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Abstract 
 

We tested the hypothesis that acute supplementation with nitrate (NO3
-)-rich beetroot juice 

(BR) would improve quadriceps muscle oxygenation, pulmonary oxygen uptake ( O2) kinetics 

and exercise tolerance (Tlim) in normoxia and that these improvements would be augmented in 

hypoxia and attenuated in hyperoxia.  In a randomized, double-blind, cross-over study, ten 

healthy males completed two-step cycle tests to Tlim following acute consumption of 210 mL 

BR (18.6 mmol NO3
-) and NO3

--depleted beetroot juice placebo (PL; 0.12 mmol NO3
-).  These 

tests were completed in normobaric normoxia [fraction of inspired oxygen content (FIO2): 

21%], hypoxia (FIO2: 15%) and hyperoxia (FIO2: 40%).  Pulmonary O2 and quadriceps tissue 

oxygenation index (TOI), derived from multi-channel near-infrared spectroscopy, were 

measured during all trials.  Plasma [nitrite] was higher in all BR compared to all PL trials 

(P<0.05).  Quadriceps TOI was higher in normoxia compared to hypoxia (P<0.05) and higher 

in hyperoxia compared to hypoxia and normoxia (P<0.05).  Tlim was improved after BR 

compared to PL ingestion in the hypoxic trials (250 ± 44 vs.  231 ± 41 s; P=0.006; d=1.13), 

with the magnitude of improvement being negatively correlated with quadriceps TOI at Tlim (r 

= -0.78; P<0.05).  Tlim was not improved following BR ingestion in normoxia (BR: 364 ± 98 

vs.  PL: 344 ± 78 s; P=0.087, d=0.61) or hyperoxia (BR: 492 ± 212 vs.  PL: 472 ± 196 s; 

P=0.273, d=0.37).  BR ingestion increased peak O2 in hypoxia (P<0.05), but not normoxia or 

hyperoxia (P>0.05).  These findings indicate that BR supplementation is more likely to 

improve Tlim and peak O2 in situations when skeletal muscle is more hypoxic.                

 

 
Key Words: nitric oxide; vascular function; oxidative metabolism; exercise performance; 

fatigue; near-infrared spectroscopy  
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1. INTRODUCTION 
Nitric oxide (NO) is a free radical that impacts a plethora of physiological processes in skeletal 

muscle [1,2] and has implications for skeletal muscle fatigue development [3,4].  Although the 

classical pathway for NO production is the oxidation of L-arginine by NO synthases (NOS) [5], 

dietary supplementation with L-arginine does not increase NO biomarkers and exercise 

performance in healthy humans [6-8] due to poor oral bioavailability of L-arginine [van de Poll 

et al., 2007 Am J Clin Nutr; Wu, 1998 J Nutr].  It is now recognised that NO can be derived 

from the stepwise and O2-independent reduction of inorganic nitrate (NO3
-) to nitrite (NO2

-) 

and subsequently to NO [9-10].  Acute or chronic dietary supplementation with NO3
- has been 

consistently demonstrated to elevate plasma [NO2
-], and can improve exercise economy, the 

kinetics of pulmonary oxygen uptake ( O2) following the onset of exercise, and/or exercise 

performance in healthy, moderately trained individuals in some [11-20], but not all [e.g., 15], 

studies in normoxia [see McMahon et al., 2017, Sports Med for a systematic review and meta 

analysis].  

 

It is well documented that the one-electron reduction of NO2
- to NO is enhanced in conditions 

of acidosis [21] and hypoxia [22].  Since breathing a hypoxic inspirate has been reported to 

lower skeletal muscle conductive O2 delivery [23], oxygenation [24] and pH [25] during 

exercise, greater NO2
- reduction to NO would be expected in this setting compared to 

normoxia.  When exercising in normobaric hypoxia, dietary NO3
- supplementation has been 

reported to improve skeletal muscle oxygenation, exercise economy and exercise performance 

[24,26-28], and to improve matching between skeletal muscle O2 supply and utilisation [29].  

Moreover, exercise-induced perturbations to skeletal muscle metabolic homeostasis, such as 

the declines in phosphocreatine (PCr) and pH and increases in adenosine diphosphate (ADP) 

and inorganic phosphate (Pi), are restored towards normoxic responses after NO3
- 

supplementation in hypoxia [25]. Therefore, lowering skeletal muscle oxygenation might 

augment the potential for dietary NO3
- supplementation to improve physiological responses 

during exercise and endurance performance.  However, in studies comparing the ergogenic 

effects of NO3
- supplementation in normoxia and hypoxia, it has been reported that NO3

- 

supplementation is ineffective at enhancing performance in normoxia and hypoxia [Bourdillon 

et al. 2015, Front Physiol; MacLeod et al., 2015, Int J Sport Nutr Exerc Metab; Nybäck et al., 

2017, Nitric Oxide], equally effective at enhancing performance in normoxia and hypoxia 

[Rokkedal-Lausch et al., 2019, Nitric Oxide], and at more effective at enhancing performance 
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in hypoxia compared to normoxia [Kelly et al., 2014, Am J Physiol Regul Integr Comp 

Physiol].  Such inter-study discrepancies underscore the requirement of further research to 

address the relative ergogenic efficacy of NO3
- supplementation in normoxia and hypoxia.     

