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A Computational Model of Innate 
Directional Selectivity Refined by 
Visual Experience
Samantha V. Adams & Christopher M. Harris

The mammalian visual system has been extensively studied since Hubel and Wiesel’s work on cortical 
feature maps in the 1960s. Feature maps representing the cortical neurons’ ocular dominance, 
orientation and direction preferences have been well explored experimentally and computationally. 
The predominant view has been that direction selectivity (DS) in particular, is a feature entirely 
dependent upon visual experience and as such does not exist prior to eye opening (EO). However, 
recent experimental work has shown that there is in fact a DS bias already present at EO. In the 
current work we use a computational model to reproduce the main results of this experimental work 
and show that the DS bias present at EO could arise purely from the cortical architecture without 
any explicit coding for DS and prior to any self-organising process facilitated by spontaneous activity 
or training. We explore how this latent DS (and its corresponding cortical map) is refined by training 
and that the time-course of development exhibits similar features to those seen in the experimental 
study. In particular we show that the specific cortical connectivity or ‘proto-architecture’ is required 
for DS to mature rapidly and correctly with visual experience.

Aspects of the mammalian visual system such as retinotopy [point-to-point topographic connections 
between the retina, lateral geniculate nucleus (LGN), and cortical visual area 1 (V1)], and cortical maps 
for ocular dominance (OD), orientation (OR) and directional selectivity (DS) have all been well studied 
experimentally. In some species (such as ferrets, cats, and primates) cortical maps for OR and DS possess 
a distinct patchy structure with features such as pinwheels, saddle points and discontinuities1–3. In these 
species, DS appears to arise first in visual cortex and depends on cortical developmental plasticity after 
eye-opening (EO)4, but exactly how this occurs and the importance of pre-EO structures are poorly 
understood.

Earlier studies showed that significant OR maps were already present at EO, but that DS maps devel-
oped post-EO with visual experience5,6. However, a weak DS bias has been recently reported at EO in 
ferret, which then develops rapidly with visual experience during the first few weeks7,8. The implication 
is that DS may be present prior to visual experience9. However, whether this precocious DS is activity 
dependent is unclear. There is some experimental evidence to suggest that pre-EO neural activity (retinal 
waves) may be responsible4,7, and this has also been investigated in several computational studies10–13. 
It is also possible that merely testing for DS is sufficient to develop DS in an incipient network. A third 
possibility is that DS exists independent of neural activity and is laid down by physical growth of a neural 
‘proto-architecture’ in the form of retino-LGN-V1 network connections. Such a proto-architecture could 
potentiate rapid learning once visual experience becomes available.

In a recent modelling study, we proposed an artificial spiking neural network model to investigate 
how its structure and connectivity could provide an initial DS capability prior to visual experience14 
(Fig. 1). The advantage of a modelling approach is that we could switch off the network’s learning ability 
to examine DS which is not possible in-vivo. We found that a basic cortical structure with ‘Mexican hat’ 
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connectivity, distance-dependent delays, and afferent input layer with ‘receptive fields’ produced DS and 
OR maps similar to those seen experimentally (and in previous modelling studies).

We concluded that this ‘innate’ structure was sufficient to produce DS prior to any visual experience. 
Experimental findings from ferret have shown that DS at EO was stronger in layer 4 of V1 than layer 2/3, 
and that layer 4 DS developed more rapidly up to post-natal day (PND) 358. Therefore, as it seems likely 
that our prospective proto-architecture for DS resides in layer 4 of V1, in the current work we specifically 
compare our results with learning to those found for layer 4.

Given this functionally plausible model, we now ask two fundamental questions. First, does this 
proto-architecture learn from visual experience in the same way that real networks do? That is, is there 
refinement of the patchy DS map with training, or is the patchiness lost? To test this, we employed spike 
timing dependent plasticity (STDP) as a biologically plausible learning rule. We show that the major 
features of the natural developmental time course of DS and OR are reproduced and we investigate how 
this plasticity operates to cause refinement of DS.

Second, does a proto-architecture provide any selective advantage to the organism, such as facilitating 
learning after EO? We show that ‘lesioning’ the model disrupts the ability to learn from visual experience, 
and that an initial structure is essential for rapid learning. In conclusion, we propose that for mammals 
that develop patchy cortical DS and OR maps, a proto-architecture is likely to be an essential component.

