzziness being dependent
on contrast. The estimate of the plaid direction is then given by the mean/maximum of
the posterior probability distribution, which is computed from the product of the local
likelihoods and the prior distribution for the velocity estimate. The latter is assumed to be
Gaussian with zero mean according to a "slow and smooth™ (Weiss and Adelson, 1998;
Weiss et al, 2002) hypothesis based on suggestions that human observers prefer the
slowest motion consistent with the visual input (Ullman, 1979).

In fact, the model described by Weiss and Adelson (1998) and Weiss et al (2002) is
identical to the first step of the recursive Kalman filter estimation algorithm in our model,
and therefore produces an identical, biased first step estimate of plaid direction. There
appears therefore to be a contradiction between the explanation in Weiss and Adelson
(1998) of the behaviour of the model in predicting plaid motion, which is solely in terms
of the 1-D motion of the component gratings, and our explanation, which is in terms of
the 1-D and 2-D motion of the edges and end-points blobs. The explanation in Weiss et al
(2002) is essentially the same as that in Weiss and Adelson (1998) but less detailed and
with no supporting diagrams.

To resolve this contradiction, we first consider the plaid used to produce the
simulation results shown in Figure 2a, and previously discussed in Section 2.2. This plaid

is also used in Weiss and Adelson (1998) and Weiss et al (2002) as their main example
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for demonstrating the misperception of the direction of Type II plaids. The parameters of

the component gratings of this plaid are, as given before: §, =70.5", 6, =48.2",, =1.33,

and r, = 2.67, yielding the following values: 6, -0, =22.3" ,60,,- =02, r,. =39,

sl

6,5 =55.6", r,, =4.0, $=594", r,=2.03, r, =3.46. p—06,, =3.8 and s, /s, =5.1. For

a contrast of 50%, our model calculates the initial estimate of the plaid velocity vector v,

as: speed 7, =1.84 and direction 6, =40".

{Figure 4 about here}

Figure 4a illustrates the plaid, clearly showing the elongated blobs. Figure 4b is a
velocity space diagram on which the velocity vectors of the component gratings, v, and
v,. together with their constraint lines, the initial velocity estimate, v, , and the 10C and
vector sum velocity vectors, v,,- and v, respectively, are shown (0° is vertically upward
in this diagram). The velocity space diagram in Figure 15d of Weiss and Adelson (1998)
is redrawn as an inset in Figure 4b,

In their Figure 15d, the latter authors indicate the magnitude of the vector average
(VA) velocity of the component gratings, rather than the vector sum velocity. Although
the direction of these two velocity vectors are the same, the magnitude (speed) of the
vector average velocity is half that of the vector sum velocity.

Weiss et al (2002) explain the bias in the perceived direction towards the vector
sum/average direction by the statement that "the vector average velocity [speed] is much
slower than the 1OC solution and hence it is favored [by the zero prior] at low contrasts”.

They assume that the Bayes estimate of plaid velocity is based on "local likelihoods
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[which] are 'fuzzy’ constraint lines” (Weiss and Adelson, 1998) defined by the component

grating velocities. Thus any bias in the estimate towards a speed slower than the [0C
speed, as a consequence of the zero prior, will automatically result in a shift of the
direction of the estimated velocity away from the 10C direction and towards the vector
sum/average direction, i.c. the velocity estimate will be constrained to fall along, or close
to, the dashed line depicted in Figure 4b.

The explanation of the perceived direction bias in Weiss et al (2002) and Weiss and
Adelson (1998) is thus based on the Adelson and Movshon (1982) model of plaid
perception, in which only the 1-D motion of the component gratings are detected in the
first stage of analysis of the plaid motion, and their model is presented as a Bayesian
extension of this model. This is clearly reflected in their explanation since they indicate
that their model forms local likelihoods as "fuzzy" constraint lines defined by the 1-D
motion of the component gratings. However their model, as ours, undoubtedly detects
both the 1-D and 2-D motion that is present in the stimulus in the form of the motion of
the edges and end-points of the blobs, as is clearly demonstrated by their depiction (in
Figure 3 of Weiss et al (2002)) of the likelihood functions generated by their model for a
moving diamond stimulus. It is surprising therefore that no reference is made to the
likelihood functions formed from the 2-D motion in the plaid stimulus, and their role in
forming the estimate.