 

Breathing an O2 enriched gas mixture has been reported to lower plasma [NO2
-] [30,31], which 

has been attributed to elevated oxidative stress and an associated increase in NO scavenging 

[31].  In addition, inhalation of hyperoxic gas has been reported to increase skeletal muscle 

conductive O2 delivery [23,32,33] and oxygenation [34], which would be expected to limit the 

reduction of NO2
- to NO during exercise.  Our group has recently reported that mouse single 

skeletal muscle fibres incubated with NaNO2 exhibit increased time to fatigue during evoked 

contractions at a physiological PO2, but lower time to fatigue at a supraphysiological PO2 [35].  

However, it is unclear whether dietary NO3
- supplementation compromises exercise capacity 

when skeletal muscle oxygenation is increased in humans.     

 

The purpose of the current study was to assess the effect of modulating skeletal muscle 

oxygenation on plasma [NO2
-], skeletal muscle oxygenation and pulmonary O2 uptake ( O2) 

kinetics during moderate-intensity exercise (completed below the gas exchanged threshold), 

and severe-intensity exercise (completed above the critical power) performed to the limit of 

tolerance (Tlim), following acute dietary NO3
- supplementation [36]. It was hypothesised that 

acute supplementation with NO3
--rich beetroot juice (BR) would increase muscle oxygenation 

and lower end-exercise O2 during a moderate-intensity step exercise test in normoxia and that 

these effects would be augmented in hypoxia and abolished in hyperoxia.  It was also 

hypothesised that BR supplementation would increase muscle oxygenation, expedite the 

adjustment in O2 and improve Tlim during a subsequent step increment to severe-intensity 

exercise in normoxia and that these variables would be improved to a greater extent in hypoxia 

and to a lesser extent in hyperoxia.   

 
 

2. METHODS 
2.1 Subjects characteristics 

Ten healthy non-smoking males (age, 23 ± 3 yrs; body mass, 78 ± 9 kg; height, 1.80 ± 0.07 m; 

mean ± SD) volunteered to participate in this study.   The subjects participated in exercise at a 

recreational level but were not highly trained ( o2peak, 49 ± 5 ml·kg-1·min-1).  All subjects were 
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familiar with laboratory exercise testing procedures, having previously participated in studies 

employing cycle ergometry in our laboratory.  The procedures employed in this study were 

approved by the University of Exeter Research Ethics Committee and all subjects were required 

to give their written informed consent prior to the commencement of the study after the 

experimental procedures, associated risks, and potential benefits of participation had been 

explained.  Subjects were instructed to arrive at the laboratory in a rested and fully hydrated 

state, at least 3 h postprandial, and to avoid strenuous exercise in the 24 h preceding each testing 

session.  All tests were performed at the same time of day (± 2 h) and subjects were instructed 

to abstain from antibacterial mouthwash use for the duration of the study, as antibacterial 

mouthwash is known to attenuate NO3
--reductase activity by commensal bacteria in the oral 

cavity [37].  Subjects were also asked to avoid consumption of NO3
--rich (beetroot, celery, 

cress, lettuce, radish, rocket, spinach) and glucosinolate/thiocyanate-rich foods (Brassica 

vegetables such as broccoli, brussels sprouts cabbage and cauliflower) [38] for 48 h, and 

caffeine and alcohol ingestion for 12 and 24 h before each test, respectively.   

 
2.2 Experimental Design 

Subjects were required to report to the laboratory on nine occasions over a 4-7 week timeframe. 

After completing an initial ramp incremental exercise test and familiarization trials, subjects 

completed step cycling tests for determination of plasma [NO2
-] and O2 kinetics, quadriceps 

oxygenation and exercise tolerance.  These trials were completed after acute consumption of 

BR or placebo (PL) in normobaric normoxia (BR-Norm, PL-Norm), hypoxia (BR-Hypo, PL-

Hypo) and hyperoxia (BR-Hyper, PL-Hyper), as described below in 2.5 Supplementation 

Procedures and 2.6 Inspirate Generation.  These experimental conditions were administered 

in a quasi-double-blind (investigators were aware of the FIO2 but not the supplementation 

conditions), randomised, crossover experimental design.     

 

2.3 Incremental Test 

Before the intervention period, subjects completed a ramp incremental exercise test for 

determination of o2peak and gas exchange threshold (GET).  All exercise tests were performed 

on an electronically-braked cycle ergometer (Lode Excalibur Sport, Groningen, the 

Netherlands).  Initially, subjects performed 3 min of baseline cycling at 20 W, after which the 

work rate was increased by 40 W·min-1 until the limit of tolerance.  The subjects cycled at a 

self-selected pedal rate (between 70-90 rpm) and this pedal rate along with saddle and 
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handlebar height and configuration was recorded and reproduced in subsequent tests.  Breath-

by-breath pulmonary gas-exchange data were collected continuously during the incremental 

tests and averaged over consecutive 10 s periods.  The o2peak was taken as the highest 30 s 

mean value attained prior to the subject’s Tlim in the test.  The GET was determined from a 

cluster of measurements including: 1) the first disproportionate increase in CO2 production (

co2) from visual inspection of individual plots of co2 vs. O2; 2) an increase in expired 

ventilation ( E) / O2 with no increase in E / co2; and 3) an increase in end-tidal O2 tension 

with no fall in end-tidal CO2 tension.  The data collected during the incremental test was used 

to calculate the work rates which were employed during the subsequent step exercise tests.  