Results
Visual experience sharpens DS and OR selectivity.  We used Spike-Timing Dependent Plasticity 
(STDP) (see Learning subsection in Methods) on all the connections in the model. We generated ten 
randomly initialised networks and trained them with 50 random presentations of a bar object moving 
in one of eight different directions (replicating the ‘visual experience’ of real animals after EO). Before 
switching on learning, the initial DS preference map was patchy (Fig. 2a). After switching learning on, 
the patchiness was not lost but became more delineated with sharper boundaries (Fig. 2b,c). As training 
progressed the maps developed characteristics seen in experimentally derived maps such as areas of 
smoothly changing preference, fracture lines and saddle points1,2. To quantify the strength of preference, 
we employed a ‘selectivity index’ (SI) for neurons in the networks at various stages of training using a 
vector average method (see Supplementary Methods). SI takes on values between 0.0 (no preference) 

Figure 1.  Overview of the network architecture. Moving left to right across the figure, input patterns are 
generated by moving bar-like objects in front of the DVS camera. This generates a 128 ×  128 sized array of 
spike events (black and white pixels). These are applied directly to the Input layer which is also 128 ×  128. 
The connections from the Input layer to the LGN layer are such that sixteen neurons (shown in Box 1) in 
the Input layer are fed into one neuron in the LGN layer thus achieving a down-sampling to 32 ×  32. The 
LGN layer is connected to the Cortical layer with overlapping connection fields (neurons shown in Box 2) 
so that each cortical neuron sees only a portion of the LGN. The cortical layer has recurrent connections in 
a Mexican hat arrangement (short range excitatory connections between neighbouring neurons and longer 
range inhibitory connections between more distant neurons).
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and 1.0 (exclusive preference for one direction or orientation). The average DS SI increased with training 
from 0.1 to 0.32, and compares favourably with experimental measurements of average DS SI in ferret of 
0.12 at EO to 0.30 at postnatal day (PND) ≥  358. OR preference maps showed a similar pattern of devel-
opment. Average OR SI increased with training from 0.21 to 0.36 compared with experimental meas-
urements in ferret of 0.24 at EO to 0.48 at PND ≥  358. Figure 3a,b) (top) shows cumulative percentage 
curves of SI calculated for all neurons over all runs for the initial (EO) condition (grey dashed line) and 
the trained condition (solid black line). Figure 3c,d) (bottom) shows the experimental curves8 for layer 4.

Our computationally derived curves are similar to the experimental ones. The initial curves show 
distinct ‘corner’ shapes (in particular DS) shifted to the left reflecting the low average SIs. Training 
increased the selectivity strength for both DS and OR considerably causing a distinctive rightwards shift 
and a more S shaped curve exactly as seen in8 (Mann-Whitney test, α  =  0.05, n =  36000, p <  2.2e-16 ).

We also investigated how responses to the preferred and null directions and orthogonal orientation 
changed over time compared to experimental data8. The preferred direction is the direction for which 
the neuron has the largest response (number of spikes generated during a pattern presentation), the null 
direction is the opposite direction to the preferred and the orthogonal orientation is at 90 degrees to the 
preferred/null directions. We collected responses to all directions for all neurons in one run, and to ena-
ble comparisons for all neurons we shifted the data so that the preferred direction response was always 
aligned at 0 degrees for all neurons and therefore the null direction and orthogonal orientation responses 
also aligned at 90 and 180 degrees respectively. Any neurons which did not respond to any direction 
were discarded. We performed Mann-Whitney tests for three specific comparisons (with adjusted alpha 
of 0.0167 for 95% confidence level after a Bonferroni correction): comparing changes in response to 