We offer here an alternative explanation for the perceived plaid motion, which is
based on the 1-D and 2-D motion of the edges and end-points of the blobs. This is
illustrated in Figure 4c. Here we show the velocity vectors corresponding to the

orthogonal motion of the longer and shorter edges of the blobs in the plaid,



respectively, and their constraint lines, together with the IOC and vector sum velocities,

vV, and v, respectively, of the component gratings. Also shown are the velocity
estimates from our model for the first step (v,, =1.83; 6, = 40°), the fifth step
(v,s =2.38; 6, =257), and in the steady-state (v, =2.62; 6_=18").

It is clear that the initial estimate v,, lies very close to the velocity vector v, ,

corresponding to the orthogonal motion of the long edge of the blob, and to the maximum

of the likelihood function (the "fuzzy" constraint line) for v,. Subsequent velocity

estimates in further iterations of the recursive algorithm get closer to this maximum, and
also to the velocity vector v,,.. Note that the effective prior for each step in the
estimation algorithm is given by the velocity estimate in the previous step. which together
with the influence of the likelihood function corresponding to the 2-D velocity of the end-
points of the blobs, v,,.. leads to the convergence of the estimate towards the I0C

velocity.

To reinforce our account of the model behaviour, we provide a further piece of
evidence that the first stage of plaid motion perception is based on the 1-D and 2-D
motion of the blobs rather than the 1-D motion of the component gratings. Stone, Watson
and Mulligan (1990) investigated the effect on the perceived plaid direction of making
the contrasts of the component gratings unequal. They based their investigation on the
Adelson and Movshon (1982) model, assuming their first stage in which the 1-D
velocities of the component gratings were detected to be correct. They hypothesised that

the low contrast grating would be detected at a lower speed than the true value and that if
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this erroneous value were used in a second stage IOC calculation of plaid direction, a

significant contrast-dependent error in the perceived plaid direction would result. They
used a Type I plaid with angular separation of the component gratings of 120°, and
changes in the ratio of the speeds of the component gratings to vary the true direction of
the plaid whilst maintaining a constant plaid speed. In this way they found that the
perceived plaid direction was biased towards the direction of the higher contrast grating
and this bias increased for increasing contrast ratio, and also for decreasing total contrast
(the sum of the grating contrasts). At 5% total contrast, the average observed bias varied
between 0°, at a contrast ratio of 1, to ~16°, at a contrast ratio of 4:1. A maximum bias of
20° was observed for a total contrast of 10% and a contrast ratio of 8:1. The modified
Adelson and Movshon (1982) model proposed by Stone et al (1990) using perceived
rather than actual component speeds appeared to give qualitatively similar results to those
observed (see their Figure 11). However, similar experiments by Champion, Hammett
and Thompson (2007) appeared to invalidate the modified IOC model of Stone et al
(1990), since it would also predict a bias towards the direction of the low contrast
component at high component grating speeds due to an increase in the perceived speed of
low-contrast gratings for grating speeds above ~12 deg/s (Champion et al, 2007).
Champion et al. observed an increasing bias with component speed which was always
towards the direction of the high contrast component except for the very lowest
component grating speeds, but a decrease in the bias at the highest component speeds
(above 12 deg/s), consistent with their observed switch in the contrast-related
misperception of grating speed for higher speed gratings. It should be noted however that

Champion et al used plaids of total contrast equal to 90%, compared to the total contrast
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values of between 5% and 40% used by Stone et al. They also used component gratings
with angular separation of 90°, compared with the 120° angular separation used by Stone
et al. Champion et al also suggest that their results are inconsistent with the Bayesian I0C
model of Weiss et al (2002), since that model relies upon the perceived speed of the
gratings being smaller for lower contrast, and hence higher uncertainty, owing to the
greater influence of the "slow" prior. Champion et al also claim that their results are
inconsistent with several other models of plaid perception including the 1-D and 2-D
parallel pathways model of Wilson et al (1992), and the blob tracking model of Alais,
Wenderoth and Burke (1994).