Specifically, the work rates that would require 95% of the O2 at GET (moderate-intensity 

exercise) and 75% of the difference between the O2 at the GET and o2peak (75%Δ); severe-

intensity exercise) were estimated with account taken of the mean response time of the O2 

response to ramp exercise (i.e., two-thirds of the ramp rate was subtracted from the power 

output at the GET and o2peak) [39]. 

 
2.4 Step Exercise Tests 

Subjects completed a two-step exercise test in normoxia and hypoxia on visits two and three 

for familiarisation with the exercise protocol and all experimental procedures described below.  

On the remaining six laboratory visits, subjects completed a two-step exercise test in the BR-

Norm, PL-Norm, BR-Hypo, PL-Hypo, BR-Hyper and PL-Hyper experimental conditions. 

Upon arrival at the laboratory, a cannula (Insyte-W Becton-Dickinson, Madrid, Spain) was 

inserted into a forearm vein to enable the collection of venous blood samples during and 

immediately after the two-step exercise test.  Subjects then mounted the cycle ergometer and 

were fitted with a mouthpiece, fingertip pulse oximeter and three sets of near-infrared 

spectroscopy (NIRS) probes (see Measurements section below).  Subsequently, subjects 

underwent 5 min of seated rest whilst inhaling one of the three experimental test inspirates (see 

Inspirate Generation section below) before commencing the two-step exercise test.  Each two-

step exercise test began with 2 min of baseline low-intensity ‘unloaded’ cycling at 20 W before 

an abrupt transition to a moderate-intensity constant work rate equivalent to 95% GET (U→M).  

Following 4 min of moderate-intensity cycling, the work rate was abruptly increased to a 

severe-intensity constant work rate equivalent to 75% Δ (M→S).  The severe-intensity exercise 

bout was continued to the limit of tolerance, which was recorded when the pedal rate fell more 

than 10 rpm below the required pedal rate.    
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2.5 Supplementation Procedures 

Subjects were required to ingest 210 mL of a beetroot juice concentrate (Beet it, James White 

Drinks Ltd., Ipswich, UK) 2.5 hours prior to arrival at the laboratory for all experimental tests.  

For the BR-Norm, BR-Hypo and BR-Hyper trials, subjects ingested NO3
--rich beetroot juice 

concentrate (which provided ~18.6 mmol NO3
-), whereas subjects ingested NO3

--depleted 

beetroot juice concentrate in the PL-Norm, PL-Hypo and PL-Hyper trials (which provided ~ 

0.12 mmol NO3
-).  Each experimental test was separated by a washout period of at least 48 h 

[20]. 

 

 

 

2.6 Inspirate Generation 

The hypoxic and hyperoxic inspirates administered in this study were generated using an air 

separation unit (CAT-12, Colorado Altitude Training, Louisville, USA).  The system 

comprised two outlets, one which expelled O2 enriched air and one which expelled O2 depleted 

air.  Air expelled from one of these outlets was delivered, via an extension conduit, to a 1000 

L Douglas Bag (Cranlea & Co., Birmingham, UK), which acted as a reservoir and mixing 

chamber.  For the hypoxic and hyperoxic trials, the O2 depleted and O2 enriched gases were 

mixed until the required O2 percentage was attained.   For the normoxic trials, the air separation 

mode was turned off.  The O2 and CO2 concentration of the inspirate was monitored during 

each test using a Servomex 5200 High Accuracy Paramagnetic O2 and CO2 Analyzer 

(Servomex, Crowborough, UK). The gas analyzer was calibrated prior to each test with a 

16.0% O2, 8.0% CO2 and 76.0% N2 gas mix (BOC Special Gases, Guildford, UK).  The O2 % 

in the PL-Norm, BR-Norm, PL-Hypo, BR-Hypo, PL-Hyper and BR-Hyper trials was 21.0 ± 

0.2, 21.0 ± 0.1, 14.9 ± 0.1, 14.9 ± 0.1, 40.1 ± 0.1 and 40.0 ± 0.1, respectively.  The 1000 L 

Douglas Bag comprised a separate outlet tube that linked to a two-way breathing valve system 

(Hans Rudolph, Cranlea & Co.). The two-way valve was connected to the mouthpiece which 

provided a constant, unidirectional flow rate and ensured that no re-breathing of expired air 

occurred.     

 

2.7 Measurements 

Venous blood was sampled at the end of unloaded and moderate-intensity cycling, 120 s 

following the onset of severe-intensity cycling and at Tlim during severe-intensity cycling.  
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Samples were drawn into 6-ml lithium-heparin tubes (Vacutainer, Becton-Dickinson, New 

Jersey, USA) and centrifuged at 4000 rpm and 4°C for 10 min, within 2 min of collection.  

Plasma was subsequently extracted and immediately frozen at -80°C for later analysis of nitrite 

concentration ([NO2
-]) via ozone-based chemiluminescence as described previously [20].   