Figure 2.  Extracts from direction preference maps. Intact connectivity conditions: (a) Initial/ at EO, (b) 
mid-training, (c) after training. Disrupted connectivity conditions: (d) Initial/ at EO, (e) mid-training, (f) 
after training. We created direction preference maps using a standard vector average method (described 
more fully in Supplementary Methods) and extracted the same rectangular area for each. Numbers indicate 
the average selectivity (SI). (a) shows how in the intact connectivity case the initial map is patchy and 
there are some areas of smoothly varying preference but the map is immature and does not have all the 
features seen in mature maps. (b,c) show the effects of training to refine the selectivity and the arrangement 
of preferences to form a smoothly varying map. In (d) the initial case for disrupted connectivity, there is 
no evident map structure and selectivity is so low that distinct preferences cannot be detected. (e,f) with 
training, many neurons acquire a preference for one of the directions as shown by the speckling in the map. 
However, there is no true map structure with patches of similar preference smoothly varying across the 
cortical area as in (b) and (c).
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preferred direction in the initial and midway cases (n =  3285, 3319, average response increased from 
0.23 to 0.34, p <  2.2e-16) ; to the null direction in the midway and final cases (n =  3285, 3352, average 
response decreased from 0.16 to 0.12, p <  2.2e-16) and to the orthogonal orientation in the midway and 
final cases (n =  3285,3352, average response decreased from 0.08 to 0.07, p <  2.2e-16). Figure 4 shows the 
average responses to all directions for the initial, midway and final cases. To compare with8, we fitted the 
three cases separately with a double Gaussian function, with the preferred mean set at 0 degrees, and the 
null mean at 180 degrees. The standard deviations of the preferred and null Gaussians were constrained 
to be the same, and found using the least-squares method. As training progressed, the responses to pre-
ferred and null directions change from being roughly equal to a situation where the preferred response 
was much larger, indicating that the neurons had developed DS. These results are in agreement with 
those of8 who found that the response to the preferred direction increased in the first half of training 

Figure 3.  Intact connectivity: cumulative % curves of selectivity (SI) for (a) DS and (b) OR generated 
from our computational model and (c) DS and (d) OR generated from experimental data for layer 4 (same 
data as shown in Figs 3c and 4c from8). In (a) and (b) the Selectivity Index (SI) for both DS and OR has 
been calculated for all neurons from ten randomly initialised networks both before and after training and 
cumulative percentage curves calculated to show the distributions. (a) distributions for DS for the initial 
(grey dashed line) and trained (solid black line) cases. (b) distributions for OR for the initial (grey dashed 
line) and trained (solid black line ) cases. In both cases the effect of training is to shift the curve rightwards 
and increase the average selectivity. (c) DS for layer 4 neurons at EO (grey dashed line) and at PND ≥  35 
(solid black line). (d) OR for layer 4 neurons at EO (grey dashed line) and at PND ≥  35 (solid black line). 
With visual experience the average selectivity for both DS and OR increases. The distribution curves shift to 
the right maintaining a proportion of low and high responders.
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(EO to PND <  35) and the responses to the null direction and orthogonal orientation decreased in the 
second half of training (PND <  35 to PND > =  35). Our Fig.  4 closely resembles the experimentally 
derived tuning curves in Fig. 2 from8.

Disruption of initial afferent and lateral connectivity prevents training from refining OR and 
DS.  In order to further investigate the importance of the network structure in delivering an early DS 
capability, we examined the effect of disruptions to the initial structure on the ability to develop mature 
DS. In our previous work we examined how changing afferent and lateral connectivity from the default 
case affected the proto-architecture’s innate ability to represent DS and OR in the ‘EO’ condition14. We 
found that the worst disruption occurred when there was no receptive field structure in the afferent con-
nections (i.e. the LGN and Cortical layers were fully connected) and when the extent of lateral inhibition 
in the Cortical layer was reduced. In the current work we investigated whether the same connectivity 
disruptions affected the network’s ability to refine with visual experience or in fact capability is restored 
by training. We performed learning experiments with both full LGN-Cortical connectivity and the spa-
tial range of lateral inhibition drastically reduced. This was done by forcing the lateral inhibition to zero 
at distances greater than eight units, effectively reducing the range from approximately five times the 
excitatory range down to only two times. All other network parameters (e.g. starting weights) were kept 
the same.