{Figure 5 about here)

Applying our model to this data shows that it replicates the misperception of the
direction of plaid motion towards the direction of the higher contrast grating, but the
magnitude of the bias in the estimated direction is dependent on the spatial frequency of
the component gratings. The case of a plaid with a separation of component gratings of
1207, 60° either side of the vertical (0°) and a contrast ratio of 4:1 is shown in Figure 5a.
It is clear that the salient feature of this plaid is a set of blob-lines which are formed from
a joining-up of the plaid blobs. The direction of motion of the blobs is the IOC direction
of the component gratings, i.e. the plaid direction of 0°, but the orthogonal direction of
motion of the blob-lines is 300°, the direction of the higher contrast component grating.
The estimated plaid direction computed by our model is 308°, giving a bias of 52°away
from the 10C direction of 0° towards the higher contrast grating direction, much greater

than that measured by Stone et al (1990), where the direction error was up to 20° for this
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contrast ratio (4:1). However, our result was obtained for a grating spatial frequency and
a viewing aperture shown for the plaid illustrated in Figure 5a, corresponding to ~14
cycles of the component gratings being present within the viewing aperture. If the
gratings' spatial frequency and the viewing aperture are changed to approximate that used
by Stone et al (1990) and Champion et al (2007), approximately 6 cycles of the
component gratings are present in the viewing aperture, as illustrated by the plaid in
Figure 5b. The blob lines are still clearly visible but the size of the blobs is greater by
about a factor of two. In this case, the estimated plaid direction computed by our model is
342°, giving a bias towards the direction of the higher contrast grating of 18°, comparable
to that measured by Stone et al (1990) for this contrast ratio (4:1). The bias computed by
our model for the contrast ratio of 2:1 was 7°, which is consistent with the Stone et al
result of approximately 7° for the 5% contrast case, and with the results of Champion et
al (2007) who used a contrast ratio 0f 2:1 and obtained a maximum bias of approximately
T

The above example illustrates the importance, both in psychophysical experiments
and in modelling, of the choice of the spatial frequency of the component gratings in
relation to the viewing angle/aperture of the stimulus. Our model results would suggest
that if the psychophysical experiments of Stone et al (1990) or Champion et al (2007) had
been carried out using a higher component grating spatial frequency, a far greater bias
towards the higher contrast grating would have been obtained, owing to the greater
salience of the 1-D motion of the blob-lines in the direction of the higher contrast grating,

compared to that of the 2-D motion of the blobs themselves, when viewing the plaid.
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Alais et al (1997) investigated the effect of blob size and number on perceived plaid
direction, in this case for Type 1 plaids. They showed, by varying both spatial frequency
and viewing aperture size, that there is a large effect of blob size on the perceived
direction bias, of up to 14.1°, due to changes in the component spatial frequency, but a
small effect of blob number, of about 5°, obtained by changing aperture size whilst
spatial frequency is heid constant. We simulfated their experiments with our model.
keeping the viewing aperture constant and varying the spatial frequency of the
component gratings. We used three values of spatial frequency: 0.6, 0.3 and 0.2
cycles/pixel. For the sake of comparing our simulation results with the experimental
results, we assumed that these spatial frequencies corresponded to the experimental
values of 3.0, 1.5, and 1.0 cycles/®.