 

Arterial O2 saturation (SpO2) was measured continuously at 0.5 Hz using a Rad-87 pulse 

oximeter (Masimo, Irvine, USA) attached to the right index finger and exported for later 

analysis.  The spatially-resolved quadriceps tissue oxygenation index (TOI) was measured 

continuously at three sites using two continuous-wave NIRS systems with data sampled at 1 

Hz.  The TOI of the rectus femoris was assessed using a NIRO 200 tissue oxygenation 

spectrometer (Hamamatsu Photonics KK, Hamamatsu City, Japan) while the TOI of the vastus 

lateralis was assessed using a NIRO 200NX tissue oxygenation spectrometer (Hamamatsu 

Photonics KK, Hamamatsu City, Japan).  Both systems comprised an emission probe that 

irradiated laser beams and a detection probe. Three different wavelength laser diodes provided 

the light source (775, 810 and 850 nm in the NIRO 200 and 735, 810 and 850 in the NIRO 

200NX) and the light returning from the tissue was detected by a photomultiplier tube in the 

spectrometer.  The optodes were placed in a holder, which was secured to the skin with 

adhesive.  The rectus femoris probe was placed at 50% of the distance between the patella and 

the greater trochanter.  The proximal vastus lateralis probe was attached at 70%, with the distal 

vastus lateralis probe attached at 30%, of the distance between the patella and the greater 

trochanter.  To secure the holder and wires in place, an elastic bandage was wrapped around 

the subject’s leg.  The wrap helped to minimize the possibility that extraneous light could 

influence the signal and ensured that the optodes did not move during exercise.  Indelible pen 

marks were made around the holder to enable precise reproduction of the placement in 

subsequent tests.  The inter-optode distance (3 cm) and optical pathlength factor (18.6 cm) were 

consistent between measurement sites.   

 

During all tests, pulmonary gas exchange and ventilation were measured breath-by-breath 

using an automated gas analysis system (CPX Express, MedGraphics, St. Paul, MN, USA).  

Subjects wore a nose clip and breathed through a low-dead-space, low-resistance mouthpiece 

and preVent pneumotach flowmeter assembly (MedGraphics, St. Paul, MN, USA).  The 

inspired and expired gas volume and gas concentration signals were continuously sampled, the 

latter using galvanic (O2) and non-dispersive infrared (CO2) analyzers (CPX Express, 

MedGraphics, St. Paul, MN, USA) via a capillary line connected to the mouthpiece.  The gas 
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analyzers were calibrated before each test with gases of known concentration and the turbine 

volume transducer was calibrated with a 3-liter syringe (Hans Rudolph, Kansas City, MO).   

 

2.8 Data Analysis 

The breath-by-breath O2 data from each test were initially examined to exclude errant breaths 

caused by coughing, swallowing, sighing, etc., and those values lying more than four standard 

deviations from the local mean were removed.  The breath-by-breath data were subsequently 

linearly interpolated to provide second-by-second values and time-aligned to the start of 

exercise.  A single-exponential model without time delay, with the fitting window commencing 

at t = 0 s (equivalent to the mean response time, MRT) was used to characterise the kinetics of 

the overall O2 response during the U→M and M→S step work rate increments as described 

in the following equation:  
 

O2 (t) = O2 baseline + A (1-e- (t/MRT))   (Eqn. 1)                                          

 

where O2 (t) represents the absolute O2 at a given time t; O2baseline represents the mean O2
 

measured over the final 60-s of baseline; and A and MRT represent the amplitude and MRT, 

respectively, describing the overall increase in O2 above baseline.  An iterative process was 

used to minimise the sum of the squared errors between the fitted function and the observed 

values.  We quantified the O2 MRT with the fitting window constrained to the end of the 

U→M work rate increment and to 180 s of the M→S work rate increment.  The absolute O2 

at the end (mean over the final 60s) of the U→M and M→S work rate increments, and at 180 

s (± 15 s) of M→S were also calculated, as was the change (∆) in O2 between baseline and 

end-exercise in the U→M and M→S work rate increments and between baseline and 180 s of 

the M→S work rate increment.     

 

The TOI responses at the medial rectus femoris and proximal and distal vastus lateralis were 

averaged prior to analysis. The absolute TOI at the end (mean over the final 60s) of the 

unloaded baseline, the U→M and M→S work rate increments, and at 180 s (± 15 s) during the 

M→S work rate increment were subsequently calculated.  The SpO2 data from the start of 

unloaded cycling up to 120 s of severe-intensity cycling exercise were averaged for each 

experimental condition to provide an overall SpO2 profile for each trial. 
 

2.9 Statistical Analysis 
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A two-way, supplement (PL and BR) × inspirate (hypoxia, normoxia and hyperoxia), repeated-

measures ANOVA was employed to assess differences in plasma [NO2
-], O2 kinetics, SpO2, 

TOI and exercise tolerance across the experimental conditions.  Significant effects were further 

explored using post-hoc Fisher’s LSD t-tests.  Relationships between the outcome variables 

were assessed using Pearson’s correlation coefficient (r).  Effect size for Tlim comparisons were 

assessed using Cohen’s d.  Data are presented as mean ± SD, unless otherwise stated.  Statistical 

significance was accepted when P<0.05. 

 

3.0 RESULTS 
The BR and PL supplements and hypoxic and hyperoxic inspirates administered in this study 

were well tolerated with no side-effects reported.  All participants self-reported that their 

dietary and exercise habits were consistent across the duration of the study.  Participants 

attained a peak work rate of 379 ± 40 W and O2 of 3.82 ± 0.50 L·min-1 (49 ± 5 ml·kg-1·min-

1) during the ramp incremental test.  The work rates applied during the moderate-intensity and 

severe-intensity step cycle tests were 106 ± 14 W and 292 ± 34 W, respectively.     