Five randomly initialised networks were generated with disrupted afferent and lateral inhibitory con-
nectivity and trained in the same way as for the intact case. Initially, selectivity was so low it was impos-
sible to assign strong preferences to neurons hence the complete lack of features (Fig. 2d). As training 
progressed through mid-training (Fig.  2e) to the final state (Fig.  2f), individual neurons did acquire 
preferences but no coherent map emerged. Average SI strength increased for DS from 0.02 to 0.12 and 
for OR from 0.09 to 0.11, but final values were much weaker compared to the intact case. The impact 
of connectivity disruption on training was very clear in the cumulative percentage curves (Fig. 5). The 
initial distributions (grey dashed line) comprised of only very low SI values, and the trained curves 
(solid black line) showed some shift to higher Sis but only for low strengths. The cumulative percentage 
distributions seen in the intact connectivity case and in the experimental data (Fig. 3a–d) were absent.

Uni and bi – directional training alter initial DS biases in favour of the trained direc-
tions.  Experimental studies have examined the extent to which the initial DS bias in ferret could 
be overridden by visual experience with either training in only one direction7, or with two directions 
only (same orientation)6. For comparison, we performed the same training with our network. For the 
uni-directional case, we trained only with stimuli moving left to right (direction E) and found that the 
number of neurons that acquired a preference for this direction (with a tolerance of + /− 5°) increased 
(n =  154) compared to the case when trained with all eight directions (n =  133). We also found that the 
average DS selectivity index (SI) after training was larger for the neurons which had a preference for the 
trained direction (SI =  0.45) compared to all other neurons (SI =  0.23) (Mann-Whitney, p <  2.2e-16 ). It 
should be noted, however, that all neurons increased their DS SI significantly from the initial untrained 

Figure 4.  Changes in response to null and preferred direction and orthogonal orientation during 
training. Responses (y axis) are normalised rate. Raw data points are overlaid with fitted double Gaussians 
with the preferred response fixed at 0. (a) Initial case before training, (b) midpoint of training and (c) at the 
end of training. As training progressed the responses to preferred and null directions change from being 
roughly equal to a situation where the preferred response is much larger indicating the development of 
DS. In agreement with the experimental results of8, the response to the preferred direction (pref) increases 
greatly in the first half of training. The responses to the null direction (null) and orthogonal orientation 
(orth) decrease during the second half of training. *indicates differences across conditions that were 
significant with Mann-Whitney pairwise tests.
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case where average SI was 0.09. These results mainly agree with experiment, except that we found that 
training was very effective in changing neurons’ initial preference regardless of the strength or direction 
of that bias, whereas7 observed that neurons with an initial strong bias opposite the trained direction 
did not change their bias.

For bi-directional training we used stimuli moving rightward (direction E) and leftward (direction W) 
and ensured there was approximately an equal number of presentations of each direction. The number 
of neurons that acquired a preference for the E direction (+ /− 5°) increased (n =  141) compared to the 
case when trained with all eight directions (n =  133). The number of neurons that acquired a preference 
for the W direction (+ /− 5°) decreased (n =  113) compared to the case when trained with all eight direc-
tions (n =  149). We also found that the average DS selectivity index (SI) after training was larger for the 
neurons which had a preference for one of the trained directions. For direction E, SI =  0.22 compared to 
non-trained directions SI =  0.21 (Mann Whitney, p =  0.01657). For direction W, SI =  0.28 compared to 
non-trained directions SI =  0.21 (Mann Whitney, p =  0.000655).

Weight increases on Cortico-Cortical connections are the primary driver for refinement 
of DS.  To investigate in more detail how the plasticity method we used caused refinement of DS 
with visual experience we firstly examined weight changes on the afferent (LGN-Cortical) and lateral 
(Cortico-Cortical) connections after uni-directional training. We selected neurons which acquired a 
preference for the trained direction (moving left to right) with low, medium and high SI values and meas-
ured the change in connection weights. Figure 6a (left) shows plots of LGN-Cortical weight (initial-final) 
for three example neurons. We saw a clear asymmetry in the weight changes related to the training 
direction - generally there are weight increases on the left and decreases on the right on all three plots 
in Fig. 6a. We also found that the asymmetry was more pronounced as SI increased. Figure 6b (right) 
gives an example of lateral excitatory and inhibitory weight changes typical for all neurons examined. 
Excitatory and inhibitory lateral weights strengthened during the course of training but we saw no asym-
metry related to the training direction, however, larger weight increases occurred on synapses to neurons 
with larger SI values. These results implied that plasticity on both afferent and cortical connections con-
tributed to the development of DS.