{Figure 6 about here}

We show in Figure 6 the results from Alais et al (1997) (their Figure 5) giving the
perceived direction as a function of spatial frequency for the 3° aperture case (e
symbols), together with the steady state direction estimates from the model ( A symbols),
for each of the component grating spatial frequencies. We do not simulate the 6.0 cycles/®
owing to the limitations of our model in dealing with such high frequencies due to our
choice of window size. As can be seen from Figure 6, the estimates of the plaid direction
are very similar to the perceived experimental values and, importantly, show the same
trend, with a decrease in the misperceived direction bias as the spatial frequency of the

component gratings increases.
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It is not clear how a model of plaid perception based on the Adelson and Movshon

(1982) model might account for the dependence of the misperception of plaid direction
on component grating spatial frequency, as observed by Alias et al (1997) and modelled
by us. Varying the spatial frequency of the component gratings should have no effect on
the computation of the 1-D velocity of the gratings, or on the IOC calculation, even in the
case of where uncertainty in the component directions is taken into account as in the
Bayesian I0C model of Weiss et al (2002) and Weiss and Adelson (1998). On the other
hand, our model, which depends on both the 1-D and 2-D motion of the blobs, is entirely
consistent with the Alais et al (1997) results. As noted by them: "These results provide
further support for the existence of a feature-sensitive mechanism which responds to the
motion of plaid features and which is tuned to their various qualities". Our model
provides just such a mechanism.

Other approaches based on a feature tracking mechanism have been proposed
which are related to the mechanisms that we have described here. In particular, Bowns
(1996) proposed a feature tracking explanation for the misperception of Type I plaids as
observed by Yo and Wilson (1992) which is based on specific plaid features, "avgL",
"minL" and "maxl." which she introduces, and which clearly relate to the blob features
that we have defined in Section 2.

In Figure 6 of Bowns (1996), these features and their motion are illustrated for a
plaid in which the directions of motion of the two component gratings differ by 10°
(directions of 90° and 100°). According to our analysis, the blobs in this plaid, which
appear to correspond approximately in shape to the maxL feature, have an edge ratio of

1:0.09, i.e. the blobs are highly elongated, and the longer edges move in an orthogonal
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direction of 95°, almost exactly equal to the vector sum direction of 93°. For a component
grating speed ratio of 1:0.5, our model gives for this plaid an initial direction estimate of
90°and a final direction estimate of 65°, i.e. 25° to the right hand (I0C = 19°) side of the
vertical, implying that in a forced choice decision of left or right of the vertical, as in the
Bowns (1996) experiments, a consistent IOC choice would be likely. At this point we
refer the reader back to our description and simulations of Bowns’ 1996 experiments in
Section 3.1. A different explanation is however given in Bowns (1996) for consistent

IOC result; namely that, as stated in the legend to Figure 6 "there are no edges that move
in the vector sum direction for this plaid". Hence it is concluded that the choice will
always be in the IOC direction.

In Figure 7 of Bowns (1996), avgL, maxL and minL are again illustrated for a plaid
in which the directions of motion of the two component gratings differ by 80° (directions
of motion of 90° and 170°). In the legend to the Figure it is stated again that "there are no
edges that move in the vector sum direction for this plaid". However, for this plaid our
analysis shows that the blobs are not elongated, having an edge ratio of 1:0.84, which
would predict a velocity estimate close to the 10C direction. Also for this a plaid, the 10C
direction (108°) is close to the vector sum direction (114°), and both are thus to the left of
the vertical. Our model gives initial and final velocity estimates for this plaid which are
both approximately equal to the I0C direction, thus predicting, in a forced choice of Jeft
or right of the vertical, a decision of left (vector sum), corresponding to the outcome in
the actual experiment, as indicated in the legend to Figure 7 of Bowns (1996).