 

3.1 Plasma [NO2
-] 

Plasma [NO2
-] data are presented in figure 1.  Plasma [NO2

-] was higher at the end of baseline 

cycling, moderate-intensity cycling, 120 s of severe-intensity cycling and at Tlim in the BR-

Hypo, BR-Norm and BR-Hyper trials compared to the PL-Hypo, PL-Norm and PL-Hyper  

trials (P<0.01); however, there were no differences between the BR-Hypo, BR-Norm and BR-

Hyper trials or between the PL-Hypo, PL-Norm and PL-Hyper trials at specific time points 

(P>0.05).  In the BR, but not PL trials, plasma [NO2
-] was lower at Tlim compared to the end of 

baseline cycling, moderate-intensity cycling and 120 s of severe-intensity cycling (P<0.05).   

 

3.2 Arterial oxygen saturation 

The mean SpO2 data across trials are presented in figure 2.  Mean SpO2 was lower in the 

hypoxic trials compared to the normoxic and hyperoxic trials (P<0.01), but not different 

between the normoxic and hyperoxic trials (P>0.05).   

 

3.3 Tissue oxygenation index 

Quadriceps TOI was higher during moderate-intensity and severe-intensity cycling exercise in 

the PL-Norm trial compared to the PL-Hypo trial (P<0.05) and in the PL-Hyper trial compared 
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to the PL-Norm and PL-Hypo trials (P<0.05; Figure 3).  There were no differences in 

quadriceps TOI between the PL-Hypo and BR-Hypo trials or between the PL-Hyper and BR-

Hyper trials (P>0.05), but quadriceps TOI was higher during baseline (71 ± 3 vs. 69 ± 3 %) 

and moderate-intensity (67 ± 5 vs. 65 ± 4 %) cycling exercise in the BR-Norm trial compared 

to the PL-Norm trial (P<0.05; figure 4).            

 

3.4 Pulmonary oxygen uptake 

The group mean pulmonary O2 data are presented in table 1 with the O2 responses from a 

representative individual and the group mean end-exercise O2 shown in figure 5.  There were 

no differences in the absolute O2 during baseline, moderate-intensity cycling or the first 180 

s of severe-intensity cycling between any of the experimental conditions (P>0.05).  The O2 

MRT was longer following the onset of severe-intensity cycling initiated from a moderate-

intensity baseline compared to moderate-intensity cycling initiated from an unloaded baseline 

(P<0.01; table 1).  However, the O2 MRT during moderate-intensity and severe-intensity 

exercise were not different between experimental conditions (P>0.05).  The change in O2 over 

the first 180 s of severe-intensity cycling and end-exercise O2 during severe-intensity cycling 

were not different between the PL-Norm and PL-Hyper conditions (P>0.05) but were lower in 

the PL-Hypo trial compared to both the PL-Norm and PL-Hyper trials (P<0.05; table 1).  There 

were no differences in the change in O2 over the first 180 s or end-exercise O2 during severe-

intensity cycling between the BR and PL conditions in normoxia and hyperoxia (P>0.05), but 

these variables were both higher after BR supplementation in hypoxia compared to PL 

supplementation in hypoxia (P<0.05; table 1; figure 5).  

    

3.5 Exercise tolerance 

Tlim was shorter in the normoxic trials (PL-Norm: 344 ± 78 s, BR-Norm: 364 ± 98 s) compared 

to the hyperoxic trials (PL-Hyper: 472 ± 196 s, BR-Hyper: 492 ± 212 s) and shorter in the 

hypoxic trials (PL-Hypo: 231 ± 41 s, BR-Hypo: 250 ± 44 s) compared to the normoxic and 

hyperoxic trials (P<0.05; figure 6).  Tlim was not different between BR and PL in the hyperoxic 

trials (P>0.05, d=0.37), tended to be longer with BR in the normoxic trials (P=0.087, d=0.61) 

and was increased with BR in the hypoxic trials (P<0.05, d=1.13; figure 6).  The improved 

exercise tolerance after BR supplementation in hypoxia was negatively correlated with the end-

exercise quadriceps TOI in the PL-Hypo trial (r = -0.78, P<0.05; figure 7).    
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4. DISCUSSION 
In the present study, the effects of acute BR supplementation on quadriceps TOI, O2 kinetics 

and exercise tolerance were assessed in participants breathing normoxic, hyperoxic and 

hypoxic gas mixtures.  The principal original findings of the present study were that BR 

supplementation improved severe-intensity exercise tolerance in hypoxia with a large effect 

size (d=1.13), but did not improve severe-intensity exercise tolerance in normoxia (d=0.61) or 

hyperoxia (d=0.37).  The increase in O2 above baseline at 180 s, as well as the peak O2 

attained at Tlim, were greater in the severe-intensity step test completed in hypoxia, but not in 

normoxia or hyperoxia, following BR supplementation.  The improvement in exercise 

tolerance following BR compared to PL supplementation in the severe-intensity step test 

completed in hypoxia was negatively correlated with quadriceps muscle oxygenation 

quadriceps TOI at Tlim in the PL condition.  Collectively, these findings indicate that the degree 

to which BR supplementation improves severe-intensity exercise tolerance is influenced by the 

magnitude of skeletal muscle deoxygenation incurred.  These original observations have 

important implications for improving understanding of the settings in which BR 

supplementation can be applied to enhance oxidative metabolism and exercise capacity. 