To further clarify the relative roles of afferent and lateral weight changes we firstly repeated the 
uni-directional training experiment, disabling afferent and lateral plasticity in turn. Secondly, to examine 
the impacts on SI distribution and DS map structure we performed experiments training with all eight 
patterns with plasticity disabled on the afferent and lateral connections in turn. We found that with corti-
cal plasticity disabled, there was no significant refinement of DS. For the uni-directional training, average 
SI for the neurons which had a preference for the trained direction increased slightly (SI =  0.11) com-
pared to other neurons (SI =  0.09), but this was not statistically significant (Mann-Whitney, p =  0.5921). 

Figure 5.  Disrupted Connectivity: cumulative % curves of selectivity (SI) for (a) DS and (b) OR for 
untrained (grey dashed line) and trained (solid black line) cases. The Selectivity Index (SI) for both DS and 
OR has been calculated for all neurons for five randomly initialised networks with disrupted connectivity 
both before and after training and cumulative percentage curves calculated to show the distributions. (a) 
distributions for DS for the initial (grey dashed) and trained (solid black) cases. (b) distributions for OR for 
the initial (grey dashed) and trained (solid black) cases. In both cases the initial curves are different to those 
for the intact case in Figs. 3a and b and training does not shift the curves rightwards or increase selectivity 
by a large amount.
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Examples of afferent weight changes without cortical plasticity are given in Fig. 7a. These weights show 
asymmetry in parts but are not as smoothly varying and do not show the relationship to the train-
ing direction or SI as seen in Fig.  6a. Figure  8a,b show the cumulative percentage graph and DS map 
extract for training with all patterns with cortical plasticity disabled. The average SI, distribution of 
SI and the DS map are very similar to those from the untrained state (see Fig.  2a and Fig.  3a, grey 
dashed line for comparison). With only afferent plasticity disabled, refinement of DS occurred nor-
mally. For the uni-directional training, average SI for neurons that acquired a preference for the trained 
direction increased (SI =  0.45) compared to other neurons (SI =  0.23) and was statistically significant 
(Mann-Whitney, p <  2.2e-16), so a very similar result to training with both afferent and cortical plas-
ticity enabled. Figure 7b shows an example of typical excitatory and inhibitory cortical weight changes. 
Weights increased on both excitatory and inhibitory connections in a similar manner to when both affer-
ent and lateral plasticity were enabled. Again we saw no asymmetry particularly related to the training 
direction. Figure  8c,d show the cumulative percentage graph and DS map extract for training with all 
patterns with afferent plasticity disabled. The average SI, distribution of SI and the DS map were very 
similar to the trained state (see Fig. 2c and Fig. 3a, solid line for comparison). These results imply that, 
in our model, cortical plasticity is in fact the main driver for refinement of DS. Cortical plasticity seems 
to contribute somewhat to weight changes on the afferent connections as the asymmetry related to the 
training direction was more pronounced when cortical plasticity was enabled.

Discussion
Our simple computational model (Fig. 1) generates patchy preference maps of directional selectivity prior 
to any training (Fig. 2a). This was observed by switching off any weight updating (learning) during test-
ing, which is not possible in natural experiments. Our data closely match the experimental distributions 

Figure 6.  Effects of uni-directional training on neurons’ afferent and lateral connection weights, (final 
– initial) weights are plotted in all cases. (a) Changes in afferent (LGN-Cortical) weights for neurons of 
different SI (b) Typical changes in lateral excitatory and inhibitory weights (solid black and white pixels 
indicate the location of the neuron in question). Following training only with stimuli moving left to right 
afferent connections show asymmetric weight changes in keeping with this direction and the asymmetry 
is stronger with stronger SI. Lateral weight changes do not show asymmetry related to the training 
direction but there is strengthening in both short range excitatory connections and longer range inhibitory 
connections.
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for DS and OR in layer 4 of ferret V1 at EO8, implying that the model is sufficient to capture important 
features of the connectivity in layer 4 of V1. It also shows that the initial DS bias observed experimentally 
at EO8 may indeed arise from the structure of the network prior to any visual experience, rather than an 
artefact of rapid learning during testing.