Finally, in Figure 8 of Bowns (1996), avgl., maxL and minL are illustrated for a

plaid in which the directions of motion of the two component gratings differ by 40°




(directions of motion of 90° and 130°). In this case, the legend to Figure 8 indicates that

whilst neither of the features maxL or minl. have edges moving in the vector sum
direction, avgL. has an edge which moves in this direction. The inference is made that the
presence of this motion resulted in subjects performing variably with this plaid, one
perceiving it in the [OC direction (right of the vertical) and one in the vector sum
direction (left of the vertical). From our analysis, for this plaid, and a speed ratio of 1:0.5,
the blob edge ratio is 1:0.36, i.e. the blobs are somewhat elongated, and their long edges
move in an orthogonal direction of 110°, close to the vector sum direction of 103°. Our
model estimates a plaid velocity direction in the first step of the estimation algorithm of
95° (5° to the left of the vertical) and a final estimate of 73° (17° to the right of the
vertical). The IOC direction is 67°.

{Figure 7 about here}

The results from our simulations of the full range of plaids used in Experiment 2 of
Bowns (1996), of which those discussed above are a subset, are shown in Figure 7. The
plots in Figure 7 show the initial and final estimated plaid directions as a function of the
angular difference between the component grating directions for these plaids. The shaded
area in the centre of the graph indicates the range of component grating angular
differences which resulted in an inconsistent choice by subjects between "vector sum
direction" and "10C direction"” for the corresponding plaids. From these results, and our
discussion above, we suggest that the reason for the observed variability between subjects
in their choice of 10C or vector sum direction (Bowns, 1996) lies in the variability of
subjects in terms of the dependence of their direction perception on the duration of the

stimulus. As Yo and Wilson (1992) showed, subjects can display considerable
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differences in this dependence. In Figure 6 of Yo and Wilson, one subject (HRW)
reported a direction bias of 30° after ~90 msec. stimulus duration, from an initial bias of
~60° at 60 msec. Another subject (HJ) reported a direction bias of 15° after ~90 msec.,
from approximately the same initial bias at 60 msec. Significantly, the stimulus duration
used in the Bowns (1996) experiments was 80 msec. which would imply that a significant
variation in perceived bias between subjects at this duration was possible. A similar
variability to that reported by Yo and Wilson (1992) would therefore probably be
sufficient to cause the difference in direction choice between the two subjects in the
Bowns (1996) experiments.

Whilst our explanation contrasts with that of Bowns (1996), her explanation does
clearly indicate that there is present in the plaid pattern both motion in the vector sum
direction (in our analysis the orthogonal 1-D motion of the longer edges of the blobs) and
in the I0OC direction (in our analysis the 2-D motion of the blob end-points). She uses this
fact to propose that the variation between subjects may result from a competition between
these two sets of motion information. Our analysis suggests that a Bayesian process
which using both information sets can also predict this result.

Another analysis of Type Il plaid misperception based of the motion of features in
the plaid was presented in Bowns (2006). Here a squaring operation is performed on the
plaid and two "components" are identified: "sqHF" and "sqLF" which are derived from
the squared plaid. The description in Bowns (2006) shows that the "components" are in
fact two gratings formed from the squared plaid pattern, a high spatial frequency grating
and a low spatial frequency grating, with spatial frequencies and orientations defined in

the Appendix. They clearly relate to the product gratings, and have the same orientations
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and direction of motion as these, as illustrated in Figure 1(d) of Bowns (2006). Examples

of the values for the direction of motion of the sqHF and sqLF are also given for three
Type II plaids, which were also used in Bowns (1996), showing that the direction of
motion of the sqHF "component” is close to the vector sum direction. This led to the
proposal that the direction of motion of the "components" provided a better overall
predictor of the misperceived direction of these plaids than either the vector sum, as
suggested by Yo and Wilson (1992), or the IOC direction, as suggested by Adelson and
Movshon (1982). We clearly concur with this conclusion, as our predictions based on the
motion of the blob edges show. However, Bowns also suggests that there is no motion
energy in the plaids in the I0OC direction, so that a full explanation of the misperception
would "a model that incorporates both squaring and the IOC". Our model however
incorporates both the 1-D motion of the blob edges, which contain motion energy close to
the vector sum direction, and the 2-D motion of the blob end-points, which contain
motion energy in the 10C direction. Used together in a recursive Bayes estimation
framework, we have shown that this model closely predicts a wide range of results on
perceived direction of plaid motion.