 

Acutely ingesting 210 mL of BR, which provided a NO3
- dose of 18.6 mmol, increased plasma 

[NO2
-] in the present study consistent with numerous previous studies [11-15,18-20,24-28].  

This circulating plasma NO2
- can then impact physiological processes either through direct 

NO2
- action [40,41] or through its subsequent reduction to NO via numerous ubiquitously 

expressed NO2
- reductases [42].  While plasma [NO2

-] declined during the exhaustive severe-

intensity exercise test BR-Norm, BR-Hypo and BR-Hyper conditions, neither the plasma [NO2
-

] at exhaustion nor the absolute decline in plasma [NO2
-] were different between these 

conditions.  It has previously been reported that plasma [NO2
-] declines during a similar extent 

during severe-intensity exercise in normoxia and normobaric hypoxia [Kelly et al., 2014, Am 

J Physiol Regul Integr Comp Physiol], consistent with the observations in the current study.  

Although previous studies [30,31] have reported a lowering in plasma [nitrite] in hyperoxia at 

rest, the comparable decline in plasma [NO2
-] in the BR-Hyper condition relative to the BR-

Norm and BR-Hypo conditions during severe-intensity exercise is an original contribution of 

this study.  In addition to increasing plasma [NO2
-] via BR supplementation, quadriceps muscle 

oxygenation was modulated in parallel with the different FIO2 conditions administered in the 
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current study, as confirmed using multi-channel NIRS.  Specifically, compared to normoxia, 

TOI was increased in hyperoxia and lowered in hypoxia. 

 

Although group mean O2 at the end of moderate-intensity exercise was lowered after BR 

supplementation by 3%, 2% and 1% in hypoxia, normoxia and hyperoxia compared to the 

respective PL trials, these differences did not attain statistical significance.  The lack of an 

improvement in submaximal exercise economy after BR supplementation in hyperoxia is an 

original finding, but the lack of an improvement in submaximal exercise economy after acute 

BR supplementation in normoxia and hypoxia conflicts with our experimental hypothesis and 

with some [19,20,27,43,44], but not all [45], previous observations in moderately fit 

individuals.  This lack of an effect of acute BR supplementation in normoxia and hypoxia could 

be the result of completing a single moderate-intensity step test instead of averaging the O2 

responses to two moderate-intensity step tests to improve the signal-to-noise ratio in the O2 

response [19,20,24].   

 

It is known that NIRS-derived oxygenation variables exhibit significant spatial heterogeneity 

in the quadriceps muscles [46].  Most previous studies have used single channel NIRS to assess 

the effect of BR supplementation on tissue oxygenation [12,24,27,44].  Therefore, an important 

original contribution of the current study is the utilisation of three NIRS channels on the 

quadriceps to provide a more complete profile of quadriceps TOI and how this might be 

modulated by BR supplementation when inhaling hypoxic, normoxic and hyperoxic air.  

Consistent with our experimental hypothesis, quadriceps TOI during the U→M step exercise 

test was increased after BR supplementation compared to PL in normoxia, but not hyperoxia.  

However, quadriceps TOI during the U→M step exercise test was not different between the 

BR and PL conditions in hypoxia, which conflicts with our experimental hypothesis and 

previous reports of improved lower limb muscle oxygenation after BR supplementation 

[24,26,44].  Nevertheless, and in accord with the observations of the current study, greater 

improvements in cerebral oxygenation have been observed in normoxia compared to hypoxia 

[47], and there is some evidence that the vasodilation conferred by an increase in circulating 

NO2
- is greatest in normoxia and blunted in hypoxia and hyperoxia [48].  Therefore, our data 

do not support the notion that acute BR supplementation is more effective at improving cycling 

economy and quadriceps TOI during moderate-intensity exercise in hypoxia compared to 

normoxia, but suggest that the improvements in quadriceps TOI during moderate-intensity 
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exercise in normoxia following BR supplementation are blunted in both hypoxia and 

hyperoxia.  

 

During the M→S step test, the change in O2 from the moderate-intensity baseline to 180 s of 

severe-intensity cycling was not different in normoxia or hyperoxia, but was increased by 8% 

in hypoxia, following BR compared to PL supplementation.  Similarly, the peak O2 attained 

at Tlim in the M→S step test was increased in the BR condition compared to PL by 5% in 

hypoxia but was not different in normoxia or hyperoxia.  The lack of an effect of BR 

supplementation on O2 kinetics during severe-intensity exercise in normoxia is consistent 

with some previous reports [20].  However, consistent with the observations of the current 

study, it has recently been reported that chronic BR supplementation can increase mean O2 

and the fractional utilisation of O2max in trained cyclists completing a 10 km cycling time trial 

in hypoxia [49].  The increase in O2 from the moderate-intensity baseline to 180 s of severe-

intensity cycling and at the end of severe-intensity cycling in hypoxia following BR 

supplementation was not accompanied by altered quadriceps TOI over the corresponding time 

frames.  Since TOI provides insight into the matching between tissue O2 supply and utilisation 

[50], these data imply that a proportional increase in skeletal muscle O2 supply permitted the 

increase in O2.   