For these initial maps to emerge, afferent receptive fields and lateral cortical connections (excitatory 
and inhibitory) were necessary. We found that lateral cortical inhibition was crucial, which is in agree-
ment with experimental evidence that cortical inhibition plays an important part in the development of 
OR and DS15–17.

After switching on learning, we observed that exposure to visual input increased the degree of selec-
tivity in DS and OR maps with sharper delineation among patches, but also with a distinctive spread of 
selectivity indicating that many neurons increased their selectivity, such that a distribution of neurons 
with low and high selectivity emerged as in8. This learning was remarkably rapid needing only 25–50 
presentations of a moving object, which is a very small amount of training compared to typical com-
putational studies (for example, 6000 presentations in10 and 20,000 image presentations in12). In the 
ferret, training has also been observed to be very rapid after EO8 – so much so that the experimental 
procedure for measuring the DS and OR of neurons needed to account for any training effect caused 
during measurement.

We previously disrupted the initial connectivity in various ways to explore which key features con-
tributed to innate DS (structured afferent receptive fields and sufficient lateral inhibition in the Cortical 
layer) and in the current work have assessed the impact of these same disruptions on learning. We found 
that initial DS/OR selectivity was much weaker than with intact connectivity, and with learning switched 
on, recovery did not occur. We gave one of our disrupted networks double the amount of training and 

Figure 7.  Effects of uni-directional training on neurons’ afferent and lateral connection weights when 
either afferent or cortical plasticity was disabled, (final – initial) weights are plotted in all cases. (a) 
Changes in afferent (LGN-Cortical) weights for neurons of different SI when cortical plasticity was disabled 
(b) Typical changes in lateral excitatory and inhibitory weights when afferent plasticity was disabled (solid 
black and white pixels indicate the location of the neuron in question). When cortical plasticity was disabled 
and the network trained only with stimuli moving left to right, afferent connections show changes but these 
do not obviously match the training direction and there is no particular relationship to SI. With afferent 
plasticity disabled, lateral weight changes were similar to when both afferent and cortical plasticity were 
enabled: they do not show asymmetry related to the training direction but there is strengthening in both 
short range excitatory connections and longer range inhibitory connections.
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still saw no improvement, showing that a permanent impairment was caused by the disrupted connec-
tivity. In particular the distributions of DS/OR selectivity were markedly different and we did not see the 
formation of patchy cortical maps.

In order to explore the plasticity mechanism further we performed experiments training with uni- 
and bi-directional stimulus motion and disabling either afferent or cortical plasticity. For uni-directional 
training, DS SI increased more for neurons with a preference for the training direction, as seen exper-
imentally7. More neurons were converted to the training direction than when trained with all eight 
directions, as also seen experimentally7. We also found that training was able to completely override 
the initial DS biases of neurons, which contrasts with experimental data7 where neurons with an initial 
bias opposite to the training direction were less likely to be converted. For the bi-directional training 
we found that DS SI increased for both directions, as seen experimentally6 but the numbers of neurons 
converted only increased for one of the directions. A possible reason for these discrepancies is that only 

Figure 8.  Cumulative percentage curves and extracts from the DS map for training when either afferent 
or cortical plasticity was disabled. (a,b)—cortical plasticity disabled (c,d)—afferent plasticity disabled. 
When cortical plasticity was disabled, refinement of the DS map and increase in SI did not occur. The 
cumulative percentage curve in (a) looks similar to the untrained case shown in Fig. 3a (grey dashed line). 
The DS map in (b) looks similar to that of Fig. 2a. When afferent plasticity was disabled, refinement of the 
DS map and increase in SI proceeded normally. The cumulative percentage curve in (c) looks similar to the 
trained case shown in Fig. 3a (solid line). The DS map in (d) looks similar to that of Fig. 2c.
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layer 2/3 neurons were examined experimentally6,7 and it is possible that the time-course or mechanism 
of plasticity may be different in layer 4. Following the uni-directional training experiment, we analysed 
the weight changes on both afferent and lateral connections for neurons which acquired a preference for 
the trained direction. For the afferent connections, asymmetric receptive fields developed after training 
with one direction of motion and also the asymmetry increased with DS SI. Increases in both lateral 
excitatory and inhibitory connections were observed, and were larger for neurons with larger SI but 
they were not asymmetric. From further experiments disabling either afferent or lateral plasticity we 
found that cortical plasticity alone was necessary and sufficient to explain the refinement of DS in our 
network (in terms of average SI, distribution of SI and changes in map structure). These results imply 
that initial weak DS in V1 could arise purely from the cortical connectivity and become stronger through 
strengthening of weights on only the cortico-cortical connections. The role of afferent connections in DS 
is unclear. From our previous work it appears they contribute something to the initial capability for DS14 
but the current work we did not find that plasticity on afferent connections was required to replicate the 
refinement of DS seen in experiments.