In addition to providing plausible explanations for a wide range of existing
psychophysical and physiological results, new directions for experimental investigation
are suggested by our model, including monitoring the response to Type 11 plaid motion of
end-stopped cells (Hubel and Weisel, 1965; Pack et al, 2003) in layer 4b of area V1, the
layer which contains the majority of V1 neurons projecting to MT. We predict that such
experiments will indicate that these neurons signal the 2-D motion of the high luminance

regions in the plaid, for Type I plaids. Additionally, studies of the dynamic response of
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MT neurons to Type II plaids have, as far as we are aware, not been done, although a
stimulus consisting of a field of short bright bars (Lorenceau, Shiffrar, Wells, and Castet,
1993) mimics the high luminance regions in Type 11 plaids. For this bar-field stimulus,
Pack and Born (2001) showed that MT neurons initially respond primarily to the
component of motion perpendicular to a contour’s orientation, but over a period of
approximately 60 ms the responses gradually shift to encode the true stimulus direction,
regardless of orientation. Thus the responses of the MT cells closely parallel the
psychophysical responses of human observers to the motion of Type II plaids (Yo and
Wilson, 1992). Similar studies in which the responses of MT neurons are selectively
inhibited, by lesioning or reversibly cooling (Hupé, James, Payne, Lomber, Girard and
Bullier, 1998; Supér and Lamme, 2007) might also be able to test our hypothesis that the
local 1-D and 2-D local motion signals are combined to provide the perception of plaid
motion via a recursive estimation process, which we hypothesise is implemented in the
recurrent interaction between V1 and MT, an interaction which has been strongly
implicated in the perceptual awareness of visual motion (Lamme and Roelfsema, 2000;

Sterzer, Haynes and Rees, 2006)
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Figure Legends

Figure 1. Three examples (a-c) of the representation of a plaid (centre) as the sum (left)

or the product (right) of two gratings. The velocity space diagram above each plaid shows

the velocity vectors for each component grating, v, and v, together with the IOC and
vector sum velocity vectors v,,- and v, . The arrows on the gratings and plaids also
show their directions of motion, with the dashed arrow on the plaid showing the vector

sum direction.

Figure 2. a-c: Simulations of the computational model for three cases of Type 2 plaids

used in the experiments of Yo and Wilson (1992):
a. 91 =70.5 ,9: =48.2 W= 133‘ v, = 2’67’(;}'[ __'_0‘_?",“9':4 = 55,6_.
b. 6,=84.3.,0,=36.9",v, =0.25,v, =2,0,, =0°.6,, =41.7";

c. 6,=852°,6,=33.6 v, =04,v,=4,0,,. =0.6,, =37.8".

and for three different stimulus contrast levels. The results illustrate the dependence on
stimulus contrast of the initial and final estimates of plaid direction, and of the
convergence rate of the estimate towards the true 10C plaid direction. Presentation
duration is represented by the number of iterations of the algorithm. d-e: Vector space

diagrams showing the model simulation results for Experiment 3 of Bowns (1996). The

initial v_ and final v_ plaid velocity estimates from our model are shown together with

the component grating velocity vectors v, and v,, and the vector sum and I0C velocity

vectors.

Figure 3. Results from simulations of the computational model for the plaids used in the
experiments of Burke and Wenderoth (1993), showing in a and b both the perceived plaid

direction obtained in the experimental study ( A symbols) and the plaid direction
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estimated by the model (@ symbols). In Figure 3a the mean component direction is 295°,
and in Figure 3b this direction varies and is shown by the dashed line. The graphsaand b
show that the plaid direction estimated by the model varies with the difference in
component grating direction and displays in both cases the same trend in the variation as
observed in the Burke and Wenderoth (1993) study, although with a slightly greater bias
towards the mean component direction of up to 9°. From the original diagram for the

experimental results in this study, perceived errors were in the region of £3°.