 

The tolerable duration of severe-intensity exercise after BR supplementation was not 

significantly improved (+ 4%) in hyperoxia or normoxia (+ 6%), but was enhanced with a large 

effect size in hypoxia (+ 8%), compared to the respective PL trials.  A greater improvement in 

severe exercise tolerance after BR supplementation in hypoxia compared to normoxia has been 

reported previously, but without changes in O2 between BR and PL [24].  Conversely, our 

findings conflict with studies reporting that NO3
- supplementation is ineffective at enhancing 

performance in normoxia and hypoxia [Bourdillon et al. 2015, Front Physiol; MacLeod et al., 

2015, Int J Sport Nutr Exerc Metab; Nybäck et al., 2017, Nitric Oxide] and equally effective at 

enhancing performance in normoxia and hypoxia [Rokkedal-Lausch et al., 2019, Nitric Oxide].   

Instead, BR supplementation improved severe-intensity exercise tolerance in the current study 

concomitant with an increase in O2 during the initial stages of exercise as well as the 

attainment of a greater O2peak at Tlim in hypoxia.  Therefore, a greater oxidative energy 

contribution is likely to have contributed to the improved severe-intensity exercise tolerance in 

hypoxia after BR supplementation in the current study.  This increase in oxidative energy 

turnover would be expected to blunt the decline in finite anaerobic energy reserves and the 
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accumulation of metabolites implicated in the process of fatigue permitting a greater tolerable 

duration of exercise [51].  Indeed, it has been reported that quadriceps [PCr] and pH decline, 

and [ADP] and [Pi] increase, to a lesser extent following BR supplementation in hypoxia 

concomitant with an increase in exercise tolerance [25].  However, we cannot exclude the 

possibility that BR supplementation might have enhanced severe exercise tolerance and 

permitted the attainment of a higher O2peak in hypoxia by attenuating peripheral fatigue 

development via improved myofiber Ca2+ handling [35] or modulating aspects of central 

fatigue, which is known to make a greater contribution to fatigue in hypoxia [52].  It should 

also be acknowledged that the lack of a statistically significant improvement in Tlim following 

acute BR supplementation in the current study might be linked insufficient statistical power.    

 

The extent to which severe-intensity exercise tolerance was improved following BR 

supplementation in hypoxia was negatively correlated with quadriceps TOI at Tlim in the PL-

Hypo condition.  Combined with the observations that severe-intensity exercise tolerance was 

only improved in hypoxia, these findings indicate that the ergogenic potential of BR 

supplementation during severe-intensity exercise is linked to the degree of skeletal muscle 

deoxygenation incurred during such exercise.  These observations have implications for 

improving understanding of the exercise settings in which BR supplementation is more likely 

to be effective at improving exercise capacity.  Specifically, it is possible that BR 

supplementation is more effective at improving performance at altitude, in individuals with a 

greater proportion of type II (fast-twitch) skeletal muscle [53,54] and in patients with disorders 

of skeletal muscle O2 delivery [54,55].  Moreover, since O2peak is an important predictor of 

all-cause mortality [56] and is attenuated in numerous disease conditions that engender hypoxia 

[e.g., 57], an increase in O2peak in hypoxia after acute BR supplementation might have 

implications for improving exercise capacity, quality of life and mortality in certain patient 

groups.  However, it should be acknowledged that, while well-trained endurance athletes 

exhibit increased muscle O2 extraction during exercise in hypoxia leading to greater muscle 

deoxygenation (Van Thienen and Hespel, 2016, J Appl Physiol), there is some evidence that 

NO3
- supplementation does not enhance endurance performance in well-trained athletes in 

hypoxia (Bourdillon et al. 2015, Front Physiol; MacLeod et al., 2015, Int J Sport Nutr Exerc 

Metab; Nybäck et al., 2017, Nitric Oxide).  Therefore, further research is required to evaluate 

the PO2-dependency of the potential beneficial effects of NO3
- supplementation on 

physiological responses and performance during exercise in different populations.     
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In conclusion, acute ingestion of BR, which increased circulating plasma [NO2
-], did not 

significantly improve moderate-intensity cycling economy in normoxia, hypoxia or hyperoxia, 

but increased quadriceps TOI in the former.  During severe-intensity cycling, BR ingestion 

improved exercise tolerance in hypoxia, but did not improve exercise tolerance in normoxia or 

hyperoxia.  The improvement in severe-intensity exercise tolerance with BR supplementation 

in hypoxia was negatively correlated with quadriceps TOI such that those who experienced 

greater quadriceps deoxygenation in hypoxia exhibited the greatest improvement in exercise 

tolerance with BR ingestion.     These original findings indicate that the ergogenic potential of 

acute BR supplementation is increased as the skeletal muscle becomes increasingly 

deoxygenated.                   
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Figure Legends 

 

Figure 1:  Plasma nitrite concentration ([NO2
-]) following acute ingestion of nitrate-depleted 

beetroot juice (PL) in hypoxia (PL-Hypo), normoxia (PL-Norm) and hyperoxia (PL-Hyper), 

and following acute ingestion of nitrate-rich beetroot juice (BR) in hypoxia (BR-Hypo), 

normoxia (BR-Norm) and hyperoxia (BR-Hyper).  Plasma was sampled at the end of unloaded 

baseline cycling at 20 W, moderate-intensity cycling, 120 s of severe-intensity cycling and at 

limit of tolerance (Tlim) during severe-intensity cycling.  Data are presented as group mean ± 

SEM.  * indicates BR-Hypo, BR-Norm, and BR-Hyper trials are higher than PL-Hypo and PL-

Norm and PL-Hyper (P<0.05).  # indicates different from baseline, end moderate and 120 s 

severe in the BR-Hypo, BR-Norm, and BR-Hyper trials (P<0.05).    