Our model appears to be a minimal model inasmuch as it contains necessary and sufficient connec-
tivity to replicate the observed experimental distributions of OR and DS at EO. With training, selectivity 
refined and distinctive maps with a smoothly varying patchy structure emerged, and various ‘lesions’ 
of the initial connectivity led to failure. We have not modelled how this proto-architecture itself grows. 
Presumably it results from a complex process of cellular replication and migration, steering of axonal and 
dendritic growth, and excitatory and inhibitory synaptogenesis that is ultimately genetically controlled. 
Such processes have been explored in computational studies18–20. Clearly, the output of this pre-EO pro-
cess greatly influences the post-EO plastic development of DS and OR maps, and hence the long-term 
phenotype. How variation in this growth impacts on post EO function remains to be explored. We also 
have not yet considered the role of structural plasticity (synaptogenesis and pruning) and critical periods 
but intend to do so in future work.

As we have shown here, computational modelling of biological neural networks can be an important 
tool to complement and supplement experiments in developmental plasticity. With computational mod-
els, it is possible to do things that cannot be done experimentally – for example run many more trials, 
sample more neurons, experiment with different stimulation, investigate alternative learning paradigms, 
and switching off learning entirely. Such models can help us understand the relative roles of prenatal 
structural development and postnatal developmental plasticity.

Methods
Our system architecture is predominantly the same as described in Adams & Harris14. More details of the 
network construction, initial parameters and neuron models are given in the Supplementary Methods. 
Here we restrict ourselves to summarising only the main features and new additions relevant to the 
current work.

The Visual Map Architecture.  Figure 1 shows the network architecture. The Input layer consists of 
128 ×  128 neurons and relays spike data into the network at the same resolution as the DVS camera we 
use to capture the moving input. The Input layer is connected to the 32 ×  32 LGN layer with feed-forward 
excitatory connections with fixed weights of value 1.0. These connections are set up such that a 4 ×  4 con-
nection field (CF) from the Input layer is connected topologically to 1 neuron in the LGN layer (Box 
1 in Fig.  1) and effects a down-sampling from 128 ×  128 to 32 ×  32. The ‘Cortical’ layer consists of 
60 ×  60 neurons of which 20% are randomly assigned as inhibitory and 80% as excitatory. The LGN and 
Cortical layers are not fully connected: each cortical neuron only ‘sees’ neurons from the LGN layer 
within a feed-forward connection field. See Box 2 in Fig.  1. The connection fields from each Cortical 
neuron overlap. The Cortical layer is also recurrently connected: there are sparse lateral connections and 
these follow a ‘mexican hat’ profile of short-range excitation and long-range inhibition. Input, LGN and 
Cortical neurons are modelled as spiking neurons using a simple Leaky Integrate and Fire (LIF) model.

Input Patterns.  Simplified but naturalistic visual stimulation is provided using data captured with 
a DVS-128 Silicon Retina Camera. The DVS camera is a specialised neuromorphic device that gener-
ates spike events in response to luminance changes in the individual pixels in the camera’s 128 ×  128 
array and the spikes can be directly injected to the network with minimal processing (apart from the 
down-sampling mentioned above). An extended bar object (as shown in Fig. 1) was moved across the 
camera lens in eight different directions (N, NE, E, SE, S, SW, W and NW) and the data logged in a 
file. Ten repeats of each direction were captured to provide variability. For more details of the DVS-128 
camera and the information extraction and processing of the data it generates see References 21–23.