Figure 4. Velocity space diagrams of the plaid used in the experiments of Yo and Wilson
(1992) and for which the model simulation results are shown in Figure 2a. a. diagram

illustrating the plaid, clearly showing the elongated blobs; b. velocity space diagram on

which the velocity vectors, v, and v, of the component gratings, together with their
constraint lines, the IOC and vector sum velocity vectors v,,. and v, , and the velocity

estimate from our model for the first step, v,,, are shown (0° is vertically upward in this

diagram). The inset diagram. is redrawn from Figure 15d of Weiss and Adelson (1998);
c. velocity space diagram showing the velocity vectors corresponding to the motion of the

longer and shorter edges of the blobs in the plaid, v, and v_, together with their constraint

lines, the IOC and vector sum velocity vectors, and the velocity estimates from our model

for the first step, v, , the fifth step v_,, and in the steady-state v_, . An explanation of the

diagrams is given in the text.

Figure 5. The two plaids used the model simulations of the experiments of Stone et al
(1990), showing the effect of the spatial frequency of the component gratings on blob
size and number. Both plaids correspond to an angular separation of component gratings
of 120°, 60° either side of the vertical (0°) and for each the contrasts of the component
gratings are in the ratio of 4:1. For the plaid in a. the spatial frequency of the component

gratings is twice that for the plaid on the right.




Figure 6. Results from simulations of the computational model for the plaids used in the
experiments of Alais et al (1997) showing the perceived plaid direction as a function of
spatial frequency obtained in the experimental study, for the 3° aperture case ( A symbols)
and the plaid direction estimated by the model (e symbols). The estimates of the plaid
direction are very similar to the perceived values (within 4°) and show the same trend,
with a decrease in the misperceived direction bias as the spatial frequency of the
component gratings increases. From the original diagram for the experimental results in

this study, perceived errors were in the region of +2°.

Figure 7. Resulits from simulations of the computational modei for the plaids used in
Experiment 2 of Bowns (1996), showing the initial and final estimated plaid directions as
a function of the angular difference between the component grating directions for these
plaids. The shaded area in the centre of the graph indicates those component grating
angular differences which resulted in an inconsistent choice by subjects between "vector
sum direction” and "IOC direction" for the corresponding plaids (see the text in the

Discussion section for a further discussion of these results).

45







Estimated direction (deg)

Estimated direction (degq)

Estimated direction (deg)

Figure 2

&
25%
A 50%
100%
45 - :H
a0 -
a0l
20 -
15— : ve
0 5 0 15 20 25 30 35 40
Presentation duration (iteration)
30; o : ~
25%
50%
25 100% :
20 -
15
1174
5 s 10 15 e 3 £ = ©
Presentation duration (iteration)
s
.- p— = vo— v
25%
50%
70 |- —100% |
15
10
% 5 10 15 20 25 30 35 40

Presentation duration (iteration)

L




\
|

Plaid direction (deg

Plaid direction (deg)

("]

Figure 3

—8— estimated

» perceived
L
®
¥
10 20 . 30 -1_3

Component grating separation (deg)

L ]
E ]
—e— estimated |
L perceived
20 30 40

Component grating separation (deg)









265

N N N ]
= o o g
] (=] n

Perceived direction (deg)

5]
£
o

235

230

Figure 6

@ perceived !

estimated |
®
#
2
0.75 1.5 30

Spatial frequency (cycl/deg)

6.0




Direction (degrees)

120 7

110 7

50 +

30 +

10

—#*— final estimate
% |nitial estimate
—*— vyector sum
—2—- |0C

10 20 30 40

v

50

T

70 80 90

Component angular difference (degrees)




	Bayesian model of the dynamics of motion integration in smooth pursuit and plaid perception
	Recommended Citation

	tmp.1730155107.pdf.byxQ6