 

Figure 2:  Arterial oxygen saturation (SpO2) following acute ingestion of nitrate-depleted 

beetroot juice (PL) in hypoxia (PL-Hypo), normoxia (PL-Norm) and hyperoxia (PL-Hyper), 

and following acute ingestion of nitrate-rich beetroot juice (BR) in hypoxia (BR-Hypo), 
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normoxia (BR-Norm) and hyperoxia (BR-Hyper).  The open bars represent the group mean ± 

SEM SpO2 from the PL trials while the filled bars represent group mean ± SEM SpO2 from the 

BR trials.  Data represent the mean SpO2 up to 120 s of severe-intensity cycling exercise.  * 

indicates different from PL-Hypo and BR-Hypo (P<0.05).    

 

Figure 3:  Quadriceps tissue oxygenation index (TOI) responses following acute ingestion of 

nitrate-depleted beetroot juice (PL) in hypoxia (PL-Hypo), normoxia (PL-Norm) and hyperoxia 

(PL-Hyper).  TOI data during unloaded baseline cycling at 20 W (-60-0 s), moderate-intensity 

cycling (0-240 s) and severe-intensity cycling (240-360 s) are group mean responses displayed 

as 5 s averages.  TOI data at limit of tolerance (Tlim) during severe-intensity cycling exercise 

represent the mean TOI over the final 60 s of exercise and are presented as group mean ± SEM.  

# indicates different from PL-Hypo and BR-Hypo (P<0.05).  * indicates different from PL-

Norm, BR-Norm, PL-Hypo and BR-Hypo (P<0.05).   

 

Figure 4:  Quadriceps tissue oxygenation index (TOI) responses following acute ingestion of 

nitrate-depleted beetroot juice (PL) and nitrate-rich beetroot juice (BR) in hypoxia (upper panel; 

PL-Hypo and BR-Hypo, respectively), normoxia (middle panel; PL-Norm and BR-Norm, 

respectively) and hyperoxia (lower panel; PL-Hyper and BR-Hyper, respectively). TOI data 

during unloaded baseline cycling at 20 W (-60-0 s), moderate-intensity cycling (0-240 s) and 

severe-intensity cycling (240-360 s) are group mean responses displayed as 5 s averages.  TOI 

data at limit of tolerance (Tlim) during severe-intensity cycling exercise represent the mean TOI 

over the final 60 s of exercise and are presented as group mean ± SEM. * indicates different 

from PL-Hypo (P<0.05).  # indicates different from PL-Norm (P<0.05).     

 

Figure 5:  Pulmonary oxygen uptake ( O2) responses following acute ingestion of nitrate-

depleted beetroot juice (PL) and nitrate-rich beetroot juice (BR) in hypoxia (upper panel; PL-

Hypo and BR-Hypo, respectively), normoxia (midle panel; PL-Norm and BR-Norm, 

respectively) and hyperoxia (lower panel; PL-Hyper and BR-Hyper, respectively). O2 data 

during moderate-intensity cycling (-60-0 s) and severe-intensity cycling (240-360 s) are 

displayed as 5 s averages from a representative subject.  Insets present end-exercise O2 (mean 

over the final 60 s of severe-intensity cycling) following PL and BR supplementation in 

hypoxia, normoxia and hyperoxia.  The open bars represent the group mean ± SEM end-exercise 

O2 in the PL trials, while the filled bars represent the group mean ± SEM plasma end-exercise 

O2 in the BR trials.  The solid grey lines represent the individual changes in end-exercise O2 
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following BR supplementation at a given fraction of inspired O2. * indicates different from PL-

Hypo (P<0.05).  

 

Figure 6:  Time to limit of tolerance (Tlim) following acute ingestion of nitrate-depleted beetroot 

juice (PL) in hypoxia (PL-Hypo), normoxia (PL-Norm) and hyperoxia (PL-Hyper), and 

following acute ingestion of nitrate-rich beetroot juice (BR) in hypoxia (BR-Hypo), normoxia 

(BR-Norm) and hyperoxia (BR-Hyper).  The open bars represent the group mean ± SEM Tlim 

from the PL trials while the filled bars represent the group mean ± SEM Tlim from the BR trials.  

The solid grey lines represent the individual changes in Tlim following BR supplementation at 

a given fraction of inspired O2. * indicates different from PL-Hypo (P<0.05).  # indicates 

different from PL-Hypo and BR-Hypo (P<0.05).  ¥ indicates different from PL-Norm, BR-

Norm, PL-Hypo and BR-Hypo (P<0.05).   

 

Figure 7:  The relationship between end-exercise tissue oxygenation index (TOI; mean over 

the final 60 s of severe-intensity cycling) following nitrate-depleted beetroot juice (PL) in 

hypoxia (PL-Hypo) and the change (Δ) in time to limit of tolerance (Tlim) between the PL and 

nitrate-rich beetroot juice (BR) trials in hypoxia (PL-Hypo and BR-Hypo, respectively).  Note 

that end-exercise TOI in PL-Hypo was negatively correlated with Δ Tlim between the PL-Hypo 

and BR-Hypo trials.  
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Fig. 3 
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Fig. 4 
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