Learning.  Previous experimental and modelling studies have shown that Spike-Timing Dependent 
Plasticity (STDP) is a plausible mechanism in real neurons24–26. The relative firing times of pre- and 
post-synaptic neurons influence the strengthening or weakening of connections. When a pre-synaptic 
spike is emitted before a post-synaptic spike within a specified time window, there may have been a 
causal effect and the synaptic connection between the neurons is strengthened (Long Term Potentiation 
or LTP). In contrast, when the post-synaptic spike occurs first then it cannot have had a causal effect on 
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presynaptic firing and the connection is weakened (Long Term Depression or LTD). The computational 
modelling study of12 showed how robust cortical directional selectivity could arise using STDP with an 
asymmetric time window combined with distance dependent delays between cortical neurons. We have 
adopted this method on both LGN-Cortical afferent and Cortical-Cortical lateral connections. The STDP 
weight change rules for the LTP and LTD elements are given as equations (1) and (2).

τ
∆ =





−
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

 ( )
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
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where:
Δ wltp, Δ wltd are the magnitudes of the weight changes
Δ t is (firing time of the pre-synaptic neuron – firing time of the post-synaptic neuron)
τltp, τltd are the LTP and LTD time constants.
Altp, Altd are the LTP and LTD learning rates for STDP.
In most formulations of STDP the LTD rate (Altd) is set slightly higher than the LTP rate to ensure 

stability25 and we have adopted this approach. See Table  1 for details of the parameter values we used 
in our learning experiments. Equations  (1) and (2) result in an STDP window where the LTP part is 
an exponential curve as in regular STDP25 but the LTD part is represented by an alpha function as 
introduced in12. The effect of this asymmetric window is that LTD is deeper and persists over a longer 
timescale than LTP.

STDP is a form of Hebbian learning and in its standard form weights will continue to increase or 
decrease unbounded. Most computational studies therefore include some form of mechanism to coun-
teract this such as global normalisation or hard limiting of synaptic weights. To avoid the need for such 
artificial measures we employed weight dependant updates27:

Δ = Δ ( )w w 3ij ltp

= + Δ ( )+w w w 4t t1

Δ = + Δ ( )w w1 5ij ltd

= ∆ ( )+ ·w w w 6t t1

Equations (3) and (4) are the update rules for LTP. In (3), the proposed weight change for a synapse 
between presynaptic neuron i and postsynaptic neuron j (Δ wij) takes the value Δ wltp directly from equa-
tion (1). In (4) the new weight of the synapse is calculated by adding the value from (3) to the existing 
weight. In (5) (LTD), (Δ wij) is calculated as 1+  the value Δ wltd (from equation (2)) and in (6) the new 
weight of the synapse is calculated by multiplying the value from (5) by the existing weight. The effect 
for LTD is that Δ wij is a value less than 1.0 (as Δ wltd is always negative) and when multiplied by the 
existing weight results in a decrease.

Experimental Procedure.  For each experiment randomly initialised networks were generated with 
either the intact or disrupted connectivity and trained as follows:

•	 One of the eight directions (N, NE, E, SE, S, SW, W and NW) was randomly selected

Learning Rule Parameters Value

Apa, Afferent LTP rate 0.02

Ama, Afferent LTD rate − 1.05 · Ap

Apl, Lateral LTP rate 0.01

Aml, Lateral LTD rate − 1.05 · Ap

τltp, LTP time constant 11 ms

τltd, LTD time constant 20 ms

Table 1.   Summary of STDP parameters.
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•	 One of 10 different instances of pre-recorded data for that direction was selected
•	 The corresponding data file was loaded and the spike events processed to lists of x,y coordinates and 

timestamps
•	 Spike events were applied to the Input layer (128 ×  128)
•	 Neural processing started
•	 Spikes were down-sampled and processed through the LGN layer (32 ×  32) and propagated into the 

Cortical layer
•	 Afferent and Lateral learning (as per equations 1–4) was applied continuously
•	 Once all spikes in the sequence had been processed, the network was reset for the next pattern (i.e. 

there is no interaction between successive presentations).
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